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Abstract 

Anthropogenic forcing, such as ocean acidification caused by rising carbon dioxide 

emissions, and eutrophication due to increased nutrient loadings in run-off, are causing 

major changes to the biogeochemistry of the oceans. As a consequence, coastal 

phytoplankton are susceptible to altered biogeochemical environments.  This study 

examined the effect of a lower pH and increased levels of nutrients on the common 

coastal harmful alga, Heterosigma akashiwo.  Growth rates, maximal cell yields, neutral 

lipid accumulation and toxicity of cells grown under various pH and nutrients regimes 

were measured. Heterosigma akashiwo growth was near maximal when grown at lower 

pH levels.  There was a strong correlation between macronutrient concentration (nitrogen 

and phosphorus) and physiological responses such as cell yield, toxicity, and neutral lipid 

accumulation.  Cells cultured on ammonium were less toxic that cells supplied with either 

nitrate or urea as a nitrogen source. Neutral lipid accumulation and cell toxicity varied 

under different environmental regimes but did not co-vary, indicating that 

polyunsaturated fatty acid production was not the mechanism of toxicity.  Based on the 

ecophysiological profile, H. akashiwo will be both present and toxic in the future 

nutrient-rich, acidified coastal ocean waters.  
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“Don't blow it – good planets are hard to find.”  
                                                  ~ Quoted in Time Magazine, 1996
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CHAPTER 1: INTRODUCTION 
 
1.1 The anthropocene 
 
 Anthropogenic activities are having profound effects on the Earth and its systems 

(Steffen et al., 2011). Ecosystems are exhibiting dramatic changes on a variety of scales, 

from nutrient levels to population dynamics (Rockström et al., 2009; Hallegraeff, 2010). 

Climate patterns are becoming increasingly extreme and unpredictable (IPCC, 2012). 

Since this is such a recent occurrence in the Earth’s history, the body of accompanying 

research is still in its infancy (Corfee-Morlot et al., 2007). In order to prevent further 

degradation and loss, there is a pressing need to understand the influence of 

anthropogenic activities on ecosystems (IPCC, 2007). In response, researchers have 

begun to answer such questions using a variety of approaches, from laboratory-based 

hypothesis testing to field-based observational studies, each with their own merit (Glibert 

and Burkehold, 2006; Hallegraeff, 2010). One major Earth system that is being 

negatively impacted by human activities and negatively affecting human activities as a 

result, is the ocean (Royal Society, 2005).  

1.2 The future ocean 
 
 The oceans have a great capacity to buffer against change; as such they have 

remained relatively stable since the last ice age (Zeebe, 2012). The future ocean, 

however, may bear few similarities to the ocean of today. Industrialization, intensified 

agriculture practices and coastal development are directly impacting oceans via the 

release of nutrient-rich run-off into coastal waters (Cloern, 1999). This “cultural 

eutrophication” is contributing to massive algal blooms, and subsequent hypoxic “dead 

zones” (Rosenberg and Loo, 1988). Carbon emissions, a defining feature of the current 
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anthropogenic era, have caused atmospheric levels of carbon dioxide to rise (Doney et al., 

2009). The ocean serves as one of the largest carbon reserves on Earth, absorbing nearly 

one third of all carbon dioxide emissions (Zeebe, 2012). However, the ocean’s capacity to 

absorb excess carbon is reducing with each increment of intensification of global carbon 

emissions (Royal Society, 2005). When this tipping point is breached, it would require in 

the order of 10,000 years or more for deep mixing to restore our oceans buffering 

compounds and sea surface pH to their former state (Royal Society, 2005). One of the 

indirect effects of increasing global carbon emissions, with its own set of accompanying 

problems, is ocean acidification (Doney et al., 2009).  

1.2.1 Ocean carbon chemistry 

 Atmospheric carbon dioxide levels have risen from ~315 ppm to almost 400 ppm 

since 1960, and are predicted to increase to ~750 ppm by 2100 (IPCC, 2007). As 

atmospheric CO2 concentrations climb, increased oceanic uptake via dissolution into 

seawater causes an increased concentration of CO2 throughout much of the upper ocean 

(Denman et al., 2011). This results in the production of the intermediary carbonic acid 

(H2CO3) followed by bicarbonate (HCO3
-), carbonate (CO3

2-), and hydrogen ions (H+). 

The overall result of this change in seawater-chemistry is a shift towards increased 

oceanic H+ concentrations (lower pH) (Shi et al., 2010) (Figure 1.2.1). 
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Figure 1.2.1 The ocean carbon chemistry of atmospheric carbon dioxide dissolving into 
sea surface waters, reacting with water to form carbonic acid, bicarbonate/carbonate ions, 
and hydrogen ions, resulting in lowered pH. 

  
1.2.1.1 Ocean acidification 
 
              Since the industrial revolution, mean global surface water pH has decreased by 

0.1 pH units (Denman et al., 2011). Based on various carbon dioxide emission regimes, 

from conservative to business-as-usual emission scenarios, pH could drop by another 

0.10 to 0.35 units by the year 2100 (Orr et al., 2005). This represents a 30 to 105% 

increase in ocean acidity, respectively. It is important to emphasize that these declines in 

pH are averaged global values. Certain coastal upwelling regions, like the eastern 

boundary upwelling systems (EBUS) off the west coast of North America, are already 

experiencing levels of ocean acidification predicted for surface waters at the end of this 

century (Feely et al., 2008). Seasonal decreases in pH to ~ 7.7 or less have already been 

recorded in such CO2–rich, nutrient-replete upwelling systems, and the pH of these 

upwelling regions could drop to as low as 7.4 by the end of the century (Feely et al., 

2008).  



 4 

 Although reduced rates of calcification (shell-deterioration of calcareous marine 

organisms) are most commonly associated with ocean acidification, lower pH can impact 

other aspects of marine biogeochemistry such as the cycling of nutrients and their 

interaction with biological organisms. Ocean water pH influences bioavailability of 

macronutrients and trace metals, which impact the marine food chain (Royal Society, 

2005). For instance, when pH sensitive nutrients, like iron, are limiting to most species of 

phytoplankton, an increase caused by acidification could have a severe impact on species 

composition and population dynamics.   

 The composition of the phytoplankton population can also change based on 

alterations in the pH-associated levels of inorganic carbon. Certain species may not be 

influenced by pH-induced carbon concentrations, should they possess a carbon 

concentrating mechanism (CCM)(Raven et al., 2011). CCMs allow for the concentration 

of carbon dioxide around the RuBisCO enzyme, allowing for higher photosynthetic 

efficiency (Reinfelder, 2010). CCMs also contain a putative HCO3
- transporter, which 

serves as an additional source of inorganic carbon within the cell (Raven et al., 2011). 

More acidic ocean contains more CO2 and HCO3
-, so cells with a CCM are less likely to 

experience carbon-limitation (Reinfelder, 2010). However, recent investigation has 

shown a reduced affinity for carbon in CCM-containing algae grown under high CO2 and 

in some cases, a loss of expression of the CCM (Raven, 2010; Raven et al., 2011). This 

could translate to algal species that lack a CCM being more likely to out compete those 

with a CCM, who could lose their competitive advantage, under high CO2 conditions 

(Reinfelder, 2010).  
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1.2.1.1.1 Iron  

 Iron is required in many cellular structures that enable nitrogen use within the cell 

(Raven, 1988). Its oxidation-reduction properties allow iron to facilitate electron 

transport. Iron based enzymes (ferredoxins) are also able to reduce inorganic nitrogen 

species (nitrate and nitrite) to provide phytoplankton with a usable nitrogen supply 

(Morel et al., 1991).  

 In most of the ocean, iron is also the micronutrient that limits the growth of 

phytoplankton (Boyd et al., 2007). The majority of Fe(III) are either bound by chelators 

or found within the highly insoluble neutral tri-hydroxy species Fe(OH)3 (Shi et al., 

2010). Iron uptake rates in some phytoplankton have been shown to drop by 10-20 % 

when the pH drops from ~8.4 to ~7.4, which could be due to natural iron scavenging 

ligands being less effective chelators at low pH values (Shi et al., 2010). However, for 

ambient organisms that do not produce iron-organic ligands, a drop in pH from 8.1 to 7.8 

will increase the solubility of iron in the ocean waters, increasing bioavailability 

(Breitbarth et al., 2009).  

1.2.2 Ocean eutrophication 

 The concentration of macronutrients (nitrogen and phosphorus) in the open ocean 

is very minimal compared to most freshwater ecosystems (Hecky et al., 1993). However, 

the concentration tends to increase in coastal regions, and zones of extreme upwelling 

(Capone and Hutchins, 2013). This phenomenon can cause coastal ocean waters to 

become nutrient-rich, fueling the growth of primary producers (Rosenberg and Loo, 

1988).  
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 1.2.2.1 Nitrogen 

 Agricultural fertilizers, effluent, and atmospheric deposition all lead to increasing 

levels of nitrogen in coastal waters (Davidson et al., 2012). Nitrogen has an essential role 

in the formation of amino acids, proteins and chlorophyll a, and as such, cellular 

requirements are also high. Although nitrogen (N2) makes up ~78% of the atmosphere, 

phytoplankton are unable to fix this into a useable form, making nitrogen the most 

limiting macronutrient in ocean waters. Oceanic nitrogen is normally present in the form 

of ammonium (NH4
+), nitrate (NO3

-) or urea (CH4N2O) (Flynn and Butler, 1986). The 

concentration of nitrogen, found as nitrate, ammonium, and urea, in the open ocean are 0-

50 µM N, 0-2 µM N, and 0-1 µM N respectively, while the concentrations that can be 

found in coastal waters are 500 µM N, 600 µM N, and 25 µM N respectively (Collos & 

Berges, 2004). 

 In terms of dissolved inorganic nitrogen, ammonium is readily useable by 

phytoplankton, however nitrate needs to be further reduced to nitrite (NO2
-) and then 

ammonium before it can be assimilated into the cell. Organic nitrogen can most often be 

found as urea, which after being transported through the cell membrane, is divided into 

ammonia (NH3) and CO2 (Tamminen & Irmisch, 1996; Rukminasari & Redden, 2011). 

Approximately 70% of nitrogen fertilizers now contain urea in place of inorganic 

nitrogen sources (Gilbert, 2006).  

 In addition to increased nutrient loadings, recent studies examining the effects of 

ocean acidification on the oceanic nitrogen cycle have reported that a drop in pH results 

in lower rates of nitrification (Beman et al, 2011). Nitrification involves the oxidation of 

ammonium to nitrite and then nitrate by marine bacteria (Huesemann et al., 2002). Over 
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30% of marine primary production is supported by nitrification that occurs within the 

uppermost 80 m of the water column (Yool et al., 2007). As such, when pH levels 

decrease, there are lower rates of nitrification, and hence more ammonium available 

(Beman et al, 2011). There is a subsequent need for a better understanding of the 

influences of changes in coastal nitrogen inputs, as well as pH and nitrification rates on 

the phytoplankton community.  

1.2.2.2 Phosphorus 

 Phosphorus (P) commonly enters marine aquatic systems via sewage, phosphorus-

based detergents, fertilizers and manure. Over 75% of phosphorus loadings to coastal 

zones have been attributed to anthropogenic sources, with the remainder being a result of 

natural weathering processes (Harrison et al., 2010). The average open ocean surface 

water concentration of inorganic phosphorus is ~0.015 µM P, while average coastal 

concentrations range from 0.2-2.0 µM P (Benitez-Nelson, 2000; McLaughlin et al., 

2004). 

 Algal cells are able to attain P via the uptake of phosphate (PO4
3-), which is 

essential for the synthesis of a wide range of macromolecules including nucleic acids, 

proteins and ATP. Increased P-loadings into the system can skew the ratio of N:P, which 

can trigger unbalanced growth within phytoplankton (Davidson et al., 2012). On the other 

hand, P-limitation has been proven to trigger toxin production in certain species of 

phytoplankton (Fu et al., 2008; Fu et al., 2010; Sun et al., 2011; Hardison et al. 2013).  

1.2.2.3 The importance of the nitrogen to phosphorus (N:P) ratio  

 Anthropogenic inputs of nitrogen and phosphorus have been shown to 

“artificially” control the ratio of N to P in coastal waters. The global ocean average ratio 
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and cellular requirement of N:P according to Redfield (1953) should be approximately 

16:1. There is, however, notable variation in elemental ratios between marine species. 

