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Abstract 

The Retinoblastoma protein (pRB) is a key regulator of cell proliferation in the G1 

phase of the cell cycle. The LxCxE binding cleft is a highly conserved region of pRB. Using 

a knock-in mouse model, called Rb1
∆L

, with disrupted pRB and LxCxE interactions, our lab 

has shown that epithelial cells from Rb1
∆L/∆L

 mice do not respond to TGF-β1 mediated 

growth arrest. Using shRNAs to deplete the expression of components of LxCxE motif 

containing complexes, data showed that SAP18 is not involved in TGF-β1 mediated growth 

arrest. However, depletion of SAP30 and MTA2 compromised TGF-β1 mediated growth 

arrest. Furthermore, depletion of MTA2 resulted in derepression of E2F target genes in 

response to TGF-β while depletion of SAP30 repressed the expression of E2F target genes.  
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1 Introduction  

1.1 Retinoblastoma; the first tumor suppressor to be 

identified  

1.1.1 Retinoblastoma and RB1 Discovery 

Before the “two hit” hypothesis proposed by Knudson, it was believed that a large 

number of mutations are required for tumorigenesis. Using the retinoblastoma cancer 

model, Knudson proposed that this disease could arise from as few as two mutations. He 

proposed that in familial form of retinoblastoma, in which a germline mutation is present, 

a second somatic mutation is required for tumorigenesis whereas in sporadic 

retinoblastoma, both somatic mutations are required for tumorigenesis (1). This notion 

was supported by the fact that sporadic cases have a later onset (1). A decade later, 

several studies cloned a locus containing the product of retinoblastoma susceptibility 

gene (pRB) and mapped the gene on chromosome 13 (2-5). Studies conducted after 

cloning of the RB1 gene showed that pRB is a nuclear phospho-protein with the ability to 

bind to DNA (6-8). In addition, the germline mutation in a single allele of RB1 promoted 

a loss of heterozygosity, a chromosomal event that results in loss of the entire gene, 

confirming Knudson’s two hit hypothesis (9).  

With the emergence of transgenic mouse models, three independent studies 

reported that heterozygous mice for RB1 did not develop retinoblastoma (10-12). More 

importantly, these animals survived and did not show any overt phenotype except low-
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penetrance pituitary tumour formation reported by Jacks and colleagues (10). The RB1 

null mice died in the early embryonic stages due to apoptosis in the nervous system (10-

12). These findings led to the discovery of other members of pocket protein family and 

the suggestion that pRb function can be compensated by other pocket protein family 

(p107 and p130) in mice. Development of the first animal model with Rb1/p107 null cells 

revealed evidence for the compensation of the pocket proteins family as these mice 

developed retinoblastoma (13). Since the discovery of RB1, many studies have examined 

different roles for pRB in cancer progression and have expanded our knowledge of 

different pRB functions. 

1.1.2 Structure of pRB 

pRB contains 928 amino acids, and consists of three domains, the N- terminal 

domain, the C-terminal domain and a “small pocket” linker domain. This pocket domain 

contains two major domains, A and B, which are linked by a spacer region. Many 

proteins such as LxCxE (Leu-X-Cys-X-Glu; X= any amino acid) partners, E2 promoter 

binding factor (E2F) and cyclin dependent kinase (CDK) complexes bind to the small 

pocket domain (14). The small pocket together with the C-terminal domain creates the 

“large pocket” which is required and sufficient for the ability of pRB to induce cell cycle 

arrest (15, 16).  

The LxCxE binding cleft in the small pocket region is one of the most highly 

conserved regions of pRB (17). This cleft was initially identified as a contact site for 

LxCxE motifs in viral oncoproteins such as simian virus 40 (SV40) large T antigen, 

adenovirus E1A and human papillomavirus E7 (HPV E7) (18, 19). This cleft interacts 

http://www.allacronyms.com/E2_promoter_binding_factor/abbreviated
http://www.allacronyms.com/E2_promoter_binding_factor/abbreviated
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with over 30 cellular proteins. Many of these proteins have the ability to modify 

chromatin, including Histone deacetylase 1/2 (HDAC1/2), DNA methyltransferases 1 

(DNMT1), Brahma Related Gene 1 (BRG1) (20) (Figure 1-3). The majority of research 

in the pRB field has focused on the role of E2F transcription factors in pRB`s tumor 

suppressor function with little focus on how proteins with LxCxE motif contribute to this 

function. This thesis focuses on an aspect of how these proteins with LxCxE motif 

contribute to pRB`s ability to act as a tumor suppressor.  
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Figure ‎1-1 Domain structure of pRB 

The domain structure of pRB is shown with the large pocket, small pocket and C-

terminal regions. pRB binds to over one hundred protein partners and mediates 

transcriptional regulation of hundreds of target genes. 
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1.1.3 E2F transcription factors  

1.1.3.1 Structural features of E2Fs 

The protein-protein interactions between pRb and E2F transcription factors are 

well characterized. E2Fs are a family of transcription factors with many common 

features. They are divided into two categories based on their transcriptional activity: 

activator E2Fs and repressor E2Fs. Activator E2Fs consist of E2F1, E2F2 and E2F3a 

while E2F3b, E2F4, E2F5, E2F6, E2F7 and E2F8 are classified as repressor E2Fs (21). 

All E2Fs except E2F7 and E2F8 interact with dimerization partner (DP) proteins 

through the dimerization domain. DP proteins are required to enhance DNA binding 

activity of E2Fs (22-24). There are three different DP proteins (DP1, DP2/3, DP4) but not 

much is known about their activity (25). E2F subunits determine the specificity of 

E2F/DP complex rather than DP subunits (25). E2F-DP interactions are necessary for 

E2Fs function, as E2F1-6 are not capable of interacting with deoxyribonucleic acid 

(DNA) without dimerization. E2F7 and E2F8 contain two DNA binding domains 

allowing them to interact with DNA independently of DP proteins (26, 27). E2F1, E2F2 

and E2F3a are structurally similar and share many domains such as the transactivation 

domain. This domain is responsible for E2F target genes` activation by recruiting the 

transcription machinery such as transcription factor II D (TFIID), p300 and 

triiodothyronine receptor auxiliary protein (TRAP) to E2F target genes promoters (28-

30). Pocket proteins also interact with this domain to block its ability to drive 

transcription of E2F target genes (31, 32). E2F 6-8 do not contain a transactivation 

domain and act as a constitutive repressor independently of pocket proteins (21).  



6 

 

1.1.3.2 E2F binding sites of pRB  

pRB contains two distinct binding sites to interact with E2F1: The large pocket 

and the C-terminal region of pRB (33). The large pocket region, also called the “general 

site” of pRB, interacts with the transactivation domain of E2F1-4. The C-terminal region 

of pRB, also known as the “specific site”, uniquely binds to the marked box domain of 

E2F1 (34). The ‘general site’ functions in proliferative control while the ‘specific site’ 

functions in E2F1 induced apoptosis (33-35). However, the exact mechanism by which 

specific site regulates E2F1 induced apoptosis remains to be investigated. Moreover, 

E2F1-pRB complex through specific site showed low affinity for the canonical E2F 

recognition sequence (33) and was resistant to disruption by E1A infection and CDK 

phosphorylation (36). These data suggest that this complex is regulated through distinct 

mechanisms and functions in nontraditional pathways compared to other E2F-pRB 

complexes.  

1.1.3.3 Roles of E2F transcription factors  

Multiple gene targeted mouse models have been developed to investigate the role 

of each individual E2F. The data showed that all the single knockout mice are viable 

suggesting that none of the E2Fs is required in development. However, there are some 

defects in different tissue for each knockout suggesting that E2Fs may have tissue 

specific roles (21). For instance, E2F4
-/-

 mice show maturation defects in hematopoietic 

lineages and E2F2
-/-

 mice show a higher activity of T-Cell receptor signaling leading to 

development of autoimmune diseases (37, 38).  
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Although activator E2Fs appear to have redundant roles in proliferative control, 

E2F1 shows a unique connection to apoptosis. This unique function was discovered by 

the fact that E2F1 null mice showed a defective apoptosis in their lymphocytes (45). 

More importantly, none of the other E2F knockout mice showed any defect in apoptosis 

suggesting that this is a unique function of E2F1(38-44). During DNA damage, E2F1 

effectively activates an apoptotic program through the activation of p53 or its homologue 

p73 (46-48). It has been shown that E2F1 activates a series of apoptotic targets such as 

the p19-alternate open reading frame (ARF), which is responsible for inhibiting the 

degradation of p53 (49). E2F1 also acts to induce apoptosis through the direct activation 

of p73 (50).  

1.1.4 Mechanisms of pRB-mediated gene repression  

Briefly, pRB binds to E2Fs and inhibits their transcriptional activity to induce G1 

arrest. In the G1 phase of the cell cycle, pRB is phosphorylated and bound to E2Fs and 

co-repressors, which results in transcriptional repression of S phase entry genes. During 

late G1, the phosphorylation of pRB by CDK4/6/Cyclin D complexes alleviates 

repression of E2F. Further phosphorylation of pRB by CDK2/Cyclin E drives the cell 

into S-phase (64) (Figure 1-4). 

In addition to pRB and E2Fs interactions, which masks the transactivation domain 

of E2F and inhibits E2F transcriptional activation, pRB and other members of the pocket 

protein family recruit multiple co-factors that change the activation state of target genes 

(52). The best-characterized interactions occur between pRB and HDACs. HDACs are 

responsible for removing acetyl groups from activated histones to induce transcriptional 

http://en.wikipedia.org/wiki/P14arf
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repression (53). The pRB-HDAC complex strengthens pRB-E2F mediated repression 

during the G1 phase of the cell cycle (54, 55, 51 and 56). pRB also interacts with other 

proteins to regulate transcription and affect chromatin dynamics. One such example is 

DNMT1, which interacts with pRB to promote DNA methylation and repress 

transcription (57). RBP2 is another pRB binding protein involved in chromatin 

regulation. This protein is a demethylase, which removes methyl groups of an active 

transcription mark, named trimethylated H3K4 (58-61). Further experiments showed that 

Rbp2 knockdown in Rb1 null MEFs opposes proliferation of these cells while promoting 

differentiation (62).  

As mentioned here, some LxCxE binding proteins can change the activation state 

of target genes. However, the exact mechanisms by which these proteins change the 

transcriptional program remains to be discovered. 
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Figure ‎1-2 The proposed model of pRB function 

In the G1 phase of the cell cycle, hypophosphorylated pRB acts as a tumor suppressor by 

binding to E2Fs and inhibiting transcriptional activation of genes required for S phase 

entry. When cells progress to the S phase, CDK-cyclins complexes phosphorylate pRB 

and inhibit its activity. The phosphorylation of pRB releases E2F-DP, allowing them to 

activate the transcription of genes, which are required for S phase entry.  

 

 

 

 

http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Cyclin
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1.1.5 Biological functions of pRB  

1.1.5.1 Regulation of cell cycle  

In the G1 phase of the cell cycle, hypophosphorylated pRB masks the 

transactivation domain of E2Fs bound to their DP protein partners, which blocks the 

activation of E2F target genes such as CCNE1, CCNA2 and E2F1 (63). pRB-E2F-DP 

complexes are also able to recruit chromatin regulatory factors (CRFs) to further repress 

the transcription of these genes (64). As cells progress into the S phase, CDK/Cyclin 

complexes phosphorylate pRB, leading to release of E2F/DP complexes. Free E2Fs drive 

the transcription of E2F target genes required for the S phase entry.  

