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Abstract 

Proteins are biological macromolecules responsible for the majority of all 

physiological processes. In order to properly function proteins are required to adopt 

highly ordered structures. These structural aspects may be found within a single protein 

or arise from multi-protein complexes. Here hydrogen/deuterium exchange mass 

spectrometry (HDX-MS) is employed as a tool to determine the extent of protein higher 

order structure. Exposure to D2O-based solvent causes the heavier isotope to exchange 

with amide hydrogens in the polypeptide backbone. This exchange is mainly dependent 

on protein conformation because the presence of stable hydrogen-bonded secondary 

structure will impede the incorporation of deuterium when compared to regions that are 

unstructured. In this work HDX-MS is used to study denaturant-induced unfolding of 

oxidized and reduced cytochrome c as well as ATP binding to the ε subunit of FOF1-ATP 

synthase. This work also lays the foundation to use this technique to study larger, more 

complex systems.  

 

Keywords: hydrogen/deuterium exchange, mass spectrometry, denaturation, cytochrome 

c, ATP, ATP synthase, epsilon, ligand binding, Escherichia coli, Bacillus PS3  
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“Our virtues and our failings are inseparable, like force and matter. When 

they separate, man is no more” – Nikola Tesla  
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Chapter 1 – Introduction 

1 Preface 

Proteins are indispensable biological molecules responsible for the vast majority 

of physiological functions and processes. They vary in shape and size, from the smallest 

signalling peptide to large complexes on the order of a MDa in mass. It is the structure of 

proteins, through folding of higher ordered regions or assembly of larger complexes, that 

enable them to function. This all stems from their ability to adopt specific structures, 

where even the smallest deviation in bond angle would cause the protein to stagnate. 

Even more mysterious is that the sequence of proteins determines the 3D structure and 

function. This intricate and (at the present time) unresolved protein feature is the 

difference between a chain of random amino acids with no function and a functional 

biological machine (1).  

One of the most commons reasons for studying protein structure is to gain insight 

into biological function. In order to study protein structure one must first establish the 

state at which the protein is to be examined, whether it be the unfolded state, native state, 

or some intermediate. A time frame must then be chosen because different information 

can be garnered at equilibrium or in kinetic experiments. Finally, the appropriate 

technique must be chosen to examine the structural aspects of interest. 

 

1.1 Studying Protein Structure 

1.1.1 Protein Folding 

In order for a protein to function correctly it must be properly folded. This means 

the protein must transition from an unfolded peptide chain U, to a highly ordered, native 

structure N. Protein folding often a spontaneous process under native conditions where 

the Gibb’s free energy, ΔG, is given by: 
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STHG       (1.1) 

There are various factors which contribute to the enthalpic (ΔH) and entropic (ΔS) terms 

(2). With respect to ΔH the formation of secondary structure upon folding introduces 

hydrogen bonds in N, however, hydrogen bonds with water must be broken in U before N 

can form. Entropically, the hydrophobic effect causes nonpolar regions of the protein to 

sequester into a core as the protein folds, thereby minimizing the formation of highly 

ordered “iceberg water” (3, 4). The culmination of these and other factors results in an 

overall spontaneous process, although the magnitude of ΔG is small, less than 100 

kJ/mol. This small value makes it possible to convert from N back to U by manipulating 

temperature or solvent composition, thereby facilitating a wide range of folding 

experiments. 

1.1.2 Equilibrium Studies 

Equilibrium studies center around the notion that proteins in solution populate 

certain macrostates of varying energy, pertaining to specific conformations in a given 

population. The macrostates are ordered according to their free energy, and they contain a 

subset of structures with similar energy, deemed microstates. In the native state N the 

number of microstates is very low. In comparison, U comprises a much larger number of 

microstates because an unfolded protein can adopt many different structures. Other states 

such as intermediates can be considered additional macrostates, however, for simplicity 

we will only consider N and U, such that 

NU
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Equilibrium experiments are often performed in the unfolding direction where a native 

protein is unfolded by the use of a denaturant, usually urea or guanidinium hydrochloride 

(5-8). The probability P that a protein occupies U follows a Boltzmann distribution  
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where WU is the number of U conformations, Δε is the energy difference between N and 

U, kB is the Boltzmann constant, (1.38 x 10
-23

 J/K), and the denominator is the partition 

function, Z. Microstates of U can be consolidated by instead expressing the energy 

difference as ΔG: 
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the numerator of the exponential is similar to Eq 1.1, therefore: 

UB WTkSTHG ln       

Eq. 1.2 can therefore be written as: 
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This is the basis for many unfolding experiments because the protein can now be 

represented as a two-state model (5, 9). When examining macroscopic scenarios the 

protein stability in the presence of denaturant can be calculated according to: 

][)0( DmGG      (1.4) 

where ΔG is the free energy in the unfolding direction, ΔG(0) is the free energy in the 

absence of denaturant, m is the measure of accessible surface area (ASA), and [D] is the 

denaturant concentration. Because ΔG values are expressed in kJ/mol the gas constant R, 
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8.314 JK
-1

mol
-1

 is used instead of kB. To determine the fraction of protein unfolded (fU) as 

[D] increases, Eq. 1.4 is substituted into Eq. 1.3 to obtain: 
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These unfolding curves are used to represent protein stability (Figure 1.1). A protein that 

is more stable requires a higher [D] concentration to unfold and therefore a larger ΔG in 

the absence of [D]. Protein stability can also be extended to thermal denaturation where 

melting curves are used (10). 

1.1.3 Kinetic Studies 

Proteins can be examined under kinetic conditions using trigger events such as 

[D] dilution to induce refolding. For simplicity we consider a two-state system similar to 

equilibrium studies where  
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Figure 1.1 Unfolding under Equilibrium.  

The increasing stability corresponds to ΔG values of -20 kJ/mol (solid line), -40 kJ/mol 

(dashed line) and -60 kJ/mol
 
(dotted line). 
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Eq. 1.8 has the form aaA


ˆ  where λ is the eigenvalue and a


 is an eigenvector of Â. 

The corresponding eigenvectors, λ1 and λ2 can be calculated from Eq. 1.8 so that the 

determinant of Â, det Â = 0. This is true for the eigenvalues: 

)(1 uf kk    02       

Substituting λ1 and λ2, into Eq. 1.7 one obtains the following solutions: 
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Both λ1 and λ2 have corresponding eigenvectors, a1 and a2. By obtaining experimental 

values for kf and ku, a1 and a2 can be determined. Assuming kf = 100 s
-1

 and ku = 3 s
-1 

we 

obtain: 
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The constants s and r depend on the initial concentrations [U]0 and [N]0. Assuming [U]0 

= 1.7 μM and [U]0 = 0.3 μM we get the final solution (Figure 1.2): 

006.0)103exp(64.1)]([  ttU    (1.11) 
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95.1)103exp(64.1)]([  ttN    (1.12) 

This solution has a general formula for spectroscopic experiments: 

 StkStS obs )exp()( 0
    (1.13) 

where kobs is the observable rate constant, S0 is the initial optical signal, and S∞ is the 

signal at equilibrium. The simple two-state system described here can also be expanded 

to systems which include multiple intermediates and off pathways species.  

1.1.4 Optical Techniques for Monitoring Protein Structure 

Protein structure can be examined using a variety of optical tools. The benefits of 

these experiments are the ability to recover sample post analysis, as well as gain 

information about global changes in protein structure. These techniques, however, lack 

the resolution to gain information about localized structural changes. Optical 

measurements rely on the fact that proteins contain chromophores, molecules which can 

interact with photons through unsaturated functional groups (11). Upon exposure to the 

correct wavelength of light a chromophore will absorb a photon, thereby generating an 

electronically excited state. The relaxation of this excited state can occur non-radiatively 

through loss of heat or by emission of a photon. The type of photon emission depends on 

whether the chromophore returns to the ground state with the same spin multiplicity 

(fluorescence) or undergoes intersystem crossing (ISC) to a state with different spin 

multiplicity (phosphorescence). With respect to proteins, absorbance occurs from three 

different sources. The peptide bond has absorption in the far UV range (200-130 nm), 

however, this absorbance is often masked by co-existing species such as buffer 

molecules. The absorbance of aromatic amino acids, phenylalanine, tyrosine and 

tryptophan is most useful experimentally, with the absorbance of tryptophan at 280 nm 

being the most common method to determine protein concentration (12). Finally, 

prosthetic groups such as nucleotides (13), heme (14), or retinal (15) can be used to 

monitor structural changes in proteins.  
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Figure 1.2 Two-State Kinetic Folding.  

The concentration of [N] and [U] are plotted for a time window of 0.1 seconds. Eq. 1.11 

(solid line) and 1.12 (dotted line) are plotted. 
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Circular dichroism (CD) spectroscopy is well suited for monitoring the extent of 

secondary structure in proteins (16). CD spectroscopy utilizes the difference in 

absorbance of both left and right circularly polarized light. Different secondary structure 

elements exhibit unique CD profiles. For example, a minimum at 222 nm signifies the 

presence of α-helical structure. Though CD spectroscopy cannot be used to explicitly 

determine the localized presence of secondary structure, it has been used to determine the 

extent to which secondary structure appears in many refolding kinetic experiments (17, 

18). 

 

1.2 Mass Spectrometry 

1.2.1 Mass Spectrometry and other Analytical Tools 

The use of mass spectrometry (MS) has become common practice for studying the 

structure of proteins (19). The strength of MS is seen primarily in its ability to 

complement other analytical techniques such as liquid chromatography (LC) (20-23), 

ultraviolet-visible spectroscopy (UV-VIS) (24), and capillary electrophoresis (CE) (25). 

The reduced sample consumption and cost of operation is also advantageous when 

compared to techniques such as nuclear magnetic resonance (NMR) spectroscopy, though 

MS has yet to achieve the atomic level resolution achievable by NMR (26). Furthermore, 

MS offers insight into protein dynamics when compared to X-Ray crystallography, 

though X-Ray crystallography remains to be the “gold standard” for protein structure 

determination (27). It is important to emphasize that mass spectrometry does not rise 

above any technique discussed; rather MS analysis can complement or reaffirm structural 

data from NMR and X-Ray crystallography. Ultimately, MS offers a different vantage 

point into the perplexing realm of protein conformation and dynamics. 

In the following sections the different properties of mass spectrometers will be 

discussed, including their function and interchangeability with respect to protein 

analyses. At the core of the technique, MS determines the mass-to-charge ratio (m/z) of 
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charged analytes in the gas phase. In order for this to occur the mass spectrometer must 

be equipped with both an ion source and a mass analyzer. 