This means that a different phytoplankton may have the ability dominate, based on their 

cellular requirements and the environmental ratio of N:P. This has led many to believe 

that algal dominance, and toxin production of certain types of phytoplankton are 

governed by N:P, while levels of nitrogen are responsible for overall bloom formation.  

1.2.3 Combined impacts of ocean acidification and coastal eutrophication 

 Ocean acidification and coastal eutrophication also exert synergistic effects on 

ocean biogeochemistry. Ocean water pH influences bioavailability of macronutrients and 

trace metals. When pH sensitive micronutrients, like iron, are currently considered 

limiting to most species of phytoplankton, an increased bioavailability, caused by 

acidification, can have a severe impact on species dynamics (Breitbarth et al., 2009; 

Royal Society, 2005). This change in nutrient availability can alter both organism 

physiology and community structure, which can allow for the proliferation of certain 

toxic algal species such as H. akashiwo (Fu et al., 2008; Fu et al., 2010; Sun et al., 2011; 

Hardison et al., 2013). 

1.3 Harmful algal blooms (HABs) 

 Modern day harmful algal bloom (HAB) events are a consequence of modified 

coastal environments (Anderson et al., 2002; Kudela et al., 2008; Davidson et al., 2012). 

During HAB events, members of the phytoplankton community that exert adverse effects 

on the surrounding ecology replace the naturally occurring phytoplankton community 

(Smayda, 1997). The presence of HAB species may result in an alteration of the natural 

food chain, a change in water quality and/or the presence of a marine toxin (Anderson et 
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al., 2002; Horner et al., 1997; Van Dolah, 2000). These alterations can negatively 

influence the relationship between humans and coastal resources (Khan et al., 1997; 

Tiffany et al., 2001; Kempton et al. 2008). While there have been reports of HAB events 

for hundreds of years, modern day HABs are generally thought to be the result of human 

modification of coastal water quality (Quayle, 1969; Hallegraeff, 1993).  

 There is a general consensus that the frequency of HAB events has increased over 

the last few decades (Smayda, 1990; Hallegraeff, 2010). Factors that are often implicated 

in this increased frequency include coastal eutrophication (Anderson et al., 2002; Kudela 

et al., 2008) and increased deposition of novel nitrogen to coastal waters (e.g., urea-based 

fertilizers) (Glibert et al., 2005; 2006). Other large-scale factors include climate change, 

the stabilization of coastal surface waters, and the general increase in human population 

and the subsequent rise in run-off from coastal societies. Some researchers propose that 

the increased frequency of HAB reports is due primarily to the “observer effect” – there 

are more people watching the coastal waters and reporting incidents now. To illustrate 

this point, the 1st International Meeting of HABs in 1972 drew 15 researchers, while the 

14th International HABs Meeting in 2010 had over 450 attendees. Whether there are more 

observers or more environmental outbreaks remains to be determined. There is, at 

present, no single factor that describes the increased frequency of HAB events. 

1.3.1 Heterosigma akashiwo  

 Heterosigma akashiwo causes red tides throughout the world and is a grave 

concern for natural and penned fisheries.  Heterosigma akashiwo can be found in 

temperate coastal waters worldwide, and has been observed off the coast of all continents 

other than Antarctica.  Heterosigma akashiwo is classified in the class Raphidophyceae, 
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order Chattonellales and family Chattonellaceae (Throndsen, 1997).  Hetero is Greek for 

‘different,’ sigma is Greek for ‘curves,’ and akashiwo is Japanese for ‘red sea water’ 

(Throndsen, 1997). Heterosigma akashiwo is appropriately named based on its cellular 

appearance of variable shape, which has been described as ranging from potato-like to 

lumpy or cornflake-like, and its characteristic red discolouration of the coastal waters of 

Japan (Horner, 2002). As the cells range in size from 10-25 µm in length, 8-15 µm in 

width and are ca. 4 µm thick, H. akashiwo is a nanoplankton (Smayda, 1998).  A single 

cell contains up to 95 chloroplasts, a high number relative to other phytoplankton species 

(Smayda, 1998). 

 Despite its fragile cell wall and ~10-20 µm diameter, H. akashiwo (Hada) Hada 

ex Y. Hara & M. Chihara is a marine raphidophyte capable of producing dense golden-

brown toxic blooms (Hara & Chihara, 1987). This particular species has two 

heterodynamic flagella – appendages able to move independently of one another – that 

allow vertical migration in the water column (Band-Schmidt et al., 2004).  

1.3.1.1 Heterosigma bloom events  

H. akashiwo blooms have been associated with the mortality of cultivated fish in 

the coastal regions of many countries, including Canada (Haigh and Taylor, 1990), the 

United States of America (Horner et al., 1997), Japan (Honjo, 1993), China (Tseng et al., 

1993), Australia (Ajani et al., 2001), New Zealand (Chang et al., 1993), Denmark, 

Sweden, Chile, and Brazil (Honjo, 1993). More recently, blooms have also been observed 

along the coasts of the southwestern United States of America (Herndon, 2003) and 

Mexico (Band-Schmidt et al., 2004).  Its fish-killing, or ichthyotoxic, mechanism remains 

somewhat ambiguous, despite previous scientific investigations (Ono et al., 2000; Twiner 
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et al., 2001; Fredrickson et al., 2011). 

1.3.1.2 H. akashiwo in the Salish Sea 

 In some locations, there have been well-documented increases in the negative 

effects of this particular HAB species. In the Salish Sea region, the species Heterosigma 

akashiwo forms nearly mono-specific blooms – meaning they are the dominant species 

contributing to the bloom. 

 The Salish Sea is an estuarine system that includes the Juan de Fuca Strait, the 

Strait of Georgia and Puget Sound, and is bordered by British Columbia (Canada), 

Washington State (United States of America), and the Pacific Ocean. The surface waters 

in this region span ca. 18,000 km2 and the Salish Sea drainage basin is ca. 110,000 km2 

(Jarvis et al., 2008). Heterosigma akashiwo has been documented in this region since 

1976, with reported increases in bloom frequency and densities beginning in the year 

2000 and continuing to present (Gains and Taylor, 1986; Rensel et al., 2010). This region 

is part of the Eastern Boundary Upwelling System and receives nutrient-rich, acidified 

inputs from coastal wind-driven upwelling during summer and fall months (Feely et al., 

2008). The pH in the Salish Sea varies seasonally from as low as 7.6 to 8.5. Nutrient-rich 

waters, in the form of run-off, also enter the system from the Fraser River, which drains 

into the Strait of Georgia. The seasonal drop in pH and enrichment of nutrients from deep 

waters make this region an ideal study zone for changes in global ocean acidification and 

eutrophication of coastal waters forecasted for the end of the century. It is interesting to 

note that blooms of H. akashiwo have been on the rise in this region (Rensel et al., 2010). 

 Deemed the most significant fish-killing HAB species in Pacific Northwest 

coastal waters, H. akashiwo has caused massive aquaculture fish kills and associated loss 
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in revenue (Rensel et al., 2010). Heterosigma akashiwo may have a direct influence on 

the survivorship of natural salmon populations, as there was a strong correlation between 

bloom events in the Strait of Georgia, BC and survival rates of Fraser River sockeye 

salmon (Rensel et al., 2010). Nearly 650 million Atlantic salmon have been killed by a 

lone harmful algal bloom event (Rensel, 1995). In terms of economic impact, the annual 

estimated cost of HABs to the United States of America is $50 million (Anderson et al., 

2000). This is listed as moderate, and takes into account public health costs, losses to the 

tourism industry, monitoring and management, as well as aquaculture losses.   

1.3.2 Heterosigma akashiwo growth  

 The response of raphidophyte species to increased carbon dioxide concentrations/ 

lower pH was the subject of a recent investigation (Fu et al., 2010). Higher CO2 

concentrations, resulting in lower pH, could increase phytoplankton growth and/or affect 

inter-species competition (Fu et al., 2008). Heterosigma akashiwo were found to have 

stimulated growth under elevated CO2 concentrations alone, while the dinoflagellate 

Prorocentrum minimum experienced no significant change (Fu et al., 2008). Future ocean 

conditions (lowered pH and/or increased temperature) were shown to promote significant 

increases in growth rates of H. akashiwo compared to controls (Fu et al., 2008; Sun et al., 

2011).  

 Experiments modelling future ocean conditions, with respect to both pH and 

temperature, show the elemental composition of H. akashiwo shifting towards a lower 

cellular P requirement (Fu et al., 2008; Sun et al., 2011). Under high temperature and low 

pH conditions, the elemental ratios of N:P and C:P both increased, while C:N remained 

relatively similar when compared to the control (Fu et al., 2008). Variation in elemental 
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ratios between marine species means that a H. akashiwo could dominate, based on their 

cellular requirements.  

 The paradox of the eutrophication situation is that, despite the large supply of 

nitrogen available to coastal phytoplankton, growth-limitation can occur if levels of P are 

unable to support growth. Phosphate (PO4
3-) can effectively limit growth when nitrogen 

inputs are in excess (Rudek et al., 1991). Based on contemporary food production needs – 

requiring heavy applications of N-based fertilizers – coastal N input is increasing much 

faster than P (8x and 3x respectively) (Smil, 2001). Cells are able to cope with minor 

disruptions to phosphorus supplies by dipping into cellular reserves of polyphosphates 

(Harrison et al., 1990). However, if environmental P continues below cell subsistence 

quota for too long, growth may be negatively affected (Harrison et al., 1990).  

1.3.2.1 Unbalanced growth 

 Balanced growth occurs when all cellular components are manufactured at a 

steady rate that is relative to one another allowing for maximum rates of cell division 

(Prescott et al., 1999) (Figure 1.3.2.1 A). The unbalanced growth model, however, is 

based on the comparative rates of carbon, nitrogen and phosphorus acquisition, relative to 

the acquisition of energy from photosynthesis. This is analogous in nature to the “Redox 

Balance” proposed by Maxwell et al. (1995). Unbalanced growth results in the 

differential rates of production of certain cellular components relative to others (Prescott 

et al., 1999). This can take place when the rate of incorporation of nutrients into the cell 

is less than the division rate of the cell. Unbalanced growth scenarios have been shown to 

result in differential cellular composition of H. akashiwo, specifically with regards to 

lipid production (Fuentes-Grünewald et al., 2012).  
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1.3.3 Lipid accumulation in Heterosigma akashiwo 

 When phytoplankton photosynthesize, the resulting cellular constituents are 

carbohydrates, protein, and lipids. Cells that are undergoing balanced growth tend to 

allocate the majority of photosynthetically derived resources towards protein (~50%), and 

carbohydrate (~40%) production, with lipids accounting for a relatively small proportion 

(~10%) (Geider & La Roche, 2002). The lipids produced in this scenario are mainly 

structural, membrane polar lipids, and their accumulation remains quite constant over 

time. If growth becomes unbalanced, however, the phytoplankton will shift production 

towards much greater proportions of lipids (~50%), and lesser amounts of carbohydrates 

(~30%), and proteins (~20%) (Geider & La Roche, 2002). Lipids in the cell undergoing 

unbalanced growth are primarily neutral lipids (triacylglycerol or TAG), which are highly 

variable in terms of accumulation (Hu, 2008). These are high carbon energy stores, 

within the cytoplasm, that are utilized to sustain metabolic requirements when needed 

(Fuentes-Grünewald et al., 2012). These shifts in cellular composition can impact other 

marine organisms, as they rely upon phytoplankton as a food source. Cellular 

Figure 1.3.2.1 A cell receiving sufficient inputs of photosynthetic reagents (light and CO2) 
and nutrients (based on the acquisition rate / cell quota) to support balanced cell growth (A) 
and insufficient nutrients resulting in unbalanced growth (B).   
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composition also has an impact on biofuel production strategies (Sharma et al, 2012).  

Most recently investigated, cellular composition could also alter the production of 

allelopathic and/or toxic agents (Ikawa, 2004).  

1.3.3.1 Quality food source 

 Phytoplankton account for 45% of the earth’s primary production, and are the 

base of the oceanic food web. As such, their presence is required to provide energy that 

supports the proliferation of higher trophic levels (Rossoll et al., 2012). One of the unique 

roles of phytoplankton is the synthesis of essential fatty acids (EFAs). Marine predators 

are not able to generate essential fatty acids de novo, and rely upon bioaccumulation from 

their diet (Igarashi et al. 2007).  

