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ABSTRACT

Free oscillations of the earth (also called normal modes) depend on
the shape and structure of the earth. Each mode is a decaying sinusoid, and the
modal parameters (frequency, phase, Q and relative amplitudes) may be determined
from seismic records of large earthquakes. The observed modal parameters act
as constraints on possible earth models. The fine structure of the free oscillation
peaks, such as multiplets and split peaks, are a source of information and speculation
on second order variations of earth shape and structure, such as departure from
sphesicity and local homogeneities.

The normal mode parameters have traditionally been estimated through
the Short Time Fourier Transform (STFT) method. It is well known, and we demon-
strate here, that the STFT method gives the correct frequency (to the nearest Fourier
component) but an incorrect amplitude spectrum for decaying sinusoids. We pro-
pose an alternative approach for modal parameter determination through a non-linear
least-squares fit of wavelets, customized for the normal modes of the carth. Iterative
minimization of the error function is carried out through Marquardt's method to ob-
tain the normal mode parameters. This direct computation of parameters through
modal fitting is tested with synthetic noise free data and several data sets with vary-
ing levels of random Gaussian noise. The values for the noisy data using this method
are found to be much closer (within 10%) to the true parameter values than those
obtained using the STFT method (which may be off by as much as 500%) for signal to
noise ratios as low as 1.3. The method is then tested on the record of the Minahasa
Peninsula earthquake of April 18, 1990 (Ms = 7.4). The results obtained for the real
data give reasonable values for 50% of thc modes only. The possible cause for this
may be the splitting of modes and/or source generated nonmodal seismic noise.

The second part of the dissertation reports on the discovery of at least
two normal mode periodicities (55.38 minutes, ¢Sz and 43.2 minutes, 0T2) in the
aftershock sequence of the Loma Prieta, California, earthquake (October 18, 1989;
Mg = 7.1). The evidence for the presence of these two periods has been corroborated
by two different methods. A third period, corresponding to oS3 is visible, though the
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evidence is not as compelling as the former two periods. It is apparent that the normal
modes generated by the earthquake are triggering small aftershocks (1 < M < 2).
Strong evidence of the triggering of low magnitude aftershocks by normal modes is
seen during the first 6 days following the mainshock. After 6 days, the decay of the
normal modes and the decrease in number of aftershocks make it difficult to detect
such an effect. We speculate on possible mechanisms. A clear understanding of this
triggering will enhance our knowledge of focal processes in general.

Large aftershocks (M; = 3), both in Loma Prieta earthquake sequence
and in a catalog of the aftershocks of all Ms > 7 earthquakes around the world during
the period 1970 to 1990, do not appear to be triggered by normal modes. However,
this may simply reflect the fact that there are only a small number of large aftershocks,
making the detection of periodicities difficult.
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Even the wise are bewildered,

What is Action and what is Inaction?
Understand the nature of Action

And you will be Truely free.

-Bhagvad Gita
Ancient Sanskrit Tezt, circa 500 BC

*A sacred monosyllable, chanted with resonance and slowly decreasing intensity at the beginning of all
endeavours. It brings the blessings of the Holy Trinity of llinduism, Brahm& (the Creator), Vishnu (the
Prescrver) and Siva (the Destroyer) and assures Yoga (union) of the body and the soul with the infinite.




ACKNOWLEDGMENTS

Someone once asked me about my relations with Prof. Lalu iv.ansinha, my supervisor.
"He gets ideas (in the middle of the night) and I implement them (in the morning).”
I replied. And that is what this thesis is all about. My sincere thanks to him for
guiding me to new horizons of science, geophysics in particular. Without his constant
encouragement as well as criticism, I wouldn't be what I am.

Thanks are also to Prof. R.F.Mereu for allowing me to use his worksta-
tion for processing my time consuming jobs. Mr. Bernie Dunn smoothed away many
computer problems at various stages. 1 thank Ms. Lynn Dietz of USGS for providing
the unique aftershock sequence of the Loma Prieta earthquake.

The Canadian Corxmonwealth Scholarship played a major role in sup-
porting me financially throughout these studies. Additional supports through Cana-
dian Society of Exploration Geophysicists, Graduate Research Fellowship from Uni-
versity of Western Ontario are also acknowledged.

For last five years, the Department of Geophysics has been just like a
family to me. We shared our good and bad times together and I made many good
friends during this stay. I will always cherish these memories. Now that we grew up
as the Department of Earth Sciences, I hope the old traditions will continue.

[ am thankful to Pratibha, my wife, who has always been supportive
to me and greeted me with a happy smile in the times of need. This study would
not have been completed without her. And of course, there was Ankit, who used to
think that my frequency spectra are nothing but "a bunch of grass”. I hope [ proved
it otherwise.




Table of Cnntents

---------------------------
----------------------------------------
.................................
.................................
.....................................

------------------------------------

Prologue

1 Determination of Modal Parameters

1 Overview
1] Introduction . . .. v v v v it i et e e et e e s e e e

1.2 Normal Modes of the Earth
1.2.1 Degeneracy of Modes

ooooooooooooooooooooooooooo

---------------------------

1.2.2 Dampingof NormalModes . . ... .... ... ... ........
1.2.3 Importance of Parameter Estimation .................
1.3 Parameter Estimation and associated Problems
14 STFTMethod. . . .. .. ... .. ... i
1.4.1 Windowlength ... ...... ... e,
1.4.2 Problems of STFT Method

1.5 Revival of an old method

---------------

------------------------

----------------------------

2 Modal Fitting (Inversion)

vii

10
12
19

20



I

-------------------------------------

--------------

2.3.3 Functioniinearisation . .. .. ... ... . oo v v
234 MarquardtMethod . ... ... ....... ... .. 0 'u.....

Application of the Method

3.1 SyntheticData . . . . . .. .. .. i ittt e e e e e

3.2 SyntheticdatawithNoise .. .............. ... .00 u....

33 ApplicationtoRealData. . ... ... ...... ... ueunnon.
3301 Results . .......... ... it

34 ConcludingRemarks . .. ..........0i ...

Do Normal Modes Trigger Aftershocks?

Why Ask?

4.1 RUPIUIE . . . . .t e e e e e e e e e e e e e
4.1.1 Aftershocks . .......... .. ...

4.2 Objectivesof thePresentStudy ........................
421 WhylomaPrieta ... .. ... ..o vi i i e esnun..

4.3 Search for Triggering Agents: Review . . . .. ................
43.1 Tidal Triggering . . . . . .. .. . i i it s e e e

44 NormalModesasa Trigger?. . . . .. . v v i vt ittt et e et ae s

Data and Analysis

5.1 The Loma Prieta Earthquake Sequence (Sequencel). ............
5.2 Global Aftershock Data Set (Sequencell) . ..................
53 Spectral Analysis . . . .. .. ... ... .. . e
54 The KORRECTMethod . ... ... .. ... .. ... ... ...

30
30
36
41
53
55
56

57

58
58
61

64
65
68
71



6 The Answer

84

6.1 Tidal Triggering . . . . . . . . . i i i it e e e e e 84
6.2 Modal Triggering . . . . .. v i i it ittt ittt et ettt e e 85
6.3 Phase VariationCurves ... .. ... .. ... ... ... ... ... ... 94
6.3.1 ToroidalModeoT2 . ... .. ... ... ..., 94
6.3.2 SpheroidalModeoS2 ... ... .. ... ... ... .. ... .. ... 101
6.3.3 SpheroidalMode oS3 . .. ... .. . i i i e 101

6.4 Numberof TriggeredShocks .. ... . ...... ... ... ...... ... 109
6.5 Results from the Global Aftershocks . . ... ................ 169
6.6 ConcludingRemarks . . ... ... ... ... ... .. 112
Discussion 2ad Conclusions 118
APPENDIX A: Global Earthquakes . ... ... ................... 121
APPENDIX B: Computer Programs . . ... ..................... 131
REFERENCES . . . . . . ottt e e e ettt et e et et e e e 146
Y 1 7 157




List of Tables

3.1 Results for 4 synthetic spheroidaimodes ..................
3.2 Results for 2 synthetic spheroidal multiplets . . ..............
3.3 Results for a single synthetic spheroidalmultiplet . . . ..........
3.4 The parameters (period, initial amplitude and quality factor) of the nor-

mal modes used in the synthetic data set (SeriesIV).. . . .. .......
3.5 Parameter values of the noisy synthetic data set obtained by modal fit-

tingand STFTmethod. . . . . .. ... vttt i ittt e nrvnnonsas
3.6 Values of Q and associated errors determined by modal fitting and STFT

method for the data set showninFigure3.3. ................
3.7 Parameter values of the noisy synthetic data set (Figure 3.4) obtained by

modal fitting and STFT method. The S/N ratio is lower than in Table 3.5.

3.8 Values of Q and associated errors determined by modal fitting and STFT
method for the data set shown in Figure 3.4. The S/N ratio in the time
series is lowerthaninTable36. ... .....................

3.9 Parameter values of the noisy synthetic data set obtained by modal fit-
ting and STFT method (Figure 3.5). The S/N ratio is lower than in Ta-
bles3.5and3.7.. ... ... ... .. . .. .. e e

3.10 Values of Q and associated errors determined by modal fitting and STFT
method for the data set shown in Figure 3.5. The S/N ratio in the time
series is lower than in Tables 3.6and38. ..................

3.11 Parameter vaiues for the Minahasa Peninsula earthquake obtained by
modal fitting . . . . .. ... . i e e e e e

43

44

45

46

47




List of Figures

1.1
1.2
1.3

14
1.5
1.6
1.7
1.8

2.1

3.1
3.2

3.3
34
3.5
3.6

3.7

Particle motion of the fundamental spheroidal and toroidalmodes. .. 6

Spherical polar coordinates (7, 8, ¢), with origin at the center of the earth 6

Parameter determinatior. by the Short Time Fourier Transform (STFT)

method.. . . . ... ... ... . e e e 11
The effect of fitting a nondecaying sinusoid to a decaying signal. . ... 14
The effect of tapering on amplitude determination. . ........... 15
A synthetic time series to check the validity of the STFT. . ... ... .. 16
An example of incorrect amplitude spectrum through STFT. . . . . ... 17

The error in peak amplitudes for different frequencies using Hann window. 18

Approximation of the merit function x? near a local minimum with re-

specttotheparameter Ek.. . « « ¢ v v v v v v vt et v e v et v e e 24

A synthetic noise free record and its spectrum. . . . . .. ......... 32

Comparison of the Q values in noise free data set using modal fitting

andSTFTmethod. . .......... ... .. ... ... 37
Synthetic record with random noise and its spectrum.. . . ... ... .. 38
Synthetic record with random noise and its spectrum.. . . . .. .. ... 39
Synthetic record with random noise and its spectrum.. . . ... ..... 40

Comparison of the Q values in noisy data set Table 3.6 using modal

fittingand STFTmethod. .............. ... ... 48
Comparison of the Q values in noisy data set Table 3.8 using modal
fittingand STFTmethod. . ...... ... ... ... 49




3.8 Comparison of the Q values in noisy data set Table 3.10 using modal

fittingand STFTmethod. . . . ... ... ... ... .00 ieununrnn.

3.9 A record of the April 18, 1990, Minahasa Peninsula earthquake with its

SPCCIIUIL . . . . o i ittt ittt e e e e e e,

3.10 Frequency response of 8* order Chebyshev filter used to bandpass filter

4.1
4.2
4.3

5.1
5.2
5.3
5.4

5.5
5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

the SGrecord. . ... ... .. i i i ittt ittt ettt e

Ruptureinarod. ... .. .. ...ttt ittt ieennnnneeneans
Effect of different type of stresses on an existingcrack. . . . .......

A plausible mechanism for continuous aftershock occurrence. ... ..

Number of events per hour vs. time for the Loma Prieta aftershock se-
QUEMCE. . . o i ittt et e e s e e e e et e
Magnitude distribution of Loma prieta aftershocks with time. . ... ..
Depth distribution of the aftershocks of the Loma Prieta earthquake. .
Binning of the aftershocksequence. . . . ... ..... ...
Rectangular pulse series for two different periods. . . . . .........
The KORRECTmethoc .. ............c¢ciiiiirnnen..

Amplitude spectrum of 30 day time series with 1 hourbin. .......
Amplitude spectrum of 30 day ‘ime series with 30 minutes bin. . . . . .
Amplitude spectrum of 30 day time series with 15 minutes bin.. . . . .
Amplitude spectrum of 72 hours time series starting at 24 hours follow-
ingthemainshock. . . ..............i s,
Amplitude spectrum of 72 hours time series starting at 48 hours follow-
ingthemainshock. . . ...............c.0i e neun..
Amplitude spectrum of 72 hours time series starting at 144 hours fol-
lowingthemainshock. . . . ... ... ..... .. eunn.
Amplitude spectra of 72 hours time series for the aftershocks 0 sdepths

Xal

50

31

32

60
60
63

75
75
76
79
82
83

86

86

87

89

89

90

91



6.9 Amplitude spectra of 72 hours time series for the aftershocks 10 <depths
20KmL . .. 92

6.10 Amplitude spectra of 72 hours time series for the aftershocks 2 < M;p <3.93
6.11 Amplitude spectra of 72 hours time series for the aftershocks 3 < M; < 5. 93

6.12 Phase variation curve for the 42.35 minuteperiod. . . . . ......... 95
6.13 Phase variation curve for the 42.77 minute period. . . .. ...... ... 95
6.14 Phase variation curve for the 43.20 minute period. . . .. ......... 96
6.15 Phase variation curve for the 43.64 minute period. . . .. ......... 97
6.16 Phase variation curve for the 44.08 minute period. . . .. ......... 97
6.17 The physical mechanism of the triggering due tooT>. .. ......... 98
6.18 Phase variation curve for the period of ¢T> from a 72 hours of data

starting at 24 hours following the mainshock. . . . . ... ......... 99
6.19 Phase variation curve for the period of ¢T> from a 72 hours of data

starting at 48 hours following the mainshock. . . . . ... .... ... .. 99
6.20 Phase variation curve for the period of ¢T> from a 72 hours of data

starting at 60 hours following the mainshock.. . . ............. 100
6.21 Phase variation curve for the 54.00 minute period. . . .. ......... 102
6.22 Phase variation curve for the 54.68 minute period. . . . . ......... 102
6.23 Phase variation curve for the 55.38 minute period. . . . . ......... 103
6.24 Phase variation curve for the 56.10 minute period. . . .. ......... 104
6.25 Phase variation curve for the 56.84 minute period. . . . .......... 104
6.26 The physical mechanismduetooS2. ..................... 105
6.27 Phase variation curve for the period of 452 from a 72 hours of data start-

ing at 24 hours following the mainshock. .................. 106
6.28 Phase variation curve for the period of 0S2 from a 72 hours of data start-

ing at 48 hours following the mainshock, . ................. 106
6.29 Phase variation curve for the period of ¢S2 from a 72 hours of data start-

ing at 60 hours following the mainshock. .................. 107
6.301 Phase variation curve for the 36 minuteperiod. . . . . ........... 108
6.31 Spatial distribution of the triggered aftershocks. . ............. 110

xiil



6.32 Amplitude spectrum of 5 day time series (global aftershocks) with 10
minutes bin. . . . ... ... e e e e e 111

6.33 Phase variation curves obtained by KORRECT method for the global af-

tershock data set near thegTa period. . ................... 113
6.34 Phase variation curves obtained by KORRECT method for the global af-
tershock data set nearthegS2period. .................... 114

6.35 Anomalous high amplitudes of normal modes observed near the epicenter.116

xiv



The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/




Prologue

"Where shall I begin, please your Majesty?" he asked.

"Begin at the beginning,” the King said, gravely, "and go on till you come to
the end: then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland.

This thesis consists of two separate parts, related through the free oscillations (also
known as normal modes) of the earth - the ringing of the earth like a bell after large
earthquakes. The first part of the thesis presents a new method of determination
of the parameters of free oscillation, frequency, amplitude, phase and decay rate (or
the quality factor, Q). The second part presents the discovery of three normal mode
periodicities (pS2, 55.38 minutes; ¢T2, 43.2 minutes and probably ¢S3, 36.00 minutes)
in the aftershock sequence of the Loma Prieta earthquake (October 18, 1989; M| =
7.1). Periodicities in the aftershock sequence forces us to conclude that normal modes
ar2 triggering, i.e. advancing and retarding the time of occurrence of aftershocks. The
evidence for such triggering is quite persuasive.

Chapters 1, 2 and 3 present the work on determinations of modal pa-
rameters. The triggering of aftershocks is described in Chapters 4, 5 and 6.




Part 1

Determination of Modal Parameters




Chapter 1

Overview

The whole of science is nothing more than a refinement of everyday

thinking.

Albert Linstein, Ot.« of my Later Years, 1950.

1.1 Introduction

In the last thirty years or so, the free oscillations of the earth have progressed from a
curiosity to a sub-discipline "Low frequency seismology”. This field now includes the
very long period nature of the seismic sources (from the amplitude of the modes), the
anelastic structure of the earth (through the measurement of Q) and the lateral elastic
variation of continental scale (studying the frequency shifts of the modes from the
theoretical values). For any of the above problems, an accurate determination of the
modal parameters is a very important step. In this study, we point out some basic
problems with current methods (Short Time Fourier Transform [STFT) and various
variations) of the determination of the modal parameters. We then try an alternative
method, which in a sense, may be considered as a fitting of a customized wavelet, but
actually is a method of multiparameter optimization.

We design a set of customized waveforms closely resembling the nor-
mal modes, and fit these, in a least-squares sense, to the observed seismogram. The
method is very successful on the synthetic data, with and without noise, and found
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to be more robust than the traditional STFT method, even with low signal-to-noise
ratio.

This chapter presents an overview of the normal modes and some ex-
isting methods of parameter estimation. Chapter 2 describes the method of modal
fitting. The results from the application of this method are presented in chapter 3
with a comparison with the STFT method of parameter estimation.

1.2 Normal Modes of the Earth

Elastic disturbances in a bounded body (e.g., the earth) can be represented with stand-
ing waves as well as travelling waves. For example, Rayleigh waves propagating
around the earth surface result in a stationary interference pattern which is equiva-
lent to a system of standing waves. The wavelengths of the standing waves on and
in the earth must be an integral submultiple of the circumference of the earth. Only
certain wavelengths (hence frequencies) are allowed, which are determined by the
boundary conditions. These are the free oscillations or normal modes of the earth.
The complete set of free oscillations can describe any general elastic disturbance in
the earth. Any time dependent elastic displacement, be it a surface wave or a body
wave, may be written as a superposition of the normal modes and vice versa.

Free oscillations are classified into two types of oscillations called sph-
eroidal and torsional (or toroidal) oscillations. This classification is the spherical ana-
logue of P-SV and SH motion for body waves, and Rayleigh and Love motion for surface
waves. Torsional modes depend only on the shear velocity, whereas spheroidal modes
depend upon both shear and compressional velocities. Torsional modes involve cir-
cumferential motion only whereas spheroidal modes are much more complex and
involve radial displacement also. The simplest spheroidal mode is called the breath-
ing mode which is the uniform expansion and contraction of the earth [Figure 1.1a);
it has a period of 20.08 minutes. The football mode, represents the deformation of
the earth into the shape of a football [Figure 1.1b]; it has a period of 53.84 minutes.
The simplest torsional mode is in fact the earth’s rotation. The next mode is one in
which two hemispheres rotate in opposite directions [Figure 1.1¢c], hence the name



torsional. For detailed description of the normal modes, the reader is referred to Aki
& Richards (1980), Lapwood & Usami (1981} and Gubbins (1990).

1.2.1 Degeneracy of Modes

Each normal mode is denoted by the symbol of the type »S/* (spheroidal mode) or
aT{" (toroidal mode); n is the radial order number and is equal to the number of
nodal planes of the oscillations inside the earth. Modes with n > 0 are known as
overtones and they are likely to be excited by deep earthquakes only. Fundamental
modes (n = 0) are the most commonly excited modes and have been well studied
in the literature. Theoretical derivations for normal modes use spherical surface
harmonics Y™ (6, ¢) and the Legendre function P™(cos 8), where 8 and ¢ are the
colatitude and the longitude respectively (Figure 1.2); ! and m must be integers; l is
the angular order number of the mode and m the azimuthal order number.