1.2.2 The Ion Source 

The ion source of a mass spectrometer is used to generate charged species in the 

gas phase. There are many different types of ion sources. A possible side effect of 

ionization is analyte fragmentation. Fragmentation is dependent on the properties of the 

ion source; softer techniques yield little to no fragmentation while harsher techniques 

yield abundant fragment ions (28). Soft or harsh ionization techniques can both have their 

advantages, however, in order to study biological macromolecules softer techniques are 

preferred (29). The absence of fragmentation ensures that these molecules do not lose key 

subdomains and that they can retain aspects of their solution phase structure. 

Electrospray Ionization (ESI) is the most commonly used soft ionization 

technique (30). For ESI-MS analysis proteins are dissolved in a suitable solvent and 

injected into a narrow metal capillary (31). Upon injection the solution is electrically 

neutral; however the metal capillary is connected to a high voltage power supply. This 

voltage causes charge separation where electrons are removed from the solution (for 

example by solvent oxidation: 2H2O  4H
+
 + 4e

-
 + O2), thereby causing the 

accumulation of net positive charge in the solution close to the capillary tip (32). The 

positive charge causes distortion of the liquid at the capillary outlet into a Taylor cone 

(33). This Taylor cone emits a fine mist of charged droplets into the gas phase (Figure 

1.3). The microdroplets are accelerated to the sampling orifice by an electric potential 

gradient between the capillary and the cone. In order to ensure that droplets and large 

contaminants do not reach the mass analyzer a counter flow of desolvation gas (often N2) 

is used. Recent advancements in ESI source compartments increase ion formation by 

improving the trajectory to the mass analyzed and ensuring the presence of neutral 

species and other contaminants are minimized. Reduced sample consumption has been 

achieved by the introduction of nanospray capillaries (34). 
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Figure 1.3 ESI-MS Scheme.  

The applied voltage causes charge separation and an accumulation of positive charge. 

The Taylor cone formed at the end of the capillary ejects a fine mist of charged, 

nanoscale droplets. Constant evaporation and droplet fission creates offspring droplets on 

the microscale range.  
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The mechanism by which ESI droplets eventually produce charged analytes, [M + 

zH
+
]

z+
, has been extensively disputed (35-37). Native proteins are thought to follow the 

charged residue mechanism (CRM) (Figure 1.4a). The droplet charge (z) resides on the 

surface, and it can be approximated using the Rayleigh equation (38) according to 

 
e

r
z

droplet

2/13

08 
      (1.14) 

where z is the charge on the droplet, ε0 is the vacuum permittivity, γ is the surface 

tension, rdroplet is the droplet radius, and e is the elementary charge. Rapid evaporation due 

to high temperature causes both the droplet to shrink and charges to come close together. 

Due to unfavourable electrostatic repulsion of like charges the droplet undergoes jet 

fission and creates smaller, highly charged offspring droplets. This process of 

evaporation and fission proceeds to dryness wherein the final evaporation of solvent 

causes the remaining charge to be directly deposited onto the protein (29, 32, 39). The 

protein can be thought of as a protein-sized water droplet, [M + zH]
z+

 where the charge is 

calculated according to Eq. 1.24 (40). 

Though the CRM is applicable to native, compact proteins this is not the case for 

unfolded proteins. The chain ejection model (CEM) has been proposed to explain how 

unfolded proteins undergo ESI (Figure 1.4b) (37, 41). Upon formation of the charged 

droplet the unfolded protein chain rapidly exits the droplet while part of the surface 

charge transfers to the protein as it emerges. This rapid ejection is facilitated by the 

electrostatic repulsion of the charge distributed to the emerging chain and the remaining 

surface charges on the droplet. The charge transfer was observed previously using 

collision induced dissociation (CID) of oligomeric proteins, where the unfolded protein 

obtained an asymmetric amount of charge with respect to the rest of the subunits (42). 

Ultimately both the CRM and CEM attempt to explain the difference in charge state 

distribution observed in MS analysis. A third mechanism, the ion evaporation mechanism 

(IEM) is also used to describe ionization in the gas phase, however is pertains to small 

molecules (32, 43). 
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Figure 1.4 Electrospray Ionization of Proteins.  

(a) Under the CRM native proteins undergo many cycles of solvent evaporation and jet 

fission to dryness resulting in charge transfer estimated by Eq. 1.14. (b) Unfolded 

proteins are thought to go through the CEM where charge is transferred from the droplet 

to the exiting polypeptide chain. 

  

(a)

(b)
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Matrix-assisted laser desorption/ionization (MALDI) (44) is another soft 

ionization source used to study proteins, however as previously mentioned ESI is more 

commonly used. This is because it is possible to couple LC with ESI and 

chromatographically separate proteins or proteolytic digestions prior to MS analysis 

seamlessly. MALDI predominantly yields singly charged analytes, while ESI produces 

multiply charged analytes.  

1.2.3 The Mass Analyzer 

The mass analyzer is used to determine the m/z of the analyte ions which is given 

by 

z

zHM
zm

][
/


     (1.15) 

assuming that the entire charge is due to excess protons. Mass analyzers place a range on 

the allowed observable m/z. If the m/z of the analyte is outside this allowed range, it 

cannot be detected. There are many different types of mass analyzers. It is also possible 

to couple multiple mass analyzers in tandem to perform specific types of experiments.  

Mass analyzers are responsible for maximizing two key features; sensitivity and 

resolution. They must be sensitive enough to detect analytes even at low concentration 

and be able to distinguish between analytes of similar mass. Resolution, R is defined as 

M

M
R


      (1.16) 

where ΔM is the full width at half maximum (FWHM) for each respective peak. 

There are many types of mass analyzers found in mass spectrometers however 

only quadrupoles and TOF systems will be discussed in detail.  It is important to note, 

however, that linear ion traps (45), the Orbitrap (46-48), and Fourier transform ion 

cyclotron resonance (FT-ICR) (49) mass analyzers are also commonly used. 
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1.2.3.1 Quadrupole Mass Analyzers 

The most common mass analyzer found in mass spectrometers is the quadrupole. 

Single quadrupoles have been used to study proteins in the past; however, they are 

limited by small m/z ranges especially when used alone (50-54). A quadrupole is 

comprised of two pairs of charged cylindrical metal rods, one pair positively charged and 

one negatively charged. These metal rods are aligned so that the charged pairs face one 

another. At all times a radio frequency (RF) voltage is applied to the quadrupole; 

however the inclusion of direct current (DC) voltage can be used to change the 

observable m/z range. Ions travel from the source through the quadrupole. With only the 

RF voltage applied, all charged ions will pass through the quadrupole (Figure 1.5.a). 

However, the m/z range can be narrowed by superimposing DC voltage onto the RF 

voltage. Only ions of a certain m/z value will reach the detector for a given RF/DC 

voltage ratio by having the correct trajectory (Figure 1.5.b). When the DC voltage is 

applied all other charged analytes will collide with the charged rods because their 

trajectories are unstable.  

1.2.3.2 Time-of-Flight Mass Analyzers 

Time-of-flight (TOF) mass analyzers cover a much larger m/z range than 

quadrupoles. TOFs are also able to record all ions striking the detector without scanning. 

This is unlike a quadrupole which must scan the entire mass range set by the respective 

RF voltage, resulting in a lower duty cycle. TOF instruments work by measuring the time 

an analyte takes to reach a detector after it has entered the flight tube. When an ion is 

accelerated by a voltage, U, the potential energy, Ep is converted into kinetic energy, Ek 

such that Ep = Ek and 

zUE p   2

2

1
mvEk        

2

2

1
mvzU        (1.27) 
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Figure 1.5 Schematic: Quadrupole Operation.  

(a) With only RF voltage applied all ions (coloured circles) can pass through to the 

detector. (b) The application of DC voltage “locks” the quadrupole so that only ions with 

a specific m/z (green circle) can pass through, while all others hit the charged rods. 

  

(a)

(b)
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where m, z and v are the mass, charge and velocity of the ion. After the ions are 

accelerated they have the same velocity as they travel in a field-free region towards the 

detector, therefore the time it takes to reach the detector can be described as: 

2

2

2

1

t

v
mzU 

 

z

m
kt       (1.18) 

Where k are the parameters independent of the analyte: 

U

d
k

2
   

From Eq. 1.18 it is clear the time it takes to travel in the TOF instrument depends on the 

m/z of the ion. Orthogonal versions of the traditional linear TOF geometry have become 

standard (55). Slight deviations in velocity cause ions of similar mass to arrive at the 

detector with different flight times, thereby decreasing resolution. Most TOFs therefore 

use a reflectron, i.e. a stacked set of rings with a potential applied. Upon entering the 

TOF tube the ions are first pushed perpendicularly by a potential drop (“pusher pulse”) 

towards the reflectron (Figure 1.6.a). Even if two ions have the same m/z ratio their 

velocities may deviate slightly, therefore the ion travelling at a faster velocity will 

penetrate the reflectron first but dwell longer before its trajectory is reflected towards the 

detector (Figure 1.6.a). The slower ion will penetrate the reflectron later but the reflectron 

will spend less time changing the ion trajectory. Overall this dwell corrects the velocity 

deviation and the two ions will reach the detector at the same time. The reflectron 

correction can be described as two balls of similar mass rolling up a ramp at different 

velocities, according to Figure 1.6.b. 
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Figure 1.6 Orthogonal TOF Schematic.  

(a) The pusher sends the ions towards the reflectron which changes the trajectory towards 

the detector, correcting any deviation in flight time. (b) The faster moving red ball hits 

the ramp first but travels further up (red dotted line), while the slower moving green ball 

hits the ramp last but does not travel up as far (green dotted line). The time delay is 

corrected and ultimately the two balls exit the ramp at the same time. 
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Detector

Pusher

Ion trajectory

(a) (b)
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1.2.4 Structural Mass Spectrometry 

Mass spectrometry has become especially useful when looking at protein 

structure. Many of these techniques employ a “bottom-up” approach whereby 

information on structure is gained by examining smaller pieces or fragments of the 

protein. CID and tandem mass spectrometry (MS/MS) are used to sequence proteins by 

proteolytic digestion followed by peptide identification. For MS/MS the potential across 

the quadrupole is increased causing the peptide to collide with background gas and 

fragment into smaller ions which provide sequence information (56). Sequencing is also 

assisted by the presence of neutral loss fragments (H2O and NH3) and immonium ions. 

All of the fragments are detected by the TOF analyzer. Fragmentation can also be 

induced by electron capture dissociation (ECD) or electron transfer dissociation (ETD). 