 Long chain polyunsaturated fatty acids (PUFAs), such as omega-3 and -6 fatty 

acids, can effectively control the growth and reproductive health of organisms of a higher 

trophic level (Veloza, 2005).  Humans can be considered part of this trophic system, and 

are recommended to consume fish, supplements, etc. to acquire omega-3 and -6 fatty 

acids. Polyunsaturated fatty acids are non-constitutive, fluctuating components of neutral 

lipids (Hu, 2008). Production of PUFAs varies over space and time, in that they 

accumulate during conditions of environmental stress (Liu et al., 2008). As such, ocean 

acidification and nutrient modification can lead to unbalanced growth, which impacts the 

production of PUFAs in phytoplankton, affecting their quality as a food source for marine 

organisms (Rossoll et al., 2012).  

1.3.3.2 Algal biofuels  

 The lipid composition of phytoplankton is of particular interest to those in the 

field of third-generation biofuel development. Biofuels are currently harvested from food 
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crops such as oil palm, coconut, and rapeseed. The issues that arise with this form of 

biofuel are the dilemma of fuel versus food – should food crops be used for fuel for the 

affluent as opposed to a food source for those in need – and the large amount of resources 

(fertilizers, fresh water, etc.) and acreage required to grow the crops (Singh et al., 2011). 

Algal biofuels are unique in their ability to yield oil volumes per acre that are in the range 

of an order of magnitude greater than the most efficient food crops (Hu, 2008; Singh et 

al., 2011). Additionally, they can be grown in seawater, which reduces the strain on fresh 

water resources.  

 Heterosigma akashiwo, and other raphidophytes, are capable of producing 

relatively rapid yields (0.55 divisions per day) of high biomass productivity (185,000 

cells mL-1) (Fuentes-Grünewald et al., 2012). Studies examining H. akashiwo 

productivity against both neutral lipid content and lipid profiles justify its use in the algal 

biofuel industry (Doan et al., 2011; Fuentes-Grünewald, 2012). An emerging field of 

research has discovered that modification of abiotic parameters can enhance neutral lipid 

(oil) production in microalgae. Modification of nutrient inputs, light, temperature, and 

salinity have been shown to alter neutral lipid levels (Hu, 2008; Fuentes-Grünewald et al., 

2012). Increased neutral lipid production allows for higher yields of biodiesel, and 

manipulation of abiotic parameters is a part of the most cost-effective and simplistic ways 

to accomplish this (Fuentes-Grünewald et al., 2012). The influences of pH and nutrient 

speciation on neutral lipid production have only just begun to be examined (Singh et al., 

2011). 
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1.3.3.3 Toxic EFAs  

 Marine microalgal essential fatty acids (EFAs) have been shown to exert negative 

allelopathic effects on other algal species, inhibiting growth, reproductive success, and/or 

survival (Ikawa, 2004). In this sense, EFAs could be controlling which algal species is 

dominant in the marine phytoplankton community, while also exerting toxic effects on 

other marine organisms, notably fish species.   

 PUFAs in particular are known to increase phospholipid membrane permeability 

at concentrations of an order of magnitude lower than saturated fatty acids (Castaing et 

al., 1993). This may be the mechanism through which Heterosigma akashiwo exerts toxic 

effects on marine finfish and allelopathic effects on co-occurring marine organisms. 

Fibrocapsa japonica, another raphidophyte, was found to produce high concentrations of 

PUFAs, which caused mortality in brine shrimp (Artemia salina), inhibition of Allivibrio 

fischeri bioluminescence, as well as mortality in European seabass (Dicentrarchus 

labrax) (Pezzolessi, 2010). Okaichi (1989) found two PUFAs were produced 

corresponding to the death of yellowtail within a bloom of yet another raphidophyte, 

Chattonella antiqua. The PUFAs were described as stearidonic acid (18:4(n-3)) – an 

omega-3 polyunsaturated fatty acid – and hexadecatetraenoic acid (16:4(n-3)) (Okaichi, 

1989). The PUFAs had an adverse interaction with the mucosal lining of the fish gill 

cells, which resulted in swelling, reduced gas exchange, lack of oxygen, and asphyxiation 

(Toyoshima et al., 1989). The proposed mechanism of toxicity – gill cell interaction – is 

important when selecting an appropriate bioassay to gauge algal toxicity.  
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1.3.4 Heterosigma akashiwo toxicity 

 The exact mechanism of Heterosigma ichthyotoxicity has yet to be determined. 

Proposed mechanisms involve the release of a brevetoxin-like compound, or more 

recently, the production of EFAs, specifically PUFAs (Haque & Onoue, 2002; Okaichi, 

1989). For the purposes of this study, the primary focus of toxicity research will be to 

investigate possible regulators of the toxic mechanism in question and secondly, to 

determine if the toxic response correlates to PUFA accumulation. 

 The most common regulator of H. akashiwo toxicity is thought to be the 

disruption of cell growth caused by the depletion of a given macronutrient, in relation to 

the others (Twiner et al., 2001; Fu et al., 2010; Fredrickson et al., 2011). The primary 

macronutrients that limit the growth of the cells include nitrogen and phosphorus (Glibert 

& Burkholder, 2006). Over the last two decades, each element has been implicated as the 

toxicity inducer (Fu et al., 2010; Kudela et al., 2008). Recently, low iron availability 

within HAB events has been considered the stimulus of toxin production (Ling & Trick, 

2010). The rationale is that the low availability of iron in coastal waters regulates the 

efficiency of nitrogen use, and alters the competitive ability of the species. The exact 

trigger(s) of toxicity has yet to be confirmed.  

1.3.4.1 Toxicity & unbalanced growth 

 The balance between macronutrient availability and iron might suggest that 

toxicity is caused by an unbalanced growth scenario, rather than the absolute nutrient 

deficiency (Ling & Trick 2010; Powers et al. 2012). This model moves our attention 

away from the view that toxins are predatory molecules and towards the idea that toxins 

are waste products of cell growth (Trick, 2012).  
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 Another aspect of unbalanced growth and H. akashiwo toxicity relates to ocean 

acidification. If the relative supply of N, P, and Fe control the balance of cellular 

metabolites, the acidification of coastal waters – and the corresponding alteration of the 

nutrient biogeochemical cycles discussed earlier – may strongly influence H. akashiwo 

toxicity.  

 Fu et al. (2010) demonstrated that a toxic species of dinoflagellate, Karlodinium 

veneficum, produced more of the toxic compound karlotoxin (KmTx-1) under lower pH 

conditions, especially when paired with nutrient limitation of phosphorus. Similar results 

were obtained for the harmful bloom diatom, Pseudo-nitzschia multiseries, which 

produced elevated levels of domoic acid under both acidified P-limited and acidified Si-

limited conditions (Sun et al., 2011; Tatters et al., 2012).  

1.4 Study statement 

 Changes to phytoplankton physiology in response to the potentially interactive 

effects of pH and nutrient levels have been demonstrated (Fu et al., 2010; Sun et al., 

2011; Tatters et al., 2012). This thesis focused on gaining a better understanding of the 

effect that factors predicted for the future ocean have on a common coastal HAB genus, 

Heterosigma. The main objectives were to determine if modelled future ocean conditions 

of low pH, higher nitrogen, and variable iron would adversely affect the ecological 

importance of this genus. I used the cellular growth rate to assess if the genus has the 

capacity to grow under the predicted new ocean conditions. Toxicity levels indicated if 

there would be adverse effects of the genus in the water column. An assessment of the 

neutral fatty acids provided insight into two critical aspects of Heterosigma ecology: are 

neutral fatty acids the mechanism of fish-killing potential and are levels of neutral fatty 



 20 

acids indicative of a species that would supply fatty acids to the fecundity of the next step 

in the food chain (zooplankton) (Fu et al., 2010; Sun et al., 2011; Fuentes-Grünewald et 

al., 2012). Results from this thesis are critical to understanding the consequences of 

Heterosigma in the water column, and will influence natural food web dynamics 

(including the domination of this genus as a HAB), fish-rearing aquaculture and biofuel 

industries. 

1.4.1 Hypothesis 

 The main hypothesis of this study is that Heterosigma akashiwo will remain a 

potential HAB species under the new ocean conditions. To remain a potential HAB 

species, this genus must maintain its growth rate and nutrient-use efficiency, decrease 

levels of neutral lipid levels to reduce the consumption by zooplankton, and increase its 

toxicity under novel nutrient-rich conditions and lower pH values projected for future 

ocean waters. 

1.4.2 Objectives 

 In order to test the above hypothesis, multiple objectives were established. The 

first objective was to measure the change in growth rate and cell yield across a suite of 

nutrient (nitrogen, phosphorus, and iron) concentrations and pH levels (7.4, 7.8, 8.1). 

This will help predict H. akashiwo bloom frequency and intensity in future nutrient-rich, 

acidic ocean waters.  

 The second objective was to detect how changing nutrient and pH regimes will 

alter the neutral lipid content of H. akashiwo. Cells with higher amounts of neutral lipids 

could be a lower quality food source and indicate an inability to support marine 
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ecosystem productivity, lowering predation. They also indicate PUFA production, which 

has been linked to both allelopathy and ichthyotoxicity. 

 The third objective was to gauge the toxicity of H. akashiwo under altered 

nutrient and pH conditions using a RT-gillW1 assay. As this HAB species exhibits 

variable toxicity, it is critical to examine under modelled future ocean conditions. 
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CHAPTER 2: METHODS 
 
2.1 Culture Preparation 
 
2.1.1 Isolate & stock culture conditions 

2.1.1.1 Cell isolate 

  Heterosigma akashiwo isolate 513 was chosen for this study. This isolate was 

originally collected from the waters of Puget Sound, Washington, USA, where this 

species is common and has a history of finfish devastation. The isolate was maintained in 

the Northwest Fisheries Service Center and was given the designation NWFS 513. The 

alga has been maintained as a unialgal, non-axenic strain.   

2.1.1.2 Culture conditions 

 Stock cultures were grown at 10% (v/v) inoculum in 1 L Erlenmeyer glass flasks. 

Flasks contained 270 mL of autoclave sterilized (to 135 ˚C and 30 psi over 60 minutes) 

nutrient enriched artificial seawater (ESAW) medium with specified modifications as 

implemented by Herndon and Cochlan (2007), and 30 mL of inoculum (Harrison et al. 

1980; Berges et al. 2001). All flasks were autoclaved prior to use, after being fitted with 

cheesecloth-wrapped non-absorbent cotton stoppers, which were then covered with 

aluminium foil. Cultures were grown at 19 °C under cool white fluorescent light, at a 

constant irradiance of 65-80 µmol photons m-2s-1. Irradiance was measured using a 

Quantum Scalar Laboratory 2100 irradiance sensor (Biospherical Instruments, San 

Diego, CA). Stock cultures were maintained in exponential phase by subculturing every 

4-5 days.  
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2.1.2 pH adjustment & maintenance  

 For all experimental treatments 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) buffer was added to the media at a final concentration of 20 mM in order 

to maintain desired pH (Harrison & Berges, 2005). Sodium hydroxide (2 M NaOH) and 

hydrochloric acid (4.1M HCl) were titrated into the media to attain the experimental pH 

levels of 8.1, 7.8 or 7.4, representing current average global ocean pH, global average 

ocean pH projected for 2100, and the pH of surface waters in the Eastern boundary 

upwelling system (EBUS) projected for 2100, respectively (IPCC, 2007). The flasks were 

swirled by hand throughout the titration process. A Thermo ScientificTM OrionTM 2-Star 

Benchtop pH meter was used to measure pH levels during titration. The buffered and 

titrated media was allowed to attain homogeneity for approximately 1 hour at 19 °C, prior 

to inoculation. 

2.1.3 Inoculum 

 Stock cultures of H. akashiwo 513 in stationary phase were used as inoculum for 

all experiments. This growth phase was chosen to reduce the transfer of nutrients. 

Inoculation was performed under aseptic conditions in a laminar flow hood, using a 

serological pipette, and added until the final culture volume was inoculated to 10% (v/v). 

Stock cultures were gently swirled prior to inoculation, and experimental cultures were 

gently swirled post-inoculation.  

