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Abstract and Keywords 

Young children are sometimes prescribed opioids and may be exposed to opioids in 

utero and through breast milk. Clinical and genetic factors create large inter- 

individual variability in opioid response and have been associated with life threatening and 

often fatal adverse drug reactions in young children. Genetic factors have been studied 

in adults but there is little clinical evidence in young children. The focus of this thesis is on 

three commonly prescribed opioids: codeine, morphine and methadone. The objective of this 

work was to investigate risk factors associated with opioid related morbidity and mortality in 

young children. Risk factors were examined in three populations of children including 

neonates exposed to opioids in utero, infants exposed to codeine in breast milk as well as 

young children receiving codeine and morphine for post-surgical pain relief.  We hypothesize 

that genetics and clinical factors will affect opioid response in young children. 

 

As the prevalence of opioid use increases it is important to investigate clinical and 

genetic risk factors as well as cost-effective treatment options. Neonates exposed to opioids in 

utero do not show an increased risk for mortality. Genetics may play a role in the 

development of neonatal withdrawal symptoms following in utero methadone exposure. 

Further work is necessary in order to corroborate the role of genetic and clinical factors in 

predicting neonatal abstinence syndrome. Codeine use during lactation has been shown to 

result in a significant neonatal sedation, much of which was associated 

with maternal genotype and dose. Guidelines based on predetermined clinical risk factors 

were able to mitigate the previously identified increased genetic risk. Several fatalities have 

been reported following codeine use in children post-tonsillectomy. In a randomized clinical 

trial we found that standard morphine doses (0.2-0.5mg/kg) may not be a safe alternative in 

children with obstructive sleep apnea. The safety and effectiveness of lower morphine doses 

should be investigated.  
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Genetic variability in drug metabolizing enzymes, drug transporters and 

receptors, influence opioid response and create risks for adverse effects in young children. 

Standard doses of opioids are not safe in all children, and should be dosed on an individual 

basis. 

 

Keywords: codeine, morphine, methadone, pharmacogenomics, adverse drug reactions, 

pediatrics 
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Chapter 1: Background and rationale 

Part of this chapter has been adapted from published work:                                                                                     

Kelly L.E, Madadi P. Is there a role for Therapeutic Drug Monitoring with Codeine? Therapeutic 

Drug Monitoring 2012; 34 (3): 249-256 
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1.1 Overview: Opioid Pharmacology 

 

Opioids are derived from the opium poppy, Papavier somniferum and are among the 

oldest known classes of drugs cultivated as early as 3400 BC (1). Morphine, the prototypical 

opioid, was isolated in 1804 by a German pharmacist and named after the God of dreams 

“morphium” (1).  Morphine is one of four plant-derived amines that can be extracted from the 

opium poppy (along with codeine, thebaine and papavarine). Codeine was isolated in 1832, 

shortly after morphine (2). The term opioid is used to describe any morphine-like substance that 

acts on the opioid receptors and has activity that can be antagonized by naloxone. Opioids exist 

as naturally occurring compounds (morphine and codeine), semisynthetic compounds 

(oxycodone), as well as fully synthetic, designer opioids (methadone). Opioids are primarily 

used as analgesics and in children are indicated for use in sickle cell pain crises, cancer and 

postoperative pain. This thesis will focus on the clinically-important sources of variability in 

response of young children to three opioids; codeine, morphine and methadone.  

Morphine: 

Morphine, the archetypal opioid, is isolated from the seed of the opium poppy. Figure 1.1 

shows the chemical structure of morphine which consists of a benzene ring with a phenolic 

hydroxyl group at binding site 3, nitrogen at position 5, and an alcohol hydroxyl group at 

position 6. Many natural and semisynthetic opioids are formed by changes in one or more of 

these three functional groups. For example, heroin (diacetylmorphine) is the product of O-

acetylation at positions 3 and 6 (1). The tertiary nitrogen functional group is essential for 

morphine analgesia, as a quaternary nitrogen group is charged and too large to pass freely into 
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the central nervous system (CNS). This tertiary nitrogen group also makes morphine a weak 

base, with a pKa of 8. Morphine acts primarily through the mu-opioid receptor (MOR).  These 

receptors, found in the brain, spinal cord, and intestinal tract, mediate both the therapeutic and 

adverse effects of morphine and other members of the opioid family. Medically, the main 

therapeutic benefit of morphine is analgesia, while adverse effects range from GI disturbances to 

respiratory depression. There are two MOR subtypes: Mu 1 is primarily responsible for the 

analgesic effects, whereas Mu 2 generally causes sedation, respiratory depression, euphoria, 

urinary retention, anorexia, pruritus, and dependence (1). 

 

Morphine can be administered by a variety of different routes with oral and intravenous 

routes being most common. As with all drugs, the route and dose of administration will 

determine the maximum plasma concentration and at what time this will be reached. Morphine 

has elimination half-life of approximately 2 hours in infants and children (1, 3). Resulting from 

redistribution from peripheral tissue and enterohepatic recirculation a long terminal half-life has 

been reported following oral administration (4). The oral bioavailability of morphine is 

approximately 40% resulting from extensive first pass metabolism, and rapid conjugation with 

glucuronic acid in the gut. Morphine pharmacokinetic parameters in neonates and young children 

vary when compared to those of the well-studied adult population. The volume of distribution of 

morphine has been shown to increase exponentially with postnatal age (5). Clearance in infants 

and young children is estimated at 23.6 ± 8.5 ml/min/kg and reaches roughly 80% of adult 

morphine clearance by 6 months of age (5). 
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Morphine is glucuronidated by uridine diphospho glucuronosyltransferase (UGT) 2B7 

and UGT 1A2 into morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A small 

proportion of morphine (0-5%) is demethylated by cytochrome p 450 (CYP) 3A4 into 

normorphine. The M3G metabolite is primarily formed via UGT1A2 and is not active at the 

opioid receptor. Studies suggest that M3G may cause neuroexcitability at high concentrations 

(6). The M6G metabolite has roughly a 50-fold higher potency for the MOR than the parent 

compound (7).  Morphine is eliminated mostly in urine (90%) and bile. Roughly 10% of 

morphine is eliminated unchanged while M3G is the major metabolite found in urine (8).  

 

Morphine is approximately 50% ionized at physiologic pH allowing it to passively 

diffuse through tissue compartments within the body, including the blood brain barrier. Due to its 

relatively low lipid-solubility the penetration through the blood brain barrier is slow if 

administered via oral or intravenous routes. The M6G metabolite is more polar than morphine 

and studies suggest active transport of M6G into the CNS via the OATP 1A2 or GLUT-1 

transporter (9, 10). Efflux of morphine out of the CNS is mediated by p-glycoprotein (11, 12). 

The ability of morphine to passively diffuse through cellular membranes results in transfer 

through the placenta and also into breast milk. Morphine is roughly 35% protein bound, leaving 

a large portion free to transfer through biological membranes. Morphine has a milk: plasma ratio 

of 1.1-3.6 and a relative infant dose of 9.1% (13). The relative infant dose characterizes how 

much of a mother’s dose is likely to be found in breast milk. Since the clearance rate in the 

neonate is up to 5-fold slower than in the mother, neonatal exposure can be as high as 50% of 

that of the mother, which will be discussed in further detail  later in this chapter.  
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Figure 1.1. The chemical structures of morphine, codeine and methadone 
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Codeine: 

Second only to morphine, codeine is the most common opioid analgesic used to manage 

pain in children, frequently in combination with acetaminophen, marketed as Tylenol® 1 

through 4 (14). The structure of codeine is nearly identical to that of morphine, with the addition 

of a methyl group to the phenolic group at position 3 (Figure 1.1). The methyl ether group in 

codeine (compared to the alcohol group in morphine) decreases polarity and is responsible for 

the high oral bioavailability of codeine (~ 90%) compared to morphine (~40%). The elimination 

half-life of codeine is roughly 2.5-3 hours and reaches its peak plasma concentration within 0.5-

1.0 hours (1). Codeine metabolism is primarily hepatic, and the majority of codeine is 

glucuronidated by UGT2B4 and 2B7 to codeine-6-glucuronide (C6G) (Figure 1.2). The 

contribution of several unknown UGT isozymes to this pathway has been suggested. Codeine 

and its C6G metabolite have a low potency for the mu-opioid receptor (15). Codeine is also 

metabolized by cytochrome P 450 (CYP) 3A4 to norcodeine which is inactive.  

 

A small proportion of codeine (5-15%) is bioactivated by CYP2D6 into morphine, which 

has a 200-fold greater affinity for the mu-opioid receptor. Hence, codeine is often considered a 

pro-drug as the majority of its analgesic effect is through its conversion to morphine in the liver.  

Similar to morphine, codeine undergoes passive diffusion and is actively effluxed by p-

glycoprotein. Codeine crosses the placenta and has been shown to transfer into breast milk (16). 

Codeine has a milk plasma ratio of 1.3-2.5 and a relative infant dose of 8.1%. Of significance, 

the American Academy of Pediatrics generally considered codeine to be compatible with 
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breastfeeding until recently (13, 17). A fatal case of codeine toxicity in a breastfed neonate, 

which has changed this commonly –held view, will be discussed further in Chapter Three.  
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Figure 1.2.  Schematic representation of the metabolism and transport of codeine and morphine 
in plasma, the hepatocyte and the central nervous system. Note: the diagram does not include 
codeine conversion to morphine via CYP2D6 in the CNS.  Abbreviations used include: COMT = 
Catechol-O-methyltransferase, CYP = cytochrome p450, GLUT = glucose transporter, M6G = 
morphine-6-glucuronide, M3G = morphine-3-glucuronide, OATP = organic anion transporter 
protein, OPRM1= mu-opioid receptor, UGT = uridine diphospho glucuronosyltransferase 
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Methadone: 

 Methadone is a fully synthetic opioid agonist that was designed as an analgesic during the 

second world war, when morphine supplies were scarce (18). In North America, methadone is 

administered as a racemic mixture of equal parts (R)- and (S)-methadone. Methadone is 

lipophilic and generally well absorbed. The pharmacokinetic parameters of methadone are highly 

variable among individuals, with an oral bioavailability ranging from 36-100% and elimination 

half-life between 12 and 150 hours, with an average of 24 hours (1, 19-21). The long elimination 

half-life is due to its high liposolubility and redistribution from fat tissue. The dose of racemic 

methadone required to obtain a plasma methadone concentration of 250ng/ml in a 70kg patient 

taking no other medications can range from as low as 55 mg/day up to 921 mg/day (20)  

illustrating a large variability in dosing requirements.  The peak plasma concentration of 

methadone is reached within 0.5-1 hour. The metabolic fate of methadone is shown in Figure 

1.3. Methadone is primarily metabolized in the liver and intestine with several CYP enzymes 

responsible for inactivating the drug, primarily CYP3A4 and CYP2B6 (the latter, S-methadone 

stereospecific). Methadone metabolites are inactive and are eliminated in urine and in faeces and 

urine  

 

Methadone crosses the placenta (22) and low levels have been detected in breast milk 

(23). The low levels are likely due to the high percentage of methadone bound to the acidic-

alpha1 globulin (90%) that cannot passively diffuse though maternal capillaries. The 

milk/plasma ratio of methadone is 0.68 suggesting relatively low drug transfer, with the relative 
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infant dose between 1.9-6.5% (13). The American Academy of Pediatrics considers methadone 

compatible with breastfeeding at any maternal dose (17). 

 

  Methadone acts as an agonist at the MOR and an antagonist at the N-methyl-D-aspartate 

receptor (NMDAR). R-Methadone binds to the MOR with 10-fold higher potency than S-

methadone which also acts at the NMDAR, decreasing glutaminergic transmission (24). 

NMDAR antagonism interferes with the neuroadaptive changes that maintain addictive 

behaviours. Although methadone is most frequently used to treat opioid dependency, its 

affordability, neuropathic pain potential, and long half-life have resulted in an increase in 

prescriptions for analgesia. The analgesic effects appear to last only 4 to 8 hours, and due to the 

long half-life of methadone, drug accumulation may occur with repeat dosing.  S-Methadone 

also interacts with the human-ether-a-go-go voltage gated potassium channel in the heart, 

increasing the QT interval which has been associated with Torsades de Pointes (25). The risk for 

potentially fatal cardiac arrhythmia increases with methadone doses above 60mg/day, and 

conditions that affect the cardiac action potential such as hypokalemia (26). 

 

Neonates exposed to methadone and /or other opioids in utero risk the development of 

neonatal abstinence syndrome (NAS) upon parturition. The withdrawal syndrome varies in 

severity and is characterized by disturbances to the central nervous system, metabolic and 

respiratory effects. Chapter Two will discuss the development and management of NAS in more 

detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                             
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Figure 1.3. Schematic representation of the metabolism and transport of methadone in plasma, 
the hepatocyte and the central nervous system. Abbreviations used include: COMT = Catechol-
O-methyltransferase, CYP = cytochrome p450, EDDP = 2-ethylidene-1, 5-dimethyl-3,3-
diphenylpyrrolidine, EMDP = 2-ethyl-5-methyl-3,3-diphenylpyrroline  NMADR = N-methyl-D-
aspartate receptor OPRM1= mu-opioid receptor. 
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1.2 Clinical sources of variability in pediatric response to opioids 

A) Age: 

Developmental age plays an important role in the ontogeny of the enzymes, transporter 

and target receptors involved in clearing opioids, especially the glucuronidation of morphine and 

subsequently morphine clearance. In children total morphine clearance is roughly 80% of adult 

values by 6 months of age and reaches 96% of adult levels by one year (5). Neonates have 

decreased fat and decreased muscle content compared to older children and adults. Neonates also 

have an immature glomerular filtration rate, especially if born premature, which can lead to 

accumulation of morphine metabolites that are primarily cleared in urine. Renal tubular secretion 

increases during the first few weeks of life and reaches adult levels by 8-12 months of age (27). 

The importance of age-dependent renal function to morphine clearance is evident as preterm 

neonates clear morphine at a rate of 2.2 ± 0.7 ml/min/kg compared to 8.1± 3.2 in term neonates 

and 23.6±8.5 in infants and children (3). Glomerular filtration rates are low (~20% adults) for the 

first 24 hours of life and increase steadily for the first three months (28). Between the ages of 5-

15 years the glomerular filtration rate is higher than in adults, resulting in an increased excretion 

rate of opioid metabolites in urine. 

 

   Increased oxygen consumption, decreased airway muscle control and an overall 

decrease in the ventilatory response to carbon dioxide (29) also increase the sensitivity of 

neonates and infants to the respiratory effects of opioids. The effects of opioids are generally 

prolonged in neonates as the development of hepatic drug metabolism enzymes matures at 
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variable rates, leading to reduced opioid metabolism. Conversely, children ages 2-6 years have 

been shown to have higher rates of metabolism via CYP enzymes, due to a larger liver mass per 

kg body weight, resulting in an increased opioid metabolism (normalized for weight) compared 

to adults (30).  

B) Protein binding:  

Circulating levels of plasma binding proteins determine the ratio of free to bound drug, 

and thus the amount of drug available to cross the blood brain barrier and elicit central 

pharmacological effects. Morphine is primarily bound to albumin (31) and albumin levels are 

only slightly lower than adult levels at birth (32). Methadone on the other hand is primarily 

bound to alpha1 acidic glycoprotein (AAG). AAG expression has been shown to reach roughly 

75% of adult levels by one year of age, but is only 25% at birth (28).  The increased ratio of free: 

bound methadone will increase the potential for toxicity as methadone is a highly protein bound 

drug. Furthermore, drugs that compete for AAG binding can increase circulating levels of free 

methadone, thus enhancing the therapeutic and toxic effects. Plasma AAG levels have been 

shown to fluctuate significantly under stressful conditions such as heroin withdrawal (33) and in 

various disease states, and traumatic events (34, 35) which may alter the amount of free 

methadone in the neonate following in utero methadone exposure as well as exposure through 

breast milk.  

C) Drug-Drug Interactions: 

As many of the enzymes responsible for activating and deactivating codeine, morphine 

and methadone have broad substrate specificity, drug-drug interactions play a significant role in 
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opioid efficacy and toxicity. Drug-drug interactions will be discussed within the context of 

individual genes in the next section. 

D) Health status: 

Any health conditions that affect renal function or hepatic metabolism have the ability to 

alter opioid clearance in children. In adults, CYP enzyme hepatic oxidation is reduced in patients 

with severe liver disease resulting in a decreased drug clearance for opioids metabolized by these 

enzymes, such as methadone (36). Glucuronidation is affected to a much lesser extent than 

oxidation in cirrhosis patients, although the clearance of morphine was found to be decreased in 

some patients (36). Compared to healthy adults, patients with kidney failure have a greater 

accumulation of the analgesic (M6G) and neuroexcitatory (M3G) morphine metabolites, as well 

as an overall increase in the morphine area under curve (37). The altered morphine 

pharmacokinetics was reversed with a kidney transplant which may have important implications 

for children undergoing transplantation (37). Studies on the effects of hepatic and renal health 

status on morphine pharmacokinetics in children are limited. In two children undergoing liver 

transplants for end stage liver failure, one of whom had comorbid renal impairment, 

accumulation of morphine metabolites was only seen in the presence of renal disease (38), 

emphasizing the importance of kidney health in morphine clearance. Respiratory comorbidities 

have been identified as potential factors contributing to opioid related adverse drug reactions in 

children receiving codeine post-tonsillectomy (39). In cases where the respiratory tract is 

compromised, such as with asthma or infections the addition of an opioid can further depress the 

respiratory drive resulting in potentially fatal adverse effects.  Children with chronic lung 
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disease, with impaired CO2 response may also be at an increased risk for respiratory depression 

following the administration of opioids.  

 

E) Maternal factors: 

The extent of neonatal opioid exposure in utero and through lactation will vary according 

to maternal parameters including drug, dose, and duration of therapy. An increased dose and a 

longer duration of therapy will increase the amount of drug in maternal circulation thereby 

increasing the amount of drug seen by the placenta and the fetus. Furthermore any conditions 

that decrease maternal drug clearance will increase the amount of fetal exposure during 

pregnancy. Maternal polysubstance use, especially other opioids and benzodiazepines, has been 

shown to worsen NAS symptoms in the neonate following in utero methadone exposure (41-43). 

Buprenorphine has been reported to evoke less severe withdrawal symptoms than methadone 

(42). Some controversy exists surrounding the relationship between maternal methadone dose 

and NAS severity. Reports of an increased rate of NAS or increased NAS severity with higher 

maternal methadone doses (42, 44) are contrasted by those studies that do not find a dose 

response relationship (45, 46). Neonatal sedation resulting from codeine exposure in breast milk 

has been shown to worsen after 4 days of maternal exposure (40). In rodent models, exposure to 

soy protein isolate, potentially found in human formula, increased the expression CYP2B and 

CYP3A isozymes (47). When compared to breastfed infants, formula-fed infants showed an 

increased expression of CYP3A4 between the ages of 2-10 weeks, indicating a potential effect of 

diet on maturation of drug metabolism enzymes (48).  
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1.3 Pharmacogenetic sources of variability in pediatric response 

to opioids 

The rapidly advancing field of pharmacogenomics seeks to explain inherited variability 

by assessing the contribution of an individual’s genetic make-up to drug metabolism and drug 

response. A patient’s response to codeine, morphine or methadone is highly variable, some of 

which can be explained by mutations in genes encoding for drug metabolism enzymes, drug 

transporters, target receptors and/or signalling proteins. Mutations that affect opioid response 

include single nucleotide polymorphisms (SNPs), insertions/deletions as well as copy number 

variants. This section will discuss some of the potential sources of pharmacogenetic variability 

and the implication for opioid response in infants and young children.  

1.3.1 Cytochrome p 450 enzymes: 

The cytochrome P 450 (CYP) enzymes are responsible for the phase I metabolism of 

roughly 80% of the drugs on today’s market. These enzymes have a broad substrate specificity, 

oxidizing a wide range of compounds including opioids.  

 

CYP2D6: 

CYP2D6 is expressed in the liver and the CNS including the neocortex, hippocampus, 

substantia nigra and in Purkinje cells (49). CYP2D6 is responsible for the metabolism of ~25% 

of clinically used drugs, including several opioids such as tramadol and oxycodone despite its 

relatively low hepatic abundance. Throughout gestation, fetuses aged 14-24 weeks have 
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CYP2D6 protein expression ranging from undetectable to roughly 3-5% of adults values (50). 

Liver samples obtained from birth to postnatal day 7 had detectable CYP2D6 protein in all 

samples (low amounts of only 5% adult values) and expression increased to 30% adult values 

between 7-28 days of age and up to 70% after four weeks (50, 51). The correlation seen with 

adult protein expression and CYP2D6 mRNA levels does not hold true in the fetus or neonates as 

high mRNA expression suggests a variable age dependent translational control mechanism for 

hepatic CYP2D6 expression and activity. 

 

CYP2D6 catalyzes the 0-demethylation of codeine into active morphine and plays a 

minor role in the metabolism of methadone. Over 100 different allele variants result in 

considerable phenotypic variability in CYP2D6 activity (52). These phenotypes range from a 

poor metabolizer (PM) with little to no enzymatic activity to ultra-rapid metabolisers (UM) 

formed by functional gene duplication. Therapeutic failure has been reported following codeine 

use in CYP2D6 PM`s resulting from their inability to produce the potent morphine metabolite. A 

qualitative measure for CYP2D6 phenotypes has been designated as the Activity Score (AS) 

(53). The AS is a sum of the individual allele’s contribution to the rate of CYP2D6 metabolism. 