Any spherical harmonic Y, has ! nodal lines, out of which m pass
through the pole, and the remaining [ - m are along lines of latitude (pole and latitude
refer to the coordinate system). The rotation of the coordinate system will change the
value of m but will not affect the total number of nodal lines I. In general, rotation
will transform Y;™ into a linear combination of spherical harmonics with the same
l but different values of m. The frequency of the mode does not depend on m in
a uniform sphere. All the modes with same angular order number [ have the same
frequency in a uniform, spherically symmetric earth model, but they can differ in their
displacement patterns. This is known as degeneracy: several eigenfunctions have the
same eigenvalue. This result applies to any spherically symmetric body because the
modes with the same angular order number may be converted into each other simply
by rotating the axes: rotation of the coordinate system will change displacement
patterns (eigenfunctions) but not frequencies (eigenvalues). For each value of [ there
are 2l + 1 pussible values of m. [ can take integer values as 0,1, 2, ...and m =
~l,-l+1,-1+2,...,1 +1,L Such a group is called a multiplet and each member of
a multiplet is called a singlet.




(c)

Figure 1.1: Particle motion of the fundamental spheroidal and toroidal modes. (a)
the breathing mode, S0, which has a period of 20.08 minutes, (b) the football mode,
052, which has a period of 53.84 minutes, and (c) the toroidal mode, ¢T>, which has a

period of 43.84 minutes.

Figure 1.2: Spherical polar coordinates (r, 6, ¢), with origin at the center of the earth.
The line @ = 0 is often taken to pass through a seismic source, in which case (r, 9, ¢)
are known as epicentral coordinates.




1.2.2 Damping of Normal Modes

In the absence of attenuation, the energy of all the earthquakes of the past would
still be reverberating tkroughout the earth today. Attenuation is loss of energy per
oscillation, or per wave cycle. When a wave travels through a medium, the energy
in the wave is lost by various damping mechanisms. The physical mechanism of
attenuation of waves in the earth at long wavelengths is not completely understood
in spite of frequent speculation (Knopoff, 1964a; Masters & Gilbert, 1983).

Except for the nonlinear behevior near the focus, seismic strains are
small and seismic oscillations take place in the domain of linear elasticity, Atten-
uation of harmonic signals is therefore exponential, and the rate of attenuation is
describable by an exponential rate of decay

a(t) = Ae ™ cos(wt + ¢) (1.1)

where A is the initial amplitude, ¢ is the initial phase, w is the frequency of the mode,

and « is the attenuation parameter. It is useful to write

w
o = z—d (].2)

where Q is the quality factor. Note that Q and o are just parameters and say nothing
at all about the physical mechanism of attenuation.

1.2.3 Importance of Parameter Estimation

Each normal mode i is associated with four parameters, namely, amplitudes Ay, fre-
quency wy, phase ¢¢, and the quality factor Q. The departure of the observed fre-
quencies of normal modes from their theoretical values provides estimates of as-
phericity, lateral heterogeneity and all other variations from spherical symmetry of
the earth (Silver & Jordan,1981; Smith & Masters,1989; Pollitz,1990; Woodward & Mas-
ters,1992). Gilbert (1973) and Gilbert & Dziewonski (1975) have shown that the source
mechanism (moment tensor) of an earthquake may be computed through model fit-
ting to normal mode amplitudes and phases. Mendiguren (1980) also used the free
oscillation data for source moment tensor studies. Anderson & Dziewonski (1982)




inverted the observed frequency shifts of normal modes to constrain upper mantle
anisotropy.

Inversion of short period (as compared to the modal periods) seismic
waves also provides information on the distribution of density and elasticity in the
earth, which in turn shed some light on chemical composition, phase changes and
the evolution of structure of the earth. Similarly, distribut.on of anelasticity provides
additional constraints on the working structural models of the earth. Anderson &
Archambeau (1964) developed an inversion method to characterize the earth’s struc-
ture by means of Q values. Dziewonski & Anderson (1981) obtained the Preliminary
Reference Earth Model (PREM) by simulating travel time observations, normal mode
periods and several normal mode Q values.

1.3 Parameter Estimation and associated Problems

Since the first confirmed normal mode observations after the Great Chilean earth-
quake of May 20, 1960, several methods have been tried to determine modal parame-
ters. Benioff et al (1961) determined Q values by measuring the width of the spectral
peaks of normal modes observed in the Fourier spectrum. The half width at the half
power level of the theoretical resonant peak is equal to «, from which Q can be cal-
culated using Equation 1.2. However, the observed peaks are usually asymmetric and
contaminated with noise, which renders this method of dubious reliability. Q has
also been measured by examining the spectral amplitude decay of the modes in the
time domain or in the frequency domain. Stein & Geller (1978) and Geller & Stein
(1979) applied this technique by isolating different modes through narrow bandpass
filtering and studying the amplitude decay of individual modes in the time domain
using the Hilbert transform. This method is limited to single mode determinations
and splitting of modes may lead to spurious values of Q (Masters & Gilbert, 1983).
Buland & Gilbert (1978) suggested the moment ratio technique for esti-
mating the center frequency and the minimum width technique for measuring Q. The
minimum width method involves multiplying the record by a trial growing exponen-
tial, e**. The value of « that best cancels the effect of attenuation is the best estimate.
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This value should also minimize the width of the spectral peak. Bolt & Brillinger (1979)
have described a complex demodulation technique in which they use a least-squares
estimatcr to retrieve the modal properties from the complex demodulator. Hansen
(1982) applied this method to 24 long period recordings to estimate several modal Q
values.

Simultaneous multimode estimations can be made using autoregres-
sive method of Chao & Gilbert (1980). Values of modal properties can also be found
using straight-forward non-linear least-squares fitting of resonance peaks in the fre-
quency domain to narrowly bandpass filtered data for different modes (Masters &
Gilbert, 1983).

Recently, Hori et al (1989) proposed a method named "Sompi” to es-
timate the frequencies and decay rates of the free oscillation parameters which is
similar to an improved Prony’s method described by Price (1979). Lindberg & Park
(1987) estimated modal parameters using an extension of the nonparametric multiple
taper method of Thomson (1982).

1.4 STFT Method

Despite the many available methods of parameter estimation, the most common tech-
nique appears to have been the short time Fourier transform (STFT) method. This
method has been used by Alsop et al (1961) and Nowroozi (1968) during the ecarly
observations of normal modes. For good signal-to-noise ratio, this method works
well and was used by Dratler et al (1971) to discover high-Q overtone modes. Sailor
& Dziewonski (1978) measured Q's of many fundamental modes and overtones by
stacking and stripping World-Wide Standard Seismographic Network (WWSSN) data
and using STFT method. Kamal & Mansinha (1992) used STFT method to compute nor-
mal mode parameters from a recording of the Canadian superconducting gravimeter.

The short time Fourier transform (STFT) method consists of multiply-
ing the signal f(t) with a suitable window function w(t), centered around t = 0 and
of computing the Fourier coefficients of the product f£(t) w(t). The coefficients give
a value of the frequency content of the signal f(t) in the neighborhood of t = 0. This
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procedure is then repeated with translated window function, i.e., w(t) is replaced by
w(t + tg), w(t + 2¢tp),..., where tg is a suitably chosen time shift. This results in a

matrix of complex Fourier coefficients
Con = J' F(E)w(t + nto) emwst gy (1.3)
-

where m,n are integers. The matrix of corresponding amplitude values can be com-

puted from Cmn

Amn = JRe(Cmn)? + Im(Cmn)? (1.4)

For any m = k, the column vector Ay, will provide the temporal variation of the
corresponding frequency, kwo. This amplitude is assumed to decay exponentially

with time,
Ap = Age™ ot (1.5)
or In[A;] =In[Ap] - at

The latter is alinear relation in t and the slope of the best line fit to In[ A, ] or logarithm
of Agn would provide the value of «, thus of Q, of the kth mode [Figure 1.3). The
standard deviation of this line fit also indicates the error in the value of Q. The
frequency resolution (hence the error in frequency determination) is determined by
the length of the segment used for spectrum.

In analysing for normal modes, the first window w(t) is placed on the
seismogram well after the subsidence of any saturation, caused during the initial part
of the seismogram by the high amplitudes of early Rayleigh phases. Therefore, the
time series used for modal analysis do not include early body wave arrivals. The
function w(t) is tapered. Well excited normal modes appear as distinct peaks in the
amplitude spectrum.

14.1 Window length

The width of w(t), or segment length, is crii;cal. The smaller the segment, the more
local is the spectrum. The frequency resolution decreases with decreasing segment
length. The frequency resolution for 12 hour, 24 hour and 48 hour long segments
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log(Amplitude)

Time
Figure 1.3: Parameter determination by the Short Time Fourier Transform (STFT)

method. Amplitudes(A) of the modes are determined in successive windows, and
log(A) is plotted against time. The slope of the best line fit gives the quality factor(Q).
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are ~ 0.02 mHz, ~ 0.01 mHz and ~ 0.006 mHz, respectively. The fundamental
spheroidal multiplet peaks (from ¢S2 t0 9S40) are not only closely spaced (~ 0.1 mHz),
but also broadened through damping and through artifacts of processing, such as the
convolution of the Fourier transform of the window with the true spectrum of the time
series. Thus a higher frequency resolution (~ 0.01 mHz or better) than the average
frequency separation of the modes (~0.1 mHz) is necessary. Taking a large STFT
segment should achieve better resolution. One problem with taking larger segments
is the decay of the modes to below the background noise level. As the length of
segment is increased, the amplitudes of each multiplet drops and disappears into
the ambient seismic noise level. One cannot increase the segment length indefinitely.
Another problem is the occurrence of large aftershocks or earthquakes elsewhere.
Small aftershocks do not excite normal modes to detectable levels and do not pose
a problem. A large aftershock, or an earthquake elsewhere, places an upper limit to
the length of a *ime segment. The singlets in each normal mode multiplet are very
closely spaced (~ 3 to 0.01uHz), hence even higher frequency resolution is required
to observe splitting of the modes. Very large data segments (100 houiss to 3 years)
have to be used to get the required frequency resolution. This is not always possible
and in most cases the maximum segment length is governed by the background noise
level and the time of occurrence of other large earthquakes.

Dahlen (1982) stated that the minimum record length for measuring
frequencies and decay rates using a Hann window is 1.1QT and for determining am-
plitudes and phases is 0.5QT, where T is the period of the mode. If the average
value of Q is taken to be 275 and the average period of the modes to be 300 seconds,
then a record length of abont 23 hours would be sufficient for a good estimate of
the frequencies and the decay rates. In the present study, a Hann window is used to
determine the spectra with the STFT method.

1.4.2 Problems of STFT Method

Any seismogram can be modeled by a superposition of an appropriate number of
normal modes. The seismogram can be thought of as a sum of exponentially decaying

sinusoids (normal modes) and background seismic noise. The implicit assumption for
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the amplitude determination through the Fourier transform is that any function f(¢t)
can be decomposed into a set of time-invariant sinusoids. The recorded seismogram
is not time-invariant. The decay of normal modes (hence the seismogram) makes
it inevitable that the amplitude, frequency and phase determined through Fourier
transform will be incorrect. Figure 1.4 is a simple illustration of this effect.

Any s.andard spectral estimation technique requires apodization, i.e.,
applying a suitable taper to the data set prior to the transformation. This reduces the
spectral leakage from \he neighboring peaks in the frequency domain. Dahlen (1982)
compared the use of several windows to taper the data segment for determination
of free oscillation parameters. All tapers truncate the data set at both ends. If the
data set is time-invariant, tapering does not affect the data set adversely. But, in case
of the normal modes, most of the information is contained in the initial part of the
data set (where it has the maximum amplitude), which is truncated by the operation
of tapering. This results in loss of information at the ends of the data set, which in
turn will reflect ir. the amplitude determination. A diagram in Figure 1.5 explains this
effect.

Figures 1.6, 1.7 and 1.8 show an example of amplitude determination
through Fourier transform method. A synthetic data set consisting of 35 normal
mode frequencies is shown in Figure 1.6(a). All the modes in the data set have the
same initial amplitude [Figure 1.6(b)] but different quality factor Q's [Figure 1.6(c)].
Figures 1.7(a) and 1.7(b) show untapered (or Boxcar) and a Hann windowed spectra
of this time series respectively. It can be seen that the amplitude values for differ-
ent frequencies are different in the spectra even if all the modes have same #1itial
amplitude in the original data set. It appears from the spectrum that the amplitude
decreases as the frequency increases. It is also to be noted that the tapered spectrum
shows further decrease in the computed amplitudes. Figure 1.8 shows the error in
peak amplitudes when Hann window is used to compute the spectrum. In the case of
the data with added noise (real data), this decrease in amplitude will result in loss of
signal-to-noise ratio (if the background noise is considered to be time-invariant). As

a consequence, it will be difficult to identify the spectral peaks above the noise level.
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/Real Data Set

Fourier Method

Figure 1.4: The effect of fitting a nondecaying sinusoid to a decaying signal. The

amplitude of the corresponding frequency is not the true initial amplitude.
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Window

Figure 1.5: The effect of tapering on amplitude determination. Any taper truncates
the ends of the data set, resulting in a severe loss of information (normal modes have
important information at the front end).
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Figure 1.6: (a) A time series with 35 normal modes with equal initial amplitude. (b)

the true initial amplitude values, and (c) the Q values for different frequencies.
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Figure 1.7: (a) The amplitude values for different frequencies differ from each otherin

untapered (Boxcar) spectrum. (b) Tapering of the data set with Hann window further
reduces the amplitudes.
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Figure 1.8: The error in peak amplitudes for different frequencies using Hann window.




1.5 Revival of an old method

To avoid the difficulties associated with the STFT method and to provide accurate
values of the normal mode parameters, we investigate here the possibility of comput-
ing the parameters through a non-linear least-squares fitting of a set of functions to
seismic time series. Each normal mode is associated with four parameters, namely,
initial amplitude, initial phase, frequency and the quality factor which controls the
decay of the mode. For each mode, we define an initial wavelet, a decaying sinusoid
with best guess values of these parameters. A model is then fitted to the data set
such that the difference between the model and the observations is minimized.

The method has one advantage over STFT method in that it requires
much less data length to determine the modal parameters. With the STFT method, one
has to consider several time windows, separated in time, utilising a much larger data
set to determine Q. Also, the frequency values obtained from the STFT method are
accurate only to the closest Fourier frequency. Since there is an inherent error in the
amplitudes from the STFT method, the true initial amplitude of the modes cannot
be determined from this method reliably. Our method of modeling of the normal
modes removes many of these shortcomings of the STFT method and provides direct

determination of the modal parameters.




Chapter 2

Modal Fitting (Inversion)

o' yewpuétpnrtog undeic et'citw.*

- Inscription on Plato’s door.

This method is basically a least-squares fit of a model of normal modes
to the observed data set. Iterative adjustments in the parameters of the modes are
made to minimize the discrepancy between the mudel response and the observations.
This is a three step procedure:

e Define a gond starting model closely representing the currently known normal

mode parameters.

¢ Define a merit function, the criterion for discrepancy between the model re-
sponse and the observed response.

e Search for the absolute minimum value of the merit function by successive ad-

justments in the parameters of the model function.

The set of parameters that minimizes the discrepancy between the model response
and the observations is the best determined set of the modal parameters.

*Let no one enter my door, who is ignorant of geometry (mathematics).

20
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2.1 The Model

Any observed seismogram can be modeled as the superposition of an infinite set of
modes and any free oscillation mode can be represented as an exponentially decaying

sinusoid. For a given source-receiver geometry, the amplitude response due to the
kth mode at time ¢, Ax(t), can be written as

_w 4
Ak (t) = Ax(0) cos(wit + Pyle . (2.1)

where Ag(0) is the initial amplitude at time t = 0. wy, ¢r and Qg are frequency,
initial phase and the quality factor, respectively, for the kth mode. One can model
the observed seismogram as a function of modal parameters and time

N wyt
S&it) = Z Ajcos(w;t + ¢t)e'7‘t (2.2)
i=1

where N is the number of modes (wavelets) to satisfactorily model the seismogram,
and each &; represents four parameters corresponding to the mode. The number

of parameters in this model will therefore be 4N. For the discrete case, the model

function can be written as
S ot
FEt) =Y Acos(wity +dle & j=1...M (2.3)
i=1

S (& ty) in this equation is the model function or the objective function. In this case,
the model consists of the 4N parameters and the model response is the seismogram
constructed with (2.2).

2.2 The Merit Function

The merit function is a measure of departure of the model response from a perfect fit
to the observed data. It can be defined as the sum of differences between the model
response and the observed data, y,p; at all sample points, M. Therefore, the merit
function x can be written as

M N
X=Y {ym(t,) -3 fE, t,)} (2.4)
J=t i=1
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This form of the merit function might result in cancellation of the positive and neg-
ative errors at different points and may produce a small value of x, even if there is a
large discrepancy between the two. This is not a desirable property, hence we chose
a merit function, which is a sum of the squares of the difference (error) between the

two responses at all points of observation

M N 2
xX2=) {yobs(tj) - > f(&, tj)} (2.5)

J=1 {=1

Our goal is to achieve the global minimum of the merit function x? by adjusting the
parameter set &;.

2.3 Minimization

At every minimum, the derivative with respect to each §; of the merit function should

vanish, i.e.
2
n_2 5 -
aE‘ El j§ {yabs(t_,) ‘:Zl f(Eil tj) o (2-6)
M 4N 2
or Y [J’ob:(tj) -2 f&, tj)] Ef(ft.tj) =0 (2.7)
j=1 t=1 t

Taking partial derivatives with respect to each of the parameters §;,i = 1...4N, will
yield 4N coupled equations in 4N unknown parameters &;.

Since f (i, t;) is not a linear function of the parameters &, these 4N
equations will not be linear in parameters. This system of equations cannot be solved
analytically, so we have to consider methods of iterative approximations. The 4N
dimensional parameter space has to be searched for the global minimum of x2. Under
certain restrictive assumptions, the fur.ction x? can be approximated analytically by

a suitable function to locate the minimum.

2.3.1 Grid Search Method

This is a very simple and intuitive method and can be applied to almost any prob-
lem when the number of parameters to be searched is small and all the parameters




&'s are independent of each other (Bevington, 1969). The lowest value of the merit

function x2 is found by minimising it with respect to each parameter independently.
Iterative local minimization of x2 for each parameter in succession leads to locating
the absolute minimum. The basic procedure is as follows.

First, a physically permissible range of each parameter §; is divided
into p equal intervals AE;, so that the 4N parameter space is divided into [T, p:
hypercubes. A corner of one of the hypercubes is chosen as the starting guess values
of parameters £'s and value of x? is computed at this grid point. Then, one parameter
Ex is incremented by a quantity +AEg. The sign of Ay is chosen such that the value of
x? decreases. This parameter is incremented until x2 stops decreasing. This indicates
that the search has encountered a local minimum. The last three values of & and x?
are then used to determine true local minimum. It can be assumed that the variation
of x° near the minimum can be approximated by a parabolic function of the parameter
Ex. If the last three values of & are £ (1), Ex(2) and Ex(3) where

x2(3) > x2(2) < x2(1)

then the minimum of the parabola is given by the following (Bevington, 1969)

in) = - X2 (3) - X2(2) 1 '
Ex(min) = Ex(3) Afk[,‘z(:;)—2)(1'(2)+x2(1)Jrz] “

This is a local minimum in x2? with respect to each parameter & [Figure 2.1). In the
same manner, x? is minimized for each parameter in turn. This procedure is repeated
until x? shows a negligible decrease (one can define the desired accuracy here).

The procedure is definitely very easy to implement, but only valid when
the par: neters are mutually independent. If this condition is not met, the conver-
gence to the minimum is very slow. The method is good only for a moderate number
of parameters. As the number of parameters increases, the method becomes much
more complex and time consuming. In case of normal mode parameters, each mode
is associated with four parameters. For a moderate earthquake (Ms 2 6.5), the spec-
trum of the observed seismogram will show 3u to 40 spectral peaks on the average.
Therefore, the number of parameters will generally be very large (> 100). Due to the

large number of parameters, this method is not suitable for the present study.
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N——)

Figure 2.1: Approximation of the merit function x2 near a local minimum with respect

to the parameter ;.