2.1.4 Iron & pH treatments 

 All media stocks were chelated using ethylenediamine tetra-acetic acid (EDTA) to 

facilitate the modification of the original ESAW iron levels for the purposes of this 

experiment (Price et al. 1988/1989). The volume of modified ESAW salts amended with 
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f/2 nutrients was then divided evenly into two separate allotments and enriched with 

ferric chloride to attain the desired level of iron. A ferric chloride (FeCl3) concentration 

of 0.1 µM was used for iron-deplete treatments, and 11 µM was used for iron-replete 

treatments. These values were selected based on preliminary work done by Ling and 

Trick (2010) and Bronicheski (2014) involving Heterosigma growth characterization 

over a wide range of iron concentrations. A 270 mL volume of media was added to each 

1 L flask and buffered and titrated, with the exception of the controls, which remained 

without HEPES at the medium’s ambient pH of 8.2. Flasks were then inoculated with 30 

mL of culture that had been grow in either iron-replete or deplete conditions for 10+ days 

(at least 8 generations) to adjust to their respective treatment conditions. Each treatment 

was repeated 3 times, for a total of 20 samples per experiment. The experiment was 

conducted in triplicate, non-concurrently. 

2.1.5. Nitrogen & pH treatments 

 Modified ESAW salts with f/2 nutrient medium were enriched with one of nitrate 

(as NaNO3), ammonium (as NH4Cl), or urea (as CH4N2O) as the source of nitrogen. 

Nitrogen concentrations were maintained at 10 µM N across all three nitrogen sources, in 

a constant 12:1 ratio of nitrogen to phosphorus.  Standard ESAW + f/2 medium ferric 

chloride concentration of 11 µM of was used. A 270 mL volume of media was added to 

each 1 L flask and buffered and titrated, with the exception of the controls, which 

remained without HEPES at the ambient media pH of 8.2. Flasks were then inoculated 

with 30 mL of inoculum that had been grow in ESAW + f/2 media enriched with nitrate 

(as NaNO3), ammonium (as NH4Cl), or urea (as CH4N2O) for 3+ days (at least 6 

generations) to be better conditioned to their respective treatment conditions. Each 
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experimental treatment was executed in triplicate, for a total of 30 samples per 

experiment. The experiment was also performed with non-concurrent triplicates.   

2.1.6 N:P and pH treatments 

 Modified ESAW salts with f/2 nutrients medium was divided into seven separate 

Nalgene containers and enriched with nitrate (NaNO3) and phosphate (as NH2PO4H2O) 

to yield N:P ratios of 1:1, 3:1, 6:1, 12:1, 15:1, 24;1 and 48:1. Nitrate and phosphate 

concentrations used are given in Table 2.1.6.  

   Table 1.1.6 Concentrations of nitrate and phosphate 
    in batch cultures of Heterosigma akashiwo. 

N:P Ratio NO3
- [µM] PO4

3- [µM] 
1:1 100 100 
3:1 100 33.2 
6:1 100 16.7 
12:1 100 8.33 
15:1 125 8.33 
24:1 200 8.33 
48:1 400 8.33 

 

 Nitrogen levels were adjusted to maintain biomass in all treatments, and to ensure 

any changes were due to N:P ratios rather than nitrogen shortage (an uncommon 

occurrence in coastal waters). The standard media ferric chloride concentration of 11 µM 

was used. A 125 mL volume of media was added to each 500 mL flask and buffered and 

titrated to a pH of 7.4. The controls, which remained without HEPES, contained 125 mL 

of ambient media at a pH of 8.2. Flasks were then inoculated with 25 mL of H. akashiwo 

513 inoculum that had been grown in ESAW + f/2 media enriched with 125 µM of nitrate 

and 8.33 µM phosphate (15N:1P) for 3+ days (at least 6 generations) to adjust to the 

treatment closest to Redfield’s ratio (16N:1P). Each experimental treatment was run in 
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triplicate, for a total of 42 samples per experiment. The experiment was also performed 

with non-concurrent triplicates.   

2.2 Experimentation 

2.2.1 Growth 

2.2.1.1 Daily measurements of cell density    

 Immediately following inoculation, all flasks were swirled to allow for a 

ubiquitous distribution of H. akashiwo cells, and approximately 1.5 mL was aseptically 

sub-cultured from each, using a serological pipette, into a 1.7 mL microcentrifuge tube. 

In preparation for cell counts, 0.5 mL of each sample was removed from the initial 

microcentrifuge tube, after being gently mixed with a pipette, and placed into a new 

microcentrifuge tube. This tube was subsequently loaded onto a C6 Flow Cytometer (BD 

AccuriTM) and 50 µL of sample was run through the flow cytometer. C6 Analysis 

Software (BD AccuriTM) allowed for gating and cell density measurements of H. 

akashiwo – through the use of quadrat lines applied to a histogram of measured 

chlorophyll a fluorescence versus particle size. Cell densities (given as number of cells 

per 50 µL) were converted to cells per millilitre of sample and recorded. This was 

performed for each triplicate of a given treatment, and averaged to attain daily growth 

values. The entire process was repeated once every 24 hours (± 2 hours) over the course 

of the iron & pH experiments, and once every 12 hours (± 2 hours) for the duration of 

nitrogen & pH and N:P & pH experiments.  

2.2.1.2 Determination of growth rates 
 
 Log transformed cell density measurements were plotted against time to establish 

the time of maximum rate of change of cells (the exponential growth phase). The slope of 
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the line during the exponential phase was used to calculate the growth rate using the 

following equation: 

𝜇 =
ln  (𝑁!𝑁!

)

𝑡! − 𝑡!
 

 

where 𝜇 is the specific growth rate (measured in divisions per day [d-1] and N1 and N2 are 

the averaged cell counts at t1 and t2 (measured in days) (Fu et al. 2008; Guillard, 1973).  

2.3 Cell assays 

2.3.1 Neutral lipid analysis: Nile red assay 

 The Nile red assay was used to measure the level of neutral lipids produced per H. 

akashiwo cell during growth experiments. Nile red (9-diethylamino-5H-

benzo[α]phenoxazine-5-one) selectively stains intracellular lipid droplets (neutral lipids), 

causing them to fluoresce (Greenspan et al., 1985). Fluorescence was then measured on a 

fluorescence spectrophotometer and used as a semi-quantitative estimate of neutral lipid 

production. The standard operating protocol (SOP) developed by Bjornsson (2009) was 

followed, with modifications outlined below. 

2.3.1.1 Nile red assay: algal sample preparation 

 All flasks were swirled to allow for a ubiquitous distribution of H. akashiwo cells, 

and approximately 1.5 mL was aseptically subcultured from each, using a serological 

pipette, into a 1.7 mL microcentrifuge tube. This was repeated once every 24-hours over 

the course of the growth experiments.  
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2.3.1.2 Nile red assay: modifications to SOP 

 Stock aliquots of the 5% (v/v) standard solution of chemically defined lipid 

concentrate (CDLC) (MPN: AK8993-0100, Akron Biotechnology, LLC.) were stored in 

the dark at -20°C. Experimental samples were diluted 1:5 in ESAW + f/2 in the 96-well 

deep well plate (DWP) (MPN: 82006-448, VWR®). A final sample volume of 200 µL 

was transferred from the 96-well DWP to a clear 96-well plate using a mechanical multi-

channel pipette. The outer wells were not used to avoid edge effect evident during 

preliminary tests. Plates were read on a Cary Eclipse Varian fluorescence 

spectrophotometer fitted with a multi-well plate attachment.  

2.3.2.3 Nile red assay: analysis 

 Raw fluorescence units (RFUs) of the acetone and sample control wells were 

subtracted from the corresponding nile red acetone solution and sample wells. Values 

were then standardized per cell and then normalized using the 5% (v/v) CDLC standard. 

Although this method does not indicate total amounts of neutral lipids per cell, it is able 

to demonstrate relative neutral lipid accumulation.  

2.3.2 Toxicity analysis: RTgill-W1 cytotoxicity assay 

2.3.2.1 Rainbow trout gill cell line maintenance 

 The Rainbow trout gill cell line (RTgill-W1) assay was used to determine the 

level of toxicity expressed by H. akashiwo cells grown under a given treatment. Rainbow 

trout (Onchorhunchus mykiss) gill cells – from a continuous cell line – were purchased 

from the American Type Culture Collection (ATCC) and maintained in the dark at 18oC. 

Cells were grown in sterile Leibovitz’s L-15 medium (MPN: 10-045-CV, Corning 

cellgro® Mediatech), supplemented with 10% (v/v) Fetal Bovine Serum (MPN: 1500-
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100, Seradigm) and 2% (v/v) antiobiotic/antimycotic (MPN: A5955, Sigma-Aldrich) 

solution to form L-15 complete. Gill cells were initially grown in sterile plug 25 cm2 

treated tissue culture flasks (MPN: 353108, BD Flacon®). Cells were observed under an 

Axiovert 100 TV (Zeiss) inverted microscope to determine the degree of cell confluence, 

according to Dayeh et al. (2003). Once gill cells had formed a confluent monolayer, they 

were aseptically transferred into larger 75 cm2 tissue culture flaks (BD Flacon® MPN: 

353136).   

2.3.2.2 Rainbow trout gill cell line harvesting 

 In preparation for the gill cell assay, confluent 75 cm2 flasks were harvested and 

concentrated. Cells were first exposed to 1.5 mL of 0.53 mM EDTA Versene solution 

(MPN: 17-711E, BioWhittaker® Reageants Lonza) for 1 minute, which was then 

aspirated off and replaced with 3 mL of Trypsin solution (0.25% in Hank’s balanced salt 

(HBS) solution) (MPN: 25-052-CI, Corning cellgro® Mediatech) for 4 minutes. Five 

millilitres of L-15 complete were added to the flasks, and cells were gently detached 

using a serological pipette. Cells were then collected in a sterile 15 mL centrifuge tube 

(MPN: 352196, Falcon®) and immediately centrifuged at 200xg for 4 minutes at ~12oC 

in a Beckman Coulter Avanti J-251 centrifuge. The supernatant was then aspirated from 

the tube, leaving ~0.5 mL of solution to avoid disputing the cell pellet. Cells were then 

resuspended in 7-10 mL of L-15 complete.  

2.3.2.3 RTgill-W1 assay preparation 

 In order to determine cell concentrations, 0.5 mL of cellular solution was 

transferred to a 1.7 mL microcentrifuge tube and counted using a Haemocytometer.  In 



 30 

order to run the bioassay, gill cells concentrations were adjusted to 2 x 106 cells mL-1 

with the addition of L-15 complete.  

Two hundred microliters of the density-adjusted gill cell solution was pipetted into a 

clear 96-well plate, with the exception of 3 interior wells (to serve as “no cell” controls) 

and all outer wells (to eliminate edge-effects) that were filled with 200 µL of L-15 

complete alone. The lidded 96-well plate was then allowed to incubate for 2-3 days in the 

original incubation conditions, until cells were deemed confluent.  

2.3.2.4 RTgill-W1 assay algal sample preparation 

 In order to collect algal samples for the assay, 45 mL of culture was sampled from 

each treatment flask, and place into a sterile 50 mL centrifuge tube (MPN: 352070, 

Falcon®). This was done twice for each culture, first when a given treatment entered late 

exponential growth phase, and then again once the cells entered early stationary growth 

phase. Samples were then spun down at 2000xg at 15oC for 5 minutes in a Beckman 

Coulter Avanti J-251 centrifuge. The majority of the supernatant was decanted from the 

pellet and placed in a sterile 50 mL Falcon tube and stored at -20 oC. Approximately 1mL 

of the supernatant was left in the original tube to allow for resuspension of the pellet. 

After cells were resuspended, they were transferred to a sterile 1.7 mL microcentrifuge 

tube and stored at -20 oC until further analysis.  

 While the gill cells were growing to confluence in 96-well plates, the frozen algal 

samples were thawed at room temperature, in order to lyse the cells. A total of two 

freeze-thaw cycles were performed to ensure complete cell lysis. Previous research has 

shown that Heterosigma toxicity in vitro requires both fractured cell wall and periplasmic 

components (Ling, 2006; Powers et al., 2012). Samples were centrifuged at 10,000xg for 
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3 minutes at 20oC in a bench top microcentrifuge. The majority of the supernatant was 

aspirated from the pellet and 1 mL of L-15 experimental (ex) was added. L-15ex 

contained the same nutrients, vitamins, and salts as L-15 complete, but was not amended 

with FBS or antibiotics. The pellet was then resuspended and diluted with more L-15ex 

to a concentration of 200,000 cells mL-1.  

2.3.2.5 RTgill-W1 assay 

 Procedures were followed as described by Dorantes-Aranda et al. (2011) and 

Dayeh et al. (2003). The 96-well microplate with a confluent monolayer of prepared 

RTgill-W1 cells was rinsed twice with 100 µL of L-15ex to remove any L-15 complete. 