A PM is assigned an activity score of 0, as there is no conversion of codeine to morphine. This 

arises when an individual is homozygous for two non-functional alleles. The contribution of 

individual alleles to the overall rate of CYP2D6 metabolism is displayed in Table 1.1.  A 

CYP2D6 UM is characterized by a functional gene duplication, and shows a gene-dose effect 

whereby the number of duplicated alleles increases as does the ratio of codeine converted to 

morphine (53, 54). The frequency of the CYP2D6 UM phenotype is ethnically diverse, and the 

prevalence is seen in Table 1.2. The correlation between the activity score and the ratio of 
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morphine to codeine is illustrated in Figure 1.4. Variability in CYP2D6 enzymatic activity 

creates potential for adverse effects ranging from therapeutic failure in PM’s to respiratory 

depression in UM’s due to an unpredictable increase in morphine production. The CYP2D6 UM 

genotype has been identified as a risk factor for CNS depression in neonates exposed to codeine 

in breast milk (55, 56) and for fatal respiratory depression in children receiving codeine post-

adenotonsillectomy (39, 57).  

 

In regards to the pharmacokinetics of methadone, initial reports suggested that reduced 

CYP2D6 activity was associated with greater therapeutic success among patients when 

compared to UM metabolizers (58), possibly due to a reduction in hepatic methadone 

breakdown. Further research has suggested that CYP2D6 plays only a minor role in methadone 

metabolism, and that CYP2D6 genotype does not impact methadone clearance or dosing 

requirements (59-61). CYP2D6 has a broad substrate specificity and although not generally 

inducible, can be inhibited by several selective-serotonin reuptake inhibitors such as paroxetine, 

sertraline and fluoxetine mimicking the effects of the PM phenotype. In patients where CYP2D6 

has been inhibited, a lack of analgesic effectiveness following codeine administration has been 

documented (62). 
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Table 1.1. The contribution of individual alleles to the rate of CYP2D6 metabolism as assessed 

by the activity score where N = the number of duplicated alleles (2, 53, 63) 
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Allele: Activity Score 
(AS): 

Effect on CYP2D6 
activity 

*1xN, *2xN 1.0 x N Increased 

*1, *2, *27, *33, *35, *45, *46, *39, 
*48, *53 1.0 Normal 

*9, *10, *19, *17, *29, *41, *49, *50, 
*54, *55, *59, *69, *72 0.5 Reduced 

*3-8, *11-16, *18-21, *31, *36, *38, 
*40, *42, *44, *47, *51, *56, *57, 
*62 

0 No Activity 
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Table 1.2. Frequency of CYP2D6 ultra-rapid metabolizers (UM) in different ethnicities.   
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Population UM Genotype prevalence % 

Northern Africa 29% (64) 

African American 3.4-6.5 % (65, 66) 

South/West Africa 7.1-7.4% (67) 

Western Asian 7.8% (67) 

South/East Asian 1.2% (68) 

South American 3.1% (67) 

Caucasian 3.6-6.5% (65, 66) 

Greek 6.0% (69) 

Hungarian 1.9% (70) 

Oceania 26% 

Northern European 1-2% (71) 

Western European 5.5% (71) 
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Figure 1.4. Ratio of plasma area-under-the-curve (AUC) of morphine to AUC of codeine 

correlated with the CYP2D6 fine activity (activity score) (2, 54) 

 

 

 

 

 

 

 

 

 



27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

CYP3A4 and CYP3A7: 

CYP3A is the most abundant CYP subfamily expressed in the human liver and 

collectively 3A isozymes are responsible for the metabolism of 50% of drugs used clinically. 

CYP3A7 is the dominant hepatic isozyme in the fetal liver whereas CYP3A4 is the predominant 

isozyme in liver and intestine (72). CYP3A4 expression is approximately 20% of adult 

expression level at birth and reaches up to 60% of adult levels after one week of life (73). 

Hepatic expression of both fetal CYP3A7 and CYP3A4 has been correlated with the pregnane X 

receptor and the constitutive androstane receptor which are known to play a key role in 

regulating the expression of these CYP proteins (74). 

 

CYP3A4 is responsible for converting codeine into norcodeine and is important player in 

the inactivation of methadone.  Although most identified CYP3A4 polymorphisms do not 

correlate with protein expression, CYP3A4 *22 carries an intron mutation that reduces mRNA 

expression that has been shown to affect the pharmacokinetics of statin drugs (75). To the best of 

our knowledge there have been no positive correlations between CYP3A4 genotype and 

codeine/morphine response, however a previous case report suggested that CYP2D6 UM’s are at 

an increased risk for morphine toxicity in the presence of the CYP3A4 inhibitors, the antibiotics 

clarithromycin and voriconazole (76). These inhibitors decrease the formation of the inactive 

norcodeine metabolite. Intestinal and hepatic CYP3A4 activities have been shown to have a 

minimal effect on methadone N-demethylation, explaining roughly 15% of variability in total 

methadone clearance (61, 77)  possibly due to the compensation for low CYP3A4 activity by 
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other CYP alleles. Caution is also warranted for patients prescribed methadone and taking 

CYP3A4 inhibitors. 

CYP2B6: 

A great degree of variability exists in the expression and activity of hepatic CYP2B6; the 

relative abundance of hepatic CYP2B6 varies up to 21-fold amongst individuals. Although 

primarily a hepatic drug metabolism enzyme, CYP2B6 is expressed in the CNS, kidney and 

lungs (78). Compared to the other CYP families, CYP2B6 has a relatively small substrate 

specificity, metabolising only 4% of drugs used clinically (79). CYP2B6 is responsible for the 

metabolism of the antiretrovirals, efavirenz and nevirapine, used in the management of HIV. 

These antiretroviral drugs have been shown to induce CYP2B6 through activation of the 

pregnane X receptor and the constitutive androstane receptor via pathways similar to induction in 

CYP3A4 (80). In the majority of individuals, CYP2B6 is expressed at birth, throughout weeks 

10-35 of gestation (81) and levels increase during the first month of life. 

 

CYP2B6 plays a stereo selective role in metabolising S-methadone to S-EDDP (82-84). 

Previous work has identified a haplotype resulting from two nonsynonomous mutations (G516T 

and A785G) creating a poor metaboliser, or CYP2B6 *6 with roughly 50% less active protein 

than wild-type.  Furthermore, a C1459T SNP (CYP2B6 *5) results in decreased protein 

expression (85). CYP2B6 *6/*6 is associated with a reduction in S-methadone metabolism (59, 

86) and in methadone-related deaths, CYP2B6 *6 is associated with higher post-mortem 

methadone levels (87). The CYP2B6 *6/*6 genotype has been identified in 26% of Caucasians 

and in16% of individuals of Japanese descent (88). CYP2B6 *6/*6 is responsible for a 
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significant increase in the risk for QT prolongation (25), due to a reduction in S-methadone 

metabolism, and is the first genetic factor that could potentially predict an increased risk for 

methadone related cardiac toxicity. The impact of CYP2B6 polymorphisms on neonatal 

withdrawal and methadone concentrations following in utero methadone exposure has not been 

investigated to our knowledge.  

1.3.2 Uridine diphosphate glucuronosyltransferase 

The glucuronidation pathway plays a large role in the inactivation of many xenobiotic 

and endogenous compounds including both codeine and morphine. Uridine diphosphate 

glucuronosyltransferase (UGT) 2B7 is predominately located in the liver, with reduced 

expression in the gastrointestinal tract, kidney, pancreas and brain (89).  In a study of liver 

donors, children ages 1-11 showed only 25% of adult UGT2B7 activity and protein expression 

which reached roughly half of adult levels between the ages of 12-17 years (90). Substrates of 

UGT2B7 include steroid hormones, bile acids, nonsteroidal anti-inflammatory drugs and 

valproic acid.  

 

UGT2B7 is a prominent phase II drug metabolism enzyme responsible for converting 

roughly 50-70% of codeine into codeine-6-glucuronide and producing both M3G and M6G 

metabolites from morphine (Figure 1.2) (91-93). Although generally a detoxication reaction to 

increase compound hydrophilicity, the M6G metabolite produced by UGT2B7 from morphine 

has an opioid receptor potency 2-4 times greater than morphine. Isolated fetal liver microsomes 

have only 10% of the glucuronidation activity of adult liver microsomes, a probable explanation 

of the reduced morphine clearance seen in the neonate (94). An amino acid transition at residue 
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268 from histidine to tyrosine (C802T) giving rise to the UGT2B7 *2 genotype has been shown 

to alter the pharmacokinetics of several of its substrates including diclofenac (95) and 

mycophenolic acid (96).  

 

In one fatal case of codeine toxicity in a breastfed infant, the mother was both a CYP2D6 

UM and UGT2B7*2/2 (1); the increased morphine formed from codeine could not be cleared by 

the deficient glucuronosyltransferase. There are some further studies that suggest the UGT2B7 

*2/*2 genotype can result in an increased conversion of morphine to M6G (91, 98). The 

combination of the CYP2D6 UM polymorphism causing a greater amount of codeine 

bioactivation to morphine and the UGT2B7 *2/*2 increased M6G production may increase the 

risk for CNS depression. 

 

Theoretically, polymorphisms in UGT could affect the ratio of M3G/M6G to morphine, 

however the clinical impact of changes in UGT activity on morphine response is unclear.  An 

increase in UGT activity would increase the production of both morphine metabolites and the 

neuroexcitatory metabolite (M3G) may attenuate the increased analgesic properties of M6G. 

Conversely decreased UGT activity, resulting in a decrease in M6G: morphine may decrease 

analgesic effectiveness. Researchers reporting on 175 cancer patients did not identify an 

association between M3G: morphine or M6G: morphine with ten different UGT SNPs (99). 

Conversely, a small cohort of sickle cell patients was shown to have reduced morphine 

glucuronidation in the presence of the UGT2B7 *2/*2 genotype. These controversial findings 
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potentially result from inconsistent patient treatment groups, variable dosing and different routes 

of administration between studies, thus further investigation is warranted. 

1.3.3 The P-glycoprotein transporter 

P-glycoprotein (P-gp) is found on endothelial cells at the blood brain barrier, on 

enterocytes, as well as on biliary and renal epithelial cells. In animal models, this essential drug 

efflux transporter has been shown to play a role in the efflux of morphine and methadone (100-

102). As the primary target of opioids is the CNS the rate of efflux from the brain can greatly 

influence the concentration of opioid in the brain and the resulting analgesic effects. P-gp 

expression in the gastrointestinal tract can influence the bioavailability of oral morphine and 

methadone, and hepatic and renal P-gp affect metabolism and clearance. Although a limited 

number of studies have sought to characterize the ontogeny of P-gp, transporter expression in the 

brain has been identified in fetuses aged 17-24 weeks at reduced expression (~20%) compared to 

adult samples (103). P-gp expression has been suggested to reach adult levels by 21 days of life 

(104) although this study was conducted in pigs and human studies are needed to corroborated 

these findings. 

 

P-gp exhibits a 200-fold inter-individual variability in mRNA expression and up to 50 

fold variability in protein expression in the liver (88). The ATP-binding cassette efflux drug 

transporter, P-gp is encoded by the polymorphic ABCB1 gene and over 35 coding region SNPs 

have been identified in this gene (63). Homozygotes for low activity ABCB1 alleles are found in 

roughly 25% of the Caucasian population. Of importance, when compared to the homozygous 

C/C wild- type, the T/T at position 3435 SNP has been associated with greater pain relief in 



33 
 

chronic morphine therapy (105). The loss of function in the P-gp transporter efflux system 

results in a greater morphine accumulation in the brain and therefore increases analgesic 

response (2). The C3435T has been linked to SNPs G2677T/A and C1236T (106). Other studies 

have challenged this dose relationship finding and found no association between the C3435T 

SNP and morphine dose following surgery, however combined P-gp genotype (C3435T and 

G2677T/A) did correlate with morphine related side effects (107). In neonates exposed to 

codeine in breast milk, the ABCB1 2677TT genotype in combination with CYP2D6 UM 

phenotype predicted neonatal CNS depression (56).  

 

The extent of P-gp genotype effect on methadone response is unclear. Studies have 

shown inconsistent findings including no relationship of P-gp genotype with methadone 

pharmacodynamics (108). Conversely, an association between ABCB1 genotype and methadone 

response and plasma levels has also been described (59, 109). In P-gp knockout mice, 

concentrations of methadone in the CNS were found to be increased as were the analgesic effects 

(110, 111) suggesting an essential role of P-gp in regulating methadone response. Administration 

of P-gp inducers, rifampicin (112) or St Johns Wort (113), resulted in increased opioid 

withdrawal symptoms and decreased plasma methadone concentrations resulting from an 

increase in efflux from the CNS and increased clearance. 

 

P-gp plays an essential role in efflux of opioids from placenta back into maternal 

circulation (114). SNPs have been shown to alter P-gp expression in the placenta (115, 116) 

which may have a role in determining neonatal response following in utero opioid exposure.  
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1.3.4 Organic cation 1 transporter 

The organic cation transporter (OCT) 1 is an active uptake transporter present on the 

sinusoidal membrane of hepatocytes.  Recent in vitro cell work supported a role of OCT 1 in the 

active hepatic uptake of morphine (117). Codeine and methadone have not been shown to be 

substrates for OCT 1 uptake. Hepatocytes overexpressing OCT 1 had a 4-fold increase in 

morphine uptake which was abolished in the presence of an OCT 1 inhibitor (MPP+) and by 

loss-of-function (LOF) polymorphisms (117). The OCT 1 protein is encoded by the solute carrier 

family 22 member 1 (SLC22A1) gene, for which several LOF, nonsynonomous polymorphisms 

(Arg61Cys, Cys88Arg, Gly401Ser, Gly465Arg) and a deletion mutation (met420del) have been 

identified which decrease activity (117). These polymorphisms are relatively common in the 

Caucasian population, with 9% homozygous and 40% heterozygous carriers of one or more of 

these LOF SNPS reported (117). 

 

As the main pathway of morphine elimination is via hepatic glucuronidation, the rate of 

entry of morphine into the liver may have an important effect on plasma morphine levels, as well 

as altered pharmacodynamic effects. In a study of children undergoing tonsillectomy, OCT 1 

LOF variants significantly altered the pharmacokinetics of morphine (118). Further studies are 

needed to confirm the findings of these early reports to confirm the role of OCT 1 

polymorphisms in the pediatric response to morphine. 
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1.3.5 The mu-opioid receptor 

The MOR is the primary binding site of opioids, and is activated endogenously by β-

endorphan and enkephalin. Opioid receptors are G-protein-coupled receptors distributed 

throughout the central and peripheral systems including localization in the GI tract, dorsal horn, 

medulla and midbrain. MORs are located on the presynaptic terminals of nociceptive neurons 

where agonist binding results in phosphorylation of the α-subunit. Activation of this g-protein-

coupled receptor through phosphorylation alters cellular levels of cyclic AMP via inhibition of 

adenylyl cyclase on the cell membrane (Figure 1.5). In the short term, these second messenger 

proteins result in the activation of protein kinases which alter the electrical excitability of ion 

channels affecting the regulation of numerous cellular processes (1). The increase in cAMP 

kinase signals potassium channels to open and sodium channels to close, resulting in 

hyperpolarization and presynaptic neuronal inhibition, thus preventing neurotransmitter release. 

This diminishes pain perception by reducing nociceptive transmission sent from the site of injury 

in the periphery to the thalamus for processing. In cases of chronic opioid exposure, as seen with 

addiction, the MOR is responsible for alterations to gene transcription. These long term changes 

are thought to occur in the nucleus accumbens via regulation of the cyclic AMP response 

element binding protein (CREB) (119, 120) (Figure 1.5).   

 

MOR is encoded by the OPRM1 gene for which several nonsynonomous variants have 

been identified (121). The A118G SNP which alters the amino acid sequence (aspartate 

substitution for asparagine) is the most prevalent and well characterized mu-opioid receptor SNP 

occurring in an extracellular glycosylation site. The A118G SNP has been reported in 10-30% of 



36 
 

 Caucasian populations,  reported more frequently in Asians (48%) and less frequently in 

African Americans (5%) (122-124).  Altered receptor binding characteristics (125) and changes 

in mRNA expression (122) have been proposed as potential mechanisms behind the A118G 

altered opioid response although the literature is contradictory. 

 

In experimental pain models, homozygous carriers of the A118G SNP were shown to 

require 2 to 4-times as much alfentanil as the wild-type carriers (126).  Ten-fold higher 

concentrations of drug were required to produce the same amount of respiratory depression, 

suggesting a protective role of the homozygous mutation on respiratory effects of opioids. 

Investigations in three cohorts of patients receiving post-surgical morphine for abdominal 

hysterectomy (127), total knee arthroscopy (128) and major abdominal surgery (129) identified 

significant increases in morphine requirements in homozygous GG carriers within 24 hours of 

surgery.   Furthermore, cancer patients carrying at least one mutated OPRM1 A118G allele were 

less likely to respond to morphine, reporting significantly higher pain scores (105). These studies 

are not without their limitations, as they report on different morphine doses, treatment durations, 

often do not account concomitant medications and disease conditions, but do overall suggest an 

increased opioid requirement in adult carriers of the A118G SNP.  There are limited studies 

assessing the effects of OPRM1 A118G on morphine response in children the results of which 

are inconclusive. 

 

The analgesic effects of methadone are also elicited through activation of MOR 

signalling pathways. When assessing the central nervous system effects of R-methadone via 
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miosis, carriers of at least one A118G mutation had a lower percent change in pupil size, 

significantly lower than wild-type individuals (108). In a study of individuals on methadone 

maintenance therapy, OPRM1 alone was not associated with methadone maintenance dosing 

(130), however in a polygenic regression model (including ABCB1 and CYP2B6) was able to 

explain 53% of the variability in methadone dosing requirements (130). 

 

Several other polymorphisms have been described with a minor allele frequency >1%. A 

serine to proline substitution (C802T) results in altered signalling and receptor desensitization by 

reducing G-protein coupling  and is associated with decreased morphine potency (131).  Further, 

SNPs G799A and G749A both which encode intracellular arginine to histidine transitions are 

associated with reduced signalling, however the effects on opioid potency have not been 

established (132). Although the cellular mechanism is unclear and the effects of the OPRM1 

A118G on pediatric opioid response are not well characterized, the current literature suggests 

further investigation of OPRM1 in genetically determined variability in pediatric opioid response 

are required. 
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Figure 1.5.  Mechanism of action of opioid at the mu-opioid receptor (120, 133)  
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1.3.6 Catechol O-methyltransferase 

Catechol-O-methyltransferase (COMT), an enzyme responsible for the metabolism of 

catecholamines, is a key modulator in the neurotransmissions associated with the perception of 

pain. COMT is responsible for the inactivation of dopamine, epinephrine and norepinephrine and 

COMT regulation of dopaminergic and adrenergic transmission has important implications for 

the mu-opioid response system (134). A substitution of methionine for valine at codon 158 has 

been associated with a 4-fold reduction in COMT enzyme activity. COMT Val158Met SNP has 

been shown to affect the binding capacity of the MOR via altering the density of receptors (135) 

(136). In a study by Rakvag et al,  cancer patients with the COMT val/val genotype required 

much more morphine than the met/met genotype (155 ± 160mg vs. 95 ± 99 mg, 

respectively)(136). In this cohort the met/met genotype was identified in 32% (67/207) of 

Caucasian patients. Further work by this group established the combined effect of COMT and 

OPRM1 where carriers of the met/met and 118 AA (OPRM1 wild-type) genotype needed 

significantly less morphine to effectively treat cancer pain (135). The role of COMT in 

modulating dopaminergic activity may affect the density of opioid receptors as the met/met 

genotype has been associated with an increase in MOR binding potential (134). Along with 

polymorphisms in OPRM1, infants with the A158G COMT variant had a significantly shorter 

length of stay in hospital, and were less likely to require pharmacological management following 

in utero opioid exposure (137). Reduced COMT activity and subsequent reduction in dopamine 

breakdown may play a protective role in the development and severity of neonatal abstinence 

syndrome, however further studies should be conducted in order to corroborate the findings of 

this initial study. 
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1.4 Thesis objectives and hypothesis: 

We hypothesize that clinical and genetic factors will create variability in the response of young 

children to opioids.  

This study investigates clinical and genetic risk factors for opioid toxicity in three 

pediatric populations; firstly, neonates exposed to methadone in utero. Secondly, I examined the 

safety of infants exposed to codeine through breast milk following labour, and finally assessed 

the response of young children to opioids used for post-tonsillectomy pain management. The 

objective of my thesis is to identify potential predictors of opioid morbidity and mortality in 

young children by assessing risk factors.  

Specific Research Objectives: 

Objective 1: To investigate risk factors for neonatal abstinence syndrome following in utero 

methadone exposure  

Objective 2: To assess the use of clinical guidelines in reducing neonatal sedation following 

codeine exposure through breast milk  

Objective 3: To evaluate post-operative opioid use in children with obstructive sleep apnea: 

a. Identify clinical and genetic factors that contribute to fatalities in young children 

following codeine use post-tonsillectomy for OSA 

b. Investigating the safety and effectiveness of morphine and ibuprofen in managing 

pediatric pain post-tonsillectomy 
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2.1 Introduction: Opioid use and abuse in pregnancy 

2.1.1 Prevalence  

The prevalence of opioid dependence amongst women has been on the rise in many North 

American jurisdictions over the last 5 years (1). It has been estimated that approximately 90% of drug-

abusing women are within childbearing age, and the National Survey of Drug Use and Health revealed 

that 4.4%-16.2% of pregnant women reported using illicit drugs (2-4). Furthermore, opioid abuse 

stigmatization and concerns surrounding loss of custody often results in an underestimation of the true 

prevalence of opioid use during pregnancy (4). The College of Physicians and Surgeons of Ontario 

(CPSO) has estimated that oxycodone prescriptions have increased by approximately 850% from 

1991-2007 which parallels the rise in Ontarians requiring methadone maintenance therapy (MMT), 

from roughly 700 to 16,400 over the same time period (1-3, 5). During pregnancy both illicit and 

prescription opioid use can result in a variety of gynecological and obstetrical complications.  