In ECD free electrons are transferred to the peptide (57-60), while ETD employs radical 

anions to trigger fragmentation (61-64). 

Peptide fragmentation is a gas-phase phenomenon that has been extensively 

discussed in literature; however the mechanism by which these fragments are formed has 

not been resolved (65-69). Fragments that arise from CID are formed from bond breakage 

between the amide nitrogen and carbonyl carbon in a protein sequence (Figure 1.7). If the 

charge remains on the segment with the newly formed C-terminus it is denoted as a b-ion 

and if it remains with the newly formed N-terminus it is denoted as a y-ion (Figure 1.7). 

Fragmentation using ECD/ETD occurs with bond breakage between the amide nitrogen 

and alpha carbon, producing c-ions (charge on C-terminus) and z-ions (charge on N-

terminus) (58, 61, 70, 71). The identification of these peptide fragments can be especially 

useful when a non-specific protease is used for digestion (72-75). 

Protein structure can also be studied in the gas phase and compared to solution 

phase structure using ion mobility spectrometry (IMS) (76).  In IMS experiments proteins 

travel through a collision cell that is filled with background gas. The drift-time of the 

protein as it travels is rated to the gas phase conformation by its collision cross section, 

Ω. Ω is the average area the protein contacts the gas in the collision cell.  
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Figure 1.7 Peptide Fragmentation Scheme.  

CID induces b/y-ion fragmentation between the amide nitrogen and carbonyl carbon (red) 

while ECD/ETD induce c/z-ion fragmentation between the amide nitrogen and alpha 

carbon (green). The presence of a/x-ion fragmentation is rare and occurs between the 

alpha carbon and carbonyl carbon (blue). 
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Proteins with native-like structure are compact and therefore have small Ω while 

unfolded proteins which can adopt various conformations have larger Ω values. 

 

1.3 Hydrogen/Deuterium Exchange Mass Spectrometry 

1.3.1 HDX Fundamentals 

The exchange of a hydrogen atom with deuterium (
2
H) in a D2O-containing 

solvent occurs at both the amide backbone of the protein as well as any nitrogen, oxygen, 

or sulfur containing side chain groups (77). The intramolecular hydrogen bonding 

associated with the backbone is of primary intent for HDX-MS as it provides information 

on secondary structure. Side chain sites will not be discussed any further, because they 

undergo back-exchange during chromatographic separation.  

We will first focus on HDX of a completely “open” backbone amide site that is 

completely accessible and not involved in hydrogen bonding. The chemical exchange 

process of such a site can be either acid or base catalyzed with the rate (kch) being equal 

to 

][][   OHkHkk OHHch     (1.19) 

where kH and kOH are rate constants for acid and base catalysis (78-80). The values of kH 

and kOH depend on the adjacent amino acid side chains. Eq. 1.19 dictates that kch is highly 

dependent on the pH (or pD) of the solution (Figure 1.8) (81). Similar sensitivity to 

temperature is also evident in kch as it follows the Arrhenius equation 

)exp(
RT

E
Ak a

ch       (1.20)   
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Figure 1.8 pH Sensitivity of kch.  

The chemical exchange rate constant of polyalanine as a function of pH 

exhibits a minimum at ~ 2.7. The kH and kOH values were 41.7 and 1.12 x 

10
10 

M
-1

 min
-1

 at 20°C (81).  
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1.3.2 The EX1 and EX2 Regime 

At the protein level, exchange rate constants are generally much lower than 

predicted on the basis of Eq. 1.19. This is due to the partial protection of hydrogens by 

secondary and tertiary structure formation, where a decrease by as much as 10
8
 can be 

observed.  For deuterium exchange to take place there must be a transient moment where 

the hydrogen bond donor and acceptor must be transiently separated, effectively opening 

the hydrogen bond (82). This enables deuterium incorporation into the backbone 

according to 

cl

k

k

op

k

OD
op

k

k

cl DDHH

op

cl

ch

cl

op










2     (1.21) 

where Hop and Hcl are the open and closed hydrogen bond, Dop are the open and closed 

deuterium bond and kop and kcl are the opening and closing rate constants. The exchange 

reaction is unidirectional if the amount of deuterium remains in excess. If we consider 

both Hop and Hcl as a single unexchanged entity then: 

][
][

opch Hk
dt

dunexchanged
     (1.22) 

][])[(
][

clopopchcl

op
HkHkk

dt

Hd
    (1.23) 

If we assume that the rates of formation and depletion for opH are equal ( 0
][


dt

Hd op
): 

])[]([])[(

][])[(

opopopchcl

clopopchcl

HdunexchangekHkk

HkHkk




   

][][ dunexchange
kkk

k
H

opchcl

op

op


    (1.24) 
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If we substitute this into Eq. 1.22 we obtain a pseudo first order expression: 

][
][

dunexchange
kkk

kk

dt

dunexchanged

opchcl

chop


    (1.25) 

)exp(][ tkdunexchange HDX    (1.26) 

where: 

opchcl

chop

HDX
kkk

kk
k


      (1.27) 

If the amide hydrogen remains predominantly hydrogen bonded with only transient 

moments where the bond is broken, then kcl>>kch and the overall HDX rate (kHDX) is 

given by 

chopHDX kKk       (1.28) 

where Kop = (kop/kcl) is the equilibrium constant of the opening reaction. This is known as 

the EX2 regime which most proteins fall under (Figure 1.9). Under these conditions the 

probability of backbone sites being exchanged in a single opening event is very small. 

Therefore the incorporation of deuterium is the result of numerous opening/closing 

cycles. In the EX2 regime the amount of deuterium incorporated and therefore the degree 

in mass shift is time dependent. While there are proteins that exhibit the EX1 behaviour 

(kch>>kcl), such cases are rare. Such conditions can be encountered in solvents that 

destabilize the native state (decreasing kcl) or the use of basic conditions with high pD 

(increasing kch). Sample carryover can sometimes be mistaken as EX1 kinetics (83). 

1.3.3 Hydrogen/Deuterium Exchange Mass Spectrometry  

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a relative new 

method for studying protein structure and dynamics (84, 85). Under native conditions, the 

majority of proteins in any given population occupy the lowest energy native state. 

However, due to the dynamic nature of proteins a small fraction of the population 
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Figure 1.9 Deuterium Uptake in the EX2 Regime. 

Peptide mass spectra (m/z = 1055.738 1+) in the absence of deuterium (a), after exposure 

to D2O for 1 min (b) and 10 min (c). The dashed line indicates the centroid of the mass 

distribution. Panel (d) shows the fully deuterated peptide.  
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 transiently samples higher energy states at all times before returning back to the native 

state. At these higher energy states the structure of the protein differs greatly from the 

native state; certain regions may unfold and hydrogen bonds may be open (Figure 1.10a). 

It is possible to determine extent to which proteins occupy these higher energy levels by 

HDX (86-92). The degree at which a protein deviates from the native state structure when 

sampling higher energy levels will be seen in the degree of deuterium uptake. In the 

presence of D2O all the amide backbone hydrogens of a protein will eventually exchange 

with deuterium. The rate at which this exchange occurs can be attributed primarily to the 

degree of flexibility in the secondary structure of the protein as well as small 

contributions in solvent accessibility according to Eq. 1.21 (93). Highly ordered regions 

such as α-helices and β-sheets exchange at a slower rate than regions that are 

unstructured. This idea can be extended to protein-ligand binding studies. Ligands are 

known to stabilize protein structure. Therefore upon inclusion of a ligand, the protein 

equilibrium would follow Le Chatelier’s Principle and shift towards the ligand-bound 

state (Figure 1.10.b). This shift consequently reduces the percentage of proteins that 

sample higher energy states and in the HDX analysis would be observed as a reduction in 

deuterium uptake. 

Continuous HDX-MS experiments are performed as follows: Intact protein is first 

exposed to D2O under conditions where the protein is native (pH 7, 25°C) (Figure 1.11). 

Aliquots are then taken at desired time points where the exchange reaction is quenched 

by rapidly decreasing the pH and temperature (pH 2.3, 0°C) (94). Proteins can be 

examined intact, or they can be proteolytically digested for spatially-resolved studies by 

an acid protease such as pepsin. An acid protease is required because other enzymes such 

as trypsin cannot function at the low pH required for quenching. Pepsin digestion has 

initially been done in solution, until the manufacturing of immobilized pepsin columns 

designed for high pressure liquid chromatography (HPLC) were introduced (72, 75, 95, 

96). The separation of peptic fragments prior to MS using online HPLC has become a 

standard approach. There is, however, problem with this approach because deuterated 

amides can undergo back-exchange during the separation process (97). In order to 

minimize back-exchange the system is cooled to 15°C during digestion and it is further 

cooled to 0°C during separation (98).  
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Figure 1.10 The Dynamic Equilibrium of Proteins.  

(a) Under native conditions proteins are in equilibrium with the native state (N) and 

higher energy states, such as the unfolded state (U). (b) Incorporation of a ligand (red 

circle) shifts the equilibrium from these higher energy states to the new ground state NL. 
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The HPLC gradient is also optimized to minimize retention time without sacrificing 

resolution. Reverse-phase HPLC is used to separate peptide fragments with acetonitrile 

acting as the organic eluent. The peptides are finally analyzed online by ESI-MS where 

the incorporated deuterium and the resulting mass shift can be observed. Recent 

developments in ultra-high performance liquid chromatography (UPLC) as well as semi 

and fully automated LC machinery have further refined the HDX workflow. It is 

important to note that HDX-MS can also be used to study protein kinetics (99). Pulsed 

HDX-MS has been used in refolding experiments to gain insight into protein folding by 

briefly exposing the protein to deuterium as it refolds on the millisecond time scale (100-

102). Consequently regions which show less deuteration are indicative of secondary 

structure formation along the folding pathway. 

  HDX-MS does present certain limitations when examining protein structure. 

Experimentally, spatially resolved analysis of HDX kinetics requires peptide 

identification using a non-specific protease. Typical proteases with known cleavage sites 

such as trypsin (103) are not utilized because the cleavage process cannot be done at the 

low pH required for HDX-MS experiments. Therefore pepsin or other non-specific 

proteases which can undergo proteolytic cleavages under acidic conditions are employed 

(96). The protein size must also be considered because of the magnitude of peptides 

generated by proteolysis, followed by the time consuming process of identifying each 

peptide correctly. Recently, the time invested in peptide identification has been 

dramatically decreased due to software improvements (104). The temperature sensitive 

exchange process can also become problematic during peptide separation, as structural 

information can be lost due to back-exchange with the HPLC solvent. 

