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ABSTRACT

Previous work, by this and other authors, noted several elements in bones and teeth are

distributed non-uniformly.  It was theorized that elemental distributions may be

accentuated in the case of bacterial infections.  Regions of bone surrounding Dental

Abscess and Tuberculosis lesions were identified from, Varden (AdHa-1) and

LeVesconte, Ontario; San Pedro, Belize and Kellis II Cemetery, Egypt.  The abscess

cavities were excised intact and cross-sectioned through the identified lesion. 

Elemental distributions in the bones were obtained using Synchrotron X-ray Fluorescence

mapping.  Maps of Zinc, Copper, Iron and Bromine were collected from the  samples.

The elements included in this study displayed no correlation between distribution

patterns and the presence of a dental abscess. This conclusion is limited to the

elements studied.  Other elements or possible effects on bone structure, crystallinity or

elemental chemistry will need to be addressed in future work.  However, it was found that

Zinc concentration correlates with active bone formation areas.     

Keywords: Elemental Analysis, Bone, Zinc, Dental Abscess, Synchrotron Radiation,

XRF, Varden (AdHa-1), San Pedro, Kellis II, LeVesconte Burial Mound
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Elemental Distribution in Bone Impacted by

Bacterial Diseases

CHAPTER 1: STATEMENT OF PROBLEM

The distribution of elements within the body is a complicated problem which has

long fascinated researchers in many disciplines.  Elements play key roles in many

biological processes, especially in the proper functioning of enzymes, as well as,

enzymatic activation and inhibition mechanisms (Berdanier and Zempleni, 2009).  Thus a

knowledge of the use and function of elements in the biochemistry of the body is vital to 

medical practice and diagnosis.  Even so, our understanding of elemental concentrations

within tissues, healthy or diseased, is very limited.

The specific association of some elements with particular tissues and the

advantages of this knowledge for medical practice has become so familiar that it is often

forgotten.  The association of Iodine with the thyroid gland, and the subsequent use of

iodized salt is a case in point.  Other associations are less well known, for example, Zinc

(Zn) is concentrated in the prostate gland (Zaichick and Zaichick, 2009) to levels 10

times those in other soft tissues (A guide to element symbols can be found in appendix

A).  When affected by malignant tumours the Zn level is seen to drop significantly, thus

methods of measuring the Zn content in the prostate are attracting significant attention

(Zaichick and Zaichick, 2009). 

Malignant cancers are a significant concern worldwide and many people are

aware of the connection between pollutant metals and cancer.  Even though a causal

connection has not been firmly established in all cases, and the metals are possibly just

being concentrated or depleted by the altered metabolism of the cancer cells, nonetheless

the elements provide a clue to causality and diagnosis (Durham and Snow, 2006).  Still,

the association between cancer and metals is well established.  It is perhaps surprising

then, that the analysis of trace metals in cancerous tissues is a relatively new field of

enquiry (Reddy et al., 2004).  
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Recent technological advances such as Synchrotron Radiation X-Ray

Fluorescence (SRXRF), and others, now allow researchers the ability to interrogate a

wide variety of materials for elemental concentrations as low as parts per million (ppm)

with a spatial resolution at the micrometre (ìm) scale (see appendix A for a guide to

units).  Carvalho et al. (2007) recently compared some of these new studies noting that

the analytical techniques used are receiving increased attention in the medical physics

community.  Micro-scale trace element analysis techniques, such as SRXRF, Particle

Induced X-Ray Emission (PIXE), and Total Reflection X-Ray Fluorescence (TRXRF),

have been applied to various cancerous tissues confirming a link between anomalous

localized concentrations of elements and cancer.  For instance Geraki et al. (2008) found

Calcium (Ca), Copper (Cu) and Zn to be at higher concentrations in breast cancer tissues. 

Reddy et al. (2004) found that Chromium (Cr), Iron (Fe) and Nickel (Ni) are concentrated

in cancerous intestines while Zn was depleted below normal.  

The micro-scale spacial variation of element concentrations are not just limited to

the cancerous tissues themselves.  Bazhanova et al. (2007) have demonstrated that the

concentrations of Cr, Ni, Cadmium (Cd), and Antimony (Sb) are higher than normal in

the cells surrounding tumours.  Indeed, micro-scale analysis of several healthy body

tissues have revealed interesting localized concentrations of elements.  For instance,

Zoeger et al. (2008) have found that Lead (Pb) and Zn are concentrated in a 70

micrometre wide band at the mineralization front in knee cartilage.  Zinc and other

elements have been found to be significantly enhanced in the cementum of teeth (Martin

et al., 2004).  In a recent study of compact bone Swanston et al. (2012) observed

increased amounts of Pb and Strontium (Sr) around some Haversian canal systems.  As

well, in a study of periodontal disease Martin et al. (2010) found a correlation between

Cu and Zn in plaque covering diseased teeth and an associated decrease of Zn in the

cementum.

Taken together these brief examples suggest that; In and/or around tissue areas

having altered metabolic needs, [Cancer, Bacterial Infection (periodontal disease),

active growth (mineralization front, Haversian systems, cementum)] as compared to
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normal, unique micro-spacial distributions of elements can occur and may be related

to specific diseases or metabolic processes.  If this suggestion is correct then the

implications for diagnostic medicine and treatment of diseases are clear.  The importance

of such elemental associations would not be restricted to clinical medicine but would also

greatly enhance the practice of diagnosing ancient diseases in paleopathology and

paleoepidemiology.  More accurate diagnosis of ancient disease could enhance our

understanding of the evolution of disease through time and the impact of such on past

populations.

It is with the archaeological/paleopathology perspective in mind that this thesis

will make a start at probing the relation between disease and trace element distribution

patterns in bone.  Specifically, I will examine if the distribution of elements in bone

surrounding areas of bacterial infection are unique, making use of samples of

archaeological origin.   Thus the null hypothesis under investigation is: There are no

elemental distributions in bone that are related to bacterial infections.  An important

corollary to this is, of course, that elemental analysis offers no clues to diagnosing

diseases in archaeological or modern bones. 



CHAPTER 2: BACKGROUND

“The Complexity of things - the things within things - just seems

to be endless.  I mean nothing is easy, nothing is simple.”

Alice Munro

Doctors, nutritionists, toxicologists and anthropologists have studied the

elemental composition of the human body since the emergence of their representative

disciplines.  So we know that, in general, the body consists, on a dry mass basis, of

mainly Carbon (C, 50%), Oxygen (O, 20%), Hydrogen (H, 10%) and Nitrogen (N, 8.5%). 

These four are closely followed by Calcium (4%), Phosphorous (P, 2.5%) and Potassium

(K, 1%) making up 96 % of our bodily elements (Murray et al., 2000; Ochiai, 1977). 

Approximately 21 additional elements are considered essential for human health

including Sulfur (S), Sodium (Na), Chlorine (Cl), Magnesium (Mg), Iron, Nickel, Zinc

and Copper (Berdanier and Zempleni, 2009; Ochiai, 1977; Underwood and Mertz, 1987). 

Many of the physiological roles of these elements have been documented over the years

(Berdanier and Zempleni, 2009; Ochiai, 1977, for example).  Still, many details of the

elements’ roles in metabolic processes remain to be understood.  This is especially true of

the trace elements (Cu, Fe, Zn, Arsenic (As), Cr, Cd, Cobalt (Co), Fluorine (F), Iodine (I),

Manganese (Mn), Molybdenum (Mo), Ni, Selenium (Se), Silicon (Si), Vanadium (V),

Lithium (Li)) due in large part to their extremely low concentrations in biological tissues.

The results of some recent studies have highlighted a couple of surprising aspects

of trace element chemistry in the body.  In 2004 we (Martin et al., 2004) reported that Cu,

Zn, Pb and Bromine (Br) were significantly concentrated within the cementum of some

human teeth.  Zn remarkably occurs at over 10 times the concentration in the cementum

than in the rest of the tooth.  This Zn distribution has so far occurred in all the teeth we

have studied (Martin et al., 2004; 2007; 2010; Dolphin et al., 2013).  The cementum is an
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actively growing calcified tissue that surrounds the roots of mammalian teeth and is

typically 100 to 200 micrometres thick (Hillson, 1996).  Figure 2.1 shows an example of

this remarkable distribution in the case of Zn.  

 Figure 2.1.  X-ray Fluorescence Intensity map for Zn in a healthy tooth.  Indicating the typical Zn
       enhancement in the cementum. (After Martin et al., 2010, Figure 2).

Zoeger and coauthors (2008) reported a similar enhancement of Zn and Pb at the 

mineralization front in knee cartilage samples from horses.  The distinct region of

element enhancement in this case was only an average of 70 micrometres wide.  In

another study we reported on the concentration of Zn and Cu in the cementum of human

teeth affected by periodontal disease (Martin et al., 2010).  In this instance we noted an

increase of Cu and Zn concentrations in the plaque covering the cementum of diseased

teeth.  We also noted an associated decrease in the Zn concentration within the cementum

directly under the covering plaque.  In a recent study Swanston et al. (2012) report

increases in Pb and Sr localized in Haversian systems in cortical bone.

These studies suggest that: 1) distinct localized distributions of elements within

the body occur in regions as small as 10's of micrometres across; 2) these distributions 

can be associated with processes of biological change such as cementum growth, cartilage

mineralization and periodontal disease; 3) unique localized distributions of elements can

be observed in surrounding tissues as well; and 4) at least some localized elemental

concentrations can be preserved in the hard tissues after death. 

The four ideas above are in general what this thesis will begin to investigate. 

Specifically, I want to address the second suggestion; can localized distributions of

elements be associated with processes of biological change?  Biological change may,

of course, mean growth/development or disease/decay.  The question arises, where would
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one expect to see the most clear examples of these localized distributions of elements in

tissues?

The elements that enter the body from the diet can be either controlled

physiologically or not.  Those elements that are not controlled are expected to have tissue

concentrations that track with the amount of element in the diet (Burton, 2008).  It is also

important to note that one of the functions of bones is as element storage for the body,

primarily for Ca and K, so it is no surprise that most elements to be found in the body can

be found in the bones (Berdanier and Zempleni, 2009). 

As an aside, I should note that even though some elements are not controlled

physiologically they may mimic those elements that are (such as Sr , Ba , and Pb2+ 2+ 2+

which mimic Ca  in charge and ionic size) and thus may enter into controlled2+

mechanisms and appear to be under physiological control even though they are not.

Those elements which are under physiological control will be expected to have

tissue concentrations that are maintained in homeostasis and may not follow dietary

intake.  The concentration of these elements in individual tissues may be remarkably

variable and not related to dietary levels (Zn levels in prostate for example (Zaichick and

Zaichick, 2010)) except in situations of inadequate intake.  Against these normally

maintained background concentrations, if homeostasis is disturbed by disease or the

presence of different metabolisms (infection by bacteria, rapid growth in cancer) then we

could expect abnormal concentrations and spatial patterns to develop that may reflect the

modified metabolic needs present.  We could also expect unique elements to be present or

absent and we could even expect unique chemistry or structures to develop because of the

variable physiology.  For example, Ca, Cu, Zn, and Fe have been found to concentrate in

tissues affected by uterine cancer (Bazhanova et al., 2007).  The changes in Zn and Cu

concentrations observed by us in periodontal disease may be another example (Martin et

al., 2010).  

Therefore I would expect the best evidence of localized elemental distributions to

be found in cases of disease, so my question becomes; Do diseases affect the trace

element distributions and concentrations in bone?  Of course there are many elements and
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many diseases.  I have decided to focus on a comparison of two bacterial diseases,

Tuberculosis (TB) and Dental Abscesses (DA).  These two pathologies have been chosen

because 1) both display distinct skeletal patterns during their normal disease course which

can be used for reliable diagnosis in dry bones, and 2) one (TB) is an aerobic bacterial

disease while the other (DA) is caused by an anaerobic bacteria.  Aerobic bacteria use

oxygen in their basic metabolism, especially during cell division, whereas anaerobic

bacteria can rely on Sulfur and other elements such as Mn, Fe or N for their energy needs

(McInerney and Gieg, 2004).

In the end I have three parallel questions for this thesis;

1) Does TB affect the trace element distribution or concentrations in bone?

2) Do Dental Abscesses affect the trace element distribution or concentrations in

bone?

3) Do TB and DA affect the elemental distribution or concentrations the same

way?   

Or to state the problems using falsifiable statements (Null Hypothesis);

1) There is no difference between the element distributions and

concentrations in bone affected by TB and normal bone. 

2) There is no difference between the element distributions and

concentrations in bone affected by dental abscesses and normal bone.

3) There is no difference between the elemental distributions and

concentrations between TB and DA affected bone.

I have tried to describe above the factors that led me to this work and some of the

rationale behind the choices which narrowed down the general question to ones that can

be tested.  But what is the significance of the answers?  In the field of biological

anthropology there are many bone lesions which are not pathognomonic for any one

disease, such as rib lesions (TB, pneumonia etc. )(Waldron, 2009).  This situation

prevents accurate prevalence numbers for past populations from being obtained.  If

element distributions are found to be unique they could be used to distinguish specific
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diseases.  The added diagnostic ability provided will significantly reduce the errors and

improve the statistics inherent in the fields of paleodemography and paleoepidemiology. 

Also, elemental distributions could be another piece of data to study the changes of

disease through time or to track treatments through time in the fields of medical

anthropology or history.

In the current world the distribution of elements in a diseased tissue will provide

new information, or another perspective, for the study of diseases in the body.  Such

detailed elemental distributions may highlight the role of certain biochemical pathways

that use the elements in question and suggest new directions for medical research in

current diseases.  Understanding the elemental roles in disease better may also provide

new directions for diagnostic tests and treatments.  

2.1: Biomineralization

Typically bone is presented as a simple binary material made roughly of one third

collagen and two thirds inorganic minerals, mainly hydroxyapatite.  Bone is, of course,

somewhat more complex.  Along with other calcified tissues in the body, teeth,

mineralized collagen, mineralized tendons and various pathological calcifications,

(Dorozhkin and Epple, 2002) bone is the main human manifestation of a fascinating class

of mineral materials formed within living organisms.  The formation of  biologically

produced minerals is generally referred to as biomineralization which has recently

received much attention (see for example: Dorozhkin and Epple, 2002; Weiner, 2010;

Guo and Barnard, 2013).

Many animals and plants display processes of biomineralization, including

jellyfish, fish, marine algae, bacteria, limpets, land plants, mollusks and snails

(Dorozhkin and Epple, 2002).  A total of 60 - 65 different minerals are known to be

produced by various organisms (Weiner, 2010), which range from highly disordered

(opal) to highly organized materials (magnetite).  It is important to note that biogenic

minerals often have shapes that are quite distinct from their inorganic mineral

counterparts (Weiner et al., 2005; Weiner, 2010).  Biogenic minerals are also formed
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under controlled conditions (temperature and concentrations) well below those conditions

required in laboratories, which would kill any cells (Weiner et al., 2005). 

Biomineralization, unlike inorganic mineralization, also gives rise to mineral crystals

which are of uniform size, orientation and are often intimately associated with organic

components (Dorozhkin and Epple, 2002; Weiner, 2010).

2.2: Bone Structure 

Bones certainly make up the largest proportion of the vertebrate, including human,

manifestation of biomineralization.  In general the bones of the skeleton serve as a

structural support for the body, protection for several organs and as a major reservoir of

calcium, phosphate (Dorozhkin and Epple, 2002) and most other trace elements

(Berdanier and Zempleni, 2009) necessary for proper metabolic function.  Each bone is

uniquely shaped and structured to fulfill its roles within the skeleton.  Yet all bones are

made of the same complex compound material which varies little in composition from

bone to bone.

The two main components of bone are 1) the protein collagen which makes up

90% of the organic content of the bone and 2) calcium phosphate in the mineral form of

carbonate hydroxyapatite (CHA).   Overall, bone is about 1/3 by weight collagen with the

rest mainly CHA.  The collagen forms intertwined flexible, slightly elastic fibres.  The

collagen fibres are intimately associated with crystals of carbonate hydroxyapatite which

stiffen the material giving rise to the composite materials amazing properties (Dorozhkin

and Epple, 2002; Burton, 2008; White et al., 2012).  Bone also contains bone cells

(osteoblasts [bone builders], osteoclasts [bone resorption] and osteocytes [bone

maintainence]) as well as other physiological fluids and blood which are important for the

health and maintenance of the bone.  Like any composite material the loss or damage of

any component of the system may have significant consequences for the normal

functioning of the whole.

However, the detailed structure of bone varies depending on the length scale at

which it is examined.  Weiner and Wagner (1998) have organized the hierarchical
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structures of bone into seven basic levels, the largest three levels are illustrated in figure

2.2.   At the largest length scale (Level 7), we see the whole bone.  It is at this scale where

the shape-function relationship of the bone is most studied.  The study of the whole bone

is the mainstay of bioarchaeological and zooarchaeolgical research and much still needs

to be learned about the shape-function relationship at this level (Weiner, 2010).

A step smaller in length (Level 6), at a scale of centimetres, lies the compact-

spongy bone continuum.  There is no sharp demarcation between densely packed compact 

bone and the open pore system in trabecular bone (Weiner, 2010).  The obvious

difference between these structures is their visible porosity, however, most bones are

composed of a dense outer layer of compact bone (cortical bone) surrounding an area of

trabecular (spongy or cancellous) bone.  To be complete at this stage, the interior of the

bone also contains a gel-like tissue called the marrow (Dorozhkin and Epple, 2002).  

Porosity is an important property of bone material, and although compact and

spongy bone look macroscopically different, the difference between the two in terms of

surface area is not significant.  The majority of canaliculi in bone are of nanometre size,

most less than 6 nanometres (Weiner, 2010) and occur at the level of the mineralized

collagen fibre.  There are of course larger passages in the bone mainly to allow access for

blood vessels, nerves and bone cells (Haversian systems, lacunae, canaliculi) (White et

al., 2012).  The porosity of bone, besides allowing the collagen/hydroxyapatite matrix to

be bathed by body fluids, is a relevant factor in understanding the biomechanics of bone

especially as it relates to disease and deterioration of bone after death (Weiner, 2010). 

Level 5 in the hierarchical structure (figure 2.2) of bone material is termed the

lamellar bone.  This refers to the layers of bone first deposited on a surface, the new bone

is laid in layers which are more or less parallel to the surface on which the bone is laid.  If

this surface is a internal one the layers end up arranged cylindrically around one another

creating the lamella of the Haversian systems.  It is at this length scale where the action of

the osteoblasts and osteoclasts is clearly seen.  The  hormones; parathyroid hormone,

thyroid hormone and growth hormone along with many factors termed cytokines

coordinate the bone forming action of the osteoblasts and the bone destroying action of 
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Figure 2.2.   Hierarchical organization of bone from Level 5, lamellar bone, to Level 7, the whole bone.
      (After: White et al., 2012, Figure 3.7, p. 34).
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the osteoclasts to continually remodel the bone structures for maximum function

(Waldron, 2009; White et al., 2012) .     

The structures discussed so far can all be seen with the eye or under low

magnification.  To examine the smaller scales of bone structure it is best to jump to the

smallest scale and work our way back up.  At the smallest scale, hierarchical level 1, we

meet the basic molecular components of bone material.  The organic phase, Type I

collagen, the inorganic phase, Carbonate Hydroxyapatite and water.  

Type I collagen is fibrous in nature and is the type of collagen which also appears

in skin and tendon (Weiner and Wagner, 1998).  The individual collagen fibres in bone,

termed the fibril, are composed of three polypeptide chains wound together in a triple

helix.  Each peptide is about 1000 amino acids long, the helical molecule is thus

cylindrical in shape about 1.5 nanometres in diameter and 300 nanometres long (figure

2.3).  The manner in which these fibrils pack in bone is unique (Weiner and Wagner,

1998; Weiner, 2010).  In the plane parallel to the fibril axis the individual fibrils are

arranged parallel to each other and aligned along their long axes, furthermore, the ends of

each fibril are offset by about 68 nanometres from each other, creating a staggered

arrangement with a slightly smaller gap between successive helical molecules. 

Perpendicular to the fibre long axis the gaps align to form a narrow channel (Weiner and

Wagner, 1998).  It is in these channels where the crystals of carbonate hydroxyapatite fit

(Weiner, 2010; Dorozhkin and Epple, 2002).

Although many authors state that the mineral component of bone is

hydroxyapatite (or hydroxylapatite, or hydroxy-calcium phosphate), chemical formula

5 4 3Ca (PO ) (OH) (Burton, 2008; Waldron, 2009), this has been found to be strictly

incorrect (Weiner, 2010; Dorozhkin and Epple, 2002).  The mineral component of bone

can be termed carbonate hydroxyapatite, that is hydroxyapatite where some of the

4 3phosphate (PO ) groups are replaced by carbonate (CO ) groups.  This material can also

5 4 3 3be termed dahllite, Ca (PO ,CO ) (OH) (Weiner and Wagner, 1998).  Although this may

seem like a small point, it is very important and will be discussed later, at this juncture it

should be noted that biological carbonate hydroxyapatite is never pure, containing many
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impurities like carbonate, fluoride, manganese and strontium (Bigi et al., 1997;

Dorozhkin and Epple, 2002).  

Figure 2.3.  Schematic representation of the hierarchical organization of bone from Level 1, the basic
      components, to Level 2, the mineralized collagen fibril. (After: Weiner and Wagner, 1998,
      Figure 3).

The crystals of carbonate hydroxyapatite are very small, 50 nanometres long by 25
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nanometres wide and only a few (2-4) nanometres thick, this is only a few unit cells wide. 

Another way to look at this is that the crystals are only about 10 - 15 atomic layers thick

(Dorozhkin and Epple, 2002; Weiner and Wagner, 1998; Weiner 2010).  Even so the

crystals are remarkably uniform, having the bulk atomic structure of carbonate 

Figure 2.4. Schematic diagram of the hierarchical organization of bone structure from Level 3, Fibril
     arrays, to Level 4, Array packing motifs. (After Weiner and Wagner, 1998, Figure 6).

hydroxyapatite although not the bulk shape which is hexagonal (Weiner and Wagner,

1998).  The reason for the plate shaped crystals is currently unknown, as are the details of

the chemical interface between the collagen and these very small crystals.
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The collagen fibrils and carbonate hydroxyapatite crystals are arranged together to

make the mineralized collagen fibrils, hierarchical level 2 (figure 2.3).  The crystals are

arranged within the gaps of the collagen molecules in parallel arrays like a pavement. 