1.1.5.2 pRB and controlling cell death 

It is believed that pRB has a dual role in apoptosis through multiple mechanisms 

(65, 66). The first evidence for the anti-apoptotic role of pRb rose from an experiment 

where Rb null mice showed an increased level of apoptosis (10). However, recent studies 

revealed that this phenotype is due to the deregulation of cell cycle regulators and 

overproliferation of the placenta which result in hypoxia in embryonic tissues and is not 

cause by E2Fs (67-69). In contrast, recent studies have shown that pRB has an apoptotic 

role in highly proliferative cells (65, 70 and 71). In these studies, the 

hyperphosphorylated pRB forms a complex with E2F1 and histone acetyltransferase 

p300/CBP-associated factor (P/CAF) at the promoter of proapoptotic genes such as 

caspase7 and p73 driving their expression to induce apoptosis (65). Moreover, a recent 

study revealed another mechanism for apoptotic activity of pRB. This study showed that 
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pRB expression increases tumor necrosis factor-α (TNF-α)-induced apoptosis, which 

depends on its localization to the mitochondrial outer membrane and acts in a Bax-

dependent manner (72). 

1.1.5.3 pRB and the maintenance of genome stability 

 pRB is also able to both prevent and respond to genotoxic stress. A recent study 

showed that disruption of pRB function by oncogenes could cause replicative stress 

during the S phase of the cell cycle (73). This study showed that pRB inactivation by 

oncoproteins results in an uncoordinated S phase entry. This leads to increased 

replication stress which ultimately causes DNA damage and genome instability (73). 

Many of E2F target genes involved in chromatin condensation, spindle 

checkpoint and chromosome segregation have been identified (74, 75). Mitotic arrest 

deficient 2 (Mad2) protein, which is responsible for proper chromosome segregation, is 

an example of direct E2F target gene. pRB inactivation deregulates the expression of 

Mad2, which leads to mitotic defects and aneuploidy (76). These data suggest that pRB 

has essential roles in maintaining genome stability beyond its G1/S function.  

 pRB is also essential for maintaining chromosome stability and preventing tumor 

growth in mice. Using an LxCxE mutant mouse model, our lab showed that the LxCxE 

motif of pRB recruits the chromosome associated protein D3 (CAP-D3) protein to the 

centromeric heterochromatin. We also showed that recruitment of CAP-D3 to this region 

is required for condensin II complex formation and maintaining chromosome stability 

(77). Furthermore, these results were supported by findings from other research groups 

using fruit flies and human retinal cells (78, 79).  
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1.1.5.4 The role of pRB in senescence  

pRB plays an essential role in senescence through the stable repression of E2F 

target genes and heterochromatin formation (80, 81). Studies over several years have 

revealed how pRB contributes to senescence. It has been shown that the activator E2Fs 

are recruited to promyelocytic leukemia (PML) nuclear bodies by the tumor suppressor 

PML. This leads to transcriptional repression of E2F target genes, which causes stable 

cell cycle arrest in a pRB-dependent manner (82). These findings provide an explanation 

for how pRB mediates the stable repression of E2F target genes in oncogene-induced 

senescence, but how pRB interacts with other co-factors to perform its role in inducing 

stable cell cycle exit remains to be addressed.   

Recently, a study showed that large tumor suppressor kinase 2 (LATS2 kinase) 

mediates the formation of p130/DP, pRB, E2F and MuvB (DREAM) complexes at E2F 

target gene promoters. The formation of this complex represses transcription of E2F 

target genes and induces senescence (83). In addition, LATS2 kinase phosphorylates dual 

specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and in turn 

phosphorylates LIN52, which is required for DREAM assembly (84). It is interesting to 

mention that p130 and p107 alone are not sufficient for the oncogenic Ras induced 

senescence (85). However, p130 and p107, but not pRB, were found in the DREAM 

complex (86). These findings provide a mechanism for oncogene induced senescence. 

pRB could be responsible in recruiting p107 and p130 to the DREAM complex in 

oncogene induced senescence; however, how pRB contributes to this mechanism needs to 

be investigated.  
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1.1.6 pRB in breast cancer 

pRB is the central regulator of the cell cycle that is inactivated in the majority of 

human cancers. Primary tumors analyses have shown that 20-35% of tumors lose pRB 

expression and 7-37% of tumors show loss of heterozygosity or other alterations of the 

RB1 locus (87-90).  

In breast cancer, pRB function is abrogated via multiple mechanisms such as loss 

of p16ink4a, which promotes cell growth (91, 92). Microarray analyses have revealed 

that pRB/E2F complex regulates approximately 150 target genes involved in cell cycle 

control (93). Furthermore, it has been shown that RB1 deficiency results in deregulation 

of several E2F target gene such as proliferating cell nuclear antigen gene (PCNA), 

CCNE1 (Cyclin E1 gene) and CCNA2 (Cyclin A2 gene), all of which are required for cell 

cycle progression (94). It is logical that elevated expression levels of these target genes 

are responsible for the accelerated proliferation rates observed in RB1-deficient breast 

cancer cells and tumors.  

In addition, the influence of RB1 status on disease severity has been investigated 

in a broad range of tumors. In the context of breast cancer, these analyses have revealed 

that RB1 loss correlates with advanced disease and often estrogen receptor (ER)-negative 

disease (95, 96). Although there are many data showing E2F-pRB mediated gene 

expression changes in breast cancer cells and tumors, the main question of whether direct 

RB1 loss or various upstream effects on the pRB pathway are responsible for these 

changes in gene expression remains to be addressed. Answering this question could lead 

to improved treatment for breast cancer patients.  
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1.1.7 Importance of LxCxE interactions in pRB function 

The majority of research in the pRB field has focused on its role in binding and 

inhibiting E2F transcription factors, with little focus on the role of LxCxE-pRB 

interactions in pRB`s tumor suppressor function. The LxCxE binding motif interacts with 

many factors (20). Initial in vitro studies have showed that the mutation of the LxCxE 

binding cleft prevents pRB induced growth arrest in fibroblasts. However, the LxCxE 

mutant was sufficient to maintain growth arrest in terminally differentiated muscle tissue 

(97). Later study by La Thangue group called into question the effect of LxCxE 

interactions in growth arrest, as LxCxE mutants were dispensable for growth arrest (98). 

Thus, the development of mouse models that disrupt the interaction between pRB and 

LxCxE binding cleft were necessary to study the function of this domain in multiple 

cellular contexts in vivo. 

In order to understand the importance of the LxCxE binding cleft in pRb, our lab 

created a gene-targeted mouse model. This mouse, called Rb1
ΔL

, carries three 

substitutions which disrupt the interaction between pRb and LxCxE containing proteins, 

whereas interactions with other molecules, such as E2F transcription factors, are intact 

(99) (Figure 1-5). In accordance with La Thangue group study, MEFs isolated from 

Rb1
ΔL/ΔL 

mice have the ability to maintain proliferative control in asynchronous growing 

cultures, in response to serum starvation and confluence arrest (99). Furthermore, these 

mice are viable, fertile and do not develop spontaneous tumor.  

In the context of tumor initiation, Rb1
ΔL/ΔL 

showed several mitotic defects leading 

to chromosomal instability, which resulted in tumour formation in conjunction with the 
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p53 null model (77, 99). It has been demonstrated that CAP-D3, the condensin II 

complex subunit, which is essential for proper chromosome segregation during mitosis, 

interacts with pRB through the LxCxE binding cleft (78). This provides a mechanistic 

explanation for genomic instability seen in the study by our lab (85).  

Finally, in the context of cellular senescence, pRB recruits different co-factors 

from normal physiological G1 arrest (208, 213). Using the Rb1
ΔL/ΔL

 mouse model, our 

lab showed that LxCxE mutants prevent Ras-induced senescence (100). Although no 

specific LxCxE partners have been identified, Jarid1a (Rbbp2) was shown to regulate 

senescence by interaction with pRB. Even though it has not been determined whether 

Jarid1a interacts with pRB through the LxCxE binding cleft, this presents a possible 

mechanism of regulation (101).  
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A      B 

 

 

Figure ‎1-3 The knock-in mouse strain with disrupted LxCxE interactions 

A) pRB interaction with the human papillomavirus (HPV) E7 through the LxCxE binding 

cleft. Amino acids mediating the interaction are shown in turquoise. The Rb1
∆L 

mutation 

changes these residues to alanines (red) which results in disrupting the pRB-LxCxE 

interaction  

B) ∆LxCxE mice are viable and develop relatively normally. (Adopted from Francis, S., 

MCB 29: 4455-66) 
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1.1.8 LxCxE binding partners 

As mentioned above, the LxCxE binding motif interacts with many factors (20). 

This introduction focuses on the complexes relevant to this thesis (Table 1-1).  

1.1.8.1 Sin3 complex 

Sin3 is a nuclear protein, which consists of Sin3A and Sin3B isoforms in human 

(102). In addition to these isoforms, splice variants occur in these genes, adding more 

complexity to these isoforms (103). Structural analyses of Sin3 have revealed that there 

are four conserved regions within this protein called paired amphipathic helix (PAH) 

domains which are responsible for protein-protein interactions (104). Another conserved 

region in Sin3 is the HDAC interacting domain (HID) located between PAH3 and PAH4 

domains. Both HID and PAH domains are essential for transcriptional repression activity 

of Sin3 (105, 106). 

The Sin3 complex consists of several components including retinoblastoma 

associated protein 46 (RbAp46), RbAp48, HDAC1, HDAC2, Sin3 Associated 

Polypeptide-30 kDa (SAP30) and Sin3 associated polypeptide-18 kDa (SAP18) (107). 

RbAp46 and RbAp48 are highly similar in their sequence (90% homology) (108-110). 

Furthermore, they have been identified using immobilized pRB (108, 109). Interestingly, 

these proteins are capable of interacting with histone H4 and H2A suggesting that they 

may be involved in Sin3 complex interaction with histones (111). 

SAP30 is one of the unique components of Sin3 complex. SAP30 is a highly 

conserved protein from yeast to human. There are several biochemical evidences 
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suggesting that this protein is a component of the Sin3/HDAC complex in yeast and 

mammalian cells (112). In mutational analysis of yeast, disruption of the SAP30 shows 

the similar phenotypes as the strains with Sin3 disruption, suggesting that SAP30 plays 

an essential role in the Sin3 complex (112). SAP30 directly binds to multiple subunits of 

the Sin complex, including RBBP4/7 and HDAC1, suggesting that SAP30 may play a 

role in stabilizing the complex (112). In addition to serving a role a stabilizing molecule 

in Sin3 complex, several studies indicate that SAP30 may serve as a bridging protein 

between the Sin3 complex and other transcription factors and corepressors such as 

Papillomavirus binding factor (PBF) and Yin Yang 1 (YY1). PBF acts as a repressor of 

HPV transcription through the recruitment of the Sin3/HDAC complex to the promoters 

of certain HPV proteins via direct interaction with SAP30 (113). SAP30 also interacts 

with YY1 and enhances YY1 induced repression through direct recruitment of HDAC1 

(114, 115). 