2.1.2 Management of maternal addiction with methadone 

MMT has been practiced in North America as the preferred method of treating drug 

dependency since the 1960s, and remains the current standard of care (5). MMT is generally 

considered safe and is recommended for opioid-dependent women during pregnancy by the 

American Academy of Pediatrics and the Centre for Substance Abuse Treatment (2). The 

benefits of MMT include improved birth weight, decrease in infant mortality, decreased 

withdrawal symptoms in both mother and baby, and a decrease in the dangers associated with 

maternal drug seeking behaviours (6) While crossing the placenta, methadone has not been 

identified as a human teratogen (5). Infants exposed to methadone in utero commonly display 

signs of opiate withdrawal after birth in up to 85% of cases (7). Currently, information 
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regarding the risk of mortality and the long-term effects of in utero methadone exposure is scarce 

(8). Alternatives to methadone include buprenorphine, or the combination of buprenorphine 

and naloxone (Suboxone ®) and require further long-term research before recommendations 

for use in pregnancy can be made.   

 

2.1.3 Neonatal Abstinence Syndrome 

Opioids, including methadone and heroin have been shown to cross the placenta (9) (10) 

and in utero exposure can lead to neonatal withdrawal. In Ontario, the incidence of neonatal 

abstinence syndrome (NAS) diagnosis has closely paralleled the increase in rates of known 

maternal addiction. This increase has been associated with a significant burden on neonatal 

intensive care units across the province. Approximately 85% of babies exposed to methadone 

in utero develop at least one sign of NAS, however this number has been reported to range 

between 13-94% (6, 11, 12). In 2010, the incidence of NAS in Ontario was estimated at 4.3 

cases per 1000 births (4). 

 

The symptoms of NAS include central nervous system (CNS) hyperirritability, seizures, 

poor feeding, and metabolic and respiratory disturbances (11). With the increase in the 

number of infants exhibiting signs of NAS (13), there has been a clinical impression that there 

may be a higher rate of mortality amongst this group of young methadone exposed infants, 

than that of the general population.  While non-pharmacologic management, including 

swaddling, low lighting, breastfeeding and minimal contact can often mitigate NAS 

symptoms roughly 60% of neonates exhibiting severe symptoms and will require 

pharmacologic intervention (14) . Weaning doses of morphine are the more frequent 
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pharmacologic intervention, with concurrent phenobarbital or clonidine for infants who’s 

NAS in not well controlled with morphine (4, 15). Costs associated with US public Health for 

neonates who were exposed to in utero opioids was estimated to be up to $720 million USD 

for 2009 alone (16).  The NAS severity, and the time of onset of withdrawal symptoms are 

complicated to determine and unpredictable (17). Chapter 5 contains further information 

regarding NAS treatment with oral morphine and weaning protocols in London, Ontario. 

 

Breastfeeding has been shown to reduce the severity of NAS by providing small amounts 

of methadone through milk (18, 19).  Prematurity has been associated with a reduced NAS 

severity due to an immature CNS, less accumulation of drug in fatty tissue and an overall 

decrease in length of exposure (7, 20). Further clinical risk factors for NAS potentially 

include gender, in which one study reported male babies with an greater need for 

pharmacologic intervention (21), maternal polysubstance use (20, 22, 23), and duration of 

exposure. Controversy exists regarding the association between maternal methadone dose and 

NAS severity (7, 22). 

 

The impact of genetic polymorphisms on the development and severity of NAS following 

methadone exposure has only been reported by one group (24). Watchman et al. investigated 

the impact of SNPs in OPRM1, COMT and ABCB1 with the length of stay and the need for 

treatment of NAS. Variants in OPRM1 and COMT genes showed a protective effect and were 

associated with a decrease in hospital stay and less need for pharmacologic treatment. This 

group did not investigate the effects of polymorphisms in drug metabolism enzymes on 

methadone levels in the neonate or on overall NAS progression. 
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Figure 2.1.  Prevalence of primary NAS diagnosis in the province of Ontario 
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2.2 Are neonates exposed to methadone in utero at an 

increased risk for mortality? 

The objective of this investigation was to quantify the rates of infant mortality 

amongst in utero methadone-exposed children younger than one year of age and to compare it 

to that of the general population in Ontario, Canada.  

 

2.2.1 Methods 

Several provincial and national databases were employed to retrieve the required data 

for this investigation: 

1) Information was obtained on all cases of child fatalities in Ontario identified as exposed to 

methadone in utero from January 2006 to December 2010. These data are recorded at the 

Office of the Chief Coroner of Ontario (OCC). A paediatric death investigation was 

completed for all cases in accordance with the OCC’s policy, which included the Protocol for 

the Investigation of Sudden and Unexpected Deaths in Children Under Five Years of Age. 

The information collected included; demographics, drugs of exposure, post-mortem reports, 

toxicology screens, and diagnosed causes of death. 

 

2) The number of cases of NAS diagnosis in Ontario was obtained from the Canadian Institute 

for Health Information (25). CIHI data are collected in accordance with the Standards for 

Management Information Systems in Canadian Health Service Organizations (MIS standards) 

and were reported by the Provincial Council for Maternal and Child Health(13, 25). MIS 
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standards are a set of national guidelines for gathering and processing data, reporting financial 

and statistical data on the day-to-day operations of a health service organization. They also 

provide a framework for integrating clinical, financial and statistical data when recipient 

costing is done(25). 

 

3) The Ontario Infant Mortality Rate (IMR) report which includes data on deaths of children 

up to one year of age was obtained from Statistics Canada(26). This value is presented as rates 

per 1000 live births in a given year. The IMR used for the present study was the latest 

available, from 2007(26), and it follows the International Statistical Classification of Diseases 

and Related Health Problems (27) Revision No.10.(28) The published reference values for 

age-adjusted normal organ weights were obtained from Coppoletta & Wolbach, which is 

based on analysis of 2287 autopsy records at children’s and infants’ hospitals in the United 

States(29). Only those organs with no demonstrated pathological changes and no diseases or 

abnormalities noted were included in our analysis. Confidence intervals using regression 

equations for the original Coppoletta & Wolbach data were later published by Shankle et al in 

1983 (30). Reference values were compared with the organ weights obtained from the fatal 

cases associated with in utero methadone exposure in Ontario.  

 

Statistical analysis was performed by determining an odds ratio (OR) and 95% 

confidence interval was calculated to compare the mortality risk of infants <1 year of age 

exposed in utero to methadone and experiencing NAS to the risk in the general population of 

Ontario. Reference weights were compared to methadone cases using age at the time of death 

(months) using a Mann-Whitney U Test.  
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2.2.2 Results 

Between January 1, 2006 and December 31, 2010, the Office of the Coroner of 

Ontario identified 8 deaths of children younger than one year whose drug dependent mothers 

were on MMT. Upon investigation by the Office of the Chief Coroner and a Pediatric Death 

Under Five investigation, six of the eight deaths were classified as Sudden Unexpected Death 

Syndrome (SUDS), all of whom had evidence of unsafe sleeping environments, three of 

which also included bed sharing. One fatality was determined to be hypoxic ischemia 

encephalopathy due to bathtub drowning, and the cause of one death was unascertained. 

Comparison of organ weights at the time of autopsy with published age-specific reference 

organ weights showed a significant increase in both right and left lung weight (p = 0.035, p = 

0.007 respectively) (Table 2.1). A non-significant trend towards increased liver, brain and 

heart weights compared to reference values was demonstrated. There were four female and 

four male children with a median age at the time of death of 6 months (range 1.4-11). No 

deaths were reported in the neonatal period (first 28 days). The median maternal age was 27 

years (range 23-32) with a median gestational age at birth of 35 weeks (range 32-39). Only 

three mothers (37.5%) reported initiating breastfeeding. Seven of the eight (87.5%) infants 

were monitored by the Children’s Aid Society. In this cohort, 38% (3/8) of mothers reported 

concomitant use of oxycodone and 50% (4/8) reported cocaine use during pregnancy. Post-

mortem blood toxicology tests using gas chromatography and mass spectrometry did not 

detect morphine, methadone, alcohol, cannabinoids, or cocaine in any of the eight cases. In 

one case opiates, cocaine and cocaine metabolites were detected in the child’s hair. In another 

case therapeutic levels of acetaminophen and pseudoephedrine (<50mg/L) were identified in 

the blood of an infant who had been given common cold medications.  
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Table 2.1.  Organ weights in comparison to normalized age-adjusted reference weights 

compared using a Mann-Whitney U test for significance.  
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There were no other toxicologically-relevant compounds identified by immunoassay 

or gas chromatography- mass spectrometry. Based on CIHI records there were 821 recorded 

NAS diagnoses in Ontario from 2006-2009. We extrapolated these data by linear regression 

and estimated approximately 282 NAS diagnoses in 2010 (Figure 2.1). The mortality rate of 

infants exposed to in utero methadone was therefore 8 per 1103 children diagnosed, or 

0.725%.  

According to Statistics Canada, the Infant Mortality Rate (IMR) in the Province of 

Ontario for the same time period was 5.2 per every 1000 live births up to one year of age 

(Statistics Canada, 2011). This yields an odds ratio of 1.45 for mortality in children with NAS 

(95% confidence interval 0.47-4.46) (p = 0.56). 

 

2.2.3 Discussion 

In evaluating the causes of infant death amongst the eight infants exhibiting NAS at 

birth, several etiological directions have to be considered. Firstly, only three of eight mothers 

admitted initiating breastfeeding, as a potential source of continuous methadone exposure. 

The other 5 mothers did not provide data for this point. The toxicology screens did not detect 

any methadone or drugs of abuse in post-mortem blood samples. However, the limit of 

detection for these samples may not have detected low levels. The positive hair test for 

cocaine identified in one case possibly reflects passive exposure to cocaine smoke in the 

household, which has not been associated with infant mortality. In all six cases of Sudden 

Unexpected Death Syndrome, there was evidence of unsafe sleeping environment and three of 

which included bed sharing. While bed sharing is the social norm in many cultures, its safety 
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and benefits have been the subject of much controversy. Bed sharing has been associated with 

an increased likelihood of breastfeeding frequency and duration and may strengthen the 

bonding between the mother and child (31, 32) The dangers of unsafe sleeping environment 

include an increased risk for accidental asphyxia (33). 

 

Our study does not detect an apparent increased risk of mortality among infants born 

with NAS in Ontario. MMT has been recommended for use during pregnancy and has 

numerous maternal and infant benefits. The addict lifestyle can compromise the ability of a 

pregnant woman to live in a safe, substance-free environment, receive appropriate prenatal 

care, and maintain a healthy well-balanced diet. MMT encourages prenatal care, and is 

associated with an increase in birth weight and a decrease in infant mortality when compared 

to those addicts who remain untreated (34).  

 

The increase in lung weights in all 8 fatal cases compared to reference values is likely 

due to pulmonary congestion and edema. An increase in post-mortem lung weight is 

consistent with previously established pulmonary pathology associated with methadone 

related deaths (35). The trend toward an increase in liver and brain weights in babies exposed 

to methadone could potentially be explained by hemodynamic perfusion alterations. Increased 

brain weights have been previously associated with the Sudden Infant Death Syndrome 

although the mechanism has not fully been described (36). 
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There are several limitations to the data used by us which must be considered when 

examining our analysis. First, CIHI information depends on appropriate recognition of NAS 

as well as accurate hospital coding. The Finnegan Scale, which is most commonly used to 

identify and quantify NAS is a partially- subjective, observation- based scale (12). Although 

validated; there still exists the potential that some cases of NAS may go undiagnosed.  

Furthermore, NAS is commonly diagnosed by confirmation of in utero opioid exposure 

through physical and neurological examination, maternal sampling or reporting. This may 

leave a group of infants exposed to methadone unaccounted for. It is therefore conceivable 

that there have been more cases of NAS not captured by CIHI as a primary diagnosis. An 

increase in this denominator would decrease the estimate of mortality odds ratio towards 

unity. Another limitation is the proper identification of neonates and infants who die in the 

first year of life who were exposed to methadone in utero and had the Neonatal Abstinence 

Syndrome. Unless this information were proffered by the parents at the time of death, or the 

investigating coroners thought to make the inquiry, the Protocol for the Investigation of 

Sudden and Unexpected Deaths in Children Under Five Years of Age used in these years  did 

not make a specific inquiry into in utero exposure to methadone or NAS. Recently the OCC 

has undertaken a revision of the death questionnaire for infants who die in the first year of 

life, which will specifically inquire into maternal methadone use and the Neonatal Abstinence 

Syndrome, which will improve data collection. Out of the eight fatalities described here, three 

of the mothers also reported concomitant oxycodone use and four reported cocaine use during 

pregnancy. In our study, 67% (4/6) of infant mortalities where ethnicity was known were 

identified as First Nations. Compared to the rest of Canada (non-aboriginals) the infant 

mortality rate has been 1.5-4 times higher in First Nations communities (37). This 



69 
 

confounding factor further decreases the relative odds ratio for increased infant mortality 

associated with in utero methadone exposure. 

  In summary, maternal addiction to opioids does not appear to increase the risk of 

mortality among infants younger than one year of age in Ontario. While more studies are 

needed to corroborate these findings in other jurisdictions, it is possible that the calculated 

non-significant odds ratio of 1.45 is in fact even lower, due to obvious underreporting of 

maternal addiction during pregnancy. 

2.3 Pharmacogenomics of infant deaths associated with 

methadone exposure 

Genotyping was completed on the eight fatalities previously described. Infant DNA 

was purified from post-mortem blood samples using the QIAmp DNA purification system 

(Qiagen, Toronto, ON, Canada) according to the manufacturer’s protocol. DNA samples were 

genotyped for variants in CYP2B6, such as CYP2B6*6 characterized by variants 516G>T 

(rs3745274), 785A>G (rs2279343), and CYP2B6 *2 and *10 identified by 5071 C>T 

(rs8192709) and variants in CYP3A4 (rs41303343, rs55965422, rs5579860, rs55785340, 

rs800667, rs17342647) using a custom Illumina GoldenGate genotyping assay (Illumina, San 

Diego, CA, USA) according to manufacturer’s protocol. DNA samples were also genotyped 

for genetic variations in the ABCB1 gene: 61 A>G (rs9282564), 1236C>T (rs1128503), 

2677G>T/A (rs2032582), and 3435C>T (rs1045642), COMT (rs165815, rs4633, rs4818, 

rs740602) and OPRM1 gene 118 A>G (rs1799971) using TaqMan® genotyping assays 

(Applied Biosystems, Foster City, CA, USA), as previously described (Sistonen et al, Clin 

Phar Ther, 2012). Global minor allele frequencies were obtained from the National Center for 
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Biotechnology Information (NCBI) Short Genome Database available 

at http://www.ncbi.nlm.nih.gov/projects/SNP/ . The sample contains a default global 

population of 1094 individuals across the world. As the children in this sample are of mixed 

decent this sample was chosen as a comparative baseline allelic distribution. More 

information on how this sample was obtained and analyzed is available through the Human 

Genome Project at http://www.1000genomes.org/node/506.   

 

Table 2.2 displays the genotype prevalence in these fatalities associated with in utero 

methadone exposure as well as the minor allele frequencies present in the global population. 

While it appears that SNPs in P-gp may occur more frequently in fatalities following in utero 

methadone exposure, it is important to note that methadone levels were undetectable in all 

samples. Furthermore all eight deaths occurred in the post- neonatal period, ranging from 1.4 

to 11 months of age, when all methadone exposure from maternal circulation would be 

cleared. It is possible that carriers of these polymorphisms had diminished methadone efflux 

through the placenta, the effects of which should be investigated further.  

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.1000genomes.org/node/506
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Table 2.2. Genotype of fatalities following in utero methadone exposure compared to the 
global minor allele frequency Data is presented as median (range) for all demographic 
variables. All statistical analysis comparing infant fatality and global minor allele frequencies 
was performed using a Fisher Exact test. 
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GENE: ABCB1 ABCB1 ABCB1 ABCB1 COMT 

SNP: 1236 C>T 61 A>G 2677G>T/A  3435 T>A/C  408 C>G 

# homozygous: 2 0 2 0 1 

# heterozygous: 2 3 4 5 1 

Total #  of carriers: 4 3 6 5 2 
Allele count 
(minor) 6 3 8 5 3 

CASES MAF =  0.43 0.21 0.57 0.36 0.21 

Global MAFa = 0.42 0.04 0.34 0.40 0.34 

p value  0.21 0.01 0.04 0.21 0.15 

GENE: CYP2B6 
*4 

CYP2B6 
*9 CYP3A4 OPRM1   

SNP: 785A>G  516G>T  1047 C>T 118 A>G  

# homozygous: 1 1 0 0  

# heterozygous: 2 2 2 2  

Total #  of carriers: 3 3 2 2  
Allele count 
(minor) 4 4 2 2  

CASES MAF =  0.29 0.29 0.14 0.14  

Global MAFa = 0.26 0.27 0.05 0.19  

p value  0.23 0.23 0.11 0.26  
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2.4 Pharmacogenomic predictors of neonatal abstinence 

syndrome and enantiomeric methadone levels in the newborn 

2.4.1 Introduction: 

Illicit drug use during pregnancy is estimated at 16.2% in teens, and up to 7.4% 

amongst those aged 25 and younger (38). Methadone maintenance therapy (MMT) is the 

preferred method of treating drug dependency in pregnancy (5). The benefits of MMT include 

an increase in birth weight, decrease in infant mortality, decreased withdrawal symptoms, 

improved access to prenatal care and a decrease in the dangers associated with maternal drug 

seeking behaviours (5, 38).  

 

Methadone is a synthetic opioid commonly administered as a racemic mixture (39, 

40).  Methadone is primarily metabolized in the liver; by conversion to inactive metabolites 

via cytochrome p450 (41) 2B6 and CYP3A4 with a minor role for CYP2D6 and CYP2C19 

(40). CYP2B6 is highly polymorphic with a poor metabolizer genotype (*6) resulting from 

two non-synonomous mutations A785G (*9) and G516T (*4).  These mutations result in a 

change of two amino acid residues resulting in aberrant splicing, reduced mRNA expression 

and subsequently decreased functional metabolic capacity (42). Previous reports have 

associated the CYP2B6*6 genotype with higher trough methadone concentration and 

increased post-mortem methadone blood levels compared to wild-type (40, 43, 44). Concrete 

associations between methadone levels and polymorphisms in CYP2D6 have not yet been 

established (45). 
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It has been demonstrated that the P-glycoprotein (46) efflux transporter regulates the 

transfer of methadone across the human placenta (47). P-gp is further expressed in the liver, 

gastrointestinal tract, and at the blood-brain barrier (45) and plays an essential role in 

transporting methadone  out of the brain and the placenta. There have been several 

polymorphisms associated with increased central nervous system effects of opioids by 

decreasing efflux out of the brain (48).  

 

The mu-opioid receptor is the preferential binding site of methadone. Encoded by the 

polymorphic OPRM1 gene, variability in this receptor has been linked to susceptibility of 

developing opioid addiction, increased opioid requirements and reductions in β-endorphin 

binding (49-51). A single nucleotide polymorphism (SNP) at 118 A>G results in an amino 

acid change from asparagine to aspartic acid has been shown to affect the efficacy of opioids 

like methadone (51, 52). The wild-type (A118) has been shown to have approximately ten 

times more binding sites than the G118 potentially accounting for a decrease in methadone 

response seen in homozygous carriers of this SNP (52). Through the mu-opioid receptor, 

levels of circulating neurotransmitters (dopamine, serotonin) are altered in the drug-reward 

pathway. Catechol-o-methyl transferase  is responsible for the breakdown of catechol 

neurotransmitters and polymorphisms in this enzyme have been associated with an increased 

risk for opioid addiction (53).  

 

The impact of genetic polymorphisms on the development and severity of NAS following 

methadone exposure has only been reported by one group (24). Watchman et al. explored the 

impact of SNPs in OPRM1, COMT and ABCB1 with the length of stay and the need for 
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treatment of NAS. Variants in OPRM1 and COMT genes showed a protective effect and were 

associated with a decrease in hospital stay and less need for pharmacologic treatment. The 

effects of polymorphisms in drug metabolism enzymes on methadone levels in the neonate 

and on overall NAS progression have yet to be investigated.  

 

The overall objective of this prospective pilot study is to determine the feasibility of 

recruiting pregnant women taking methadone and to establish the logistics of collecting 

neonatal and cord blood samples at the 2 participating hospitals. Auxiliary objectives include 

investigating pharmacogenomic predictors of NAS severity and enantiomeric analysis of 

placental (cord blood) and neonatal levels following in utero methadone exposure. 

 

2.4.2 Patients and methods: 

Ethics approval was received from the institutional research ethics board (REB) at the 

University of Western Ontario. Women were recruited from the local methadone clinics 

through their health care team, which included a pharmacist and family physician. Consenting 

women were recruited prior to delivery. A sample size of 20 was chosen due to feasibility and 

convenience sampling for this pilot study. At delivery placenta and cord blood samples were 

obtained by the obstetrical nurse. At 24hrs of age a 500µl sample was collected in conjunction 

with routine blood work for the Ontario Newborn Screening program. Neonates remained in 

Hospital until deemed ready for discharge. In hospital neonates were monitored for symptoms 

of NAS using a standardized Finnegan Scale. Neonates, who had consecutive scores above 8, 

were treated with oral morphine as pre the institutional NAS treatment protocol. If morphine 

treatment was initiated weaning was at the discretion of the clinical staff. All decisions 
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regarding hospital discharge and at home-oral morphine weaning were made by the clinical 

team and were not influenced by the research staff. All parents were trained on the signs and 

symptoms of NAS and invited to return to hospital should these symptoms appear in their 

neonates following discharge. Telephone interviews were planned for 1 and 2 weeks 

following hospital discharge to assess any remaining withdrawal symptoms, or health 

concerns regarding mother and baby.  