An important feature of the mineralized collagen fibril is that the c-

crystallographic axis of the carbonate hyroxyapatite crystals are aligned parallel to the

collagen fibril axis.  The mineralized fibrils are the basic building block of all the larger

bone structures and are 80 - 100 nanometres in diameter and a few micrometres in length,

although their exact length can not be determined.  

At organizational level 3 the mineralized fibrils are bundled together in groups or

arrays aligned along their long axes (figure 2.4).  The arrays are not, however, discrete

with fibrils often fusing with one another and with other arrays.  The detailed internal

structures of these arrays have thus not been documented fully to date (Weiner and

Wagner, 1998).

The fourth hierarchical level of organization deals with how the fibril bundles are

packed within the mineralized material.  There are four common ways, or motifs, in

which the arrays pack in bone materials, see figure 2.4.  These arrangements give rise to

different mechanical properties for the composite material and it is at this level that the

material is adapted to a particular mechanical function in a particular tissue (Weiner and

Wagner, 1998; Weiner, 2010).  It is also at this micrometre to millimetre scale where the

common microscopic repeating structures observed in mineralized tissues originate, such

as Sharpey’s fibers, Enamel prisms, Striae of Retzius, etc.  

Type 1 is the simplest arrangement of fibril arrays, it is basically an extension of

the parallel packing motif and is common in mineralized tendon and bovine bone (Weiner

and Wagner, 1998).  Type 2 is the opposite, involving completely unorganized packing of

fibrils in three dimensions, this type is important as it is commonly found in newly

formed fetal bone, woven bone and during wound repair.  The third common motif is the

most common structural arrangement found in mature bones.  It is characterized by layers

of parallel fibril arrays arranged in a plywood-like fashion with their long axes differently

oriented in each layer.  This arrangement is thought to provide the greatest mechanical
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stability in all directions (Weiner, 2010).  The fourth common type of fibril arrangement

is characteristic of dentin.  In this arrangement the fibril arrays are arranged in sheets

parallel to the surface of the structure but the axes of the arrays within a sheet are

randomly aligned.         

Each of these fibril array packing motifs generate layers of mineralized composite

material on surfaces giving rise to the bulk lamellar layers of organizational level 5,

figure 2.2.  Much more could be said about the details of bone structure, function,

histology and the roles of the non-collagen proteins and water, but it is clear, that bone is

not a simple material structurally.  Nor is bone simple chemically, and since this is the

organizational level at which the elements are involved we will now look more closely at

the inorganic chemistry of bone.

2.3: Inorganic Chemistry

As already mentioned above, the mineral component of the hard tissues in not

exactly hydroxyapatite (HA).  An examination of the data in table 1 shows that the

average physical parameters of the inorganic phases of both teeth and bone do not exactly

match hydroxyapatite, or for that matter, other common calcium phosphate compounds. 

This has led to some disagreement as to which mineral phase is actually present in bone. 

Weiner and Wagner (1998) suggest that the inorganic phase in bones is best considered

carbonated hydroxyapatite (CHA) (or dahllite), while Dorozhkin and Epple (2002) favour

the compound calcium deficient hydroxyapatite (CDHA).  

In general the inorganic phase in bones and teeth is a calcium phosphate, of which

there are many stoichiometric compounds known (some are listed in table 1).  The

important parameters for bone chemistry are considered the Ca/P ratio and the solubility. 

For the pure calcium phosphates the Ca/P ratio ranges between 0.5 - 2.0, the lower the

ratio the more acidic in solution and the more soluble the compound typically is in water

(Bigi et al., 1997; Dorozhkin and Epple, 2002).  Of course the biologically produced

calcium phosphates are known to be poorly crystalized and non-stoichiometric materials

3containing significant amounts of Na, Mg, K, Sr, F, Cl and carbonate (CO ) (Weiner and
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Wagner, 1998; Dorozhkin and Epple, 2002; Burton, 2008).

I should note that the Ca/P ratio in the bioanthropological literature is quoted as a

mass ratio, whereas, in chemical literature it is given as a molar ratio (as above). 

Unfortunately both typically have a value around 2 so care must be taken to understand

the ratio being used by any particular author.  It is easy to convert from one to the other

5 4 3ratio.  For example: for hydroxyapatite, formula Ca (PO ) OH

where amu refers to atomic mass unit (See appendix A).

To complicate matters further, neither HA, CDHA or CHA precipitates from

supersaturated solutions of calcium and phosphate ions, there is always some

intermediate phase involved (Weiner and Wagner, 1998; Dorozhkin and Epple, 2002;

Burton, 2008). Three possible precursor materials have been suggested, namely DCPD

(dicalcium phosphate dihydrate), OCP (octocalcium phosphate) and ACP (amorphous

calcium phosphate) (Dorozhkin and Epple, 2002), but at this point it is not clear which

material is involved.  Whichever material is the precursor it only occurs transiently and as

such is very difficult to detect in vivo.  Although, the use of a precursor to affect the

desired crystallization product under unfavourable thermodynamic conditions has been

found to be common in the realm of biomineralization (Weiner et al., 2005).

Regardless of the original material the crystals laid down are quite small and most

importantly only about 1.5 - 4 nanometres thick.  This thickness represents only about 10

- 15 atomic layers, and yet the crystals are surprisingly uniform in structure adopting the

hexagonal structure of HA or CHA (see figure 2.5) although they are plate shaped similar

to OCP (Weiner and Wagner, 1998).  What this means is that the atomic order of the

calcium phosphate crystals is interrupted abruptly leaving what should be a very reactive

or disordered surface (Weiner, 2010).  In the bulk crystal the hexagonal structure is

adopted to reduce the disorder and/or pacify the reactive surface.

For the uninitiated CHA (or HA) is a mineral compound that has a definite
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repeated structure or arrangement of atoms in three dimensions, a crystal.  In the case of

CHA this is a highly symmetric hexagonal structure (Chang et al., 1996; Ulian et al.,

42013) that basically has an arrangement of Ca  ions surrounded by phosphate (PO ) 2+ 3-

Table 2.1: Some properties of selected calcium phosphate compounds (from Dorozhkin and Epple, 2002).

Compound Formula Ca/P

(molar)

Ca/P

(mass)

Solubility

at 37EC,   

sp -log(K )b

pH stability

range (aq.)

at  25EC

Typical

crystal size

(nm)

Enamel - 1.63 2.10 - - 100 x 50 xa

50000

Dentine - 1.61 2.08 - - 35 x 25 x 4a

Bone - 1.71 2.20 47.5 + 8.1 50 x 25 x 4a a d d a

monocalcium phosphate

monohydrate (MCPM)

2 4 2 2Ca(H PO ) @H O 0.5 0.65 - 0.0 - 2.0 -

dicalcium phosphate

dihydrate (brushite)(DCPD)

4 2CaHPO @2H O 1.0 1.29 6.63 2.0 - 6.0 -

octocalcium phosphate

(OCP)

8 4 2 4 4 2Ca (HPO ) (PO ) @5H O 1.33 1.72 95.9 5.5 - 7.0 -

3 4 2á-tricalcium phosaphate Ca (PO ) 1.5 1.94 25.5 no ppt. -c

3 4 2â-tricalcium phosphate Ca (PO ) 1.5 1.94 29.5 no ppt. -c

amorphous calcium

phosphate (ACP)

x 4 y 2Ca (PO ) @nH O 1.2 - 2.2 1.55 -

2.84

- - -

calcium deficient

hydroxyapatite (CDHA)

5-x 4 x 4 3-x 1-xCa (HPO ) (PO ) (OH)   

(0 < x < 0.5)

1.5 - 1.67 1.94 -

2.15

85.1 6.5 - 9.5 -

carbonate hydroxyapatite

(dahlite) (CHA)

5 4 3 3Ca (PO ,CO ) (OH) 1.67 - 5+ 2.15 -

6.45+

- - -

5 4 3hydroxyapatite (HA) Ca (PO ) (OH) 1.67 2.15 117.2 9.5 - 12 200 - 600

tetracalcium phosphate

(TTCP)

4 4 2Ca (PO ) O 2.0 2.58 37 - 42 - -

Typical values from Dorozhkin and Epple (2002) other authors present different values. a

The smaller the value the more soluble the compound is in water.  b

Compound does not precipitate from aqueous solution.c

These values were calculated from the work of Berna et al. (2004).  Any misinterpretation of their work is the sole responsibility ofd

the  author.

molecular ions (the prizms in figure 2.5).  Any hydroxide ions (OH ) occupy the edges of-
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the unit cell parallel to the c-crystal axis (which is the main axis of rotational symmetry). 

3Any carbonate molecular ions (CO ) to be found in the structure substitute for a2-

phosphate group.  If expanded to a physically visible size the crystals of CHA adopt the

hexagonal appearance

seen in figure 2.5a. 

Clearly this is not the

shape observed in actual

bone where they are flat

and plate-like (figure 2.3).

The disordered

crystal surfaces, precursor

material, and presence of

substitutions within the

structure, all combine

together so that the

mineral component of

bones and teeth are in a

constant state of change,

remodelling or changing

towards a more stable

mineral form, which is

often taken to be

hydroxyapatite

(Dorozhkin and Epple,

2002; Burton, 2008).  The

process of maturing is a

spontaneous chemical

process which occurs

naturally (Weiner, 2010)
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and is distinct from the cell mediated processes of bone remodelling.  In general it has

been observed that the mineral crystallinity and Ca content increase while the phosphate

concentration decreases over time within living bone (Bonar et al., 1983; Weiner and

Wagner, 1998; Bigi et al., 1997; Dorozhkin and Epple, 2002; Burton, 2008) leading to an

increase in the Ca/P ratio.  This fact should be kept in mind as the same process continues

to occur after death causing the Ca/P ratio to increase slowly after burial (Price et al.,

1992; Burton, 2008; Weiner, 2010).

Although the bone mineral is in a constant state of thermodynamic change, it may

not be more soluble than pure CHA or CDHA as some authors suggest (Burton, 2008).  It

is certainly true that the small size of the crystals in bone material increases their active

surface area, however, the crystals are so small that they should  probably be considered

nanoparticles.  When a material decreases in physical size to the point that a significant

portion of its atoms occur on the surface (usually in the nanometre range) the chemistry of

the compound is no longer dominated by bulk thermodynamic constraints and new

behaviours can arise often based on shape or symmetry (Guo and Barnard, 2013; for a

simple example see Naftel et al., 1999).   So the actual chemistry of the carbonate

hydroxyapatite crystals may be unknown, as are the crystals’ interactions with it’s

surrounding matrix of polypeptide collagen fibrils, water media, cytokines etc.  This

whole unknown area of chemistry is a huge challenge for future research in bone

chemistry.  It is also apropos as the topic of nanoparticles and the implications of

nanomaterial chemistry has been a topic of intense research in chemistry for the past

decade and continues to be so.

Now, how do the mineral crystals in bone form?  This is a question of open debate

which centres on whether the process is ‘active’ or ‘passive’ in nature.  What is clear is

that the formation happens under the direction of the osteoblasts.  In the ‘active’ process

the crystals are formed within a cell in a vesicle designed for the purpose.  The crystals

then need to be transported outside the cell and assembled with the collagen fibrils. 

Alternatively, it has been noted that blood serum is supersaturated in Ca and phosphate

ions so if a suitable nucleation site were available then crystallization should occur
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spontaneously.  It is thus suggested in the ‘passive’ mechanism, that the osteoblasts only

form the collagen matrix and the crystals naturally form within the gaps in their structure

(figure 2.3) without cellular involvement (Dorozhkin and Epple, 2002; Weiner, 2010).      

How about the trace elements which are the centre of this thesis?  Beyond the fact

that all the elements in the body tend to be found trapped or stored in the matrix of the

hard tissues (Berdanier and Zempleni, 2009) little is know about exactly how they get

there or how they are incorporated into the material.  Certainly some ions such as

3carbonate (CO ), F , Ba  and Sr  are known to become incorporated within the crystal2- - 2+ 2+

4structure of calcium phosphate by replacing a Ca  ion or a phosphate (PO ) in the2+ 3-

matrix.  Incorporation, however, is just one possible way for elements to be held in the

bone material.  The elements could be adsorbed to appropriate sites on the crystal surface

without being incorporated into the crystal structure.  Suitable sites for adsorption could

also exist on the surface of the collagen fibrils.  Lastly the presence of elements required

for metabolic processes such as enzyme centres or co-factors should reside within the

bone cells.  

Of course any particular element could be distributed between any one or several

of these possible sites.  Little work has been done to elucidate the exact mechanisms or

sites of incorporation for many of the trace elements in bone.  In the bioarchaeological

literature, it appears assumed, that any element incorporates into the crystal structure or is

adsorbed on the mineral phase, rarely both together.  This is another area which needs

significant attention in the future as the exact incorporation method will have some affect

on the distribution of the elements in the bones as well as affecting the fate and stability

of the element distributions after death.  Although the technique (Synchrotron Radiation

X-ray Fluorescence (SRXRF) mapping) I will use to investigate the micro-distribution of

elements in bones in this work can be extended via the related techniques of X-ray

Absorption Near Edge Structure (XANES) spectroscopy and Extended X-ray Absorption

Fine Structure (EXAFS) spectroscopy, to assess the chemical environment of the

elements and thus possibly determine the actual incorporation mechanisms, they were not

part of the current work. 
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2.4: Using Elements in Bioarchaeology

There is no doubt that the presence of elements occurring in low concentrations in

tissues begs the question; Why are they there?  The sheer volume of literature

investigating any particular element and offering plausible explanations, hypotheses and

guesses both rash and sober speaks to the inherent attraction and/or usefulness of this

question to various scientific endeavours.  Even more intriguing, perhaps, is the presence

of differences in elemental concentrations between sample sets, whether between

different tissues in one organism, between organisms or even between individuals in a

population and differences within a specific tissue.

Unfortunately, except in rare cases, unequivocal explanations of the variations

uncovered by years of studies have defied achievement.  Even so the inherent plausibility

of the “You are what you eat” idea continues to produce studies attempting to trace

ancient diet (Vuorinen et al., 1996; Pinheiro et al., 1999; Carvalho et al., 2000; Carvalho

et al., 2004; Qu et al., 2013; Dolphin et al., 2013), migration patterns (Knudson and

Price, 2007; Weiner, 2010), pollution and industrial activity (Grattan et al., 2005; Pyatt et

al., 2005; Alomary et al., 2006) even age and sex (Vuorinen et al., 1996; Jaouen et al.,

2012), social status (Schutkowski et al., 1999) and behaviour (Dolphin et al., 2005;

Williams et al., 2005) via analysis of trace elements in bones and teeth.  Ezzo (1994) and

more recently Burton (2008) have critically evaluated trace element analysis in the field

of bioarchaeological studies of past diets.  The tone of these reviews is uniformly

cautionary.

In bioarchaeology the possibility of using trace elements to determine diet from

ancient bone samples came to light in the late 1960's (Ezzo, 1994; Burton and Price,

2000).  This idea grew out of the study of radioactive Strontium 90 isotope fallout from

nuclear testing in the 1950's.  It was realized that Sr is chemically similar to Ca and

accumulates in Ca-rich tissues and materials like bones and mother’s milk.  Fearful of

poisoning by radioactive Sr isotopes, copious studies accumulated data on Sr physiology

and biochemical behaviour.  These studies eventually revealed that Sr levels decrease in

organisms as one moves up the food chain.  This ‘biopurification’ occurs because Sr does
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not pass through the gut lining as efficiently as Ca, but is otherwise not differentiated

biochemically from Ca in other processes.  Significantly Sr is incorporated into the crystal

structure of bone as a replacement to Ca.  The biopurification leads to a trophic level (an

organism’s position in the food chain) separation which it was realized should reflect diet

and be recognizable in bone.

Ezzo (1994) and other reviewers (Burton and Price, 2000; Burton, 2008) point out

that decades of intense research went into understanding the physiology and biochemistry

of Sr and then again into validating its link to diet and trophic levels.  The link between

Sr and diet is by no means simple and indeed it has been found that the concentration in

tissues is not the analytical value to use but the Sr/Ca ratio (Burton and Price, 2000;

Burton, 2008).  The Sr/Ca ratio, it turns out, reflects the largest single Ca contributor to

the diet not the total Ca or Sr from all sources in the diet (Burton, 2008). 

Ba is another element similar to Ca and Sr and also replaces Ca in the bone

structure.  Again, Ba has similar biochemistry and chemistry and so is not differentiated

by physiological processes.  Ba has just about as long a history of dietary studies in

bioarchaeology as Sr does, thus the reviewers (Ezzo, 1994; Burton, 2008) list Ba as a

good indicator of diet again as the Ba/Sr ratio.  It is thought that the early success of Sr

and Ba studies lead to the suggestion that other elements forming 2+ ions such as Zn and

Pb may be indicators of diet as well, but subsequent studies largely overturned these

hypotheses (Ezzo, 1994) and current studies continue to challenge their use as dietary

indicators (Zapata et al., 2006; Carvalho et al., 2007a; Wittmers Jr. et al., 2008; Dolphin

and Goodman, 2009) along with other elements.

Ezzo (1994) also reviewed several other attempts to use such elements as Al, Fe,

Mg, Mn, Na, K and P in dietary studies, he found that all these along with Zn and Pb

lacked a basic underpinning in the knowledge of the elements’ physiological roles and

basic biochemistry.  When examined, such knowledge as understood at the time could be

seen to contradict the diet-bone concentration link.  Ezzo also pointed out that significant

corroborating studies had not been done at that time, leading Ezzo to suggest that only Sr

and Ba should be used as dietary indicators in bioarchaeology.  This situation has not
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significantly changed according to Burton and Price (2000) and Burton (2008).  Burton

and Price (2000) sum up the situation nicely: 

Although the chemical analysis of bone has gained widespread
recognition as a tool for paleodietary and paleoenvironmental research, the
primary focus of such research is now mainly isotopic.  Trace-element
compositional studies have fallen into disfavor, a consequence of
disappointing attempts to deduce prehistoric behavior from such analyses. 
These disappointments, however, are largely the historical result of
applying overly enthusiastic and simplistic ideas when drawing inferences
from bone compositions.  These ideas, in turn, stem from an accumulation
of methodological missteps, individually quite minor but cumulatively
significant enough to warrant serious reevaluation of the trace-element
approach.  (pp. 160).

 

A little later on they state more bluntly, “ ... we have a research method that continues to

be applied in a routine, if not appropriate, manner by archaeologists while much of the

archaeometric community that created the methodology has abandoned it.” (Burton and

Price, 2000.  p. 161).  The continued warnings of these and other authors need to be

heeded in any study of trace element chemistry.  And of course significant work needs to

still be done to elucidate the physiology and biochemistry of any element in bone.  

It is interesting to note that the elemental methods (Sr/Ca ratio, Ba/Ca ratio) that

have found acceptance in dietary studies are based on ratios.  The C, N and O isotopic

methods in bioarchaeology involve analysing the concentrations of the carefully

controlled biological elements C, N and O and are thus properly thought of as elemental

methods although they are, by accepted use, considered as a separate field of study.  Since

the 1970's stable isotope analysis, based on determining the ratios of the isotopes C /C ,13 12

N /N  and O /O  in biological hard tissues, has become a common tool for tracing diet15 14 18 16

and migration patterns in past populations (Katzenburg, 2008; Weiner, 2010).  It should,

perhaps, not be surprising that these methods are all based on ratios. 

Taking the ratio of two complicated measurements is a common technique in the

physical sciences.  The ratio has the effect of accounting for significant undetermined (or

unknowable) parameters that affect the two measurements equally.  This practice saves
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the researcher much effort in determining the parameters exactly but still allows accurate

and meaningful results to be determined.  

In the case of stable isotopes, and element ratios, the unknown parameters

affecting the individual measurements that make up the ratio are of course the

physiological and biochemical processes that control the elements’ concentrations within

the hard tissues.  It is thus important that the element components of the ratio be dealt

with in the body in the same way.  To put this differently, the body needs to see no

chemical difference between the component elements in the ratio.  In the case of the

stable isotopes, this is obviously true, as there is no chemical difference, by definition,

between isotopes in reactions.  The slight ratio arises because of a difference in reaction

rates that occurs based on the mass of the atoms.  The reaction rate difference (isotope

effects, or fractionation) is very small and it is important to note that the effect only

becomes measurable after many sequential passages through any particular reaction,

indeed this effect has been used to isotopically purify Uranium ores for nuclear fuel (Kotz

and Purcell, 1991).  It is thus the successive recycling of atoms within the biochemical

processes that eventually gives rise to the isotopic ratios.  

The same is true of the Sr and Ba ratios, as these elements are not chemically

differentiated from Ca (Ezzo, 1994; Burton, 2008), yet because they are distinct in size

their reaction rates within the Ca biochemical reactions are very slightly slower.  

Turnover within the tissues will thus, eventually, generate a slightly different element

ratio, just as happens with stable isotope ratios.  

My point here is that, in as much as trophic level shifts in isotopic ratios have

been validated, the underlying physiological and biochemical processes that govern the

concentration of C, N or O do not have to be clearly understood for isotopic analyses to

produce meaningful data.  However, it is important to point out that any process or factor

which could upset the normal balance of the biochemical processes, such as systemic

disease, may have an effect on the expected stable isotope ratios.  Such situations would

confuse the standard interpretations based solely on diet, indeed White and Armelagos

(1997) found that nitrogen isotope ratios of osteopenic women are higher than healthy
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individuals while, Olsen et al. (2008, 2014) have found that isotope ratios from within

lesions are higher than normal bone.  As such, any interpretations of stable isotope ratios

based solely on diet should not be accepted without careful consideration of the disease

status of the samples.  Just like in the field of elemental analysis, there are no easy

answers in stable isotope analysis (or we should not consider that there are).

I mentioned earlier that some element intensities in bone, and other tissues as

well, have been used to evaluate pollution both present and past.  These types of studies

have been typically better received in archaeology as the elements examined (Pb, As etc.)

are not typically found in bone or the diet at significant levels.  We should not take these

studies for granted though, contradictory studies abound in this field as well (Brenn et al.,

1999; Martin et al., 2005; Martin et al., 2013, for example).  These pollution studies are

similar to provenience studies sourcing materials such as metals and ceramics based on

elemental or isotopic composition of their raw materials.  Of course the inference in this

type of work depends on accurately determining or assuming the source of the element, as

in Cesium from the 2012 nuclear accident in Japan found in tuna recently (Madigan et al.,

2013).  Such clear relationships may not be obtainable, especially in the past.  Again it is

important to consider both the past and present environment in any specific situation. 