The gill cells were then exposed to 200 µL of the previously prepared algal exposure 

solution, or a 3% hydrogen peroxide solution control (shown to elicit complete toxicity). 

The plate was then sealed with sterile Parafilm M®, lidded, and placed back into the 

incubation area (18oC in the dark) for a 24-hour exposure period. Following exposure, all 

wells were rinsed twice with 100 µL, and then exposed to a 100 µL solution of 5% (v/v) 

PrestoBlue™ (MPN: A-13262, Life Technologies) in L-15ex. PrestoBlue™ is a 

fluorescent dye that contains resazurin. Plates were again sealed with sterile Parafilm M®, 

lidded, and placed back into the incubation area (18oC in the dark) this time for a 2-hour 

exposure period.  

 Fluorescence readings were taken after a 2-hour incubation in the dark on a 

fluorescence spectrophotometer plate reader (Agilent Technologies, Santa Clara, CA). 

Metabolically active cells reduce resazurin to resofurin, which fluoresces (emission 590 

nm) when exposed to green light (excitation 540 nm). This fluorescence measurement 

represents gill cell viability in the presence of H. akashiwo. A lack of fluorescence, 
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relative to the positive control, can be used as indicator of toxicity. Raw fluorescence 

units (RFUs) were converted to gill cell viability in relation to controls using the 

following equation described by Dayeh et al. (2003): 

GC  Viability   % = (!"#.    !"#!!"  !"##  !"#$%"&)
  !"#$%&#  (!"#$%&'(  !"#$%&'"  !"#$%"&!!"  !"##  !"#$%"&)

     

2.4 Data Analysis 

  Two-way ANOVAs were used to detect main effects and interaction effects and 

post-hoc Tukey’s Tests were used to determine differences between groups. Principal 

component analysis and Spearman’s rank order correlation coefficient were used to 

assess correlation between dependent and independent variables across experiments.   

 Statistical analysis was performed using Microsoft Excel 14.3 (Microsoft, 

Redmond, Washington, USA), GraphPad PRISM® 6.0 (GraphPad Software, San Diego 

California USA), JMP 11.1 (SAS Institute Inc., Cary, NC, USA), and SPSS 21 (SPSS 

IBM, New York, USA).  
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CHAPTER 3: RESULTS 
 
3.1 Preliminary experimentation 
 
3.1.1 Determination of peak cell yield, neutral lipid accumulation, and toxicity 
 
 Maximal cell yield, neutral lipid accumulation, and toxicity data was selected for 

presentation in this thesis. Peak neutral lipid accumulation was found to occur during the 

transition between late exponential and stationary phase sampled (data not shown). 

Toxicity also peaked during this period of growth (Ling and Trick, 2010). 

 
3.1.2 Verification of experimental pH values  
 
 Preliminary experimentation allowed for minimal testing of pH during growth 

experiments, in an effort to maintain culture volume needed for bioassays.  Figure 3.1 

illustrates that cultures of Heterosigma akashiwo (isolate 513), buffered and titrated to 

pH levels of 7.4, 7.8, and 8.1, all held ± 0.11 pH units over a 21-day period. The pH of 

the culture that was left at the initial ambient media of 8.2 and not treated with HEPES 

buffer was allowed to fluctuate naturally over the course of the growth experiment. Over 

the first four days, the pH in the non-buffered treatments rose above 9.0 and then dropped 

back down to approximately 8.7 by day 7. The pH fluctuated around 8.7 until day 12 

when it dropped to 8.2 by day 16, where it remained for the remainder of the experiment.   
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Figure 3.1.2 The pH of acid/base titrated cultures of Heterosigma akashiwo 513 grown 
in ESAW + f/2 media with the addition of HEPES buffer at concentrations of 0 mM, 10 
mM, 15 mM and 20 mM over a 21-day period. 

 

3.2 Specific growth rates of Heterosigma akashiwo 513 

 Specific growth rates were measured to gauge the success of Heterosigma 

akashiwo under different nutrient and pH regimes possible by the year 2100. Specific 

growth rates of Heterosigma akashiwo 513 grown at 880 µM N and 24:1 N:P were not 

altered by pH (F=0.4965, df=3,8, p=0.6948; post-hoc Tukey’s test) but were influenced 

by iron concentration (F=107.3, df=3,8, p<0.0001; post-hoc Tukey’s test), with the 11 

µM FeCl3 treated cultures achieving a specific growth rate almost double that of those 

grown at 0.1µM FeCl3 (Figure 3.2 A). However, there was a significant effect of both pH 

(F=17.77, df=1,28, p<0.001; post-hoc Tukey’s test) and N:P (F=6.897, df=6,28, 

p<0.0001; post-hoc Tukey’s test) on the specific growth rate of H. akashiwo 513 grown 

at 100-400 µM N and 11 µM FeCl3 (Figure 3.2 B). The highest growth rates were 

attained at an N:P ratio of 12:1 and a pH of 7.4 (4.43 d-1, SD± 0.31, n=6), and the lowest 
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were grown at an N:P ratio of 48:1 and an initial pH of 8.2 (2.30 d-1, SD± 0.35, n=6) 

(Figure 3.2 B). When H. akashiwo 513 were grown at 10 µM N, 11 µM FeCl3 and 12:1 

N:P the pH did not significantly impact growth rates, but the form of nitrogen did 

(F=18.94, df=2,24, p<0.0001; post-hoc Tukey’s test), with nitrate yielding the highest 

specific growth rates across pH treatments (Figure 3.2 C).  



 36 

 

11
µM

0.1
µM

0

1

2

3

4

5

6

Iron Concentration

Sp
ec

ifc
 G

ro
w

th
 R

at
e 

(d
-1

) pHi 8.2
pH 8.1
pH 7.8
pH 7.4

a a
a a

b b b b

1:1 3:1 6:1 12
:1

15
:1

24
:1

48
:1

0

1

2

3

4

5

6

N:P Ratio

Sp
ec

ifc
 G

ro
w

th
 R

at
e 

(d
-1

) pHi 8.2
pH 7.4

a

abc ab

c

a ababc

bc

*

Nitr
ate

Ammoniu
m

Ure
a

0

1

2

3

4

5

6

Nitrogen Source

Sp
ec

ifc
 G

ro
w

th
 R

at
e 

(d
-1

) pHi 8.2
pH 8.1
pH 7.8
pH 7.4

a

  b                b

A

B

C

Figure 3.2 Specific growth rates of H. akashiwo grown in medium adjusted to a range of 
pH treatments (8.2 initially with no buffer; 8.1, 7.8 and 7.4), and (A) iron concentrations 
(11 µM and 0.1 µM), (B) nitrogen to phosphorus ratios (1:1, 3:1, 6:1, 12:1, 15:1, 24:1 and 
48:1), and (C) nitrogen sources (nitrate, ammonium, and urea). Values were determined 
by flow cytometer during the exponential growth phase, and indicate the average of 
duplicated triplicate samples (n=6), with error bars indicating one standard deviation and 
lettering/asterisks representing statistically significant differences between treatments.  
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3.3 Maximal cell yields of Heterosigma akashiwo 513 

 Maximal cell yields were measured as an indicator of Heterosigma akashiwo 

densities possible in the future ocean, which could indicate the extent of a given bloom 

event. These were measured along with specific growth rates, in order to better theorize 

the future occurrence and intensity of H. akashiwo bloom events. Maximal cell yields of 

H. akashiwo 513 grown at 880 µM N and 24:1 N:P were significantly impacted by pH 

(F=10.59, df=3,31, p<0.0001; 2-way ANOVA & post-hoc Tukey’s test) but were not 

influenced by iron concentration (F=1.656, df=1,31, p=0.2077; 2-way ANOVA & post-

hoc Tukey’s test), with the most acidified iron-rich cultures achieving the lowest 

maximal cell yield (159,584 cells mL-1, SD±5023, n=6), and the most alkaline iron-rich 

achieving the highest maximal cell yield (339,160 cells mL-1, SD± 11936, n=6) (Figure 

3.3 A). There was a significant effect of pH (F=218.1, df=1,40, p<0.001; post-hoc 

Tukey’s test), N:P (F=79.83, df=6,40, p<0.0001; post-hoc Tukey’s test), as well as an 

interaction effect of the two (F=39.61, df=6,40, p<0.001; post-hoc Tukey’s test) on the 

maximal cell yields of H. akashiwo grown at 100-400 µM N and 11 µM FeCl3 (Figure 

3.3 B). The highest cell yields were attained at an N:P ratio of 48:1 and an initial pH of 

8.2 (103,733 cells mL-1, SD± 9002, n=6), and the lowest were grown at an N:P ratio of 

12:1 and a pH of 7.4 (13,097 cells/mL, SD± 3308, n=6) (Figure 3.3 B). These maximum 

and minimum values were attained under the differing treatments, as were the maximum 

and minimum specific growth rates. When H. akashiwo were grown at 10 µM N, 11 µM 

FeCl3 and 12:1 N:P the main effects of pH (F=14.10, df=3,68, p<0.0001, post-hoc 

Tukey’s test) and nitrogen source (F=7.830, df=2,68, p=0.0009, post-hoc Tukey’s test) 

were significant. There was also a significant interaction effect (F=2.244, df=6,68, 
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p=0.0492, post-hoc Tukey’s test) between the main effects, with a trend of increasingly 

acidified treatments resulting in lower maximal cell yields under each nitrogen source 

tested (Figure 3.3 C).  
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Figure 3.3 Maximal cell yields of H. akashiwo grown in medium adjusted to a range of pH 
treatments (8.2 initially with no buffer; 8.1, 7.8 and 7.4), and (A) iron concentrations (11 
µM and 0.1 µM), (B) nitrogen to phosphorus ratios (1:1, 3:1, 6:1, 12:1, 15:1, 24:1 and 
48:1), and (C) nitrogen sources (nitrate, ammonium, and urea). Values were determined by 
flow cytometry during stationary growth phase, and indicate the average of duplicated 
triplicate samples (n=3), with error bars indicating one standard deviation and lettering 
representing statistically significant differences between treatments (with asterisks denoting 
significant differences between pH values within a given treatment). 
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3.4 Peak neutral lipid accumulation in Heterosigma akashiwo 513 

 Peak neutral lipid accumulation within Heterosigma akashiwo was measured as 

an indicator of changes to essential fatty acid composition possible in the future ocean, 

which could alter marine ecosystems, be it negatively or positively. They could 

negatively impact marine organisms if they are a component of the toxic/allelopathic 

mechanism. As shown in Figure 3.4 A, peak neutral lipid accumulation in Heterosigma 

akashiwo 513 grown at 880 µM N and 24:1 N:P was not significantly impacted by either 

pH or iron concentration (F=0.8520, df=3,40, p=0.4738; F=3.460, df=1,40, p=0.0702; 

post-hoc Tukey’s test), with all values less than 0.5%. The peak accumulation of neutral 

lipid increased in H. akashiwo 513 grown at 100-400 µM N and 11 µM FeCl3, with 

values ranging from 0.23% to 4.05% (Figure 3.4 B). The effects of pH and N:P, and the 

interaction of both factors (F=13.57, df=1,28, p=0.010; F=36.71, df=6,28, p<0.0001; 

F=5.068, df=6,28, p=0.0012; post-hoc Tukey’s test) significantly influenced peak neutral 

lipid accumulation in these cells, with the highest peak neutral lipid accumulations 

attained at N:P ratios of 24:1 and 48:1, indicative of P-limitation (Figure 3.4 B). When H. 

akashiwo 513 were grown at 10 µM N, 11 µM FeCl3 and 12:1 N:P the effects of pH and 

nitrogen source were not statistically significant (F=0.4511, df=3,14, p=0.7205; 

F=0.5888, df=2,14, p=0.5682; post-hoc Tukey’s test), with the greatest enhancement in 

neutral lipid accumulation shown in the most acidified culture grown with nitrate as the 

N-source (3.36%, SD±0.43, n=3) (Figure 3.4 C).  



 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Peak neutral lipid accumulation (as a percentage of the standard chemically 
defined lipid concentrate; CDLC) in H. akashiwo grown in medium adjusted to a range of pH 
treatments (8.2 initially with no buffer; 8.1, 7.8 and 7.4), and (A) iron concentrations (11 µM 
and 0.1 µM), (B) nitrogen to phosphorus ratios (1:1, 3:1, 6:1, 12:1, 15:1, 24:1 and 48:1), and 
(C) nitrogen sources (nitrate, ammonium, and urea). Values were determined by fluorescence 
spectrophotometry during the transition between exponential and stationary growth phase, 
and indicate the average of triplicate samples (n=3), with error bars indicating one standard 
deviation and lettering representing statistically significant differences between treatments 
(with asterisks denoting significant differences between pH values within a given treatment). 
 