 SAP18 is another core protein in the Sin3 complex, which directly interacts with 

HDAC1 (116). SAP18 has been identified to be a part of other complexes such as 

apoptosis-and splicing-associated protein (ASAP).This complex also contains an RNA-

binding protein (RNPS1) and a caspase (Acinus) (117). In Drosophila melanogaster, 

SAP18 plays an important role in mRNA splicing, by interacting with the homolog of 

Pinin (dPnn) (117). More recently, another component of the Sin3 complex has been 

identified in yeast and mouse, called the suppressor of defective silencing 3 (SDS3) (118-

120). SDS3 is an integral component of the Sin3 complex, which interacts with HID 

domain of Sin3 and regulates the catalytic activity of the Sin3 complex (121, 122). 
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Furthermore, depletion of SDS3 compromises deacetylation of pericentric 

heterochromatin, leading to aneuploidy and defective karyokinesis (123). 

1.1.8.2 Mi-2/NuRD (nucleosome remodeling and deacetylation) 

complex 

Mi-2/NuRD and Sin3 complexes share several components including RbAp46, 

RbAp48, HDAC1 and HDAC2. In addition, Mi-2/NuRD complex contains other subunits 

such as Mi-2α, Mi-2β, p66α, p66β and metastasis associated 1 family member 2 (MTA2) 

(124-126). Mi-2 proteins contain chromodomain and switching defective/sucrose non-

fermenting (SWI2/SNF2)-type helicase/ATPase domains with chromatin remodeling 

activity (127, 128). p66α and p66β directly interact with the methyl CpG binding 

proteins, MBD2b and MBD3. However, their exact role in humans remains to be 

investigated (129).  

The MTA protein family consists of three proteins including MTA1, MTA2 and 

MTA3 (130). MTA proteins localize to the nucleus except MTA1, which localizes to 

both the cytoplasm and nucleus (130-132). This family contains several common 

domains including the SANT (SWI, ADA2, N-CoR and TFIIIB-B) domain which is 

involved in DNA binding, bromo-adjacent homology (BAH) domain which is essential 

for protein-protein interactions and the egl-27 and MTA1 homology (ELM) domain (131, 

132). These common domains suggest that MTA proteins may function in signal 

transduction and transcriptional regulation.  
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MTA2 is a component of the NuRD complex, which represses transcription and 

exerts HDAC activity (124). MTA2 is the first member of MTA family to be found in the 

NuRD complex. This protein contains putative zinc fingers and leucine zipper domains 

(133). MTA2 has been identified in association with HDAC and p53, which results in 

deacetylation of p53 and repression of p53 dependent transcription (134).  

1.1.8.3 C-terminal binding protein (CtBP) complex 

It has been shown that pRB recruits histone deacetylase to mediate transcriptional 

repression of E2F target genes. However, many genes subjected to E2F-pRB mediated 

repression are not activated following “trichostatin A” treatment, a histone deacetylase 

inhibitor, suggesting additional factor may contribute to the repression.  

CtBP isoforms one, two and three are cellular proteins that bind to the C-terminal 

region of the human adenovirus E1A proteins (135-137). CtBP proteins are highly 

conserved among invertebrates and vertebrates (137). CtBP proteins play an important 

role in development and oncogenesis (137). CtBP protein is recruited by a protein with 

PLDLS motif to the promoter of genes such as Knirps and Snail to repress transcription 

of these genes in fruit flies (136, 138). In addition, it has been shown that mammalian 

CtBP protein is recruited to E2F target genes promoters through an interaction with the 

C-terminal interacting protein (CtIP) (135). Since CtIP does not directly bind to DNA, it 

appeared that CtIP bridges CtBP to target promoters by interaction with pRB or p130 and 

then E2F. However, the exact mechanism by which CtBP represses transcription of E2F 

targets needs to be investigated. 
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Table ‎1-1 pRB-LxCxE chromatin regulating complexes 

 

Complex     Subunits 

Sin3 SAP18 RBP1 Sin3 
HDAC

1/2 

RBBP

4/7 
SDS3 ING1/2 SAP30 

NuRD LSD1 MTA2 Mi-2a/b 
HDAC

1/2 

RBBP

4/7 
p66a/b MBD3b MBD3a 

CtBP LSD1 CtIP CDYL 
HDAC

1/2 
CtBP GLP CoREST LCoR 
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1.2 TGF-β, a highly pleiotropic cytokine: An overview  

Transforming growth factor-β (TGF-β) isoforms one, two and three are members 

of a large family of cytokines with similar structure. TGF-β regulates different biological 

functions such as apoptosis, cell growth, T-cell activation and differentiation (139). TGF-

β isoforms act as tumor suppressors whose growth suppressive function is overcome 

during cellular transformation (140, 141). In contrast, TGF-β also regulates processes 

such as cell motility, which can stimulate metastatic dissemination of cancer cells (142). 

From this perspective, understanding the mechanism of action of TGF-β signaling holds 

great promise for developing new cancer therapies. 

1.2.1 Overview of signal transduction by TGF-β 

TGF-β initiates signaling cascade by inducing two serine/threonine kinase 

receptors. Upon ligand binding, the TGF-β type II receptor (TβIIR) forms a complex with 

the TGF-β type I receptor (TβIR) and phosphorylates TβIR at its glycine-serine-rich 

domain (GS domain). Activated TβIR in turn phosphorylates and activates receptor-

regulated Smad (R-Smad) proteins (143-145). Phosphorylated R-Smads then bind to 

Smad4 through their mad homology 2 (MH2) domains, and translocate into the nucleus 

(146-149). Once in the nucleus, these complexes mediate the expression of different 

genes such as plasminogen-activator inhibitor-1 (PAI-1), p15, p21 and collagen by 

interacting with various transcription factors and co-factors (150-154). (Figure 1-1) 
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             Figure ‎1-4 The current model of TGF-β‎signaling‎in‎the‎cell‎cycle 

In the presence of TGF-β ligand, TβIR is phosphorylated which allows it to 

phosphorylate and activate R-Smads. Activated R-Smad then binds to co-Smad and 

translocates into the nucleus. Once in the nucleus, Smad4 recruits other cofactors, which 

results in regulation of many genes and dephosphorylation and activation of pRB in the 

G1 phase of the cell cycle. 
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1.2.2 Components of TGF-β signaling pathways  

1.2.2.1 TGF-β ligands and receptors 

The TGF-β superfamily includes over 30 polypeptides. They are divided into two 

subfamilies: the TGF-β subfamily which includes TGF-βs (1-3), activins (A, B), nodal 

and myostatins, and the bone morphogenetic protein (BMP) subfamily which includes 

BMPs (1-9), Anti-Müllerian hormone (AMH) and growth and differentiation factors 

(GDFs) (155, 156). These ligands are synthesized as the C-terminal domain of a 

precursor molecule. The signal peptide region is cleaved before secretion and these 

cleaved cytokines remain inactive due to the function of the latency-associated peptide 

(LAP) (157-159). Once in the extracellular matrix (ECM), TGF-β is activated by 

proteases that remove LAP, resulting in the stable and active dimeric form of the TGF-β 

cytokine (146). 

TGF-β triggers signaling events by inducing heterodimerization of TβIR and 

TβIIR. Both receptors contain a single transmembrane domain, an N-terminal domain 

and a C-terminal domain (160). A complex of TβIR and TβIIR homodimers is formed 

after ligand binding creating a tetrameric structure. Once assembled, the constitutively 

active TβIIR phosphorylates TβIR at its cytoplasmic GS domain. Phosphorylation of the 

serine residues within the GS domain creates a docking site for R-Smads (161, 162). 
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1.2.2.2 Smad proteins 

1.2.2.2.1 Structure and diversity 

Smad proteins were originally identified in Drosophila melanogaster and 

Caenorhabditis elegans (163, 164). There are eight Smad proteins in mammals that are 

divide into three subtypes: R-Smads including Smad2 and Smad3 for TGF-β signalling 

pathways, Smad1, Smad5 and Smad8 for BMP signaling pathways, common-partner 

Smads (Co-Smads) such as Smad4 and inhibitory Smads (I-Smads) such as Smad6 and 

Smad7 (165-167). 

R-Smad and Smad4 proteins contain two conserved domains: The MH1 domain 

in the N-terminal region and the MH2 domain in the C-terminal region bridged by a 

linker region (168, 146). The MH2 domain in R-Smads contains a ‘SSXS’ motif 

phosphorylated by TβIR for Smad activation (143, 170 and 171). Smad4 does not contain 

the ‘SSXS’ sequence in its MH2 domain, Therefore, TβIR is not able to phosphorylate 

Smad4 (169, 172). The linker region contains a ‘PPXY’ motif, a regulatory site for Smad 

activation, which promotes Smad degradation via proteasomal machinery (146). I-Smads 

(Smad6 and Smad7) lack the MH1 domain and the ‘SSXS’ motif (173) (Figure 1-2). 
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  Figure ‎1-5 Diagrammatic representation of Smads 

The MH1 domain is shown in blue and the MH2 domain is shown in green. 

Phosphorylated serine residues in the SSXS motif of R-Smads are shown with asterisks. 

NLS: nuclear localization signal, NES: nuclear export signal, PY: PPXY motif (Adopted 

from Moustakas, A. et al. J Cell Sci (2001) 114: 4359-4369) 
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1.2.2.2.2 Mechanism of transcriptional regulation by Smads  

In resting cells, R-Smads are located in the cytoplasm and they interact with 

different proteins such as the Smad anchor for receptor activation (SARA). SARA binds 

to R-Smads to inhibit receptor interaction. This protein also prevents nuclear entry of 

unphosphorlated Smads by interacting with R-Smads (174, 175). Upon TGF-β 

stimulation, activated receptor complexes phosphorylate R-Smads at their ‘SSXS’ motif. 

In this stage, SARA mediates and facilitates the interactions between R-Smads and TGF-

β receptors. Once R-Smads are phosphorylated, they bind to Smad4 for nuclear entry and 

complex formation. There are several studies showing that Smad4 is essential for 

mediating of TGF-β signaling (149, 172, 176 and 177). For instance, TGF-β 

responsiveness is rescued by ectopic expression of Smad4 in a Smad4 null cell line, 

suggesting that Smad4 is required for TGF-β signaling (178). 

Once the complex is formed, R-Smads bind to the major groove of DNA. 

However, Smad2 and Smad4 do not bind to DNA (168, 179). A specific DNA sequence 

(5’- CAGAC-3’) termed as the Smad-binding element (SBE), is an essential factor in 

recognition of DNA by Smad complexes (150, 180 and 181). Many Smad target genes 

have SBEs in their promoters (182-184). Since Smads interact with SBEs with low 

affinity, DNA binding partners are required to make specific high affinity interactions of 

Smads and SBEs and drive transcriptional responses of Smads. Examples of these DNA 

binding partners are forkhead box H1 (FoxH1) family (e.g., Fast1), Rel/ nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) family (e.g., NF-κB2), 

runt-related transcription factor (Runx), E-box, p300, HDAC, Sloan-Kettering Institute 
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oncogene (Ski), SKI-like oncogene (SnoN) and E2Fs which regulate gene expression 

(185-193).  