 Limitations also arise when HDX-MS is often to study protein/ligand systems. 

Ligand binding usually stabilizes the protein and induces a reduction in HDX rates. The 

largest changes tend to occur in regions that interact directly with the ligand, although 

allosteric effects can play a role as well (90, 105). Low affinity often results in 

indistinguishable kinetics with respect to the ligand-free and ligand-bound scenarios. In 

this way, using HDX-MS to determine structural changes is limited by the strength of the 

protein/ligand interaction. 
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1.4 Scope of this Thesis 

Here we employ HDX-MS as a tool for studying two different protein systems. 

HDX at backbone sites that are involved in α-helices and β-sheets is much slower than an 

unfolded region. Deuteration at these sites is mediated by conformational fluctuations 

that induce the transient opening of hydrogen bonds, coupled with exposure of N-H sites 

to the solvent. Thus, HDX in flexible regions proceeds much faster than in rigid 

segments. The flexibility of the technique, as well as the various degrees of structural 

information which can be elucidated will be highlighted.  

Spatially resolved HDX-MS is used to characterize structural changes upon ligand 

binding (Chapter 2). This work examines two different systems with various affinities to 

a common ligand. Ligand binding influences the magnitude by which HDX kinetics are 

changed, therefore the observed binding affinities previously determined using NMR 

spectroscopy are compared to the HDX kinetics of the ligand-bound and ligand-free 

states. The hypothesis of higher ordered structure formation upon ligand binding is also 

presented, with the generated HDX-MS data acting as crucial evidence.  

Intact HDX-MS is used to characterize the structural changes of a redox-active 

protein (Chapter 3). Redox-active proteins can undergo reversible oxidation and 

reduction reactions, resulting in minimal changes to the structure as a whole. Therefore, 

HDX-MS is used to detect these small fluctuations in structure and, ultimately push the 

limits of this technique. Chemical denaturation is used in conjunction with HDX-MS in 

an attempt to selectively locate regions of the protein which are more susceptible to 

unfolding by examining the HDX kinetics in the presence of increasing denaturant 

concentration. At low denaturant concentrations certain regions of the protein are easily 

unfolded, while others may resist unfolding due to strong secondary structure 

interactions. This translates to an increase in the HDX kinetics between the oxidized and 

reduced states of the redox-active protein as the denaturant concentration is increased. 

Provided the concentration is low enough to selectively, and not globally, unfold the 

protein, HDX-MS in tandem with chemical denaturation may be useful in examining 

protein systems with subtle structural changes. 
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Figure 1.11 Schematic Overview of an HDX-MS Experiment.  

Aliquots are first digested by immobilized pepsin and then separated using reverse-phase 

HPLC. Solvent A and B are HPLC solvents used for peptide separation with B being the 

organic solvent such as acetonitrile. 
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Chapter 2 – ATP-Induced Dimerization of the FOF1  Subunit 

from Bacillus PS3: A Hydrogen Exchange/Mass Spectrometry 

Study 

2 Introduction 

ATP synthase is the molecular machine responsible for the production of 

adenosine triphosphate from ADP and Pi (1-3). This multi-protein complex is associated 

with the plasma membrane of bacteria, the inner mitochondrial membrane, and the 

thylakoid membrane of chloroplasts (4). The proton-motive force (PMF) (5) that drives 

ATP synthesis is established by transmembrane proton translocation during respiration or 

photosynthesis. The overall architecture of ATP synthase is similar across the various 

kingdoms of life, with a membrane-embedded FO and a cytosolic F1 portion. FO from 

bacteria exhibits the subunit stoichiometry ab2cn (with n = 10 for E. coli), and bacterial F1 

has the composition (αβ)3γε (Figure 2.1a). Transmembrane proton flow causes rotation 

of the cnγε sub-complex. γ extends deep into the catalytic head, and its rotation triggers a 

series of conformational changes in (αβ)3 that are coupled to the synthesis of three ATP 

molecules per revolution (6). 

 The conversion of electrochemical energy to mechanical energy, and ultimately to 

chemical energy represents the normal function of ATP synthase. However, the enzyme 

is also capable of operating in reverse (7). This ATPase activity can help the cell cope 

with a drop in PMF. Under such conditions ATP hydrolysis keeps the membrane 

energized, thereby maintaining the viability of processes such as ion transport and 

flagellar motion (8). This hydrolytic activity of FOF1 must be tightly regulated because a 

depletion of the cellular ATP pool can have catastrophic consequences for the cell. One 

regulatory mechanism in bacteria, plants, and mitochondria involves binding of MgADP 

(without Pi) to catalytic sites on (αβ)3, resulting in deactivation of the complex (7, 9-11). 

 A second regulatory mechanism in bacterial FOF1 involves the ε subunit (12, 13). 

The role of ε appears to be twofold. During ATP synthesis ε is required for effective 

coupling (14, 15). On the other hand, ε represents an inhibitor of F1-mediated ATP 
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hydrolysis (9, 11). ε is a ~15 kDa protein that can adopt at least two different 

conformations. Studies on isolated ε from E. coli (Eε) revealed a compact structure 

consisting of two domains (Figure 2.1b) (16, 17). The N-terminal part folds into a  

sandwich that comprises ten strands. The C-terminal domain forms a helix-loop-helix 

motif. Contacts between these helices (1 and 2) are mediated by interdigitation of Ala 

residues. Hydrophobic contacts are found at the interface of the two domains. A similar 

compact structure is seen for the mitochondrial homolog of ε (“”) when it is bound to F1 

(18). Crosslinking (19) and crystallization studies (20, 21) provided initial evidence that 

Eε can also adopt a more extended structure. This has been confirmed by X-ray analysis 

of E. coli F1 where the helix-loop-helix motif of Eε has opened up, such that 2 extends 

into the catalytic head where it interacts with  and (αβ)3 (Figure 2.1a,c) (14). It has been 

proposed that the compact state of Eε allows both ATP synthesis and hydrolysis to occur. 

The extended form may permit rotation in the synthesis direction only, while shutting 

down ATP hydrolysis (19). However, recent studies indicate that the mechanism of -

mediated FOF1 inhibition is more complex than envisioned in this simple ratchet model 

(3, 7, 9, 14).
 

The switching state of ε within bacterial FOF1 depends on the PMF and on the 

torque applied to  (14). The  conformation is also affected by the presence of ATP (22). 

An ATP-binding site has been identified for  from the thermophilic bacterium Bacillus 

PS3 (T). ATP-bound isolated T crystallizes in the compact state (Figure 2.1d) (21). 

Other trinucleotides do not interact with the protein (23, 24). This specificity suggests 

that T may serve as an intracellular ATP level sensor (23, 24). Sequence analyses point 

to I(L)DXXRA as a conserved ATP-binding motif in many bacterial  subunits (21). In 

the case of T this binding motif comprises residues D89 and R92. In addition, R99, 

R122, and R126 in helices 1 and 2 participate in the formation of a cationic pocket 

that accommodates the negatively charged triphosphate group of ATP (Figure 2.1d). The 

Kd value of the T-ATP interaction is in the sub-M range at room temperature (25). 

Much lower affinities of 22 mM (21) and 2 mM (26) have been reported for isolated E, 

and for  from Bacillus subtilis, respectively.  
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Figure 2.1 Crystal structure of F1 and ε 

(a) Crystal structure of the E. coli F1 complex with subunits α (red), β (blue), γ (purple), 

and ε (referred to as Eε from now on, spacefill green). One αβ pair facing the observer 

has been omitted to provide a better view (PDB file 3OAA) (14). (b) Compact state of 

Eε, observed after crystallization of the isolated protein (PDB file 1AQT) (16). (c) Close-

up of Eε in the extended conformation within the F1 complex (from panel A). The 

orientation of the  sandwich in panels A-C is the same. (d) Crystal structure of ε from 

Bacillus PS3 (referred to as Tε from now on) in the ATP-bound compact state (PDB file 

2E5Y) (21). Key residues that interact with the ligand are shown in spacefill 

representation. The triphosphate group of ATP is depicted in red/orange. Note that the 

orientation of Eε and Tε in panels B, D is different. 
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Considering the wide range of ATP binding affinities for  from different bacteria, the 

functional role of -ATP interactions remains yet to be fully explored (23). The  subunit 

from chloroplasts does not possess an ATP binding site (27). It is also known that the 

mitochondrial homolog of ε is not involved in FOF1 inhibition; instead, the protein IF1 

acts as inhibitor of ATPase activity in eukaryotes (28). This implies that bacterial  

represents an interesting antibiotic target (14, 29). 

  Considering the immense complexity of intact FOF1, a potential approach to 

understand the function of  is via studies at the isolated protein level. Intriguingly, it has 

been demonstrated that ATP binding to isolated T induces major structural changes in 

the 1-2 region (21, 24, 25). NMR experiments revealed that even truncated 1-2 can 

bind ATP, forming a compact helix-loop-helix fold similar to that seen for ATP-bound 

T. Without ATP, truncated 1-2 is more dynamic and the two helices are separated 

from each other, possibly resembling the inhibitory  conformation seen in the crystal 

structure of intact FOF1 (Figure 2.1a) (14). Unfortunately, crystallographic data for ATP-

free T are not available. Nonetheless, the findings of refs. (21, 25) suggest that 

functionally relevant ATP-induced switching may take place in isolated T, offering the 

opportunity to examine the switching mechanism by various biophysical techniques. 

  Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is a 

widely used method for probing protein structure, dynamics, and interactions (30-39). 

Solvent-exposed backbone N-H sites in unstructured regions exchange rapidly upon 

exposure to D2O, with rate constants on the order of 1 s
-1

 (40). HDX at backbone sites 

that are involved in α-helices and β-sheets is much slower. Deuteration at these sites is 

mediated by conformational fluctuations that induce the transient opening of hydrogen 

bonds, coupled with exposure of N-H sites to the solvent. Thus, HDX in flexible regions 

proceeds much faster than in rigid segments. Ligand binding usually stabilizes the protein 

and induces a reduction in HDX rates. The largest changes tend to occur in regions that 

interact directly with the ligand, although allosteric effects can play a role as well (41, 

42). 
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Here we employ HDX/MS in conjunction with circular dichroism (CD) 

spectroscopy and analytical ultracentrifugation (AUC) for studying the ATP-induced 

conformational switching of isolated T. We also examine the behavior of E for 

comparative purposes. ATP binding to T results in a highly unusual HDX protection 

pattern. With the aid of AUC experiments we demonstrate that this pattern originates 

from a previously unrecognized propensity of isolated T to dimerize in the presence of 

ATP. 