2.3.2 Gradient Search Method

A more direct method of approaching the absolute minimum of the merit function x2
is the gradient search method. The method was originally proposed by Cauchy (1848)
for the solution of a system of nonlinear equations. In this method, all the parameters
& are adjusted simultaneously, with the relative magnitudes chosen such that the
resultant direction of travel in parameter space is along the direction of maximum
variation (the gradient) of x2. The gradient vector Vx2 has components in parameter
space equul to the rate of change of x? along each axis.
4N
ox? -
Ux? = =
X ‘=Zl [ 2E; Et]
where f; is a directional unit vector of the §; coordinate axis. The partial derivatives

with respect to parameters §; can be numerically estimated as

2y _ ox% _ X*(Ei+ sAE) - x* (80
(Vx )‘a 9% SAE;

where s is a fraction of the step size AE; to estimate the derivative by the forward

(2.9)

difference scheme (other difference schemes may also be utilised). Usually, dimen-
sions of various parameters are different, so the components of the gradient Vx2 do
not have the same dimensions either. The step sizes AE;’s can be used as a scaling

constant to define dimensionless parameters n; where

&
n= AE;

The derivatives with respect to n; will then be
ox? ox?
£ = L AE,
cny 0% &

It can numerically be estimated as
ox? _ X(E+sAE) - x*(Ei)
ong sAE

X2 (B¢ + sAE() - x%(&:)
s

A%, (2.10)

A dimensionless gradient y, with unit magnitude, may then be defined as
_ox%1ene

(%)

‘.
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The gradient search method follows the direction of steepest descent, which is the di-
rection upposite to the gradient y. All the parameters are incremented by an amount

0%, with magnitude equal to the size constant AE; in direction opposite to the gradient

Yi
- (%) a2t
=i {(%) aed

The minus sign ensures the decrease in x2. A search is carried out in the direction of

0% = -yiA% =

the gradient, calculating the values of x? at each step until x2 increases again (Powell,
1975). The gradient is computed again at this point and the sea: ch for the absolute
minimum is continued in a new direction of gradient, until the absolute minimum is
found.

This method becomes less efficient as the search approaches a mini-
mum because the gradient changes only slightly near a minimum and the computation
of derivatives in equation(2.10) requires taking differences between nearly equal num-
bers. At the minimum, this difference should be zero. Therefore, alternate methods

are suggested in the regions close to the minimum.

2.3.3 Fuuction Linearisation

One of the alternate methods to determine step size AE; is through analytical approx-
imation of the fitting function (the model function), proposed by Hartley (1961). The
model function f(%;,¢t) can be expanded in parameters ¥; and the parameter incre-
ments A¥; can be estimated using the method of linear least-squares. If the starting
guess values for §; are very close to a minimum, then the higher order terms in the
Taylor series expansion of f(&;,t) can be neglected. This expansion about the point
E; can be written as

4N '
FED = FED+S [Qf—‘a%‘—’aa] 2.11)
=]

where 8%; = & - E{ and f(§;,t) is the model response with parameters §;. This
equation is linear in the parameter increments §%; and can be solved by using the

method of linear least-squares. The merit function x? can be written as a funcuon of




parameter increments 6&;

M 2
X% = Z {)’obs(tj) - f(E.t) ~- Z [af(agé'tj)ﬁ‘g' ]} (2.12)
j=1 =1

Minimising the x2 with respect to ¥; requires that derivatives X2 /0S¥ are zero.

M
22 ({y""’(‘j)—f(EE-tJ) Z aﬂg"tﬂ‘ﬁ]}zﬂaié'tﬁ) 0 (213)
j=1

This results in a set of 4N simultaneous linear equations in 5§;, which can be written
as

Bk - 26§iaua0. k=1...4N (2.14)
i=]1
° Wt
where B; = Z [yob,(t,) -f(Et.t,)] f(g‘ ) (2.15)
- _zm
2 2%
M 2
X5 = 3 [Yobsts,s - fELL] (2.16)
J=1
S [af (B, t)) 0f (Ei.t))
d 0ty 2 (B ] 17
an Nk j; [ aEi aEk (2 17)
This reduces to a matrix equation
B = 6F -« (2.18)
5 = B-a’! (2.19)

B and 8§ are row vectors and « is a symmetric matrix of order 4N. The matrix « also
measures the curvature of the x? hypersurface.

This method is very accurate and precise if the initial guess values are
close to a minimum. If the starting values are far away, then the approximation of

the x? hypersurface is not valid and the result will be erroneous.

2.3.4 Marquardt Method

As we noted in section 2.3.2, the gradient search method is good for locating the
minimum when the starting guess values are far from the minimum but the method
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becomes inefficient near the minimum. On the other hand, the Taylor expansion
(section 2.3.3) does not provide good results far from the minimum, but is efficient
near the minimum. What we need is a combination of the above two methods, which
can switch from one approach to the other, depending or. the initial value (whether
it is far from or near the minimum).

Marquardt (1963) proposed such an algorithm, combining the best of
both the methods. A factor (1 +A) is introduced in the diagonal terms of the curvature
matrix a. The Marquardt factor controls the interpolation of the algorithm between
the two methods.

Combining the Marquardt factor, equation (2.18) can be written as

-B. = 6§ . _g’
ok(l +A) fori=k
where s =4 “EI A (2.20)
ok fori=k

when A is very small, these equations behave as the equation (2.18), which were devel-
oped using the linearisation of the model function f(¥;,t;). As A becomes very large,
the diagonal terms of the matrix « are large compared to the off-diagonal terms and

the matrix equations degenerate into 4N separate equations
Bi=Ad0%i (2.21)

which gives the parameter increment vector 6% in the direction same as the vector
B (or opposite to the gradient of x2). The parameter increment vector 6% can be
obtained by matrix inversion

SE=Ba! (2.22)

-

For a given initial guess value for the parameter §, following recipe has been proposed
by Marquardt (1963):

1. Compute x2(E),
2. Choose a small value of A, say 0.001,

3. Solve for 8¢ and evaluate x?( + 6§),




4. If x*(E + 88 = x2(¥), increase A by a suitable factor and repeat step 3.

5. If x2(€ + 8E) < x?(¥), decrease A by the factor, update the trial solution
E — &+ 4E, and go back to step 3.

A condition for convergence is also needed to stop the iterations. One can put a
lower bound on the change in the value of x? as a convergence condition. Once an
acceptable minimum is found, A is set to zero and the matrix ™! is computed, which
is the estimated covariance matrix of the errors in the fitted parameters E.

The Marquardt’s method is used on a number of synthetic data sets
(with and without noise) and areal data set acquired on the Canadian superconducting

gravimeter. The results from these data sets are discussed in next chapter.



Chapter 3

Application of the Method

Muss es sein? Es muss sein.*

Ludwig Van Beethoven, Epigraph to String Quartet in F Magjor, Opus 135

Modal fitting was applied to invert synthetic as well as real seismic data

sets to compute normal mode parameters.

3.1 Synthetic Data

Four different synthetic time series were generated at 10 second sampling interval

using the following components:

Series L. Four different periods corresponding to 0513, 0519, 0526, and 0532 (Table 3.1).
The values of Q for these modes are taken from Sailor & Dziewonski (1978).
These modes were assigned different amplitudes, based on the relative ampli-
tude values in the spectrum of the record of the Minahasa Peninsula earthquake
of April 18, 1990. All frequencies were assigned zero phase.

Series II. Two periods and Q corresponding to 0513 and 0S¢, each consists of two
singlets about 0.5 seconds apart (Table 3.2). The value of Q for each singlet

*Must it be? It must be.
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was perturbed from that of the corresponding multiplet in Series 1. The STFT
method requires several segments of this time series, 120 hours (5 days) coch,
to determine the parameters of all the singlets (section 1.4.1).

Series IIl. Only one spheroidal mode oS)9 with four closely spaced singlets about .04
to 0.3 seconds apart (Table 3.3). The Q values are perturbed from that of 4S9
in Series L. This time series requires at least 840 hours (35 days) of data to be
analysed in order to resolve all the singlets. Such a long series cannot be used

for real seismic data because of the decay of the modes (section 1.4.1).

Series IV. 35 spheroidal modes in the period range of 150 seconds to 600 seconds
(0S7 0 0S43). This seismogram and its spectrum are shown in Figure 3.1. These
modes are among the most commonly excited normal modes observed on a
long period vertical seismometer after large earthquakes. The frequencies and
the Q values of these modes were perturbed from the values observed for the
Minahasa Peninsula earthquake of April 18, 1990 (Kamal & Mansinha, 1992).

To obtain the free oscillation parameters from the data set, we start
with an initial guess model

A = 10
¢ = 00 i=1...N 3.1)
Q. = 1000

where N is the number of modes that we fit to the given time series. The initial
values for the frequencies w; are set in the following manner. An FFT routine FOURG
(Childers & Durling, 1975) is used to compute amplitude spectra of these synthetic
series. Prior to computing the Fourier transform, a Hann window is used to taper
the time series. All the frequency peaks (these peaks will be at the nearest Fourier
component to the true frequency) above the noise level are identified in the spectra
and are considered as the starting guess values [Figure 3.1(b)]. With this set of starting
values for the parameters, the search for the minimum of the merit function x? is
carried out.

Physically impossible results are occasionally encountered during the
search for the minimium. Therefore, it is necessary that some limits be imposed on
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Figure 3.1: (a) A 24 hour long noise free synthetic record of 35 fundamental spheroidal

modes (Series IV). (b) Spectrum of the above record using a Hann window.
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the allowable range of the parameters:

e Amplitudes A; > 0.

o Each frequency wy is allowed to vary only between the two adjacent starting
values of the frequencies, w;-; and wy,,. If three consecutive modes in the
starting model have frequencies w), w2 and w3, then the value of w> in the

solution is allowed to vary between w; and w3 only.
w) < W2 S w3
o Phase -mr < ¢p; < .

¢ A negative quality factor corresponds to a exponentially increasing mode, which
is not physically possible. Also, normal modes are known to be moderately
decaying phenomena, therefore a very high Q value, which implies an almost

nondecaying signal, is discarded as the background noise.

0 <Q; <10000

These conditions are implemented in the computer routine used for the purpose.

Kamal & Mansinha (1992) used STFT method to compute the modal pa-
rameters, therefore their frequency values will only be accurate to the nearest Fourier
frequencies determined by the time length of the window. To check the validity of the
inversion method for non-Fourier frequencies, we perturbed the frequencies of the
modes (within the adjacent Fourier frequencies for a given length of the time series)
from those computed by Kamal & Mansinha (1992) in Series IV.

Modal fitting is used to compute the modal parameters from the first
few hours of data. The results are compared with those obtained using STFT method.
For the STFT method, a 24 hour Hann window is used to compute the spectra in
succession, each separated by 4 hours in time (At least 6 such segments are needed
to determine Q values). The modal fitting requires only 6 hours of data to determine
the modal parameters from the noise free data set. Tables 3.1, 3.2, 3.3 and 3.4 show

the computed modal parameters using the modal fitting and those obtained with the
STFT method.



oSn Period (seconds) Q

True | STFT |Modal Fit| True| STFT | Modal Fit
13 [473.55|474.73| 473.55 | 276 | 275.32| 275.99
19 | 360.21 | 360.00| 360.21 | 168 | 168.10| 168.00
26 [ 289.78|289.93| 289.78 | 165 | 164.92| 164.99
32 | 250.46 25043 | 25046 { 150 | 150.01| 150.00

consisting of a single peak each (Series I).

Table 3.1: The periods and Q determined for four synthetic spheroidal modes each

oSn Period (seconds) Q
True | STFT |Modal Fit | True| STFT | Modal Fit
13 |473.55{474.73| 473.55 | 276 | 244.16| 275.72
473.04 473.04 | 270 269.64
26 | 290.02 [ 289.93| 290.02 | 170 | 158.23| 169.97
289.78 289.78 | 165 164.95

Table 3.2: The periods and Q determined for two synthetic spheroidal modes each

consisting of two singlets (Series II).

oSn Period (seconds) Q
True | STFT |Modal Fit| True| STFT |Modal Fit
19 | 360.36 | 360.00| 360.38 | 180 | 156.72| 182.35
360.21 360.24 | 168 156.96
360.17 360.17 | 170 190.13
359.84 359.87 | 160 161.29

Table 3.3: The periods and Q determined for a single synthetic spheroidal mode

consisting of four singlets of different frequency and Q (Series Ili).
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L Period (seconds) Initial Amplitude Q

True | STFT [Modal Fit| True [STFT | Modal Fit| True | STET | Modal Fit
579.801 579.86] 579.80 |1.140 1.140 [276.00]275.97 [ 276.00
533.30} 533.33| 533.30 |1.402 1.402 |247.00|246.98]| 247.00
502.30| 502.32{ 502.30 |1.060 1.060 |227.00{226.98]| 227.00
472.10|472.13| 472.10 | 1.620 1.620 |195.00]/194.98] 195.00
447.60|447.66| 447.60 |1.490 1.490 |168.00]167.98{ 168.00
425.60 | 425.61 | 425.60 |1.145| N 1.145 |210.00]209.99] 210.00
405.60 | 405.63 | 405.60 |1.620| o 1.620 |222.00}221.96| 222.00
389.10( 389.18| 389.10 |1.003 1.093 |200.00}199.92| 200.00
360.00 | 360.00| 360.00 |1.440 1.440 {198.00}197.96| 198.00
346.90 | 346.98| 346.90 |[1.264 1.264 {176.00|175.83| 176.00
334.80| 334.88| 334.80 | 1.085 1.085 |[168.00]|167.99| 168.00
324.80)324.81| 324.80 [1.113]| E 1.113 |276.00|275.93} 276.00
315.30} 315.32| 31530 [1.753]| s 1.753 |247.00|246.93| 247.00
305.30} 305.30| 305.30 |1.122] t 1.122 |227.00|226.88| 227.00
296.90| 2906.90| 296.90 |1.533| i 1.533 |253.00|252.94] 253.00
288.90288.96| 288.90 |1.194| m 1.194 |195.00/194.73! 195.00
282.30| 283.27| 282.30 |[1.111]| a 1.111 |168.00|166.90]| 168.00
275.10|275.15{ 275.10 |1.101| t 1.101 |210.00]209.93| 210.00
268.30|268.32| 268.30 |1.474] e 1.474 |[222.00]221.96| 222.00
261.80| 261.81| 261.80 |1.571 1.571 |[200.00]200.01| 200.00
249.70|249.71| 249.70 |1.105 1.105 [198.00{197.70| 198.00
244.70| 244.75| 244.70 |1.090 1.090 |176.00]|175.51| 176.00
239.30(239.33| 239.30 |1.824 1.824 |168.00|168.23| 168.00
234.10| 234.14| 234.10 |1.772 1.772 |276.00|275.81| 276.00
229.10| 229.17| 229.10 |1.224 1.224 |247.00|246.51| 247.00
225.00| 224.41| 225.00 |1.172 1.172 [227.00|227.46| 227.00
220.40| 220.40| 220.40 |1.203 1.203 |253.00(252.85{ 253.00
216.00| 216.54| 216.00 |1.476 1.476 |195.00|194.80| 195.00
211.70| 211.76 | 211.70 |1.364 1.364 |168.00(168.13] 1G8.00
207.60| 207.69| 207.60 |1.140 1.140 1210.00|209.77] 210.00
200.40] 200.46| 200.40 |1.402 1.402 |{222.00]221.90{ 222.00
194.20| 194.59| 194.20 |1.419 1.419 |198.00|197.63| 198.00
187.00}| 187.01| 187.00 |1.620 1.620 |176.00]175.98| 176.00
180.70] 180.75| 180.70 |1.145 1.145 |276.00|275.88| 276.00
175.20(174.25]| 175.20 |1.620 1.620 |247.00|246.90| 246.99

Table 3.4: The parameters (period, initial amplitude and quality factor) of the normal

modes used in the synthetic data set (Series IV).
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In the absence of background noise, both methods provide good and
similar Q values for the modes well separated in frequency [Figure 3.2]. The analy-
sis of multiplets is difficult with STFT method as one requires longer time series to
achieve a good resolution for closely spaced singlets. Tables 3.2 and 3.3 show that
the STFT method provides average values of the parameters of various multiplets,
whereas modal fitting gives parameters for all the singlets separately and accurately.
True initial amplitudes cannot be obtained from the STFT method (because these are
decaying sinusoids), but modal fitting provides initial amplitudes also. The frequency
values from the STFT method are only good up to the nearest Fourier frequency.
However, modal fitting gives value closer to the true frequency present in the data.
Figure 3.2 compares the Q values obtained by both methods.

3.2 Synthetic data with Noise

Seismic time series always contain background noise. Therefore, the modal fitting
was tested on more realistic data sets. These data sets are formed by adding variable
noise to the synthetic data set shown in Figure 3.1 (Series IV). The noise series were
generated using the rou-ine gasdev (Press ¢t al, 1992). The Fourier amplitude spectra
of these time series were determined using the Hann window. Three such series with
their respective amplitude spectra are shown in Figures 3.3, 3.4 and 3.5. The average
noise level is different in these series. The signal-to-noise ratio, defined as the ratio
of peak amplitude to the average noise level in the near vicinity of the peak, varies
from ~ 30 (for lower frequencies) to ~ 1.3 (for higher frequencies).

The parameter values from these noisy data sets provide very exciting
results. Tables 3.5 to 3.10 show modal parameters obtained with the STFT method
and those by modal fitting. The Tables 3.6, 3.8 and 3.10 also show the estimated
errors in Q values obtained using both methods. In STFT method, the error in Q is
the standard deviation of the best line fit in equation(1.5). For modal fitting, the error
is computed from the inverse of the curvature matrix « in equation(2.22). Note that
the errors in Q determined by modal fitting are in a reasonable range (~10%). On the
other hand, for low S/N ratios, the error in Q determined with STFT method are very
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Figure 3.2: Comparison of the Q values in noise free data set using modal fitting and
STFT method. The modal fitting method and the STFT method provide similar results
with noisefree data.
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Figure 3.3: (a) A 24 hour long synthetic record of 35 spheroidal modes with added
gaussian random noise. (b) Spectrum of the above record using a Hann window.
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Figure 3.4: (a) A 24 hour long synthetic record of 35 spheroidal modes with added
gaussian random noise. Noise magnitude is more than that of Figure 3.3. (b) Spectrum

of the above record using a Hann window.
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Figure 3.5: (a) A 24 hour long synthetic record of 35 spheroidal modes with added
gaussian random noise. Noise magnitude is more than those of Figures 3.3 and 3.4.

(b) Spectrum of the above record using a Hann window.



high and unacceptable.

The most astonishing results are the values of the quality factors Q {or
low signal-to-noise ratio (S/N). Figures 3.6, 3.7 and 3.8 show that for low frequencies
(where S/N ratio is generally higher), the Q values from both the methods are close
to the true values, which is expected. As the S/N ratio drops, the inaccuracy in STFT
method increases severely (note the difference in parameters determined by STFT
towards the higher frequencies). However, the modal fitting still provides reliable and
accurate Q values even for the modes which are hardly detectable in the spectrum.
In addition, modal fitting also gives the initial amplitude values corresponding to the
modes, which is very useful for the source moment tensor studies (Gilbert, 1973). The

values of the normal mode parameters for the noisy data set indicates the superiority
of the modal fitting over the STFT method.

3.3 Application to Real Data

The Minahasa Peninsula earthquake occurred on April 18, 1990 (Mg = 7.4) at 1.186°N,
122.857°E. This event was recorded on the Canadian superconducting gravimeter
(SG) installed at Cantley, Quebec, Canada. This earthquake was not preceded or fol-
lowed by any large earthquakes within 7 days of its occurrence. Therefore, we have
a very clean record of this earthquake, well suited for the normal mode study. A
24 hour time series was chosen well after the subsidence of high amplitude surface
waves (3 hours after the first P phase). This segment is then tapered using a Hann
window of 24 hour length and the spectrum is calculated using FOURG (Childers &
Durling, 1975). The periods of the multiplets (they are not split in 24 hour spectrum)
are read from this spectrum. The modes were identified using the periods earlier ob-
served by Sailor & Dziewonski (1978) and Masters & Gilbert (1983). Figure 3.9 shows

a 24 hour recording of this earthquake and the corresponding amplitude spectrum.