Genotyping: 

Genomic DNA was isolated from infant blood samples with the Gentra Puregene 

extraction kit (Qiagen, Alameda, CA, USA) according to the manufacturer’s protocol. DNA 

samples were genotyped for CYP2B6 516G>T (rs3745274), CYP2B6 1459 C>T (rs3211371), 

ABCB1 1236C>T (rs1128503), ABCB1 2677G>T/A (rs2032582),  ABCB1 3435C>T 

(rs1045642), COMT 472G>A, and OPRM1 118 A>G (rs1799971) using TaqMan® 

genotyping assays (C__7817765_60, C__30634242_40, C__7586662_10, C_11711720C_30, 

C_11711720D_40, C__7586657_20, C__25746809_50, C_8950074_1;  Applied Biosystems, 

Carlsbad, CA, USA) on a 7500 Real-time PCR system (Applied Biosystems). CYP2B6 

785A>G (rs2279343) genotype was determined by sequencing. 

Measuring drug levels: 

Methadone was extracted from serum and placenta samples using a solid-phase C18 

Speed-disk SPE cartridge pretreated with methanol and water prior to use. A sample of 200µl 

was loaded and washed with 0.5ml water and 200ml methanol/water (50/50). Methadone and 

EDDP were eluted into test tubes with 0.5ml methanol modified with TEA/FA (0.01% each). 

Following evaporation at 40°C and residual   reconstitution in 50µl mobile phase, 20µl was 
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injected onto the analytical AGP chiral column. This assay was performed using an Agilent 

LC-Thermo MS system using a mobile phase consisting of 14% ACN: 86%NH4 formate. The 

column was maintained at room temperature. Data was acquired resulting in a total ion 

current (TIC) plot with values of 278 for methadone and 310 for EDDP. Retention times are 

6.0mins for R-methadone, 7.6mins for S-methadone, 4.2mins for R-EDDP and 5.0mins for S-

EDDP. All quantification was performed manually using external standard quantitation 

(ETSD) methodology. 

2.4.3 Results:  

Between May 8, 2009 and August 11, 2010 26 pregnant women using methadone were 

approached to participate in this study, of which 22 provided informed consent and delivered 

healthy babies. Mothers were on average 26.55 ± 6 years of age and the majority (81%, 

13/16) received prenatal care (Table 2.3). All neonates recorded Apgar scores of 9 at 5 

minutes and there were no resuscitation attempts required at delivery. There was one 

premature birth (36/4 weeks) and two low birth weight babes (2390g, 2410g) in this cohort. 

The mean length of stay in hospital (LOS) was 8.94 ± 9.11 days.  Maternal methadone dose at 

delivery was a mean dose of 70 ± 31mg per day. All mothers reported addiction to opioids 

(oxycontin, heroin, and oxycodone) as the reason for their maintenance on methadone. 

Methadone use throughout the entire pregnancy was reported by the majority of mothers 

(67%) and the shortest duration of in utero exposure was 3 months. Maternal methadone dose 

at delivery did not correlate with placental or neonatal methadone levels obtained at 24hours 

of life (Figure 2.2). 
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While all neonates exhibited some symptoms of NAS only 36% (8/22) required 

pharmacologic intervention. Clinical characteristics of those who required pharmacologic 

intervention can be found in Table 2.4. All pharmacologic management was done by 

administration of morphine, except in one case where phenobarbital was used. Breastfeeding 

was significantly associated with less need for pharmacologic intervention, and a sorter LOS 

(p > 0.01). Neonates who were managed without pharmacologic intervention were 

significantly smaller, despite being of the same average gestational age. Further meta-analysis 

of breastfeeding and birth weight revealed a significant effect of breastfeeding in reducing the 

need for pharmacologic management (p = 0.03) and no effect of birth weight (p = 0.98).  

Previously identified clinical risk factors including polysubstance use, smoking, duration of 

exposure and maternal methadone dose were not associated with the need for pharmacologic 

management of NAS in this cohort. The effects of prematurity could not be assessed in this 

pilot as only one babe was born prior to 37 weeks. Genotype frequencies and NAS severity 

measures (LOS, need for pharmacologic treatment) are shown in Table 2.5. The rate of 

methadone (S)-enantiomer breakdown (S-EDDP/S-methadone) is displayed according to 

CYP2B6 genotype in Figure 2.3. The mean placental methadone level was 176.67 ± 

119.03ng/ml (R-methadone) and 113.17 ± 80.04 ng/ml (S-methadone). The mean placental 

concentration of R-EDDP was 14.39 ± 9.75 ng/ml and 24.25 ± 21.62 ng/ml for S-EDDP. In 

the neonate methadone concentrations measured an average of 73.20 ± 71.32 ng/ml (R-

methadone) and 39.64 ± 37.29 (S-methadone). The methadone metabolites measured in 

neonates had average concentration of 3.56 ± 5.96 ng/ml and 5.21 ± 9.05ng/ml for R-EDDP 

and S-EDDP respectively. Follow-up was not completed with any participants.  
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Table 2.3. Maternal and infant demographics presented as mean and standard deviation or 

percent.  
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Maternal and Neonatal Demographics: Mean ± SD or % (No.) 

Neonates (N = 22):  
Male 29% (6/21) 

Breastfed 67% (10/15) 
Mean Gestational Age (54) 39.34 ±1.23 
Mean Birth Weight (grams) 3180 ± 525 

Mothers (N = 22):  
Age (years) 26.82 ±5.68 

Parity  0.85 ± 1.72 
Methadone duration during pregnancy  (months) 7.81 ± 2.02 

Hep C Positive 5% (1/22) 
HIV Positive 5% (1/22) 

Smoking (yes) 94% (15/16) 
Polysubstance Use 54% (7/13) 

Reason for methadone use:  
Oxycontin 57% (8/14) 

Oxycodone 29% (4/14) 
Illicit substance (cocaine, heroin) 14% (2/14) 

Concomitant substances:  
Antidepressants 23% (3/13) 

Benzodiazepines 23% (3/13) 
Marijuana 23% (3/13) 

Psychostimulants 8% (1/13) 
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Table 2.4. Clinical characteristics of neonates who required pharmacologic intervention to 
manage their NAS and those managed with non-pharmacologic techniques. Data is presented 
as mean ± standard deviation. Statistical analysis was performed using an unpaired students t-
test for continuous variables, and Fischer’s exact test for dichotomous variables. 
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Pharmacologic 
intervention             
(N=8) 

Non-
pharmacologic 
management                
(N = 14) 

P value 

Maternal Age 26.63 ± 5.76 26.50 ± 6.24 0.96 

Prenatal Care 83% (5/6) 80% (8/10) 1.00 

Birth weight percentage for GA  72 ± 27  40 ± 32 0.04 

LOS (days) 20 ± 11.48 3.54 ± 1.81 0.0001 

Highest NAS score 13.75 ± 2.28 6.08 ± 2.20 0.0001 

Smoker 88% (7/8)  100% (8/8) 1.00 

#cigs/day 13.63 ± 10.20 10.63 ± 7.25 0.50 

Breastfeeding 33% (2/6) 89% (8/9) 0.04 

Methadone dose (mg/day) 81.75 ± 29.45 61.18 ± 29.31 0.15 

Duration of exposure 8.07 ± 1.64 7.62 ± 2.20 0.67 

Polysubstance use (yes) 50% (3/6) 63% (5/8) 1.00 
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Figure 2.2. Total methadone measured in the placenta and in the neonate correlated with 
maternal methadone dose at the time of delivery (mg/day). R2 neonate = 0.01189, R2 placenta 
0.02072. 
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Figure 2.3.  (S)-methadone metabolic ratio in the placenta and the neonate at 24 hours of life  
according to CYP2B6 genotype as measured by amount of metabolite divided by parent 
compound metabolite in ng per ml. Data is presented as mean ± standard deviation. 
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Table 2.5. Genotype prevalence and NAS severity markers where LOS is the median length 
of stay in hospital presented with the range. The need for treatment for NAS denotes the 
number of infants requiring morphine during their NAS management in hospital. 
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Gene SNP: Genotype: N = LOS 
(#days) 

Need tx for 
NAS % (N) 

CYP2B6 

A785G (*4) 

AA 14 3.5 (2-38) 36% (5) 

AG 2 2.5 (2-3) 50% (1) 

GG 2 29 100% 

C1459T (*5) 

CC 14 4 (2-29) 36% (5) 

CT 2 2.5 (2-3) 0% 

TT 2 38 100% (2) 

G516T  (*9) 

GG 14 3 (2-38) 43% (5) 

GT 2 3 (2-4) 0% 

TT 2 29 100% 

OPRM1 A118G 

AA 13 2 (2-29) 31% (4) 

AG 5 8 (2-38) 60% (3) 

GG 0 NA NA 

COMT val158met 

GG 8 3 (2-16) 38% (3) 

GA 7 5 (2-38) 57% (4) 

AA 3 3 (2-4) 0 % 
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2.4.4 Discussion: 

 Methadone is a first line therapy for treating opioid dependency in pregnancy and 

throughout lactation. According to the American Academy of Pediatrics and the Centre for 

Substance Abuse Treatment methadone is considered safe and compatible during 

breastfeeding (10, 38).  Controversial findings surrounding the association of maternal 

methadone dose at delivery and NAS severity (7, 22) was furthered in this cohort as maternal 

dose did not correlate with neonatal total methadone exposure, total methadone in the cord 

blood sample (placenta) or the need for pharmacologic management for NAS, indicating the 

potential importance of other clinical and genetic variables. 

 

Prematurity has been associated with a reduced NAS severity due to an immature 

CNS, less accumulation of drug in fatty tissue and an overall decrease in length of exposure 

(7, 20). Further clinical risk factors for NAS potentially include gender, in which one study 

reported male babies with an greater need for pharmacologic intervention (21), maternal 

polysubstance use (20, 22), and duration of exposure. Prematurity was not assessed in this 

cohort, as only one neonate was born prior to 37 weeks. Table 2 revealed that low birth 

weight was associated with a reduced likelihood for requiring pharmacologic management 

which was unsupported by meta-analysis which revealed that smaller babies were more likely 

to be breastfed.  This may have resulted from increased lactation encouragement from the 

clinical care team for infants of lower birth weight. In accordance with prior reports, 

breastfeeding was associated with less severe NAS in this cohort, as breastfed infants reported 

both a significantly shorter LOS and a decreased need for pharmacologic intervention (19, 55, 
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56). Previously reported infant serum methadone levels following exposure in breast milk are 

low (0.3-8.1ng/ml), thus breastfeeding should be encouraged for mothers maintained on 

methadone (without contraindications, such as HIV) (19, 57).  

 

Predicting neonatal abstinence syndrome severity is a complex multifactorial problem 

and this small pilot study is the first of its kind to examine clinical and genetic risk factors and 

assess neonatal and placental methadone breakdown. This pilot study assessed the feasibility 

of prospectively collecting cord blood and newborn blood samples in mothers taking 

methadone during pregnancy. Cord blood samples were taken as a measure of placental 

exposure. Pilot studies are an essential component to the research process and provide 

information critical to the design of a larger scale study. Pilot study design strengths included 

a minimal amount of blood that was taken from the neonate. Sample collection was done in 

conjunction with other blood sampling, so that the baby will not experience any additional 

pain. In the future, it may be useful to collect additional blood samples at a later time point to 

assess the clearance of methadone as well as morphine metabolites in those infants requiring 

pharmacologic management. Limitations of this study included missing maternal genotypes 

and the lack of follow-up. Although initially planned in the study protocol, following several 

attempts all mothers were unable to be reached over the telephone. The authors recommend 

future studies seek consent to involve the mothers health care team (GP, paediatricians, social 

workers, public health nurses) that have more frequent contact with the patient to increase 

follow-up feasibility. Initiating pro-active follow-up techniques will increase compliance and 

data collection following discharge from hospital.  
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In conclusion this study demonstrated the feasibility of collecting cord blood and 

neonatal blood samples in babies exposed to methadone in utero. To the authors best 

knowledge this is the first report of the involvement of CYP2B6 polymorphisms in neonatal 

methadone metabolism and NAS severity. The strengths and limitations reported here should 

be used to design a future prospective cohort study to further investigate pharmacogenomic 

and clinical predictors of neonatal abstinence syndrome and enantiomeric methadone levels in 

the newborn. 
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Chapter 3: Neonatal safety of codeine in breast milk 

 

Part of this chapter has been published:                                                                                      

Kelly LE, Chaudhry SA, Rieder MJ, ‘t Jong G, Moretti ME, Lausman A, Ross C, Berger H, 

Carleton B, Hayden MR, Madadi P, Koren G. A clinical tool for reducing Central Nervous 

System depression among neonates exposed to codeine in breast milk.  PLoS-One 2013; 8 (7): 

e70073 
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3.1 Codeine/morphine transfer into breast milk 

For decades, codeine has been widely used in the management of post-partum pain. As 

previously discussed, studies have documented the transfer of both codeine and morphine into 

breast milk. The literature describes a neonate breastfed by a mother taking a low dose of 

morphine that showed serum morphine concentrations in the analgesic range of 4ng/ml but 

breast milk morphine levels varied from 10-100ng/ml (1). In a second neonate, a single 60mg 

codeine dose produced breast milk codeine concentrations ranging from 140-455 µg/L during 

the first hour post administration (2). In the wild-type CYP2D6 metaboliser we would expect 

roughly 7% of a codeine dose to be converted to morphine. Following moderate codeine use 

(60mg, 4 times daily), analysis of milk samples from 11 healthy neonates revealed codeine 

breast milk concentrations between 33.8-314 µg/L and morphine levels ranging from 1.9-20.5 

µg/L (3). The majority of these reports do not account for maternal genotype or for variability 

in the total length of time spent breastfeeding which may account for the high variability in 

both codeine and morphine breast milk levels.   

 

3.2 Adverse neonatal effects following codeine exposure in 
breast milk 

 

The first reports of  adverse neonatal effects following maternal codeine use during 

lactation appeared in the literature in 1985 (4). In that report four neonates, whose mothers 

were taking 60mg of codeine every 4-6 hours, experienced apnea which resolved following 

the mothers’ discontinuation of codeine (4). In 2006,  a neonate succumbed to morphine 

poisoning following  maternal use of codeine during lactation (5).  Following an episiotomy 
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the mother of the healthy neonate was prescribed Tylenol #3 ® containing 30mg of codeine. 

Being prescribed a standard dose of two tablets twice a day; she subsequently reduced her 

intake to one tablet twice a day due to constipation and somnolence, which she continued for 

two weeks. A breast milk sample frozen on day 10 revealed morphine concentration of 87 

ng/ml (5). On day 13 the neonate was found cyanotic and without vital signs (5). The mother’s 

genotype revealed CYP2D6 UM status, resulting in an increased amount of morphine 

produced from a standard codeine dose. This fatality resulted in the FDA and Health Canada 

altering codeine labels to include a warning for nursing mothers (6). 

 

In order to investigate further the correlation between maternal genotype and neonatal 

adverse events, a case-control study was initiated by the Motherisk Program at the Hospital 

for Sick Children (7). This retrospective study on 72 mother infant pairs identified neonatal 

CNS depression in 25% of babies and a significant correlation between adverse CNS 

symptoms in the mother and symptomatic infants (7). Mothers with the CYP2D6 UM 

genotype and the UGT2B7 *2/ *2 were at an increased risk for reporting adverse neonatal 

effects (7). In 2012, a report on 111 mother infant pairs by Sistonen et al., identified an 87% 

predictive value for codeine- related adverse neonatal effects, based on maternal dose, 

CYP2D6 and ABCB1 genotype (8). Also in 2012, a report by our group revealed a neonatal 

adverse event rate of 17% (35/210) following maternal codeine use (9). Limitations of these 

three retrospective studies include maternal self-report of neonatal effects and the potential for 

recall bias. However, we did use control groups of mother-child pairs exposed to only 

acetaminophen. As up to 50% of births are via caesarean section or episiotomy, and 80% of 

Canadian women initiate breastfeeding, the findings of these previous studies highlight the 
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importance of identifying strategies to potentially improve the safety of codeine use post-

partum.  

3.3 An intervention study for reducing Central Nervous System 
depression among neonates exposed to codeine in breast milk 

 

3.3.1 Background and study rationale 

 

Codeine-containing medications are commonly used for postoperative pain following 

caesarean section or episiotomy (10).  Maternal breast milk is the ideal feeding method for 

newborns and is recommend by The American Academy of Pediatrics (11) and the World 

Health Organization (12).  In Canada, up to 80% of new mothers initiate breastfeeding (13) 

and between 20-33% of all births are by caesarean section, rendering thousands of newborns 

exposed to codeine, and its active metabolites, morphine and morphine-6-glucuronide (M6G) 

through breast milk (14, 15) . 

 

Codeine is often considered a pro-drug, as the majority of its analgesic properties 

result from its biotransformation into morphine by the highly polymorphic cytochrome P450 

enzyme 2D6 (CYP2D6). Morphine is further metabolized to the active morphine-6-

glucuronide (M6G) and inactive morphine-3-glucuronide by UDP-glucuronosyltransferase 

(UGT) 1A1 and 2B7. The active metabolites of codeine, morphine and M6G, relieve pain via 

their action at the mu-opioid receptor.  CYP2D6 has over 80 variant alleles which differ in 

their contribution to enzyme activity (16). Individuals with a functional gene duplication, 
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resulting in the ultra-rapid metaboliser (UM) phenotype, have on average 50% higher plasma 

concentrations of morphine and M6G than the wild-type (17). The CYP2D6 UM phenotype in 

mothers has been associated with an increased risk for neonatal central nervous system (CNS) 

depression (7). Conversely, two alleles with no activity results in a poor metabolizer (PM) 

phenotype and these patients  typically  receive little or no therapeutic benefit from codeine as 

they form negligible amounts of the active metabolites (16, 17). Polymorphisms in drug 

transport by p-glycoprotein (ABCB1), the opioid receptor (OPRM1) and catechol-o-

demethyltransferase  are also thought to cause variability in response to codeine, morphine 

and their metabolites.  

 

In 2006, our group reported a fatal case of CNS depression in a breastfed infant 

resulting from morphine overproduction in a CYP2D6 UM mother (5).  Following the 

publication of this case, the United States Food and Drug Administration as well as Health 

Canada published public health advisories and label changes warning that codeine may not be 

safe during breastfeeding for infants whose mothers are CYP2D6 UMs due to an increase in 

morphine production (6, 18). Since then, a prospective study of women taking codeine 

postpartum revealed that 16.7% (35/210) of mothers reported CNS depression in their infants 

following postpartum use of codeine (9). 

 

These risks of neonatal CNS depression led the Motherisk program to critically 

evaluate the available scientific evidence and propose guidelines for safe use of codeine 

during breast feeding (19). Further pharmacokinetic data confirmed that potentially toxic 
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morphine concentrations can be reached within 4 days in breastfed neonates after multiple 

doses of maternal codeine (20). The repeated observations of CNS depression after more than 

4 day exposure to codeine through milk, the high concordance between maternal and neonatal 

CNS depression, and the typical adverse symptoms; including prolonged sleep, missing 

feeding, poor latch and poor weight gain were identified as clinical factors associated with 

infant CNS depression following codeine exposure (Figure 3.1)(19). The primary objective of 

the present study was to evaluate the effectiveness of these safety guidelines at improving 

neonatal safety.   

 

3.3.2 Patients and methods:  

 

 This study was approved by the institutional Research Ethics Board at the University 

of Western Ontario and St. Michael's Hospital. Mothers taking codeine for pain following 

caesarean section at St. Michael’s Hospital, Toronto, Canada were recruited between 

December 1, 2009 and November 30, 2011. A team member obtained written and informed 

consent from the expectant mother, as well as provided all study information and answering 

questions. At the time of their post-operative codeine prescription, women were provided with 

a copy of the codeine safety guidelines (Figure 3.1). At the time of recruitment, mothers were 

advised regarding the mode of action of codeine, effect of genetic makeup of mother on 

conversion of codeine to morphine. They were also informed about the possible adverse 

effects in mothers like sedation, dizziness, drowsiness, and constipation. Information was also 

given regarding the possible adverse effects on the breastfed neonates such as poor latching 
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onto the nipple or poor feeding, limpness, prolonged sleep or difficulty breathing. Mothers 

were given a 24 hour contact telephone number and were advised to bring their child to an 

emergency department if any of the above symptoms were noted. Due to the previously high 

reported rates of neonatal sedation 16% (35/210) it was deemed unethical to randomize a 

control arm without educational intervention (9).  

 

Following delivery, provided it was unremarkable, the mother and infant normally 

remained in hospital for several nights before being discharged home.  In the 16-hour period 

after delivery the mother was not typically given any analgesic medication except for epidural 

analgesia.  After 16 hours most mothers began taking Tylenol #3 (500 mg acetaminophen and 

30 mg codeine) for their pain every 4-6 hours as needed and were sent home with a 

prescription for this medication or other non-opioid analgesic(s). All mothers were given a 

“Patient Medication and Breastfeeding Tracking Sheet” to track breastfeeding progression, 

medication use and infant health. One week after discharge, a follow-up telephone interview 

was conducted to assess maternal and infant health with a specific focus on neonatal CNS 

depression. Follow-up was conducted using a standardized questionnaire to ensure all 

participants provided the same quantity and quality of follow-up data.  In order to identify 

neonatal sedation data was collected on the several parameters including the number of times 

an infant fed per night, whether or not they woke up for feeds and the length of time per feed. 