Rare elements in bones and teeth, such as U, Ti or the rare earth elements (REE), 

have also been used to infer diagenetic change in samples.  This is because these elements

are thought to not occur in bone except by leaching in from soils containing these rare

elements.  No physiological role has yet been found for these elements, however, most

like U, are poisonous and as a result some biochemical pathway may yet be found that

aims to protect the body from excess amounts.  Either way, it is known that a portion of

any U that does enter the diet does find its way into the bones (Emsley, 2001).  It is

important then, that care should be exercised, especially, in areas where these elements

are naturally part of the rocks and soils and thus might enter in the diet, to understand

how the body deals with these elements physiologically and biochemically.

Overall, one could summarize any aspect of the field of elemental studies in

bioarchaeology, as one of confusion, the literature displaying conflicting results and
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interpretations.  Carbon, N and O stable isotope analysis, is well founded with a large

literature, but even in this field of elemental studies new research is beginning to

problematize the standard interpretations. 

One important parameter that I have not mentioned yet is the actual concentration

of any element in bone material.  Looking through the nutrition, physiological and

bioarchaeological literature one can find a bewildering array of values and ranges for any

element.  Table 2.2 presents such a brief review for the element Bromine in teeth as a

suitable example.  

Table 2.2.  Brief sample of Br concentration values in teeth and bone from the literature.

Tissue Br conc. (ppm) Reference

Enamel 4.6 Soremark and Samsahl, 1961

Crown Dentine 4.2 Soremark and Samsahl, 1962

Crown Dentine

Enamel

100 - 1000

10 - 100

Hardwick and Martin, 1967

Crown Dentine

Enamel

114

33.79

Retief et al., 1971

Enamel 1.12 (0.32 - 2.6) Losee et al., 1974

Enamel 0.87 - 7.3

1 - 4.4

Rasmussen, 1974

Enamel 3.4 Curzon et al., 1975

Enamel 4.54 (0 - 33.2) Curzon and Crocke, 1978

Root Dentine

Crown Dentine

Enamel

3.53 ± 2.51

2.28 ± 1.91

0.26 ± 0.16

Molokhia and Nixon, 1984

Root Dentine

Crown Dentine

Enamel

5.7 (5 - 7.1)

8.0 (5 - 10)

2.7 (1 - 4.5)

Pinheiro et al., 1999

Root Dentine

Crown Dentine

Enamel 

30 (13 - 48) 

15 (7 - 21)

1 (1 - 2)

Carvalho et al., 2000

Root Dentine

Crown Dentine

Enamel

10 ± 3

6 ± 3

2.2 ± 0.7

Carvalho et al., 2004
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Clearly, although the ranges overlap and an average value can be obtained its

statistical certainty is so broad that comparisons between differing values become

meaningless.  Hancock et al. reviewed this point in their 1989 paper.  They found that,

because of factors such as diet, storage conditions and contamination from preparation

methods, even the analysis of elements in modern clean bones suffer from large 

anomalies and are thus not very useful reference values for dietary and physiological

inferences.  Since the same factors are present in archaeological samples with the addition

of long burial times their conclusion is that much of the dietary inferences found in the

literature are erroneous.  

Some of the profound variation in concentration data that exists, may be explained

in part, by the simple reality that most studies to date have relied on ground bone and

tooth samples with only moderate attention given to the type of bone and location of the

bone sample within the skeleton.  Both of these factors have been found to affect the

concentration of the elements in bone, indeed, as in the example that started this thesis,

the variation in elemental concentration occurs at scales smaller than even the region of

the  bone sampled.  I hope that by effecting analysis of bones at micrometre scales, that

the concentration of elements measured within localized regions will become more

precise and statistical comparisons between regions will become meaningful as will

dietary and physiological inferences derived from them.    

If all the above issues were not enough, there is still the matter of archaeology’s

proverbial wrench in the works - diagenesis.  To this final complication I will now turn.

2.5: Diagenesis

Diagenesis refers to all processes that modify the bone structure or chemistry from

the time of death to the time of analysis.  As such, diagenesis covers; cultural practices of

body preparation and burial; biological processes of decay; attack by other organisms

(pre- or post- burial); mechanical processes such as crushing or breaking (either of

cultural or environmental origin); and of course chemical processes such as ion exchange
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and recrystallization.  Many excellent reviews of diagenesis have been written over the

years: Sillen, (1989); Price et al., (1992); Radosevich, (1993); Sandford, (1993); Hedges,

(2002) and Weiner, (2010) are some examples.

Obviously, just like the area of bone structure and chemistry diagenetic processes

are complicated and intertwined and it would be incorrect to suggest that they are fully

understood.  Nonetheless, diagenetic processes are vital to bioarchaeological and

paleontological analysis and all aspects continue to be intensively studied.  In the section

that follows I will try to briefly describe the various processes and experimental measures

of diagenesis in bone, the review will, of course, reflect my limited understanding in the

area and is not intended to be exhaustive.  

2.5.1: Processes of Diagenesis:

In general there are three main categories of processes which occur during

diagenesis.  These are; 1) modification or breakdown of component structures, 2)

incorporation/contamination by other materials, and 3) leaching/loss of component

materials.  All three of these categories of changes have aspects occurring over length

scales from the whole bone down to the molecular chemistry scale.  Also, they all include

processes which occur either fast or slow dependant on the environmental conditions and

history of the buried remains.

Living bone is, as many point out (Price et al., 1992; Weiner, 2010), amazingly

active both physiologically and chemically.  This is so that bone can perform its many

biological roles.  After death, physiological control within the bone is lost and any

changes are then governed by physical laws or the needs of outside microbes.  

The first processes of diagenesis, and some argue the most important (Collins et

al., 2002) are obvious, cultural preparation of the body (de-fleshing, preserving,

disarticulating etc.) and biological degeneration of the soft tissues and living bone cells. 

What exactly the effects of these processes might be are not clear, but, they may depend

on the rapidity of the activity as well as the initial disease (‘health’) state of the

individual.  Relatively speaking these initial processes are rapid.  
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After de-fleshed bones are obtained, physical laws (diffusion, chemical reactivity,

crystal structure, etc.) and environmental conditions take over control of the remaining

diagenetic processes, which are generally much slower or of longer duration (Collins et

al., 2002).  Many diagenetic processes occur simultaneously and differently on each

element of the skeleton and within each individual soil matrix (Radosevich, 1993;

Hedges, 2002).  The ultimate outcome of diagenetic processes also depends on the pre-

burial condition of the remains after the initially rapid cultural treatments and biological

disintegration (Collins et al., 2002; Trueman and Martill, 2002).

It is not surprising then, that contradictory findings abound in the literature of

diagenesis studies (Price et al., 1992; Hedges, 2002).  Some of this confusion also arises

because of various researchers’ attitudes, which have ranged from overly optimistic (no

diagenesis occurs) to overly pessimistic (every effect seen is diagenetic).

One of the first points to come from diagenetic studies was that bone is very

porous, this allows infiltration of the bone structure by other materials.  Thus soil/water

have been found to penetrate deeply into the structures of bones.  This contamination can

be both physical (soil/rocks/quartz) and/or chemical in nature.  For instance, calcium can

be introduced by precipitation of calcium carbonate within the smallest pores of the bone

structure (Price et al., 1992; Weiner, 2010).  

Obviously more open bone structures such as trabecular bone are more easily

infiltrated by large components of the soil matrix as are fractured or broken components

of bones.  Two conclusions, generally arose from the basic observation of soil inclusions:

1) the more complete/undamaged the remains are visually the less likely that diagenesis

would be expected; and 2) compact bone and teeth are considered less susceptible to

diagenesis.  Although from a chemical point of view these two conclusions may not be

generally valid, (Jans et al., 2002; Weiner, 2010) they are still considered basic tenets of

the field.

One important instance of a structural breakdown process in diagenesis is the

attack of bone by fungal hyphae or soil bacteria.  This process, although recognized as

important early on (Price et al., 1992), has been extensively studied more recently (see,
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Jans et at., 2002; Trueman and Martill, 2002 for reviews).  The extent of biologically

induced breakdown found in these studies does not correlate with the overall physical

appearance of the bones. 

2.5.1.1: Microbial Attack and Collagen:

Microbial attack of bone is thought to be the principle agent behind the initial

degradation of bone (Trueman and Martill, 2002).  Microbes (bacteria, fungi and

protozoa) demineralize the bone, producing tunnels or borings.  The easiest way to assess

these structures is via microscopic analysis of prepared thin sections.  The term

‘microscopical focal destructions’ (MFD) has been used to refer to any microbially

produced change in the histomorphology of bone.  In order to quantify the destruction

seen under the microscope Hedges et al. (1995) devised a histological destruction index

based on the amount of bone affected by the biological destruction.  The Oxford

Histology Index (OHI), as the index is now called, ranges from 5 (< 5% affected bone) to

0 (no original histological features visible).  The index has been found to have no relation

to the age of burial or the burial environment for archaeological samples (Hedges et al.,

1995; Trueman and Martill, 2002).  Furthermore the histological index has been shown

not to correlate with the overall macroscopic appearance of the bone, with small fragile

fragments sometimes having higher indices than whole bones (Jans et al., 2002).   

The growth of the invading organism depends on access to the bone collagen

(Hackett, 1981).  This is closely tied to the destruction of the mineral content (Collins et

al., 1995; 2002).  The apatite mineral protects the collagen both from biological and

enzymatic attack but the collagen also protects the mineral from dissolution because the

collagen essentially coats the apatite mineral due to their close association in the material. 

This mutual protection between the collagen and mineral in bone gives bone a surprising

longevity after death.  However once the mutual protection is broken (presumably by

microbial or fungal attack) rapid destruction of the bone results (Trueman and Martill,

2002; Weiner, 2010).  The exact factors that lead to this initial breakdown in bone

collagen and mineral are not clear (Collins et al., 2002; Trueman and Martill, 2002).  
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Infrared spectroscopy and X-ray diffraction studies indicate that when collagen is

lost from the bone the crystallinity measurably increases (Burton, 2008).  The reasons for

this change will be discussed below.  Just what these biological destruction processes

have to do with elemental changes in the bone is unclear but it seems that they are closely

tied together, so to fully understand the process of chemical change one must understand

biogenic attack and its associated effects on crystallinity.   

It is interesting to note that in fossilized bone very little bioerosion is found and as

a result the bones, although often chemically altered, have maintained their histological

structures.  Destruction of the collagen in fossil bone is thought to occur via an

abiological hydrolysis to gelatin (Collins et al., 1995; 2002) which does not require

removal of mineral from the bone structure.  This process would, however, expose apatite

mineral to rapid dissolution, thus, a slow balanced process of collagen degradation and

stabilization of apatite crystals must occur for fossilization to be the result.  It is thought

that such a process may preserve biogenetic elemental signals in fossilized bone

(Trueman and Martill, 2002). Such is often assumed in paleontological papers ( see

Fernández-Jalvo et al., 2002; Lee-Thorp and Sponheimer, 2006; Qu et al., 2013 for

example).    

2.5.1.2: Chemical Alteration of Bone:     

Much work on the chemical diagenesis of bone has gone into elucidating the

3changes that are seen to occur in the Ca content of bone after death.  Calcium (CaCO )

Carbonates are a common component of ground water, the main mineral form is Calcite

although other structural forms exist (Weiner, 2010).  However, Calcium Carbonate has

been found to precipitate in bone from the ground water.  Such a process incorporates

extra Ca and carbonate ions into the bone structure, the main result of which is a change

3in the Ca/P ratio (Price et al., 1992) or the CO  /P ratio (Nielsen-Marsh and Hedges,2-

2000).  

The diagenetic calcium carbonate can be found as crystals of Calcite on the

surface or within cracks or pore spaces in the bone structure but can also be present
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adsorbed on the surface of the bioapatite crystals or incorporated into the crystal lattice of

3 4the apatite replacing either normally present CO  or PO  ions (Nielson-Marsh and2- 3-

3Hedges, 2000).   With incorporation of calcium carbonate the Ca/P ratio and the CO  /P2-

ratio both increase above that for pure carbonate hydroxyapatite.  The presence of

diagenetic Calcite can also be seen via the infrared spectrum which displays a peak at 713

cm  which is not present in the IR spectrum of carbonate hydroxyapatite (Nielson-Marsh-1

and Hedges, 2000; Weiner, 2010).   

3Although the Ca/P or CO  /P ratio increases may indicate diagenetic carbonates2-

other natural processes work to decrease these same ratios.  The carbonate hydroxyapatite

crystals in bone can become more crystalline via normal crystal changes (Ostwald

Ripening) or via processes of recystallization in which the carbonate hydroxyapatite

dissolves in the surrounding ground water but because pure hydroxyaptite is less soluble

it then precipitates back into the crystal.  The net result is a decrease in the carbonate

content and an increase in the crystallinity of the bone mineral that remains (Weiner,

32010).  Because of these competing processes the measures of Ca/P and CO  /P ratios2-

and the crystallinity are problematic measures of diagenesis.  

It is important to mention that if the pH of the ground water is below 7.2 then in

practice all bone will eventually dissolve.  Also, in soils with a high Calcite content, bone

will not dissolve as the Calcite buffers the soil pH to over 8.2 which prevents the

dissolution of all the hydroxyapatites (Weiner, 2010).  

In terms of other elements in the bone tissue, diagenesis is typically thought to

involve the incorporation or uptake of groundwater solutes or the dissolution or leaching

of bone minerals into the groundwater.  Exactly how the elements are bound in the bone

(Hancock et al., 1989) or for that matter in the soil (Burton, 2008) are important

considerations which are not clearly known.  From the soil perspective, even if an

element is present in the soil in significant concentrations it may not be soluble and thus

not be present in the groundwater.  Such elements are Ti, Zr, Mn and Hafnium, which can

only contaminate bone through physical inclusion into pore spaces (Burton, 2008). 

Hancock et al. (1989) reported that on ashing of bone samples some elements such as Na,
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Cl and Br change dramatically.  The change with ashing suggests that the elements are

associated both with the organic phase and with the inorganic crystals.  If such a mixed

distribution of elements between the organic and inorganic components in bone is true

then the question of which phase of bone the elements are adsorbed to within the burial

environment may have significant effects.

Some elements have been used to indicate the presence of diagenetic processes

simply by virtue of their presence within the bone.  These elements are considered to be

much more abundant in certain burial environments than in uncontaminated bone.  These

elements include Uranium and the rare earth elements (REE), which from a chemistry

perspective, are those elements in the lowest two rows of the periodic table, the

Lanthanides and the Actinides.  If these elements are found in bone then significant

diagenesis is assumed (Price et al., 1992; Hedges, 2002; Burton, 2008).   Of course, as I

already pointed out above, care must be taken because the assumption that these elements

do not exist in tissues may be violated in certain environments.

Potassium, Iron, Aluminum, and Manganese are abundant in soil oxides and clays

but are considered low in fresh bone and as such are often considered of diagenetic origin

in elemental studies when appearing in the bone (Burton, 2008).  Some elements are

considered to be regularly leached from bone materials into surrounding soils, such as Na

and Mg (Price et al., 1992).  Unfortunately, any list of elements such as these contradicts

other researcher’s lists, creating significant confusion for the reader.  

In discussing the movement of any element or ion in groundwater into or out of

buried bone the concentration gradient that exists between the bone and soil needs to be

considered.  Elements will not naturally move against the concentration gradient.  That

being said, the concentrations of the soil and bone elements are not the most important

factors in the system.  This is because the process is a heterogeneous (two phase - soil

solution and solid bone matrix) exchange reaction.  Exchange processes are the basis of

most separation science, water purifiers and all types of chromatography.  The most

important factor in these processes is the strength of the ion to solid substrate binding.  

If the ion binding is strong then the ion will be concentrated in a narrow band on



-35-

the surface of the bone regardless of the soil concentration.  Such a situation exists in the

instance of Fluorine.  When present in the ground water, Fluorine ions form the

4permanent compound Fluorapatite in which F  ions replace the PO  ions in the apatite- 3-

crystal structure (Wrobel, 2007).  Whether the ion replaces a component of CHA is not

vital.  What matters is the strength of the attraction.  In the case of F this is essentially

irreversible.  

On the other end of the ion binding scale, an ion may not have any interaction

with the components of bone.  In such a case the presence of the bone will have no effect

on the solution concentration of the ion in the soil.  The concentration of the ion would

exist within the bone pore spaces at the same level as the available ion concentration in

the soil matrix.  Essentially the ion concentration in the bone would be approximately

even throughout.  Exactly what would happen to this distribution through the drying of

the bone may not be clear, it could all evaporate from the bone matrix with the water or

remain at some concentration.  

Most ions/elements/compounds will display binding properties between these two

extremes. Thus most ions would be expected to create some band of elemental

concentration (or leaching) which would move through the bone from the exposed

surface in the direction of the flow of the ground water (think chromatography).  At this

point it is important to remember that there are two solid phases in the bone matrix.  The

collagen and the CHA crystals will behave separately from each other with independent

binding coefficients for any one element.  As a result for any ion, both components of the

bone matrix could bind strongly, both could bind weakly or one could bind strongly while

the other binds the ion weakly.  The complexity abounds.  It is clear that an understanding

of the exchange process as chromatography may be necessary to resolve the existing

conflicting results and interpretations in the literature.  

Focussing on the diagenetic processes of ion exchange in buried bone as a

chromatographic process also highlights the need to proceed with the analysis of elements

in bone on a smaller length scale than is currently done.  Clearly, grinding bone samples,

no matter how carefully chosen, will destroy any banding or distributions of elements
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within the matrix.  Grinding of the bone would be akin to attempting to analyse a

chromographic plate by grinding it up first.  What the result would be and how it would

relate to the original situation is anybody’s guess.  

Does diagenesis occur throughout the whole bone or only on the exposed surfaces

of the bone?  It has been generally assumed that the latter is the case and as a result, my

discussion above assumes the same.  However very few researchers have provided

evidence for this behaviour (Brenn et al., 1999) and many suggest that this assumption is

false (Price et al., 1992).  Even so various mechanical or chemical etching techniques

were developed to remove diagenetic elemental changes from bone samples (Price et al.,

1992).   Whether these methods worked to remove diagenetic effects has been unclear

(Price et al., 1992) and very few studies (Burton, 2008) have been done that looked at

cross-sections of bone material in an attempt to view such diagenetic profiles.  

The majority of studies of diagenesis as well as elemental concentrations and

isotope ratios are done on ground bulk bone samples following one of the standard

surface cleaning techniques.  It would seem clear, at least to this researcher, that enough

evidence exists to suggest that elemental concentrations, isotope ratios and diagenesis

would best be studied at the microscopic scale not at the current bulk scale.  Such a shift

in focus may eventually lead to a sorting out of the often conflicting diagenetic studies in

the literature.  Unfortunately, this is not the focus of the present research, as timely and

important such work may be. 

2.5.2: Measures of Diagenesis:

In the preceeding section I mentioned several measurements that may be

indicative of a diagenetically altered bone.  The following table will list these along with

several other measures.  It should be pointed out that there is generally not a one-to-one

relationship between any process of diagenetic change and a specific measure (Hedges,

2002).  Coupled with the inherent microscale of the processes, and the understanding that

the processes may vary within a site, grave, or even a given bone, the listed measures can

only function as a crude guide to the quality of the bone being studied.  Many diagenetic
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Table 2.3.  Measures of bone diagenesis used in element and stable isotope work. 

Measure Name Analytical Technique Brief Description Reference

3Calcite (CaCO )

Inclusions

Microscope or IR No peak at 713 cm  in normal bone-1 Nielsen-Marsh and Hedges,

2000

U and REE Element

Inclusions

Mass Spec U or REE not seen in normal bone Price et al., 1992

Hedges, 2002

Porosity Water Uptake or

Mercury Intrusion

< 5 nm scale pores decrease

> 10 nm scale pores increase

Nielsen-Marsh and Hedges,

1999

Oxford Histological

Index

Polarizing Microscope Range 0-5 

[Normal bone = 5]

Jans et al., 2002 

Birefringence Polarizing Microscope Decreases or disappears [Strongly

present in normal bone]

Jans et al., 2002;  Burton,

2008

Crystallinity Index

(IRSF) (CI)

IR Index increases with crystallinity -

4PO  IR peak components at 565 and3-

605 cm  used in index [Normal range-1

about 2.8-4.0]

Weiner and Bar-Yosef,

1990 

Wright and Schwarcz, 1996

Crystallinity XRD linewidth FWHM (Full width half maximum) of

002 reflection decreases with time

(increased crystallinity)

Sillen, 1989

Reiche et al., 2002

Ca/P Ratio Mass Spec About 2.15 by mass Hancock et al., 1989

Protein Content (%N) Mass Spec % N by weight in bone reflects

quantity of collagen present if > 0.4%

Nielsen-Marsh and Hedges,

2000

C/N ratio (from collagen) Mass Spec Ideal 3.2 [ Acceptable range 2.9 - 3.6] DeNiro, 1985

Collagen Yield % Mass of Hydrolysised

protein material 

Fresh bone is ~ 22%  [Minimum yield

1%: note - much protein is not

hydrolysed]

van Klinken, 1999

Amino Acid Ratios Atomic Absorption

spectroscopy on

extracted protein 

Considered not reliable van Klinken, 1999

3 4C/P ratio (CO /PO ) ratio

in apatite

3IR Ratio increases with included CO .

3 4 Comparison of CO  and PO  peak

heights. [Normal range about 0.15-

0.30]

Wright and Schwarcz, 1996

2CO  gas Yield from

apatite

Mass Spec Normal yield between 0.6% and 1.3% Ambrose, 1993
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measures assess the collagen content of the bone in some way, thus they can be

considered reasonable measures of diagenesis because of the close relationship between

the collagen preservation and the mineral preservation and hence the microscopic bone

preservation.

Many of the parameters listed do not display any linear relationship with time

since death, hydrology, soil type, temperature or any other factors (Hedges, 2002).  It is

my hope that microscopic measures of the crystallinity index via micro-IR spectroscopy

coupled with the microscopic measure of the Oxford Histological Index will be able to

significantly add to the understanding of diagenetic processes.  These techniques should

be investigated further and incorporated into any future studies of elemental distributions

of the type presented in this work.