1.2.3 Regulation of TGF-β signaling 

As a critical and important signaling pathway, the TGF-β superfamily signaling is 

tightly regulated to ensure a proper physiological response. Thus, there are several 

regulatory mechanisms for this pathway at multiple levels. 

1.2.3.1 Regulation of ligand 

TGF-β remains in an inactive form after secretion by binding to the LAP. TGF-β 

must cut off LAP to obtain its function (194). Many extracellular proteases such as 

thrombospondin-1, cathepsin D and matrix metalloproteinase 2 (MMP2) are responsible 

for this cleavage (195-197). 

1.2.3.2 Regulation of receptor activation 

There are many mechanisms involved in regulation of receptor activation. For 

instance, FK506-binding protein 12 (FKBP12) is able to terminate signal transmission by 

blocking the phosphorylation site of TβIR (198, 199). The internalization of receptors is 

another mechanism to regulate TGF-β signaling at the receptor level. This process occurs 

through two pathways: clathrin-mediated endocytosis of the receptors and lipid raft or 

caveolin-mediated endocytosis. In clathrin-coated endocytosis, vesicles bring the 

receptors to the cell surface in the absence of TGF-β. These vesicles also bring the 

activated receptor in close proximity to their R-Smad to facilitate their phosphorylation 



29 

 

(200-202). However, lipid rafts negatively regulate the receptors (200, 203). Upon ligand 

stimulation, the Smad7-WW-HECT domain E3 ligases complex interacts with the TGF-β 

receptors. This interaction induces lipid raft dependent endocytosis, causing receptor 

degradation by proteasomal machinery.  

1.2.3.3 Regulation of Smad activity and levels 

Smad activity and levels are tightly regulated by a variety of different 

mechanisms and complexes. For instance, phosphorylated R-Smads compete with the 

ErbB2/Her2-interacting protein (Erbin) to bind to Smad4 (204). Additionally, protein 

phosphatase, Mg
2+/

Mn
2+

 dependent, 1A (PPM1A) removes the phosphate group from 

nuclear R-Smads to inactivate and bring them back to the cytoplasm (205). Furthermore, 

I-Smads, Smad6 and Smad7, regulate TGF-β signaling. Smad6 is an inhibitory protein 

for the BMP signaling pathway whereas Smad7 functions in both the BMP and TGF-β 

signaling pathways (206, 207). Smad6 and Smad7 recruit E3 ligases for degradation of 

BMP and TGF-β receptors, respectively (208, 209). In addition, Smad6 and Smad7 

interfere with R-Smads for binding to the TβIR, inhibiting the phosphorylation of R-

Smads (206, 210). Interestingly, TGF-β activates the expression of Smad6 and Smad7 

providing a negative feedback loop (211, 206). 

1.2.4 Smad-independent signaling  

In addition to Smad-dependent signaling, there are several Smad-independent 

TGF-β signaling pathways through the crosstalk with other pathways. One example of 

these pathways is mitogen activated protein kinase (MAPK) family signaling pathways 



30 

 

(212). C-Jun N-terminal Kinase (JNK), extracellular substrate-regulated kinase (Erk) and 

p38 MAPK kinase pathways are examples of this family signaling pathway, which are 

activated by TGF-β. These signaling pathways can cause a variety of cellular responses 

including cell proliferation, apoptosis and differentiation (213). It has been demonstrated 

that TGF-β can activate p38 MAPK signaling independent of Smads (214). Although the 

exact mechanism of JNK, Erk or p38 MAPK activation by TGF-β is not well understood, 

one possible mechanism for JNK and p38 MAPK activation is through the TGF-β-

activated kinase 1 (TAK1) (215). TAK1 is one of the members of the MAPK kinase 

kinases (MAPKKKs) family which are responsible for activation of JNK and p38 MAPK 

in respond to a variety of stimuli such as TGF-β. It is also possible that TGF-β activates 

the NF-kB signaling pathway because TAK1 is able to phosphorylate and activate IkB 

kinase, which stimulates the NF-kB signaling. Further characterization of this network 

will provide more details and insights into the MAPK activation by TGF-β. 

TGF-β is also capable of activating Ras homolog gene-like (Rho-like) GTPases 

including Rac, RhoA, RhoB, NET1 (RhoA-specific guanine exchange factor) and Cdc42 

(216-219). These GTPases regulate many cellular events such as maintaining focal 

contacts, contractile stress fibers and cell motility. It has been shown that RhoA and its 

downstream signaling molecules such as p160ROCK have a critical role in the epithelial 

to mesenchymal transition (EMT) induced by TGF-β (217). 

1.2.5 Biological functions of TGF-β  

TGF-β isoforms play important roles in many cellular processes. Most 

importantly, TGF-β inhibits cell proliferation and regulates differentiation in different 
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cell types (220). TGF-β inhibits cell proliferation by Smad2 and Smad3 transcriptional 

program. Smads activate the expression of key cell cycle regulators such as CDK 

inhibitors, p15 and p21 (221-224). Additionally, TGF-β downregulates the expression of 

c-Myc. Downregulation of c-Myc results in induction of p15 and p21 expression (225, 

226). The result of all these transcriptional changes is blocking the activities of CDKs, 

which are required for the G1-S phase transition (Figure 1-1). 

TGF-β is also responsible for mediating the expression of genes responsible for 

ECM formation such as fibronectin, tissue inhibitors of metalloproteinases (TIMPs), PAI-

1, type I and type VII collagen (184, 227-230).  

TGF-β is also a key player in EMT (231). EMT is a complex process in which 

epithelial cells lose their cell-cell contacts, and begin to leave their community and spread 

into surrounding tissues (232). TGF-β mediates EMT by regulating transcriptional 

program of genes involved in this process such as Snail1, Twist1 and Cadherin-1(CDH1) 

(233, 234). These transcriptional changes are coupled by the phosphorylation of PAR6 

mediated by TβIIR to dissolve tight junctions and promote EMT (235).  

Lastly, TGF-β1 null
 
mice showed an excessive inflammatory response and 

increased levels pro inflammatory cytokine such as TNF-α and interferon-γ. These data 

suggest that TGF-β plays an important role in immune system by blocking pro 

inflammatory chemokine synthesis (236, 237).  
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1.2.6 Dual role of TGF-β in tumorigenesis  

In the early stages of cancer initiation, TGF-β acts as a tumor suppressor similar 

to its role in normal cells. However, in the later stages of cancer progression where 

genetic interruptions of the TGF-β signaling pathway occur, cancer cells lose their 

sensitivity to TGF-β mediated growth arrest. In this scenario, mutations of TGF-β 

signaling components, which disturb TGF-β mediated growth arrest role is thought to, 

cause a loss of proliferative control in cancer (142). However, it has been demonstrated 

that many tumor cells, which lack any mutations in TGF-β signaling pathway 

components also become refractory to TGF-β induced growth arrest and even, show 

severe phenotype changes seen in EMT (238,239). 

During cancer progression, crosstalk interactions of TGF-β pathway components 

with altered oncogenic signalling affect transcriptional responses to TGF-β (240). For 

instance, in pancreatic cancer cells with mutated Ras, the Smad3/TGF-β inducible 

early gene two (TIEG2) complex loses its ability to downregulate the expression of c-

Myc resulting in loss of TGF-β growth inhibition (240). Further investigations have 

revealed that the phosphorylation of TIEG2 by Erk prevents the binding of the Sin3A 

corepressor to the c-Myc promoter, which results in loss of growth control by TGF-β 

(241, 242). These studies suggested that the loss of Smad transcriptional responses is a 

key event by which TGF-β loses its growth inhibitory role in cancer (141). Additionally, 

TGF-β can promote tumor progression by inducing EMT through other signaling 

pathways such as phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) signaling, 

Notch signaling, RhoA, Rac1 and p38 MAPK (243, 216, 244).  
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In summary, lose of  TGF-β`s function  as a tumor suppressor at later stages of 

cancer progression through interactions with other oncogenic signaling pathways, leads 

to changes in the transcriptional regulation of Smads and their interacting proteins and 

induction of EMT. Since TGF-β plays a dual role in cancer, understanding of the exact 

mechanisms by which TGF-β acts as a tumor suppressor or tumor promoters will provide 

a great promise to develop new therapies for cancer patients with minimized unwanted 

side effects. This thesis will focus on understanding of TGF-β growth controlling 

mechanism to find better therapy for cancer patients. 

1.2.7 Mouse models of TGF-β in development and cancer 

To study the role and mechanism of TGF-β in development and cancer, a large 

number of mouse models have been developed. This introduction briefly focuses on 

gene-targeted disruptions of Smads and the gain and loss of function models of TGF-β 

receptors and ligands. 

To study the function of different TGF-β ligands and Smads, several knockout 

mouse models were developed. These studies uncovered that TGF-β2 null
 
mice have 

several developmental defects such as cardiac, spinal and pulmonary defects (245). These 

mice were also defective in processes such as ECM production, EMT and cell 

proliferation (245). TGF-β3 null mice also showed defects in EMT and abnormal lung 

development (246). Several knockout models of Smad proteins also have been developed 

which provide more insights into the function of these proteins. Smad2 and Smad4 null 

mice died early in the embryonic stage due to several developmental defects in 

gastrulation and anterior-posterior axis formation (247-250). Surprisingly, Smad3 
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knockout mice survived between 1-10 months after birth and then died due to the 

impaired mucosal immune response, wound healing, and skeletal development (251-253). 

Smad5 null mice also showed defects in angiogenesis and died at embryonic stage (254). 

Multiple mouse models also have been developed to study mammary gland 

development and cancer. Transgenic mice expressing an active form of TGF-β in 

mammary epithelium, mouse mammary tumor virus (MMTV)-Tgf-β1
223/225

, showed a 

hypoplastic mammary gland (255). In another study, mice expressing a dominant-

negative form of TβIIR also showed increased ductal extension through the end bud 

(256). These data suggest that TGF-β inhibits ductal growth and side branching during 

mammary gland development.  

Several studies have confirmed that TGF-β acts as a tumor suppressor in the 

mammary gland. For instance, in mice expressing MMTV-Tgfβ1
223/225

,
 
this active form 

of TGF-β inhibited mammary tumor formation in 7-12-dimethylbenz (a) anthracene 

(DMBA)-treated mice compared to DMBA-treated wild type controls (257). In contrast, 

the dominant negative form of TβIIR in mouse mammary epithelium (MMTV-DNIIR) 

increased the rate and number of tumor formation after treatment with the DMBA (258). 

Furthermore, Mice expressing the active form of TGF-β under control of whey acidic 

protein promoter (WAP-Tgfβ1
223/225

) introduced with MMTV during their pregnancy, 

showed a decrease in the rate of tumor formation compared to control mice (256). 

In addition to studies supporting the role of TGF-β as a tumor suppressor, there is 

evidence that TGF-β also acts as a cancer promoter. One such evidence was seen in 

transgenic mice expressing an activated TGF-β receptor in mammary gland (MMTV-
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TβRI
AAV

). These modifications inhibited Neu-induced tumorigenesis but increased lung 

metastasis (259). Conversely, mice with the activated ligand under control of MMTV 

promoter (MMTV-Tgfβ1
223/225

) did not affect tumor latency but enhanced tumor 

invasiveness and metastasis to lungs (260).  