11
µM

0.1
µM

0

1

2

3

4

5

Iron Concentraiton 

%
 N

eu
tr

al
 L

ip
id

 A
cc

um
ul

at
io

n 
(S

TD
 P

er
 C

el
l &

 R
el

at
iv

e 
to

 C
D

LC
)

pHi 8.2
pH 8.1
pH 7.8
pH 7.4

1:1 3:1 6:1 12
:1

15
:1

24
:1

48
:1

0

1

2

3

4

5

N:P Ratio

%
 N

eu
tr

al
 L

ip
id

 A
cc

um
ul

at
io

n 
(S

TD
 P

er
 C

el
l &

 R
el

at
iv

e 
to

 C
D

LC
)

pHi 8.2
pH 7.4

a

**

c

d

*

ab

Nitr
ate

Am
m

oniu
m

Ure
a

0

1

2

3

4

5

Nitrogen Source

%
 N

eu
tr

al
 L

ip
id

 A
cc

um
ul

at
io

n 
(S

TD
 P

er
 C

el
l &

 R
el

at
iv

e 
to

 C
D

LC
)

pHi 8.2
pH 8.1
pH 7.8
pH 7.4

A

B

C



 42 

3.5 Heterosigma akashiwo 513 toxicity 

 The toxic effect of Heterosigma akashiwo on Rainbow trout gill cell lines was 

measured as an indicator of ichthyotoxicity under possible future ocean nutrient and pH 

regimes, which could greatly impact natural finfish populations as well as aquaculture 

facilities.  As shown in Figures 3.4 A and B, Heterosigma akashiwo 513 toxicity from 

cells grown at 880 µM N (A), and 400-100 µM N (B) was above 87.7% toxicity under all 

iron concentrations, N:P ratios, and pH values tested, indicating that these cells were 

highly toxic. Toxicity was not significantly impacted by pH in either experiment, and was 

not impacted by iron concentration or N:P ratio (F=2.489, df=3,40, p=0.0742; F=1.444, 

df=1,28, p=0.2396; F=0.3192, df=1,40, p=0.5752; F=0.5088, df=6,28, p=0.7964; post-

hoc Tukey’s test). Again, toxicity was very high across every variable tested in 

experiment A and B, ranging from 87.7% to 97.7%. Toxicity was generally lower when 

H. akashiwo 513 was grown at 10 µM N, 11 µM FeCl3 and 12:1 N:P (Figure 3.5 C), 

ranging from 43.9% to 76.4%. The effect of nitrogen source on peak toxicity measured in 

H. akashiwo 513 was statistically significant (F=10.14, df=2,60, p=0.0002; post-hoc 

Tukey’s test), with ammonium resulting in lower toxicity than nitrate or urea (Figure 3.5 

C).  
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 Figure 3.5 Peak toxicity in H. akashiwo grown in medium adjusted to a range of pH 
treatments (8.2 initially with no buffer; 8.1, 7.8 and 7.4), and (A) iron concentrations (11 µM 
and 0.1 µM), (B) nitrogen to phosphorus ratios (1:1, 3:1, 6:1, 12:1, 15:1, 24:1 and 48:1), and 
(C) nitrogen sources (nitrate, ammonium, and urea). Values were determined by fluorescence 
spectrophotometry during the transition between exponential and stationary growth phase, 
and indicate the average of triplicate samples (n=6), with error bars indicating one standard 
deviation and lettering representing statistically significant differences between treatments. 
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3.6 Correlations between nutrients, pH and physiological responses 
 
 In order to gain a better understanding of the relationship between nutrient 

concentrations (nitrogen and phosphorus) and pH, and growth rates, cell yields, peak 

neutral lipid content, and peak toxicity in Heterosigma akashiwo, correlations were first 

examined using a principal component analysis (Figure 3.6). The PCA was used to 

transform multidimensional data (many variables and interactions) to 2-D data, while 

retaining the majority of the data story. Figure 3.6 A shows data that was used to identify 

the two-principal components. Figure 3.6 B gives a clear picture of which variables are 

related, and the nature of the relationship. Toxicity appears to be negatively correlated 

with neutral lipid production (Figure 3.6 B). Macronutrient concentrations and cell yield 

seem to be positively correlated with toxicity, and pH does not appear to bear strong 

relationships with any other variables (Figure 3.6 B).  

 From the apparent relationships shown above, Spearman’s rank correlation 

coefficient for non-parametric, non-linear variables was then utilized to ascribe values to 

these relationships (Table 3.6). As expected, the strongest relationships existed between 

macronutrient concentrations and cell yields (N: ρ=0.9391, p<0.0001; P: ρ=0.8114, 

p<0.0001; Table 3.6). There were also strong relationships between macronutrient 

concentrations and both neutral lipids (N: ρ= -0.6761, p<0.0001; P: ρ= -0.7900, 

p<0.0001) and toxicity ((N: ρ=0.7125, p<0.0001; P: ρ=0.7116, p<0.0001; Table 3.6).  
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Figure 3.6 Principal component analysis of the correlations between independent (iron, 
nitrogen, and phosphorus concentrations and pH) and dependent variables (growth rate, 
cell yields, neutral lipid accumulation, and toxicity) tested on Heterosigma akashiwo 513. 
Two components were used to map correlations (eigenvalues > 1 are retained), 
accounting for a cumulative 62.8% of the variance. The score plot (A) is a standard 
interpretive aid showing raw component data, while the loading plot (B) shows 
normalized data.  
 

A B 
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Table 3.6 Spearman’s rank correlation coefficients of dependent variables (growth rate, 
cell yield, neutral lipid accumulation, and toxicity) by independent (iron, nitrogen, and 
phosphorus concentrations, and pH) and dependent variables. Asterisks denote 
statistically significant correlation coefficients. Spearmans’s ρ values are depicted 
visually in the last column.  

Variable by)Variable Spearman)ρ P)Value
Growth'Rate [Iron] 0.5586 0.0006*
Growth'Rate [Nitrogen] 80.1848 0.2954
Growth'Rate [Phosphorus] 80.0090 0.9596
Growth'Rate pH 80.1061 0.5502
Cell'Yield [Iron] 80.4652 0.0056*
Cell'Yield [Nitrogen] 0.9391 <.0001*
Cell'Yield [Phosphorus] 0.8114 <.0001*
Cell'Yield pH 0.2049 0.245
Cell'Yield Growth'Rate 80.1870 0.2897
%'Neutral'Lipids [Iron] 0.5212 0.0016*
%'Neutral'Lipids [Nitrogen] 80.6761 <.0001*
%'Neutral'Lipids [Phosphorus] 80.7900 <.0001*
%'Neutral'Lipids pH 0.0063 0.9716
%'Neutral'Lipids Growth'Rate 0.1352 0.446
%'Neutral'Lipids Cell'Yield 80.6811 <.0001*
%'Toxicity [Iron] 80.2747 0.1159
%'Toxicity [Nitrogen] 0.7125 <.0001*
%'Toxicity [Phosphorus] 0.7116 <.0001*
%'Toxicity pH 0.0824 0.6432
%'Toxicity Growth'Rate 0.1812 0.3052
%'Toxicity Cell'Yield 0.6843 <.0001*
%'Toxicity %'Neutral'Lipids 80.5271 0.0014*

81.0' 80.5' 0.0' 0.5' 1.0'

Sperman's)correla5on)coefficient)
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3.7 Nitrogen, phosphorus, neutral lipids and toxicity in H. akashiwo 513 

 Although the positive relationship between macronutrient concentration and cell 

yields was expected, the negative correlation with neutral lipids and the positive 

relationship with toxicity were not preconceived. In an attempt to gain a better 

understanding of the nature of these relationships, nitrogen and phosphorus 

concentrations were plotted separately against peak neutral lipid accumulation and peak 

toxicity in Figure 3.7. Figure 3.7 A indicates that peak neutral lipid accumulation is 

higher in more alkaline waters, between 100 and 400 µM N, with a similar less extreme 

trend exhibited at pH 7.4. Figure 3.7 B shows that concentrations of phosphorus lower 

than 1 µM result in the highest peak neutral lipid accumulation, while at pH 8.2 this value 

shifts to somewhere between 1 and 10 µM P. In terms of peak toxicity, there seems to be 

a rapid increase between 0 and 100 µM N where it remains above 90% toxicity for all 

other concentrations tested (Figure 3.7 C). Phosphorus presented a parallel trend between 

0 and 20 µM, with a very slight dip in toxicity possible between 20 and 100 µM P (Figure 

3.7 D).  
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3.8 Nitrogen concentrations and Heterosigma akashiwo 513 

 In order to better assess the impact of nitrogen concentration on H. akashiwo 513 

physiology, experimental treatments grown under identical iron concentrations, N:P 

ratios, nitrogen sources, and pH values with different concentrations of nitrogen were 

selected across all experiments and compared against each other. Suitable treatments 

were grown under 11 µM FeCl3, with nitrate as the N-source, at pH values of 7.4 and 8.2, 

with an N:P ratio of 12:1 or 24:1, with 10/100 µM N or 200/880 µM N respectively.  

3.8.1 Specific growth rates 

 Specific growth rates were measured across nitrogen concentrations of 10 µM and 

100 µM (Figure 3.8.1 A), as well as 200 µM and 880 µM (Figure 3.8.1 B), to gauge how 

Heterosigma akashiwo persistence could be altered under nutrient and pH regimes 

possible for the future ocean. Specific growth rates of Heterosigma akashiwo 513 grown 

at 10 µM/100 µM N and 12:1 N:P were not impacted by pH or nitrogen concentration 

(F=0.9706, df=1,8, p=0.5053; F=2.944, df=1,8, p=0.1245; post-hoc Tukey’s test; Figure 

3.8.1 A), however these were influenced by nitrogen concentration (F=17.60, df=1,6, 

p=0.0057; post-hoc Tukey’s test) when grown at 24:1 N:P under 200 µM/880 µM N 

(Figure 3.8.1 B). Specific growth rates appear to decrease with increasing nitrogen 

concentration (Figure 3.8.1 B). 
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Figure 3.8.1 Specific growth rates of H. akashiwo grown in medium 
adjusted to a range of pH treatments (8.2 initially with no buffer and 7.4), 
and nitrogen concentrations of (A) 10 µM and 100 µM N (12:1 N:P) (B) 200 
µM and 880 µM N (24:1 N:P). Values were determined by flow cytometry 
during the exponential growth phase, and indicate the average of triplicate 
samples (n=3), with error bars indicating one standard deviation and letters 
indicating statistically significant differences between groups (α=0.05). 
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3.8.2 Maximal cell yields  

 Maximal cell yields were measured across nitrogen concentrations of 10 µM and 

100 µM (Figure 3.8.2 A), as well as 200 µM and 880 µM (Figure 3.8.2 B), in an effort to 

gauge how Heterosigma akashiwo persistence could be altered under high nutrient and 

low pH regimes possible for the future ocean. Cell yields of Heterosigma akashiwo 513 

grown at 10µM/100µM N and 12:1 N:P were significantly impacted by pH and nitrogen 

concentration (F=138.7, df=1,15, p<0.0001; F=249.2, df=1,15, p<0.0001; post-hoc 

Tukey’s test; Figure 3.8.2. A). Specific growth rates were also significantly influenced by 

pH and nitrogen concentration (F=769.8, df=1,9, p<0.0001; F=466.2, df=1.9, p<0.0001; 

post-hoc Tukey’s test) when grown at 24:1 N:P under 200 µM/880 µM N (Figure 3.8.2 

B). Maximal cell yields decrease with pH and increase with increasing nitrogen 

concentration (Figure 3.8.2). 
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Figure 3.8.2 Maximal cell yields of H. akashiwo grown in medium 
adjusted to two different pH treatments (8.2 initially with no buffer and 
7.4), and nitrogen concentrations of (A) 10 µM and 100 µM N (12:1 N:P) 
(B) 200 µM and 880 µM N (24:1 N:P). Values were determined by flow 
cytometry during stationary growth phase, and indicate the average of 
triplicate samples (n=3), with error bars indicating one standard deviation 
and letters indicating statistically significant differences between groups 
(α=0.05). 
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3.8.3 Peak neutral lipid accumulation 
 