2.5.3: Implications:

So what is clear? - 1) the survival of the collagen matrix is tied in some way to the

survival of the mineral matrix and vice versa; 2) although some of the parameters used to

assess diagenesis do change with diagnetic severity, the direction and magnitude of such

changes can not yet be reliably tied to any environmental conditions or specific

mechanisms; 3) much work needs to be done on the mechanisms of diagenesis. 

Unfortunately, untangling such a complicated nest of interrelated processes is not the

theme of this thesis, that will have to wait for now.  So in the meantime, we must be very

cautious with any interpretations of elemental distributions.  As Sillen et al. (1989)

suggested, there are no easy answers in isotopic and elemental analysis of skeletal

materials.   

Although one could despair of ever overcoming the obviously significant

challenges of trace element bone analysis the puzzle is still intriguing and studies

continue to abound.  What is needed in the field now is not exuberance but sober and

careful work, that errs on the side of interpretive caution.  The use of collaborative

information, such as the Oxford Histological Index and Micro-IR spectroscopy and micro

Ca/P ratios, to help assess diagenesis and temper any conclusions about diet should be
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encouraged, as should extensive work in the physiology and biochemistry of all the

elements.   



CHAPTER 3: SAMPLES

3.1: General Selection and Preparation of Samples

The purpose of this project is to examine the distribution of elements in those

areas of bone surrounding obvious lesions, which can be reliably associated with the

presence of a specific bacterial infection.  As I stated in chapter 1, dental abscess and

tuberculosis were chosen initially.  This was because, both these diseases were either

common in past populations (DA) and/or were represented in sufficient numbers within

the skeletal collections (TB) currently housed at Western University.  

Both DA and TB also result in identifiable pathognomonic lesions in the skeleton 

and in the case of TB can be confirmed by the use of ancient DNA analysis of skeletal

samples (Donoghue et al., 2004).  It was also important that the two diseases are caused

by different classes of bacteria, either aerobic or anaerobic, so that their effects within the

bone lesions could be compared.

The samples for the work were drawn from four skeletal collections currently

housed at Western University, Department of Anthropology.  These collections were

from: San Pedro, Belize; Kellis II cemetery, Dahkleh Oasis, Egypt; LeVesconte Burial

Mound, Ontario and the Varden Site, Ontario (see details later).  Initially each skeleton in

a collection was examined for the presence of the required disease lesions.  Where

possible the visually best preserved specimens were chosen from the most complete

skeletal elements available.  

Besides being conveniently located at Western, all the collections used, except for

the LeVesconte population, were previously studied by stable isotope analysis and as

such, typical measures of diagenetic change are available for each skeleton selected in

this study (See table 3.1 for a summary, pg 60).  So each of the samples chosen can be

considered, by current standards, to be in excellent condition with little diagenetic change

expected, keeping in mind the limitations discussed in the preceding chapter.  

The individual elements chosen from each population were then carefully
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documented including a comprehensive list of both metric and non-metric skeletal traits. 

For the dental abscess samples the mandible was chosen as it was considerably easier to

access the abscess in the mandible versus the maxilla.  For tuberculosis samples

individual vertebrae were selected.  As well several rib sections were also chosen.  Once

described and measured each element was photographed.  All these details were recorded

on an individual bone form for each element.  The bone form also indicated where on the

element the sample was to be removed for this study (these forms can be viewed in

Appendix B).  In each case the attempt was made to be as complete as possible because

the sampling was, of necessity, destructive and it was important to preserve as much data

as possible for future researchers who might want to use these collections.

The detailed bone forms were shown to the curator responsible for each of the

populations for approval before destructive sampling was undertaken.  Once approval for

each selection was obtained the sample area was extracted with a rotary tool using a fine

ceramic tile bit.  After the section was removed it was blown clean of dust and debris

with compressed air.  No other cleaning or washing was done to the samples before

embedding and sectioning.  

In removing the dental abscess samples from the mandibles, the tooth involved in

the abscess was retained in the section, this was so that the tooth could serve as a

reference as to the location and size of the abscess.  As well, the tooth served as an

important test comparison for the accuracy of the X-ray Fluorescence maps as literature

exists on what to expect within teeth.  

The samples were blown clean with compressed air then embedded in epoxy resin

(Struers, EpoFix) which sets at room temperature.  The embedded sample was placed

under vacuum for 30 minutes to ensure good resin penetration into the sample.  (I should

note that one set of samples was left under vacuum too long, this resulted in significant

bubbling of the resin.  This bubbling made sectioning of the subsequent samples more

difficult and the sample more delicate to handle.) 

Once embedded the bone sections were cross-sectioned through the middle of the

lesion, if present, (see figure 3.1) using a low speed diamond saw (Buehler, Isomet) using
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distilled water as a lubricant.  The cross-sections were affixed to glass mineralogical

slides using Crystalbond   and polished on one side with successive sizes of diamondTM

paste.  The ultimate thickness of the finished cross-sections was approximately 400

micrometres.  Once polished the samples were carefully removed by gentle heating on a

hot-plate and cleaned of residual Crystalbond  adhesive using a small amount ofTM

acetone.  The cross-sections thus obtained were robust enough to be mounted directly in

the synchrotron experimental apparatus without further modification.  

Figure 3.1. Schematic illustrating the process of creating the final cross-sectional samples for use in the

     synchrotron.
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Proceeding without washing or cleaning was done deliberately in this case

because it would be expected that the region affected by diagenesis would be the first

several micrometres of exposed bone; alternatively, one could say that diagenesis is

expected to affect the distribution of elements near the surface of the lesions.  Of course,

this is exactly the region over which it is expected that the elemental distributions caused

by the disease would occur.  Also, this thin region of surface bone is the target of most

methods of diagentic cleaning.  Therefore, in order to avoid obliterating the signal which

is expected, no cleaning was done on the samples.  This of course means that the signal of

interest could be overlayed/obscured or overpowered by diagentic effects which occur at

the same scale.

Diagenesis, as stated in background chapter, can be variable even within a specific

skeletal element and any bulk measure of the degree of diagenesis may not ensure the

absence of diagenesis. Indeed most researchers would say that diagenesis is definitely

present at some level in all samples.

How then do I intend to capture or ameliorate the effects of diagenetic elemental

changes that may have occurred in my samples?  Here I have to rely on a series of

comparisons between the distribution patterns in various samples.

3.2: Sample Strategy

In order to try to evaluate both diagenesis or elemental changes due to disease in

any particular sample a series of both intra-skeletal, intra-population and inter-population

comparisons will be set up for each disease case.  These are graphically pictured in figure

3.2 for the ideal case.  

Firstly, for a disease affected bone sample, a second sample from the same

skeleton which is unaffected by the disease was selected.  In this intra-skeletal

comparison we would hope to see a difference between the diseased and unaffected bone

elemental distributions.  To these we need to compare a second ‘healthy’ sample from a

different skeleton drawn from the same population.  This second intra-population

comparison should show the same differences in elemental distribution, if any, as those
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between the ‘healthy’ and diseased bone samples if the distribution is caused by disease.  

Two things should be noted here.  Firstly, the ‘healthy’ samples suffer from the

osteological paradox (Wood et al., 1992).  In other words they appear to be not affected

by the disease of interest but they are drawn from a skeletal population which are of

course all dead.  Meaning, that the individual was decidedly not healthy, they died of

something.  Whatever did cause the death of the individual could have had its own affect

over the distribution of elements in the region of interest, although hopefully not the same

as the other comparison skeleton.  The ideal healthy individual would come from a

younger individual who, it could be reasonably certain, died as  a result of sudden trauma,

but these samples are rare in the archaeological record.  

Second, it is important to select all samples from the same region or type of bone. 

Again from the background chapter we know that compact and trabecular bone have

different structures, and behave differently in response to diagenetic changes.  Thus it is

vital that the lesions and ‘healthy’ samples be drawn from the same kind of bone, at least

as near a possible.

Figure 3.2. Ideal web of sample comparisons for one disease.
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All the comparison samples indicated within the one population may still have the

same distributions because of diagenesis, if the diagenetic signature within the

population’s burial site is similar!  But if the two ‘healthy’ samples are the same but

different from the diseased samples we could say with some confidence that the disease

caused the distribution difference.  Even so it could be that the diseased portion of bone

was more affected by diagenetic affects, so we can not be certain. 

In an attempt to clarify the result further, another three samples from a distinct

population will be included.  In this case if the two diseased distributions are similar then

the likelihood of the distribution being related to the disease is increased as it would be

unlikely that the diagenetic effects from two distinct sites would be the same.

Two extreme possibilities may occur when comparing the six samples together. 

Firstly, the distributions could all be the same between the six samples.  In this case, we

would have to accept the null hypothesis and conclude that the disease had no effect on

the elemental distributions within the bone around the lesion, and/or, we would have to

state that diagenesis affected each sample (from different sites) in the same way which

would seem unlikely.

The second extreme is the opposite, if all the distributions are unique.  In this case

it is probably the simplest and strongest conclusion to state that diagenesis has affected

each sample differently and masked the looked for disease effects, if they existed at all.  It

could be hoped in either situation that more careful work could eventually allow us to

separate the diagenetic distribution fingerprints and obtain a glimpse of any possible

disease effects.  But it would certainly be premature to accept the null hypothesis in this

case.

Of course any pattern in between these two extremes may present itself and I will

not attempt to qualify them all at this point.  

3.3: The Diseases     

A bacterial infection results in an inflammatory reaction in the host tissue. 

Inflamation consists of increased blood flow, capillary dilation and increased vascular
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permeability.  These changes allow the immune cellular responders (neutrophils and

phagocytes) access to the infected site.  The exact changes seen are dependent on the

severity of the infection, the causative organism, and the exact tissue involved (Kumar et

al., 2007 ).  

Within bone, an unchecked infection typically results in the development of an

abscess (Hillson, 2005; Schwartz, 2007).  An abscess is a local concentration of pus

(consisting of necrotic (dead) cells, neutrophils and fluids) rimmed by a layer of

preserved neutrophils and a zone of dilated vessels (Hillson, 2005; Kumar et al., 2007). 

Abscesses can eventually be completely walled off and be filled with connective tissue, or

they can expand past containment in the bone creating a pus drainage hole or cloaca.

3.3.1: Dental Abscess

In the case of dental bacterial infection, the causative bacteria typically enters via

the central canal of the tooth eventually infecting the apex of the tooth root.  Any oral

bacteria can enter the root canal, subsequent to damage of the crown of the tooth caused

by a carious lesion (cavity), significant abrasion or trauma (Schwartz, 2007; Waldron,

2009).  The actual causative bacteria is difficult to determine.  It may be distinct for each

abscess although clearly related to the oral flora (Finegold, 1977).  Regardless the apical

environment is restricted in oxygen and thus the bacteria must be a strict (always

anaerobic) or faculative (can change from aerobic to anaerobic, eg. many species of

Streptococci and Actinomyces) anaerobe.  Among the possible organisms the Streptococci

and Actinomyces factor prominently in cultures grown from lesions (Finegold, 1977). 

The prevalence of caries, abrasion and trauma are influenced by the characteristics

of the food and the manner of its preparation and social norms (eg., using teeth as tools,

dental care) (Larsen, 1997; Hillson, 2005) and as such vary with population and with type

of tooth (Brothwell, 1981; Larsen, 1997).  Abscess occurrence is of course closely related

to dental disease as it is one of the possible outcomes.  Dental care in the past was not as

effective as today’s and food was unprocessed, caries, abrasion, trauma and as a result,

dental abscesses can be found in most ancient populations (Brothwell, 1981; Larsen,
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1997).  

At an early stage, periapical abscess, can only be recognized radiographically or

by pulling out the associated tooth (Brothwell, 1981; Schwartz, 2007).  Waldron (2009)

cautions that there are actually three types of periapical lesions which may be present:

cysts, granulomas and abscesses of which typically a third are actual abscesses.  A

granuloma (aggregates of macrophages which assume a thin tissue-like structure (Kumar 

Figure 3.3.  Views of the 9 Dental Abscess (DA) samples selected for synchrotron analysis.
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et al., 2007)) is chronologically the first lesion to form periapically and typically

measures less than 3 mm in diameter.  If the tissue in the granuloma develops into a fluid

this is termed a cyst; when pus forms it is an abscess.  Both granulomas and cysts develop

a smooth-walled cavity while an abscess typically has rough-walled cavities (Waldron,

2009).  

The fluid or pus in the lesion can drain through the bone spaces and eventually

resolve.  Alternatively, the abscess can enlarge, eventually producing a drainage hole

(Finegold, 1977; Brothwell, 1981; Waldron, 2009) typically on the buccal side (Schwartz,

2007) of the alveolus, although drainage to the lingual side is also possible.  In dry bone

the classic presentation of a periapical abscess is an ovoid to spherical cavity seen though

an oval or circular opening in the alveolus with thin and crisply defined edges.  Typically

the tip of the tooth root can be seen within the cavity (see figure 3.3 DA1 and DA6 for

example) (Brothwell, 1981; Schwartz, 2007).

 All the cases of Dental Abscesses chosen for this project displayed the classical

presentation of the condition (Figure 3.3).  Comparison samples were taken from two

populations, San Pedro, and Varden (see later for details).  The San Pedro samples

included a lower left second incisor which exhibited an abscess which encompassed the

neighbouring root of the first incisor (DA5).  Also from this mandible the lower right first

incisor (DA8), which was not affected by an abscess, was also sampled as an intra-

skeletal control.  A second mandible yielded a lower right first premolar with a classic

apical abscess (DA6).  From a third mandible the lower left canine socket (DA7) was

taken as a healthy control.  The canine could not be found with the remains and it was

assumed that the tooth was lost postmortem as no evidence of healing was visibly evident

in the socket.

The Varden samples selected included a lower right first premolar with a

periapical abscess (DA1), and the lower left first premolar with no evidence of an abscess

(DA2) from the same mandible. From a second mandible the lower right first molar was

sampled with an abscess around the distal root (DA3).  Also the lower left second

premolar from this mandible was sampled (DA9).  DA9 displayed a rounded pocket next
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to the root on the mesial side indicative of an infection of this particular tooth.  As well

the lower right premolar from a third mandible from the Varden site with no signs of

abscesses was sampled (DA4).

3.3.2: Tuberculosis

Tuberculosis is a disease with considerable history, appearing throughout Europe,

as early as 5800 BP, ancient Egypt, as early as 4500 BC and the Americas as early as 700

AD (Roberts and Manchester, 2007).  It is an ancient scourge and is a re-emerging global

pathogen (Donoghue et al., 2004; Roberts and Manchester, 2007) of significant concern. 

The causative organism is a Mycobacterium, a member the of the Mycobacteria

tuberculosis complex which includes M. tuberculosis, M. bovis, M. africanum, M.

cannetti,  M. microti and M. avium (Mays et al., 2001; Donoghue et al., 2004; Roberts

and Manchester, 2007).  

M. bovis and M. tuberculosis are the main causative organisms in human

populations and both present similar skeletal manifestations of the disease.  The main

difference between the two infections being the route of entry into the host.  M.

tuberculosis is typically transmitted via inhalation of infected aspirated droplets from

another person, leading initially to lung infection.  M. bovis is transmitted to humans

initially via ingestion of infected milk or milk products producing stomach and intestinal

infections initially (Roberts and Manchester, 2007; Waldron, 2009).  

It is estimated that about 3-5 % of tuberculosis cases produce skeletal lesions, but

when skeletal lesions are present the spine is involved in up to 60 % of cases (Roberts

and Manchester, 2007).  The classic skeletal presentation of tuberculosis involves one to

four vertebrae in the upper lumbar or lower thoracic regions of the spine.  The progress of

the infection follows a similar course to Dental Abscess formation, that is, it begins with

the formation of a local point of infection in the vertebral body followed by abscess

formation, eventual penetration of the body wall by the infection and drainage, typically

into the chest cavity (Roberts and Manchester, 2007).  The destruction of large portions

of the anterior vertebral body leads to eventual collapse of the vertebra and subsequent
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bony fixation producing a severely anteriorly angled deformity of the spine.  The

deformed spine is the classic presentation of Pott’s disease or skeletal TB (Brothwell,

1981; Roberts and Manchester, 2007; Schwartz, 2007; Waldron, 2009).  

It is important to note that in tuberculosis the posterior neural arch is largely

unaffected by the infection, as well TB is characterised by very little new bone formation

within the lesion (Schwartz, 2007; Waldron, 2009) which helps distinguish TB from

other diseases or trauma which can severely angle the spine in a similar fashion. 

 Figure 3.4.  Schematic of several vertebrae showing the approximate arrangement of the Intercostal Artery

                    and Anterior Longitudinal Ligament and a TB infection.
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Although spinal kyphosis with sparing of the posterior neural arch is considered

indicative of TB in paleopathology (Schwartz, 2007; Waldron, 2009), uncertainty can 

remain, and as a result ancient DNA has been used to confirm diagnoses of TB (Mays et

al.,  2001; Donoghue et al., 2004; Roberts and Manchester, 2007; Waldron, 2009).  The

classic presentation of TB is also not appropriate in this work as the extensive destruction

of the vertebral bodies leaves little bony material for comparison with unaffected

vertebra.  As a result, it was necessary to be able to diagnose possible cases of TB in

vertebrae early in the disease course before significant destruction occurred.

The route taken for a TB infection to spread from its point of origin in the body to

the spine provides a possible unique lesion.  The tubercular bacteria travels to the anterior

of the vertebral bodies via the lumbar and intercostal arteries (figure 3.4).  This leads to

the formation of the primary lesion toward the anterior middle of the body.  Development

of the abscess usually involves the intervertebral disc and/or migration to the anterior

longitudinal ligament at the front middle part of the body of the vertebra (Aufderheide

and Rodríguez-Martín, 1998).  Ultimately, a lesion, which in appearance, is a spherical

lytic pocket with a draining cloaca towards the anterior surface of the vertebrae body

(Roberts and Manchester, 2007; Waldron, 2009) develops.  Such a localized presentation

of lesions in isolated vertebra, associated with little or no new bone formation and lack of

involvement of the posterior neural arch, has been thought to indicate an early stage TB

infection.  However, such a lesion could also be caused by other diseases and bacterial

infections that affect the spine and are spread via the vascular system (such as 

rheumatoid arthritis, septic arthritis, sarcoidosis, malignant bone tumours, Paget’s

disease, actinomycosis, blastomycosis, coccidioidomycosis and osteochondritis

(Aufderheide and Rodríguez-Martín, 1998; Schwartz, 2007)).  Because of the non-

specificity of the lesions, confirmation of the infection needs to be done.  Such

confirmation is typically done using ancient DNA (Waldron, 2009).  This early

presentation of TB was what was sought in the samples chosen for this project.  

The TB samples (see table 3.1) all arose from the Kellis II cemetery in Dahkleh

Oasis, Egypt.  The presence of TB in each sample selected was confirmed by aDNA
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analysis (Donoghue et al., 2005).  In this case four samples were chosen from the

available Kellis materials currently housed at Western University. 

The first sample TB1, was found in a second lumbar vertebra.  The vertebra

displayed a significant abscess pocket and oval cloaca (17 x 8 mm) draining anteriorly. 

This sample also displayed a parrot beak osteophyte projecting inferiorly from the lower

body edge.  Both the lesion (TB1-L) and the osteophyte (TB1-O) were sectioned for

analysis.  The second sample from a different individual in the Kellis population was a

second thoracic vertebra, again, with an anterior abscess pocket and anterior cloaca

(TB2).  As an intra-skeletal comparison an unaffected first lumbar vertebra from the same

individual as TB2 was chosen for sectioning (TB3).

Figure 3.5.  Views of the four Tuberculosis samples selected for synchrotron analysis.
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Finally an unaffected fifth lumbar vertebra from a third individual was chosen for

sectioning as an inter-skeletal control (TB4).  This third vertebra was interesting in its

own right, as it displayed a congenital afusion of the spinous process as well as trauma to

the neural arch (see appendix B-10 for details).  All the TB samples from Kellis are

pictured above in figure 3.5.  

Unfortunately, due to the availability of collections, the rarity of skeletal TB

lesions in ancient populations and the destructive nature of the sampling process a second

comparison population could not be secured for the work, so only one set of TB samples

was studied.  However, other samples were available at Western University which

displayed interesting pathologies and it was decided to sample several of these to function

as possible test cases for any conclusions that might be drawn from the DA and TB work. 

As they are individual samples no statistically significant conclusions could or should be

drawn from their analysis. 

3.3.3: Actinomycosis

The first additional sample was a rib (R1) taken from an individual from the

LeVesconte Burial Mound site in Ontario.  This individual was extensively studied by 

Figure 3.6.  View of the right rib affected by Actinomycosis (R1) selected for synchrotron analysis.
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Molto (1990).  After differential diagnosis Molto concluded that the rather unique

combined lytic and proliferative lesions giving rise to pleural swelling on the rib (figure

3.6) were indicative of infection by actinomycosis.  

Actinomycosis is an infection caused by the bacterium Actinomyces israelii.  A.

israelii is an endogenous oral cavity bacterium.  An anaerobic bacterium, it is also heavily

suspected in cases of dental abscess formation.  Pulmonary infections of A. israelii,

although rare today, were more common in past populations.  Rib involvement is

prevalent in cases of pulmonary infection, in about 60% of patients.  The initial focus of

infection is typically seen to be the lower lobes of the lung particularly on the right side. 

The bony response to seeding, from adjacent infected pleural tissue, is described as a

diffuse hypervascular periosteal bone growth progressing to an ossifying periostitis with

accompanying lytic lesions.  Together these responses produce a thickened rib with

mixed osteoblastic and osteolytic lesions.  The rib from the right side of individual 18

from the LeVesconte Mound presents this combination of osseous responses (Molto,

1990). 

3.3.4: Other Samples

The LeVesconte Mound population also contained a second individual displaying

a significant array of pathologies.  This individual, burial 8, was an elderly female with

significant pathologies throughout the skeleton.  Mainly the remains are marked by

concentrations of small, oval to round, lytic lesions of about 1 mm diameter.  Each lesion

is sharp edged with a punched out appearance, ie. sharply sloped or bevelled to the

interior of the bone (figure 3.7a, left image).  The bones lack any new bone formation

near these concentrations of lesions.  

The lesions are concentrated in the hematopoietic regions of the skeleton (ends of

the long bones, innominate bone, sternal ends of ribs etc.).  The type of lesion and their

concentration leads us to suggest that this individual suffered from Leukemia (El Molto

and Bruce Rothschild, Personal Communication).

As a comparison rib sample a cross-section of rib from the same individual
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described above was taken from the mid-shaft which displayed no lesions (sample R2). 