 

2.1 Experimental 

2.1.1 Materials  

3-(N-morpholino)propanesulfonic acid (MOPS) was purchased from Fischer 

Scientific (Georgetown, ON), ATP was from MP Biomedicals (Santa Ana, CA). All 

purification steps were carried out at 4 °C, unless noted otherwise. Eε was expressed in in 

E. coli strain MM294 from plasmid pES2 (43) and purified by fractionation of cell 

extracts using ammonium sulfate precipitation followed by chromatography using Biogel 

HTP hydroxyapatite, DEAE-Sepharose, and Sephadex G-75 columns as described 

previously (44). Plasmid pTE2 encoding Tε was kindly provided by Prof. Yasuyuki 

Kato-Yamada (Department of Life Sciences, Rikkyo University, Japan) (45). It was 

expressed in E. coli strain BL21/DE3. Extracts of induced cells were fractionated by 

ammonium sulfate precipitation (45-65% of saturation), ion exchange chromatography at 

pH 8.0 on DEAE-Sepharose, and size exclusion chromatography on a Sephadex G75 

column. Two peaks of pure Tε emerged from the G-75 column. Upon subsequent 

analysis on an Amersham Superdex 200 10/200 GL analytical size exclusion column run 

at 25 °C, the first peak eluted with a 260/280 absorbance ratio of 2.77, implying that it 

contained bound ATP, in agreement with previous findings (23). Similar analysis of the 

second peak gave a 260/280 absorbance ratio of 0.54 implying that it did not contain 

ATP. However, if a sample of the second peak was incubated with a 2-fold molar excess 

of ATP before application to the column, the protein eluted with a 260/280 ratio of 2.80, 
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indicating it was also capable of ATP binding. T for the experiments of this work were 

performed on protein from the first peak. ATP-free protein was generated from this stock 

by overnight dialysis at 20 °C in the presence of 15 U mL
-1

 yeast hexokinase against a 

solution containing 200 mM glucose as described (23). Hexokinase was subsequently 

separated from Tε by size exclusion chromatography on a preparative Sephadex G-75 

column. 

2.1.2 Hydrogen-Deuterium Exchange Mass Spectrometry  

Ligand binding experiments were performed by initially pre-equilibrating 20 μM 

protein with either 1 mM (Tε) or 10 mM (Eε) ATP/MgCl2 overnight in 25 mM MOPS-

KOH (pH 7.0). Exchange was initiated by diluting the protein to 2 μM in deuterated 

buffer (pHmeasured = 7) at room temperature (22  1 C). 30 μL aliquots were taken at 

selected time points between 1 minute and 120 minutes, and quenched to pH 2.3 using 

buffer acidified with formic acid (FA). These aliquots were subsequently flash frozen in 

liquid N2. For spatially resolved HDX/MS experiments the aliquots were rapidly thawed 

to ~0 °C and manually injected into a nanoACQUITY UPLC with HDX technology 

(Waters, Milford, MA) fitted with a POROS pepsin column (2.1 mm × 30 mm) from Life 

Technologies/Applied Biosystems (Carlsbad, CA). On-line pepsin digestion was 

conducted at 15 °C. Desalting and peptide separation were performed at 0 °C within 12 

min on an equilibrated reversed phase column (BEH C18, 1.7 μm particle size, 1 mm × 

100 mm) using a water/acetonitrile gradient with 0.1% FA at 40 μL min
-1

. Fully 

deuterated controls (m100) were employed to correct for back exchange. These controls 

were generated by protein incubation in exchange buffer at pH 2.0 for 24 h. Samples 

representing the t = 0 time point yielded the corresponding m0 values. Biolynx 4.1 and 

DynamX (Waters) were used for data analysis. Deuteration levels (%D) were determined 

as 

%100%
0100

0 



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Experiments were performed on a Waters Synapt HDMS instrument equipped with a 

standard electrospray source that was operated at 2.8 kV. The source and desolvation 

temperatures were 80 and 300°C, respectively, and the cone voltage was 30 V. Peptide 

identification was performed using tandem mass spectrometry based on the known 

sequences of Eε and Tε (Figure S1).  

2.1.3 Optical Measurements  

CD spectra were recorded on a Jasco J-810 spectropolarimeter (Easton, MD) 

using a 1 mm cuvette at 25 °C . Blank spectra (25 mM MOPS-KOH pH 7.0) measured 

for protein-free solutions were subtracted from the CD data of 5 M T and E measured 

in the presence and in the absence of 100 M ATP. Experimental data were converted to 

mean residue ellipticity (θ). Analytical ultracentrifugation (AUC) experiments were 

performed at 20 °C on a Beckman XL-A instrument (Pasadena, CA) equipped with 

absorbance optics (46, 47). Tε samples were analyzed by sedimentation equilibrium 

measurements, with the buffer consisting of 25 mM MOPS-KOH (pH 7.0), 0.1 mM 

EDTA, with and without 25 mM ATP. Samples with protein concentrations of 33 μM 

were loaded into cells with six-channel Epon charcoal centerpieces and a 1.2 cm 

pathlength. These samples were initially sedimented at 20,000 rpm for 20 h to allow 

equilibration. Absorbance measurements at 280 nm were collected in 0.002 cm radial 

steps and averaged over 10 scans. Comparison with scans taken 4 hours earlier confirmed 

that equilibrium had been reached. Additional data sets were collected after subsequent 

equilibration at 25,000 and 30,000 rpm. All these data were globally fit using GraphPad 

Prism software according to the single-species model equation 

0
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2
2

0 ))(1(
2

exp IxxvM
RT

CC obs 







 


  (2.2) 

where C is the concentration at radius x, Co is the concentration at reference radius xo, ω 

is the angular velocity of the rotor, v  is the partial specific volume of the protein 

(calculated from its amino acid composition using the program SEDNTERP), ρ is the 

density of the solvent, R is the ideal gas constant, T is the absolute temperature, Io is the 
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baseline offset, and Mobs is the measured molecular weight of the protein. AUC 

experiments conducted after addition of 100 mM KCl to the protein solutions yielded 

results that were identical to those shown below within experimental error. Reported Mobs 

values represent an average of triplicate measurements conducted at the three rotor 

speeds, for a total of nine runs for each condition. 

 

2.2 Results and Discussion 

2.2.1 Circular Dichroism 

E exhibits a far-UV CD spectrum with a minimum around 220 nm, in 

accordance with earlier reports (48). These data are consistent with a mixed helical/sheet 

secondary structure (16). The addition of 100 M ATP to E does not induce any 

significant spectral changes (Figure 2.2a). This finding is not surprising, considering the 

low ATP binding affinity of E (21), together with the known fact that E adopts a 

relatively well defined structure even in the absence of ATP (16, 17). CD measurements 

at higher ATP concentrations were precluded by the UV absorbance of the adenine 

moiety. A very different behavior is observed for T, where the addition of 100 M ATP 

induces marked alterations in the CD spectrum (Figure 2.2b). The data acquired for ATP-

bound T resembles resemble those of E in Figure 2A. In contrast, ATP-free T exhibits 

a reduced molar ellipticity around 222 nm, indicating a lower helicity (49). These 

observations are in line with the view that T possesses a high ATP binding affinity (25), 

and that ligand binding induces the formation of stable helical structure in the 1-2 

region (21). One factor that promotes the high ATP affinity of T is the accumulation of 

positive charges in the binding site (mainly due to Arg residues, Figure 2.1d), which 

mediate favorable electrostatic interactions with the triphosphate group. In the case of E 

this positive charge accumulation is less pronounced (21). Binding of ATP
4-

 to Tε in 

neutral solution may also be favored by bulk electrostatics, because Tε has a pI of 9.3, 

whereas that of Eε is 5.7. 
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Figure 2.2 CD Analysis of Eε and Tε 

Far-UV CD data of (a) Eε and (b) Tε in the absence (black) and presence (red) of 100 M 

ATP. All other solution additives were as in the subsequent HDX experiments (except for 

the presence of D2O). 
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2.2.2 Hydrogen-Deuterium Exchange Mass Spectrometry 

Online peptic digestion of Eε and Tε yielded a large number of peptides. For each 

protein, 16 of these protein segments were selected that had sufficiently high S/N ratios 

for reliable HDX/MS measurements. The overall sequence coverage under these 

conditions was 99% and 86%, respectively, for Eε and Tε (Figure S1). HDX kinetics 

were measured with and without ATP to characterize ligand-induced changes in protein 

structure and dynamics. Initial experiments on E revealed that addition of 1 mM ATP 

did not cause any alterations compared to ATP-free samples (data not shown). The ATP 

concentration was then increased to 10 mM, which represents a typical intracellular value 

(50). However, even this elevated concentration did not induce any significant changes in 

the HDX behavior of Eε. As an example, unprocessed mass distributions for peptide 114-

120 are depicted (Figure 2.3a-c). This is in contrast to the behavior of T, where dramatic 

differences in HDX kinetics were already observed after addition of 1 mM ATP (Figure 

2.3d-f). 

Deuterium uptake curves of the Eε and Tε peptides are depicted in Figures 2.4, 

2.5. To better visualize these HDX data the peptide-resolved deuteration levels for t = 10 

min were mapped onto the crystal structures of Eε and Tε (Figure 2.6). It is seen that in 

the absence of ATP the extent of deuteration tends to be higher for Tε than for Eε. The 

former shows almost complete deuteration throughout the entire protein sequence (Figure 

2.6b), whereas Eε exhibits significant protection in the  sandwich, particularly the 8-9 

region (green, Figure 26a). Thus, in the absence of ATP the  sandwich region is more 

rigid in Eε than in Tε. Helices 1 and 2 appear to be quite dynamic for both proteins 

under these conditions. ATP binding induces a dramatic rigidification of T. The largest 

stabilizing effects are seen for 8-9, as well as for 2 (blue, Figure 2.6c). Other T 

regions that become less dynamic upon ATP binding include parts of 1, as well as 1, 

2, and 10 (green). The opposite site of the  sandwich retains high deuteration values 

after ATP binding (3, 4, and 6; red/orange, Figure 2.6c). As noted earlier, no 

significant deuteration changes upon ATP addition are observed for E, and therefore 

only a single colored panel is shown for this protein (Figure 2.6a). 
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Figure 2.3 Unprocessed HDX-MS Data 

Peptide 114-120 from Eε (a-c) and Tε (d-f). Spectra for unlabeled controls are shown in 

panels (a), (d). The corresponding data for the fully exchanged peptides are depicted in 

panels (c), (f). Panels (b), (e) show data acquired in the absence (black) and in the 

presence (red) of ATP for a labeling time of 10 minutes. The latter have been shifted in 

this Figure by -0.2 Da for better visualization.  
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Figure 2.4 HDX kinetics of Eε peptides 

HDX kinetics of Eε peptides in the absence (black) and presence (red) of 10 mM ATP. 