Filtering. Prior to modal fitting, a bandpass filter is applied to remove (i) the tides and
(ii) the periods below 100 seconds, to permit resampling. A 8% order Chebyshev
filter is used. The Frequency response of this filter is shown in Figure 3.10,
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[S/N Perlod (seconds) Phase (radlans) [ Initial Amplitude
True | S1FT | Modal Fit | True [ Modal Fit | True | Modal Fit
28.2|579.80579.86| 579.78 |0.00] 0.000 |[1.1a0| 1.1420
20.11533.301533.33| 533.29 |0.00! -0.006 }1.402| 1.4000
20.4|502.30{502.32| 50232 |0.00| 0.022 |1.060| 1.0738
16.2]472.10(472.13| 472.12 {0.00] 0.014 |1.620{ 1.6034
11.0|447.60{447.66| 447.60 |0.00{ -0.011 }|1.490| 1.4992
17.9|425.601425.61| 425.59 |0.00| -0.006 |1.145| 1.1562
13.2|405.60 [ 405.63| 405.62 |0.00] 0.008 |1.620| 1.6127
12.5]389.101389.18| 389.0> [ 0.00| -0.026 |1.093 1.0861
10.4 | 360.00 | 360.00| 359.99 |0.00| -0.000 |1.440| 1.4529
9.3 | 346.90 | 346.98| 346.89 | 0.00| -0.006 [1.264] 1.2571
8.4 |334.80|334.88| 33481 [0.00| 0021 {1.085| 1.1098
13.3]1324.801324.81] 324.81 |0.00} 0.004 1.113| 1.1193
14.7| 315.301315.32| 31531 |0.00| 0.007 |1.753] 1.7396
10.8] 305.30{305.30| 305.28 {0.00| -0.031 [1.122]| 1.1236
10.3| 296.90 | 296.90| 296.90 |0.00| 0.001 [1.533| 1.5325
74 |1288.90|288.96] 288.87 |0.00] -0.009 |1.194| 1.2218
4.4 | 282.30/283.27| 28233 [0.00| 0.025 |1.i11]| 1.1246
7.3 1275.10|275.15| 27509 |0.00]| 0.000 |1.101| 1.1146
7.9 | 268.30|268.32| 268.29 |0.00| 0.007 |1.474] 1.4749
7.0 {261.80]261.81| 261.81 |0.00| 0.015 {1.571] 1.5607
6.4 | 249.70|249.71| 249.70 |0.00| -0.011 [1.105| 1.0992
3.2 | 244.70| 244.75| 244.69 |0.00| -0.015 |1.000] 1.1331
4.7 1239.301239.337 239.32 | 0.00 0.024 1.824| 1.8469
9.5 | 234.10|234.14| 234.10 |0.00]| 0.019 |1.772]| 1.7656
5.4 1229.10]229.17| 229.09 |[0.00] -0.002 |1.224]| 1.2478
4.6 | 225.001 22441 22501 | 0.00]| 0.018 1.172{ 1.1793
7.7 | 220,40 220.40| 220.41 |0.00| 0.020 |(1.203| 1.2272
5.3 | 216.00|216.54| 216.01 |0.00] 0.016 |1.476| 1.4986
3.8 |211.70]211.76| 211.71 |0.00| 0.019 1.364§ 1.3273
4.3 | 207.60]207.69| 207.60 |0.00| -0.010 |1.140| 1.1465
5.4 | 200.401 200.46| 200.41 | 0.00 0.013 1.402| 1.3562
1.7 1194.20]1194.59| 19422 |0.00| -3.112 [1.419| 1.4142
5.1 |187.00|187.01| 18699 [0.00] -0.004 |1.620| 1.6234
8.2 1180.701180.75| 180.70 | 0.00 0.012 1.145] 1.1648
6.2 [175.20]174.25] 175.20 (0.00] -0.004 |1.620] 1.6316

Table 3.5: Parameter values of the noisy synthetic data set (shown in Figure 3.3)
obtained by modal fitting and STFT method.
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Q
S/N | True STFT Modal Fit

Value | Error | Value | Error
28.2[276.00[270.11| 0.02 |276.8424.71 |
20.1{247.00|242.96| 4.22 | 251.28|17.42
20.4|227.00|234.11|18.83 | 222.25| 19.60
16.2|195.00]195.42| 0.83 | 195.14|11.47
11.0/168.00]167.09] 1.85 | 167.37|10.80
17.91210.00|212.59} 0.11 |203.84|17.09
13.2(222.00]215.92| 1.47 |224.66|13.02
12.5}200.00| 195.50| 7.99 | 203.41}17.26
10.4 | 198.00| 201.34| 9.84 | 195.91 | 13.03
9.3 |176.00|162.97|10.58| 180.01 | 14.53
8.4 |168.00]172.10| 2.31 | 162.27]16.04
13.3|276.00|274.47 | 15.67 | 273.59 | 24.15
14.7|247.00]248.97 | 9.57 | 248.28|13.91
10.8]227.00|237.67| 7.31 | 225.62]20.10
10.3 | 253.00 | 246.01 | 2.60 | 250.87| 16.43
7.4 1195.00|192.83| 0.70 |188.42|17.57
4.4 |168.00/193.52| 7.54 |162.72|18.10
7.3 1210.00|208.79| 3.11 | 205.79| 20.55
7.9 | 222.00212.69| 1.30 | 222.98]16.26
7.0 | 200.00} 206.33| 12.81 | 200.49 | 14.13
6.4 |198.00! 180.83 | 25.38 | 204.04 | 21.39
3.2 {176.00|208.51|31.00|170.93 | 20.15
4.7 1168.00{177.19}25.37|166.72 | 12.14
9.5 | 276.00| 266.72| 6.70 | 276.92 | 16.63
5.4 |247.00|245.32|28.80 | 243.09 | 22.01
4.6 |227.00|204.00]12.95 | 223.74 | 22.88
7.7 1253.00}290.11]52.58 | 241.25| 23.27
5.3 [195.00]179.69]10.62 | 190.63 | 17.00
3.8 | 168.00|213.09|50.70|171.09 | 18.44
4.3 1210.00|213.96| 10.30| 206.09 | 22.56
5.4 |222.00]239.70|17.68231.71|19.21
1.7 |198.00278.61|164.4]197.29]17.13
5.1 |176.00|209.03]32.80]|177.07| 14.27
8.2 | 276.00|280.07(10.91]272.04|16.97
6.2 | 247.00|330.55| 143.4 | 243.89]| 25.07

Table 3.6: Values of Q and associater errors determined by modal fitting and STFT
method for the data set shown in Figure 3.3.




[S/N|  Period (seconds) Phase (radians) [ Initial Amplitude
True | STFT | Modal Fit | True | Modal Fit | True | Modal Fit
154 (579.80|579.86| 579.77 |0.00| -0.005 [1.140| 1.1629
10.1|533.30|533.33] 533.26 |0.00| -0.025 |1.402| 1.4182
14.2 | 502.30 | 502.32| 50243 [0.00| 0.075 |1.060} 1.1196
11.6472.10/472.13| 472.14 |0.00| 0.051 }1.620]| 1.5653
5.3 |447.60|447.66| 447.54 | 0.00{ -0.041 |1.490| 1.5191
11.0] 425.60 | 425.61 | 425.56 |0.00| -0.021 |1.145| 1.1764
7.1 | 405.60]1405.63| 40564 |0.00| 0.031 |1.620]| 1.6243
6.2 {389.10]389.18| 388.93 [{0.00| -0.089 }[1.093| 1.1073
5.9 | 360.00360.00( 359.98 |0.00| -0.006 {1.440| 1.5098
5.4 [346.90346.98| 346.85 [ 0.00! -0.025 |1.264 1.2741
5.1 {334.80]334.88| 334.82 | 0.00 0.073 1.085 1.1855
6.5 | 324.80(324.81| 324.81 {0.00]| 0.018 |1l.113| 1.1452
10.3|315.30| 315.32{ 315.33 [{0.00{ 0.031 [1.753| 1.7405
6.4 | 305.30]305.30| 305.20 [0.00} -0.101 |1.122{ 1.1622
5.5 1296.90|296.90| 29690 {0.00f 0.005 [1.533] 1.5742
6.4 | 288.90|288.96| 288.82 [ 0.00]| -0.034 |1.194| 1.3447
3.3 | 282.30283.27| 28243 [(0.00{ 0.105 |[1.111] 1.1890
3.0 |275.10{275.15| 27508 [0.00| 0.021 [1.101}| 1.1785
4.2 | 268.30|268.32| 268.28 | 0.00 0.044 1.474 1.5156
4.3 |261.80|261.81| 261.83 |0.00| 0.076 |1.571| 1.5742
3.5 [ 249.701249.71| 249.70 | 0.00| -0.039 |1.105| 1.1488
2.1 1244.70 | 244.75| 244.70 | 0.00| -0.001 }1.090| 1.3427
2.7 1239.30{239.33( 239.41 [0.00] 0.129 |1.824| 1.9625
6.9 | 234.10]234.14| 234.12 | 0.00| 0.095 |1.772| 1.8161
3.0 1229.10]229.17] 229.12 |0.00] 0.039 |1.224| 1.3863
3.6 [225.00}224.41| 225.07 |0.00| 0.143 |1.172| 1.2384
5.9 [220.40[220.40| 22047 | 0.00} 0.154 |1.203] 1.3235
3.6 {216.00|216.54| 216.08 |[0.00| 0.171 [1.476} 1.6193
2.2 1211.70|211.76| 211.84 |0.00| 0.267 |[1.364| 1.2340
2.3 |207.60}207.69| 207.67 |0.00| 0.128 [1.140| 1.0273
3.8 | 200.40|200.46| 200.53 {0.00; 0330 |1.402| 1.1810
3.7 | 187.00!1187.01| 186.84 |0.00| -0.279 }1.620| 1.6488
74 [180.70[180.75| 180.64 |0.00| -0.013 }1.145| 1.2756
3.8 1175.20}174.25| 175.20 |0.00| -0.143 }1.620| 1.6898

44

Table 3.7: Parameter values of the noisy synthetic data set (Figure 3.4) obtained by
modal fitting and STFT method. The S/N ratio is lower than in Table 3.5.
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Q
S/N | True STFT Modal Fit |

_ Value | Error | Value | Error
15.41276.00|266.31| 7.38 |264.94[23.25
10.1}247.00|236.19! 9.61 |250.93|17.44
14.21227.001260.80} 81.16 | 207.04|17.42
11.6{195.00{19791} 1.62 [195.19]11.71
5.3 |168.00]168.44| 6.76 |168.67]10.63
11.01210.00|221.17} 3.11 |197.10|15.92
7.1 |222.00]205.53| 6.61 }223.51]13.00
6.2 |200.00{199.48| 5.80 ]199.50}17.01
5.9 |198.00]227.14| 66.70 | 187.23|12.15
3.4 |176.001147.37 ] 22.26 | 182.64 | 14.63
5.1 | 168.00]221.80] 63.56 | 150.15| 14.25
6.5 1276.00|276.71 | 55.60 | 268.87 | 23.11
10.31247.001259.20] 42.44 | 245.24 | 13.86
6.4 |227.00}289.82| 41.46 | 216.00} 19.01
5.5 [253.00]234.00| 6.858 | 238.97 | 15.58
6.4 |195.00|195.71] 9.094 | 168.48| 15.32
3.3 1168.00|335.80| 73.44 | 148.97 ] 16.61
3.0 |210.00]26G4.64| 73.72 |{190.66| 18.71
4.2 1222.00§202.25| 12.71 | 218.19] 15.75
4.3 1200.00}231.28] 45.13 {195.9813.91
3.5 |198.00|200.51| 36.77 | 208.42| 20.98
2.1 1176.00|399.84 | 821.68]149.41 | 16.28
2.7 1168.00}301.71521.51|159.95|11.45
6.9 1276.00|258.86] 36.11 | 264.68 | 15.98
3.0 |247.00] 322.99| 385.45]} 218.28 | 19.15
3.6 [227.00]241.80| 35.38 | 209.20| 21.32
5.9 {253.00|545.74 | 1284.31213.79| 20.22
3.6 {195.00}241.12| 73.96 |173.81}|15.32
2.2 1168.00}1351.66(374.20]178.59]20.29
2.3 1210.00]|304.57| 42.47 | 218.36} 25.50
3.8 | 222.00|295.61} 73.33 | 264.95] 23.35
3.7 1176.00|320.48 224.00|171.99{ 20.54
7.4 1276.00]1306.751 30.30 | 245.28]13.62
3.8 |247.001651.36}880.16| 236.04 | 15.96

Table 3.8: Values of Q and associated errors determined by modal fitting and STFT
method for the data set shown in Figure 3.4. The S/N ratio in the time series is lower
than in Table 3.6.



S/N Period (seconds) Phase (radians) [ Initial Amplitude
True | STFT | Modal Fit [ True | Modal Fit | True | Modal Fit
8.1 |579.80[579.86] 579.74 [0.00] -0.007 [1.140[ 1.1600
6.3 [ 533.30533.33] 533.24 | 0.00| -0.042 |1.402 1.4216
10.3] 502.30| 502.32| 502.53 | 0.0G 0.130 1.060 1.1204
9.2 1472.10|472.13| 472.19 | 0.00 0.089 1.620 1.5168
3.1 {1447.60[447.66| 447.50 [ G.00} -0.077 [1.490] 1.5390
7.7 1425.60(425.61] 425.58 | 0.00] -0.045 |{1.145] 1.1926
4.8 1405.60|405.63| 405.69 |0.00 0.049 1.620 1.6060
4.0 | 389.101389.18| 388.89 10.00| -0.175 }1.093 1.1120
4.0 |360.00(360.00| 35998 |0.00| -0.014 [1.440| 1.5081
3.7 [346.90 | 346.98| 346.85 | 0.00{ -0.053 |1.264| 1.2761
3.9 1334.80]334.88| 334.86 | 0.00 0.107 1.085 1.2230
4.3 [ 324.801324.81| 324.88 | 0.00 0.013 1.113 1.1289
8.1 |315.30]315.32| 315.32 {0.00| 0.043 1.753 1.6705
4.4 | 305.30|305.30| 305.17 {0.00| -0.196 {1.122 1.1451
3.5 1296.90] 296.90¢ 296.90 | 000} -0.003 |1.533 1.5609
5.5 | 288.90288.96| 288.76 | 0.00] -0.080 |1.194 1.3772
2.7 |282.301|283.27| 282.51 {0.00{ 0.118 |[1.111 1.1256
2.0 1275.10|275.15{ 275.01 [0.00]| -0.044 |1.101 1.1773
2.9 | 268.30 1 268.32| 268.25 | 0.00| 0.025 1.474 1.5148
2.9 |1261.80[261.81| 261.83 |0.00| 0.072 1.571 1.5327
2.5 1249.701249.71 249.71 10.00}] -0.024 |1.105 1.1244
1.3 | 244.70|244.75] 244.68 | 0.00] -0.011 11.090] 1.3905
2.0 1239.30]239.33| 23946 | 0.00 0.184 1.824 1.9159
4.9 {234.10]234.14| 234.11 [ 0.00| 0.136 1.772 1.7837
2.0 1229.10]229.17| 229.11 | 0.00| 0.046 1.224 1.3840
2.6 [225.00(224.41| 225.07 |0.00| 0.202 1.172| 1.1924
4.7 1220.40]220.40| 220.43 | 0.00]| 0.233 1.203| 1.2761
2.6 1216.00]216.54| 216.05 | 0.00{ 0.226 1.476| 1.6291
14 |211.701211.76] 211.77 10.00} 0.341 1.364 1.1433
1.4 | 207.60|207.69| 20758 j0.00] -0.001 |1.140}| 1.1643
3.1 |200.40]20046| 20042 |0.00} 0.361 1.402| 1.1488
2.0 [194.20]|194.59| 194.28 |0.00| -2.845 |1.419| 1.4087
30{187.00[187.01| 186.96 |0.00| -0.274 |1.620 1.6346
4.1 1180.70{180.75] 180.67 |0.00| 0.016 |[1.145| 1.6353
2.6 1175.201174.25| 175.22 {0.00] -0.161 |[1.620]| 1.2772
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Table 3.9: Parameter values of the noisy synthetic data set obtained by modal fitting

and STFT method (Figure 3.5). The $/N ratio is lower than in Tables 3.5 and 3.7.




Q

S/N | True

STFT

Modal Fit

Value

Error

Value

Error

8.1 [276.00
6.3 |247.00
10.3]1227.00
9.2 1195.00
3.1 |168.00
7.7 | 210.00
4.8 [222.00
4.0 | 200.00
4.0 [198.00
3.7 {176.00
3.9 |168.00
4.3 |276.00
8.1 |247.00
4.4 {227.00
3.5 {253.00
5.5 {195.00
2.7 |168.00
2.0 1210.00
2.9 1222.00
2.9 1200.00
2.5 [198.00
1.3 |176.00
2.0 | 1G8.00
4.9 |276.00
2.0 {247.00
2.6 {227.00
4.7 1253.00
2.6 1195.00
1.4 | 168.00
1.4 (210.00
3.1 1222.00
2.0 1198.00
3.0 |176.00
4.1 1276.00
2.6 1247.00

267.62
233.65
299.76
205.32
172.45
231.24
200.62
207.89
264.83
151.91
325.88
283.16
278.26
346.58
227.93
217.99
515.90
452.04
207.18
266.65
246.21
712.98
469.14
255.73
475.89
451.03
1529.3
336.77
519.20
513.97
372.50
2253.1
440.53
342.05
1312.0

18.13
9.06
155.94
6.52
8.77
9.90
14.86
4.66
185.05
26.00
417.05
87.70
103.06
96.18
6.86
60.35
202.06
887.07
42.44
83.60
23.85
5972.68
1560.05
69.74
1586.58
1017.44
26801.0
31543
1007.07
584.97
206.63
88240.0
500.32
44.57
767.26

266.04
254.74
212.84
196.17
167.48
188.43
228.95
195.93
189.94
182.81
142.68
271.92
255.94
217.98
233.25
160.61
152.12
185.73
216.98
198.21
219.95
146.80
167.17
266.23
219.61
208.40
212.24
168.71
190.61
189.51
288.30
192.22
184.06
247.42
248.91

23.00
18.21
16.48
12.45
11.06
15.79
13.62
18.29
12.18
16.10
14.29
24.47
14.92
21.06
16.56
16.00
19.41
20.70
17.81
16.17
26.86
19.01
13.70
18.00
21.16
25.34
22.11
17.39
27.32
30.14
31.46
21.11
14.67
16.73
21.33

Table 3.10: Values of Q and associated errors determined by modal fitting and STFT
method for the data set shown in Figure 3.5. The S/N ratio in the time series is lower

than in Tables 3.6 and 3.8.
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Figure 3.6: Comparison of the Q values in noisy data set Table 3.6 using modal fitting
and STFT method. With noisy data, modal fitting gives better values of Q than does

STFT.
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Figure 3.7: Comparison of the Q values in noisy data set Table 3.8 using modal fitting

and STFT method. The difference between the true values and those obtained using

the STFT method increases as the S/N ratio decreases.
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Figure 3.8: Comparison of the Q values in noisy data set Table 3.9 using modal
fitting and S1FT method. The difference between tne true values and those obtained

using the STFT method increases as the S/N ratio decreases.
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Figure 3.9: (a) A record of the April 18, 1990, Minahasa Peninsula earthquake, (b)

Amplitude spectrum computed from the record using a Hann window.
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Resampling. The data set is recorded on the SG at a rate of 1 sample/sec. This gives
86400 data points per day, which is . large number of values for the modal
fitting method. The period range of normal modes varies between 5 minutes to
1 hour. Therefore, a data set with a 10 second sampling rate (Nyquist period 20
seconds) is sufficient for the modal analysis. This is the standard sampling rate
for all the International Deployment of Accelerometers (IDA) instruments. The

filtered time series is resampled at 10 seconds interval.

Guess parameters. The starting guess values were chosen in the same manner as for
the synthetic data. By examining the Fourier spectrum of the first 24 hours of
the recorded seismogram (excluding the initial saturated part), all the spectral
peaks above the ambient noise level were identified (number of modes to be
considered for fitting). As before, the Fourier periods are used as the initial
guess periods. Starting amplitudes of all the modes are taken as unity and the

phase as zero. The guess for the Q values is 100.0,

3.3.1 Results

The real data do not show as good results as compared with that from synthetic data.
We have not been able to satisfactorily fit the model to the real data set using the
modal fitting. In all, thirty five modal peaks were identified in the spectrum of the

time series above the background seismic noise level.

1. All 140 parameters, corresponding to 35 modal peaks, were fitted at the same
time. This provides reasonable values of periods and phases for all the peaks.
Some of the higher order modes (lower periods) ¢,.ve reliable Q and amplitude
values, but the values for the lower order modes are nou realistic [Table 3.11}.
Lower order modes usually decay slowly (higher Q), but Table 3.11 indicates low

Q values for these modes.