A section of rib was taken through the sternal end including the leukemia lesions was

labeled (R3).  A fourth rib cross section was taken from an individual from the Kellis II 

Figure 3.7.  Views of the two ribs from which samples R2, R3 and R4 were taken.

cemetery population.  This individual was already sampled and displayed TB lesions in

the spine.  The rib sampled had no evidence of any pathology (figure 3.7b), however, the

superior margin of the rib had several small sclerotic lumps (only about 1 mm in

diameter, indicated by arrow in figure 3.7b).  Although these are likely not pathological,

but a normal variation in form, a section of rib was taken in an attempt to capture one of

these lumps in cross section (R4).

This concludes a brief survey of the skeletal elements selected for synchrotron

radiation X-ray fluorescence analysis.  More details of each element can be found in

appendix B at the end of the thesis.  Relevant demographic parameters (age, sex) and

diagenetic test results are included in table 3.1 (page 60) where available. 



-56-

3.4: Sample Sites

The samples were all selected from collections of skeletal elements currently

housed at Western University.  The collections represent sites from three countries on two

continents (figure 3.8).  They were collected by many different researchers over many

seasons of work and I am grateful that they were all made available to me for sampling. 

Brief descriptions of the sites are included below.

3.4.1: San Pedro

San Pedro is an ancient Maya site which was occupied from the Terminal

Postclassic to Historic times (AD 1400 - 1650).  The site is located on Ambergris Cay,

the northern most island off the coast of Belize (Williams et al., 2005 and references

therein).  San Pedro is approximately 8 km north of the southern most tip of the island

along the windward side (facing the ocean)(see figure 3.8 ).  The excavations occurred

from 1990 through to 1993.  Numerous burials were recovered which represented various

stages of the Postclassic period.  Cultural affiliations of the remains were assigned based

on grave goods, construction fill and stratigraphy.  Age at death and sex of individuals

was assessed using standard bioarhaeological methods.  

In the context of other isotopic studies numerous measures of diagenesis have

been obtained on each set of remains from ground bone samples (Williams et al., 2005). 

Relevant parameters for each sample used in this work are indicated in table 3.1.  Three

mandibles were chosen from the remains held at Western (see Appendix B for detailed

osteologies of these elements).  The mandibles came from Burial 4, a 30 - 40 year old

male, Burial 11/3-1, a 20 - 25 year old female and a 40+ year old female, Burial 11/3-4.

3.4.2: Varden (AdHa-1)

The Varden site is a multicomponent site located on Long Point extending into 

Lake Erie in South Central Ontario (see figure 3.8).  The site is a sand knoll overlooking 
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Anderson Pond and Gravelly Bay 6 km from the eastern tip of the point.  The area is

dominated by marshland.  The site was first discovered in July of 1981 by recreational

boaters.  The site was subsequently excavated and mapped by William Fox, the Regional

Archaeologist at the Ministry of Citizenship and Culture in London, Dr. Michael Spence

of the University of Western Ontario and then graduate student John MacDonald of

McMaster University (Foreman and Molto, 2008-2009 and references therein). 

Based on stratigraphy, lithic and ceramic artifact analysis four distinct cultural

components were identified at the site.  Two Transitional Woodland Princess Point

components (AD 500 - 1050), a Late Woodland Transitional Princess Point-Glen Mayer

component (AD 900 - 1250) and a Late Prehistoric/Early Historic Iroquoian component

(AD 1400 - 1500).  Although carbon dating of several artifacts from the site confirmed

the multicomponent nature of the site, the skeletal remains recovered could not be

convincingly associated with any particular component.  This was a result of the lake

levels raising throughout the 1970's and 80's inundating the site and also the collapse of a

large elm tree which scattered the remains throughout the shallows of Gravelly Bay. 

Subsequent detailed osteological work by Foreman and Molto (2008 - 2009) and others

has placed the remains in the Princess Point Culture (AD 500 - 1050).  

Three well preserved mandibles were again selected from the remains available at

Western University.  Burial 3, Burial 6 and Burial 7 (see table 3.1).

 

3.4.3: Le Vesconte

Le Vesconte Burial Mound is located in southeastern Ontario about 15 km from

Rice Lake, along the north branch of the Trent River.  The site is about 9.6 km

downstream from Campbellford, Ontario and sits on a promontory with steep banks 12.2

m above the river.   The mound was excavated in 1962 and the bones are curated at the

Royal Ontario Museum in Toronto, Canada.  The mortuary complex belongs to the Point

Peninsula hunters and gatherers who inhabited the region in the Middle Woodland times

(300 BC to 500 AD)(Molto, 1990).  

From these well preserved individuals ribs from burial 18 and 8 were selected (see
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table 3.1 for more data).

3.4.4: Kellis II

The Kellis II cemetery is located in the Dahkleh Oasis in Egypt’s Western Desert. 

The Oasis is one of five major depressions in the desert and measures about 100 km long

from east to west, and 25 km at its widest point (Fairgrieve and Molto, 2000, and

references therin).  It is about 800 km south-south west of Cairo.  The soils in the

depression have a high iron oxide content and the climate is extremely arid, water seeps

to the surface of the depression from the Nubian Sandstone and Shale series, which

contains one of the largest ground water aquifers in the world.  This allows the residents

of the Oasis to grow a range of fruits, vegetables and grains.  

Since 1977 the Oasis has been the focus of the Dahkleh Oasis Project (DOP).  The

Oasis has been continually occupied from Pharaonic Periods to today.  The analysis of the

human remains from several ancient cemeteries existing in the oasis focus mainly on the

‘Ein Tirghi (31/435-D5-2) and Kellis II (31/420-C5-2) cemeteries.  ‘Ein Tirghi dates from

the Late Period and was used over several hundred years from around 900 BC to

Ptolemaic times.  Kellis 1 was used from about 60 BC to 100 AD.  Kellis II dates from

the Christian Period (100 - 400 AD) and served the town of Kellis before it was

abandoned (Fairgrieve and Molto, 2000).

From the selection of skeletal elements available at Western (from the DOP

collection) vertebrae from burial 20, 265 and 280 were selected for analysis (table 3.1).

3.5: Actual Sectioned Sample Inventory

As it is not common to view disease or bone samples in cross-section in

archaeology I will now present a summary of the final prepared samples selected for

synchrotron XRF analysis.  
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Figure 3.9.  Image and sketch of sample DA1.

The first sample DA1, from Varden individual #6, displays the classic

presentation of a dental abscess in cross-section.  

Figure 3.10.  Image and sketch of sample DA2.

The second abscess sample, from Varden individual #6, was visibly ‘healthy’

from outside inspection and was intended to be the intra-skeletal control for the Varden

samples.  On cross-section there is a clear abscess (or granuloma) cavity around the apex

of the tooth root.  Thus this sample becomes another example of an abscess.

In sample DA3, from Varden individual #7, a small abscess cavity can be seen

under the apex of the root towards the buccal side.  Considering the size of the cloaca

associated with this abscess (see figure 3.3) I re-assessed the sample and determined that

the distal root was missed in sectioning.  Sample DA3 is a section through the proximal

root of the molar which was not the primary location of the abscess.  Thus a second
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section was cut from the remaining resin block through the distal root.

Table 3.1.  List of samples selected along with demographic and other pertinent data from the literature.

Site Cultural

Affiliation

Time Period Sample Burial

 #

Diseased Age Sex C/N

Ratio 

Collagen

Yield 

Crystallinity

Index 

C/P aDNA TB testc

Vardend Ontario

Princess Point

500 - 1050 AD DA1 6 Y 3.3 - -

DA2 6 NY 3.3 - -a

DA3 7 Y 3.2 - -b

DA3-2

DA4 3 N 3.2 - -

San Pedro PostClassic

Maya

1400 - 1650 AD DA5 11-3/1 Yb 20 - 25 F 3.24 3.65 3.18 0.25 - -

DA5-2

DA6 11-3/4 Y 40 + F? 3.30 4.80 3.10 0.24 - -

DA7 4 N 30 - 40 M 3.24 6.42 3.11 0.23 - -

DA8 11-3/1 Nb 20 - 25 F 3.24 3.65 3.18 0.25 - -

DA8-2

Varden Princess Point 500 - 1050 AD DA9 7 Y 3.2 - -

Kellis IIe Egyptian

Christian

100 - 400 AD TB1-L 265 Y 40 ± 5 M U

TB1-O

TB2 280 Y 60 + F U

TB3 280 N 60 + F U

TB4 20 N 55 ± 5 X

Le Vesconte Ontario Point

Peninsula

300 BC - 500

AD

R1 18 Y 30- 40 M - -

R2 8 N 40+ F - -

R3 8 Y 40+ F - -

Kellis II Egyptian

Christian

100 - 400 AD R4 280 N 60 + F U

This tooth was actually diseased when viewed in cross-section.a

Due to problems in sectioning this sample was re-cut.b

TB DNA analysis from Donoghue et al., 2005.c

Varden C/N data from Katzenberg et al., 1995.d

Kellis demographic data from personal communication Dr. E. Molto.e
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Figure 3.11.  Image and sketch of sample DA3.

Figure 3.12.  Image and sketch of sample DA3-2.

Sample DA3-2 is a cut through the distal root of the lower right molar of Varden

individual #7.  The abscess pocket is more clearly visible as is the drainage cloaca.  This

represents a second example of a dental abscess from this site.

Figure 3.13.  Image and sketch of sample DA4.
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Cross-section DA4 is through the healthy lower right premolar 1 of Varden

individual #3.  This represents a healthy tooth in a healthy socket, the close contact

between the tooth and the alveolar bone should be noted.  This sample represents the

intra-population unaffected comparison sample for the Varden site.  

Figure 3.14 shows the sample DA5 which was taken from San Pedro, individual

11 3/1.  This sample was identified as a diseased type sample, unfortunately the sample

became too thin in polishing and could not hold up to handling.  As a result a second cut

from this lower left second incisor was taken for analysis, see figure 3.15.

 Figure 3.14.  Image and sketch of sample DA5.

Figure 3.15.  Image and sketch of sample DA5-2
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Figure 3.16.  Image and sketch of sample DA6.

Sample DA6 represents an alternate diseased case from San Pedro.  Taken from

individual 11 3/4, this lower right first premolar displays a clear abscess pocket at the

apex of the root.  Also visible in the sample is a large dental carie (cavity) on the occlusal

surface of the tooth.

Figure 3.17.  Image and sketch of sample DA7.

The intra-population unaffected sample for the San Pedro population comes from

an empty socket of the lower left canine tooth from burial #4.  Most of the teeth from this

mandible were not present in their sockets.  This particular tooth could not be found with

the remains and it was assumed that the tooth was lost post mortem as no visible signs of

healing (ie. absence of sclerotic thickening or shallowing of the socket depth) could be
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seen within the empty socket. 

The last sample from San Pedro is considered the intra-skeletal unaffected

comparison.  Taken from individual 11 3/1, it is the lower right first incisor from this

individual.  This particular tooth was only separated from the sample DA5 by one tooth. 

Again, there was a mis-cut of this sample and the original sample DA8 (figure 3.18)

missed the centre of the tooth.  This sample was re-cut to give sample DA8-2 which is

shown in figure 3.19. 

Figure 3.18.  Image and sketch of sample DA8.

Figure 3.19.  Image and sketch of sample DA8-2.

One other sample (DA9) was made, as mentioned above this was from a tooth

which showed an uncovered root indicating an infection of the tooth root or neighbouring

tooth root.  The image below (figure 3.20) for this sample clearly shows no apical abscess 

cavity associated with this lesion.  Time was not sufficient to include this sample in any
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further analysis.

Figure 3.20.  Image and sketch of sample DA9.

The above 8 samples comprise the comparison set for testing the null hypothesis

for this project (there is no difference in elemental distribution between bone affected by

dental abscesses and unaffected bone) in the case of dental abscesses.  In figure 3.21, I

have reproduced the comparison web from the beginning of the chapter indicating where

each actual sample fits in the comparison set.

Figure 3.21.  Actual comparison web for the Dental Abscess samples.

Now, for the Tuberculosis sample set, which was limited to only one sample site,
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the first sample was TB1 which was split into: TB1-L comprising the lesion and

associated trabecular bone of the vertebra body; and TB1-O which cross-sectioned a

classic parrot beak osteophyte growing from the inferior margin of the body.

The size of the lesion cavity in relation to the body is clear in TB1-L, figure 3.22. 

In the image a small amount of sclerotic thickening can be seen to the anterior body

margin above and below the opening of the lesion, it is important to note that no

thickening is apparent along the interior wall of the lesion itself, which is consistent with

the lytic nature of Tuberculosis lesions.  These two samples were taken from a lumbar

vertebra L2) of Kellis II individual 265.  

Figure 3.23 shows a cross-section of the parrot beak osteophyte.  Of interest are

the extensions of sclerotic new bone up the anterior body wall and along the inferior body

margin of the vertebra (Indicated by red arrows in the figure).  Also the inferior tip of the

osteophyte has a more trabecular appearance indicating the region of rapid new bone

growth within the osteophyte.

Figure 3.22.  Image and sketch of sample TB1-L.

Figure 3.23.  Image and sketch of sample TB1-O. (Arrows indicate areas of sclerotic bone). 
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The osteophyte does not have any direct bearing on the question of this thesis but

it is interesting to investigate this example of pathological bone formation.

The next sample TB2, was extracted from a thoracic vertebra (T2) from Kellis II

individual 280.  This is another example of a Tuberculosis lesion.  Unfortunately, during

the cutting procedure some of the fragile trabecular bone broke away from the sample

leaving me unsure as to the actual location of the lesion and body margins on this rather

small sample.  The indications in figure 3.24 are my best guess.   

Figure 3.24.  Image and sketch of sample TB2.

Sample TB3 represents the intra-skeletal unaffected comparison sample.  It was

drawn from a lumbar (L1) vertebra of individual 280 from Kellis II.   It is good to note at

this point that in the images of samples one can see parallel curved striations on the 

Figure 3.25.  Image and sketch of sample TB3.
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Figure 3.26.  Image and sketch of sample TB4.

samples, a good example is seen in figure 3.25 just below the bone.  These are cut marks

left over from the sectioning of the sample.  The marks are actually on the back side of

the samples, the front surfaces are flat and polished, the reverse sides of the samples were

not polished. 

The final Tuberculosis sample in the comparison set (TB4, figure 3.26) was taken

from a third individual from Kellis II.  In is an unaffected lumbar (L5) vertebra from

individual 20 and will function as the intra-population comparison sample.   Again below,

for your reference, I reproduce the comparison web for the Tuberculosis samples

indicating where each sample fits.

This leaves the extra rib series of samples which do not fit into any comparison

scheme.  First, there is the rib cross-section of the Actinomycosis rib (R1) below.  Both

the proliferative and lytic nature of this pathology are clearly seen in the cross-section. 

The darker (black) regions are areas of soil contamination within the bone’s porous

structure which were not blown out during sample preparation.  This rib sample was

taken from a right rib of  LeVesconte individual #18.  
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Figure 3.27.  Actual comparison web for the Tuberculosis samples.

Figure 3.28.  Image and sketch of sample R1.

Figure 3.29.  Image and sketch of sample R2.
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Samples R2 and R3 are from either end of the same rib.  This comes from

LeVesconte individual #8.  This individual is thought to have suffered from Leukemia. 

Sample R2 is from the healthy costal end of the rib and looks normal in appearance, a

ring of thick cortical bone on the outside with trabecular bone in the interior.  Sample R3

was taken from the sternal end which displayed small lytic punch-out type lesions.  On

close examination of this rib (figure 3.30) it can be seen that the outer walls are thinned

Figure 3.30.  Image and sketch of sample R3.

with several areas missing on the exterior surface of the rib (corresponding to the lytic

lesions).  Also the interior space is almost devoid of trabeculae, the light brown material

is actually compacted soil which was not removed in preparation.  

The final sample prepared is a rib sample (R4, figure 3.31) from Kellis II burial

280, which as described above had some small sclerotic nodules on the superior border of

the costal end of the rib, which may be normal but looked interesting to sample, none the

less.

Figure 3.31.  Image and sketch of sample R4.
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Now I will turn to a description of the elemental analysis technique which was

applied to the above samples in order to answer the hypothesis of this thesis, namely,

Synchrotron Radiation X-ray Fluorescence Mapping.



CHAPTER 4: SYNCHROTRON EXPERIMENTS

In order to investigate the chosen lesions for elements at a micrometre length scale

I have chosen to utilize Synchrotron Radiation X-ray Fluorescence Mapping (SR-XRF). 

Of the possible techniques which could be utilised for this study (Laser Ablation-Mass

Spectrometry, PIXE, SEM, TEM) Synchrotron XRF offers the best spacial resolution and

sensitivity at the current time.  This situation may of course change in the future as

technical advances continue in all fields.  Synchrotron also allows the user to access

several other experiments such as XANES, XRD or EXAFS without changing the sample

preparation or experimental setup significantly.   In the next several sections I will

provide a short primer on Synchrotron Radiation and XRF, if you are already familiar

with these techniques of analysis feel free to skip to section 4.8 pg. 93.  For those

interested I would also recommend several excellent books that introduce SR to a general

audience (Margaritondo, 1988; Winick, 1994; Willmott, 2011).

4.1: A Brief Synchrotron History

When charged particles (electrons, protons, positrons) travelling at close to the

speed of light (termed: relativistic), are bent around a curve they emit electromagnetic

radiation tangential to their path (see figure 4.1). This emitted light is termed synchrotron

radiation (Margaritondo, 1988; Winick, 1994; Sham, 2002). 

Electromagnetic Radiation refers to wave like oscillations of electronic and

magnetic fields, better known (from its easily detectable range) as “Light”.  The

electromagnetic spectrum incorporates all energies (colours) of electromagnetic

oscillations.  The regions that have been found to be useful and detectable, include; radio

waves, micro waves, infrared, visible light, ultraviolet, soft X-rays, hard X-rays and

gamma rays.  These various types of light have wavelengths that range from longer than

km’s (radio) to smaller than pm’s (gamma rays) and energies that range from less than

ìeV to MeV, respectively (Ohanian, 1985.  p. 812). 



-74-

Figure 4.1.  Schematic of the radiation field emitted by a relativistic electron.

Note: the Electron Volt (eV) is a unit of energy, commonly used to describe the

energy of light or of a small particle in motion.  It is equivalent to 1.6 x 10  J - which is-19

the kinetic energy gained by one electron accelerated over 1 volt, hence the name.  This is

a very small quantity, obviously.  To gain some perspective, visible light occurs in the

range of 1.6 - 3.3 eV.  X-rays typically have energies of several thousand eV’s. 

The description of light emitted by a moving particle can be traced back to the

classical treatment of Joseph Larmor at the turn of the 20  century (Willmott, 2011).  Inth

the 1940's electron accelerators with closed orbits were developed, the synchrotron type

being proposed in 1945 (McMillan, 1945; Veksler, 1945).  At this point in time the

phenomenon of emitted radiation revived in interest because the amount of light emitted

by the charged particles in the accelerators limited the ultimate speeds that could be

obtained.   Theoretical descriptions of the basic properties of the radiation emitted from

relativistic charged particles in accelerators appeared about the same time (Iwanenko and

Pomeranchuk, 1944).  
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Synchrotron radiation was first observed in the laboratory by Elder et al. (1948) in

April 1947 at the General Electric Research Laboratory in Schenectady, NY on their new

synchrotron (hence the name).  Because it limited the energy obtainable for an accelerated

charged particle it was originally considered a nuisance.  It was not until 1956 that the

potential of this nuisance light as a powerful research tool was realized (Tomboulian and

Hartman, 1956).  Even so, it was not considered important enough to propose building an

accelerator just for creating this radiation.

As a result the first generation of synchrotron sources were added on to existing

particle physics accelerators.  These parasitic facilities, making use of the throw away

radiation of the accelerators were not ideally suited for use by researchers wanting to

make use of the X-rays.  As the usefulness of this source of X-rays was more fully

realized the idea of building an accelerator strictly suited to providing synchrotron

radiation was considered.  In 1966 the first synchrotron used exclusively as a source of

radiation was built at University of Wisconsin-Madison.  The success of this early

synchrotron source, named Tantalus (Sham, 2002; Willmott, 2011), and its successor at

UW-Madison, Aladin, helped spur an international interest in building synchrotron

sources.  Significant technical improvements to the accelerators and associated equipment

lead to new brighter sources of synchrotron light.  Termed the second and third

generation of sources, these facilities such as the ones used in this thesis (NSLS (2nd

generation), APS, ALS, ESRF (3  generation) and others worldwide) are the currentrd

facilities which are the most versatile.  The facilities continue hosting a vast number of

various experiments for an unprecedented number of research disciplines (Sham, 2002). 

The never ending quest for more spectral brightness from these sources has led to the

proposal of fourth generation sources such as Free Electron Lasers and Energy Recovery

Linear Accelerators which may be built in the near future (Winick, 1994; Sham, 2002).  

To fully grasp the experiments that follow it is useful to present the fundamental

features of a modern synchrotron storage ring.  
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4.2: The Synchrotron Storage Ring

A typical third generation synchrotron storage ring facility is shown schematically

in figure 4.2.  The synchrotron facility consists of two main components, the storage ring

itself, which produces the light, and the beamlines, which direct, focus, and modify the

light so that it is useful for a particular experiment.  The storage ring itself keeps charged

particles circulating under vacuum in a closed orbit at relativistic speeds and consists of

several components (Winick, 1994; Sham, 2002; Willmott, 2011):

1) The injection system, which starts with a source of electrons, accelerates then

injects them into the main ring vacuum chamber.  Injection systems are small accelerators

in their own right and can range from a simple linear accelerator to a small synchrotron.

2) The storage ring vacuum chamber.  This is a metal tube through which the

electrons circulate under ultrahigh vacuum (10  torr or less, atmospheric pressure is 760-9

torr).  The vacuum is necessary to prevent the loss of electrons due to scattering off

residual gas molecules.

3) The RF (radio frequency) cavity.  This is the essential component of a storage

ring which separates the accelerator from its physics counterparts.  This device supplies a

radio wave of appropriate frequency so that as the circulating electrons pass through the

cavity they experience an electric field gradient which accelerates the electrons by a small

amount.  This has the effect of replenishing the energy lost by the electrons as they are

bent around the ring giving off synchrotron radiation.

4) Other orbit control magnets, which are responsible for controlling the orbit of

the electrons as well as the physical size of the electron beam.