Residue numbers are indicated in each panel. Lines are biexponential fits. Error bars 

represent standard deviations of triplicate measurements. 
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Figure 2.5 HDX kinetics of Tε peptides 

HDX kinetics of Tε peptides in the absence (black) and presence (red) of 1 mM ATP. For 

additional information, see caption of Figure 2.4. 
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Previous room temperature studies on other systems have indicated reduced 

conformational dynamics for proteins from mesophilic organisms relative to their 

thermophilic homologues (51, 52). Cursory comparison of E and T in the absence of 

ATP seems to suggest that for the two proteins examined here this trend is reversed 

(Figure 2.6a, b). However, this type of comparison does not consider the ATP binding 

affinities of the two proteins which is in the sub-M range for Tε (25), whereas Eε has a 

Kd that is two orders of magnitude higher (21). Under physiological conditions with 

[ATP]  10 mM(50) this implies that Tε will predominantly exist in the ATP-bound state, 

whereas Eε primarily remains ligand-free. In other words, a more pertinent way to 

compare the “physiologically relevant” state of the two proteins is to contrast Eε (Figure 

2.6a) with ATP-bound Tε (Figure 2.6c). From this vantage point the mesophilic protein 

(E) is more dynamic than its thermophilic homolog (T), as previously reported for 

other proteins (51, 52). 

2.2.3 ATP-Induced Dimerization of T 

Protein-ligand interactions often lead to greatly reduced HDX rates in the vicinity 

of the binding site (53, 54). Based on the data presented so far, the stabilization of 2 

upon ATP binding to T (Figure 2.6b, c) is consistent with such a local stabilizing effect. 

As noted, 2 comprises two of the residues that are directly involved in ATP binding 

(R122, and R126, Figure 2.1d). The 8-9 segment is another area of T that undergoes a 

marked stabilization upon addition of ATP. This behavior is surprising, considering that 

8-9 is quite remote from the ATP binding site (Figure 2.6b, c). Allostery provides one 

possible explanation for such remote stabilization effects (41, 42); however, the 

subsequent considerations reveal that the 8-9 protection has a different origin. 

 AUC experiments were conducted to gain additional insights into the properties 

of T in solution. In the absence of ATP the protein exhibits an Mobs of (17.7  0.4) kDa, 

relatively close to the value of 14,562 Da that is expected on the basis of the amino acid 

sequence (Figure 2.7a). Surprisingly, addition of ATP resulted in a Mobs of (27.6  0.3) 

kDa, i.e., almost twice the expected value (Figure 2.7b).  
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Figure 2.6 Crystal Structure Mapping of HDX Kinetics 

(a) Mapping of the t = 10 min HDX data (from Figure 2.4) onto the X-ray structure of Eε. 

The corresponding HDX results for Tε (from Figure 2.5) in the absence and in the 

presence of ATP are shown in (b) and (c), respectively. Colors represent deuteration 

percentages as defined in the legend. Gray elements denote regions for which no suitable 

peptides were found after peptic digestion. 
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These results show that ATP-bound T forms a homodimer in solution. Analysis of the 

AUC data using a monomer-dimer model indicate that the protein-protein dissociation 

constant is in the range of 1 to 3 M. To the best of our knowledge, the ATP-induced 

dimerization of T in solution has not been reported before. Earlier data on the solution-

phase properties of this protein were interpreted with the implicit assumption of a 

monomeric state (21, 25).  

Interestingly, X-ray crystallography provides direct evidence for the dimerization 

propensity of ATP-bound T. PDB file 2E5Y (21) shows the protein as a symmetric 

dimer, with one bound ATP molecule per subunit (Figure 2.8). Close interactions 

between the two chains exist in the  sandwich regions, particularly 8-9 and 8’-9’. 

These interactions are mediated by electrostatic contacts between the R71/E69/R71’/E69’ 

side chains which adopt a tightly packed quadrupolar pattern. In addition, L78 and L78’ 

are in hydrophobic contact with each other. The significant HDX protection of 8-9 

(and 8’-9’, blue in Figure 2.8) strongly suggests that these interchain contacts persist 

for ATP-bound T in solution. A second set of contacts is seen in the 1-2 / 1’-2’ 

region, where the triphosphate of ATP interacts electrostatically with the K114’ and 

R115’ side chains from the other subunit (Figure 2.8). These favorable intermolecular 

charge-charge interactions are in addition to the contacts provided by R92, R99, R122, 

and R126 (Figure 2.1d). We conclude that the low deuteration values seen for 2 (and 

2’, blue in Figure 2.8) after ATP binding reflect the formation of both intra- and 

intermolecular contacts. Overall, our data demonstrate that the monomeric structure of 

Figure 1D does not adequately represent the ATP-bound state of T. Instead, the HDX 

protection pattern is consistent with the dimeric crystal structure of Figure 8 (21). 

Readers might be surprised that the dimeric nature of ATP-bound T has thus far gone 

unrecognized, despite the fact that the protein crystallizes as a dimer. However, it can be 

difficult to extrapolate from the protein behavior in a crystal environment to the 

properties in solution. The most pertinent example in this context is E (1AQT) (16), 

which exhibits a crystal packing very similar to that of ATP-bound T (2E5Y) (21). 

Close 8-9/8’-9’ contacts are seen in both cases (16).  
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Figure 2.7 Sedimentation equilibrium AUC of Tε 

Sedimentation equilibrium AUC runs of Tε in the absence (A) and presence (B) of ATP 

measured at rotor speeds of 20,000, 25,000, and 30,000 rpm (black, red and blue). Lines 

represent global fits according to Eq. 2.2. 

 

6.4 6.6

A
b
s
2

8
0

0.00

0.05

0.10

0.15

0.20

0.25

R
e
s
id

u
a
ls

-0.025

0.000

0.025

Radius (cm)

6.4 6.6

(a) (b)



60 

 

Despite their similar X-ray structures, E is monomeric in solution (48) whereas the 

solution-phase state of ATP-bound T is a dimer (Figure 2.7). A difference between the 

8-9/8’-9’ crystal contacts for E and T is that the former primarily involve 

hydrophobic interactions (16), whereas the latter have a strong electrostatic component 

(Figure 2.8). As an interesting side aspect we note that the 8-9 surface also mediates 

binding between  and  in intact F1 complexes (14, 16). 

 

2.3 Conclusions 

The key finding of this work is that isolated T undergoes dimerization upon ATP 

binding.  (or its eukaryotic homolog “”) represents a key component of the FOF1 

machinery across all kingdoms of life. There is overwhelming evidence that  (or “”) 

functions as a monomeric subunit within FOF1 (14, 18, 20). It therefore is not 

immediately clear if the dimerization propensity uncovered here for isolated T has 

physiological relevance, although it clearly represents a feature that is interesting from a 

general protein chemistry perspective. 

The inhibitory function of  within FOF1 is linked to a conformational switch from 

an extended conformation to a more compact state (Figure 2.1a-c). In Bacillus PS3 this 

transition can be triggered by ATP binding, such that the T may serve as an ATP level 

sensor (21). To obtain a better understanding of this switching event past studies (21, 25) 

followed an isolated-protein approach that assumed the net reaction 

   ATP + Textended  ATPTcompact    (2.3) 

 It is not our intention to discredit those earlier experiments. However, the current work 

reveals an unexpected complication, i.e., the fact that the actual conversion exhibited by 

isolated T involves dimerization according to  

2 ATP + 2 Textended  (ATPTcompact)2    (2.4) 
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Figure 2.8 Dimerization of Tε 

Crystal structure of ATP-bound dimeric Tε (2E5Y) (21). Colors indicate deuteration 

percentages for t = 10 min (from Figure 26c, where blue represents the lowest deuteration 

levels). Selected side chains and secondary structure elements of the complex are 

highlighted, using the absence or presence of a prime (‘) to differentiate between the two 

subunits. E69, R71, L78, K114, and R115 from each of the two chains form inter-subunit 

contacts. For each of the corresponding residue pairs only one member is highlighted to 

prevent cluttering.  
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The binding mode of ATP in the dimeric T complex comprises residues from both 

subunits, which is obviously different from the situation within FOF1 where only a single 

T subunit is present. In other words, mechanistic insights garnered from reaction (2.4) 

may not have direct implications for the regulatory function of T in vivo. 

 The fact that eukaryotes do not use  for regulating their FOF1 activity highlights 

the potential of  as an antibacterial target (14, 29). The findings reported here indicate a 

possible drug action mechanism involving the formation of tightly bound  dimers in the 

presence of a high affinity ATP analog. The unique nature of the I(L)DXXRA binding 

motif on bacterial  (21) implies that it might be feasible to develop specific high affinity 

ligands that do not interfere with the ATP metabolism of eukaryotes. Intercellular 

sequestration of bacterial  in a dimeric form would limit the supply of free  that is 

available for the assembly of functional FOF1, thereby slowing the growth of the pathogen 

without affecting the eukaryotic host. For assessing the feasibility of such an approach it 

will be necessary to conduct future studies on the ATP binding properties and 

dimerization propensities of  from a wide range of bacteria. 
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Chapter 3 – HDX of a Redox-Active Proteins under Semi-

Denaturing Conditions  

3 Introduction 

Redox-active proteins have been utilized extensively in literature to study various 

components of protein structure, function, and dynamics. Most redox-active proteins 

contain a signature prosthetic group, often a metal cation bound to a porphyrin cofactor. 

Some proteins are able to use these prosthetic groups to bind oxygen as in the case of 

myoglobin (1, 2), and hemoglobin (3-7). The absence of prosthetic groups can also affect 

protein folding, leading to the formation of molten-globule intermediates (8, 9).  