 Neutral lipid accumulation within Heterosigma akashiwo was measured across 

nitrogen concentrations to indicate changes in essential fatty acid composition possible in 

the future ocean, which could alter marine ecosystem food chains. Again, although they 

have a positive role in the development of the food chain, these compounds could also 

negatively impact marine organisms if they function as toxic/allelopathic agents. Neutral 

lipid accumulation in H. akashiwo 513 grown at 10/100 µM N and 12:1 N:P were not 

significantly impacted by either pH or nitrogen concentrations (F=2.595, df=1,6, 

p=0.158; F=5.392, df=1,6, p=0.0592; post-hoc Tukey’s test; Figure 3.8.3 A), with values 

ranging from 1.01% to 3.36% (SD ±0.12; SD ±0.43, n=3). This was not the case for H. 

akashiwo 513 grown at the higher nitrogen concentrations (200 µM/880 µM N at 24:1 

N:P), which were significantly impacted by pH, nitrogen concentration, as well as the 

interaction of the two (F=16.78, df=1,14, p=0.0011; F=184.6, df=1,14, p<0.0001; 

F=28.92, df=1,14, p<0.0001; post-hoc Tukey’s test) and ranged from 0.13% to 4.05% 

(SD ±0.06; SD ±0.43, n=3; Figure 3.8.3 B). Decreased nitrogen concentration resulted in 

increased neutral lipid accumulation in this experiment, which was most pronounced in 

the cultures at pH 8.2 (Figure 3.8.3 B).  
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Figure 3.8.3 Peak neutral lipid accumulation (as a percentage of the 
standard chemically defined lipid concentrate; CDLC) in H. akashiwo 
grown in medium adjusted to two different pH treatments (8.2 initially 
with no buffer and 7.4), and nitrogen concentrations of (A) 10 µM and 
100 µM N (12:1 N:P) (B) 200 µM and 880 µM N (24:1 N:P). Values 
were determined by fluorescence spectrophotometry during the 
transition between exponential and stationary growth phase, and indicate 
the average of triplicate samples (n=3), with error bars indicating one 
standard deviation and letters indicating statistically significant 
differences between groups (α=0.05). 
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3.8.4 Toxicity  

 The toxic effect of H. akashiwo grown on different nitrogen concentrations was 

measured as an indicator of ichthyotoxicity under possible future ocean nutrient-rich and 

low pH regimes, which could greatly impact natural finfish populations as well as 

aquaculture facilities.  As shown in Figures 3.8.4 A and B, peak H. akashiwo 513 toxicity 

from cells grown at 10-100 µM N (A), and 200-880 µM N (B) was above 78.7% toxicity 

under all iron concentrations, N:P ratios, and pH values tested, indicating that these cells 

were highly toxic. However, after further examination, the only statistically significant 

differences in toxicity lie between H. akashiwo grown at 10 µM and 100 µM N (F=9.370, 

df=1,14, p=0.0085; Figure 3.8.4 A). This could indicate that nitrogen concentrations must 

reach a certain threshold (lower than 10 µM N in this case) before cells become toxic to 

the Rainbow trout gill cells, and then again before cells become highly toxic to the gill 

cells.  Toxicity was not significantly impacted by pH in either experiment, and remained 

highly toxic across the higher nitrogen concentrations of 200 µM and 880 µM N 

(F=0.3012, df=1,14, p=0.5981; F=0.007168, df=1,14, p=0.9337; F=1.837, df=1,14, 

p=0.1968; post-hoc Tukey’s test; Figure 3.8.4).  
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Figure 3.8.4 Peak toxicity in H. akashiwo grown in medium adjusted to a 
pH of 8.2 (initially with no buffer) and 7.4, and nitrogen concentrations of 
(A) 10 µM and 100 µM N (12:1 N:P) (B) 200 µM and 880 µM N (24:1 
N:P). Values were determined by fluorescence spectrophotometry during 
the transition between exponential and stationary growth phase, and 
indicate the average of triplicate samples (n=3), with error bars indicating 
one standard deviation and letters indicating statistically significant 
differences between groups (α=0.05). 
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CHAPTER 4: DISCUSSION 
 

4.1 Future Heterosigma akashiwo bloom formation 
 
 The first aim of this study was to characterize the growth of H. akashiwo cultured 

under various nutrient and pH regimes possible in the future ocean. This information can 

be used to help predict the frequency and intensity of potentially harmful blooms of H. 

akashiwo in the future. It was initially predicted that H. akashiwo would be able to 

maintain their presence in the future, and continue to form blooms in coastal waters.  

 
4.1.1 Specific growth rates 
 
 In this study, it was shown that the highest specific growth rates were achieved 

under iron-rich treatments (11 µM FeCl3), with nitrate as the source of nitrogen, at an N:P 

ratio of 12:1 and low nitrogen concentration (100 µM N) (Figure 3.2B). Specific growth 

rates were impeded at low iron concentrations (0.1 µM FeCl3), with ammonium or urea 

as the nitrogen source, and at an N:P ratio of 48:1 (Figure 3.2). These trends can be 

explained by iron requirements for photosynthesis, nitrogen usage, as well as balanced 

versus unbalanced growth, which will be discussed further on in this section (Raven, 

1988). Specific growth rates also declined with increasing nitrogen/phosphorus 

concentrations, which was not expected (Figure 3.2B). Even though the growth rates 

were slower in these cases, they remained above 2 divisions per day (except in the case of 

low iron), indicating that they would still proliferate (Figure 3.2). Average maximum in 

situ growth rates for phytoplankton were found to be 3.0-3.6 divisions per day (diel-

adjusted) and laboratory culture average maximum growth rates are generally less than 3 

divisions per day (Furnas, 1990).  
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 Iron was also shown to exert a large control on specific growth rates, which was 

expected due to its classification as a micronutrient (Figure 3.2A). Cellular iron 

requirements are significantly higher than concentrations typically recorded in the surface 

ocean (concentration factor of ca. 62,000 within autotrophic phytoplankton versus ocean 

waters) (Twining et al., 2004). Iron enables cellular use of inorganic nitrogen in the form 

of nitrate, as it is an essential component of nitrate/nitrite reductase (Raven, 1988; Wells 

et al., 1995). A lack of iron can therefore co-limit nitrogen and cause lower growth rates 

(Sunda and Huntsman, 1995), which the results showed (Figure 3.2A). Continued 

acidification of coastal waters can increase the bioavailability of iron, which would 

increase specific growth rates of phytoplankton (Breitbarth et al., 2009). 

 It was interesting to note that nitrate promoted a higher growth rate than 

ammonium – the more readily useable form of nitrogen (Figure 3.2C). Previous work 

conducted by Herndon and Cochlan (2007) found that H. akashiwo grew faster on 

ammonium and urea compared to nitrate. It should be noted that it was a different isolate 

of H. akashiwo (CCMP 1912). Other factors such as temperature, and nitrogen 

concentration make comparisons ploblematic as well (Herndon and Cochlan, 2007; Miki, 

1983 as cited by Okaichi, 2003). For example, a study by Miki (1983) found that 

temperature influenced whether phytoplankton grew faster with nitrate (>17 °C) or 

ammonium (<17 °C) as the nitrogen source. In a warmer future ocean, nitrate could be 

the preferred N-source for H. akashiwo.   

 The results of the N:P manipulation experiment suggest that heavy nitrogen 

inputs, which could occur as a result of anthropogenic coastal nutrient loadings, into the 

system can hamper growth rates (Figure 3.2B). This could be explained by excess 
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nitrogen fueling cell growth, but the proportionate lack of P limiting growth – unbalanced 

growth. When we examine resultant cell yields under the same treatment, however, they 

are the highest of any N:P ratio tested (Figure 3.3B). This points to nitrogen promoting 

high cell yields that are undergoing balanced growth until there is inadequate carbon to 

support such a high cell yield.   

 It should also be noted that because Heterosigma akashiwo lack a carbon 

concentrating mechanism (CCM), carbon-limitation is possible. Some toxic algal species 

have evolved CCMs that allow algae to uptake bicarbonate (HCO3
-) otherwise, like H. 

akashiwo, they rely solely upon dissolved carbon dioxide uptake (Nimer et al. 1997). 

Bicarbonate is the much more abundant form of dissolved carbon in the ocean accounting 

for 90%, while less than 1% remains as dissolved carbon dioxide (Doney et al., 2009). 

Carbon-limitation due to high biomasses attained through increases in nutrient loadings 

or ocean acidification increasing bioavailability of micronutrients could be possible in 

future waters. Other algal species that have this carbon concentrating mechanism could 

possibly outcompete H. akashiwo in this scenario, albeit in future surface waters with 

higher CO2(aq) the CCM would have a diminished importance.  

 
4.1.2 Maximal cell yields 
 
 The other component of H. akashiwo growth examined was maximal cell yield, or 

peak biomass. The finding that biomass was highest under high nutrient conditions (iron, 

nitrogen and phosphorus) at high N:P ratios (as discussed above) (Figure 3.3) can be 

explained by the balanced growth model. Increasing cell yields with increased 

concentrations of iron, nitrogen, and phosphorus were expected, as the lack of any of 

these nutrients can be extremely limiting to growth (Figure 3.3). This link between algal 
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blooms formation and high nutrient concentration has been clearly established (Schindler, 

1974; Anderson et al., 2002; Glibert and Burkholder, 2006). There was also an interesting 

trend of decreased cell yields across all three nitrogen sources, as pH decreased, in the 

low nitrogen experiment (Figure 3.3C). This could be caused by cells experiencing N-

limitation earlier under more acidic conditions that are more carbon-rich, and able to fuel 

faster rates of cell division. As such, more acidic open ocean waters that are N-limited 

could see slight drops in overall biomass into the future.  

 In terms of N:P ratios, higher amounts of N promoted greater cell yields (Figure 

3.3B). Again, this is logical due to the abundance of N to fuel growth. These cultures 

eventually suffered P-limitation, which could have been delayed due to high cellular 

reserves of P compared to N (Harrison et al., 1990). In situ N:P ratios vary relatively 

slowly, and large changes in nutrient inputs are required to shift the N:P ratio in coastal 

environments (Davidson et al., 2012). Departures from Redfield’s ratio have not been 

classed as a defining characteristic of bloom formation in natural environments 

(Davidson et al., 2012).   

 Although nitrogen source did affect growth rates, it was not found to significantly 

affect cell yields (Figure 3.2C; 3.3C). This can be explained by the overall nitrogen 

concentration being the same across the different nitrogen source treatments. They may 

utilize one source faster than others, but in the end they will attain the same cell yield. 

Future waters with the same level of fertilizer inputs as today, with more of them being 

urea-based, may grow more slowly but will still be able to attain similar maximal 

biomasses. This would impact the speed at which the bloom appears, and preventative 
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measures (such as the relocation of aquacultural pens) could be taken with these slower 

growing blooms.   

 Cell yields were found to be almost inversely proportional to growth rates (Figure 

3.6) in most cases. This could be due to carbon-limitation prematurely impeding growth 

in balanced, nutrient-replete cultures. Insufficient carbon dioxide, a necessary reactant for 

photosynthesis, would prevent cells from attaining higher cell yields that would normally 

be possible under the same N/P/Fe concentrations in the presence of dissolved carbon. 

 The overall finding regarding growth was that no modelled parameter negatively 

influenced growth to the extent that H. akashiwo would not be present in future coastal 

waters (Figure 3.3). A natural bloom population density of 1,000,000 cells mL-1 has been 

found to cause a very visible colouration of surface waters (Trainer, 2012). None of the 

batch cultures in this study reached similarly high bloom densities, which is considered 

one limitation of laboratory batch culture experiments, unable to perfectly mimic natural 

conditions. Similar experiments performed in situ, with a constant renewal of nutrients 

(through coastal loadings, upwelling, H. akashiwo movement in the water column, etc.) 

could very well attain densities higher than 1,000,000 cells mL-1.  

 Species dynamics and community structure could also allow for the proliferation 

of H. akashiwo in the future ocean. The growth of other co-occurring species – like the 

dinoflagellate Prorocentrum minimum – has been shown to be negatively impacted by 

more acidic, warmer conditions, which was not the case with H. akashiwo that 

experienced increased growth under the same conditions (Fu et al., 2008). Population 

reductions in co-occurring species could reduce pressure for resources (light, nutrients, 

etc.) and further enhance the success of H. akashiwo. Despite any limitations of this 
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study, it is fair to predict Heterosigma akashiwo will have a continued presence in future 

ocean waters.   