5) The bending magnets (figure 4.3).  These are the main magnetic elements

responsible for directing the electrons around the closed orbit.  They also produce

synchrotron radiation which radiates along the tangent to the orbit as the electrons are

steered around the corners.  

6) Insertion devices.  These are periodic arrays of magnets arranged so that the

electrons describe a sinusoidal path along the direction of travel (see figure 4.4).  These

devices produce intense synchrotron radiation which is emitted along the straight section 
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Figure 4.2.  Schematic of a typical third generation synchrotron storage ring. 

beam path.  Because each wiggle produces radiation, the many oscillations along the

length of the device add up, producing more radiation.  These devices are the main
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sources at third generation rings.  If the physical size of the electron oscillations can be 

     

Figure 4.3.  Schematic of a typical bending magnet producing synchrotron radiation.

matched to the wavelength of the light required then the light produced can approach

laser like wavefront coherence.

Figure 4.4.  Schematic of a typical insertion device.
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7) The beam ports, usually termed Front ends.  This set of equipment allows the

emitted light to travel down the beamlines to the experimental stations, while stopping

any harmful radiation that might be produced and protecting the main ring vacuum.

The injection system produces charged particles, typically electrons, and

accelerates them to some energy below that of the final operating energy.  The electrons

are then injected into the main ring.  Due to the varying magnetic fields experienced by

the electrons in the RF cavity the electrons form bunches which circulate around the

closed orbit.  Typically a ring current of 200 - 500 mA is injected into the ring.  The

magnetic fields in the main ring are then increased in the bending magnets to accelerate

the electrons to relativistic speeds, energies of typically 1 - 10 GeV.  After the operating

energy and current have been reached the synchrotron can store the beam of electron

bunches for several hours.  Most third generation accelerators can operate in top-up

mode, meaning that every several minutes a small current of new electrons are injected

into the main ring at the operating speed in sync with the existing orbiting electrons.  This

allows the synchrotron to operate 24-7 with almost no decrease in intensity of the

synchrotron light produced. 

4.3: Synchrotron Radiation Characteristics: Why?

Obviously, the typical synchrotron facility is large and expensive.  Even though

over 60 independent experiments can be conducted simultaneously on various beamlines

in many facilities, why all the trouble?  The short answer is that synchrotrons are the most

versatile sources of X-rays and Infrared radiation available today.

  This arrises because of the specific characteristics of the emitted radiation.  The

first important characteristic is the spectral range of the emitted radiation.  In

conventional sources of X-rays a metal anode is bombarded by a stream of electrons

producing X-rays.  The radiation produced is emitted at a single energy (for Al - 1486.6

eV, Mg - 1253.6 eV) with only a modest intensity.  Experiments using these sources are

limited to those requiring the specific energy of the source and to long acquisition times. 

Synchrotrons produce light from the Infrared up to a maximum which depends on the
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energy of the orbiting electrons (Margaritondo, 1988; Winick, 1994; Sham, 2002;

Willmott, 2011).

Figure 4.5.  Bending magnet radiation from Stanford Synchrotron Radiation Laboratory showing the

       spectral distribution at electron beam energies of 1.5, 2.5 and 4 Gev.

Thus with appropriate beamline equipment any energy of X-ray, UV or Infrared radiation

that is desired can be obtained.  

The second characteristic of synchrotrons is their immense brightness.  One of the

driving forces for continued development of sources has been their brightness (Winick,

1988; Sham, 2002).  At this point in time third generation sources are about 12 orders of

magnitude brighter than a conventional X-ray tube source (figure 4.6).  Why is this

important?  Each time an experiementer wants to increase the spatial resolution or the

spectra resolution of the light they are using, some radiation is lost in the beamline.  Thus

a modern synchrotron can be focussed to high spacial precision and resolution yet still

have enough brightness left to allow for very high experimental sensitivity (in the ppm

range) with reasonable count times.  A conventional tube source focussed to the same
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size and spectral resolution would barely have enough brightness to allow for any useful

experimental application.    

Figure 4.6.  The evolution of spectral brightness of X-ray sources through time. (After Winick, 1994).

Other advantages of synchrotron radiation include: 1) the radiation is inherently

collimated.  This means that the light does not quickly diverge from the source, it is

emitted over a small range of angles, producing an intense beam which is more easily

focussed.  Also, important in this regard is that the source of the X-rays is the beam of

circulating electrons which is tightly confined creating a very small original source;  2)

the electron beam in the ring in broken into bunches by the action of the RF cavity, this

creates an inherent time structure to the emitted light.  Synchrotron radiation is like a very

fast strobe light, with nano-second pulses.  In chemistry this allows the investigation of

reactions as they are actually occurring, and  3) synchrotron radiation is inherently
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polarized linearly in the plane of the ring.  This property has been utilized to measure

slight differences of molecular arrangements on surfaces, among other experiments.   

4.4: Beamlines

Besides the focussing optics, the most important part of any beamline is the

monochromator.  This is a device used to select the exact energy of X-ray that the

experimenter desires for an experiment.  The monochromator limits the capabilities of the

beamline to the energy range that it was designed for.  There are many types of

monochromators in synchrotron radiation work.  In the present case a monochromator

which functioned in the mid-range of X-ray energies (about 2 - 27 keV) was required in

order to allow the excitation of a significant number of elements up to about Br (element

35, requires about 13 keV).  Both beamlines used the same type of monochromator,

which is the standard type used in much X-ray work.  

In the X-ray region of energies, diffraction of the light from the crystal planes of a

single crystal solid, is used to separate energies of light.  The separation is based on Bragg

diffraction [në = 2dsinÈ], where ë is the wavelength of light diffracted and È is the angle

at which the light strikes the crystal surface and d refers to the distance between atomic

planes in the crystal.  In the most common type of crystal monochromator, two crystals

are used in sequence creating better energy (wavelength) resolution (shown schematically

in figure 4.7).  The crystal chosen needs to have a d-spacing which closely matches the

wavelengths one wants to use.  Both beamlines used in this work, X-27A of the National

Synchrotron Light Source (NSLS) located at Brookhaven National Laboratory in Upton,

NY and beamline 20-ID-B of the Advanced Photon Source (APS) located at Argonne

National Laboratory in Argonne, Il, utilized double crystal monochromators with Si(111)

crystals, which operate best between about 4.3 - 27 keV.   

After the wavelength of light has been selected a series of focussing mirrors is

used to bring the light into the experimental equipment.  In this case these mirrors

included a pair of Kirkpatrick-Baez (K-B) mirrors (Willmott, 2011) which are thin

mirrors which can be bent cylindrically to focus the light down to micro-metre size spots,
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one mirror focuses in the horizontal direction and the other in the vertical direction.  This

arrangement has the advantage that the focal lengths are independent of the light’s energy. 

 In addition to these basic components each beamline also includes beam position

monitors, slits and intensity monitors all of which are controlled by the beamline

workstation computers in concert with the monochromators and focussing mirrors. 

Figure 4.7.  Schematic diagram of a Double Crystal Monochromator.

It may seem strange to talk of mirrors for X-rays, as generally we think of X-rays

penetrating through materials.  This is true, for X-rays to be reflected from a surface the

angle of incidence of the light needs to be very small, about 1 - 2E.  These grazing
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incidence mirrors can be almost a metre long and are all slightly curved to provide some

focussing not just reflection.  It is also interesting that in a double crystal monochromator

the energy selected depends on the angel of incidence of the light onto the crystals,

however as the angle changes the position of the monochromatic beam produced moves 

Figure 4.8.  Schematic of the experimental set up for XRF. A) general view. B) overhead view showing

     actual geometry.
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(usually vertically) as the angle changes.  It is possible to prevent this translation of the

beam but it is so technically challenging, that in most cases it is easier to have the whole

experimental apparatus mounted on motors so it moves in concert with the beam. 

4.5: Experimental Setup

The actual experimental set-up at the end of the beamline is very simple (figure

4.8).  It consists of an acrylic sample holder mounted on a set of linear motion stepping

motors.  These motors allow the attached objects to be moved in steps of less than a

micro-metre and computer controlled.  The sample is set at a 45 deg. angle to the incident

beam and the X-ray detector is placed at 90 deg. to the beam.   The sample is simply

taped on to the mounting plate with scotch tape, being careful not to cover over the

sample.  The experiment was run in ambient air and temperature.  In order to choose

sample regions to scan each beamline was equipped with a microscopic video camera.

 The angle of incidence at the sample is chosen specifically as this angle reduces

the intensity of the scattered incident X-rays at the detector, however, for this type of

micro-mapping application this geometry presents a slight complication.  To explain this

we need to consider the interaction of the incident X-rays with the sample.

The X-rays are absorbed by the sample but not all at the surface they penetrate

into the material gradually losing intensity as they go until the light disappears.  How far

they penetrate is governed by the density of the material and the energy of the X-rays.  In

table 4.1, I have calculated the 1/e absorption length (how far an X-ray can penetrate

before it drops to 1/e of its initial intensity) which is a typical measure of the penetration

depth of an X-ray.  

It is important to realize that the fluorescent X-rays that will be detected are of

different energies than the incident X-ray and thus have their own absorption profile in

the sample.  The distance an X-ray, once generated inside a material, can travel in the

material and still be detectable (about the 1/e intensity limit) is commonly termed the

escape depth.  Clearly, each characteristic fluorescent X-ray produced, samples a unique

volume of material, this is good to realize and is important if one wants to quantify the
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amount of X-rays produced, but otherwise, does not present too much of a problem. 

A problem develops because of the geometry of the experiment, a close up

schematic of a sample is presented in (figure 4.9).  The X-ray penetrates at a 45 deg.

angle through the resin block, some distance from the actual sample, but it hits the base of

the sample producing fluorescent X-rays.  As a result a signal for the element being

analysed will be detected.  But physically the X-ray is not on the sample yet.  This creates 

Table 4.1.  Penetration and Escape depths of characteristic X-rays in Hydroxyapatite.

Characteristic X-ray Energy (eV) Penetration or Escape Depth* (ìm)

Incident X-rays at NSLS 13500 157.3

Incident X-rays at APS 16200 264.9

á Ca K X-rays 3692 13.8

á Ti K X-rays 4512 7.8

á V K X-rays 4952 9.9

á Cr K X-rays 5414 12.5

á Mn K X-rays 5900 15.8

á Fe K X-rays 6405 19.7

á Ni K X-rays 7480 30.0

á Cu K X-rays 8046 36.7

á Zn K X-rays 8637 44.7

á As K X-rays 10543 78.1

á Se K X-rays 11224 93.1

á Br K X-rays 11924 110.6

â Pb L X-rays 12614 129.7

á Sr K X-rays 14165 180.5

* Calculated using the freeware program Hephaestus © and the data compiled by (Elam et al., 2002) for

5 4 3Ca (PO ) (OH) and a density of 3.16 g/cm  (crystal hydroxyapatite) 3

a blurring or skewing of the mapped image for this element but only in the horizontal

plane of the experiment (see Martin et al., 2004 for a good example of this effect).  This 
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Figure 4.9.  Schematic of the effect of detector geometry on the element map in XRF.
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needs to be kept in mind when interpreting the images.  

I mention this complication as a recent innovation in micro-fluorescence mapping

is to add a focussing optics (usually a micro-capillary) to the front of the detector.  This

gives the detector its own focus cone shown schematically in figure 4.10  In this situation

only fluorescence X-rays from the overlap of the incident beam and focus cone of the

detector are recorded. 

Thus, the sample depth

is limited.  This is

termed confocal XRF

and significantly

reduces the geometrical

blurring of the mapped

image (Kanngieâer et

al., 2003).  This

technique was available

at the APS beamline.

Figure 4.10.  Schematic of the principle of confocal XRF.

4.6: X-ray Fluorescence 

When light strikes a substance it can do several things including (but not limited

to) reflect (bounce off without changing energy), diffract (bounce off changing energy) or

it can be absorbed.  When light is absorbed, the wave disappears and the energy must be

used to do something to the material.  What effect the light has depends on the energy of

the light.  For example, low energy light, in the Infrared range makes molecules wiggle

when absorbed.  Light with energies from the visible and up are capable of  knocking

electrons out of the material.  In general this is called the photoelectric effect.  

To see what is happening we need to take a look at where the electrons in a

material are in terms of their energy.  Here we use a short hand diagram (figure 4.11 )

where the vertical direction indicates energy and things are not drawn to any scale. The
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horizontal lines in figure 4.11 indicate levels of energy where electrons can exist,

according to quantum mechanics, the electrons can  not exist at energies between levels. 

Also the levels are grouped together.  These groups are called shells and have been

labelled K, L, M etc. in increasing energy.  

In the diagram (figure 4.11) two atoms are closely spaced together.  The electrons

with the highest energy around the atoms interact to form bonds between the atoms. 

These high energy electrons are termed the valence electrons and visible light has enough

energy to knock these valence electrons out of the material.  The electrons that have lower

energy (down in the wells by the atoms) do not interact with each other and hence

maintain their atomic ‘flavour’.  These are termed the core electrons. 

Figure 4.11.  Schematic of the electron energy levels of a general diatomic molecule.
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X-rays have the energy required to knock a core electron from the material when

they are absorbed.  For an atom or molecule to be in it’s lowest energy state (which is

where it will naturally want to be) all of the core energy levels need to be filled with

electrons as well as the lowest valence levels.  When an X-ray is absorbed a core electron

is lost leaving a space, this arrangement represents what is called an excited state and is

unstable.  At this point the excited state has to be resolved (returned to its lowest energy

state) or the molecule may fall apart.  There are several ways in which the electrons can

rearrange themselves to re-obtain the lowest energy state (termed relaxation). 

Fluorescence emission is just one of these processes.  In fluorescence an electron

from a higher energy level in the atom drops down to take up position in the empty

energy level.  For this to be possible the electron must give up some of it’s energy, which

it does by emitting a new wave of light.  The energy of this emitted light, termed

fluorescence, depends on the difference between the two energy levels.  

The energy levels of each atom are unique giving rise to specific X-ray energies

which reflect the atom from which the original electron was ejected regardless of its

molecular arrangement in the material.  Thus the X-ray fluorescence (XRF) spectra (see

figure 4.12) provides a fingerprint for determining the elemental composition of any

material.  The characteristic fluorescence X-rays are named after the energy level of the

electron that was ejected in the original excitation process.  Hence the name indicated in

table 4.1 and figure 4.12 signify fluorescence X-rays produced by filling gaps in the

lowest possible core levels in an atom (the K shell).

In XRF mapping a spectra is taken at each point then electronically a background

is subtracted and the area of a selected peak is calculated.  This area represents the

intensity of the emitted fluorescence X-rays at that energy and is matched up with the

position of the sample stage, the sample stage is then moved and another spectra is taken,

and analysed to create a map (figure 4.12).  This process can be done for any number of

fluorescence peaks in the spectrum simultaneously.
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Figure 4.12.  Pictorial explanation of the acquiring of an XRF elemental map.
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4.7: X-ray Detectors

I want to briefly mention how X-rays are detected in these experiments, mainly to

highlight the several different detectors that were used in the experiments.  The simplest

form of X-ray detector is an ionization chamber.  In this device a box is filled with a gas,

usually Nitrogen or Argon.  The box has windows which are transparent of X-rays and

contains two electrodes.  A high voltage is connected to one electrode and the other is

grounded.  When an X-rays pass through the gas a small fraction of them are absorbed by

gas molecules, producing electrons which are attracted to the electrodes.  The flow of

electrons at the collector is measured and is proportional to the total amount of X-rays

passing through the chamber (figure 4.13A).  Such detectors are used to monitor the

incident beam intensity (Willmott, 2011).   

Figure 4.13.  Simplified schematics of the operation of three types of X-ray detector.

The next type of detector is used to measure the emitted fluorescence X-rays.  In a

solid state energy dispersive (EDX) detector the ion chamber is replaced by a piece of

high purity (or specially doped) Silicon or Germanium incorporated in a semiconductor

chip.  The high density Silicon or Germanium is ionized when struck by X-rays but now

the number of electrons produced is proportional to the X-ray energy (higher energy light

penetrates more deeply and strikes more atoms, thus more electrons).  Again the electrons
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are attracted to high voltage contacts on either side of the detector (figure 4.13B).  At the

collector the electron bunches register as voltage pulses of a height indicating the X-ray

energy (Willmott, 2011).  The number of pulses of a specific height are counted to

indicate the amount of X-rays of that energy detected.  Typically these detectors count

individual absorption events at a rate of 100 000's of counts per second.  There are many

types of this kind of detector and many of them must be operated at Liquid Nitrogen

temperature to reduce the background noise from the collector electrode.  This

requirement leads to a physically bulky detector, a significant drawback.  At NSLS a 13

element Ge detector was used.

At APS another type of improved EDX detector was used.  In this type, termed a

Silicon Drift Detector (SDD) (figure 4.13C), the principle of operation is identical to the

common EDX detector.  In this case however a horizontal potential gradient is set up

(using a series of patterned electrodes on the silicon chip) which draws the ejected

electrons across the detector to a very small collector (Lechner et al., 1996).  When the

pulses of electrons arrive at the collector they are analysed in the same way.  The

advantage of this type of detector is that the small collector reduces the noise level

enough that cooling to Liquid Nitrogen temperatures is not required, while the area

remains large allowing excellent sensitivity.  SDD detectors are as a result much smaller

allowing for easier set up and the possible incorporation of other devices around the

experiment. 

4.8: Synchrotron Experimental Conditions

The cross-sectioned bone samples were analysed using Synchrotron radiation

induced X-ray fluoresce mapping in two groups.  The first was done at beamline X27A in

the National Synchrotron Light Source (NSLS) located at Brookhaven National

Laboratory.  This beamline was equipped with a Si(111) double crystal monochromator

and a pair of K-B mirrors which provided a spot size of 7 ìm horizontally by 14 ìm

vertically at the sample surface.  An incident beam energy of 13500 eV was chosen. 

Element maps were taken in 10 ìm steps both horizontally and vertically with a count
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time of 0.2 sec per point.  The fluorescence X-rays were collected using a 13 element Ge

detector (Oxford Instruments).  Maps of the Ca Ká, Ti Ká, V Ká, Cr Ká, Mn Ká, Fe Ká,

Ni Ká, Cu Ká, Zn Ká, As Ká/Pb Lá and Br Ká characteristic fluorescent X-rays were

recorded simultaneously.  The data were collected and analysed using freely available

X27A software package running on the IDL©  platform. 

The second group of samples were done on beamline 20-ID-B in the Advanced

Photon Source (APS) located at Argonne National Laboratory.  This beamline was

equipped with a Si(111) Double Crystal monochromator and a pair of K-B mirrors which

provided a spot size of 5 ìm horizontally by 4 ìm vertically at the sample surface.  An

incident energy of 16200 eV was chosen.  The same fluorescent X-rays were collected as

at NSLS with the addition of The Sr Ká, Se Ká and Pb Lâ lines using a Vortex© SDD

detector equipped with a polycapillary focussing optics which restricted the analysis

depth to 60 ìm.  Again the sample was mapped using 10 ìm steps, both horizontally and

vertically, with a counting time of 0.5 seconds per point.  The data were collected and

analysed using freely available PNC-CAT software packages.

The As Ká and Pb Lá characteristic fluorescent lines overlap.  In order to

determine which element is present one can reduce the incident X-ray energy below the

energy where Pb core levels can be excited.  If the fluorescent line is still present then at

least some As must be present.  Alternatively, using a high enough incident X-ray energy

(>16000 eV), one could look for the As Kâ and Pb Lâ lines which occur at distinct

energies. 

Under the experimental conditions the typical multi-element map for this study

(several mm square) was acquired over 5-8 hours.  This allows two or three samples to be

run per day of beamtime, depending on the set up time for each sample.  If larger areas

need to be scanned or other experiments are required to be done such as EXAFS, XANES

or XRD then less samples can be run in a day.  

There is one possible drawback to using Synchrotron XRF, that any experimenter

should be made aware of.  That is beam damage.  The brightness of the incident beam is

such that a significant heat load is applied to the sample and burning can occur.  In the
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present case the residence time of the beam at any one spot on the sample was short

enough that no damage was seen to occur.



CHAPTER 5: RESULTS AND DISCUSSION

5.1: General XRF Spectra

I want to start looking at the data by first reviewing the X-ray Fluorescence

Spectra which make up the elemental maps.  Two typical XRF spectra, from the

equipment at NSLS, are shown in figure 5.1.  These are taken from a random spot on the

bone in sample DA6 and from a spot just on the embedding resin.  In figure 5.1 A the

spectra are shown with a linear scale while a logarithmic scale was chosen for the same

spectra in figure 5.1 B.  The log scale accentuates the small peaks and is typically used in

looking at XRF spectra.  

The first thing to note is that even in the resin, which it is hoped, has very little or

no elements besides C, N and O there are two large sets of peaks at about 13000 eV and

3700 eV.  These are not element peaks but represent: 1) the scattered incident X-rays

which make it to the detector at 13500 eV with a tail of lower energy X-rays which lost

some energy to the sample before reaching the detector and 2) a significant portion of

scattered X-rays which have lost 9800 eV in causing an electronic transition in the Ge

which makes up the detector (termed the Ge loss peak) followed by its own lower energy

tail.  

Both of these peaks are present in every spectra and can obscure characteristic

element peaks, so care must be taken to set the incident energy so that the Ge loss peak

does not significantly influence the Ca emission lines while allowing as many elements as

possible to be detected.  Hence the choice of 13500 eV which allows the examination of

the elements in the fourth row of the periodic table between Ca and Br.  Below the Ca

lines the spectra is obscured by the emission lines and scattering from the components of

2 2air (N , O , He, Ar) because the experiments are done under ambient conditions.   

The next observation to note is that in figure 5.1 B the resin spectrum is not

completely flat, there are a few very small peaks, these could be from several sources:

impurities in the resin, scatter from beamline components intersecting the beam, or



-97-

Figure 5.1.  Representative XRF Spectra from NSLS shown on a A) linear scale and B) log scale.

contamination from the cutting and polishing process.  Of course these peaks are very

small and barely above the background of the spectrum so whatever their origin they can

mostly be ignored provided the element lines are sufficiently intense.  This should be kept

in mind especially for the trace elements like Ni, Cu, Cr and Mn which seem to have

similar intensities, at least at this point on the sample DA6.
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Third, the characteristic fluorescence emission lines have been labelled.  One

should note that the lines come in pairs (ie. Ca Ká and Ca Kâ) the higher energy emission

being less intense.  In the case of weak emissions the â line is often not observed.  Also,

as I mentioned earlier some lines overlap.  The most important for this work is the As Ká,

which overlaps with the Pb Lá line.  At NSLS lowering the incident X-ray energy to

about 13000 eV causes the As line to decrease in intensity but not disappear.  This

indicates that the emission seen is caused by both As and Pb being present in the sample. 