The method does provide Q values in a physically reasonable range for about
50% of the modes. These Q values are not the same as those obtained by Ka-
mal & Mansinha (1992) using the STFT method. But this does not indicate that
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[Period | Amplitude | Phase {radians)| Q
815.094| 0.0014 3.13 9.55 |
635.294| 0.0017 2.62 11442
579.866 | 0.0024 3.14 103.50
536.646| 0.0111 4.04 101.02
502.326| 0.0087 248 234.63
472.131| 0.0008 3.13 5.56
447.668| 0.0040 3.16 >10000
425.616| 0.0114 1.92 181.55
405.634| 0.0058 3.77 396.55
389.180| 0.0018 2.89 >10000
372.414| 020116 3.73 206.45
360.000] 0.0158 3.03 155.28
346.988| 0.0017 3.82 150.48
334.884| 0.0170 3.41 208.11
324.8121 0.0301 2.54 435.31
315.328| 0.0216 4.00 380.35
305.300| 0.0018 3.14 2.37
296.907| 0.0233 2.99 448.47
288.963| 0.0402 4.06 301.44
281.433| 0.0077 3.12 247.14
275.159| 0.0014 5.76 >10000
267.492| 0.0348 3.73 278.87
261.818| 0.0021 3.08 61.77
255.621| 0.0117 3.11 68.43
249.711| 0.0536 2.85 183.43
244.759| 0.0564 3.93 210.73
238.674| 0.0320 3.29 212.56
234.146| 0.0329 3.20 211.52
229.787| 0.0571 3.47 195.22
224.416| 0.0341 3.18 194.45
220.408| 0.0442 3.49 168.18
216.541| 0.0350 3.05 239.99
212.285| 0.0617 3.13 210.43
208.193| 0.0528 3.61 180.74
204.255| 0.0079 2.64 809.47

Table 3.11: Parameter values for the Minahasa Peninsula earthquake obtained by
modal fitting (these values are not at the absolute minimum of the merit function).

The method provides reasonable Q values for about 50% of the modes.
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these values are wrong. We have demonstrated that the STFT method may pro-
vide incorrect values of the parameters for low S/N ratio, therefore the values
determined by modal fitting cannot be discarded.

2. Instead of fitting all the parameters together, we tried to partially fit these pa-
rameters in turn. Keeping oy = 0 (no decay) for all i, the amplitudes, frequencies
and phases of the modal peaks were computed. This procedure is identical to
fitting for nondecaying modes (as is done in Fourier transform). It is assumed
that this will provide reasonable values of frequency and phase (not amplitude).
In the next step, w; and ¢; were kept fixed at these preliminary values and a
fit is obtained only for amplitudes A; and quality factors Q. Again, w; and ¢
were modified in the next step by keeping A; and Q; fixed at their most recent
values. This is repeated until the error between the time series and the model
response reaches a threshold minimum. This procedure also provides similar

results for the parameters.

3.3.2 Possible causes of misfit

The algorithm used for least-squares minimization does get stuc* *n a local minimum
and gives incorrect values for some of the parameters. The quality factor Q is the
most sensitive parameter of all and has an exponential dependence in the model. It is
very likely that several combination of Q and amplitude give the same merit function.

Another problem associated with the data set may be the splitting of
the modes. As discussed in section 1.2.1, for a laterally homogeneous earth, all the
singlets of a mode are degenerate and produce a multiplet. Due to the lateral het-
erogeneity, some of these singlets appear as a separate peak in the spectrum and the
mode is said to be split. The frequency resolution in the Fourier transform is not
enough to resoive these split modes, hence these split peaks will appear as a single
broad peak in the spectrum. The modeling of this peak as a single frequency will not
be correct and the fitting of this model will provide incorrect values of the parameters
corresponding to this mode.

The presence of seismic noise in the modal band may also cause the
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misfit. It is almost impossible to filter this noise from the time series. The only
remedy may be to properly model the noise and subtract it from the data prior to the
modal fitting.

3.4 Concluding Remarks

The least-squares fitting of customized wavelets works very well on the synthetic
data consisting of single modal peaks. Even in the presence of large random noise
(S/N = 1.3), the method provides much more reliable values of the parameters than
those from the STFT method. Before it can be applied to the real data set, more work
is required. A more realistic model of split modes may provide better values for the
parameters. Proper modeling of the unwanted (non modal) signal and removing this

from the data set may improve the results.




Part 11

Do Normal Modes Trigger
Aftershocks?

Answer: Yes
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Chapter 4
Why Ask?

‘Curiouser and curiouser! cried Alice.

Lewis Carroll, Alice’s Adventures in Wonderland.

An earthquake is the process of release and radiation of strain energy by rupture.
This process may also be described as the creation of a new fault and/or as a slip of
a prexisting fault. Prior to the quake, energy is stored as elastic strain in the rocks.
When the strain builds to a level that exceeds the strength of a weak region, such
as along an existing fault, opposite sides of the fault suddenly slip, producing an
earthquake (or earthquakes). Part of the released energy is in the form of elastic
waves. In an idealized model of an earthquake source, rupture of the fault begins
at a point on the fault surface called the hyroucenter. The rupture then spreads at a
certain velocity and finally stops when the remaining energy is insufficient to create
new fault surface.

4.1 Rupture

In a simplistic time predictable earthquake model, stresses on an existing fault slowly
increase over time until a critical limit is reached and then rupture occurs. The stress
discontinuity at the point of initiation of rupture is the critical factor. Normal tensile

stresses or opposing shear stiesses are necessary for initiation and continuation of
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rupture.

Let us first consider the rupture process with the simple case of tensile
fracture. The process of tensile fracture is easier to understand and model than
shear fracture (earthquake fault). Figure 4.1 shows a standard mechanical test on
a rod. The rod is subjected to constant tensile stress T. Initially, the rod deforms
elastically [Figure 4.1(a)]. After reaching a critical stress, there is plastic deformation
[Figure 4.1(b)}, and finally rupture occurs [Figure 4.1(c)].

Figure 4.2(a) shows a medium with a crack subjected to tensile stress T.
The difference from the case of a rod is that there is a stress concentration at the tip
of the crack. If the crack can be approximated by a flattened ellipse, the expression

of the stress concentration at the tips of the crack, o, can be given by (Scholz, 1990)

0'=T(1+\/§) 4.1)
P

where a is the length of the semi-major axis (half length of the crack) and p is the
radius of curvature at the end of the crack. Clearly, this stress conceniiation o can
become very large in case of sharp ends of the crack (p —~ 0). The stress in the
neighborhood of the tip varies as inverse of the square root of the distance from the
tip. In the immediate vicinity of the tip, the stress becomes very high. Extension (or
growth) of an existing crack is facilitated by the stress pattern near the tip.

For shear fraciure [Figure 4.2(b)], the problem is very similar if one
assumes that the crack surface is friction free. Growth of the shear crack is then
controlled by the stress amplification near the tip. With friction, there is a resistance
to slip of one side against the other. In the earth, the two opposing fault surfaces are
rarely smooth. The roughness increases friction. Large scale protrusions of the fault
surface are called "asperities”. Friction, asperities and the energy needed to create
new fault surface are the factors which oppose shear crack growth. Superposition of
all these factors determine a critical stress Sc. Only if the applied forcing stress Sy

exceeds this value, will there be fault growth. To restate
o Earthquake occurs if Sy 2 Se.

o Earthquake does not occur if Sy < S¢.




60

-]

!

!
T T
(a) (b) (©

Figure 4.1: The process of rupture in a rod under tensile stress. (a) Elastic deforma-

tion, (b) plastic deformation and (c) rupture.
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Figure 4.2: Effect of different type of stresses on an existing crack. (a) tensile stress,
which opens the crack (b) shear stress, which affect the shear rupture and (c) com-

pressive stress does not affect the crack at all.
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Any trigger mechanism for an earthquake functions either by increasing S or de-
creasing Sc. The process of retardation of an earthquake also falls under triggering.
In this case, Sy is decreased or S. is increased. A trigger can advance or retard the
onset of an impending earthquake.

The process of decreasing the critical stress S; is now well documented
for man-induced earthquakes. Injection of fluids can cause decrease of friction (Healy
et al, 1968). Earthquakes under large reservoirs (Gupta & Rastogi,1 976; Simpson,1986;
Simpson et al, 1988) are good example of this effect. Another method of reducing S. is
through the application of a small normal stress to the fault surface. A separation of
the fault faces which is greater than the biggest asperity will result in a total decrease

of frictional forces. A partial separation will produce a partial drop of friction.

4.1.1 Aftershocks

Aftershocks violate logic. If aftershocks were not observed, we would not be able to
predict their occurrence. After all, the large earthquake occurs to relieve stored strain
energy. Once the energy is released, there should be no strain energy left for more
earthquakes, however small. But aftershocks continue on for years. It is clear that
the process of strain energy release during the major earthquake is incomplete, or
that the slippage along fault during the quake is non-uniform and gives rise to local
strain fields.

Let us look at one plausible mechanism. Think of the fault surface
as a fractal (Mandelbrot, 1983). The nature of asperities of the fault surface is in-
dependent of scale. Thus each large asperity, and the space between, is made up of
self-similar smaller asperities, which in turn are again made up of even smaller asper-
ities and so on [Figure 4.3(a)]. During the earthquake faulting, we have two opposing
fractal surfaces [Figure 4.3(b)]. One can intuitively see that this is not a minimum
energy stable configuration. If, with some mechanism, one surface is slightly shifted
[Figure 4.3(c)], then the fault achieves a lower energy, more stable configuration. The
smaller scale asperities will similarly find their own equilibrium. With time, the two
sides will gradually adjust until most of the asperities are matched and the two sides

are "locked”, i.e., a maximum number of positive asperities are matched with negative
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ones of the other side.

Aftershocks may be considered as continuous readjustment of the scale
independent asperities. Seismic waves are essentially "noise” or "sound” waves gen-
erated by the process of fault growth or relative slip of the two opposite side of the
fault. Conceptually, this is akin to generation of waves in the air by a disturbance.
Any disturbarce generates air waves. One cannot have any motion without the gen-
- ~ation of air w.aves. Similarly, any motion or disturbance in the focal region of an

earthquake generate seismic waves.

Average Slip & Earthquake Magnitude

Kanamori & Anderson (1975) provided an empirical relationship between magnitude

(Ms), fault dimension (L), average siip (Au) and radiated seismic energy (Es)

Ms ~2logL,and 1.5Ms +11.5~logEs (Ms z=5)
Ms ~3logL,and Ms+11.5~1logEs (Ms<)5)
Au~107L (4.2)

where Au, L are in meters and Es is in ergs. If these relations also hold for very low
magnitude earthquakes (this is not checked for), one can quantify the slip, fault area,
fault dimension and radiated energy for various magnitude aftershocks. For exam-
ple, the following table compares several parameters for an earthquake in case of a

square shaped fault:

Magnitude | Fault Fault Slip Radiated

dimension | area (cm) energy

(m) (ergs)
7.0 ~ 3000 ~9kmé |[~3 ~ 10%¢
5.0 ~ 300 ~0.1km2|~03 ~10!°
3.0 ~ 10 ~100m? |~ 0.01 ~ 1014
2.0 ~5 ~25m? |[~0.004] ~ 1013
1.0 ~2 ~4m? ~0.001{ ~ 1012

The slip for magnitude 1 is at least 3 orders of magnitude smaller than
for magnitude 7. We can sce that at the low magnitudes, the dimensions of the fault

and the energy released are small,
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Figure 4.3: A plausible mechanism for continuous aftershock occurrence. (a) Self
similarity in a fault surface, (b) Opposing fault surfaces in an unstable environment

following a large earthquake and (c) "Locking” of two opposite surface.
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This study deals with aftershocks in the magnitude range 1 and 2. It
is useful to have some idea of the dimension of the slip and the active area of the
aftershock.

4.2 Objectives of the Present Study

A variety of physical processes, such as the gravitational attraction of the Moon, fluid
flow through rock fractures, volcanism etc., can cause and may also affect the stress
Sc or Sy in the focal region, and thus can change the time of occurrence of the about-
to-occur earthquake. The gravitational attraction of the Moon (or the Sun) may act
as a trigger by causing appropriately oriented forces on the two sides of a fault. For
maximum triggering effect, the orientation of the fault and the potential slip direction
should be optimum with respect to the direction of the Moon.

Since fault orientation can be considered to be random, on a global
scale there would be no detectable correlation betwecn tides and earthquakes. In any
case, the small number of earthquakes per tidal cycle would make such correlation
very difficult to detect. This is borne out by numerous unsuccessful efforts to find
correlation between tides and earthquakes (See section 4.3.1).

Earthquake swarms, volcanic tremors and aftershock sequence are very
local in nature. The source (fault) mechanism is more homogeneous. A large number
of events occur per tidal cycle. Therefore, if the tides act as a trigger, it could be

easier to detect the correlation in such sequences.

4.2.1 Why Loma Prieta

The Loma Prieta earthquake (Ms = 7.1) occured at 37.036°N, 121.883°W on October
18, 1989. In a year, 10374 aftershocks (0 < ML s 5.5) were recorded. Commonly,
it is almost impossible to record all the aftershocks (especially i the low magnitude
range) ¢© a large earthquake. The reason is the absence of stations near the epicentral
region. It takes time to set up portable systems around the epicenter. Even then, small
aftershouks during the first few days are not recorded due to the logistics. The seismic

stations far from the epicenter will not detect small aftershocks. Therefore, most of
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the aftershock sequences are only complete for the events of magnitude 3 and greater.
Fortunately, the Loma Prieta earthquake occurred in a very well instrumented zone
operated by Northern California Seismic Network (NCSN). By virtue of this an almost
complete, unique catalog of the aftershocks (M; > 1) is available.

Our initial objective was to examine the Loma Prieta aftershock se-
quence for tidal periodicities. Like others before us (section 4.3.1), we did not find
any strong evidence of correlation with the tides. However, we were astonished to
find strong peaks at the periods of two fundamental free oscillations of the earth,
0S2 and ¢T2, ~55.4 minutes and ~43.2 minutes respectively. Therefore, our final ob-
jective became the search for the modal periodicities in this sequence. With detailed
investigation using a method developed by us (the KORRECT method), we can see
evidence of triggering (both advancement and retardation of the onset of rupture) at
some phases of modal cycles.

The modal triggering hypothesis was also tested on larger aftershocks
(3 s M < 7) from all major global earthquakes (Ms > 7.0) occurring in the period
1970-1990, but strong evidence for triggering, such as for the Loma Prieta sequence,
was not found.

4.3 Search for Triggering Agents: Review

Until mid eighteenth century, earthquakes were viewed largely as "acts of God” in ret-
ribution for misbehaviour of mankind; afterward, thev were studied more as natural
phenomena, and knowledge of earthquakes grew gradually but steadily as a result of
careful observations. Since the late nineteenth century, systematic efforts have heen
made to associate earthquake occurrences to other naturally occuring phenomena,
such as sunspot activity, planetary influences, magnetic and electric disturbances,
Chandler Wobble, and solid earth tides.

The search for correlation between earthquakes and sunspot activity
dates back to Wallis (1905) and Davisun (1927). Using statistical analysis, Davison
(1927) reported that just before the minimum in sunspot activity, there is a peak in

the frequency of destructive earthcuakes. The data used in this study do not have
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many everts so as to conclusively prove the correlation. Recently, Gribbin (1971)
attributed this correlation to be an indirect effect in the sense that the solar activity
may be linked to sudden changes in the earth’s rate of rotation, and that the latter may
initiate earthquakes. Meeus(1976) found no relation at all between the solar activity
and the number of big earthquakes (M > 7.7) occurred during the period 1905 to
1964.

Since earthquakes were believed to be caused by some forces outside
the earth, there have been studies on their asscciation with certain plaretary configu-
rations. Such configurations may be the passage of a single planet through a specific
longitude or other celestial mark. Delauney (1880), from a --.talog of earthquakes
from 1750 to 1842, found high earthquake activities at “nes when Jupiicr reaches
the mean longitude of 265° and 135° and when Saturn “:aches the same longitudes.
Tomashek (1959) studied 134 great earthquakes (M > 7.8) occurred during the period
1904-1950 and reported that at the time of some earthquakes, Uranus was very near
its upper or lower transit. Such studies do not indicate a positive correlation and
were counterattacked by Burr (1960) as a coincidence, because no physical mecha-
nism is offered. Gravitational furces associated with planetary configurations are far
too small. Most controversial of the planetary influences is the so called Jupiter effect,
a term coined by Gribbin & Plagemann (1974) for the heliocentric alignment of all the
planets o.: the same side of the sun, which can cause abnorma! solar activity; the re-
sultant movement of large atir ospheric masses will agitate the geologically unstable
regions and trigger earthquakes. On the other hand, Ip (1976) and Hughes (1977)
found that planetary alignment is not associated with increase in earthquake activity.

Changes in local terrestrial magnetic field prior to, during and after
earthguakes have been observed. Early observations (Lake, 1875; Lainont, 1892; Haz-
ard, 1909) were explained by Rcid (1914) as mechanical disturbances in the record-
ing instruments caused by earthquakes. Better instrumentation, however, has showa
that the effect is real and the study of earthquake magnetism has been revived. Moore
{1964) noted that about 1 hour before the 1964 Alaskan earthquake, earth’s magnetic
field intensity increased by 100y at a station 30 km NW of the fault zorr Smith &

Johnston (1976) and johnston (1978) noted dramatic changes in the loc. geomag-
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netic field with an array of seven proton precession magnetometers along the San
Andreas fault, before an earthquake (M = 5.2) near Hollister, California in 1974.
This was attributed to a piezomagnetic effect, which implies that the magnetic field
changes represent changes in stress in rocks near the station. An increase in the ULF
{0.0i - 10H z) magnetic field is noted near the epicenters of My = 6.9 Spitak earth-
quake and Ms = 7.1 Loma Prieta earthquake (Fraser-Smith et al,1990; Molchanov et
al,1992). It should be noted that the increase in the magnetic field is only a precursory
phenomenon, not a trigger.

The correlation of earthquake activity with the 14 month Chandler
Wobble is a classical “chicken-egg” mystery. Mansinha & Smylie (1967; 1968) made
detailed calculations of the energy involved in a sudden large scale movement of a
great fault and proposed that this energy is sufficient to provide the impetus for the
Wobblae. However, it is not inconceivable that Chandler Wobble may excite carth-
quakes (Pines & Shaham, 1973). Kanamori (1976} and O’Connell & Dziewonski (1976)
used the geometries of great earthquakes predicted by plate tectonics and computed
the cumulaive effects of the earthquakes on polar motion. These studies concluded
that earthquakes represent the major factor in wobble excitation. On the other hand,
Ben-Menahem & Israel (1970) state that even under most favorable conditions, earth-
quakes could account fo: only 30% of the Chandler Wobble. Meyerson (1970) com-
pared yearly earthquake counts wit’ the yearly means of the Chandler ainplitude and
found that earthquakes are associated with the wobble, but he claimed that this is a
parallel effect rather than a cause. Press & Briggs (1975) applied a patturi recogni-
tion algorithm to the seismicity of earthquake belts, to the amplitudes of Chandler
wobble, to the changes in the rotational velocity of the carth for the years 1901-1964,
and found that all these phenomena are related.

The most investigated and important phenomenon . :lated to earth-
quake triggering is the effect of periodic stresses induced by the gravitational attrac-
tion of the sun and moon, because they are the largest forces which subject the earth

to larze oscillatory stresses.



68

4.3.1 Tidal Triggering

During the past century and a half there have been many attempts to detect a corre-
lation between solid earth tides and the occurrence times of earthquakes. The reason
behind the search for correlation is intuitive. Gravitational attraction of :he sun and
the moon subject the earth to large oscillatory stresses which can be observed in the
form of solid eartiz tides. Crustal stresses due to solid earth tide are of the order
of 3 x 10* dynes/cm? (0.03 bar), which is about 1/100** to 1/1000t* of the average
stress drop of earthquakes (Kanamori,1977; Hanks,1977). In order to trigger earth-
quakes, the udal stresses must be oriented in a manner that will reduce critical stress
Sc or increase forcing stress Sy (section 4.1). It is worth noting that any stress sys-
tem generated by the tides must have a stress discontinuity across fault surface, i.e.,
shear or tensile stress must act in opposite direction on both sides of the fault. Tidal
stresses are large and vary according to location on and within the earth. On a pre-
existing fault, only that part of the tidal stress, which can produce a discontinuity or
a differential stress across the fault, may act as an effective trigger.