One of the most commonly studied redox-active proteins is cytochrome c (Cyt c), 

a ~ 12.3 kDa protein containing the heme c moiety with an iron (Fe) center (10-17). The 

heme is covalently bound to the protein via two thioether linkages at positions Cys14 and 

Cys17 and is critical for proper folding (18). The Fe center is coordinated axially by the 

side chains of two amino acids, His18 and Met80 (Figure 3.1) (10)(11, 19, 20). Cyt c is 

found in the inner membrane of mitochondria and it does not bind oxygen. Instead, it is 

involved in the transport of electrons during cellular respiration. This is done in vivo by 

reducing the heme to Fe
2+

 (ferroCyt c) through the reaction of dihydroquinone (QH2) and 

the cytochrome bc1 complex. Cyt c is subsequently oxidized back to Fe
3+

 (ferriCyt c) via 

the cytochrome c oxidase complex (21-24). It is also possible to reduce the heme in vitro 

using a variety of reducing agents, with sodium dithionite (SDT) being the most 

commonly used. This reduction depends on the protein structure. The heme reduction 

potential in folded Cyt c is 260 mV vs. NHE (Normal Hydrogen Electrode) (25) and -100 

mV for a heme in free solution (26, 27). If Cyt c is unfolded the reduction potential is 

closest that of free heme, therefore it is necessary to work with ferroCyt c under hypoxic 

conditions in order to prevent re-oxidation of the Fe center by atmospheric O2 (28). 
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Figure 3.1 Cytochrome c structure. 

 (a) The structure of Cyt c (PDB file 1HRC) with the Fe center (green) of the heme 

(magenta) coordinated by His18 (blue) and Met80 (red). (b) The structure of heme c in 

Cyt c. The prosthetic group is bound via two thioether linkages at Cys14 and Cys17. 
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The structures of ferriCyt c and ferroCyt c are similar; however, they differ 

greatly in stability (18, 19). Equilibrium unfolding experiments with chemical 

denaturants (Urea or guanidinium hydrochloride, GdmHCl) have demonstrated that 

ferroCyt c is more stable than ferriCyt c (29-31). The reason for this stabilization is not 

obvious; however, it has been postulated that the higher charged Fe center of ferriCyt c 

can cause changes in protein solvation (32, 33). Electrostatic effects may also play a role 

in stabilization as the heme is electrically neutral in ferroCyt c and (+1) in ferriCyt c. 

HDX using MS (34) and 2D 
1
H NMR (35) show a decrease in deuterium uptake upon 

reduction, however, localized changes in the protein were very minor. Considering the 

various techniques employed, a potential approach would be to combine individual 

methods together to study the structural differences in ferro/ferriCyt c. Denaturant-

induced unfolding is useful in determining the degree in which a protein is destabilized, 

but, the destabilization cannot be localized to  specific regions of the structure. HDX-MS 

has the potential to localize structural changes but this method alone is not able to 

determine the subtle changes in ferro/ferriCyt c. Therefore denaturant-induced unfolding 

to destabilize the protein structure, in conjunction with HDX-MS to monitor the degree of 

destabilization could be used to determine structural information the two techniques 

alone were unable to.  

HDX kinetics of deuterium uptake relies on the opening/closing fluctuations of 

hydrogen bonding. These fluctuations are governed by the degree of secondary structure 

present in the protein. More importantly, the key to using HDX as a tool to study protein 

structure is that the protein, upon reaching equilibrium, does not undergo internal 

structural change. In the case of ferroCyt c, re-oxidation of the iron center by O2 converts 

the protein to ferriCyt c. Because ferriCyt c is less stable, this would induce a shift in the 

protein equilibrium as the HDX is still in progress. It is unclear as to whether the protein 

can undergo sufficient HDX to elucidate structural information before the internal 

structure begins to change due to re-oxidation. This is because it is unknown as to how 

fast the re-oxidation occurs especially when denaturant, which destabilizes structure, is 

added. Therefore both the kinetic timeframe of re-oxidation and HDX must be compared 

to ensure HDX-MS is a valid method for studying the redox states of Cyt c. 
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Here we combine HDX-MS and denaturant-induced unfolding to examine 

ferroCyt c in order to garner information regarding structural stabilization. Cyt c is 

reduced using SDT and subject to HDX at increasing increments of GdmHCl, with the 

corresponding mass shift monitored by MS. In order to minimize re-oxidation due to the 

presence of O2 both the reduction and HDX were done under  stream of N2. Similar 

experiments were performed on ferriCyt c as a control for re-oxidation. Very minute 

changes were observed with respect to the deuteration of ferroCyt c across increasing 

[GdmHCl] indicating the increased stability seen in literature. This coincides with larger 

increases observed in deuterium uptake under similar conditions with respect to the less 

stable ferroCyt c. Spectroscopic analysis reveal the re-oxidation kinetics to be faster than 

the HDX time course used,  even at low [GdmHCl]. It is therefore unclear as to whether 

the HDX kinetics is truly based on a homogenous ferroCyt c population.  

 

3.1 Experimental 

3.1.1 Materials  

Horse heart Cyt c, SDT, sodium phosphate (Na2HPO4 and NaH2PO4), and sodium 

chloride (NaCl) were purchased from Sigma (St. Louis, MO). GdmHCl was purchased 

from Fischer Scientific (Georgetown, ON). D2O was purchased from Cambridge Isotope 

Laboratories (Andover, MA). All chemicals were used as received. The buffer used in all 

experiments was 25 mM sodium phosphate (pH 7.0) with D2O used in preparation 

instead of H20 where appropriate.  

3.1.2 Reduction of ferroCyt c  

Prior to HDX ferroCyt c was treated with 30 fold excess of Na2S2O4 to ensure the 

Fe center remained in the (+2) state. N2 was passed over the buffer solution prior to 

addition of protein and maintained over the pre-exchange solution to remove O2. NaCl 

was substituted for studies with ferriCyt c to ensure there were no discrepancies in ionic 

strength.  
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3.1.3 Intact HDX  

Experiments were done by diluting the protein to a final concentration of 6 μM 

with deuterated buffer containing the desired concentration of GdmHCl (pH 7, 25°C). 

The final deuterium content of the exchange solution was 90% by volume. 60 μL aliquots 

were taken at selected time points and quenched to pH 2.3 using buffer acidified with 

formic acid (FA). The aliquot was subsequently flash frozen with N2(l) to halt deuterium 

exchange. The proteins were thawed and directed to the MS using a manual injection 

valve. Separation was done using a BEH300 C4 1.7μM 2.1 x 50mm column (Waters, 

Milford, MA) coupled to a UPLC pump (Waters) using an acidified water/acetonitrile 

gradient (0.1%FA) at 200 μLmin
-1

. The entire system including the column and solvent 

delivery lines were kept at 0°C. Deuteration levels (%D) were determined as: 

100*)(%
0100

0

mm

mm
D t




     (3.1) 

%D was normalized and corrected for back-exchange using m0, the mass of the 

undeuterated protein and m100, the mass of the fully deuterated protein. These values were 

calculated by measuring the mass of ferriCyt c with undeuterated buffer (m0) and with 

exchange buffer at pH 2.0 for 24 h (m100) 

3.1.4 ESI Mass Spectrometry 

Experiments were performed on a Waters Synapt HDMS instrument using a 

source and desolvation temperature of 80 and 300°C, cone voltage of 30V, capillary 

voltage of 2.8 kV. A higher desolvation gas flow of 800 Lhr
-1

 was used to ensure the 

presence of high salt concentrations did not impair protein analysis. 

3.1.5 Optical Measurements 

UV-VIS spectra were recording on a Varian Cary 100 UV-visible 

spectrophotometer (Palto, Alto, CA) using 1 cm quartz cuvettes. Blank spectra containing 

phosphate and either Na2S2O4/NaCl were used as a background correction. In order to 

profile the global structure of both ferro/ferriCyt c samples were pre-equilibrated for 1hr 
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with addition of GdmHCl up to 5.7M and subsequently analyzed. A scanning kinetics 

analysis was used to measure the absorbance of ferroCyt c as HDX every 10 min for 2 hr, 

the duration of a typical experiment. 

 

3.2 Results and Discussion 

3.2.1 Re-oxidation of ferroCyt c  

To determine the extent of re-oxidation caused by denaturant-induced 

destabilization, UV spectra of both ferriCyt c and ferroCyt c were recorded under 

increasing [GdmHCl]. Native ferriCyt c exhibits an absorption maximum at 410 nm 

which is in agreement with previous literature (11). Upon denaturation the magnitude of 

the absorption increases as the Soret peak blue-shifts to 402 nm (Figure 3.2a). This 

increase in absorption is also observed in acid-unfolded ferriCyt c (11). Native ferroCyt c 

exhibits three characteristic absorption maxima at 550 (α), 520 (β) and 415 nm (γ). 

However upon unfolding, the α and β peak disappear with the overall spectra resembling 

that of ferriCyt c (Figure 3.2b). This is indicative of re-oxidation, facilitated by the 

presence of GdmHCl as an unfolding agent (36). Under native conditions the heme is 

sequestered within Cyt c, limiting solvent accessibility. Therefore the heme binding 

pocket must be pried open enough for oxygen to gain access for re-oxidation to occur. 

The presence of GdmHCl unfolds the protein exposing the pocket to the solvent and the 

dissolved O2. The ligands around the Fe center also change upon unfolding, with the 

Met80 most likely being removed. His18 remains co-ordinated to the Fe center due to the 

preceding amino acid (Cys17) being covalently bound to the heme. The empty co-

ordination site on the heme has been shown to enable carbon monoxide (CO) binding to 

ferroCyt c (28). Though Cyt c cannot bind O2, this vacancy may allow for the appropriate 

redox reactions between oxygen and the Fe center to take place.  
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Figure 3.2 UV-VIS monitoring of ferro/ferriCyt c unfolding. 

UV-VIS spectra corresponding to increases in 0.9 M GdmHCl increments for (a) ferriCyt 

c and (b) ferroCyt c are shown. The α and β peak diminishes at higher [D] conditions 

resembling panel A, indicating re-oxidation. Measurements were taken after samples 

were equilibrated for 1hr. 
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It is important to note that though there is excess Na2S2O4 present to ensure the protein 

remains reduced, the opening of the heme pocket decreases the reduction potential of the 

heme itself. Therefore upon complete unfolding where the reduction potential is -100 

mV, Na2S2O4 can no longer keep the Fe center reduced. 