At the time of recruitment mothers were advised to look for any latching problems, breathing 

difficulties, or any fluctuations in skin colour which was reported at the time of follow-up. 

Data was also collected on the number of bowel movements per 24 hours, the length of sleep 

at one time and the total amount of sleep per night. The interview also included maternal 
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satisfaction with pain control, self-reported analgesic dose, and any maternal adverse drug 

reactions. 

 

 Mothers had the option of providing a saliva sample for genetic screening.  The saliva 

sample was labelled with a unique barcode and couriered to the Canadian Pharmacogenomic 

Network for Drug Safety (CPNDS) Core Laboratory in Vancouver, British Columbia.  In 

order to determine the role of genetic variability on the codeine and morphine pathways, 

polymorphisms in several key genes (ABCB1, COMT, UGT 2B7, OPRM1) were analysed. 

Maternal DNA was purified from saliva samples using the QIAmp DNA purification system 

(Qiagen, Toronto, ON, Canada) according to the manufacturer’s protocol. DNA samples were 

genotyped for variants in CYP2D6 using the AutoGenomics INFINITI® Analyzer and the 

CYP450 2D6I Assay (AutoGenomics Inc., Vista, CA, USA), as well as SNaPshot, and 

TaqMan copy number assays as previously described  (8, 21). A genotype activity score was 

calculated based on the scores of the individual alleles and patients were classified into four 

CYP2D6 phenotype classes: poor metabolizers (PM: activity score of 0); intermediate 

metabolizers (IM: activity score 0.5-1); extensive metabolizers (EM: activity score 1.5-2; and 

ultra-rapid metabolizers (UM: activity score >2 due to a functional gene duplication). 

CYP2D6*1 or *2 alleles were assigned an activity score of 1, the partially functional *9, *10, 

*17, *29, or *41, alleles were  assigned an activity score of 0.5, and the non-functional *3, *4, 

*6, *7, *8, *12, or *14 alleles were assigned an activity score of 0.  Whole gene deletions (*5) 

were assigned a score of 0.  Activity scores in the case of whole gene duplications were 

assigned according to the number of functional CYP2D6 copies.  If none of the 



106 
 

aforementioned alleles were detected, the individual was assigned the default wild-type allele 

of *1. Gaedigk and colleagues describe in more detail the CYP2D6 alleles (22). 

 

DNA samples were also genotyped for genetic variations in the ABCB1 gene: 61 A>G 

(rs9282564), 1236C>T (rs1128503), 2677G>T/A (rs2032582), and 3435C>T (rs1045642), 

COMT (rs165815, rs4633, rs4818, rs740602) and OPRM1 gene 118 A>G (rs1799971) using 

TaqMan® genotyping assays (Applied Biosystems, Foster City, CA, USA), as previously 

described (8).  

 

Continuous parametric data were compared using an unpaired Students t test and are 

reported as mean values with the corresponding standard deviation. Nonparametric 

continuous data are reported as median (range) where appropriate and were analysed using the 

Mann Whitney U test. Normally distributed data were compared by Student’s t test for 

unpaired results. All discrete and binary data is conveyed in percentages and significance was 

tested using a Fisher Exact test. 
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Figure 3.1. Safety guidelines for codeine use during breastfeeding. Motherisk safety 
guidelines for codeine use in breastfeeding pamphlet given to all expectant mothers with 
planned caesarean sections at St. Michaels Hospital in Toronto, Ontario, Canada (19). Women 
were advised to take codeine for as short a period as possible (3-4days postpartum) and were 
advised to seek the care of a physician if they required pain medication beyond this point. 
Mothers were also advised to breastfeed before taking codeine to maximize the time to 
eliminate codeine in between feeds. ©Motherisk Program and The Hospital for Sick Children. 
Reprinted with permission from the Canadian Family Physician  

 

 

 

 

 

 

 

 

 



108 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

3.3.3 Results 

A total of 255 women consented to participate in this study, however 15 were lost to 

follow-up and one woman withdrew for personal reasons. There were 268 women approached 

to participate in the study. We included 238 women giving birth to 239 healthy babies (129 

males, 108 females and one set of male/female twins). Ethnicity was self-described, and the 

mother`s grandparent’s country of origin were documented. There were 87 women that 

identified as Caucasian (37%), 42 as South or Central American (18%), 36 as Asian (15%), 

34 as African American (14%), 24 identified as Indian (10%) and the remaining 15 originated 

from other countries. Saliva samples were collected from 192 participants. 

 

Expectant mothers’ mean weight was 74.86 +/- 12.10 kg prior to delivery with a mean 

age of 32.82 +/- 5.58 years. Following delivery mothers remained in hospital for a mean of 

1.91+/- 0.75 days. The mean dose of codeine taken by the participants was 1.18 +/- 0.54 

mg/kg/day for 2.56 +/- 1.51 days. When asked why they stopped taking codeine, 86% 

(204/237) reported that they had no more pain, 7% of mothers that stopped taking codeine due 

to adverse reactions in themselves (10/237 for excessive sedation, 6/237 for constipation,). 

Six mothers, (2.5%) discontinued codeine use over concerns for their infants and 4.6% 

stopped taking codeine because they found it ineffective in managing their pain. Patient’s 

genotype did not correlate with the reasons for codeine discontinuation. There was only one 

mother who contacted the 24 hour hotline. 
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Five women reported sedation in their child following exposure to codeine in breast 

milk (2.1%, 5/238). None of these five mothers reported adverse reactions to codeine in 

themselves during use of the drug. There were no significant differences identified in the 

length of time spent breastfeeding, or the total amount of codeine used (Table 3.1). Women 

reporting sedated infants were taking codeine for a significantly longer period of time, and on 

average (4.80 days) in excess of the 4 days recommended by the guidelines (4.80 ± 2.59 days 

vs. 2.52 ± 1.58 days, p = 0.0018 by Students t test).  There were no sedated infants or 

maternal adverse drug reactions reported in the CYP2D6 ultra-rapid metabolizer group. 

Mothers with CYP2D6 UM status breastfed for a similar length of time and took similar 

amounts of codeine as all remaining phenotypes (Table 3.2). A total of 9% (19/238) of 

mothers reported adverse reactions following codeine use postpartum. These complaints 

included sedation, dizziness, constipation and nausea. Maternal adverse response did not 

correlate with neonatal sedation (0/19 vs. 5/219). All mothers with symptomatic neonates 

were non-Caucasian in origin. 

 

Maternal DNA was analyzed for polymorphisms in ABCB1, COMT, UGT 2B7, 

OPRM1. Maternal adverse events did not correlate with any of the genes analysed in this 

study (Table 3.3). Furthermore there were no associations of infant sedation with any of the 

genes evaluated. The minor allele frequency (MAF) for all polymorphisms was not 

significantly different from the global reported MAF as taken from the NCBI dbSNP database 

(http://www.ncbi.nlm.nih.gov/projects/SNP/).  

 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Table 3.1. The influence of clinical factors on neonatal sedation (Infant ADR). Demographic 
characteristics of Mothers of sedated infants (Infant ADR) and those whose infants were did 
not report any changes in health status (asymptomatic). Statistical significance was set at P < 
0.05. Parametric values are presented as mean ± standard deviation and nonparametric values 
are presented as median (range). 
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 (N = 5) (N = 233)  
 Infant ADR Asymptomatic P Value 

    
No. days  taking codeine 4.8 ± 2.6 2.5 ± 1.6 0.01 
Total amount of codeine used 
(mg/kg) 5.1 ± 2.4 3.2 ± 2.5 0.08 

No. times feeding per day 8.5 (7.0-9.0) 9.0 (3.0-13.0) 0.27 

Baby GA  38.6 ± 1.1 39.1 ± 1.4 0.44 

Baby Birth Weight (g) 3392.4 ± 584.4 3403.1 ± 510.12 0.96 

No. consecutive hours slept 3.5 (2.5-4.0) 2.5 (1.5-4.5) 0.19 

Maternal ADR 0  8 % (19/242) 0.67 

Formula supplementation 20 % (1/5) 17 % (39/229) 0.41 

Non-Caucasian 100 % (5/5) 62 % (143/230 0.10 
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Table 3.2.  The influence of CYP2D6 genetic factors and breakdown of demographics. 
Patient characteristics and reported outcomes broken down by Maternal CYP2D6 phenotype, 
where a poor metabolizer has a CYP2D6 activity score of 0, intermediate a score between 0.5-
1.0, extensive a score between 1.5-2.0 and ultra-rapid a score of 2.5 or higher.  Data are 
presented as mean ± standard deviation, and median (range) for nonparametric data. 
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Poor 
Metabolizer     
(N = 11) 

Intermediate 
Metabolizer            
(N = 70) 

Extensive 
Metabolizer             
(N = 105)  

Ultra-rapid 
Metabolizer                 
(N = 6) 

Total Codeine Dose 
(mg/kg/ day) 1.4 ± 0.6 1.1 ± 0.4 1.2 ± 0.5 1.2 ± 0.3 

Total No. days on 
codeine 2 (1-3) 2 (1-9) 2 (1-9) 2 (1-3) 

Maternal Age 
(years) 34.5 ± 5.5 32.9 ± 5.7 32.6 ± 5.51 32.0 ± 6.8 

No. times breastfed 
in 24hours 9 (7-10) 9 (6-13) 8.75 (3-11.5) 9 (7-13) 

Baby GA  39.3 ± 1.4 39.0 ± 1.2 38.5 ± 1.3 38.8 ± 0.4 

Baby weight 
(grams) 

3517.5 ± 
513.4 3379.4 ± 510.8 3421.3 ± 519.5 3199 ± 321.8 

No. reported infant 
ADRs (%) 0 3 (4 %)  2 (2 %) 0 

No. reported 
maternal ADRs (%) 1 (9 %) 7 (10 %) 7 (6 %) 0 
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Table 3.3. The influence of genetic factors on reported maternal adverse effects. Minor allele 
frequency (MAF) for polymorphisms in the p-glycoprotein transporter (ABCB1), cathechol-
o-methyltransferase (23), mu-opioid receptor (OPRM1) and UDP glucuronosyltransferase 
(UGT) 2B7 in mothers reporting adverse drug reactions (ADR) in themselves compared to 
those that were asymptomatic (healthy). Significance value was set at P < 0.05. 
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Gene SNP Global
MAF: 

Observed 
MAF (N): Allele 

Percent of 
mothers 
reporting 
ADRS        
(N = 19) 

Percent 
of 
healthy 
mothers    
(N = 218) 

P 
Value 

ABCB1 rs1128503 0.42 T = 0.445 
(212) TT 21 25 0.21 

    TC 37 44 0.16 

    CC 42 31 0.12 

 rs2032582 0.34 A = 0.21 
(100) AA 21 16 0.19 

   
T = 0.21 
 (98) AT 5 6 0.38 

    GG 32 39 0.16 

    GT 37 35 0.19 

    GA 5 3 0.38 

 rs1045642 0.40 T = 0.44 
(207) TT 26 21 0.19 

    TC 32 45 0.10 
        CC 42 34 0.15 

COMT rs4680 0.39 A = 0.43 
(204) AA 21 21 0.23 

    AG 32 46 0.10 

    GG 47 33 0.10 

 rs4633 0.39 T = 0.42 
(200) CC 47 34 0.10 

    CT 37 45 0.15 

    TT 16 21 0.27 

 rs4818 0.32 C = 0.65 
(306) CC 37 41 0.18 

    CG 42 48 0.17 
        GG 21 11 0.12 

OPRM1  rs1799971 0.19 G = 0.22 
(105) AA 68 62 0.18 

    AG 32 30 0.20 
        GG 0 8 0.23 

UGT 2B7 rs7439366 0.47 T = 0.44 
(206) 

CC 
CT 
TT 

37 
37 
36 

36 
40 
24 

0.20 
0.19 
0.21 
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3.3.4 Discussion 

 

Given the considerable genetic variability in codeine response, its frequent use 

postpartum, and the previously reported high rates of neonatal sedation, it was imperative to 

evaluate the effectiveness of a clinical tool to improve infants’ safety. We have developed 

safety guidelines that combined clinical data from two case control studies with previously 

identified genetic markers of toxicity (6) (7) .  The present study is the first prospective study 

to evaluate the effectiveness of codeine guidelines for breastfeeding mother/infant pairs. The 

safety guidelines developed recommend use of codeine for no longer than four days 

postpartum, as generally milk production is lower in these first few days of life, and thus 

neonatal morphine accumulation is minimized (19, 20).  The only significant difference seen 

between symptomatic and nonsymptomatic infants in the present study was the duration of 

codeine use, where neonatal CNS depression occurred among infants exposed to codeine for 

more than 4 days.  These data suggest that minimizing codeine use to the first four days can 

significantly reduce neonatal exposure and reduce the incidence of reported neonatal CNS 

depression.  

 

Based on current codeine warnings, ethical considerations precluded the 

randomization of a group of mother-child pairs to not receive counselling on the potential 

neonatal risks of codeine use thus preventing a true control group. Using the Motherisk 

Codeine Safety Guidelines (19), the present cohort reported considerably lower rates of 

neonatal sedation [2% (5/238)] than a previously reported rate in a prospective study [16% 
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(35/210)] (9). The lack of formal randomized control arm in this trial does introduce some 

limitation in data interpretation as selection criteria and the time of follow-up is variable 

between studies. When following the guidelines mothers were less likely to supplement infant 

feeding with formula (16.74%) which was reported at 57.06% in a previously prospective 

cohort of women breastfeeding while taking codeine post-caesarean section (9). Providing 

mothers with the education tools to make informed decisions regarding their choice to 

breastfeed is important as maternal breast milk provides optimal nutrition for neonates.   

 

This study further supports educating mothers on the symptoms of codeine toxicity in 

their infants and the importance of a prompt response if these symptoms appear. The 

guidelines also recommend that if a woman is still in pain after 4 days of codeine use, she 

should attempt a non-opioid analgesic such as ibuprofen (19). In this study 86% of women 

reported that they discontinued codeine because their pain was well managed before 4 days. 

This suggests that codeine is effective and safe in treating maternal pain following caesarean 

section when used according to the Motherisk guidelines for no more than four days.  

 

There are several genetic polymorphisms important in determining codeine and 

morphine response. Previous work has identified maternal genetic factors that increase the 

risk for sedation in neonates exposed to codeine through breast milk including CYP2D6 UM 

phenotype, UGT2B7*2/*2 and ABCB1 2677TT (7, 8).  The UGT2B7 C802T variant which 

gives rise to a UGT2B7 *2 phenotype has shown to increase production of M6G, which is 

several fold more potent than morphine (24). A large portion of the original codeine dose is 
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also glucuronidated by UGT2B7 into codeine-6-glucuronide. This polymorphism was 

associated with an increased risk for neonatal sedation when found in combination with the 

CYP2D6 UM phenotype; however this finding has not been repeated (7). The increased 

morphine production seen with the CYP2D6 UM phenotype has been associated with an 

increased risk for codeine related adverse events in both mother and infant (7). Of importance, 

while following the safety guidelines, there were no maternal or neonatal adverse events 

associated with the CYP2D6 or UGT 2B7 genotype (Table 3.2). There is ethnically 

determined variability in polymorphism frequency that should be evaluated in future studies. 

For example, the frequency of the CYP2D6 UM phenotype has been reported to be as high as 

40% in women of North African descent, which is only described in approximately 2% of 

Caucasians (25). In this cohort none of the mothers of symptomatic infants conveyed the 

CYP2D6 UM phenotype, however, all five women identified themselves as non-Caucasian.  

While it is important to independently study the effects of ethnicity on codeine response, the 

present cohort represents the diverse patient populations typically seen in many North 

American Institutions. 

 

The genetic polymorphisms responsible for the production of morphine are not the 

only sources responsible for the variability seen in codeine response. Single nucleotide 

polymorphisms (SNP) in P-glycoprotein (ABCB1) have been associated with increased 

central adverse effects in patients taking morphine (26). This efflux transporter protein plays 

an important role in transporting codeine and morphine out of the brain. The maternal ABCB1 

2677TT polymorphism is significantly associated with neonatal CNS depression following 

breastfeeding resulting from a decrease in efflux out of the blood brain barrier (8). 
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Conversely, a seemingly protective SNP in the mu-opioid receptor (OPRM1) A118G 

decreases receptor expression in a lower incidence of opioid toxicity (27). Catechol-o-

methyltransferase (23) is responsible for the breakdown of neurotransmitters and interacts 

with the opioid receptor. Increased morphine sensitivity has been associated with several 

COMT SNPs (28). Polymorphisms in maternal OPRM1 and COMT have not be associated 

with an increased risk for neonatal sedation following breastfeeding but their importance for 

morphine effectiveness warrants further investigation.  Currently these polymorphisms are not 

routinely screened for before a patient is given codeine for pain.  

 

Our study shows that post-partum safety guidelines may improve the safety of codeine 

exposure in virtually all breastfed infants regardless of their genetic profile. Alternatively, 

post-partum maternal analgesia with Nonsteroidal anti-inflammatory agents (NSAIDs) should 

also be considered, as a recent systematic review of all randomized trials suggests that 

codeine is not superior to NSAIDs for analgesia after laparotomy (29). In conclusion, in our 

study mothers following the safety guidelines reported low levels of neonatal sedation (2%). 

Maternal adverse event rates were low, even in those genetically determined to be of high risk 

while maternal pain was effectively managed. These guidelines present a simple and effective 

approach to improving the neonatal safety while maintaining effectiveness of postpartum 

codeine use. 
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Chapter 4: Post-operative opioid use in children with obstructive 
sleep apnea  

 

Part of this chapter has been adapted from published work: 

 

Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely M, Carleton B, Hayden M, 

Madadi P, Koren G. More codeine fatalities after tonsillectomy in North America. Pediatrics 

2012; 129 (5) e1343-1347 

 

Part of this chapter has been submitted for publication: 

 

Kelly LE, Sommer DD, Ramakrishna J, Hoffbauer S, Arbabtafti S, Maclean J, Reid D, Koren 

G.  A randomized trial comparing morphine and ibuprofen for post-tonsillectomy pain 

management in children with sleep disordered breathing. Submitted to NEJM February 19, 

2014 
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4.1 Sleep apnea definition, prevalence and treatment in children 

 

Pediatric obstructive sleep apnea syndrome (OSAS) results from an increase in upper 

airway resistance or prolonged airway obstruction that disrupts ventilation and alters 

breathing patterns during sleep (1). OSAS is the most severe form of sleep disordered 

breathing in childhood. OSAS affecting 2-3% of all children from birth to adolescence, 

induces hypoxic state which can alter gas exchange and cellular respiration (2). According to 

the most recent census data approximately 600,000 - 1,800,000 North American children 

under the age of 15 are affected by OSAS (3, 4). The most common cause of pediatric OSAS 

is hypertrophy of the adenoids and/or tonsils. Untreated OSAS can cause several long-term 

sequalae including increased aggression, depressed mood, nocturnal enuresis, systemic 

hypertension and delayed physical growth (2). 

 

During sleep, children with OSAS have recurrent episodes of full or partial airway 

obstruction resulting in hypoxemia, hypercapnia, and sleep disruption (5). Diagnostic criteria 

for pediatric OSAS include an apnea-hypopnea index (AHI) greater than one event per hour 

and nadir oxygen saturation below 92% (6). Upon diagnosis by polysomnography, the 

primary treatment for pediatric OSAS is adenotonsillectomy (2). While the many  children 

improve their sleep apnea after surgery, up to 33% may not be cured (7-9). Moreover, after 

surgery, improvement may not occur for days to weeks, and many patients experience 

respiratory events in the peri- and post-operative period (10). The post-surgical pain 

associated with this procedure is moderate to severe and has been commonly managed in 

North America by opiates, mostly codeine (11, 12). 
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4.2 Pain management following surgery 

 

The pain associated with AT is classified as moderate to severe and due to a fear of 

increased tonsillar bleeding many physicians are hesitant to prescribe non-steroidal anti-

inflammatory medications (NSAIDs (13). Commonly, the opioid codeine was given to young 

children post-AT (13). Codeine is a prodrug, whose analgesic properties are dependent on its 

conversion to morphine.  The metabolism of codeine to active morphine depends on the 

highly polymorphic CYP2D6 pathway. Identified polymorphisms in this gene have given rise 

to the definitions of poor (PM), extensive (EM) and ultra-rapid (UM) metaboliser phenotypes 

resulting in varied amounts of morphine produced from a standard codeine dose. In the 

general population approximately 10% of codeine is bioactivated to morphine, however when 

administered to a poor metaboliser, almost no morphine is produced (14, 15). A functional 

gene duplication resulting in a CYP2D6 UM shows a gene-dose effect; as the number of 

CYP2D6 gene copies increases, so does the amount of codeine converted to morphine. A 

patient with the CYP2D6 UM can produce 50% up to 75% more morphine that a CYP2D6 

EM (15).  

 

The use of NSAIDs medications in children post-tonsillectomy is controversial due to 

their potential to adversely affect platelet function, resulting in prolonged bleeding (13). 