This is true of every sample run at NSLS regardless of site of origin or disease state.  At

APS the As Kâ and Pb Lâ lines, which do not overlap, could both be seen in every

spectra. 

Figure 5.2.  Representative XRF spectrum from APS.

 Thus the first clear observation to make is that; all the samples examined
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contained clear Ca, Zn, Fe, As, Pb and Br emission lines with much smaller lines arising

from Cr, Mn, Ni and Cu.  The same conclusion can be made from an examination of an

XRF spectrum from APS (Figure 5.2) with the addition of a strong Sr emission line

which can be seen because the incident energy at APS was 16200 eV.  

Three quick points about the XRF from APS.  1) Because of the focusing optics

used on the detector the scattered peak and background are greatly reduced. 2) In this case

the detector chip was made from Si not Ge, the Si loss peak appears under the scattered

peak (only separated by 1700 eV).  3)The APS synchrotron has greater X-ray flux and

this along with a more sensitive detector helps resolve the weaker element emissions.

5.2: Introduction to the Elemental Maps (DA1 analysis)

Now, to turn our attention to the elemental maps.  Firstly, I will lay out a detailed

analysis of the first sample DA1, before I turn to comparisons between samples. 

Figure 5.3.  Ca Maps from two areas bordering the abscess cavity in sample DA1. (The numbered lines

      indicate the position of the extracted line profiles shown in figures 5.6 and 5.7) 
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Figure 5.4.  Zn, Cu, Fe, As/Pb and Br XRF intensity maps from sample DA1.
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Figure 5.5.  Cr, Mn and Ni XRF intensity maps from sample DA1.

The preceding three figures (Fig. 5.3 - Fig. 5.5) present the nine collected element

maps for two regions from the first dental abscess sample.  The data are bewildering, to

say the least.  First some technical points, as indicated in figure 5.3, the colour scale bars

represent the XRF intensity in units of Normalized Counts Per Second (CPS).  For

simplicity of the figures I have not included the label or units for the colour bars in any

subsequent figures.   Normalized, in this instance, indicates that for each element the CPS

recorded has been adjusted to a common incident X-ray intensity for all of the maps run

at NSLS.  This is not a calibration procedure, it simply accounts for any variation of

signal arising from variation in the incident beam intensity, it is a necessary first step in
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any spectroscopy experiment.  The conversion of the XRF intensities in CPS to absolute

concentration units, such as ppm, is not a simple calculation and I have not undertaken to

convert the intensity values at this point.  Such conversion requires knowledge of: sample

density, sample thickness, distance between sample and detector, self-absorption, and

fluorescence cross-sections to name some of the factors.  These factors should not,

however, be confused with ‘Matrix effects’ talked about in mass-spectroscopy, the

fluorescence is not affected by the chemical composition of the sample it is an atomic

spectroscopy.  Note, X-ray intensity values allow comparison of the relative intensity of

Fe in one image to Fe in another, for instance, but Fe can not be compared to Ni or any

other element.  The conversion from intensity to ppm is unique for each element.  I

should also note that the false colour scales for intensity are non-linear and enhance the

lower values in a similar fashion to the log scale for an XRF spectrum.

Qualitatively, the Ca maps (figure 5.3) indicate the regions of tooth and bone

surrounding the abscess lesion.  At the right of area 1 is the tip of the tooth root, which

has a crack running vertically through it.  This crack is likely due to postmortem drying of

the tooth.  To the left of the image of area 1 are the trabeculae of the alveolar bone.  The

trabeculae are estimated at about 380 - 440 ìm across.  Note the yellow colour variation

at the edge of some of the trabeculae which indicates a local increase in Ca density only

about 50 ìm wide.  

A similar Ca increase is seen along the lower edge of the bone in area 2.  This

represents the anterior face of the mandible just below the abscess cloaca.  Also in area 2

the bone has a less ‘wormy’ appearance, being generally even, with small round to oval

openings, about 140 ìm in diamater.  This is the typical appearance of compact bone

structure.  The blue coloured edges appearing around the bone arise from two effects, 1)

the blurring caused by the geometry of the experiment and the escape depth of the Ca X-

rays and 2) the fact that the sample is three dimensional and the edges of the bone and

tooth are not necessarily perpendicular to the surface of the cross-section being examined.

The shape of the bone and tooth edges through the depth of the sample is quite

clear in the Zn map of area 1 (figure 5.4).  Here the abscess gap seen in the Ca map
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appears filled in.  Remember that the Zn X-ray escape depth is 45 ìm compared to only

14 ìm for the Ca X-rays (table 4.1, pg 85).  Thus the Zn image is picking up the sloping

sides of the tooth and abscess cavity which is beyond the view of the Ca image.

On the left side of the Zn map of area 1 is the tooth root apex.  The intense ½ mm

wide band of increased Zn intensity indicates the cementum of the tooth (Martin et al.,

2004; 2007; 2010) as seen in our pervious work.  The very left edge of the image is the

dentine of the tooth.  On the right side of the area 1 Zn image are again the trabecula of

the bone: note the similar narrow bands of increased Zn intensity along the edges of some

of the trabeculae.  The Zn map of area 2 also has a narrow (~ 60 ìm) band of increased

Zn along the anterior mandible edge, corresponding to the area of increased Ca intensity. 

There is also some increased Zn intensity immediately adjacent to the abscess cavity at

the top of the map in area 2.  Also note, however, that the bone area which is blue in

colour along the edges changes to black in the upper right of the map of area 2.  This

indicates a decrease of Zn concentration from the outer edge of the bone (both the abscess

cavity and the anterior mandible surface) towards the middle of the bone.  This band of

increased Zn intensity is about 500 to 600 ìm wide.

The wide band of increased Zn intensity which occurs around the outside of the

bone in area 2, is reproduced in the Cu, Fe and Ni (and possibly a narrower band in Cr)

maps in this sample.  The band on the outside of the bone both inside the lesion and at the

mandible surface may be indicative of the leaching of elements into the bone from the

soil matrix (diagenesis).  This is the type of band expected in the case of diffusion based

leaching of elements into bone from an exposed surface.  The DA1 sample is from the

Varden site which was inundated with water for many years, an ideal situation for ion

exchange diagnesis.  Note, however that in area 1, the same obvious increase at the edge

of the bone is not evident.  This is puzzling, the bone in area 1 is trabecular bone, thus we

could ask if the type of bone has an effect on diagenesis, or is the absence of a wide

increased Zn band an experimental artifact (see later) relating to the thin tube nature of

the bone material.

Regardless, the very intense narrow regions of increased Zn are not likely
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diagenetic in origin.  This is inferred from the fact that these regions do not occur all the

way around the exposed bone surface.  Such a regionalised and intense increase over and

above the already existing Zn increase around the edge can not be explained by any

diagenetic process which should affect all exposed bone in a similar fashion.  Of course, I

just noted above that the trabecular bone seems to behave differently.  A different

behaviour for unique bone types is, however, biogenic in origin.  Thus, the intense narrow

bands of Zn are suspected to be of biogenic origin, while the wider band of Zn, Fe and Cu

increase are of possible diagenetic origin.  

Looking at the Cu map of area 2 (figure 5.4) a similar wide band of Cu is seen

decreasing towards the upper right or interior of the bone.  Again Cu shows an additional

increase in a narrow band at the anterior surface of the bone with a slightly wider increase

along the edge of the abscess cavity.  The area 1 map for Cu indicates a similar

distribution as seen in Zn with the exception of the cementum of the tooth.  This is

difficult to see in the image as an intense Cu spike in the centre top of the map, only

about 10 - 15 ìm in diameter, has shifted the colour scale mostly into the blue range. 

This spot is likely a small particle inclusion of soil or polishing debris and more of these

inclusions are visible in other maps.

The Fe map of area 1 (figure 5.4) is dominated by two similar inclusions which

are clearly composed of mainly Fe, Cr and Mn (see figure 5.5).  Even so the Fe

distribution in area 2 also displays a decreasing concentration from the edges towards the

upper right of the map, or towards the interior of the bone.  The Fe map lacks a narrow

increased band at the edges of the bone.  The Fe concentration change can be more easily

seen taking a line slice through the maps.  These are shown in figure 5.6 and 5.7, and the

locations of the line sections are indicated by the green lines in figure 5.3.

For completeness, the map of the As/Pb line is shown in Figure 5.4.  There is a

slight increase in the intensity along the mandible edge in area 2 along with an obvious

inclusion spot.  However, there is nothing in the distribution, which is mostly even

throughout the bone, that can help elucidate a clear disposition between As and Pb or that

might indicate a specific origin of either element.  Thus, without being able to separate
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the contributions from As and Pb we must conclude that in general they are both present

in the sample.  This statement is true for all the samples studied regardless of site origin. 

All As/Pb maps show a general evenly distributed signal of about the same intensity as

the one in DA1.  As a result I will not try to analyse this data further until follow up

experiments can be done to specifically look at the separate distributions of As and Pb in

the bone.

Of course the presence of As and Pb in all the samples is in itself an intriguing

situation.  Reviews of elements (Emsley, 2001) suggest that very small amounts of both

these elements are present in the average diet and find their way into the bone at low

concentrations (0.1 - 1.6 ppm for As, 3 - 30 ppm for Pb).  Without separating the

contributions of the two elements and calculating their absolute concentrations I cannot

compare the current results with any expected concentrations of As and Pb form the

literature.  One thing is clear though, with all the maps having approximately the same

intensity, no one site or sample sticks out as being unique.  

The Br images (in figure 5.4) show that Br is more concentrated in the bone than

in dental tissues, as seen before (Martin et al., 2013).  The distribution within the bone is

generally even throughout with no obvious intense regions.  This is true for all the Br

maps seen and thus, in the case of Br the average intensity of the XRF within the bone is

the most important factor to examine.  

Cr, Mn, and Ni are very weak peaks in the XRF spectra in all the samples. 

Typically they reach significant levels only in inclusions within the bone.  A good

example is the Cr map in figure 5.5.  The distribution of the intense Cr nodules occurs

outside the bone or within gaps in the bone structure.  The Cr images are often a good

indication of the distribution of the various particle inclusions within the samples.  A

comparison of the inclusion particles seen in the maps for DA1, illustrates the inherent

variability of the elemental composition of the included particles, whether soil or of other

origin.

The low concentrations of Cr, Mn and Ni within the bone in DA1 and all the other

samples, leads me to exclude these elements from further analysis.  Trying to interpret
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element distributions and origins based on very weak signals would be problematic.  In

order to err on the side of caution I will not speculate about these elements or As/Pb

without further follow up experiments specifically directed at those particular elements.

In the above I suggested that looking at line sections from the images is perhaps

more useful.  In figure 5.6 below, such line sections are shown for the three most intense

lines observed, namely Ca, Fe and Zn.  The bone edges are marked, and the vertical blue

lines indicate approximate boundaries of regions that can be identified within the bone

interior, namely, lesion edge bone, deep bone (term chosen to represent the typical

unaffected bone well away from any elemental changes occurring around the edges), peak 

Figure 5.6.  Line sections for Ca, Fe and Zn taken along the four lines shown in figure 5.3.
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values and the cementum and dentine.  The intense Zn, Ca and Fe areas at the edges of

the bone can be clearly identified as can the more modest increase of Fe and Zn around

the edge of the bone samples.  

In order to summarise the data further, I have calculated an average XRF intensity

for each element in each identified region of bone or tooth.  These averages were

calculated by averaging the individual data points along each of the line sections within

an identified region of bone.  As an example to calculate the average Zn intensity within

the cementum I extracted the part of the line section along line 3 between the two blue 

Figure 5.7.  Line sections for Br, Cr, Cu, Mn and Ni taken along the four lines shown in figure 5.3.
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lines.  The data points were then averaged.  Such averages can be used as a crude

indication of the relative concentrations of elements in the identified bone regions.  These

values are seen in table 5.1, along with the standard deviation for the values averaged, for

sample DA1.

A couple of things to note about the calculated XRF intensity values shown

below.  First, the standard deviations of the sampled points are often quite large.  There

are many holes (lacuna, Haversian canals, cracks) in the bone structure.  Thus the values

reflect the heterogeneity and density variation of the material.  Second, in a couple of

instances the standard deviation is comparable to the average value (Fe in cementum, for

instance).  A large standard deviation renders the value meaningless for comparison

purposes, and in this instance reflects a poor choice of area to average, one that does not

reflect the obvious elemental patterning.

Table 5.1.  Average XRF Intensity data in Normalized CPS (ó) for sample DA1.

Element Dentine Cementum Deep Bone Lesion Edge Peak* 

Width (mm) Width (mm)

Ca 19811 (620) 18030 (4339) 18068 (2254) 19805 (3055) 0.6 45050

29430

0.15

0.1

Zn 1651 (492) 5186 (885) 1309 (211) 2787 (859) 0.6 12092

5130

0.15

0.15

Fe 65 (18) 346 (345) 2027 (301) 6755 (3053) 0.6 23482

5355

0.15

0.15

Br 352 (40) 371 (52) 621 (90) 638 (95) - - - - - -

Cr 27 (8) 44 (18) 115 (50) 201 (103) - - 1030 0.1

Cu 113 (22) 315 (72) 174 (52) 559 (290) 0.6 1934 0.15

Mn 33 (14) 77 (44) 833 (362) 1087 (783) 0.6 3251 0.15

Ni 46 (20) 61 (22) 73 (29) 113 (42) - - 394 0.15

* Single highest value from line 2 and line 4.

Nevertheless, these XRF intensity values illustrate the conclusions reached so far; there is

an increased rim of Zn, Fe, Cu and possibly Mn around the edges of the bone, and there
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are also separated overlapping localised areas of significantly increased element

concentrations, including Zn and Ca localizations.

5.3: Analysis of Zn Distributions

Figure 5.8.  Zn maps of the dental abscess samples from the Varden Site. (Lines indicate the positions

       of the cross-sections seen in figure 5.11).
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Figure 5.8 shows a comparison of the various Zn maps from the Varden dental 

abscess samples.  Each Zn map is accompanied by the corresponding Ca map for

comparison and the beamline camera view indicating the scanned area(s) in red.  Also on

each Zn map are green lines, labelled alphabetically which refer to extracted line sections. 

Also here I introduce some maps from APS experiments, so note, the colour scale is

different, the X-ray intensity at APS can not be compared to that at NSLS directly and the

overall size of the map images are indicated.

Figure 5.9.  Zn maps of the dental abscess samples from San Pedro. (Lines indicate the positions of the

       cross-sections seen in figure 5.11).
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In sample DA2 (from the Varden Site), the Zn band in the cementum at the tooth

root is clear.  Opposite this is a narrow band of intense Zn long the alveolar margin of the

tooth socket which widens towards the bottom of the socket.  The space between the

tooth and bone widens at the bottom of the socket towards an abscess cavity visible at the

top of the Zn map.  There is no evidence in this map of a wider band of increased Zn

around the edge of the tooth socket, although the area of the map is restrictive.  

In the Zn maps of sample DA3-2, also from Varden, the abscess cavity is clear in

area 2.  The cementum of the tooth is also clear at the top of both maps.  The Zn in the

bone across the abscess cavity from the tooth has numerous very narrow intense bands of

Zn throughout the alveolar bone.  The patchy banding of the Zn is clearly seen across the

triangular section of bone seen in area 2.  The patches are less than one tenth of a

millimetre in width.  

The unaffected sample DA4 from the Varden site has intense bands of Zn around

the cementum of the tooth, across the socket gap and on the anterior edge of the

mandible.  There is no indication of a wider band of intense Zn around the edge of the

bone in this image as well.  

In figure 5.9, the Zn maps from the San Pedro dental abscess samples are shown,

again with the Ca maps and beamline camera images for reference.  The distribution of

Zn within the triangular region of bone scanned for sample DA5-2 is unique in its having

a gap, about 0.3 wide, along the inner edge, opening into the abscess cavity.  This gap of

unknown origin creates an interesting Zn pattern with both very intense and less intense

bands along either side of the gap.  The Zn in this instance also seems to have a broad

region of increased Zn which decreases towards the interior of the bone. 

In the image from sample DA6 there is an intense narrow band of Zn along the

anterior mandible surface.  The edge of the abscess cavity does appear to have a wide area

of slightly increased Zn concentration, this is made difficult to see due to the significant

large holes in this area of the bone.    

The unaffected bone sample from San Pedro, DA7, represents the anterior ridge of

bone from an empty socket.  Here there are no obvious narrow intense Zn bands.  A slight
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increase of Zn intensity around all the edges of the bone appears to be present.  

Comparing the unaffected bone maps for Zn from DA4 and DA7, the distribution of Zn

appears different within the non-diseased socket.  The distribution of Zn around the area

of the abscess cavity in DA1, DA2, DA3-2, DA5-2 and DA6 are not consistent in terms

of the location of any narrow intense Zn bands or any wide less intense bands like those

seen in the DA1 analysis.  So initially, the maps appear to indicate that no clear pattern

emerges which means that the null hypothesis needs to be accepted in the case of Zn and

dental abscesses, that being that there is no difference between disease affected bone and

normal bone.  Just to confirm this conclusion I will look briefly at the XRF intensity line

sections indicated in figures 5.8 and 5.9. 

Before I turn to the extracted lines and average Zn intensity values calculated for

the dental abscess samples, I want to take a look at the tuberculosis samples. The Zn

maps are shown in figure 5.10.  In the map of sample TB1-L there is a clear wide (about

½ mm) band of intense Zn.  This band is located on the anterior edge of the vertebra

sectioned.  The very open trabeclular structure of the vertebral bone is evident in the map,

and again, it is difficult to determine if there is any variation of Zn within the trabecula

close to the lesion edge (top of the map image).

The difficulty in determining Zn gradients within trabecular bone is even more

evident in the map from sample TB2.  Taken at APS, with the confocal arrangement

which limited the depth of analysis to 60 ìm, the thin tubular nature of the trabeculae is

evident.  Blobs of Zn appear in the map as the trabeculae undulate through the focal plane

of the experiment.  Without a clear dense area of bone wider than about 0.4 mm, it is not

possible to establish any trends even at the edge of the abscess cavity (the upper right

corner of the map).

The unaffected sample TB3, is similar to TB1-L in that at least some area of

agglomerated bone is evident at the edge of the vertebral body (right side of image).  Still

there is not a great amount of bone to see.  Although there are areas of intense localized

Zn intensity at the top right edge of the map. 
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Figure 5.10.  Zn maps of the tuberculosis vertabrae samples scanned from Kellis II. (Lines indicate the

       position of the cross-sections seen in figure 5.11).

In comparing these images the affected and unaffected sample maps have a

similar appearance.  It is hard to gauge anything from the map for TB2, indeed the Ca

map and all other elements maps appear identical for this sample.  Clearly examining the

elemental composition of trabecular bone at the micrometre scale is not the best fit

experimentally, creating significant interpretive problems.  As a result, and not wanting to

base any conclusions on just two analysable maps I will refrain from making any

conclusions in the case of bone affected by tuberculosis, and I will not mention the TB
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samples further for any element unless obvious anomalies need pointing out.

Turning to the extracted line sections for the Zn dental abscess samples.  These

sections are shown in figure 5.11 for each sample.  The maps from APS where the 

Figure 5.11.  Zn intensity line sections from the dental abscess and tuberculosis samples run.
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normalization is different have the intensity values given in red as a reminder that they

can not be compared directly to the NSLS values, although they can be compared to each

other.  I have labelled areas of the sections which can be identified.  It is clear from

scanning down the Varden column in figure 5.11 that not all the maps have areas that can

be identified with an increase in Zn intensity at the lesion edge.  Although the cementum

region is clear where present there are also sharp peaks in the profiles not related to the

cementum but only in DA1 and DA4, a diseased and unaffected sample respectively.  The

lesion edge region for Line D could also be identified as a peak region from the map of

DA2, even if this is done Line E from sample DA3-2 does not display a peak of Zn

intensity at the bone edge.  

The San Pedro column is similarly inconsistent showing no lesion edge increase

of Zn intensity in Line H of DA6 which appears in the other diseased sample in the set

from DA5-2, Line G.  The unaffected sample DA7, Line J appears to have Zn evenly

distributed in the image but in section the variation across the bone is remarkable.

The Zn intensity cross-sections from the tuberculosis samples (Kellis II) column

can be considered interesting but difficult to interpret as with the images.  In TB1-L, the

intense Zn band along the anterior edge of the vertebra is clear, the intensity quickly

drops to a value which appears consistent across any trabeculae crossed by the beam in

the interior of the bone.  From Line L, there does not appear to be an increase in Zn

intensity at the lesion edge.  Line M, TB2, just indicates an area of Zn, and not much

more can be said.  Line N, TB3, is similar to Line M, except it crosses several trabecula,

does have some interesting structure.  First the right most area is significantly more

intense than the middle bone area.  This area is to the outside of the vertebra.  Second, the

two-horned appearance of both these peaks typically indicates a distribution which is

enriched at the surface of a cylindrical-shaped object (Martin et al., 2005). 

Again a table of Zn intensity values extracted from the line sections in figure 5.11

is presented in table 5.2.  Examining these Zn intensity values, the inherent variability is

clear in the large standard deviations.  However, there does seem to be a grouping of

values around 1) the dentine and deep bone, which are clearly significantly separated 
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Table 5.2.  Average Zn XRF Intensity data in Normalized CPS (ó) for the dental abscess and TB samples.

Sample Dentine Cementum Deep Bone Lesion Edge Peak* 

Width (mm) Width (mm)

DA1 1651 (492) 5186 (885) 1309 (211) 2787 (859) 0.6 12092 0.15

DA2 1344 (119) 4384 (588) - - 3814 (895) ? - - - -

DA3-2 - - 0.039 (0.007) 0.016 (0.004) - - - - - - - -†

DA4 1575 (278) 5854 (1815) 1420 (363) - - - - 5415 0.07

DA5-2 - - - - 0.006 (0.0001) 0.015 (0.005) 0.26 0.033 0.05

DA6 - - - - 1346 (453) - - - - 5292 0.2

DA7 - - - - 3235 (739) - - - - - - - -

TB1-L - - - - 2463 (550) 2779 (344) ? 12474 0.43

TB2 - - - - 0.014 (0.004) - - - - - - - -

TB3 - - - - 0.022 (0.007) - - - - 0.103 0.22

* Single highest value from line.