1.3 Unique connection between LxCxE binding cleft and 

TGF-β 

As mentioned earlier, MEFs isolated from Rb1
ΔL/ΔL 

mice have the ability to 

maintain proliferative control in asynchronous growing cultures, in response to serum 

starvation and confluence arrest (99). Furthermore, these mice are viable, fertile and able 

to develop relatively normally but they show defects in mammary gland development 

characterized by hyperplasia (261). The pups from female Rb1
ΔL/ΔL 

animals were not 

nursed regularly resulting in the neonatal lethality of animals raised by Rb1
ΔL/ΔL 

mothers. 

There was no defect in milk production, but milk was not ejected properly (261). 

Interestingly, the mice hemizygous for tgf-β1 or mice expressing a dominant-negative 

TβIIR show excessive ductal proliferation (262, 263). Furthermore, dominant-negative 

TβIIR mice also display a nursing defect (264).  

Since Rb1
∆L

 mice and mice defective for TGF-β1 signaling within the mammary 

epithelium have similar phenotype, this encouraged our lab to look at the ability of 

Rb1
∆L/∆L

 cells to respond to a TGF-β1 mediated growth inhibition. Our lab showed that 

epithelial cells from Rb1
∆L/∆L

 mice do not respond to TGF-β1 mediated growth arrest, 

suggesting that the pRB-LxCxE interaction is necessary for TGF-β1-induced growth 

arrest. Our lab also showed that TGF-β1 is able to induce the dephosphorylation and 
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activation of mutant pRB and the defect in growth inhibition is downstream of pRB 

activation (261). Our lab also showed that Rb1
∆L/∆L 

mice are not able to repress E2F target 

genes in response to TGF-β1 (261). This work suggested that the pRB-LxCxE interaction 

plays a unique role in TGF-β1 growth inhibition.   

In order to investigate the role of E2F transcription in TGF-β induced growth 

arrest, our lab generated another knock-in mouse, called Rb1
∆G

. This mouse carries a 

mutation that disrupts the interaction between pRB and E2F but its ability to bind to 

LxCxE proteins is intact. Rb1
∆G

 mice showed the same hyperplasic phenotype as the 

Rb1
∆L

 mutants and they were defective in response to TGF-β1 mediated growth arrest. 

This confirms that E2F regulation by pRB is a requirement in TGF-β induced growth 

arrest. Taken together, these data show that a repressor complex including pRB, one or 

more LxCxE motif containing co-repressor(s) and an E2F transcription factor is involved 

in TGF-β growth inhibition. Since the exact LxCxE interacting protein(s) that cooperate 

with pRB in TGF-β growth arrest paradigm is unclear, it is logical to search for LxCxE 

motif containing proteins that cooperate with pRB in E2F transcriptional repression in 

response to TGF-β to understand how TGF-β inhibits cell proliferation.  

To identify candidates that bind to pRB through the LxCxE binding cleft, our lab 

performed a Glutathione S-transferase (GST) pull down screen. In order to perform GST 

pull-downs, nuclear extracts from HeLa cells were mixed with GST-RB
WT 

and GST-

RB
∆L

 proteins. Bound proteins were resolved by SDS-PAGE and silver stained. The data 

showed that numerous proteins were missing from GST-RB
∆L

. These bands were 

subjected to Mass Spectrometry and western blotting analysis identified some of these 

proteins. Taken together, pRB could interact with four major complexes including 
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anaphase-promoting complex (APC), Sin3, NuRD and CtBP through the LxCxE binding 

cleft (99, 265). Since APC regulates proliferation independently of E2F, we did not 

include this complex in our research (265). All components of three potential complexes 

are shown in Table 1-1 (266-268, 135). 

1.4 Thesis hypothesis and objectives 

The majority of proteins with LxCxE motif have been reported to bind to pRB 

before RNAi technology and as a result, there is no evidence of the requirement of 

LxCxE motif containing proteins in cell cycle arrest under physiological conditions. 

Thus, we are searching for proteins reported to bind to pRB through the LxCxE binding 

cleft but lack verification in a physiological setting. It is interesting to mention that 

whether these proteins directly or indirectly bind to the LxCxE binding cleft is unclear.   

Based on the evidence from literature and experiments done in our lab, the 

hypothesis of this study is that pRB interacts with specific repressor complexes 

through the LxCxE binding cleft to repress E2F dependent transcription in 

response to TGF-β and this function is important for cancer suppression.  

Objective: Identification of proteins cooperating with pRB in E2F transcriptional 

repression in response to TGF-β 

To identify proteins cooperating with pRB in response to TGF-β, lentiviral 

vectors carrying short hairpin RNA (shRNA) were used. Using these shRNAs, we 

depleted the expression of each component and examined if depletion of these 

components compromises TGF-β mediated growth arrest. This experimental approach 
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will identify complexes such as Sin3, NuRD and CtBP, which cooperate with pRB in 

E2F transcriptional repression in response to TGF-β. 
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2 Materials and Methods 

2.1 Cell lines and cultures  

MCF-10A cells were a generous gift from Gabriel Dimattia lab (Western 

University). The original MCF-10 cell line was isolated from mastectomy performed on a 

36-year-old woman (269). From the original diploid mortal cell, MCF-10A cells, a 

spontaneously immortal subline of MCF-10, have been derived after extending trypsin 

passages in the normal calcium levels (1.05 mM). MCF-10A cells have characteristic 

features of normal mammary epithelial cells and are sensitive to TGF-β mediated growth 

arrest (269). 

MCF-10A cells were grown in Dulbecco's modified Eagle's Medium-Ham`s F12 

(DMEM-F12) (Invitrogen, Cat # 11320-033). DMEM-F12 was supplemented with 20 

ng/ml Epidermal Growth Factor (EGF) (Sigma, Cat # E9644), 5% horse serum (Gibco, 

Cat# 26050-088), 0.5 mg/ml hydrocortisone (Sigma, Cat # H4001), 10 g/ml insulin 

(Sigma, Cat # I6634), 100 ng/ml cholera toxin (Sigma, Cat# C8052) and 1% 

penicillin/streptomycin (Gibco, Cat #15070-063) at 37°C in a 5% CO2 humidified 

incubator.  

Routine passaging of these cells involved aspirating the growth medium and 

washing the cells with Phosphate Buffered Saline (PBS) (Sigma, Cat # P3813), adding 

trypsin solution and incubating them in a 5% CO2 humidified incubator at 37°C. Once 

cells were dislodged by gently tapping and trypsin incubation, growth medium was added 



40 

 

to neutralize the trypsin. The cells were then spun down in a 15 ml conical tube and were 

split in 1:5 ratios.  

2.2 ShRNA transfection   

 HEK 293T cells were a generous gift form Joe Mymryk lab (Western 

University). HEK 293T cells were plated at a density of 7×10
5
 cells in 5 ml of DMEM + 

10% FBS without antibiotics (no penicillin/streptomycin) media in a 6 cm plate the day 

before the transfection. The following morning, the media was changed to a fresh media 

without antibiotics and in the late afternoon, cells were transfected with lentiviral shRNA 

plasmids. To transfect the cells, 6 μg shRNA plasmid (Open Biosystems), 3 μg psPAX2 

packaging plasmid, 3 μg pMD2.G envelope plasmid (Addgene #12259 and 12260) and 

up to 20 μl serum-free OPTI-MEM media (Gibco, Cat # 31985-062) was added to a 

microcentrifuge tube. In another tube, 74 μl serum-free OPTI-MEM and 6 μl FuGENE 

transfection reagent (Roche Applied Biosciences) was added, mixed and incubated at 

room temperature. After 5 minutes of incubation, 80 μl FuGENE master mix from the 

second tube was added to the first tube to make a total 100 μl master mix and then 

incubated at room temperature. After 15 minutes, the mix was added dropwise to the 

plate and the cells were incubated at 37°C in a 5% CO2 incubator for 15 hours. The 

following morning, the media was replaced with 3 ml fresh DMEM + 10% FBS + 

penicillin/streptomycin and incubated for 48 hours to produce lentiviral particles. 
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Table ‎2-1 List of the shRNAs used in knockdown experiments (Open 

Biosystems) 

 

Target 

gene 
Accessions Clone ID Antisense Sequence Vector 

RB1 

(shRB#1) 

NM_000321 TRCN0000040163 TTTGGACTAGAAATAATGTGG pLKO.1 

RB1 

(shRB#2) 

NM_000321 TRCN0000040164 TTGCAGTAGAATTTACACGCG pLKO.1 

RB1 

(shRB#3) 

NM_000321 TRCN0000040165 TTCACAAAGTGTATTTAGCCG pLKO.1 

SAP30 NM_003864 TRCN0000021687 AACACCACTATCAACCTTGAG pLKO.1 

MTA2 NM_004739 TRCN0000013374 TATCTGTCTCATTCAAGAGGG pLKO.1 

SAP18 NM_005870 TRCN0000021660 AAACCCAGGGCTGCCTTGGAAAAG pLKO.1 
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2.3 Lentiviral Infection 

To infect MCF-10A cells with lentiviral particles, the media from HEK 293T 

cells transfected with lentiviral shRNA was filtered through a 0.45 µm filter after 48 

hours transfection and supplemented with 8 µg/mL of Polybrene (Sigma, Cat # H9268) to 

increase the efficiency of viral infection. The filtered media, which contains lentiviral 

particles, was directly added to MCF-10A cells that had been plated the previous day at 

density of 3×10
5
 cells in a 6 cm dish. MCF-10A cells were incubated for 24 hours in the 

incubator. Next morning, the media was replaced with a fresh media. After 24 hours, the 

media from MCF-10A cells was removed and puromycin was added to the cells at a final 

concentration of 1.6 µg/ml. The culture was replaced with media containing puromycin 

every other day. One uninfected plate of cells in parallel was treated with puromycin to 

serve as a positive control for the puromycin selection. Infected MCF-10A cells were 

then expanded for further experiments.  

2.4 TGF-β1 preparation and treatment                     

To make TGF-β1 (R&D systems, Cat # 240-B-010) stock solution, 30% 

acetonitrile/0.1% trifluoroacetic acid (TFA) solution was made and filtered through a 

0.22 µm filter. TGF-β1 powder was diluted with the above solution to a 0.1 M stock 

concentration and aliquoted to several microcentrifuge tubes. Filled tubes were placed at 

-20°C overnight, and then transferred to -80°C for long-term storage. 

TGF-β1 was used at a final concentration of 100 pM. The stock was then stored at 

4°C after usage and used within a few weeks. 
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2.5 5-bromo-2-deoxyuridine (BrdU)-propidium iodide (PI) 

staining 

MCF-10A cells were labeled with BrdU and PI as previously described (270). 1 

µl of Cell Proliferation Labeling Reagent (BrdU) (GE Healthcare, Cat # RPN201) was 

added for each ml of cell culture medium (1 to 1000 dilutions) and incubated at 37°C. 