Hence, these medications are not used by many surgeons in North America. In a randomized 

double-blind pilot study, children receiving ibuprofen required medication for a longer period 

of time to treat pain than those who had received acetaminophen with codeine (13). In 

addition, ibuprofen was associated with a 12.5% postoperative hemorrhage rate, as compared 
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to 0% in the codeine group. These authors concluded that acetaminophen with codeine is safer 

and more effacious than ibuprofen in the management of post-

tonsillectomy/adenotonsillectomy pain in children (13). In contrast, a Cochrane review of 

over 1000 children found that NSAIDs (ketorolac excluded) did not significantly increase 

post-tonsillectomy bleeding when compared to placebo or other analgesics (odds ratio = 1.46, 

95% confidence interval = 0.49-4.40) (16). A recent systematic review and meta-analysis by 

our group comparing bleeding rates following post-tonsillectomy use of NSAIDs vs placebo 

or opioids included 1747 children and 1446 adults (17). In the large population of children 

studied there was no evidence for an increase tonsillar bleeding risk following the use of 

NSAISs (odds ratio = 1.06, 95% confidence interval = 0.65-1.74) (17). 

 

4.3 Case report: More codeine fatalities following tonsillectomy 

in North American children  

The purpose of this report is to discuss three previously unreported severe cases of 

opioid induced toxicity in children with OSAS post-AT. Consent was received from the 

Coroner’s office in Cases 1 & 3 and from the parents in Case 2. 

Case 1: At a regional hospital in Northern Ontario, Canada, a 4 year old (27.6 kg) First 

Nations’ boy underwent AT for OSAS and recurrent tonsillitis. He was discharged home after 

an uneventful overnight stay on liquid codeine at an age appropriate dose (8 mg per dose, up 

to 5 doses a day PRN) (18). His parents reported him to be sedated and lethargic the day after 

hospital discharge. The next afternoon, following a total of 4 codeine doses he was brought to 
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hospital without vital signs. His post-mortem morphine serum concentration was 17.6 ng/mL 

(therapeutic morphine range 4.5 ± 2.1 ng/mL) (11). His toxicology screen revealed a blood 

codeine level in the expected range following therapeutic use and there were no other 

medications detected. Genotyping revealed a gene duplication and a CYP2D6 UM phenotype 

(CYP2D6 *1/*2AxN). His UM CYP2D6 status resulted in an increased morphine leading to 

respiratory arrest. Post-mortem analysis revealed the cause of death to be bilateral acute 

bronchopneumonia, and morphine toxicity following adenotonsillectomy. 

Case 2: A 3 year old girl (14.4 kg) of Middle Eastern descent underwent tonsillectomy for 

OSAS and was discharged after a 24-hour hospital stay at a Canadian Children`s Hospital. In 

hospital she received two doses of codeine syrup (15mg each). Upon discharge she was given 

a combination of codeine and acetaminophen (15 mg codeine/150 mg acetaminophen) every 

4-6 hours PRN.  More than 6 hours after her final codeine dose (total 60 mg codeine) she was 

found unresponsive with a fever of 100° as measured at home. Upon admission to hospital she 

presented with minimal respirations and an oxygen saturation of 65%. She experienced one 

bout of vomiting with mild-dark blood observed. Her blood morphine concentration measured 

17 ng/mL. Following successful resuscitation, mechanical ventilation and naloxone dosing 

(1.5mg) she showed a prompt improvement in her symptoms. The next day she was extubated 

and recovered fully.  Her genotype was determined to be an extensive metaboliser (EM) 

(CYP2D6 *1/*1). In this case, her morphine levels suggested ultra-rapid metabolism, which 

was not consistent with her genotype. However, the EM genotype often overlaps with the UM 

phenotype (14, 19). 
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Case 3: A 5 year old boy (29 kg) underwent bilateral myringotomy tube placement, and AT 

for recurrent tonsillitis and snoring in the Southern United States. Following surgery he was 

prescribed acetaminophen and codeine (12 mg codeine) every 4 hours. This total 72 mg/day is 

within the recommended range of 6 mg/kg per day (20). The child was released home, but 

was found without vital signs by his mother 24 hrs after his surgery. The autopsy did not 

reveal a cause of death. This child’s post-mortem codeine concentration was 79 ng/mL, and 

morphine concentration was 30 ng/mL.  A pharmacokinetic model using Pmetrics software 

(Los Angeles, United States) was constructed based on published pediatric pharmacokinetic 

characteristics to simulate expected time concentration profiles for codeine and morphine 

based on his age, weight, and dosing schedule (Appendix 1) (21, 22).  Finally, we compared 

his measured codeine and morphine concentrations to the expected ranges. 

The measured codeine concentration of  79 ng/mL approximately 8 hours after his last 

dose is at the 56th percentile of predicted pediatric codeine concentrations. In contrast, the 

measured morphine concentration of 30 ng/mL is at the 99th percentile of predicted 

concentrations at the normal pediatric rate of conversion. The codeine levels are consistent 

with his prescription of 0.41 mg/kg every 4 hours PRN, which is within the recommended 

dose according to the published prescribing recommendations (20). It is highly likely that the 

child was a CYP2D6 UM based on his exceedingly high morphine concentration relative to 

codeine.  

Discussion: 

In 2009 our group first reported fatal codeine toxicity in toddler with the CYP2D6 UM 

phenotype following AT (23). We now describe here two deaths and one severe case of apnea 
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among young children administered standard doses of codeine. These children had morphine 

levels in the range associated with CNS depression, apnea and death.  While 70-80% of 

children undergoing AT for OSAS improve their apnea long-term, many children’s 

respiratory condition worsens immediately after surgery (24).  It is conceivable that among 

children in whom the apnea was not resolved after surgery, morphine, as a powerful CNS 

depressant, may further worsen the respiratory condition. Children with a CYP2D6 UM 

phenotype, have increased risk of serious CNS depression and apnea (23). The CYP2D6 UM 

status occurs in roughly 1-10% in individuals of European descent, but in up to 30% of North 

African descendants (11).  Genetic testing revealed UM status in Case 1 and the use of 

metabolic ratios suggests that Case 3 followed the same genetic pattern. Furthermore between 

6-10% of the Caucasian population are poor CYP2D6 metabolizers (2). In these individuals 

the ability to convert codeine to the active morphine is reduced, resulting in therapeutic failure 

and poor pain relief. The elevated morphine levels seen in the CYP2D6 EM genotype, as was 

detected in Case two, often overlap with the UM phenotype (14). The assay used in these case 

reports has several complexities described by Madadi et al. (25). While the Caucasian 

CYP2D6 alleles have been well studied, single nucleotide polymorphisms in the First Nations 

population are not well characterized. It is therefore possible that the child in Case 1 possesses 

a rare non-functional allele undetected by the assay. 

In two of the cases described here, despite overnight care in hospital, the child’s sleep 

apnea critically worsened at home. These children were prescribed age-appropriate codeine 

doses and were taking their medications in accordance with the published dosing guidelines 

(18).  This suggests that a one night follow-up in hospital may not be able to effectively detect 

all children at increased risk of severe respiratory complications. Since CYP2D6 
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polymorphisms are not routinely screened for prior to prescribing codeine, sending these 

children home without conclusive observations can mean that a high-risk patient may go 

unnoticed. The children presented in these cases were receiving doses within the 

recommended weight-adjusted dose of 0.5-1-mg/kg q4-6 hours (maximum 6mg/kg per day) 

(8). Of potential importance, the children in Cases 1 & 3 were significantly overweight (97th 

percentile) (26). As morphine sparsely distributes to fatty tissue, dosing based on total body 

weight instead of lean mass could have partially contributed to morphine accumulation. Post-

mortem blood samples in Case 1 & 3 were obtained approximately 14hrs and 8hrs after the 

last codeine dose. It is possible that some post-mortem morphine redistribution out of organ 

and muscle compartments into the blood occurred, however in such a short time this is not 

thought to have been a major contributor. In Case 2, serum samples were taken immediately 

upon her presentation to the emergency department, 6 hours after her last dose. The active 

morphine-6-glucuronide metabolite is eliminated renally (27). However, it is unlikely that the 

glomerular filtration rate was impaired in these children who were all healthy prior to surgery. 

Pediatric OSAS is a common condition which presents high rates of analgesic 

complications for post-operative pain management. These three cases strongly suggest that 

codeine, and potentially other opioids metabolized by the CYP2D6 pathway, cannot be 

considered safe analgesics for young children after AT for OSAS.   
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4.4 FDA Investigation and black box warning 

 

On August 15, 2012, following publication of the previously described case reports, 

the Food and Drug Administration (28) issued a Drug Safety Communication: Codeine use in 

certain children after tonsillectomy and/or adenoidectomy may lead to rare, but life-

threatening adverse events or death (29). This announcement summarized the case reports, 

provided details surrounding the increased metabolism of codeine to morphine with the ultra-

rapid metabolizer phenotype, as well as provided the prevalence in different ethnicities (29). 

Information was provided to parents and care givers regarding signs and symptoms of 

morphine toxicity (sleepiness, confusion, difficult or noise breathing) and to stop giving 

codeine and seek emergency medical attention. Health care professionals were advised to 

council parents on the signs of morphine toxicity and to consider prescribing alternative 

analgesics post-tonsillectomy and to report and adverse events involving codeine to the FDA 

MedWatch program (29). The FDA also announced a further review to identify additional 

cases of overdose or death following codeine use in children and if these events occurred 

during post-operative pain management. 

 

Following a six month investigation the FDA released a “Safety review update of 

codeine use in children; new Boxed Warning and Contraindication on use after tonsillectomy 

and/or adenoidectomy” on February 20, 2013 (30). This update issued the FDA’s strongest 

warning, adding a Boxed Warning to codeine-containing products about the risks of codeine 

use in children post-adenoid/tonsillectomy.  Following the August Safety Communication 

further investigation revealed 13 cases of death or life-threatening overdose in children 
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receiving standard, appropriate codeine doses (30). These cases included children from 21 

months – 9 years of age and the majority (8/13) were post-adenotonsillectomy. Furthermore 

three cases involved codeine use following respiratory tract infections (30). A 

contraindication issued by the FDA is a formal recommendation to restrict codeine use in this 

population. 

 

While the Boxed Warning suggests avoiding codeine for post-adenotonsillectomy pain 

management in children they do not make recommendations as to safe and effective alternate 

analgesic in pediatric patients. The analgesic options in children with obstructive sleep apnea 

are similar to other surgical patients, there is however a smaller margin for error due to the 

higher potential for respiratory complications following surgery (31). Further complicating 

the physician’s analgesic choice is that the removal of adenoids and tonsils is only curative in 

approximately 65% of children with obstructive sleep apnea and the addition of a CNS 

depressant may further worsen the child’s respiratory condition (7, 8).   
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4.5 Investigating the safety and effectiveness of morphine and 
ibuprofen in children post-adenotonsillectomy for obstructive 
sleep apnea 

 

4.5.1 Background and rationale: 

 

 Sleep disordered breathing (SDB) is characterized by a disruption in ventilation and 

breathing patterns during sleep. SDB ranges in severity from snoring to obstructive sleep 

apnea (32). During sleep, children with SDB have recurrent episodes of full or partial airway 

obstruction resulting in hypoxemia, hypercarbia and sleep disruption (5).  In children, SDB is 

often caused by hypertrophy of the tonsils and/or adenoids and is commonly managed by 

tonsillectomy with or without adenoidectomy (2). The pain associated with this procedure is 

moderate to severe and over 500,000 tonsillectomies are performed on children in the US 

every year (32, 33). Clinical practice guidelines for post-tonsillectomy pain management 

recommend educating parents on assessing pain in their children, maintaining proper 

hydration, and maintaining adequate analgesia, especially in the first few post-operative days 

(32).   

 

Until recently, codeine was considered a first line analgesic for post-operative 

treatment. However, on August 15, 2012, following the publication of three codeine related 

fatalities post-tonsillectomy, the Food and Drug Administration (28) issued a Drug Safety 

communication advising practitioners that codeine use in certain children after tonsillectomy 

and/or adenoidectomy may lead to rare, but life-threatening respiratory failure and death. 
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These children often have an ultra-rapid CYP 2D6 genotype, leading to excessive production 

of morphine from codeine. Further investigation revealed 13 cases of death or life-threatening 

overdose in children receiving standard, appropriate codeine doses and the majority of these 

cases (8/13) were related to tonsillectomy patients (30). 

 

While the Boxed Warning suggests avoiding codeine for post-tonsillectomy pain 

management, no recommendations have been made as to safe and effective alternate analgesic 

in pediatric patients. Due to a fear of increased bleeding, many surgeons have been hesitant to 

prescribe non-steroidal anti-inflammatory drugs (NSAID). Our recent meta-analysis’, 

including over 1700 children, did not detect an increased risk of bleeding following post-

tonsillectomy NSAID use (17). The contraindication of codeine for post-tonsillectomy 

analgesia has resulted in a shift to oral morphine, as unlike codeine, the metabolism of 

morphine is not associated with large variability in toxic risk. Presently, the safety and 

effectiveness of both ibuprofen and morphine in this population is unclear. The objective of 

this randomized clinical trial is to assess the safety and effectiveness of post-tonsillectomy 

analgesia with morphine and ibuprofen in children with SDB.  

 

4.5.2 Patients and Methods: 

After approval by McMaster University, The Hospital for Sick Children and The 

University of Western Ontario Research Ethics Boards, families were invited to participate in 

a  randomized-controlled trial, where their children would receive oral acetaminophen and 
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either morphine or ibuprofen for pain management, following tonsillectomy +/- adenoid 

removal. These two groups were run in parallel with recruitment at the McMaster University 

Medical Centre in Hamilton, Ontario with an allocation ratio of 1:1. This trial was registered 

with ClinicalTrials.gov (NCT01680939) and there were no changes made to the methodology 

following the trial commencement. The inclusion criteria consisted of children with sleep 

disordered breathing aged 1-10 years, scheduled for tonsillectomy, with or without 

adenoidectomy. In addition to parental consent, children above the age of 7 years were asked 

to complete an assent form, acknowledging their willingness to participate. Children were 

excluded if they had previously undergone (adeno)tonsillectomy, had asthma, obesity (BMI 

>30), craniofacial/neuromuscular/haematological/cardiac abnormalities or contraindications 

to general anesthesia. 

Sleep disordered breathing encompasses a variety of abnormal breathing patterns with 

OSA falling toward the more severe end of this spectrum.  Although polysomnography (PSG) 

is the gold standard in diagnosis of pediatric OSA, fewer than 10% of pediatric tonsillectomy 

patients undergo the study (34).  Consensus regarding the diagnostic criteria for pediatric 

OSA remains elusive (35) .  Guidelines developed by the American Academy of 

Otolaryngology recommend routine PSG only for patients with complex medical conditions 

including obesity, Trisomy 21, craniofacial abnormalities, and neuromuscular/metabolic 

disorders. As well, polysomnography prior to tonsillectomy should be obtained if the need for 

surgery is uncertain or when there is discordance between tonsillar size and suspicion of sleep 

disordered breathing on history. In the current study, patients with sleep disordered breathing 

and/or apneic episodes on history were evaluated preoperatively with home overnight 

oximetry (36).  
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At the pre-operative appointment, parents were provided with a pulse oximeter 

(Nellcor-Boulder N-600) including Oximax Max-p sensors to take home. The research team 

instructed parents how to properly apply the oximeter to the child the night before surgery. 

Parents were also instructed to repeat overnight oximetry measurements the night following 

surgery. The oximeter was used to monitor respiratory parameters during sleep. The primary 

outcome variable was changes in respiratory parameters (O2 saturation and number of apnea 

events per hour) after surgery. No changes were made to the primary outcome variables 

following the commencement of the trial.  

During surgery, anesthesia was delivered to all participants via inhalation induction 

with air/nitrous oxide and sevoflurane, intravenous supplementation with propofol and/or 

fentanyl 1-2 mcg/kg, anti-emetic prophylaxis with dexamethasone 150 mcg/kg and 

ondansetron 50 mcg/kg, acetaminophen suppository 40 mg/kg and morphine intravenous 100 

mcg/kg.   

Randomization to morphine or ibuprofen was achieved using a computer generated 

algorithm. The randomization algorithm was implemented by the research associate who 

assigned patients to either the morphine or ibuprofen group. The study clinicians and all care 

providers were blinded at the time of surgery. Parents were not blinded as they were required 

to fill their child’s prescription. Parents were instructed to give the children acetaminophen 

(10-15 mg/kg per dose q4hours) and age-appropriate doses of morphine (0.2-0.5 mg/kg per 

dose q4hours) or ibuprofen (10 mg/kg per dose q6hours) as needed. Parents were instructed to 

start with a low dose (ie. 0.2 mg/kg) at first, and increase the dosage within the range (up to 

0.5 mg/kg) at the next interval if needed based upon severity of pain.  Upon discontinuation of 

morphine or ibuprofen, the monitors were returned to the study coordinators for data 
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extraction. For both groups, all adverse events were monitored and recorded by the parents. 

This included any signs of significant oral or nasal bleeding at which case they were 

instructed to return to the hospital emergency department for appropriate assessment and 

management.  Pamphlets describing the signs of serious post-surgical bleeding requiring 

medical examination were provided to the parents. Secondary outcome variables included the 

rate of adverse drug reactions and tonsillar bleeding. 

Analgesic effectiveness was assessed on post-operative Day 1 and Day 5 using the 

validated Objective Pain Scale (OPS) (37, 38) which was recorded by the study researchers in 

hospital, and then by the parents at home. Parents were trained by the research staff regarding 

completion of both pain scales. The OPS includes measurements of blood pressure, crying, 

movement, agitation and posture (Figure 4.1). Blood pressure measurements were performed 

only while the patient was in hospital.  This validated tool has been extensively used to 

compare different analgesic modalities in children (39). In addition, on Day 1 and Day 5, the 

child completed a modified Faces Scale, a validated tool (ages 1-14) which is also commonly 

used for pain measurement, following adenotonsillectomy (Figure 4.2) (40). These pain 

scores as well as the number of days for a child to return to pre-operative diet, and the dosing 

schedule were returned to the research team for data analysis, following cessation of 

analgesia. 

Pre and post tonsillectomy values were compared between the groups by Student’s t 

test or Chi square test as appropriate. 
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Figure 4.1 The objective pain scale   Post-operative blood pressure was collected in hospital 

by the research team and parents were instructed to monitor crying, movement, agitation and 

posture every 4-6 hours on postoperative Day 1 and Day 5 (38). 
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  Criteria Points 
Blood 
pressure ±10% preoperative value 0 

 >20% preoperative value 1 
  > 30% preoperative value 2 
Crying Not crying 0 

 Crying but responds to loving care 1 

  Crying and does not respond to loving 
care 2 

Movement None 0 

 Restless 1 
  Thrashing 2 
Agitation Asleep or calm 0 

 Mild 1 
  Hysterical 2 
Posture No special posture 0 

 Flexing legs and thighs 1 
  Holding hands to the neck 2 
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Figure 4.2  The modified Faces Scale (41) which parents were asked to complete with their 

child every 4-6 hours on postoperative Day 1 and Day 5. 
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4.5.3 Results:  

From September 2012 to January 2014, a total of 91 children were consented to 

participate in this study (Figure 4.3). Demographic characteristics of the cohort can be seen in 

Table 4.1. In January 2014 we conducted an interim analysis, as planned in the original 

protocol, and the Drug Safety Monitoring Board was convened. In both groups, morphine or 

ibuprofen were used for a mean of 4 post-operative days (4.64 ± 1.87 days on ibuprofen, 4.04 

± 1.92 days on morphine). Acetaminophen was used for 4.46 ± 1.41 days by those 

randomized to receive ibuprofen and 4.86 ± 1.62 days in the morphine group. On the first 

post-operative night, only 13% of children receiving morphine exhibited improvement in the 

rate of desaturation events than before surgery, compared to 65% in those children receiving 

ibuprofen (p < 0. 01) (Table 4.2). The number of desaturation events per hour (pre-operative 

to post-operative) was reduced by a mean of 1.79 ± 7.57  in the ibuprofen group compared to 

an average increase of 11.17 ± 15.02 in the morphine group (p < 0.01) (Table 4.2). The 

Hodges-Lehman effect size (difference between medians) was 8.1 with a 95% C.I of 6.4 to 

14. One of the children randomized to the morphine group suffered from a severe adverse 

drug reaction related to oxygen desaturation, as described in Figure 4.4. There were no 

significant differences in the change in lowest oxygen saturation or the mean oxygen 

saturation following surgery between the two groups (Table 4.2). Tonsil size did not correlate 

with the change in desaturation event rates in either group (R2 = 0.005, p > 0.05 ibuprofen, 

R2 = 0.036, p > 0.05 morphine).  
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Mean modified Faces Scale scores on the first post-operative day were 2.76 ± 1.33 in 

the ibuprofen group (N=41) and 2.96 ± 1.02 in the morphine group (N= 45). On day 5 these 

pain scores decreased to 2.33 ± 1.19 and 2.02 ± 1.17 for the ibuprofen and morphine groups 

respectively. There were no differences in analgesic effectiveness as assessed by change in 

the modified Faces Scale score from Day 1 to Day 5 (0.21 ± 2.03 ibuprofen, 0.80 ± 1.41 

morphine, p = 0.29).  Regarding OPS, mean scores were 2.54 ± 2.17 in the ibuprofen group 

(N=41) and 2.05 ± 1.56 in the morphine group (N= 45) on post-operative Day 1. On day 5 

these pain scores decreased to 2.29 ± 2.02 and 1.42 ± 1.52 for the ibuprofen and morphine 

groups respectively. There was no significant difference in the change in OPS score from Day 

1 to Day 5 between the two groups (0.42 ± 1.42 ibuprofen, 0.40 ± 1.26 morphine, p = 0.95). 