 APS run samples.†

from 2) the cementum and peak values.  Where present there is an increase in Zn intensity

at the lesion edge but this increase is often too small to be significant with the background

variability of the bone concentrations.

After all this we can conclude that: 1) no clear pattern related to the presence of a

dental abscess lesion emerges from an analysis of either the Zn element maps or the

extracted line sections.  This means that the null hypothesis can not be rejected in the case

of Zn and dental abscesses, that being that there is no difference between disease affected

bone and normal bone.  2) due to the nature of the trabecular bone, any analysis of the TB

samples will be unfruitful.  3) there are intense patterns of increased Zn concentration

throughout very small regions of bone and teeth.  Although not related to the presence of

a dental abscess lesion, an explanation for the observed patterning needs to be sought.

5.4: Analysis of Fe Distributions around Dental Abscesses

 An overview of the Fe element maps from the dental abscess samples, shown in

figure 5.12, indicates that the Fe seen is predominantly located in nodules outside of the 
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Figure 5.12.  Fe elemental maps for the dental abscess sample set.

bone (DA1, DA4, DA6, DA7).  In several instances, notably DA3-2, DA4, DA5-2 and
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DA7 there is some Fe increase at the exposed outside edge of the bone but not as

concentrated as in the nodules.  This can be clearly seen in the extracted sections shown

at the lower right of figure 5.12. 

The presence of Fe in localized nodules, which are most likely soil particles, is

hardly unexpected as Fe is a major elemental component in most soils being the fourth

most abundant element (Emsley, 2001).  The increased concentration of Fe around

exposed bone areas, decreasing toward the interior of the bone suggests that this Fe is of

diagenetic origin, leaching in from the soils.  It is interesting to note that in each sample

that displays this Fe pattern the area of bone affected is approximately ½ mm or less.  The

scale of the leaching is similar in all samples, even in the Varden samples where the

inundation conditions were ideal for diagenetic ion transfer, but not all samples from a

site show leaching behaviour.  Also of note, again, is the extremely localized patterning

of the elements in the soil and in the bone.

Occasionally there are increased Fe areas within the deeper bone, which are likely

of biogenic origin, but these areas show no correlation to disease status, which means that

we must conclude that the presence of a dental abscess has no effect on the Fe content of

impacted bone.   

5.5: Analysis of Cu Distributions around Dental Abscesses

The compilation of Cu XRF intensity maps for the dental abscess samples is

shown in figure 5.13.  The Cu signal is one of the less intense lines in the XRF spectra, 

generally.  Still, looking at the images one can identify localized areas of increased Cu

intensity around the edges of the bone in DA1, DA2, DA3-2, DA4 and DA5.  DA2, DA3-

2 and DA4 show an increased Cu content in the cementum of the teeth.  Also evident is

the presence of Cu in the soil inclusions notably, DA1, DA4, DA6 and DA7.  

Comparing these images to the ones for Zn in figure 5.8 and figure 5.9, the

distribution is similar, this suggests that the biological function of Cu may be related to

that of Zn if the presence of these elements in the bone is of biogenic origin.  Again, as in

the case of Zn there is no consistent correlation between the distribution patterns seen and
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Figure 5.13.  Cu XRF intensity maps from the dental abscess samples.

the presence of a dental abscess lesion.  Thus, we must conclude that dental abscesses do

not affect the Cu concentrations in neighbouring bone.
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5.6: Analysis of Br Distributions around Dental Abscesses

Figure 5.14.  Br XRF intensity maps from the dental abscess samples.

The Br XRF peak is of significant height, and looking at the elemental maps
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generated in figure 5.14, the distributions of Br in the bone are different from those

examined so far.  Firstly, in DA1, DA2 and DA4, the concentration of Br in the teeth is

less than that in the bone in all cases, this has been reported before (Dolphin et al., 2013).

Second, in each of the elemental maps the concentration of Br in the bone appears evenly

distributed throughout.  The notable exception is DA5-2 where the left portion of the

bone appears to be lower in intensity, but an examination of the scale shows that the

difference is not pronounced and just an artifact of the scale of the image.  Also notable is

the rather intense localized areas of Br seen in DA4.  These occur within voids in the

bone structure, the origin of this single anomaly is unclear at this time.

In table 5.3, below, I have calculated the average Br intensities within the bone

from along the line sections.  I have colour coded the samples from the various sites,

Varden-blue, San Pedro-red, LeVesconte-green and Kellis-white.  Although tentative, the

samples appear to fall into groups based on site with San Pedro having significantly larger

Br intensity than Varden and Kellis.  The LeVesconte Mound samples are variable but

fall generally lower than Varden and San Pedro.  In reference to my previous work in the

literature, Br concentration can be related to high Br sources in the diet, either marine or

some nuts (Dolphin et al., 2013).  As a result it can be tentatively concluded that those at

San Pedro, had a marine component of their diet.  This is not surprising as San Pedro is

situated on an island off the coast of Belize.  Such a result needs more study for

confirmation and the conversion of the intensity values into absolute concentrations.  

Table 5.3.  Average Br XRF intensities from within the bones studied. (Colours indicate sample site: Blue -

    Varden; Red - San Pedro; Green - LeVesconte).  

NSLS Sample DA1 DA2 DA4 DA6 DA7 TB1-L

Br Intensity

(Nor. CPS) (ó)

641 (97) 625 (66) 656 (68) 1404 (204) 3773 (996) 706 (125)

APS Samples DA3-2 DA5-2 R1 R2 R3 R4

Br Intensity

(Nor. CPS) (ó)

0.092 (0.018) 0.155 (0.052) 0.017 (0.005) 0.031 (0.002) 0.074 (0.008) 0.066 (0.020)
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5.7: The Rib Samples and the Parrot Beak Osteophyte

Figure 5.15.  Ca and Zn XRF intensity maps for the four Rib samples and the Parrot Beak osteophyte 

        from sample TB1.
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Figure 5.15 shows the beamline camera images, Ca maps and Zn maps for each of

the four Rib samples looked at and a section through the Parrot Beak osteophyte from

sample TB1.

The region chosen for imaging on the Actinomycosis affected sample was from

the area of new bone built on the rib surface which was also undergoing lytic attack.  The

area shows a band of increased Ca along the edge which corresponds to an intense Zn

band.  The second rib sample was normal.  This sample is one to note particularily, as it

displays the classic lamellar bone structures seen in XRF mapping (Swanston et al.,

2012).   The Ca map clearly shows several circular Haversian canals which can also be

identified in the Zn map.  In this, disease unaffected, sample there is some increase of Zn

along the outer edge of the bone, but localized to the top right of the image.  

The third rib sample was taken from the opposite end of the rib from R2.  This

end had the classic appearance of Leukemia.  The region scanned was from the opposite

rib face as the lytic lesions.  The dirt inclusions in these rib samples are clearly visible in

the beamline images.  Even on the apparently unaffected rib face the Zn image of this rib

shows a patchwork of intense Zn areas.

The fourth rib section was taken as normal, however, there was a small nodule on

the rib face.  The nodule can clearly be seen in the element maps and in the Zn image and

has a rim of increased Zn intensity on its outer surface.

The section taken through the osteophyte (TB1-O) is interesting in several

respects.  First, the sclerotic new bone growth appears to have occurred in layers, visible

at the left of the Ca map and the Zn map.  Second, the most intense Zn area is seen at the

edge of the middle layer, not at the outermost layer.  Thirdly, as shown in figure 5.16 the

osteophyte also has very intense concentrations of Mn as well as increased Ni intensity at

the outer 

(anterior) edge of the osteophyte.  The presence of Mn and Ni in the sclerotic bone can

also be seen in the sclerotic anterior face of the vertebra seen in section TB1-L.   Again

the question arises, What are Mn and Ni doing in these regions of bone?  At this point no

answer can be advanced, but the presence of Mn and Ni in the osteophyte, presents a clear
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Figure 5.16.  Parrot Beak Osteophyte element maps for Mn and Ni and selected line sections.

area for future study, Can the presence of Mn and Ni be related to processes of osteophyte

growth or to the physiology of TB?  Note: I ask about the physiology of TB here because

the person in question had TB infection confirmed by aDNA work, however, TB is

usually lytic in nature with sclerotic areas occurring mostly in cases of vertebral collapse. 

Also the Parrot Beak osteophyte structure is more commonly seen in cases of Brucellosis

infection, thus in searching for the cause of the Mn and Ni distributions other infectious

agents need to be considered.    

The line sections shown in figure 5.16, show that the highest XRF intensities for
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Ca, Zn and Mn all occur at the right edge of the left most crack.  The XRF intensities

occurring in the anterior region are also elevated over the bulk bone values and I have

chosen to label these ‘Peak 1' values.  From these observations it is clear that there is a

more complicated mechanism behind the production of an osterophyte than layers of bone

layed down under the periosteum.  It would be very interesting to study other pathological

bone growths such as those in DISH or enthesophytes (which occur in muscle tissue). 

Would similar divided structures and element concentrations be evident?

 

5.8: Zn Distributions Revisited

The correspondence in location between the Zn, and Mn XRF intensities and the

Ca intensity peaks seen in figure 5.16, suggests an alternate analysis for the Zn XRF

intensities.   Looking back at all the images of Ca and Zn presented so far, there does

seem to be a correspondence between intense areas of Zn and those of Ca.  Table 5.4

looks more closely at this relationship.   Also included are the peak Zn intensities from

the cementum regions identified in the images.

The peak XRF intensities of Ca are indicative of an increase in bone density, this

is most likely evidence of localized bone formation.  Add to this supposition, the intense

Zn values found in the cementum (the cementum is an active calcified tissue forming

region) as opposed to the dentine (Martin et al., 2004; 2010) and the presence of elevated

levels of Zn located at the mineralization front in cartilage (Zoeger et al., 2008). 

Together then the accumulated evidence indicates that the presence of increased Zn levels

in bone is related to bone formation.  It is important to note that this correlation happens

not at the level of the tissue but occurs in micro-regions within the bone tissue where

bone formation is occurring.

The implications of this conclusion are profound.  Three immediately occur: 1) Zn

is thus implicated in the bone formation process; 2) the concentration of Zn in areas of

bone formation is significantly higher than normally occurs in surrounding bone tissues;

3) Zn appears to be moved into regions of bone formation and out of non-forming bone

regions otherwise the concentration of Zn in the bone would remain at its elevated levels
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throughout the bone.

Table 5.4.  The correspondence between Zn and Ca peak positions (Nor. CPS (ó)).

Sample Deep Bone Zn Peak Zn Corresponding Ca Peak Peak Ca Deep Ca

DA1 1309 (211) 12092 U 45050 18068 (2254)

5130 U 29430

6285 Cementum

DA2 4968 U 22246 - -

5603 Cementum

DA4 1420 (363) 5415 U 35862 19302 (2852)

7931 Cementum

DA6 1346 (453) 5292 U 47319 16099 (6336)

DA7 3225 (739) - - - - - - 14712 (7584)

TB1-L 2463 (550) 12474 U 26377 17307 (3586)

TB1-O 2274 (358) 9859 U 32570 15526 (5350)

7604 - - - -

DA3-2* 0.016 (0.004) 0.031 U 0.015 - -

0.05 Cementum

DA5-2 0.006 (0001) 0.033 U 0.016 0.0098 (0.002)

R1 0.004 (0.002) 0.017 U 0.008 0.00041 (0.0003)

R2 0.010 (0.006) 0.032 U 0.013 0.0075 (0.0026)

R3 0.019 (0.005) 0.075 U 0.011 0.0089 (0.0009)

R4 0.023 (0.01) 0.12 U 0.011 0.0057 (0.0018)

* APS Samples

The involvement of Zn in bone formation is not surprising, Zinc is known to play

an important role in the growth, development and maintenance of bone (Tang et al.,

2006; Hie et al., 2011). Zn deficiency is known to decrease the function of osteoblasts

and osteoclasts (Hie et al., 2011) leading to osteopenia and osteoporosis. 

Bone structure and function are maintained by a delicate homeostasis between the

osteoblasts and osteoclasts and Zn has been shown to affect both cell types (Tang et al.,

2006).  Still, despite the long known relation of Zn to bone formation researchers have
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not yet documented the mechanisms behind the expression and regulation of Zn uptake in

bone cells (Tang et al., 2006).  So it is not surprising then that nutritional researchers

report both positive correlations (Sazawal et al., 1998) between dietary Zn levels and

improved clinical outcomes and no correlations (Caulfield et al., 1999; Heinig et al.,

2006).  Obviously much more needs to be learned about the physiology and control of Zn

especially within bone.  

In this case the concentration of Zn in bone obtained by common methods

involving bulk analysis and digestion will have very little relevance to the concentration

of Zn in bone that is involved in bone formation.  The concentration of Zn is often a

factor of five to ten times higher in localized areas of bone formation, than within the rest

of the tissue.  

The elevated levels of Zn in the cementum of teeth remain high relative to the

dentine even though only the outer layers of cementum are the ones actively being

deposited.  This fact suggests that the control of Zn is handled by cellular components, as

active cells occur in bone but not in the cementum.  The mobile Zn could also be the

result of the chemical composition of the Zn, is it bound to the crystals, or in cells,

enzymes?  Is the Zn chemically distinct in the cementum/active bone/deep bone?  These

questions can be approached by examining the X-ray Absorption Spectra of Zn which can

be done with the same synchrotron equipment as the present study at the same micro-

scale.

 Of course the actual high concentration of Zn in live bone required to cause bone

growth, which is suggested by this study of dry archaeological bone, is difficult to relate

to the Zn intensities found.  An attempt to quantify the absolute Zn concentration in the

areas of bone growth based on this study will be an important next step, although it may

not relate directly to the in vitro Zn concentrations involved. 

  In bioarchaeology and forensics, one interesting question arrises, how fast does

the Zn enter the bone to promote bone growth? and could this, if discovered, allow for

finer determinations of the timing of fractures relative to time of death in forensic cases? 

Could the peri-mortem timing of tooth loss be determined from an analysis of Zn in the
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empty socket?  

Medically, could the introduction of Zn to localized areas of bone around fractures

promote healing?  Or, could the incorporation of Zn into the Ca cements used in bone

implants promote osteointegration?  In the area of physiology, does the enhanced

concentration of Zn imply new avenues for the elucidation of the mechanisms of Zn use

and uptake in bone and other tissues?

 



CHAPTER 6: CONCLUSIONS

In this thesis I set out to investigate the elemental distributions in bone

surrounding areas of bacterial infection.  This question and the techniques used to

investigate it were suggested based on observations of anomalous micron scale

distributions of elements seen in the literature and my own previous work on teeth.  

Bacterial diseases were chosen because it was thought that the presence cells having

unique and distinct metabolic requirements from the surrounding tissues could have led

to unique elemental distributions in the bone affected.  

After much work this turned out to be not the case.  It was found that in the case

of Zinc, Copper, Iron, and Bromine that the distribution of elements, although patterned,

at a micron scale, as expected, could not be related to the presence of a dental abscess

lesion.  As a result I have failed to reject the null hypothesis, that being; There is no

difference in the elemental distribution between normal bone and bone affected by a

dental abscess, at least in the case of these four elements.  I should note, that due to the

limited range of elements accessible experimentally, a conclusion for only these four

elements can be reached.  For that matter, a conclusion cannot be reached for any other

factor that could be affected by disease such as the bone crystal structure.  It is hoped that

due to anaerobic bacteria’s use of sulphur the distribution of S around a dental abscess

may be unique, but that could not be investigated in this study.

The analysis of tuberculosis lesions was not possible due to complications arising

from the nature of trabecular bone which need to be addressed on future work.  As a

result I can not conclude one way or the other on the null hypothesis regarding the

distribution of elements around TB lesions.  Nor can I make any comparisons between

aerobic and anaerobic bacteria at this time.  Appropriate experimental methods to assess

the element distributions in regions of trabecular bone is an important area to be

addressed in future element studies.

The findings were not all negative, however, it was found that the Br

concentrations appear to correlate with the site of origin of the samples and thus with the
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dietary intake of Br at each site.  It would be premature to conclude what the dietary

source of the Br was at the study sites.

In some instances it was possible to clearly see the effect of element diagenesis on

the samples.  This took the form of soil inclusions as well as leaching of some elements

into exposed bone.  The diagenetic signal could be differentiated from the biogenic signal

with careful analysis.  The diagenetic leaching of elements like the biogenetic signal

could not be correlated to any site or disease state but was extremely localized in extent.

Another important result was the correlation of localized areas of increased Zn

concentration with areas of bone formation.  This result demonstrates very clearly the

variability of elemental concentrations at scales smaller than the bone tissue, and the

necessity of micro-scale analysis rather than bulk analysis in elemental studies.  The

importance of Zn distribution correlating with bone formation and the enhanced

concentration that is evident in these areas, is clear.  Zn distribution in bones needs more

intense study in the future, the possibility of timing fracture healing is just one exciting

direction for continued research.

In terms of pathology, the growth of Parrot Beak osteophytes presents several

areas for fruitful future research.  For example: What function, if any, do Mn and Ni have

in the process?  Are Mn and Ni involved in any other pathological bone formation

processes such as Carries Sicca?  Another interesting area for future investigation is the

physical structure of the osteophyte.  The intense Zn in the middle of the structure

suggests that the active bone growth is not at the outer edge of the osteophyte but within

its structure.

The current work clearly answers few questions but opens up many interesting

avenues for future research in many academic areas.
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APPENDIX A: SOME USEFUL INFORMATION FOR

NON-SCIENTISTS

Table A.1.  SI prefixes and some notes on scales using length as an example.

Unit Name Abbreviation Multiplier Decimal Fraction Notes

Terametre Tm 10 1 000 000 000 000 trillion12

Gigametre Gm 10 1 000 000 000 billion9

Megametre Mm 10 1 000 000 million6

Kilometre km 10 1 000 thousand3

meter m 1 1 -

centimetre cm 10 0.01 hundredth ~ width of index-2

finger

millimetre mm 10 0.001 thousandth-3

micrometre ìm 10 0.000 001 millionth ~ the size of a cell or-6

bacteria

nanometre nm 10 0.000 000 001 billionth a ribosome is ~ 20 nm-9

in diameter, typically

used to measure the

wavelength of light

Angstrom Å 10 0.000 000 000 1 - used mainly by-10

chemists to measure

bond lengths, which 

range from 2-5 Å

picometre pm 10 0.000 000 000 001 trillionth atoms average several-12

hundred pm in

diameter

Other useful notes: 1) 1 amu = 1.66 x 10  g - approximate mass of one proton or neutron.-24

2) Parts Per Million = ppm = mg/kg = ìg/g = ìL/L (also if 1mL has a mass of 

    1g = ìg/mL)

3) ‰ (permille) - used in stable isotope analysis is actually equivalent to parts

     per thousand

4) eV (electron volt) = 1.6 x 10  J = kinetic energy of a single electron-19

     accelerated across 1 Volt.          For light ë(nm) = 1239.84/E(eV)
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Table A.2.  List of elements and molecular ions mentioned in the thesis arranged alphabetically by symbol.

Element Symbol Name Atomic # Main ion

As Arsenic 33 3+*

Ba Barium 56 2+

Br Bromine 35 1-*

C Carbon 6 4+*

Ca Calcium 20 2+

Cd Cadmium 48 2+

Co Cobalt 27 2+*

Cr Chromium 24 2+*

Cu Copper 29 2+*

F Fluorine 9 1-

Fe Iron 26 3+*

H Hydrogen 1 1+

I Iodine 53 1-*

K Potassium 19 1+

Li Lithium 3 1+

Mg Magnesium 12 2+

Mn Manganese 25 2+*

Mo Molybdenum 42 6+*

N Nitrogen 7 3+*

Ni Nickel 28 2+*

O Oxygen 8 2-

P Phosphorus 15 5+*

Sb Antimony 51 3+*

Se Selenium 34 4+*

Si Silicon 14 4+

Sr Strontium 38 2+

V Vanadium 23 5+*

Zn Zinc 30 2+
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Molecular Ions

Ion Name Ion Charge

3CO Carbonate 2-

OH Hydroxide 1-

4PO Phosphate 3-

* Element is capable of having several ionic charges, only the most common is listed.



-146-

 APPENDIX B: DETAILED OSTEOLOGIES OF SAMPLES 

A note on osteometrics:

In the calculation of numerical means of osteological measurements I have

followed the suggestion of White et al. (2012) and presented the mean values as: 

MMean ± ó

Mwhere ó  is the standard error of the mean and is given by the standard deviation

(ó)of the individual measurements divided by the square root of the number of

measurements.

Mó  = ó/N1/2

Why?    Basically, the standard deviation of the sample set is a measure of the difference

between any individual measurement and the sample mean.   The standard error is a

measure of the difference between the sample mean and the theoretic true mean which

Mthe sample mean is supposed to represent.   Thus, ó  is a better estimate of the error of

the measurement assuming of course that the correct measurement was done and done

correctly.  (In that case the theoretical distribution is represented in part by the actual

distribution of measurements.) The magnitude of the error decreases with an increase in

the number of values measured even if the standard deviation of the measurements

remains the same, or put another way, as the sample size increases we have more

confidence that the mean is an accurate representation of the true value. 

Numeric ranges of error can then be calculated based on the confidence limits

required, as such (Johnson, 1988): 

Confidence Limit ± numeric range

M68 % ± ó

M95 % ± 1.96 ó

M98 % ± 2.33 ó

Note: The standard deviation and the standard error only relate to a single group

or distribution of measurements (one measurement), they do not have any bearing on

comparing one measurement with another.   I state this explicitly as I have found a

confusing plethora of uses of statistical terms, symbols and uses in the literature, even in
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elementary statistical texts. 

Within the osteometric tables in the appendix values in brackets were those which

were roughly estimated because of partial destruction of the element being measured. 

Where a value is missing the measurement could not even be estimated because of

significant destruction of the bone.
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B-1: Samples DA1 and DA2
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B-2: Samples DA3 and DA9 
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B-3: Sample DA4
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B-4: Samples DA5 and DA8
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B-5: Sample DA6
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B-6: Sample DA7
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B-7: Samples TB1-L and TB1-O
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B-8: Sample TB2
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B-9: Sample TB3



-188-



-189-



-190-



-191-

B-10: Sample TB4
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B-11: Sample R1
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B-12: Samples R2 and R3
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B-13: Sample R4
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