After 4 hours of incubation, the cells were washed with PBS and trypsin was added to 

dislodge the cells. Once MCF-10A cells dislodged, they were transferred to a 15 ml 

conical tube and spun down at 500 g for 5 minutes. The cells were washed with PBS one 

more time and then resuspended in 100 μl PBS. Then, 1 ml of 95% EtOH was added 

dropwise while vortexing to fix the cells and incubated for 30 minutes in 4°C. After 

fixing the cells, EtOH was removed and 1 ml of 2N HCl/0.5% Tx-100 was added in a 

dropwise fashion while vortexing and the cells were incubated at room temperature for 

30 minutes. To neutralize HCl, 1 ml of 0.1 M NaB4O7 (pH 8.5) was gently added after 

removing HCl from cell pellet. After 30 minutes incubation at room temperature, the cell 

pellet was resuspended in 0.5 ml of antibody solution (PBS containing 0.2% Tween-20 

and 1% BSA) with mouse anti-BrdU antibodies (BD Biosciences, 347580) diluted 1 to 25 

and incubated at room temperature for 30 minutes in dark. The cells were pelleted and 

resuspended in 50 µl of antibody solution containing rabbit anti-mouse secondary 

antibodies conjugated to fluorescein isothiocyanate (FITC) (Vector Laboratories, Cat # 

FI-2000) diluted 1 to 10 and incubated for 30 minutes at room temperature in dark.  

Finally, cells were resuspended in 0.5 ml of PI and RNase A solution (PBS with 

1% BSA, 1 mg/ml PI, 0.25 mg/ml RNase A) and incubated in dark at 37°C for 30 
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minutes. The solution was passed through a cell strainer to remove cell clumps before 

running the samples on flow cytometer. 

2.6 Flow cytometry analysis 

After staining MCF-10A cells with PI and BrdU, cell populations were analyzed 

by flow cytometry on a Beckman-Coulter EPICS XL-MCL instrument, which is capable 

of detecting PI and FITC. The sensitivity of photomultiplier tubes for PI and FITC was 

adjusted such that 2N and 4N peaks are centered at 200 and 400 (arbitrary units) on the 

X-axis for PI plot and BrdU positive cells are approximately 10 times brighter for FITC 

plot. Finally, 5000 to 10000 single cell events were collected for each sample in order to 

ensure that results obtained are representing the cells cultured in each plate.  

2.7 Preparation of nuclear extract from cells 

To generate nuclear extracts, MCF-10A cells were washed twice with PBS and 

collected into 1 ml of PBS with cell scrapers. Collected cells were centrifuged at 200 g 

for 5 minutes at 4°C and supernatant was removed. The pellet was resuspended in 200 µl 

of Hypotonic Lysis Buffer (HLB) (10 mM Tris pH 7.5, 10 mM KCl, 3 mM MgCl2 and 1 

mM EDTA). HLB was supplemented with the protease inhibitors cocktail (1 mM DTT, 1 

mM PMSF, 5 mM NaF, 0.1 mM Na3VO4, 5 µg/ml Leupeptin and 5 µg/ml Aprotinin) and 

incubated on ice for 5 minutes. NP-40 was added to each sample for a final concentration 

of 0.05% and incubated for 5 minutes on ice. The lysate was centrifuged at 1800 g for 10 

minutes, supernatant was then removed and 200 µl HLB supplemented with protease 

inhibitors cocktail and 0.05% NP-40 was added to pellet and resuspended lysate was 
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incubated for 10 minutes on ice. This was repeated three more times. Then, the pellet was 

resuspended in 100 μl Gel Shift Extract (GSE) buffer (20 mM Tris pH 7.5, 420 mM 

NaCl, 1.5 mM MgCl2 and 0.2 mM EDTA and 25% Glycerol) supplemented with the 

protease inhibitors cocktail (25 mM DTT, 0.5 mM NaF, 0.1 mM Na3VO4, 0.1% NP-40, 5 

µg/ml Leupeptin and 5 µg/ml Aprotinin). Extracts were frozen and kept at -80°C. Finally, 

extracts were thawed and cellular debris was removed by centrifugation at 21000 g for 20 

minutes when they were used for protein concentration measurement.  

2.8 Sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blotting 

SDS-polyacrylamide gels were prepared in mini gel. Resolving gel mix was 

prepared according to the volume required for making 10% SDS-polyacrylamide gels, 

added in the gel apparatus and EtOH was poured to the top. Clear distinction between 

EtOH and gel indicates the gel has dried. EtOH was poured out, and immediately 

stacking gel was poured in, and the comb was inserted and allowed to solidify at room 

temperature. 30-50 µg protein samples were mixed with 5× sample buffer (0.225 M Tris-

HCl pH 6.8, 5% SDS, 50% Glycerol, 0.05% bromophenol blue and 0.25 M DTT) and 

denatured by heating at 95°C for 5 minutes, glass plates (with solidified gel) were locked 

into the gel electrophoresis cassette and the electrophoresis cassette was placed into SDS-

PAGE apparatus. The inner chamber was filled with 1× SDS-PAGE running buffer and 

the outer chamber was filled half way with the same buffer. Protein samples were loaded 

into the wells and electrophoresed at constant current at 120 V for 1.5 hours. 
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SDS-PAGE gel was transferred onto nitrocellulose membrane at 500 mA for 60 

minutes at 4°C. The transferred membrane was incubated in a blocking solution (3% fat 

free milk in 1×TBS-Tween (200 mM Tris pH 7.5, 1.5 M NaCl, 3% Tween-20)) for one 

hour at room temperature while shaking. Membrane was directly incubated in primary 

antibodies overnight at 4°C while shaking. After incubation, the membrane was washed 

in 1X TBS-Tween for 10 minutes for three times. Then, the membrane was incubated in 

horseradish peroxidase (HRP) conjugated secondary antibodies against mouse or rabbit 

antibody for one hour at 25°C and then washed in 1 X Tris-buffered saline (TBS)-Tween 

for two times and 5 minutes each. Proteins were visualized with 

chemiluminescent detection method. 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Chemiluminescence
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Table ‎2-2 List of the antibodies used for western blotting and staining 

 

Antibody 

Name 

Protein 

Recognized 

Host 

Species 

Company 

Dilution 

ratio 

sc-6200 Smad2 Goat Santa Cruz 1:500 

AB3849 

Phospho-specific 

Smad2 

(Ser465/467) 

Rabbit Chemicon 1:700 

347580 BrdU Mouse BD-Bioscience 1:25 
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2.9 RNA isolation 

Total RNA was isolated using GenElute
TM

 Mammalian total RNA miniprep kit 

(Sigma, Cat # RTN70-1KT). Before beginning the procedure, the lysis solution/2- 

mercaptoethanol (2-ME) mixture was prepared by adding 10 µl of 2-ME to each ml of 

lysis solution that was sufficient for the same day use. In addition, the concentrate wash 

solution 2 was diluted with 100% EtOH in ratio 1:4 (1 part concentrate wash solution 2: 4 

parts 100% EtOH).  

To extract RNA from MCF-10A cells plated in a 6 cm plate, cells were washed 

with PBS twice and then PBS was removed completely. To lyse cells, 250 µl lysis 

solution/ 2-ME mixture was directly added to the plate and incubated for 3 minutes at 

room temperature. Then, the plate was titled to collect the lysate. The lysed cells were 

transferred into a GenElute Filtration Column (blue insert with a 2ml receiving tube) and 

centrifuged at maximum 12000 g for 2 minutes to remove cellular debris and shears 

DNA. Then, the filtration column was discarded and the receiving tube was kept. An 

equal volume of 70% EtOH was added and mixed with the filtered lysate by vortexing. 

The lysate/EtOH mixture was loaded into GenElute Binding Column (colorless insert 

with a red o-ring seated in a 2 ml receiving tube) and centrifuged at 12000g for 15 

seconds. The flow through liquid was discarded but the collection tube was retained. 

Then, 500 µl of wash solution 1 was added into the column and centrifuged at 12000 g 

for 15 seconds. The binding column was transferred into a fresh 2 ml collection tube and 

flow-through liquid and the original collection tube were discarded. 500 µl of diluted 

wash solution 2 was loaded into the column and centrifuged at 12000 g for 15 seconds. 
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The flow-through liquid was discarded but the collection tube was retained. This step was 

repeated but the column was centrifuged for three more minutes to dry. Finally, the 

binding column was transferred to a fresh 2 ml collection tube and 50 µl elution solution 

was then loaded into the binding column and centrifuged at 12000 g for one minute. The 

quality and quantity of RNA were evaluated by measuring OD 260/280 and 260/230 

ratio. Purified RNA in the collection tube was stored at -80°C. 

2.10 Generation of total cDNA  

The total complementary DNA (cDNA) was generated using SuperScript® III 

Reverse Transcriptase kit (Invitrogen, Cat # 18080-044). 1 µg RNA and up to a total 

volume of 10 µl RNase free H2O was added to an RNase free PCR tube. 1 µl DNase I 

and 1 µl 10× DNase I reaction buffer was added to the PCR tube and the sample was 

incubated at room temperature for 15 minutes to degrade all genomic DNA. The reaction 

was stopped by adding 1 µl 25 mM EDTA, 1 µl of 10 mM dNTP mixture and incubating 

at 70
°C

 for 5 minutes. Then, the reaction mixture was prepared in a total volume of 9 µl 

by adding 4 µl of 5× First Strand buffer, 2 µl of 100 mM dithiothreitol (DTT), 1 µl 50µM 

oligo (dT) 20, 1 µl RNase OUT™ (40 U/µl) and 1 µl of SuperScript® III Reverse 

Transcriptase (250 U/µl). In addition to this mixture, one mixture without SuperScript® 

III Reverse Transcriptase was made to serve as a control. The reaction mixture was 

gently vortexed and added to the sample. The final mixture was incubated for the 

following times: 5 minutes at 25°C, 40 minutes at 42°C, 30 min at 50°C, 40 minutes at 

55°C and finally 15 minutes at 70°C. The generated cDNA was diluted in RNase free 

H2O for downstream application. 
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2.11 Real-Time PCR  

Real-time PCR was performed by the fluorescent dye SYBR Green methodology 

using the iQ
TM

 SYBR
®
 Green Supermix (Bio-Rad, Cat # 170-8880). To perform Real-

Time PCR, the following master mix was prepared for each reaction: 5 µl iQ
TM

 SYBR
®
 

Green Supermix, 1 µl forward primer, 1 µl reverse primer and up to 8 µl H2O. 2µl of 

cDNA prepared by SuperScript® III Reverse Transcriptase system was added to each 

master mix. Finally, the samples were run on a CFX96 Touch™ real-time PCR detection 

system (Bio-Rad). Each reaction included GAPDH as a reference gene for normalization, 

and reactions lacking cDNA served as negative controls. The primers used in Real-Time 

PCR and RT-PCR are in the following table. (Table 2-3)  

To calculate the gene expression, Ct values for all genes were acquired in all 

samples. To normalize the expression of each target genes, the difference between 

GAPDH and target gene Ct values was calculated for each sample. Then, the relative 

expression of each target gene was calculated using the following formula in each 

sample: 2 
(C

t
GAPDH –C

t
target gene)