The tides repeat (though not exactly) at 24, 12 and 8 hour periods.
Only a few large carthquakes take place during a very large number of tidal cycles.
The problem of searching for a correlation is not trivial. One can only search for
earthquake occurences at some preferred tidal phase. By and large the correlations
between the earthquakes and tides, if found, have been marginal at best. The first
systematic investigation of the possible correlation between earthquake occurrence
and tidal stresses in the lithosphere was carried out by Alexis Perrey (1847). Perrey
considered the then current doctrine of a fluid nucleus for the earth; he argued that
the fluid mass, like the ocean waters, must be subjected to tidal movements and hence
would disturb the solid crust. This was iater proved to be untrue, but his method of
tackling the problem influenced most subsequent workers. Before losing his sight,
he wrote several papers on the subject (Perrey, 1864; 1875). The investigations of
earthy, -ake periodicities were continued by John Milne (1886) and Knott(1886). Knott
(1897) tabulated earthquakes according to 5 different lunar months and using har-

monic analysis, he found monthly, fortnightly and weekly periods. These results were
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challenged by Arthur Schuster (1897), who claimed that even purely random events
would have given results similar to those of Knott (1897).

Oldham (1902) investigated the great Assam earthquake of 1897 and
its aftershocks and recognized that the tidal effect on the earthquakes may be due to
the change in time rates of siress rather than actual stresses. By this time, scientists
had catalogs of instrumentally recorded earthquakes. Oldham (1903) pointed out
that for north latitudes, when the sun is in north declination, the rate of change in
the tidal stress is greater during the day than during vhe night; an examination of the
records of the Shillong seismograph showed that the ratio of day and night shocks
in summer is greater than in winter. Omori (1904), investigating the aftershocks of
the Mino-Owari and the Hokkaido earthquake, found an occurrence of two seismic
maxima at a mean interval of 12 hours approximately at or a little after, the meridian
passages of the mcon. These hypotheses were found to be questionable on the basis
of several statistical tests (Phillips,1917; Shaw,1917).

Davison (1934; 1935) found that 482 aftershocks of the 1927 Tango
earthquake and all the earthquakes recorded at the Tokyo University observatory
during 1927 to 1933 show a peak frequency at 14.8 day intervals, at the new and full
moons. Allen (1936) studied 1216 earthquakes occurring in southern California and
using Schuster’s criteria, found lunar triggering effects in this catalog. On the other
hand, Knopoff (1964b) found that a data set consisting of random events can give
similarly significant correlation with the tides. Later, Knopoff (1969) found a signifi-
cant correlation at 99% confidence level between the fortnightly earth tide and world
wide occurring larger earthquakes (Ms > 6), but when aftershocks were eliminated
from the data, the correlation fell below 75% confidence level, implying that the initial

quakes are not triggered by tidal stress.

Tides and Monnquakes

During Apollo missions spanning 1969 to 1972, long period seismometers were in-
stalled on the moon as part of Apollo Lunar Surface Experiment Package (ALSEP).
Using ALSEP data, G. Latham with his colleagus reported a striking correlation be-

tween the moonquakes and the tides on the moon induced by the earth. Latham et al
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(1971) observed that moonquakes occur at monthly intervals near the time of perigee
and apogee of the earth-moon system and show correlations with seven month lunar
gravity variations. Lammlein et al (1974) found 14 day and 206 day periodicities in
the sequence of moonquakes (magnitude 0.5 to 1.3) recorded at 4 Apollo stations.
Since the moon is not a tectonically very active body, the strain energy due to gravi-
tational tides of the earth-moon system seems to be the dominant source of energy
released by the moonquakes. Goulty (1979) analysed deep moonquakes from 80 re-
peating sources. These moon quakes also displayed tidal periodicities in their origin
times. This discovery stimulated the search for a similar effect on the earthquakes
(Shlien,1972; Heaton,1975; Klein,1976; Young & Ziirn,1979). Heaton (1975), using a
catalog of 107 worldwide earthquakes, found that only shallow (< 30km) large earth-
quakes are likely to be triggered by the tides. On the basis of a model of tectonic
and tidal stress rates, he concluded that small earthquakes (magnitude < 3) should
not correlate with tidal stress. Kilston & Knopoff (1983) tested this hypothesis on the

large earthquakes in Southern California but did not find a positive correlation.

Tides and Aftershock séquences

When many globally distributed earthquakes are considered, no signficant periodici-
ties were seen because of a multiplicity of source fault orientations and stress regimes
(section 4.2). On the other hand, small regions present a situation which may be much
more homogeneous. Therefore, the earthquake catalog from a relatively small region
(aftershock sequences or earthquake swarms) is a better candidate for a possible tidal
correlation. It was realised that in order to prove (or reject) the tidal triggering hy-
pothesis, one requires a data sct with large number of events per tidal cycle. With
the advancement in instrumentation within last 30 years, there has been an enor-
mous increase in the number of carthquakes detected in the low magnitude ranges.
As a result, a large number of sequences of earthquake swarms, volcanic tremors
and aftershocks of large earthquakes became available. The search for correlation
in these sequences presents a different picture. There are a large number of events

per tidal cycle. Standard methods of correlation can be applied. However, analysis

of an aftershock sequence from Shikotan (Kurile Islands) earthquake (mainshock Au-
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gust 11, 1969) did not provide any significant tidal correlation (Shlien, 1972). Klein
{1976) analysed swarm clusters from many sequences in the Reykjanes Peninsula in
Iceland, the central mid-atlantic ridge, the Imperial valley and northern Gulf of Cali-
fornia over a span of several years. Significant (> 95%) tidal correlations were found
in these swarm clusters except for the Matsushiro Japan swarm of 1965-1967. Young
and Ziirn (1979) studied earthquakes in the Swabian Jura, but found no significant
triggering effects. Mohler (1980) found very little correlation between ecarth tides and
earthquakes in the Susanville, California, earthquake sequence of June-July 1976. By
and large, the results of such studies are inconclusive. Recently, a diurnal (24 hours)
periodicity has been reported in a catalog of volcanic shocks at Mount Merapi (Fadeli et
al, 1991), but the absence of a semidiurnal periodicity (semidiurnal tide is the largest

in amplitude) has led to the suspicion that the diurnal periodicity is due to cultural
hoise.

4.4 Normal Modes as a Trigger?

After a large earthquake, many of the earth’s normal modes are excited and are de-
tectable for a long time on long period seismometers and accelerometers. These
modes are exponentially decaying sinusoids and can be observed as distinct spec-
tral peaks in the spectra of the recorded seismograms (Alsol.,1964; Block et al,1970;
Gilbert & Dziewonski,1975). These modes have distinct stress and displacement pat-
terns in the earth. Under favorable conditions, the nature of the stress due to some
of the normal modes may contribute to the forcing stress Sy and act as a trigger.
Similarly, it can also act to decrease the critical stress S¢ in the vicinity of a number
of newly developed cracks in the focal region.

If sufficiently excited, the modes with high quality factor (Q > 2000)
e.g., 0Sn (Q = 5700), 652 (Q = 2900) etc., can be observed for months on sensitive
instruments. On the average, the normal modes last for w: 2ut one weck or so after the
earthquake before disappearing into the ambicnt seismic noise level. Therefore, the
triggering effect of the normal modes, if any, should be prominent in an aftershock

sequence during the first few days only.




Was it missed before?

Davison* (1934; 1935) analysed an aftershock catalog for the Tango earthquake of
Marcn 7, 1927 during the period of March, 1927 to July, 1928. He mentioned a 42
minute periodicity in the occurrence times of about 400 aftershocks during the month
of March and April, 1927. Davison attributed this effect to the surface waves trav-
elling to the antipodes and coming back. At the time, normal modes of the earth
had r. t been observed on instruments; even though the theory for the free oscilla-
tions of an elastic sphere had been developed (Lameé,1853; Kelvin, 1864; Lamb,1882;
Love,1911). However, in the absence of knowledge of an earth model, the periods of
these oscillations were only approximately known. Davison did not realise that this
42 minute period is strikingly close to the period of the second order fundamental
torsional mode, oT>.

What follows is a description of a method of analysis (KORRECT) (Chap-
ter 5) and its application (together with spectral analysis} to two aftershock data sets

in a search for the tidal and modal periodicities (Chapter 6).

*We found this reference after discosering ‘he modal periodicities in the Loma Prieta aftershock

sequence.




Chapter 5

Data and Analysis

It is a capital mistake to theorize before one has data.

Arthur Conan Doyle

Two sets of aftershock data were analysed to check for the triggering effect. The
first one is an almost complete aftershock sequence from the Loma Prieta, Califor-
nia earthquake; another data set was constructed by comparing the recorded large
(Mg = 3) aftershocks {rom all the major earthquakes (Mg > 7) around the world that

occurred during the 21 year period January 1970 to December 1990.

5.1 The Loma Prieta Earthquake Sequence (Sequence I)

The Loma Prieta, California, earthcuake (Mg = 7.1) occurred beneath the Santa Cruz
mountains at 00:04:15.2 UT on October 18, 1989, This was the biggest carthquake tu
occur on San Andreas fault since the great 1906 ea-thquake. Microseismicity studies
twenty years prior to this earthquake show a quiescent period (McNally et al, 1989).
This quiescent period was followed by the aftershocks of the Loma Prieta earthquake.

Since the late 1960’s the United States Geological Survey (USGS) has
operated a dense seismic network (CALNET) alung San Andreas fault on Santa Cruz
mountains which consists of high gain vertical component seismometers (Eaton et

al,1970). The seismometers are Electrotech EV17 (and Ev17H) 500-ohm coil electro-
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magnet instruments operated at critical damping. The signal from the seismometer
is amplified by UED 210A amplifiers, which have a maximum gain of 100 db within a
passband of 0.5 to 17 cps. Primary timing is provided by recording the WWVB digi-
tally coded radio time signal. As a result of this network, an aftershock data set of
uncomparable quality had been acquired. This data set is unique in the sense that no
other data set is complete for such low magnitude aftershocks (M; > 1).

During the year following the Loma Prieta mainshock, 10374 after-
shocks, M; ranging from O to 5.5, have been recorded with the CALNET. As usual
with all the aftershock sequences, the number of events decay with time. The over-
all appearance of the data set is that of a decaying random noise sequence. About
half of these aftershocks, occurred during the first 20 days following the mainshock.
Figusro 5.1 shows a part of the data set as number of aftershocks per hour occurring
after the mainshock. The data set consists of origin times, locations, depths, and
magnitudes of the aftershocks. The distribution of aftershocks with respect to mag-
nitude is shown in Figure 5.2. It is to be noted that as time goes on, the probability
of occurrence of larger aftershocks becomes smailer. A majority of the aftershocks
are in the magnitude range 1-2. The depths are confined to within 20 km (Figure 5.3).
Most of the aftershocks are in the 5-15 km region, which defines the fault plane for
this study. Instrumental problems in the epicentral region hindered the recording of
the aftershocks during the first 24 hours following the mainshock. From the second
day onwards, the data set is complete for the aftershocks of magnitude M = 1 (Dietz
& Ellsworth, 1990).

The magnitudes and locations of aftershocks in this catalog were de-
termined using P-wave data (Dietz & Ellsworth, 1990) with the program HYPOINVERSE
(Klein, 1989). The aftershocks of the Loma Prieta earthquake exhibit a wide variety
of mechanisms (Oppenheimer, 1990) including reverse, right-lateral, left-lateral and
normal motion on planes subparallel to the mainshock rupture plane.

The mainshock of the sequence occurred at 37.036°N, 121.883°W, at
a depth of 15 km. Through body wave analysis of teleseismic data, Kanamori & Sa-
take(1990) determined the focal mechanism to be dip= 70°, rake= 138°, strike= 128°

and ‘he rupture length= 35 km. There is some discrepancy on the vertical extent
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of the fault zone calculated by different methods. Hartzell et al(1991) and Steidl et
al(1991), through the modelling of radiation field for the high frequency body waves
(>0.1 Hz) determined a vertical extent of 2 to 19 km. The analysis of the broad band
body waves and long period surface waves (Wallace et al, 1991) show a vertical extent
of 5 to 18 km. A vertical extent of 4.8 to 15.1 km explains the co-seismic horizontal
displacements (Snay et al, 1991). On the other hand, Modeling of co-seismic elevation
data from geodetic levelling surveys (Marshall et al, 1991) provides a vertical extent
of fault plane as 4 to 15 km. As a working compromise, we have chosen the vertical
extent of the fault plane to be 5 to 15 km.

5.2 Global Aftershock Data Set (Sequence II)

The second data set used in the study is extracted from the GLOBAL HYPOCENTER
DATA BASE CD-ROM using the software EPIC. The catalog contains earthquakes lo-
cated by USGS National Earthquake Information Center (NEIC) and its predecessors
in the United States Coast and Geodetic Survey. For the 21 year period 1970-1990,
273 large earthquakes (Ms > 7) were identified (Appendix A). For each of these earth-
quakes, all the aftershocks (magnitude 3 < M; < 6) occurring from time t = 0 (lime
of mainshock) to t = 30 days (720 hours) were extracted. Since the fault dimensions
related to the mainshocks -re not available, we used a circular area of 100 km ra-
dius fro’ 1 the epicenter of cach mainshock as the aftershock zone. In this manner,
the aftershocks series are formed for all 273 earthquakes (Ms = 7) and these series
are combined to form a global aftershock sequence. The number of aftershocks for
each of these earthquakes vary from no attershocks to 234 aftershocks. In all, this
sequence has 7864 aftershocks for the 30 day period.

The data sets, consisting of the occurrence times of aftershocks, were
analysed. Since the afterst ocks do not occur at regular time intervals, special pro-
cessing is required before applying standard spectral analysis. Also, commonly used
statistical tests of significance of high peaks in the spectra are not valid here (for
the reasons mentioned in section 5.3); an independent method in the time domain is

developed for the analysis. ‘The methods of analysis are discussed next.
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5.3 Spectral Analysis

In a routine method of detecting periodicities in a time series, the data are trans-
formed into the frequency domain through a fast Fourier transform. Dominant fre-
quencies present in the data set will appear as distinct peaks above the noise level.

There are two basic requirements for commonly used spectral analysis
o Nata should be sampled at regular intervals.
o Each sample point should have an associated amplitude.

The aftershock sequences do not satisfy either of these couditions. The aftershocks
of an earthquake do not occur at regular time intervals. Therefore the time series
resulting from the event sequence will be irregularly sampled. Also, one cannot asso-
ciate any amplitude with the occurrence of an aftershock. To solve this problem, an
equispaced time series is formed by binning the sequence at regular intervals. The
time axis is divided into fixed width bins, and the number of events are counted in
each bin. This number is ascribed to the midpoint of the bin as its amplitude (Fig-
ure 5.4). The bin width is analogous to the sampling interval in a regular time series.

Tides (Diurnal, semi-diurnal and ter-diurnal) are long period phenom-
ena, while the normal modes (< 1 hour) are shorter period. Therefore, larger bin
widths {15 minutes-1 hour) are used to investigate tidal triggering, whereas shorter
bin widths (5 minutes-15 minutes) are necessary for the analysis of modal triggering.
A bin width shorter than 5 minutes is not suitable in the present study as it results
in a large number of bins with no events, i.e. zero amplitude. The spectrum will
be distorted by convolution with tt . resultant sync functions. On the other hand, a
very wide bin (>1 hour) does not provide enough resolution to distinguish between
different tidal periodicities (if they are present at all).

Any standard spectral estimation method require tapering of the data
set prior to transformation into the frequency domain. This is necessary to prevent
the spectral leakage. Several tapers are available for this purpose. Each has its merits
and demerits. Most commonly used tapers are Hann, Hamming, Tukey, Blackman-

Harris, Kaiser etc. (Childers & Durling,1975). Since the overall appearance of the
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data set is that of an exponentially decaying time series, the toremost part of the
data contains the most important information. Therefore, we require « taper which
would reduce the spectral leakage without discarding much of the initial nortion of
the binned data set. It is for this reason that a 10% Tukey window is chosen to taper

the data set prior to frequency domain transformation. In the time domain, 1 0%

Tukey window is defined as
B gl TOY ] _ _
wit) =41 —cosmz\:;;?) : ;0 sts -—-;jl (1-2ax)
=A .-—;rﬂ(l—za)stsz,.—,o(l—ﬂa)
[ » T —_
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] = ) ,otherwise (5.1

where a=1/10.

The tapered time series is then transformed into the frequency domain
using a multi-radix FFT routine (Childers & Durling, 1975} to give the spectrum.

Commonly, any spectral method requires tests of significance to distin-
guish the true spectral peaks from the spurious ones. These tests are not very useful
in studies like the present one. The reason is that every test for the significance of a
spectral peak relies on an assumption of stationarity of the noise. Stationarity means
that the statistical propertics of the noise process do not depend on time; they are
invariant with respect to shifts in time. Aftershock sequences cannot be considered
stationary, so the common significance tests may not be valid. In order to verify the
results from the spectral analysis, we used a different time domain method, which is

described next.

5.4 The KORRECT Method

We developed a method of detecting periods and phase in event sequence in the time
domain, which is named as KORRECT (CORrelation with a RECTangular pulse). KO-
RRECT is basicaily a correlation of the occurrence times of the aftershocks with a

rectangular pulse series. The pulse series is formed by repeating a finite width rect-
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angular pulse of unit amplitude at regular intervals. The pulse width has been varied
from 5 minutes to 15 minutes in .he current usage. In order to have a conformity
with the spectral method, the separation between two consecutive pulses (the period)
is limited to the equivalent h..rmonic periods, t,, givenby t, = T/n,n =1,2,3..N/2,
where T is the total duration of the sequence and N is the number of samples. Fig-
ure 5.5 is an example of the rectangular pulse formed for two different harmonic
periods for a given pulse width. For each harmonic period, a rectangular pulse series
is formed and overlaid on the aftershock data set.

All the aftershocks falling within the pulses are counted, added to-
gether, and divided by the number of pulses to provide a measure of aftershock
density at a specific phase of the period ¢t,. The pulse series is then shifted in time
(by a fraction of the period t,) and the aftershock density calculated at a different
phase for the same period (Figure 5.6). Each period is divided into several parts which
decides the time (phase) shift. At each period, 36 computations were carried out at
regular time shifts, giving a value at every 10° in phase, to provide coverage over
whole cycle of 360°. This "phase vatiation curve” gives the aftershock density as a
function of the phase at a particular period t,. Similar phase variation curves are
obtained for all the harmonic periods for further interpretation.

We tried the statistical tests of significance for harmonic peaks (Fisher,
1929) in a modified form for geophysical time series (Shimshoni, 1971). This test is
commonly used in identifying the normal modes of the earth. This method depends
on the rank o1 der of the peak, thus allowing lower order peaks to be accepted. The
tests of significance were not found very useful in the present study for the reasons
stated in section 5.3, therefore we used a combination of a cyclic phase variation
curve and a high spectral peak for the identification of significant peaks.
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Figure 5.6: The KORRECT method for detecting periodicities and phase information

in the aftershock sequence. The vertical lines are the origin times of the aftershocks.

A rectangular pulse series (shaded) is overlaid on the data set; the events lying in the

shaded regions are counted and divided by the number of pulses (aftershock density).




Chapter 6

The Answer

So easy it seemed
Once found, which yet unfound most would have

Thought impossible.

John Milton.

The following criteria are chosen for a positive identification of a triggering process:

1. A spectral peak above the background noise level in the amplitude spectrum.

2. The period of this peak corresponds to a known physical process (a possible

trigger).

3. A distinct and systematic variation in the phase plots, 1ur this period, obtained
by the KORRECT method.

Should all of the above conditions be satis{y together fu1 a single period, we can

conclusively identify the periodicity (therefore triggering) in the aftershock sequence.

6.1 Tidal Triggering

The periods of largest solid earth tides are approximately 24.06, 12.00 and 8.28 hours.
Among these, the 12 hour {2 cycles/day) tide is the largest in amplitude, which makes
it the most likely candidate for the tidal triggering of earthquakes.