4.2 Impacts of Heterosigma akashiwo in the future ocean  

 Since it is likely that H. akashiwo will retain the ability to form blooms in the 

future, it is important to determine the nature of these blooms, in terms of their effect on 

the surrounding marine community. H. akashiwo could have a positive effect, via an 

increased production of neutral lipids (EFAs) that can accumulate under certain 

environmental conditions. The effect could also be negative if blooms become 

increasingly toxic to marine life through allelopathy or ichtyotoxicity (Ikawa, 2004). 

These toxic agents have been labelled as PUFAs in Fibrocapsa japonica, another 

member of the class Raphidophycaea (Pezzolessi, 2010). By monitoring neutral lipid 

accumulation in tandem with toxicity, we gain a better idea of whether this is also the 

case for H. akashiwo.  

4.2.1 Neutral lipid accumulation in Heterosigma akashiwo 
  
 Results from this study showed that peak neutral lipid accumulation was not 

significantly affected by iron concentration or pH (Figure 3.4A). This can be explained 

by a high nitrogen concentration (880 µM), later found to have a dominant control on 

neutral lipid production, which could have masked any significant differences caused by 

iron availability or pH.   

 The highest amounts of neutral lipid accumulation occurred in the most alkaline, 

P-limited cultures and the lowest accumulations occurred in the most acidic, N-limited 

cultures (Figure 3.4B). This lower neutral lipid accumulation at a lower pH could be 

attributable to lower cellular P requirements, which have been documented to occur 
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under lower pH conditions in H. akashiwo (Fu et al., 2008). The fact that neutral lipid 

accumulation decreased with pH is concerning, as this could translate to less EFAs 

available to sustain marine food chains.  

 Nitrogen source was not found to significantly impact neutral lipid accumulation 

(Figure 3.4C). The key finding with respect to neutral lipid accumulation was the fact that 

it appears to be primarily governed by nitrogen/phosphorus concentrations. When 

nitrogen concentrations were examined across experiments, in treatments with other 

experimental variables being equal, it became apparent that lower nitrogen concentrations 

corresponded to higher accumulations of neutral lipids (Figure 3.8.3). A drastic decline in 

neutral lipid production was also evident with increasing concentration of phosphorus 

(Figure 3.7B).  

 My suggested reasoning is that high nutrient cultures experienced dissolved 

inorganic carbon (DIC)-limitation prior to N, P, or Fe-limitation and would not have 

accumulated carbon-rich energy stores in the form of TAGs, or neutral lipids, as they 

were undergoing balanced growth. This will be expanded upon in more detail in section 

4.3. 

4.2.2.1 Implications of altered neutral lipid accumulation  

 The implications of altered nutrient levels and pH within marine ecosystems are 

that H. akashiwo could be a less nutritious food source for higher trophic levels under 

increasingly eutrophic/acidic conditions, as they have been shown to produce less neutral 

lipids or EFAs (Figure 3.8.3). 

 The algal biodiesel industry could also be impacted by these findings. It seems as 

though adding less N to the system increases neutral lipid accumulation (a high-value 
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source of energy). Heterosigma akashiwo grown at low N (10 µM), as nitrate, 

accumulated nearly twice as many neutral lipids under the most acidified treatment (pH 

7.4) (Figure 3.4C). This could mean that much less N would need to be added into the 

system to attain the same neutral lipid yields, so long as the culture was acidified (a cost-

effective and simple adjustment).  

4.2.2 Heterosigma akashiwo toxicity 

 An initial examination of toxicity data reveals that almost every treatment applied 

elicited a very strong toxic response, shown by gill cell death following a 24-hour 

exposure period (Figure 3.5). In order to investigate toxicity results in this study, it is 

important to understand that in nature blooms of H. akashiwo are variably toxic. Within 

this section, treatments that were found to elicit a variable toxic response will be 

examined, followed by strong correlations between variables tested/measured and 

toxicity, to determine what the toxic compound could be, and when H. akashiwo HABs 

are most likely to be toxic.  

4.2.2.1 Heterosigma akashiwo: variable toxicity 
 
 The lowest peak toxicity was exerted by H. akashiwo grown with ammonium as 

the nitrogen source (Figure 3.5C). This is a particularly interesting finding, as H. 

akashiwo are toxic to fish, which excrete large amounts of ammonia. This leads to the 

idea of a possible interaction between finfish defences, and the ichthyotoxic H. akashiwo. 

This finding has possible implications for the aquaculture industry, in that the addition of 

ammonium to areas of high-density netted fish could potentially prevent the induction of 

toxicity in H. akashiwo.  

 
 



 65 

4.2.2.2 Heterosigma akashiwo: the toxic compound 
 
 The toxic component of H. akashiwo has yet to be determined. There exist two 

streams of thought; that it is a brevetoxin-like compound, or a PUFA. Other members of 

the algal class Raphidophyceae (Chattonella and Fibrocapsa) have been examined, and 

were found to produce toxic brevetoxins in the case of certain Chattonella spp., and toxic 

PUFAs in the case of Fibrocapsa (Pezzolesi et al., 2010; Haque & Onoue, 2002). By 

examining the variable accumulation of neutral lipids in H. akashiwo alongside its 

variable toxicity, a case could be made if there was a positive correlation, for toxic 

PUFAs being the mechanism of ichthyotoxicity.   

 Since the results showed a negative correlation between peak neutral lipid 

accumulation and peak toxicity, this could point to the toxic component of H. akashiwo 

being a brevetoxin-like compound rather than a PUFA (Figure 3.6B & Table 3.6). It is 

possible that the toxic component is a metabolic derivative of EFAs, rather than the 

PUFA itself, and was not measured in these experiments. 

 Another explanation would be that a brevetoxin-like compound is being produced 

by H. akashiwo. A recent study examining toxicity within the dinoflagellate Karenia 

brevis found that brevetoxin production, and ensuing toxicity, increased dramatically 

during periods of nitrate and phosphate limitation (Hardison et al. 2013). This is 

inconsistent with the toxicity results from this study, which found increasing toxicity as 

concentrations of nitrate and phosphate reduced (Figures 3.7C/D). From this, it seems 

questionable that H. akashiwo are producing a brevetoxin-like compound, similar to 

Chattonella species (Haque & Onoue, 2002).  
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 An alternate theory is that the toxic compound is more similar in structure to that 

of a karlotoxin than a brevetoxin. Karlotoxins are polar lipids, which were not measured 

during this study. They exert haemolytic, cytotoxic, and ichthyotoxic effects on 

surrounding marine life (Deeds et al., 2002).  

4.3 N/P concentration: a regulator of H. akashiwo physiology 

 Cells grown under high concentrations of nitrogen/phosphorus had lower specific 

growth rates and attained higher cell yields (Figures 3.8.1 & 3.8.2). If we recall 

Redfield’s ratio of 106C:16N:1P, these cells would undergo dissolved inorganic carbon 

(DIC) limitation prior to nitrogen/phosphorus-limitation. H. akashiwo have been found to 

fully utilize 100 µM N before DIC-limitation occurs (Cochlan, 2013). Carbon-limitation 

would prevent the accumulation of neutral lipids during the transition period between 

exponential and stationary growth phase. Cells could, however, be producing the carbon-

rich brevetoxin (C49H70O13) under balanced growth with high nutrient conditions, while 

maintaining a low level of accumulated neutral lipids. This suggests that a brevetoxin is a 

natural component of H. akashiwo. Toxicity was greater than 88% across all experiments 

with concentrations of nitrogen higher than 100 µM N, while neutral lipid accumulation 

increased with lower concentrations of nitrogen (Figures 3.8.4B & 3.8.3B). The 

experiment with the lowest concentration of nitrogen/phosphorus, generated some of the 

highest specific growth rates and lowest cell yields (Figures 3.8.1A & 3.8.2A). These 

cells had significantly lower toxicity, and high neutral lipid accumulation (Figures 3.8.4A 

& 3.8.3A). When cells experience unbalanced growth, due to nutrient-limitation, they 

accumulate higher amounts of neutral lipids, since they are still receiving reactants 

necessary for photosynthesis. Cells store this carbon as neutral lipids within the 
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cytoplasm. The least toxic of the treatments within this low nitrogen experiment had 

ammonium as the N-source (Figure 3.4C). Since H. akashiwo readily uptake ammonium 

in this nitrogen-source experiment, but require multiple enzymatic processes to convert 

nitrate or urea into a useable form, this could account for the differential toxicity and 

neutral lipid production. In all pH treatments but 7.4, ammonium-grown cells 

accumulated a higher amount of neutral lipids, and exhibited lower toxicity than nitrate or 

urea (Figures 3.3C & 3.4C). I propose that N was used at a faster rate when provided as 

ammonium, and thus, these cultures became nutrient-limited well before the others.  

 In summary, nitrogen and phosphorus concentrations were found to be a major 

control of specific growth rates, cell yields, neutral lipid accumulation, and toxicity in H. 

akashiwo under iron-replete conditions. Unbalanced growth due to N/P-limitation 

resulted in the accumulation of neutral lipids and lower toxicity. Cell undergoing 

balanced growth, interrupted by C-limitation, did not have a chance to accumulate neutral 

lipids and toxicity was higher. This points to the notion that the toxin is a natural 

component of H. akashiwo undergoing balanced growth. 

4.4 Heterosigma akashiwo HABs in the future ocean 
 
 In the future ocean we expect to see higher amounts of nutrients due to 

anthropogenic nutrient-loadings and lower pH attributable to increased carbon dioxide 

emissions (Anderson et al., 2002; Royal Society, 2005; Doney et al., 2009; Hallegraeff, 

2010; Zeebe et al., 2012). Based on the results of this study, these conditions could cause 

slower growth rates, yet higher cell yields of H. akashiwo. Cell densities over 1,000,000 

cells mL-1 constitute a visibly dense algal bloom for this species. This points to a 

continued likelihood of N/P fuelled bloom events. The other important factor to examine 
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is the variable toxicity of H. akashiwo, as these bloom events can be toxic to marine life. 

The results of this study suggest nearly complete toxicity at concentrations of nitrogen 

higher than 100 µM and phosphorus greater than 8.3 µM (Figures 3.7C/D) that could 

very well be the case in a eutrophic coastal area of the ocean. This could mean almost 

exclusively toxic blooms of H. akashiwo in future eutrophic coastal ocean waters. Based 

on my proposed model of physiology and toxicity at high nutrient concentrations, I would 

expect to see more H. akashiwo toxic blooms that would be most toxic once they 

experience DIC-limitation, due to localised drawdown of carbon during a natural bloom 

event. More acidic waters could provide more DIC initially, however this would merely 

delay the inevitable limitation, due to a lack of a carbon concentrating mechanism within 

H. akashiwo (Nimer et al. 1997). 

4.5 Implications of future HAB presence  
 
 The future ocean environment would be a suitable location for H. akashiwo, 

possibly exerting dominance over co-occurring HAB species. Not only do the cells grow 

exceptionally well but lower rates of EFAs may restrict their consumption by primary 

consumers. This study also points to H. akashiwo becoming increasingly toxic, with a 

high potential to cause devastating fish kills within areas with aquaculture operations. 

Industry should pair with government to create strong legislation governing allowable 

nutrient inputs. Excessive use of synthetic-N fertilizers should be reconsidered. If nothing 

is done to manage the problem, we will continue to see a loss of fish landing revenue 

within coastal waters, and other negative effects on coastal communities.  
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4.6 Conclusion: the big picture 

 Anthropogenic activities have large-scale effects on biogeochemical systems, 

such as carbon dioxide emissions driving ocean acidification, and fertilizer run-off 

resulting in coastal ocean eutrophication. These large-scale processes dictate a suite of 

interactions among living organisms, seawater chemistry, and nutrient cycles that could 

exert negative or positive changes as we proceed into the unknown future. Increased 

formation of highly toxic H. akashiwo HABs that are of a lesser nutritional value to the 

marine food chain seems to be a distinctive possibility in the future ocean. This would be 

controlled by increased nutrient loadings of nitrogen and phosphorus and increased 

bioavailability of iron through ocean acidification. In this instance, our negative impact 

on the Earth has come back to negatively impact our aquaculture operations, coastal 

communities, and health. Efforts to drastically reduce carbon dioxide emissions, such as 

algal biofuel production, and regulation/reduction of nutrient inputs into natural systems 

needs to be a top priority at all levels of governance.   
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