. Finally, to determine the fold change expression of the 

target gene, the relative expression of the target gene in each sample was divided by its 

relative expression in the calibrator sample (Untreated shLuc in our case). 
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Table ‎2-3 List of the primers used for Real-Time PCR 

 

Gene Forward Primer Reverse Primer 

RB1 GCATGGCTCTCAGATTCACCT CTTCTGGGTCTGGAAGGCTG 

SAP30 AAGAGCGCAAGGCATCTTTA GTCCTGGTCTGGTTGGTAGC 

MTA2 TGGTTAGACGGATTGAGGAGC GCGCCGGAAAAGACAGACA 

SMAD7 TTCCTCCGCTGAAACAGGG CCTCCCAGTATGCCACCAC 

GAPDH GCCGCATCTTCTTTTGCGTC GATCTCGCTCCTGGAAGATGG 

PCNA TCCTGTGCAAAAGACGGAGT TCTACAACAAGGGGTACATCTGC 

CCNE1 GCCAGCCTTGGGACAATAATG AGTTTGGGTAAACCCGGTCAT 

CCNA2 CCTGGACCCAGAAAACCATTG ATTTAACCTCCATTTCCCTAAGGT 

SAP18 CCTCGCGAGAGACTTAGTGC AAGACCCGTAGCAACAGTGG 
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2.12 Statistical analysis  

Each experiment was repeated three times. Values are shown as the mean ± 

standard deviation (SD) of triplicate measurements. Student’s paired t-test was used to 

analyze differences between the sample of interest and its control. A p value of less than 

0.05 was considered statistically significant. 
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3 Results 

3.1 Identification of proteins cooperating with pRB in E2F 

transcriptional repression in response to TGF-β 

3.1.1 Rationale 

As mentioned earlier, our experiments using the Rb1
∆L

 mouse model uncovered 

that the LxCxE-pRB interaction plays an essential role in TGF-β growth inhibition. The 

exact LxCxE interacting protein(s) that cooperate with pRB in TGF-β growth arrest 

paradigm is unclear. Therefore, it is logical to search for LxCxE motif containing 

proteins that cooperate with pRB in E2F transcriptional repression in response to TGF-β 

to understand how TGF-β inhibits cell proliferation. 

Previous experiments in our lab showed that four complexes including APC, 

Sin3, NuRD and CtBP interact with pRB in an LxCxE dependent manner (99, 265). 

Lentiviral vectors carrying short hairpin RNA (shRNA) was used to deplete the 

expression of components of each complex in order to identify components cooperating 

with pRB in E2F transcriptional repression in response to TGF-β. 

 A difficulty in this screen is that some components have different isoforms such 

as Sin3A/B, Mi2α/β that share functional and structural similarities, so their function in 

cooperation with pRB may be redundant. In addition, some components are common 

between different complexes such as HDAC1/2, RbAp46/78 and lysine specific 



54 

 

demethylase 1 (LSD1). This makes them less desirable to start the screening. Therefore, 

the screening was started with some unique components of these complexes. 

3.1.2 TGF-β growth arrest is pRB dependent in MCF-10A cells 

Previous experiments in our lab showed that MEFs from LxCxE mutant mice 

were unresponsive to TGF-β mediated growth arrest. Our lab also analyzed TGF-β 

growth control in primary mouse epithelial cells (MECs) and keratinocytes, which are 

more sensitive to TGF-β mediated cell cycle arrest. Both cell types isolated from LxCxE 

mutant mice showed the same defect in response to TGF-β mediated growth inhibition 

(261). Isolation of MECs or keratinocytes requires many mice, therefore, MCF-10A cells, 

a normal human mammary epithelial cell, were used for the growth arrest experiments. 

TGF-β1 mediated growth inhibition in mouse fibroblast requires pRB (271); 

therefore, we wanted to ensure that TGF-β1-induced growth arrest is pRB dependent in 

MCF-10A cells. To do this, 3×10
5 
MCF-10A cells were plated in 6 cm plates in 

duplicate. Then, these cells were infected with lentiviral vector carrying shRNA to 

deplete the expression of pRB along with shRNA expressing luciferase (shLuc) as a 

control. After infection and three days of selection with puromycin, the infected cells 

were expanded for further experiments.  

To confirm knockdown efficiency, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for each shRNA and treated one plate of each shRNA with TGF-

β1 (100 pM) for 24 hours. After treatment with TGF-β1, RNA was isolated and 

converted to cDNA and Real-Time PCR was performed for pRB to confirm knockdown 
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efficiency. As shown in Figure 3-1A, the level of pRB transcript was significantly 

reduced in MCF-10A cells. 

To perform growth arrest assays, 4×10
5 

infected MCF-10A cells were plated in 6 

cm plates in duplicate for each shRNA. TGF-β1 (100 pM) was added to one plate of each 

shRNA. After 24 hours TGF-β1 treatment, the cells were pulse-labeled with BrdU for 4 

hours. Then, the percentage of cells with incorporated BrdU was quantified by flow 

cytometry. As shown in Figure 3-1B, MCF-10A cells expressing shLuc showed a 

significant decrease in BrdU incorporation in response to TGF-β1 whereas pRB depleted 

cells did not respond to TGF-β1-induced growth arrest. This suggests that depletion of 

pRB compromises TGF-β-induced growth arrest. To avoid off-target effects, the same 

experiment was repeated with two more shRNAs targeting pRB and they all showed the 

same results. In conclusion, these results show that TGF-β1-induced growth arrest is pRB 

dependent in MCF-10A cells, because multiple shRNAs against pRB can interrupt TGF-

β1-induced growth arrest in these cells.  
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 Figure ‎3-1 TGF-β1-induced growth arrest is pRB dependent in MCF-10A cells 

 (A) MCF-10A cells were infected with shRNA to deplete the expression of pRB. After 

infection and three days selection, the infected cells were treated with TGF-β1 for 24 

hours. The mRNA level of pRB was measured by Real-Time PCR to verify knockdown 

efficiency. All values for Real-Time PCR experiments were normalized to the level of 

GAPDH mRNA abundance. (B) The depleted cells were treated with TGF-β1 for 24 

hours and pulse-labeled with BrdU for 4 hours. The percentage of cells incorporating 

BrdU was measured by flow cytometry. The average of three independent experiments is 

shown. The asterisks indicate a statistically significant difference from untreated shLuc 

(Student's t test; P < 0.05). The error bars indicate one standard deviation from the mean. 

(+ve, positive)  
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3.1.3 E2F target genes are deregulated upon pRB depletion in 

response to TGF-β  

A recent study has shown that the TGF-β signaling pathway is regulated by 

multiple microRNAs (miRNAs) (272). A large-scale RNAi screen was performed to 

identify novel components and modulators of the TGF-β pathway by looking at the 

nuclear translocation of a green fluorescent protein (GFP)-Smad2 fusion protein. It was 

identified that 176 siRNAs inhibit nuclear localization of Smad2 in response to TGF-β. 

However, after finding genes correlating to each siRNA hit, they were not able to group 

these genes in any relevant biological process nor were any of these genes relevant to any 

genes involved in the TGF-β pathway. Further analysis revealed that these selected hits 

would significantly reduce mRNA levels of TGF-β receptors (TβRs), particularly TβIIR 

through miRNA off-target effects. It has been demonstrated that complementarity 

between a heptamer or hexamer ‘seed’ match of siRNA and 3’ untranslated region (UTR) 

of an off-target gene mediates the off-target effects observed in siRNA screens (273, 

274). This was confirmed by sequence analysis of siRNA and 3’ UTR of TβIIR in their 

study. Thus, the risk of obtaining misleading results using shRNA in single-assay readout 

is substantial. Therefore, control experiments are essential in the interpretation of such 

results.  

To ensure that the TGF-β1-induced growth arrest in our knockdown experiments 

is not a result of TβIIR down regulation or its disability to act on Smads, western blotting 

was performed to look at phosphorylation of Smad2. To do this, 2.8×10
7
 pRB depleted 

MCF-10A cells were plated in 15 cm plates in duplicate along with shLuc MCF-10A 
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cells and then TGF-β1 (100 pM) was added to one plate of each shRNA for 24 hours. 

After treatment with TGF-β1, the nuclear extract was isolated and was blotted for 

phospho-Smad2. As shown in Figure 3-2A, TGF-β1 stimulation of MCF-10A cells 

resulted in phosphorylation of Smad2 in all pRB knockdown cells similar to control cells 

suggesting that the expression and activity of TGF-β1 receptor is intact after pRB 

knockdown by shRNAs. 

It has been shown that pRB binds to E2F transcription factors and represses the 

transcription of E2F responsive genes and loss of pRB results in a deregulation of E2F 

target genes expression (275). Thus, the transcript levels of E2F targets were examined to 

investigate if they are repressed in TGF-β1 mediated growth arrest and if this effect is 

disrupted by pRB depletion. To do this, pRB depleted and shLuc MCF-10A cells were 

treated with TGF-β1 for 24 hours, RNA was then isolated and converted to cDNA and 

Real-Time PCR was performed for two E2F responsive genes. As shown in Figure 3-2B, 

E2F target genes, CCNE1 and CCNA2, are repressed in response to TGF-β1 in shLuc 

MCF-10A cells and this repression is disrupted after depletion of pRB. Based on these 

analyses, further experiments were performed to knockdown the expression of 

components of complexes, which can bind to pRB through the LxCxE binding cleft. 
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Figure ‎3-2 The TGF-β‎signaling‎is‎intact‎and‎E2F target genes repression is 

disrupted by pRB depletion  

(A) Total phospho-Smad2 expression levels were measured in pRB depleted and shLuc 

MCF-10A cells by western blot analysis. The upper band is phospho-Smad2 and the 

asterisk indicates the non-specific lower band. (B-C) Total RNA from MCF-10A cells 

infected by shLuc and shRB #2 was isolated using GenElute Mammalian Total RNA 

Purification Kit. To eliminate DNA genomic contamination, RNA was digested by 

DNAse1 and then cDNA was generated using Superscript III. The average of three 

independent experiments is shown. The asterisks indicate a statistically significant 

difference from untreated shLuc (Student's t test; P < 0.05). The error bars indicate one 

standard deviation from the mean. All values for Real-Time PCR experiments were 

normalized to the level of GAPDH mRNA abundance. 
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3.1.4 SAP18, a unique component of the Sin3 complex 

SAP18 is another core protein in the Sin3 complex. SAP18 protein directly 

interacts with both mammalian Sin3 and HDAC1 (116). It has been suggested that 

SAP18 may have a potential role in stabilizing the HDAC1-Sin3 interaction and 

enhancing HDAC1 enzymatic activity (116). Furthermore, SAP18 can interact with other 

proteins of various transcriptional regulatory circuits (116). It has been shown that one of 

the mechanisms by which E2F-pRB mediates repression of E2F target genes is through 

the recruitment of HDAC (38). Therefore, SAP18 may have a role in TGF-β1 mediated 

growth arrest. This motivated us to examine the role of SAP18 in TGF-β1 mediated 

growth arrest. 