84
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To examine the tidal triggering hypothesis in the Loma Prieta after-
shock sequence, several time series were formed from the aftershock data set during
Day 2 to Day 30 following the mainshock. The bin width in these series were varied
from 60 minutes to 15 minutes. One of such data set was shown in Figure 5.1. Ampli-
tude spectra of these binned time series are shown in Figures 6.1, 6.2 and 6.3. These
spectra are estimated with a multi-radix Fast Fourier Transform (FFT) using a 30 day
(720 hours) 10% Tukey window. The spectra do not exhibit any preferential behavior
for the tidal frequencies (1, 2 or 3 cycles/day). We do see some peaks in the spectra,
but none of these peaks have any physical meaning. If the tidal triggering hypothesis
were valid, the spectra should exhibit peaks (in order of decreasing amplitude) at 2
cycles/day (semidiurnal tide), 1 cycle/day (diurnal tide) and 3 cycles/day (terdiurnal
tide).

There are some distinct peaks in these spectra, which are above the
background noise. These peaks correspond to 38.6 hours, 9.8 hours, 5.75 hours,
4.16 hours and 3.5 hours respectively. These periods do not point to any known
physical phenomenon, hence they cannot be associated to any physical process. The
persistence of these peaks in the spectra is intriguing and needs detailed study. Based
on these spectra, we conclude that the solid earth tides do not trigger aftershocks in

the Loma Prieta earthquake sequence.

6.2 Modal Triggering

Normal modes decay exponentially with time. After a large earthquake, they can be
observed for a week or so on long period seismometers or accelerometers. Thus, the
triggering effect of the normal modes on the aftershocks is expected to be seen dur-
ing the first 10 days following the mainshock. The aftershock data from Day 2 (the
catalog is not complete for the first 24 hours) to Day 10 is analysed for the detec-
tion of the normal mode periodicities. Compared to the tidal analysis, narrower bin
widths (higher sampling rate) have to be used to examine the normal mode periods. 5
minute and 10 minute bin widths are used to form several series from the aftershock
data set of first 10 days following the mainshock. Only the earthquakes occurring
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Figure 6.1: Amplitude spectrum of 30 day time series constructed from the Loma
Prieta aftershock sequence using 1 hour bin size (720 points). There are no significant

peaks at 1, 2 or 3 cycles/day (tidal periods).
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Figure 6.2: Amplitude spectrum of 30 day time series constructed from the Loma

Prieta aftershock sequence using 30 minutes bin size (1440 points). There are no

significant peaks at 1, 2 or 3 cycles/day (tidal periods).
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Figure 6.3: Amplitude spectrum of 30 day time series constructed from the Loma
Prieta aftershock sequence using 15 minutes bin size (2880 points). There are no

significant peaks at 1, 2 or 3 cycles/day (tidal periods).
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within 60 km radius of the mainshock epicenter are considered. The aftershocks are
also subdivided according to their focal depths and magnitudes. The spectra were
estimated using a 72 hour, 10% Tukey window. This 72 hour window is then shifted
forward in steps and the spectrum is estimated at each location. We found that the
peaks in the spectra due to the normal modes are undetectable due to background
noise after 144 hours (6 days) following the mainshock. Two factors, the declining
number of aftershocks and the decay of modal ampliti'des with time makes it difticult
to detect the modal periodicities in the data set after Day 6. Figures 6.4, 6.5 and 6.6
show the spectra of the aftershock data set in successive windows. It can be seen
that the modal peaks also decay in amplitude as time progresses and they become
undetectable after 144 hours.

The series formed by the aftershocks of magnitudes (1 < M; < 2)
within the fault zone (5 to 15 km depth) show periodicities at the two longest period
normal modes, spheroidal mode 4S> (frequency 26 cycles/day or 55.4 minutes) and
the torroidal mode o T2 (frequency 33 cycles/day or 43.2 minutes).

Figure 6.4 shows a prominent periodicity at the frequency of 33 cy-
cles/day (period of ¢T2). At the period of oS> (26 cycles/day), there is a visible peak
barely above the noise level. There is another strong peak in the spectrum at 52 cy-
cles/day which is exactly double the frequency of the ¢S: or half the period. The
reason for the oS> peak at half of its period will be clear from the results of the
KORRECT method.

Aftershocks from dilferent depth ranges exhibit different behavior. Fig-
ures 6.7, 6.8 and 6.9 compare the amplitude spectra of the aftershock data sets
formed using different depth zones. The modal periodicities are only visible in the
set containing aftershocks from the main fault zone (5 to 15 km depth).

The amplitude spectra of the series formed using large aftershocks of
Loma Prieta earthquake are shown in Figure 6.10 (2 < My < 3) and Figure 6.11 (3 <
M. < 5). These spectra do not show high peaks at modal frequencies, indicating that
the normal modes do not trigger large aftershocks. The apparent lack of triggering

for larger aftershocks may be due to a decrease in the number of events.
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Figure 6.4: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 24 hours following the mainshock (1 < M; < 2; 5 sdepths 15km).
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Figure 6.5: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 48 hours following the mainshock (1 s My < 2; 5 sdepth< 15km).
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Figure 6.6: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 144 hours following the mainshock (1 s My < 2; 5 sdepths 15km).
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Figure 6.7: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 24 hours following the mainshock (1 < M < 2; 0 sdepths< 10km).
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Figure 6.8: Amplitude spectra of 72 hours time series constructed by binning (bin

width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time

series is 24 hours following the mainshock (1 < M < 2; 5 <depth< 15km).
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Figure 6.9: Amplitude spectra of 72 hours time series constructed by binning (bin

width= 5 minutes) the Loma Prieta aftershock scquence. The beginning of the time
series is 24 hours following the mainshock (1 < My < 2; 10 <depth< 20km).
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Figure 6.10: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 24 hours following the mainshock (2 < M; < 3; 5 sdepths< 15km).
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Figure 6.11: Amplitude spectra of 72 hours time series constructed by binning (bin
width= 5 minutes) the Loma Prieta aftershock sequence. The beginning of the time
series is 24 hours following the mainshock (3 s Mt s 5; 5 sdepths 15km).
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6.3 Phase Variation Curves

Figures 6.12 to 6.16 and 6.21 to 6.25 show phase variation curves for several {re-
quencies near the two normal mode frequencies, obtained by using the time domain
method, KORRECT. For comparison with the results from the spectral analysis, 72
hours of data are used and the pulse separations correspond to the Fourier compo-
nents for the sampling interval (in this case, the width of the rectangular pulse). Most
of these phase variation curves show more or less a flat earthquake density around
a mean value, indicating that almost the same number of earthquakes occur inde-
pendent of the phase at these periods. In other words, there are no specific phases
of these periods, which advance or inhibit aftershocks in the sequence. However,
near the periods corresponding to the two fundamental modes ¢T> (Figure 6.14) and
052 (Figure 6.23), there are systematic variations in the phase plots. This indicates

distinct physical mechanism of triggering at these periods, which will be discussed

next.

6.3.1 Toroidal Mode (T

At the period of T2, the phase plot (Figure 6.14) shows a systematic cyclic behav-
jor in the aftershock density with a distinct minimum (inhibition) and a maximum
(advancement). These are separated by about 180° in phase. A plausible physical
mechanism behind this triggering is shown in Figure 6.17. In the toroidal mode ¢T3,
the earth is divided into two contra oscillating hemispheres separated by a nodal
plane containing the focal region, with the newly opened fault surface. The stresses
associated with this free oscillation mode are amplified by virtue of the sharp edge at
the periphery of the newly opened fault surface. When the sense of the free oscilla-
tion is antiparallel to the original first motion, inhibition of aftershocks occurs. With
the sense of oscillation parallel to the first motion, advancement of the aftershock
onset times takes place.

Figures 6.18, 6.19 and 6.20 show the phase variation curves for the ¢T»
period using 72 hour data starting at different times. We note that the triggering effect

in form of the cyclic behavior in the phase plots can be seen upto 5 days following
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Figure 6.12: Phase variation curve for the 42.35 minute period in the Loma Prieta after-

shock sequence, obtained using KORRECT method. There is no systematic behavior

in the curve, indicating that almost equal number of aftershocks occur at different

phases of this period.

Earthquake Density
5, &

0.8

\

b

42.77 nilinutes

C

100
Relative Phase

300

Figure 6.13: P’hase variation curve for the 42.77 minute period in the Loma Prieta after-

shock sequence, obtained using KORRECT method. There is no systematic behavior

in the curve, indicating that almost equal number of aftershocks occur at different

phases of this period.
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Figure 6.14: Phase variation curve for the 43.2 minute period in the Loma Prieta
aftershock sequence, obtained using KORRECT method. Note the systematic variation
in the curve. More aftershocks occur at certain phase of this period, while 180° apart

in phase one can see a minimum (inhibition).
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Figure 6.16: Phase variation curve for the 44.08 minute period in the Loma Prieta after-

shock sequence, obtained using KORRECT method. There is no systematic behavior
in the curve, indicating that almost equal number of aftershocks occur at different
phases of this period.
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Toroidal Mode ,T,

Figure 6.17: The physical mechanism of the triggering due to ¢T2. Large arrows
indicate the sense of motion due to the ¢T> mode while the little arrows show the

sense of initial slip on the fault plane ff’.
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Figure 6.18: Phase variation curve for the period of ¢ T> (43.2minutes) calculated from
the 72 hours of aftershock data starting at 24 hours following the mainshock.
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Figure 6.19: Phase variation curve for the period of ¢ T2 (43.2minutes) calculated from
the 72 hours of aftershock data starting at 48 hours following the mainshock.
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Figure 6.20: Phase variation curve for the period of (T2 (43.2minutes) calculated from
the 72 hours of aftershock data starting at GO hours following the mainshock.
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the mainshock. After that, background aftershock activity makes it impossible to see

the effect in the phase variation curves.

6.3.2 Spheroidal Mode (5>

At the period of (52, the second order fundamental spheroidal mode, the phase plot is
even more interesting (Figure 6.23). In this case, a cyclic behavior with two local max-
ima and minima is buing observed (each separated by approximately 90° in phase).
We speculate on a different triggering mechanism due to oS (Figure 6.26). In the foot-
ball mode (pS2) the earth is divided into four quadrants by two nodal planes, one of
which contains the focal region. During oscillation, each pair of opposing quadrants
undergo tension-compression cyclically, giving rise to two such cycles during each
complete oscillation period. During the initial rupture, a number of cracks or zones
of weakness of various orientation must have been created in the neighborhood of
the fault. During the tension part of the cycle in a quadrant, a number of these small
cracks rupture, giving rise to aftershocks. Hence we have two maxima and two min-
ima, one for each quadrantal pair. This also implies that there will be a peak at half
the period of ¢Sz, in the spectrum.

The phase variation curves for the oS> period at different times are
shown in Figures 6.27, 6.28 and 6.29. In this case also the triggering effects are
visible 120 hours (5 days) after the mainshock.

6.3.3 Spheroidal Mode (53

The next largest period in the fundamental normal mode spectrum correspond to
the spheroidal mode ¢53 (period 36.00 minutes or 40 cycles/day). We examined the
spectra of binned series for the oS3 mode. In Figure 6.4, a peak at this period is
visible slightly above the background noise level. However, the phase plot from the
KORRECT method (Figure 6.30) does not indicate any preferential triggering effect at
any phase of the corresponding period. Therefore, the triggering due to 0S3 mode
cannot be conclusively identified.
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Figure 6.21: Phase variation curve for the 54.00 minute period in the I.onza Prieta after-
shock sequence, obtained using KORRECT method. There is no systematic behavior

in the curve, indicating that almost equal number of aftershocks occur at different

phases of this period.
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Figure 6.22: Phase variation curve for the 54.68 minute period in the Loma Prieta after-
shock sequence, obtained using KORRECT method. There is no systematic behavior

in the curve, indicating that almost equal number of aftershocks occur at different
phases of this period.
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Figure 6.23: Phase variation curve for the 55.38 minute period in the Loma Prieta
aftershock sequence, obtained using KORRECT method. Note the systematic variation
in the curve. More aftershocks occur at two phases of this period, while one can see
minima (inhibition) 90° apart in phase.
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Figure 6.24: Phase variation curve for the 56.10 minute period in the Loma Prieta after-
shock sequence, obtained using KORRECT method. There is no systematic behavior

in the curve, indicating that almost equal number of aftershocks occur at different

phases of this period.
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Spheroidal Mode .S,

Figure 6.26: The physical mechanism due to ¢S for the triggering effect. Aftershocks
are triggered on those faults or cracks, which are perpendicular to the tension axis.
During one cycle of ¢Sz, two particular phases (2 and 4, 180° apart) are responsible
for triggering.




106

=
A
O

55.38 n%tinutes

/

N
4

8

Earthquake Density

0.75
0 100 200 300

Relative Phase

Figure 6.27: Phase variation curve for the period of ¢S2 (55.38 minutes) calculated

from the 72 hours of aftershock data starting at 24 hours following the mainshock.
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Figure 6.28: Phase variation curve for the period of ¢S2 (55.38 minutes) calculated
from the 72 hours of aftershock data starting at 48 hours following the mainshock.
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Figure 6.29: Phase variation curve for the period of ¢S2 (55.38 minutes) calculated

from the 72 hours of aftershock data starting at 60 hours following the mainshock.
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Figure 6.30: Phase variation curve for the 36 minute period (40 cycles/day), which
corresponds to ¢S3 mode. The curve is computed using 72 hours of data starting at

24 hours following the mainshock. The curve does not show conclusive indication of

the triggering.



6.4 Number of Triggered Shocks

KORRECT method also provides an estimate of the numbers of earthquakes that are
either advanced or inhibited by the modes. The results show that about 5-10% of
the aftershocks during the 144 hours (6 days) following the Loma Prieta mainshock
were triggered by the modes 7> and ¢S52. Spatially, these triggered aftershocks (Fig-
ure 6.31) lie along the periphery of the fault zone (non triggered shocks also tend to
confine along the edges).

6.5 Results from the Global Aftershocks

The strong evidence of modal triggering in the Loma Prieta aftershock sequence
prompted us to search for a similar effect in the global set of aftershocks.

The USGS NEIC catalogs were analysed for the aftershocks of large
carthquakes occurring during 1970-1990. These aftershocks are in the magnitude
range (3 s M < 7) occuring within 100 km of their initial earthquakes during first
10 days following the mainshocks.

The criterion for a definite identification of modal periodicities is the
combination of a high frequency peak in the amplitude spectrum and a meaningful
phase variation curve obtained by KORRECT method. The amplitude spectrum (Fig-
ure 6.32) of a 120 hour time series (starting at time ¢t = 0) formed by binning the
global aftershock sequence (bin width = 10 minutes) shows no evidence of the modal
periodicities.

We wanted to examine if the timing of the large aftershocks occur at
some multiples of the known normal mode periods i.e., ~55 minutes and ~43 minutes.
The KORRECT method described in section 5.4 is naturally suited for this purpose. It
describes the phase behavior of the time series at a particular period. By studying the
phase behavior of some phase variation curves in the vicinity of two modal periods,
one can examine the hypothesis of modal triggering as was shown in the case of the
Loma Prieta aftershocks.

The KORRECT method with 10 minutes pulse width is used to obtain
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quake. Tnese aftershocks tends to lie along the periphery of the fault zone.



111

10 g
8t 1
.-g
S 6f ]
E
'E. 4t o'i':) S.(x2) -
? )
0 ' Jl ‘dn.hu “’.Jﬁiu..audll,u““nlmA.mu WNUJ
0 10 20 30 40 50

Frequency (cycles/day)

Figure 6.32: Amplitude spectrum of 5 day time series constructed from the Global
aftershock sequence using 10 minutes bin size (720 points). There are no significant

peaks at modal periods.
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phase variation curves. These phase variation curves, corresponding to several fre-
quencies in vicinity of two normal modes ¢72 and ¢S2 are shown in Figures 6.33 and
6.34. These curves do not show strong evidence of the triggering effect as seen in
case of the Loma Prieta aftershock sequence. It may seem from rigures 6.33(b) and
6.34(c) that distinct maxima and minima exist, but the separation of these extrema do
not follow a systematic pattern (as in the case of the Loma Prieta afterskock sequence,
the extrema were 90° apart). The little hills and valley visible in the phase plots have
little meaning until they are associated with a corresponding high peak in the am-
plitude spectrum. Modal triggering of large global aftershocks cannot be supported
on the basis of phase plots only. The spectrum in Figure 6.32 shows a peak at 2.6
cycles/day, but this frequency does not correspond to any known physical process.
In the case of the Loma Prieta aftershock sequence, we observed that
the triggering effects are important only for small aftershocks (1 < M; < 2). Larger
aftershocks do not show the modal triggering phenomenon (See Figures 6.10 and
6.11). Similarly, globally distributed large aftershocks also seem to be self triggered.

6.6 Concluding Remarks

We have shown that two free oscillation n - des ¢Sz and ¢ T> excited by the Loma Prieta
earthquake influence the occurrence times of its aftershocks during the first 6 days.
These results are valid for the low magnitude (1 < M < 2) aftershocks. In terms
of actual numbers, about 5-10% of the small aftershocks are influenced by these two
normal modes. Large aftershocks for the global earthquake data set, on the other
hand, do not show any influence of the normal modes, neither in the Loma Prieta se-
quence nor in global aftershock data set. However, it should be noted that the number
of events decreases remarkably as one considers larger magnitude aftershocks. It is
possible that the triggering effects are not detectable for larger events due to the lack
of number of events. No evidence was found to support solid earth tidal triggering.
Complete aftershock sequence catalogs that include all the low magni-
tude events are not common. The Loma Prieta aftershock sequence is the first, and

perhaps the only such data set in existence. Even this catalog is incomplete for the
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mode.
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events of magnitude M; < 1. Hence, these small events could not be included in the
analysis.

The results presented here also indicate that the response of the fault
surface to the normal modes excited by the mainshock has not been completely under-
stood and rethinking of certain assumptions in the near field calculations is needed.
It is not inconceivable, in the vicinity of the hypocenter, that the freshly opened fault
surface responds to some well excited modes and results in either the amplification
of the modal amplitudes or a change in the seismic activity or both. In routine cal-
culations of the modal amplitudes, the presence of this free surface is ignored. This

assumption is not valid in the immediate vicinity of the fault surface.

Evidence from other studies

1. Recently, in a study of TERRAscope data, anomalously high amplitudes of nor-
mal modes have been observed in the near vicinity of the epicenter of the Lan-
ders earthquake (Kanamori et ql,1992). Figure 6.35 compares theoretical and
observed spectra of normal modes from the seismograms recorded at three
different stations (Watada et al,1993). Note that at the station PAS (epicentral
distance A = 1.4°), the modes show very high amplitudes than theoretically ex-
pected (dotted curves). These anomalies are partially explained by Watada et al
(1993) as the effect of the rotation of the earth and lower mantle heterogene-
ity. This is a intriguing observation and may be due to the modal amplification
because of the freshly opened fault surface. Whatever the cause is, its effect
may be reflected in the form of a triggering of small events in the aftershock
sequence.

2. The Landers earthquake (June 28, 1992; Ms = 7.3) triggered a widespread
increase in earthquake activity throughout the western United States (Hill et
al, 1993) as far as 1250 km from the epicenter of the mainshock. Hill et al
(1993) speculated that static stresses due to the low period Love and Rayleigh
waves (1-2 orders of magnitude less than the tidal stress) triggered earthquakes
(1.7 s magnitude < 4.4) on favorably oriented faults, in areas further from the
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Figure 6.35: The Fourier spectra of Hanning tapered VLP vertical channel records
(solid line) after Landers carthquake and spherical earth synthetic seismograms
(dashed line) at MAJO (A = 81°), BKS (A = 6°) and PAS (A = 1.4°)[after Watada et
al (1993)].
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epicenter of the mainshock (as far as 17 times greater than the fault length).
This study strongly suggests that the stresses due to the normal modes may

also be able to trigger small aftershocks.




Epilogue

(Discussion and Conclusions)

The woods are lovely, dark, and deep,
But I have promises to keep,

And miles to go before [ sleep,

And miles to go before [ sleep.

Robert Frost, Stopping by the Woods on a Snowy Evening.

Motivation

In 1989, the Canadian superconducting gravimeter (SG) was installed to support the
theoretical investigations of long period behavior of the earth’s fluid outer core and
to analyse the gravity tides with high accuracy. In an earlier study, we used the SG
as a long period seismometer and determined parameters of normal modes from the
April 18, 1990, Minahasa Peninsula earthquake (Kamal & Mansinha, 1992) using the
STFT method. During the analysis of SG records, two important things were noted:

e The STFT method should not be the method of choice for the determination of
normal mode parameters because of some inherent difficulties (Part 1) in ampli-

tude estimation.

o Earthquake occurrences at almost regular intervals were noted in some of the

SG recordings. This prompted us to do a search for triggering of earthquakes
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(Part II).