The number of days to return to pre-operative diet was also not different between the two 

treatment groups (7.17 ± 5.23 days ibuprofen, 7.31 ± 3.82 days morphine, p = 0.89).  

 

Tonsillar bleeding was reported in 3 children that received ibuprofen and 2 children 

that received morphine. One of the children who bled in the ibuprofen group required 

hospitalization, as did both of the children who bled in the morphine group. Adverse drug 

events were reported at similar rates by parents in the two groups including; sedation 

(ibuprofen 7% [2/30], morphine 15% [5/34]), constipation (ibuprofen 7% [2/30], morphine 

9% [3/34]),  nausea and vomiting (ibuprofen 13% [4/30], morphine 12% [4/34]), dizziness 

and confusion (ibuprofen 7% [2/30], morphine 21% [7/34]), refusing fluids/anorexia 

(ibuprofen 10% [3/30], morphine 3% [1/34]) and agitation (ibuprofen 3% [1/30], morphine 

3% [1/34]). Night terrors were reported by 9% (3/34) of children receiving morphine. In the 

ibuprofen group 7% (2/30) reported fever and 3% (1/30) reported diarrhea.  
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As a result of the interim analysis, the Data Safety Monitoring Board instructed the 

research team to discontinue the study on January 31, 2014 and to inform the respective 

research ethics boards and Health Canada that there were significantly increased desaturations 

in the morphine group. 
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Figure 4.3.  Recruitment flow diagram created using the CONSORT guidelines (42). Other 
reasons for approached patients not being randomized include: language barriers and parents 
asking specifically for morphine (not wanting to be randomized). Patients who did not follow 
randomization did not take the medication they were randomized to receive. All patients that 
were allocated to either morphine or ibuprofen were included in the intent to treat analysis. 
Only those with oximeter data available were included in the primary outcome analysis. 
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Figure 4.4 Serious adverse drug event details and timeline 
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A ten-year old Caucasian female (31kgs, BMI – 15 kg/m², Tonsil size = 4) returned to 
hospital the morning following her tonsillectomy (after three 6mg doses of morphine) due to 
prolonged vomiting, which the parents reported contained blood. In hospital she received 8 
mg IV ondansetron, 445mg acetaminophen and 300mg ibuprofen. The emergency physician 
increased her morphine dose to 8mg q4hr prn. She was given IV morphine (3mg) in hospital 
and discharged that evening. Three hours following her 2AM morphine dose her parents 
noticed her lips were blue, she had a slow heart rate and was unresponsive and returned her to 
the emergency room. Her O2 saturation upon arrival was 76% and she was promptly 
administered 0.05mg IV naloxone and supplemental oxygen. She was admitted into the PICU 
and morphine was discontinued. While admitted, chest x-rays revealed right lobe infiltrate, 
hyper-aeration and air space disease which was treated with 1500mg ceftriaxone. Following 
PICU discharge on post-operative day 4 she returned to hospital 5 days later with a viral 
upper respiratory tract infection. She has since made a successful recovery.  

Day 1: 
21:00 Patient arrived home from adenotonsillectomy, first dose of morphine (6mg) 
Oximeter readings: Lowest O2 sat 87%, mean O2 sat 94.80%, 10.43 desats/ hour 
 
Day 2: 
2:30 6mg morphine, 15ml acetaminophen 
5:00 patient begins vomiting, gravol suppository (5:22) 
7:00 6 mg morphine, 15ml acetaminophen 
10:00 brought to ER due to continued vomiting with blood 
11:44 acetaminophen 445mg 
13:59 ondansetron 8mg IV 
14:40 2mg IV morphine 
14:59 ibuprofen 300mg PO 
16:31 1 mg IV morphine 
18:10 8 mg morphine PO and discharge from hospital 
22:00 8mg morphine PO, gravol suppository (21:00) 
 
Day 3: 
2:00 patient fever 103.3o F, given 8mg morphine PO, 15 ml acetaminophen, gravol 
suppository (3:00) 
5:00 patient not breathing, lips blue, heart rate slow, unresponsive, brought to ER 
ER vitals temperature of 38, HR145, BP102/65, O2sat 76%. Administered 0.05mg naloxone 
with supplemental O2. Admitted to PICU, chest x-ray reveals right lobe infiltrate, hyper 
aeration and air space disease, administered 1500mg ceftriaxone 
 
Day 4: 
Patient discharged from PICU without long-term sequelae 
 
Day 9: 
Patient returns to hospital with a viral upper respiratory tract infection 
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Table 4.1. Patient demographics in both the morphine and ibuprofen grou. Continuous 

variables are reported as mean ± standard deviation and dichotomous variables are displayed 

as a percent value (N).  
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Demographics  
Morphine (N = 46)                                   

Mean ± SD                                       
Percent (N) 

Ibuprofen (N = 38)                                   
Mean ± SD                                       
Percent (N) 

Age (years) 5.07 ± 2.45  5.14 ± 2.25 
Weight (kg) 27.36 ± 8.78 22.38 ± 9.59 
BMI (kg/m²) 17.31 ± 3.00 18.29 ± 4.56 
Gender (female)  50% (23) 54% (22) 
Pre-operative Tonsil Size 2.80 ± 0.61 3.05 ± 0.58 
Diagnosis: 

  Sleep Disordered Breathing (SDB) 57% (26) 48% (19) 
Obstructive Sleep Apnea 32% (15) 45% (18) 

SDB with recurrent tonsillitis 11% (5) 7% (3) 
Ethnicity:  

 Caucasian 87% (40) 93 % (38) 
African American 7% (3) 7% (3) 

Middle Eastern 4% (2) 0 
South American 2 % (1) 0 
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Table 4.2. Primary outcome variables in the morphine and ibuprofen groups. Primary outcome 
variables in the morphine and ibuprofen groups are seen below. The number of children improved is 
defined as a child having fewer desaturation events per hour following surgery when compared to their 
preoperative values 
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  Ibuprofen (N = 26) Morphine (N = 30) P value 

Lowest O2  Saturation (%nadir) 
   

Pre-Op 85.39 ± 6.93 83.97 ± 7.86 
 

Post-Op 81.27 ± 15.81 81.63 ± 12.75 
 

Δ lowest O2  Saturation 3.96  ± 12.65 2.38 ± 12.30 0.64 

Mean O2  Saturation (% nadir) 
   

Pre-Op 97.41 ± 1.02 97.20 ± 1.22 
 

Post-Op 96.55 ± 2.07 95.00 ± 2.18 
 

Δ mean O2  Saturation 0.79  ± 2.33 2.13 ± 1.42 0.33 

Total #desaturation events/hour 
   

Pre-Op 4.52 ± 7.87 3.64 ± 3.71 
 

Post-Op 3.04 ± 3.27 14.26 ± 11.85 
 

Δ total desaturation events/hour - 1.79 ± 7.57 + 11.17 ± 15.02 < 0.01 

# children improved 65% (17/26) 13% (4/30) < 0.01 
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4.5.6 Discussion: 

Our study reveals that for children undergoing tonsillectomy, the standard dose of 

morphine analgesia increases the risk of oxygen desaturation, in comparison to ibuprofen. 

Tonsillectomy ± adenoidectomy have been reported to improve sleep disordered breathing in 

only 65% of children (14, 15). Perioperative respiratory complications necessitating a medical 

intervention may occur in over 10% of children undergoing adenotonsillectomy, with over 

60% of these occurring in the immediate postoperative period (6, 43, 44). Desaturations can 

continue for an unpredictable period of time and in a substantial number of children, possibly 

due to prolonged changes in the threshold of response to hypoxemia. Moreover, children can 

experience laryngospasm, airway swelling and pulmonary edema, leading to further 

desaturation and even to respiratory arrest (45). In such cases, where apnea is not improved 

following surgery, providing opioids to relieve pain has the potential to increase respiratory 

depression, through the action of mu and kappa opioid receptor agonists decreasing 

respiratory drive and response to hypoxemia.    

 

There are several factors contributing to the exaggerated respiratory effects of 

morphine and other opioids used post-tonsillectomy in children with sleep disordered 

breathing. Respiratory comorbidities including unresolved apnea, craniofacial disorders, 

bronchopneumonia, asthma, obesity, and respiratory tract infections combined with swelling 

following surgery, can further compound the respiratory effects of opioids. Hypercarbia is 

commonly seen in children with sleep disordered breathing resulting from an overall decrease 

in ventilation. This disturbance can be reversed following surgery, however the rate of 
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recovery and extent of reversal is not well understood. Residual respiratory acidosis, after 

tonsillectomy, may increase the delivery of nonionized morphine to the brain, due to an 

increase in cerebral blood flow and has the potential to increase respiratory compromise (46).  

In canine studies, hypercarbia has been shown to increase cerebral morphine concentrations, 

while serum morphine levels remained unchanged (47). Furthermore, morphine requirements 

for analgesia have been shown to be considerably variable in children, as much as 15 fold in 

some studies (48) occasionally necessitating large doses for adequate pain control which may 

lead to respiratory depression. 

 

In this study, pain was managed with similar effectiveness by acetaminophen whten in 

combination with either morphine or ibuprofen. A previous randomized trial assessing 

ibuprofen and acetaminophen with codeine, in 110 children following tonsillectomy, found no 

statistically significant difference in reported pain  and  satisfactory pain relief, as reported by 

parents at post-operative follow-up (49). The primary outcome measure in that study was 

tonsillar bleeding rates which, similar to our experience, was also not significantly different 

between the two groups. The hypothesis that morphine analgesia may eliminate respiratory 

complications by obviating the large variability seen in codeine metabolism and provide more 

predictable pharmacodynamic effect is rejected in the present study, showing similar 

unacceptable rates of postsurgical oxygen desaturations to codeine and hydrocodone (50). 

 

Limitations of the present study include missing oximeter data due to children in both 

treatment groups refusing to sleep with the oximeter on their finger.  Yet, the available sample 
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size provided sufficient statistical power to show the CNS-depressing risks of the opioid. As 

well, complete polysomnographic data was not obtained for our patients. While this may have 

provided more data, it may not have been well tolerated in the immediate post-operative 

period by children. Previous work has demonstrated that overnight oximetry correlates well 

with post-operative likelihood of adverse respiratory events, and that it is a useful modality in 

the preoperative evaluation of children with SDB prior to adenotonsillectomy (36, 51). 

Physiologic factors that have been previously identified as potential contributors to poor post-

tonsillectomy outcomes include smaller tonsils, narrow epipharyngeal airspace and 

maxillary/mandibular protrusions (52). In this cohort, tonsil size did not correlate with an 

improvement in the number of desaturation events; airspace diameter and 

maxillary/mandibular orientation were not assessed. Finally, although parents were instructed 

to maintain hydration, fluid intake was not monitored in this cohort. This could potentially 

have affected pain scores as inadequate hydration has been shown to increase reported pain 

following tonsillectomy (53). The reported severe adverse drug reaction is confounded by the 

administration of intravenous morphine and the comorbid respiratory tract infection.  

 

Pre-operative use of diclofenac and gabapentin (54) has been shown to decrease post-

tonsillectomy opioid requirements children older than ten years of age, and the effectiveness 

of these medications in young children warrants further investigation. When compared to 

morphine, tramadol was shown to result in fewer respiratory events post-tonsillectomy 

however further work is required to assess the safety of tramadol as an alternative analgesic 

(55). Future studies should also address genetic variability in opioid response and analgesic 



158 
 

effectiveness by assessing both genotype and plasma drug levels to better characterize which 

children may be increasingly sensitive to post-tonsillectomy opioids.  

 

In conclusion, the use of a standard morphine dose for post-surgical analgesia was 

associated with increased risk of oxygen desaturation. There were no differences seen in 

tonsillar bleeding events or in analgesic effectiveness. The results of this study support 

effective post-tonsillectomy analgesia in children using ibuprofen with acetaminophen.  
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Chapter 5: Overall perspective in the context of future directions   

Part of this chapter has been submitted for publication:  

Kelly LE, Knoppert D, Roukema H, Rieder MJ, Koren G. Oral morphine weaning for 
neonatal abstinence syndrome at home vs. in hospital.  
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5.1 Preamble  

As the number of women using opioids in pregnancy increases, so does the number of 

exposed neonates and the incidence of neonatal abstinence syndrome (NAS). In 2009, the 

reported hospital costs for the management of a newborn with NAS was $53,400 compared to 

$9,500 for a non-NAS related birth (1). During 2009 more than 13,000 infants were born in 

the United States who showed signs of NAS leading to an annual total hospital expenditure of 

over US$720 million dollars (1). As the incidence of NAS continues to rise, developing safe 

and cost effective treatment strategies is more important than ever. The following chapter 

describes my proposed future research goals which aim to identify cost-effective management 

of this epidemic. It starts with a retrospective observational cohort study we recently 

completed and submitted for publication. This cohort study subsequently informs a proposal 

for a future randomized control trial.  

 

5.2 Oral morphine weaning for neonatal abstinence syndrome 
in London, Ontario 

 
 

Approximately 90% of drug abusing women are within the child bearing age range 

(15-39 years) (2, 3). According to the National Survey on Drug Use and Health, 4.4% of 

pregnant women reported using illicit substances within the past 30 days (4, 5). Opioids, 

including methadone and heroin are known to cross the placenta (6, 7) and in utero exposure 

can lead to neonatal withdrawal. Symptoms of NAS include various degrees of central 

nervous system effects such as high pitch cry, irritability, tremor and seizures as well as 
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gastrointestinal and metabolic disturbances (8). Currently, oral morphine is the most 

frequently used first line agent to treat NAS and in severe or unresponsive cases, 

phenobarbital or clonidine are used as adjuvant therapy (9-11). In order to ensure careful 

monitoring and treatment, neonates with suspected NAS are typically admitted to the neonatal 

intensive care unit (NICU). In the neonatal ward, the severity of NAS symptoms is commonly 

monitored by using the Finnegan Scale (9, 10, 12), and these scores dictate the initial  

morphine dose. Gradual tapering of morphine is typically done in hospital and can last from 

several days up to months (median of 30 days), which has a very high cost of hospitalization 

(3, 13). 

 

In the United Kingdom, roughly 15% of neonatal hospital units reported discharging 

neonates with morphine into the community to be managed at home by the primary caregiver 

(9). This practice, however, has not been reported in North America. The objective of this 

study was to assess the safety and effectiveness of managing NAS at home with oral 

morphine weaning. Secondary outcome measures included an estimation of cost savings. 

In London Ontario, two methods have been practiced side by side over the last few years: 

1) Treating the baby throughout the entire NAS in hospital 

2) Releasing the baby home to finalized treatment of NAS by the primary caretaker. 

This has presented a rare opportunity to compare the safety, effectiveness and cost of these 

two treatment modalities. The primary research question is whether or not NAS treatment at 

home can be effective. Subsequent to this observational study I propose a randomised 

prospective study informed by the results of this pilot investigation. 
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5.3 Oral morphine weaning for neonatal abstinence syndrome 
at home vs. in hospital 

 

5.3.1 Patients and methods: 

 

This observational study included all neonates with NAS receiving oral morphine 

admitted between January 1, 2006 and December 31, 2010 at two academic health centers in 

London, Ontario, Canada. As per clinical routine, physicians at one institution kept most of its 

neonates in the NICU until morphine tapering was complete (“in hospital” group) while the 

those at the other center released stable neonates to go home with a weaning schedule (“at 

home” group). Neonates with NAS who were administered oral morphine were identified 

through pharmacy records and clinical databases. Anonymized data, from paper and 

electronic patient records included the number of days the neonate remained in hospital, oral 

morphine dosing, Finnegan Scale scores, and concomitant medication use. Demographic and 

clinical details were also collected. The number of hospital visits for further withdrawal 

treatment, emergency room visits, specialist referrals and outpatient/in-patient appointments 

were collected from electronic patient records for the first and second year of life. The 

number of in-patient appointments in the first year excluded the initial NAS treatment.  

 

 In both institutions, neonates were treated in accordance with the same NAS 

treatment protocol. Infants with suspected NAS were scored on the Finnegan Scale every 2 

hours for the first 48 hours and every 4 hours thereafter. Scores reflect the infants’ activity 

over the previous four hours and morphine therapy was initiated for two scores greater than 8 
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or one score greater than 11. Morphine was started orally, unless an IV was already present in 

which case an initial morphine loading dose of 50µg/kg was given over at least 5 minutes and 

a continuous morphine infusion of 5 to 10µg/kg/hr (equivalent to 240-480µg/kg/day PO) was 

administered. If following morphine initiation the next score was above 8, the dose was 

increased by 2.5µg/kg/h. Medication doses in hospital were not changed for scores of six or 

seven. If the score fell below 5, the dose was reduced by 10% every 48 hours. If multiple drug 

exposure was suspected (e.g. sedatives, alcohol, barbiturates) or NAS was non-responsive to 

morphine, single doses of phenobarbital, clonidine or clonazepam were given. At one 

institution, neonates presenting as medically stable with persistently low Finnegan Scale 

scores (below 8) for a minimum of 24 hours were considered for discharge. If still on IV, 

neonates were first converted to oral morphine at a rate of 2x the intravenous dose.    

 

Discharge home to complete the oral morphine taper was only considered if social 

stability was demonstrated, follow-up with a pediatrician was in place and caregivers were 

competent in administering the morphine doses. Specific dosing calendars were prepared by 

the pharmacy team for each individual neonate upon release home and a sample weaning 

calendar is seen in Figure 5.1.  In all cases caregivers were educated regarding the symptoms 

of withdrawal and how to administer the weaning morphine doses. Caregivers were 

encouraged to return to the hospital with any concerns.  Caregivers of children weaned in 

hospital were also assigned a social support case worker and a public health nurse. At both 

sites non-pharmacological interventions included minimizing lighting and stimulation, 

speaking softly, swaddling, and applying ointment cream (nystatin, zinc oxide) to the skin 

following frequent stools.  Parents managing the morphine wean at home were encouraged to 
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continue these non-pharmacological interventions after discharge. This study was approved 

by the Research Ethics Board at Western University. 

 

5.3.2 Results:  

 

In a 4 year period 80 neonates were treated with oral morphine for NAS in the two 

institutions. There were 52 neonates who completed their oral morphine weaning at home, 

and 28 who remained in hospital until weaning was completed. Preterm births (34 to 36 

weeks) occurred in 15% of all cases (12/80) and the mothers’ median age was 26 years (17-41 

years).  Gestational age did not correlate with the length of stay in hospital (R2 = 0.0038). In 

both groups most babies were delivered vaginally (“at home group”, 63% [33/52], “in-

hospital group”, 71% [20/28]) without complications.  

 

The majority of mothers (65%, 52/80) participated in a methadone maintenance 

program at the time of delivery. The most common reason for methadone use was addiction to 

slow release oxycodone (Oxycontin) (47%), followed by addiction to oxycodone plus 

acetaminophen (Percocet) (26%), heroin (23%) or morphine (4%). Cigarette smoking was 

reported by 82% of all mothers and no difference was seen between the groups. Demographic 

descriptors of both groups are shown in Table 5.1.  Illicit drug use (marijuana, cocaine and/or 

opioids) was highly prevalent in both groups (“at home”, 53% [24/45], “in hospital”, 38% 

[10/26]) by womens’ reports or positive urine screen. The Children’s Aid Society (CAS), a 

public child welfare agency, placed 34% of all neonates into custody. 
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 Clinical response variables are presented in Table 5.2. In neonates who completed 

oral morphine weaning “at home” the median number of days in hospital was significantly 

lower (p = 0.042) and fewer babies had to return to hospital for withdrawal treatment (p = 

0.044) compared to those who completed their wean “in hospital”. The neonates who 

continued morphine at home following hospital discharge remained in hospital for a median 

of 6 less days than those who weaned in hospital. Neonates weaned “at home” were on oral 

morphine for significantly more days (p < 0.001) and were significantly more likely to have 

had phenobarbital, clonidine or clonazepam  while in the NICU (p = 0.003). Although there 

was no difference in the number of NAS scores above 8, neonates weaned at home were 

significantly more likely to receive an adjuvant therapy in the NICU, indicative of either more 

severe withdrawal or differences in group practice. Breastfeeding data were available for 61 

mother infant pairs, 40% of which initiated breastfeeding while in hospital (Table 5.1). 

 

Breast fed neonates had significantly fewer NAS scores above 8 (median10 range [0-

77]) vs. no breastfeeding (16 [1-85]), p = 0.02. The number of emergency room visits, in/out 

patient appointments and specialist referrals in the first and second year of life are displayed 

in Table 5.3. There was one case of sudden unexpected infant death syndrome in the cohort of 

children weaned at home attributed to bed sharing and the presence of an unsafe sleeping 

environment.  
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Figure 5.1. Example of an oral morphine weaning calendar provided to caregivers. 
To protect confidentiality the names and contact number have been changed. 
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Table 5.1.  Demographic characteristics of neonates treated for neonatal abstinence 
syndrome  (NAS) with oral morphine at-home and those who remained in-hospital 
until the morphine taper was complete. Data are presented as median (range) or 
percent of total. The Mann Whitney U test was used to determine significance for 
continuous variables and the Fischer Exact test for the categorical data. The level of 
statistical significance was set at 0.05 where NS is not significant. 
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At-home 
Weaning                       
(N = 52) 

Hospital 
Weaning              
(N = 28) 

P Value 

Maternal Age 26 (17-36) 25 (18-41) NS 

Premature (< 37 weeks) 11% (6/52) 21% (6/28) NS 

Low Birth Weight (< 2500g) 13% (7/52) 18% (5/28) NS 

Smoking 79% (30/38) 88% (14/16) NS 

Cocaine 34% (10/29) 21% (3/14) NS 

Marijuana 41% (12/29) 29% (4/14) NS 

Benzodiazepines 21% (6/29) 29% (4/14) NS 

Antidepressants 21% (6/29) 29% (4/14) NS 

Initiated breastfeeding in hospital 41% (17/41) 33% (7/21) NS 

Father involved in care 72% (28/39) 75% (15/20) NS 

Received appropriate prenatal care 25% (7/28) 47% (9/19) NS 

Some/minimal prenatal care 35% (10/28) 11% (2/19) NS 

Did NOT receive any prenatal care 40% (11/28) 42% (8/19) NS 

CAS Apprehensions 31% (16/52) 39% (11/28) NS 
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Table 5.2.  Clinical response of neonates treated with weaning doses of oral 
morphine at-home and those who remained in-hospital until the morphine taper was 
complete. Data are presented as median (range) or percent of total. The Mann 
Whitney U test was used to determine significance for continuous variables and the 
Fischer Exact test for the categorical data. The level of statistical significance was set 
at 0.05. 