  UV-VIS spectra of ferroCyt c recorded during HDX reveal that the protein is in 

fact being slowly re-oxidized (Fig 3.3). This is evident from the absorbance decrease at 

550nm corresponding to the α peak of native ferroCyt c (Fig 3.2b). The α peak is a good 

indicator for monitoring re-oxidation because it is characteristic to only ferroCyt c. Even 

in the absence of denaturant the re-oxidation process occurs slowly, on the order of 10% 

after 2hr. At 1.4 M GdmHCl the re-oxidation is more pronounced, therefore HDX studies 

at higher denaturant concentrations were not performed. The extent of re-oxidation 

cannot be determined under the current conditions; however, it can be estimated by 

examining native and unfolded Cyt c under true hypoxic conditions (28). Even unfolded 

ferroCyt c exhibits the characteristic α peak observed, provided the oxygen-free 

environment is maintained. Furthermore, the absorbance of the α peak decreases upon 

unfolding and is redshifted to 553 nm. Because λmax does not change in the spectra of 

ferroCyt c under the present conditions, it is unlikely that the reduced form is being 

maintained. However, the subsequent HDX kinetics reveals a contrasting result to the 

spectroscopic analysis of ferroCyt c re-oxidation.  

3.2.2 Intact HDX Analysis 

The HDX kinetics of both ferriCyt c and ferroCyt c in the absence of denaturant 

were in general agreement with previous studies done, whereby reduced deuterium 

uptake was observed in ferroCyt c (Figure 3.4a) (34). Because the difference in %D is so 

small between the reduced and oxidized state, spatially resolved HDX-MS was not 

performed as it would be difficult to observe localized changes in deuterium uptake. This 

type of analysis was done previously, however the majority of the peptides did not 

demonstrate any changes (34). Two peptides (38-46, and 66-82 containing the heme 

ligand Met80) showed very small changes in deuterium uptake, on the order of 2-3 

deuterons without back-exchange correction.   
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Figure 3.3 Monitoring re-oxidation of ferroCyt c during HDX 

HDX exchange solutions were monitored by probing changes in the absorbance at 450 

nm for 0.0M (black), 0.7M (blue) and 1.4M (red) GdmHCl. 
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In order to increase the difference in %D, the exchange was done using increasing 

[GdmHCl] (Figure 3.4b, c). There is a steady progression in HDX kinetics for ferriCyt c. 

This is most likely due to the increasing potency of GdmHCl destabilization, as 

secondary structure elements are more severely perturbed allowing for faster exchange. 

This progression is much less pronounced in the kinetics of ferroCyt c. It can be inferred 

that the secondary structure of ferroCyt c remains relatively unchanged as the denaturant 

concentration is increased. This suggests re-oxidation is not occurring because the heme 

pocket is not perturbed enough to allow O2 to access the Fe center. Therefore the opening 

events of the binding pocket that cause re-oxidation are minimized due to the structural 

stability of ferroCyt c. If re-oxidation were occurring the HDX kinetics of ferroCyt c 

would begin to resemble the kinetics of ferriCyt c, which is not the case. However, taking 

into account the re-oxidation observed with optical measurements within the HDX time 

frame, the HDX kinetics are in fact more complex than initially thought. 

It is intriguing that HDX and spectroscopic analyses present contrasting results. In 

terms of the HDX, the kinetics of ferroCyt c is different from that of ferriCyt c. More 

importantly the magnitude of this difference persists and somewhat increases upon 

denaturant addition (Fig 3.5). If the difference was to decrease and the kinetics of 

ferroCyt c began to resemble that of ferriCyt c, then it would most likely indicate re-

oxidation or complete unfolding of the protein. This, however, is not the case and based 

on the HDX kinetics presented it seems that ferroCyt c does not re-oxidize. However 

spectroscopic data imply that ferroCyt c does re-oxidize during HDX studies, therefore 

the presence of a homogenous ferroCyt c population during HDX is less convincing. If 

the protein is in fact re-oxidizing it is puzzling as to why the HDX kinetics remain 

relatively unaltered as denaturant is added. At this stage of the research the current 

hypothesis is that the opening of the heme pocket does not trigger a substantial change in 

secondary structure. Without an appreciable change in the secondary structure, using 

HDX would prove difficult as it relies heavily on the presence of hydrogen bonding. 
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Figure 3.4 Intact HDX of ferro/ferriCyt c.  

HDX kinetics of ferriCyt c (black) and ferroCyt c (red) for (a) 0.0 M (B) 0.7 M and (c) 

1.4 M GdmHCl are shown.  
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Figure 3.5 %D of ferro/ferriCyt c as a function of [GdmHCl].  

Deuterium uptake of ferriCyt c at different [D]. (b) FerriCyt c does not demonstrate the 

same progression as in (a) signifying the increased stability due to the presence of a 

reduced heme center. 
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This matter is further complicated with the presence of GdmHCl. It is has been shown 

that using urea as a denaturant reduces HDX because urea interferes with hydrogen 

bonding, acting as a stand-in hydrogen bond acceptor (37). It remains unclear as to how 

GdmHCl affects protein structure especially in the case of HDX. Further work on the 

combined usage of HDX-MS and denaturant-induced unfolding is required to refine the 

technique in order to use it to study protein structure.  

 

3.3 Conclusions 

Monitoring the HDX kinetics of the ferri/ferroCyt c has demonstrated 

complications for the use of HDX-MS as a tool for studying protein structure. While it 

should be possible to generate truly oxygen-free conditions through means such as 

degassed solvents or a glove box, the difficulty of HDX-MS experiments under such 

conditions increases dramatically. This approach would still not guarantee a hypoxic 

environment because UPLC-MS instrumentation cannot reliably be purged of O2. 

Therefore, at least in the context of the presented research it is not possible to distinguish 

between HDX kinetics caused by D2O exposure and internal conversion to the oxidized 

state.  

Due to time constraints further work must be done to complete this current aspect 

of research. Though the HDX could not be resolved based on underlying factors affecting 

deuterium uptake, the system demonstrated has the potential to correlate HDX kinetics 

with subtle structural dynamics, provided the structural change is irreversible. The HDX-

MS analysis of Cyt c could be extended to ligand binding studies using carbon monoxide 

and cyanide. The rate at which HDX can occur under these conditions is dependent on 

the kinetics of ligand binding.  
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Chapter 4 – Conclusions 

4 Conclusions and Future Work 

 The use of HDX-MS as a tool to study protein structure was demonstrated in this 

work. Both intact protein and spatially resolved analyses demonstrate the utility of this 

technique. Initial global studies can easily be conducted and if a difference is observed, 

one may proceed onto more localized analysis. In an experimental sense, global probing 

of the kinetics can cut down on unnecessary experiments. Furthermore, it allows the 

experimentalist to change experimental variables rather quickly, by using different 

solution conditions, ligands, or mutant variants. The application of this technique does 

come with a fair learning curve. Ensuring pH conditions remain the same, minimizing 

back-exchange, maintaining equilibrium during the exchange process, and analyzing 

peptic peptides are crucial to successful experiments. Ultimately though, at the root of 

any experiment, is a bottle of D2O and a way to measure the mass shift. It is this 

simplicity that makes this technique so powerful.  

 Chapter 2 highlighted the many reasons why HDX-MS is commonly used in 

research and in the pharmaceutical industry. The ability to monitor changes in protein 

structure and dynamics upon ligand binding is critical for drug design. Using Tε and Eε 

provided a system in which proteins from similar organisms with the same proposed 

binding site provided vastly different results upon exposure to a ligand. These results 

agreed well with the ligand affinity of the respective proteins using other analytical 

techniques and also revealed a previously unobserved dimeric form of Tε. Whether this 

form is physiologically relevant to the rest of the complex remains to be seen; however, 

future studies on the subunit especially in the presence of ATP must now take into 

account the possibility of protein dimerization. The analysis of a single subunit also begs 

the question whether the exchange kinetics observed would differ upon inclusion of the 

omitted complex. 

The main objective of work in Chapter 3 was to determine the extent of structural 

change cytochrome c and its respective redox forms. In the presence of denaturant it was 



87 

 

possible to measure the steady increase in HDX coinciding with a progressive loss in 

stability. Though this structural change was observed, the small magnitude of the uptake 

made it difficult to push forward with spatially resolved data. Furthermore the internal 

structural fluctuations by re-oxidation of the Fe center made it difficult to predict the root 

cause of the exchange kinetics. Nonetheless this has laid the ground work in attempting 

to correlate exchange kinetics with that of kinetics arising from structural changes. 

The size of the system which can be studied using HDX-MS is far greater than 

those presented in this work. It is the goal to expand HDX-MS by studying larger, more 

complex systems (1-3). The work done with ε can be extended by examining the εγ sub 

complex of F1-ATPase, which has been reported to bind ATP (4). Therefore HDX-MS of 

εγ would determine the extent of the β-barrel protection observed upon dimerization 

versus in complex with the stator stalk. Building on this, the examination of the entire F1-

complex using HDX-MS would be truly remarkable; a task which would truly test both 

the experimentalist and the technique. The vast quantity of peptides as a result of peptic 

digestion alone is daunting, however the ability to piece together spatially resolved 

structural changes of what Paul Boyer adequately describes a “splendid” molecular 

machine would be indispensable (5). Intact protein work on FOF1-ATP synthase using 

high resolving mass spectrometers has recently been reported, including the ability to 

keep the complex from dissociating in the gas phase (6). It remains to be seen how the 

structure of these large complexes can be studied at amino acid resolution, although 

HDX-MS looks to be a promising candidate. The difficulty of studying F1 under 

physiological conditions is due to the catalytic turnover of ATP, about 100s
-1

 (7). 

Therefore a regeneration system would have to be produced in order to study the 

complex. Possible ligand binding studies could include the use of adenosine 5’-γ-

thiotriphosphate as an ATP analog (8). The thiol substitution on the γ-phosphate 

dramatically slows down the hydrolysis process. Building on the idea of examining F1 it 

would be interesting to determine the structural changes of complexes from other 

organisms such as bovine or chloroplast F1. This could assist in resolving the different 

regulatory mechanisms observed in each respective system. 
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From a well-studied protein in Cyt c, to the notion of examining the molecular 

machines of physiological systems, the future is bright for HDX-MS. It is the simplicity 

and versatility of this technique that makes it effective in examining the various systems 

discussed in the present writing. As the popularity and practice of HDX-MS grows, it will 

be intriguing to see its integration into other commonly used experimental procedures, or 

even more exciting, the creation of new analytical methods. Regardless of the system 

studied, there will always be one common factor; a simple bottle of heavy water. 
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Appendix 1 – Supporting Information 

 

Figure S1. Sequence of Eε (top) (1) and Tε (bottom) (2). Secondary structure elements 

are indicated as boxes. The proposed I(L)DXXRA ATP binding motif (2) is highlighted 

in bold. Peptic peptides used for HDX are shown as solid lines below the sequence. 
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81AAERAEDIDV LRAKAAKERA ERRLQSQQDD IDFKRAELAL

121KRAMNRLSVA EMK
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