Results

In the first part of this dissertation, we demonstrated the superiority of the modal
fitting over the STFT method. Even for a signal-to-noise ratio as low as 1.3, the modal
fitting provides much more accurate (error upto 10%) values of the parameters than
those obtained by the STFT method (error upto 500%). Also, the length of the time
series required in the modal fitting is at least 4.5 times less than that in STFT method.
The method is still in its infancy and application to the real data requires further
work.

The amplification of the local displacements caused by the normal
modes due to the presence of a freshly opened free surface may trigger aftershocks
in the near vicinity of the hypocenter (Part IlI). The small (1 < M; < 2) aftershocks of
the October 18, 1989 Loma Prieta earthquake show the triggering etfect due to two
fundamental normal modes ¢S2 and o T2 (and probably ¢53) during the first 6 days fol-
lowing the mainshock. After G days, the decay of the normal modes and the decrease
in the number of aftershocks make it difficult to detect such an effect. On the other
hand, large (M; = 3) aftershocks of earthquakes (M; = 7) occurring globally during
1970-1990 do not show such triggering effects conclusively. The triggered seismicity
by small static stresses (~ 10~4 bar) due to Landers earthquake (Hill et al, 1993) also
supports the possibility of modal triggering of small aftershocks.

The two modes, which trigger some of the aftershocks in the Loma
Prieta earthquake sequence, are the longest period modes and are not commonly
observed except for some of the largest earthquakes. Perhaps, the study of aftershock

sequences is the only way to study these modes in the vicinity of the epicenter.

Future Work

1. Prior to the application of Marquardt’s approach for minimization, one may
carry out a Monte Carlo method (computing the merit function at several ran-

dom points in parameter space) to roughly locate the global minimum. Hope-
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fully, it will then be easy to pinpoint the absolute minimum through Marquardt’s

approach in a smaller region of parameter space.

. A realistic modelling of split modes is definitely needed for analysing real seis-
mic time series and should be tried. A possible approach would be to narrow

band pass filter the time series and fit for all possible split peaks.

. The background seismic noise also contributes in the poor estimates of the
values of the parameters. The results may improve if the seismic noise can be
appropriately modelled and filtered out before fitting.

. The Loma Prieta aftershock sequence was a unique catalog, almost complete
for the low magnitude aftershocks. The catalogs of similar quality should be

examined in future for the triggering due to normal modes.

. Quantification of the stresses due to these modes, on and around the fault plane
are yet to be carried out. These calculations will enable us to verify our hypoth-
esis of the amplification of the local modal displacements due to the presence

of newly opened free surface after the mainshock.




APPENDIX A

U.S. GEOLOGICAL SURVEY
GLOBAL HYPOCENTER DATA BASE CD-ROM

GLOBAL SEARCH

DATE RANGE (Yr:Mo): 1970AD: JAN - 1990AD:DEC
MAGNITUDE RANGE: 7.0 - 9.0

CATALOGS: PDE

YEAR MO DA ORIG-TIME LAT LON DEP  MAGNITUDE

1970 01 04 170040.20 24.14 102.50 31 7.5
1970 01 08 171239.10 -34.74 178.57 179 7.0
1970 01 10 120708.60 6.82 126.74 73 7.3
1970 01 20 071951.20 -25.80 -177.35 80 7.3
1970 03 28 210223.40 33.18 29.49 20 7.3
1970 04 07 053405.60 15.76 121.72 37 7.5
1970 04 12 040144.00 15.06 122.05 24 7.0
1970 04 29 140132.80 14.52 -92.60 33 7.3
1970 05 27 120506.00 27.22 140.12 382 7.1
1970 05 31 202327.30 -9.18 -78.82 43 7.8
1970 06 11 164638.30 -59.11 157.77 33 7.2
1970 06 15 111452.40 -54.34 -63.65 33 7.0
1970 06 24 130908.30 51.75 -131.02 12 7.0
1970 07 25 224110.70 32.18 131.70 34 7.0
1970 07 31 170805.40 -1.46 -72.56 651 7.1
1970 08 11 102220.00 -14.12 166.65 33 7.5
1970 08 30 174609.00 52.38 151.60 645 7.2
1970 10 31 175309.30 -4.93 145.47 42 7.0
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183525.
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30
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.97 163.
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APPENDIX B

The computer programs used in the thesis are available on a disk and can be obtained
from the Dept of Earth Sciences, University of Western Ontario, London, Ontario,
CANADA. NGA 5B7. |, or anyone else, is not responsible for any undetected bugs,

errors etc.

Description of Computer Programs

Part|

FFT.f : Fortran program for computing Fourier transform and

Amplitude spectrum.

Filter.f : Fortran program for band pass filtering the SG data.

Lsq_det.dat: Input to Lsqgfit.f

Lsqfit.f : Fortran Program for fitting customised wavelets.

param.dat : Starting guess parameters

Period : Fourier periods from FFT.f column 1
Amplitude: 1.0 column 2
Phase : 0.0 column 3
Q : 100.0 column 4

Resample.f : Fortran program for resampling the SC data.
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syndata.dat: Input to Synth.f

synmode.dat: Input periods to make synthetic data.

Synth.f : Fortran program to make synthetic data.

A flow diagram for the usage of these routines is given on next page.




( syndata.dat | Eynmode.datl

This box

is used
__.{ ’(__ for synthetic
Symh‘f data only.

( Filter.f ]
_
[Resample.f J
@ | Lsq_det.dat ,
_ ¥

Lsqfit.f
(rrrr )

Guess
Parameters

Jr New
Determine Parameters
Frequencies

no

RESULT




Analyze.f

Eqden.f

Lom.dat

Make.f

Part 1l

: Fortran program to compute the spectrum of various

time series obtained using Make.f.

: Fortran program to apply KORRECT method (enclosed).

: Data file containing aftershock information

(from USGS).

: Fortran program to make time series from the

aftershock data set using different bin size,
magnitude range, depth range, distance from

the mainshock etc.
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! Program EQDEN.F !
I cccccccccmea- !
! !
! Program for the cross correlation analysis of !
! aftershock sequences with the Normal Modes excited !
! by the mainshock. !
i !
! kamal: 19921116 to 19930318 !
! !
! Input: !
! (A) Aftershocks:- !
! 1. Occurence time !
! 2. Focal depth }
! 3. Magnitude !
! (B) Additional:- !
! 1. Bin Size !
! 2. Depth Bounds !
! 3. Magnitude Bounds !
' 4. Time Bounds !
! 5. Phase Shift !
! !
! Qutput: !

! Returns the maximum and minimum Amplitude and !

! Phase information for different frequencies. !

parameter (npt = 10000, Ndays = 120, Npts = Ndays*24*60)
real depth(npt), Magnitude(npt), Phase_min(npt)

real azigap, dist, herror, Ingdeg, Ingmin, Ave_den(npt)

real resdul, sec, verror, latdeg, latmin, longitude(npt)
real latitude(npt), ‘erts_info(36,400,6)
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real TimeEq(npt), Frequency(npt), Amp_max(npt),Amp_min(npt)
real DepthLower, DepthUpper, MagLower, MagUpper,Phase_shift
real Bin_start, Bin_end, No_of_events, Phase_max(npt)
integer year, month, day,hour,min,PST, DayOfYear,Total_eq
integer Spectral_points, Scale_factor, Points_to_plot
character*l latdir, Ingdir

character*3 stn

character*20 Input_file, Output_file

character*36 Data_field

open(unit=1, file='eqden.dat’,status="0ld’)
open(unita7,file='Phase.var’')
open(unit=8,file="0s2.eve’)
open(unit=9,file="'0t2.eve’)
open(unit=10,file="events.dat’)
read (1,*) Data_field, Input_file ! Input_file is the
! Data file containing
! aftershock data
open{unit=50, file=Input_file, status='old’)
read(1,*) Data_field, Bin_size ! in Minutes

Bin_size = 60.*Bin_size ! in seconds

write(6,101) Input_file
do i =1, npt
if (mod(i,100) .eq. 0) write(6,102)
read(50, 10) year, month, day, hour, min, sec, latdeg,
latdir, latmin, Ingdeg, Ingdir, lngmin,
depth(i), Magnitude(i), PST, azigap, dist,
resdul, herror, verror, stn
call TimeSinceEarthquake(year,month,day,hour,min,sec,

DayOfYear, TimeEq(i),Yngdeg,1Ingmin,latdeg,latmin,
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longitude(i), latitude(i))
write(10,*)TimeEq(i) ,Magnitude(i),depth(i),longitude(i),
latitude(i)
if(DayOfYear.gt.Ndays) go to 100
! Make series upto Ndays only
! (See parameter statement)
end do
format(' Reading ',al5,’'....’,%)
write(6,*) ' Done’
format(’ .’,$)
format(3i2, 1x, 2i2, f6.2, f3.0, al, f5.2, f4.0, al, f5.2,
f7.2, 2x, f5.2, i3, f4.0, f5.1, f5.2, 5.1, f5.1, a3)
close(50)
format(10f8.0)
Total_eq = 1
write(10,*) Total_eq
close(10)
write(6,*) Data_field, Bin_size
write(7,*) Data_field, Bin_size
read(1,*) Data_field, DepthLower, DepthUpper ! in km
write(6,*) Data_field, DepthLower, DepthUpper
write(7,*) Data_field, DepthLower, DepthUpper
read(1,*) Data_field, MaglLower, MagUpper P M_L
write(6,*) Data_field, MagLower, MagUpper
write(7,*) Data_field, MaglLower, MagUpper
read(1,*) Data_field, Start_time, End_time ! in hours
write(6,*) Data_field, Start_time, End_time
write(7,*) Data_field, Start_time, End_time
read(1,*) Data_field, Phase_shift ! in Degrees
write(6,*) Data_field, Phase_shift
write(7,*) Data_field, Phase_shift
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close(l)

write(7,*) ' Period(min) Phase_Shift Total_events'
Start_time = Start_time *60.*60. ! in Seconds
End_time = End_time *60.*60. ! in Seconds

Total_time = End_time - Start_time
Spectral_points = nint( Total_time/Bin_size )
Points_to_plot = 0
do i = 1, Spectral_points/2
Frequency(i) =(float(i)*86400.)/ ! Frequency in
& (Bin_size*float(Spectral_points)) ! cycles/day
if (Frequency(i) .1t. 36.) then
Points_to_plot = Points_to_plot + 1 ! Limit
else ! the Frequencies
write(6,*) ' Points to plot = ' ,Points_to_plot

go to 20 t to
end if ! 50 cycles/day
end do
20 write(6,110)
110 format(’ Computing....’,$)

do i = 1, Points_to_plot

Period = Bin_size * float(Spectral_points)/float(i)

Shift = amod(Start_time,Period) ! To force
if (Shift.gt.(Period/2.)) then ! the starting
Shift = (-1.0) * (Period - Shift) ! point to be

end if ! at a complete
Start_instant = Start_time + Shift ! ¢cycle
call EarthquakeDensity(Amp_max(i),Amp_min(i),Bin_size,

& Period,TimeEq,Magnitude,depth,End_time,Phase_max(i),

& Bin_start, Bin_end, MagLower, MagUpper,Phase_min(i),

& DepthlLower, DepthUpper, Total_eq, No_of_events,
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& Phase_shift, Start_instant, longitude, latitude)
write(6,120)
end do
format(' #',%)

write(6,*) ' Done'

close(7)

close(8)

close(9)

cpen(unit=2, file='outputft’)

do i = 1, Points_to_plot

write(2,*) Frequency(i), Amp_max(i), Phase_max(i),

& Amp_min(i), Phase_min(i)

end do

close(2)

! Plotting of Amplitude and Phase !

call plots(l, 4, 6)

call factor(0.75)

call note(500,25)

call note(750,25)

call note(1000,100)

call color(2)

call PLOTIT(Frequency,Amp_max,Points_to_plot,0.5,0.2,
& 6.0,3.0,'FREQ (CYCLES/DAY)',17,'POWER’,S)

call color(3)

call PLOTIT(Frequency,Amp_min,Points_to_plot,7.5,0.2,
& 6.0,3.0,'FREQ (CYCLES/DAY)',17, 'POWER’,S)

call symbo1(3.5,4.2,0.1,' BIN SIZE (MIN)= ’',0.,+17)

call number(999.,999.,0.1,Bin_size/60.,0.,2)

call symbo1(999.,999.,0.1,21,0.,1)

call symbo1(999.,¢79.,0.1,' DEPTH LOWER= ',0.,+14)

call number(999.,999.,0.1,DepthLower,0.,2)




call
call
call
call
call
call
call
call
call
call
call
call
call

symbo1(999.
number(999.
symbo1(999.
symbo1(999.

number(999

symbo1(999.
number(999.
symbo1(999.
symbo1(999.
number (999.
symbo1(999.
number(999.
symbo1(999.

read(5,*)
call plot(0.,0.,999)

stop

end

,999.
,999.
,999.
»999.
.»,999.
,999.
»,999.
»999.
,999.
,999.
,999.
,999.
,999.
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.1," DEPTH UPPER= ',0.,+14)
.1,DepthUpper,0.,2)
.1,21,0.,1)

.1," MAG LOWER= ',0.,+12)
.1,MaglLower,0.,2)

.1,
.1,MagUpper,0.,2)
.1,21,0.,1)

.1,' START POINT= ’,0.,+14)
.1,Start_time/3600.,0.,0)
.1,
.1,End_time/3600.,0.,0)
.1,21,0.,1)

MAG UPPER= ',0.,+14)

END POINT= ',0.,+13)
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subroutine EarthquakeDensity(Amp_max,Amp_min, Bin_size,

o o Ro o

real
real
real

real

Period, TimeEq, Magnitude, depth, End_time, Phase_max,

Bin_start, Bin_end, MaglLower, MagUpper, Phase_min,

DepthLower, DepthUpper, Total_eq, No_of_events,

Phase_shift, Start_time, longitude, latitude)

TimeEq(1l), Magnitude(l), depth(l), No_of_events

DepthLower, DepthUpper, MagLower, MagUpper

Bin_start, Bin_end, Psuedo_amp(100), Phase
langitude(l), latitude(l), Events_info(36,400,6)

integer Total_eq, Phase_counter, events

Phase_counter = 0

Time_shift = 0.0

Bin_width = Bin_size
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Shift_time = 360. / Phase_shift ! Convert Degrees in time
events = 0
if( Phase_counter .ge. nint(Shift_time) ) go to 30
Phase_counter = Phase_counter + 1
Time_shift = float(Phase_counter-1) * Period/Shift_time
Total_events = 0.0
Bin_counter = 1.0
Bin_start = Start_time + Period*(Bin_counter-1.0)
+ Time_shift
Bin_end = Bin_start + Bin_width
call CountEvents(No_of_events, Time.q, Magnitude, depth,
Bin_start, Bin_:nd, MagLower, MagUpper, DepthLower,
DepthUpper, Total_eq, longitude, latitude, Period,
Events_info, Phase_counter, events)
Total_events = Total_events + No_of_events
events=nint(Total_events)
if((Bin_end+Period+8in_width).gt. End_time) then
Psuedo_amp(Phase_counter) = Total_events /
(Bin_width*Bin_counter)
write(7,*) Period/60., Phase_counter*Phase_shift,
Total_events/Bin_counter
else
Bin_counter = Bin_counter + 1.0
go to 20
end if
go to 10
Amp_max = Psuedo_amp(1)
Amp_min = Psuedo_amp(1l)
Phase_max = 0.0

Phase_min = 0.0

do i = 2, nint(Shift_time)
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1f( Psuedo_amp(i) .gt. Amp_max) then
Amp_max = Psuedo_amp(i)
Phase_max = float(i)*Phase_shift ! in Degrees
end if
if( Psuedo_amp(i) .1t. Amp_min ) then
Amp_min = Psuedo_amp(i)
Phase_min = float(i)*Phase_shift ! in Degrees
end if
end do
do 1+ = 1, Phase_counter
if (Period.gt.3315. .and. Period.1t.3330.) then
if (Psuedo_amp(i).eq.Amp_max) then ! 0S2
do j = 1, events

write(8,*) (Events_info(i,j,k), k= 1, 6)

end do
end if
end if
if (Period.gt.2580. .and. Period.1t.2600.) then
if (Psuedo_amp(i).eq.Amp_max) then ! 0T2

do j = 1, events
write(9,*) (Events_info(i,j,k), k= 1, 6)
end do
end if
end if
end do
return
end
2 R R R R 2222222222322 22222222222 XXX 2222222222222 2222222 d2f 222 2R 222}
subroutine CountEvents(No_of_events, TimeEq, Magnitude,
& depth,Bin_start, Bin_end, MagLower, MagUpper, Depthlower,
& DepthUpper, Total_eq, longitude, latitude, Period,
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& Events_info, Phase_counter,events)
real TimeEq(l), Magnitude(l), depth(l), No_of_events
real DepthLower, DepthUpper, MaglLower, MagUpper, Period
real Bin_start, Bin_end, longitude(l), latitude(l)
real Events_info(36,400,6)
integer Total_eq, Phase_counter, events
No_of_events = 0.0
do j = 1, Total_eq
if(TimeEq(j).gt.Bin_start .and.
& TimeEq(j).le.Bin_end)then
if (depth(j).ge.DepthLower) then
if (depth(j).le.DepthUpper) then
if (Magnitude(j).ge.MagLower) then
if (Magnitude(j).le.MagUpper) then
No_of_events = No_of_events + 1.0

events = events + 1

Events_info(Phase_counter,events,l) = TimeEq(j)/60.
Events_info(Phase_counter,events,2) = Magnitude(j)
Events_info(Phase_counter,events,3) = depth(j)
Events_info(Phase_counter,events,4) = longitude(j)
Events_info(Phase_counter,events,5) = latitude(j)
Events_info(Phase_counter,events,6) = float(j)
end if
end if
end if
endif
end if
end do
return

end
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subroutine TimeSinceEarthquake(year,month,day,hour,min,sec,
& DayOfYear, TimeEq, 1ngdeg, 1ngmin, latdeg, latmin,
& longitude, latitude)

real sec, TimeEq, longitude, latitude, 1ngdeg, Ingmin

real latdeg, latmin

integer DaysInMonth(12)

integer year, month, day, hour, min

integer YearlInit, DayInit, DayOfYear

data DaysInMonth/31, 28, 31, 30, 31, 30, 31,

& 31, 30, 31, 30, 31/
YearInit = 89 ! Starting Year, 1989
DayInit = 291 ! Starting Day, October 18

DayOfYear = (year - YearInit)*365
if (mod(year,4).eq.0) DaysInMonth(2) = 29
do i = 1, month-1
DayOfYear = DayOfYear + DaysInMonth(i)
end do
DayOfYear = DayOfYear + day
longitude = Ingdeg + lngmin/60.
latitude = latdeg + latmin/60.
TimeEq = float(DayOfYear-DayInit)*24.* 60.* 60.

& + float(hour)* 60.* 60.

& + float(min) * 60.

& + sec

& - (4.* 60, + 15.34) ! Eq Origin Time
DayOfYear = DayOfYear- Daylnit
return
end

'Yy 2222222222222 222222222 AR LR R R LA 2222 2 R R R R R R R 2R 2R Rt L

subroutine PLOTIT(xplt,yplt,npt,Xorigin,Yorigin,
& Xlength,Ylength,xtitle,xchr,ytitle,ychr)
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integer xchr, ychr

real

xp1t(1), yplt(l), Xlength, Ylength, Xorigin, Yorigin

character xtitle, ytitle

call
call

call
call

call

call

call

plot(Xorigin,Yorigin,-3)

scale(xplt, Xlength, npt,+1)

scale(yplt, Ylength, npt, +1)

axis(0.,0.,xtitle,-xchr,Xlength,0.,xpl1t(npt+1),
xplt(npt+2))

axis(0.,0.,ytitle,+ychr,Ylength,90.,yplt(npt+l),
yplt(npt+2))

line(xplt, yplt, npt, 1, 0, 1)

plot(-Xorigin,-Yorigin,-3)

return

end

1222232222222 X222 X2 222222t 22l it il al itz g2
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