 

 

 

 

 

 

 

 

 

 

 



176 
 

 

 

 

 

 

  
At-home 
Weaning                       
(N = 52) 

Hospital 
Weaning              
(N = 28) 

P Value 

 
Number of days in NICU 16 (3-54) 22 (7-51) 0.04 

Number of times NAS score was over 8   12.5 (0-132) 10 (0-71) 0.13 

Number of mothers on methadone 65% (34/52) 64% (18/28) 1.00 

Methadone dose  (mg/day)  80 (20-115) 80 (25-130) 0.77 

Babies receiving adjuvant therapy*  31% (16/52) 4% (1/28) < 0.01 

Return to hospital for withdrawal treatment  2% (1/52) 14% (4/28) 0.04 

Total number of days on oral morphine 32 (12-117) 19 (6-48) < 0.01 

 

*Adjuvant therapy included phenobarbital, clonidine or clonazepam given in the NICU. 
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Table 5.3. The median number of emergency room visits, specialist referrals and 
in/out patient appointments from birth until September 1, 2013 required by neonates 
weaned at-home and those who completed their morphine taper in hospital. The 
number and type of specialist referrals is also displayed. Year one represents the first 
twelve months of the child’s life and year two represents months twelve to twenty 
four. 
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At-home 
Weaning                       
(N = 52) 

Hospital 
Weaning              
(N = 28) 

Number of times, in-patient*,Year One 0 (0-3) 0 (0-3) 

Number of times, in-patient, Year Two 0 (0-1) 0 (0-2) 
Number of out-patient appointments in 
Year One 0 (0-21) 0 (0-31) 

Number of out-patient appointments in 
Year Two 0 (0-8) 0 (0-11) 

Number of visits to ER in Year One 1 (0-8) 1 (0-6) 

Number of visits to ER in Year Two 1 (0-4) 0 (0-6) 
Percent of children who were referred to 
at least one specialist 46% (24/52) 36% (10/28) 

 
Specialist Referrals (N):    

Allergy/Immunology 2 0 
Cardiology 3 1 

Developmental Follow Up 5 3 
Endocrinology 1 0 

Gastroenterology 1 0 
Genetics 2 1 

Haematology 2 1 
Nephrology 2 1 
Neurology 3 0 

Ophthalmology 4 1 
Otolaryngology 3 2 

Physiotherapy 1 2 
Respirology 1 1 

Speech Language Pathology 3 0 
Surgery 4 1 
Urology 3 1 

  

*Initial NAS treatment was excluded. 
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5.3.3 Discussion: 

 

To the best of our knowledge, this is the first study to describe a cohort of neonates 

with NAS who completed their oral morphine weaning outside of a hospital setting. In 

neonates who were weaned at home we did not detect an increased risk for emergency room 

visits or in/out- patient appointments. The rate of return to hospital for further withdrawal 

management was significantly lower in those infants weaned at home as compared to those 

who remained in hospital, suggesting that a slower tapered wean may actually be 

advantageous in managing NAS. At home oral morphine weaning offers several advantages 

including a slower morphine wean, increased mother-infant bonding time and a decrease in 

hospital costs. The average daily cost of a bed in the NICU in London, Ontario in 2013 is 

estimated at $1800.00/night (personal communication). Sending neonates home to finish their 

morphine wean is associated with a median of 6 fewer days in hospital and provided a 

potential cost saving of approximately $560,200.00. To more accurately estimate the amount 

of savings the more common need for re-hospitalization of neonates treated “in hospital” must 

be included. There were no significant differences in the total number of emergency room 

visits, specialist referrals, or in-/outpatient appointments between those weaned at home and 

in hospital. As the number of infants exposed to opioids with subsequent withdrawal symptoms 

increases globally and rapidly rising health costs it is urgent to assess safe and cost-effective 

treatment options. 

 

Our study documents that completing morphine weaning at home may take more time 

than a completed in hospital wean. The fact that significantly more in hospital babies needed 
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to be re-hospitalized suggests that the weaning in the hospital was often too aggressive.  There 

was one fatality in the group of neonates on morphine weaned at home. A previous study by 

our group suggested that there is no increased risk for mortality under the age of one year 

among infants exposed to methadone in utero (14). Further analysis outside the timeframe of 

this cohort revealed a second fatality attributed to SUDI in 2005 of a child whose wean was 

completed in hospital. A summary of these two fatalities has been previously described (12). 

There is therefore limited evidence to suggest that at home oral morphine weaning increased 

the risk for SUDI.  

 

In our cohort reported benzodiazepine use (33%) was lower than previous reported 

rates of 50%; however, cocaine and marijuana incidence are similar (9).  Studies suggest that 

cocaine increases the severity and frequency of NAS symptoms in those abusing opioids in 

pregnancy (15). Furthermore, benzodiazepine use is known to increase the length of NAS 

treatment as symptoms of benzodiazepine exposure often confound NAS (3). Concomitant 

use of cocaine and/or benzodiazepines was similar between groups and therefore is not a 

confounding factor for determining length of stay in our cohort. Breastfeeding was 

significantly associated with a less severe opioid withdrawal course, a finding that has been 

confirmed with other cohorts  (16). As well as providing optimal nutrition, breast milk can 

provide small amounts of maternal opioid to ease withdrawal. Breastfeeding is recommended 

and should be encouraged for HIV-free patients on a methadone maintenance program 

whether weaned in hospital or at home.  

 



181 
 

This study has several limitations that require acknowledgement.  This was not a 

randomized trial and hence uncontrolled bias could affect the results. The fact that the 

characteristics of the mothers and their opioid use did not differ significantly between the 

groups suggests that such bias, if it exists, is not major. Secondly, our study lacks follow-up. 

Many substance abusing mothers do not have permanent addresses or cellular phones, which 

made follow-up impossible. Furthermore, due to the retrospective nature of this study, we 

were unable to obtain all relevant data, such as child nutrition and social environment. A 

further limitation includes the data source for the number of emergency room visits, in-patient 

appointments and hospital visits which were assessed using electronic patient records and did 

not include general pediatrician care or specialist appointments outside of the hospital 

networks. The number of outpatient appointments included pediatrician appointments at both 

hospital sites. To address these limitations, our findings should be corroborated by a 

prospective, randomized trial before validated recommendations regarding at home oral 

morphine weaning can be made. 

 

In summary, this observational study assessed the safety of neonatal oral morphine 

weaning at home versus in hospital for the management of NAS following in utero opioid 

exposure. A significantly lower return to hospital rate for further withdrawal treatment was 

identified in neonates weaned at home. These data suggest that training caregivers and 

sending neonates home with an oral morphine weaning calendar may present a safe and more 

cost effective measure for treating neonatal abstinence syndrome (vs in hospital).  
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5.4 Future Direction: Investigating the safety of at-home oral 
morphine weaning and pharmacogenomic predictors of 
neonatal abstinence syndrome  

 

5.4.1 Rationale 

 

Our retrospective observational study suggested that oral morphine weaning at home 

was as safe as weaning in hospital. Furthermore by extending the length of the morphine 

wean, and providing a slower tapering–off of morphine, neonates were significantly less 

likely to return to hospital for withdrawal management. London, Ontario remains one of the 

only sites in Canada to send neonates home with oral morphine weaning calendars. Before 

recommendations can be made at the National level, the findings from our observational 

cohort study require verification in a randomized prospective clinical trial. In order to assess 

the effectiveness of at home oral morphine weaning, the primary outcome variable to be 

investigated will be the return to hospital following discharge for withdrawal treatment.  

 

The previously discussed literature supports an effect of genetic variability in 

predicting adult and pediatric opioid response; however the pharmacogenomic implications of 

in utero opioid exposure on the neonate remain unclear. Results from our pilot study (Chapter 

2) suggest that CYP2B6 may play an important role in clearing the toxic S-methadone 

metabolite and that SNPs in P-glycoprotein may affect the rate of placental opioid transfer. 

This pilot study confirmed the feasibility of recruiting patients through participating family 

physician clinics including the collection of neonatal blood to be sampled for genotyping and 
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evaluation of plasma drug concentrations. A previous report by Wachman et al. (17) 

associated neonatal polymorphisms in COMT and OPRM1 with the severity of NAS 

following in utero opioid exposure however our pilot study did not have a sample size  

sufficiently large  to corroborate these findings. These polymorphisms, as well as others 

known to affect pediatric opioid response should be assessed. 

5.4.2 Hypothesis and research aims 

 

Continued oral morphine weaning following hospital discharge is as safe and effective as 

weaning in hospital. Furthermore, we hypothesize that genetic and clinical factors will predict 

the severity of NAS. 

The aims of this project include: 

1) To investigate the safety and effectiveness of at-home oral morphine weaning in a 

prospective randomized clinical trial 

2) To investigate the impact of maternal pharmacogenomics on neonatal opioid levels  

3) Evaluate maternal pharmacogenomics as a predictor of neonatal abstinence syndrome 

severity 

4) To investigate the impact of neonatal pharmacogenomics on neonatal opioid levels  

5) To evaluate neonatal pharmacogenomics as a predictor of the severity of neonatal 

abstinence syndrome 

6) To examine the role of previously identified clinical risk factors (breastfeeding, 

maternal methadone dose, prematurity, polysubstance use) with regard to severity of 

neonatal abstinence syndrome in a prospective clinical trial 
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5.4.3 Future study design 

This multicentre clinical trial will recruit patients from Victoria Hospital in London, 

Ontario and St. Joseph’s Hospital in Toronto, Ontario. This prospective clinical trial will 

randomize neonates showing stable Finnegan scale scores (4 consecutive scores below 8) with 

demonstrated social stability to complete their morphine wean in-hospital or to continue their 

wean post-discharge. Pharmacogenomic analysis will include the following genes: CYP2B6, 

CYP3A4, OPRM1, ABCB1 and COMT.  

5.4.3.1 Inclusion and exclusion criteria 

Inclusion criteria: 

1. The mother has taken methadone for a minimum of three months during pregnancy 

2. Mother abstains from use of illicit substances (as assayed in urine) 

3. Caregiver demonstrates social stability with a secure home environment and support 

system in place, including a contact telephone number and address 

4. Neonate has had consecutively low (below 8) Finnegan scale scores that have not 

increased in 24hours  

5. Morphine wean has been switched from IV to PO if necessary 

6. Neonate has no other medical condition requiring hospitalization 

7. Proper health care follow-up is in place including; social worker, public health nurse, 

community services, and/or pediatrician 
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Exclusion criteria: 

1. Neonates born with major congenital abnormalities or any condition that is likely 

to extend the need for hospitalization 

2. Delivery complications, other than NAS, requiring administration of opioids 

3. Lack of informed consent  

5.4.3.2. Methodology 

Following approval from the Research Ethics Board at The University of Western Ontario 

and St. Joeseph’s Hospital, informed consent will be received by the research team. The 

research team will include neonatologists, pediatricians, lactation consultants, public health 

nurses and social services. Clinical and demographic data will be collected from each patient 

using the data collection sheet (Figure 5.2). Once a neonate has stabilized NAS scores and if 

necessary their wean has been converted from IV to PO,  they will be randomized to continue 

PO wean in-hospital or will be instructed on how to administer oral morphine according to an 

oral morphine weaning calendar prepared by the study pharmacist. All patients at both sites 

will complete the demographic data collection sheet. Cord blood samples will be collected to 

measure methadone concentration, and to extract DNA to genotype for genetic 

polymorphisms in CYP2B6, p-glycoprotein, COMT, and OPRM1. An additional 500µl blood 

sample will be collected at approximately 24 hours of life to measure serum 

methadone/EDDP concentrations. This sample will be taken in conjunction with the Ontario 

Newborn Screening standardized collection protocol. Methadone concentrations and 

genotyping will be completed as previously described in the pilot study. The research staff 

will contact the primary care giver at 3months of age to collect data regarding neonatal 
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wellbeing and to address any further health concerns. Hospital electronic patient records will 

be used to collect information on any further medical appointments and emergency room 

visits. At the end of a 6month period, data regarding return to hospital for further withdrawal 

management will be collected from electronic patient records and anonymously entered into 

the study database. 

5.4.3.3 Sample size calculation 

 Previous data indicate that 14% of children who are weaned in-hospital return to 

hospital following discharge for further withdrawal management, compared to only 2% of 

neonates weaned at home. These data suggest that a slower oral morphine wean at-home (in 

cases where social stability can be demonstrated) is as effective in managing NAS, compared 

to completing the full wean in hospital. In order to compare two independent samples using 

the inference of proportions previously described and a power of 0.80, α = 0.05, 80 neonates 

are needed in each arm.   

5.4.3.4 Strengths and limitations 

Strengths of this study include minimal invasiveness as the blood sample will be 

collected in conjunction with standard clinical tests. By recruiting at two centres, this study 

will allow for increased recruitment and sufficient variability to establish genetic associations. 

This study will be the first to prospectively assess the effectiveness of at-home oral morphine 

weaning and is likely to impact on future NAS management. The benefits of at home oral 

morphine weaning include an increase in bonding time for mother and baby as well as a 

decrease in overall hospitalization cost. Limitations include not collecting blood samples at 
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multiple time points which restricts the potential for pharmacokinetic analysis. While every 

attempt will be made to follow neonates for a 3 month period, some prospective data may be 

unattainable due to unreachable patients. Researchers hope that by pre-emptively including 

the entire circle of care including pediatricians, nurses and social services this will greatly 

improve the collection of follow-up data, identified as a major limitation in the earlier pilot 

study.  
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Figure 5.2. Sample of information gathering sheet to be completed with all patients at both 
sites. 
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Neonatal Demographics       
Gestational Age (weeks): 

 

  Birth weight (grams): 
Length (cm): 
Head Circumference (cm):       
Gender: 

   APGAR SCORES  1 MIN 3 MIN 10 MIN 
Delivery: 

� Vaginal 
� C/S or episiotomy 

   Delivery complications: Y/N 
Explain: 
 
 

 
           

Maternal Demographics: 

   Maternal age (years): 
Gravidity (TPAL):       
Prenatal care Y/N 

   Education/Occupation:       
Maternal Prescription Drugs Y/N 
List: 
 

   Father is involved in care of baby Y/N 
  

Maternal Opioid Use: 
 
 
 

  Methadone Dose at delivery:        
Methadone Duration: 

   Reason for use:       
Maternal smoking status Y/N 

   Opioid use other than methadone Y/N  
List: 
    
Alcohol Y/N       
Cocaine Y/N 

   Marijuana Y/N       

Study ID number: __________      D.O.B: ___________________________________ 
     Date of Hospital Discharge: _________________ 

Hospital: 
� St. Joseph’s, Toronto 
� Victoria, London 
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Benzodiazepines/sedatives Y/N    
Antidepressants Y/N    
Breastfeeding in hospital Y/N   
 

   Formula supplementation Y/N 
           

Neonatal hospital management 
    

 
 
 
     
Number of times NAS >8: 

   Date and time morphine begun:       
Morphine starting dose/route:       
Total #days on morphine in NICU: 

   Oral morphine take-home dose: 
   Number of days weaned off morphine: 
   Other medications used in hospital: 

List: 
 
 
       
Days on O2 Saturation:       
Days on mechanical ventilation: 

   Days on TPN (IV):       
Feeding issues Y/N:  

   Length of hospital stay (days):       
Discharged home with parents Y/N 

   If Not, then with whom? 
       
Discharged home on morphine Y/N 

   Infant Weight (@ hospital discharge): 
Length (cm) 
Head Circumference (cm):       
Community follow up:  
Social Work Y/N 
Public Health Nurse Y/N 
C.A.S involvement: Y/N If yes, what happened? 
 
 
 

 

 
 

 

Date/Time:   NAS score(s): 
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5.5 Overarching conclusions 

 

In 2010, Canada surpassed the United States with the highest prescription opioid 

consumption per capita and since 2001 opioid poisonings in children have increased by 22% 

(17). Currently opioids are the greatest cause of pediatric deaths attributed to pharmaceutical 

poisoning, resulting from accidental overdose and therapeutic error (17). As opioid use 

increases in the adult population, so does exposure of neonates and infants to opioids through 

pregnancy and in breast milk as well as accidental poisoning due to an increase in availability 

in the home. Infants and children are prescribed opioids for analgesia and the high rate of 

interindividual variability in pharmacokinetics makes dosing challenging. Determining doses 

of opioids in young children is especially challenging as the majority of pharmacokinetic data 

have been obtained in adults. Furthermore, pain is a difficult sensation to quantify, especially 

in very young children who are unable to vocalize changes in their level of pain. Pain 

perception is influenced by a combination of inputs from memory, limbic systems, stress 

mechanisms and sensory signalling (18). This means that the sensation of pain can vary not 

only between individuals but also depending on one’s attention, mood, memories, making 

analgesic effectiveness difficult to quantify and highly variable (18).  In order to safely 

manage pediatric pain with opioids it is important to identify clinical and genetic risk factors 

that can aid in predicting how a child will respond to a standard dose of drug. The recent 

discovery of morphine uptake via the hepatic OCT1 transporter has been shown by one group 

to affect the pharmacokinetics of morphine response in children. This finding should be 

corroborated in other cohorts and investigated further in adults. The impact of genetic 

polymorphisms on opioid response is multi-factorial. Future research regarding clinical 
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models of predicting opioid response in children must consider new genetic markers, such as 

OCT1, while also accounting for clinical sources of variability. 

 

Opioids are among the world’s oldest known drug class and were not subjected to the 

pharmacokinetic/pharmacodynamic testing required to bring a drug on to today’s market. 

Investigating clinical and genetic factors has shed light on some of the variability seen in 

pediatric opioid response. In an era where bedside pharmacogenomic testing is within reach 

the importance of prospective clinical evidence is greater than ever. In the case of codeine 

exposure in breast milk we showed that by controlling clinical risk factors we could mitigate 

the influence of genetics on determining codeine toxicity in the breastfed neonate (Chapter 3). 

Genetic factors were implicated in several fatalities associated with codeine exposure post-

tonsillectomy. These case reports, along with the supporting literature, led the FDA to 

contraindicate codeine in this population. Following tonsillectomies improvement in 

respiratory parameters can take several days and prescribing an opioid has the potential to 

increase respiratory complications in some children (19). Further investigation, including a 

randomized clinical trial (Chapter 4) suggested that opioids may be responsible for increasing 

the rate of desaturation events per night following tonsillectomy in children with sleep 

disordered breathing.  Future studies should address the safety and effectiveness of lower 

morphine doses or alternating morphine and ibuprofen doses in these children. 

 

 In the adult population, methadone response is associated with several genetic 

polymorphisms (20-22). The effects of these polymorphisms on the severity of NAS in the 
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newborn are currently unclear and require further investigation. The use of genetic factors to 

predict NAS may be beneficial in initiating early non-pharmacological management for those 

at an increased risk or pre-emptive therapeutic management. 

 

While the use of opioids to manage pain in pediatric medicine is not likely to subside, 

dynamic growth in the field of opioid pharmacogenomics over the last two decades has 

allowed us to understand some of the variability seen in opioid safety and effectiveness. The 

increasing availability and decreasing cost of genome wide sequencing is likely to allow us to 

elucidate additional rare variants or new genetic associations which will enhance our 

understanding of the complexities governing variability in the perception of pain in children, 

as well as their response to analgesics. In conclusion, current data support a role for both 

clinical and genetic factors in determining pediatric opioid response. Based on our current 

knowledge dosing decisions for pediatric opioid use must be made on a case-by-case basis as 

standard dosing is not safe in all children. 
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Appendices: 

Appendix 1: A pharmacokinetic model using Pmetrics software 
(Los Angles, United States). 

Model was constructed based on published pediatric pharmacokinetic characteristics to simulate 
expected time concentration profiles for codeine and morphine based on age, weight, and dosing 
schedule. Red dot indicates the patient in case 3 with measured concentrations within the 50th 
percentile for codeine and 99th percentile for morphine suggestive of a functional gene 
duplication 
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Appendix 2: Copyright approval for previously published work 
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Appendix 2: Ethics approval for investigation into in utero 
methadone deaths 
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Appendix 3: Research Agreement between UWP and the Ministry 
of Community Safety and Correctional Services, Office of the 
Chief Coroner, Ontario Forensic Pathology Services and the 
Centre of Forensic Sciences 
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Appendix 4: Ethics approvals for methadone levels and 
pharmacogenomics pilot study 
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Appendix 5: Ethics approval for codeine in breastfeeding  
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Appendix 6: Ethics approval for tonsillectomy clinical trial (UWO, 
HSC, 
McMa
ster)  
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Appendix 7: Clinicaltrials.gov registration for tonsillectomy study 
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Appendix 8: Ethics approval for oral morphine weaning chart 
review 
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