3.1.4.1 SAP18 is not involved in TGF-β1 mediated growth arrest 

To examine whether SAP18 is involved in TGF-β1-induced growth arrest, 3×10
5 

MCF-10A cells were plated in 6 cm plates in duplicate. Then, these cells were infected 

with lentiviral vector carrying SAP18 shRNA along with shCtrl as a control. After 

lentiviral infection and selection with puromycin, the infected cells were expanded for 

further experiments.  

To confirm knockdown efficiency, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for each shRNA. TGF-β1 (100 pM) was added to one plate of 

each shRNA for 24 hours. RNA was isolated and converted to cDNA and Real-Time 

PCR was performed for SAP18. As shown in Figure 3-6A, the level of SAP18 transcript 

was significantly reduced in MCF-10A cells. 
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To do TGF-β1 growth arrest assay, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for each shRNA and TGF-β1 (100 pM) was added to one plate of 

each shRNA. After 24 hours TGF-β1 treatment, cells were pulse-labeled with BrdU for 4 

hours. Then, flow cytometry was performed to quantify the number of cells incorporating 

BrdU. As shown in Figure 3-3B, both MCF-10A cells expressing shCtrl and shSAP18 

showed a significant decrease in BrdU incorporation in response to TGF-β1. This 

suggests SAP18 is not involved in TGF-β1-induced growth arrest. 
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Figure ‎3-3 Depletion of SAP18 does not compromise TGF-β1 mediated 

growth arrest 

 (A) MCF-10A cells were infected with shRNA to deplete the expression of SAP18. 

After infection and three days selection, the infected cells were treated with TGF-β1 for 

24 hours, the mRNA level of SAP18 was measured by Real-Time PCR to verify 

knockdown efficiency. All values for Real-Time PCR experiments were normalized to 

the level of GAPDH mRNA abundance. The asterisks indicate a statistically significant 

difference from untreated shCtrl (Student's t test; P < 0.05). The error bars indicate one 

standard deviation from the mean. (B) The depleted cells were treated with TGF-β1 for 

24 hours and pulse-labeled with BrdU for 4 hours. The percentage of cells incorporating 

BrdU was measured by flow cytometry. The average of three independent experiments is 

shown. The asterisks indicate a statistically significant difference from untreated samples 

(Student's t test; P < 0.05). The error bars indicate one standard deviation from the mean. 

(+ve, positive) 
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3.1.5 SAP30, a potential component involved in TGF-β growth 

arrest 

SAP30 is one of the unique components of Sin3 complex (112). SAP30 directly 

interacts with HDAC1 and multiple subunits of the Sin3 complex suggesting that SAP30 

may play a role in stabilizing the complex (112). It has been demonstrated that pRB can 

repress transcription of E2F target genes through the recruitment of HDAC, which 

removes the acetyl groups of positive charge residues from histones on the promoter, 

thereby promoting the formation of closed nucleosomes that inhibit transcription (51). 

Therefore, it is logical to look for unique components, which associate with HDACs in 

potential complexes. Since SAP30 interacts with HDAC1, this motivated us to examine 

the ability of MCF-10A cells to respond to TGF-β in absence of SAP30.  

 

3.1.5.1 Depletion of SAP30 compromises TGF-β growth arrest 

To examine whether SAP30 is involved in TGF-β growth inhibition, 3×10
5 

MCF-

10A cells were plated in 6 cm plates in duplicate. Then, these cells were infected with 

lentiviral vector carrying shRNA to deplete the expression of SAP30 along with shLuc as 

a negative control. After infection and three days of selection with puromycin, the 

infected cells were expanded for TGF-β1-induced growth arrest assays and knockdown 

efficiency.  
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To examine knockdown efficiency, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for each shRNA and one plate was treated with TGF-β1 (100 

pM) for 24 hours. After treatment with TGF-β1, RNA was isolated and converted to 

cDNA and Real-Time PCR was performed for SAP30. As shown in Figure 3-4A, the 

level of SAP30 transcript was significantly reduced in MCF-10A cells. 

To examine the role of SAP30 in TGF-β growth inhibition, 4×10
5 

infected MCF-

10A cells were plated in 6 cm plates in duplicate for each shRNA and TGF-β1 (100 pM) 

was added to one plate of each shRNA. After 24 hours TGF-β1 treatment, the cells were 

pulse-labeled with BrdU for 4 hours and then the percentage of cells incorporating BrdU 

was quantified by flow cytometry. As shown in Figure 3-4B, MCF-10A cells expressing 

shLuc showed a significant decrease in BrdU incorporation in response to TGF-β1 

whereas the ability of SAP30 depleted cells to induce TGF-β1 growth arrest was reduced. 

This suggests that depletion of SAP30 compromises TGF-β1-induced growth arrest. 
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Figure ‎3-4 Depletion of SAP30 compromises TGF-β1 mediated growth arrest 

 (A) MCF-10A cells were infected with shRNA to deplete the expression of SAP30. 

After infection and three days selection, the infected cells were treated with TGF-β1 for 

24 hours; the mRNA level of SAP30 was measured by Real-Time PCR to verify 

knockdown efficiency. All values for Real-Time PCR experiments were normalized to 

the level of GAPDH mRNA abundance. (B) The depleted cells were treated with TGF-β1 

for 24 hours and pulse-labeled with BrdU for 4 hours. The percentage of cells 

incorporating BrdU was measured by flow cytometry. The average of three independent 

experiments is shown. The asterisks indicate a statistically significant difference from 

untreated shLuc (Student's t test; P < 0.05). The error bars indicate one standard deviation 

from the mean (+ve, positive). 
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3.1.5.2 TGF-β signaling is intact in absence of SAP30 

The mechanism by which SAP30 depletion disrupts TGF-β1-induced growth 

inhibition was then investigated. In the presence of the TGF-β ligand, the TβIIR receptor 

phosphorylates the TβIR. This phosphorylation allows TβIR to phosphorylate and 

activate Smad2/3 proteins. After Smad2/3 activation, they bind to Smad4 proteins and 

then this complex translocates to the nucleus. Once in the nucleus, this complex binds to 

specific regions of the genome along with other co-repressors or co-activators to regulate 

gene transcription, which ultimately leads to G1 growth arrest (146). To determine 

whether SAP30 is involved in TGF-β1-induced growth inhibition and to ensure that 

shRNA targeting SAP30 transcript is not downregulating TβIIR level leading to growth 

arrest observed in knockdown experiment, the TGF-β signaling pathway in SAP30 

depleted cells was analyzed. To do this, 2.8×10
7
 SAP30 depleted MCF-10A cells were 

plated in 15 cm plates in duplicate along with MCF-10A cells infected by shLuc as 

control and treated one plate of each with TGF-β1 (100 pM) for 24 hours. After treatment 

with TGF-β1, nuclear extract was isolated and was blotted for phospho-Smad2. As 

shown in Figure 3-5A, Smad2 proteins are phosphorylated in response to TGF-β1 in 

SAP30 depleted MCF-10A cells in the same manner as shLuc MCF-10A cells. This 

suggests that depletion of SAP30 does not block TGF-β1 receptor expression and 

function.  

Phosphorylated Smads along with other cofactors can activate transcription of 

several genes such as Smad7 (211). To investigate the effect of SAP30 depletion on 

Smad-dependent transcription, the ability of SAP30 depleted MCF-10A cells were 
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examined in transcriptional activation of Smad7 in response to TGF-β1. To do this, 4×10
5 

SAP30 depleted MCF-10A cells were plated in 6 cm plates in duplicate along with shLuc 

MCF-10A cells and treated one plate of each shRNA with TGF-β1 (100 pM) for 24 

hours. After treatment with TGF-β1, RNA was isolated and converted to cDNA and 

Real-Time PCR was performed for Smad7. As shown in Figure 3-5B, Smad complexes 

are able to activate transcription of Smad7 in the absence of SAP30 suggesting that 

Smad-dependent transcription is intact in the absence of SAP30.  
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Figure ‎3-5 TGF-β‎signaling‎is‎intact‎in‎absence‎of‎SAP30 

 (A) The total phospho-Smad2 expression level was measured in TGF-β1-treated and 

untreated SAP30 depleted MCF-10A and shLuc MCF-10A by western blot analysis. The 

upper band is phospho-Smad2 and the asterisk indicates the lower non-specific band. (B) 

The mRNA level of Smad7 was measured in TGF-β1-treated and untreated SAP30 

depleted MCF-10A and shLuc MCF-10A by Real-Time PCR. The average of three 

independent experiments is shown. The asterisks indicate a statistically significant 

difference of treated samples from untreated samples (Student's t test; P < 0.05). The 

error bars indicate one standard deviation from the mean. All values for Real-Time PCR 

experiments were normalized to the level of GAPDH mRNA abundance. 

 

 

 

 

 

 

 

 

 

 

 



74 

 

3.1.5.3 E2F target genes are repressed by TGF-β in absence of 

SAP30 

In many cell types, TGFβ activates the transcription of CDK inhibitors such as 

p15 and p21 and downregulates the expression of proliferative genes including Cdc25A, 

c-Myc. The net result of these transcriptional changes is CDK activity inhibition, which 

results in dephosphorylation of pRB and repression of E2F target genes necessary for the 

G1/S phase transition (221-226). To determine the status of E2F target genes expression 

in SAP30 depleted cells in response to TGF-β, Real-Time PCR was performed to 

measure the mRNA level of three E2F-responsive genes in response to TGF-β. As shown 

in Figure 3-6, levels of PCNA, CCNE1 and CCNA2 transcripts decreased in both SAP30 

depleted and shLuc MCF-10A cells in response to TGF-β. Our previous experiments 

using Rb1
ΔL

 MEFs showed that pRb`s ability to repress transcription of E2F responsive 

genes in response to TGF-β1 is lost. This suggests that pRB also needs LxCxE binding 

partner to repress transcription of E2F target genes. As this result shows, depletion of 

SAP30 compromises TGF-β growth arrest; however, SAP30 serves this role in an E2F 

independent manner, because E2F target genes are repressed in absence of SAP30 in 

response to TGF-β. Therefore, SAP30 is not our desired component.   
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Figure ‎3-6 E2F target genes are repressed in response to TGF-β‎in‎absence‎of‎

SAP30 

(A-C) The mRNA level of CCNE1, CCNA2 and PCNA was measured in TGF-β1 treated 

and untreated SAP30 depleted MCF-10A and shLuc MCF-10A by Real-Time PCR. All 

values for Real-Time PCR experiments were normalized to the level of GAPDH mRNA 

abundance. The average of three independent experiments is shown. The asterisks 

indicate a statistically significant difference of treated samples from untreated samples 

(Student's t test; P < 0.05). The error bars indicate one standard deviation from the mean. 
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3.1.6 MTA2, a unique component of NuRD complex involved in 

E2F transcriptional repression  

MTA2 is essential in the assembly of an active histone HDAC complex and the 

association of MTA2 with the core HDAC complex requires MBD3 (276). It has also 

been shown that one of the mechanisms by which E2F-pRB mediates repression of E2F 

target genes is through recruitment of HDAC (51); Therefore, MTA2 may have a role in 

E2F transcriptional repression in response to TGF-β1. This motivated us to examine the 

effect of MTA2 in TGF-β1 mediated growth arrest.  

3.1.6.1 Depletion of MTA2 compromises TGF-β growth arrest 

To examine whether MTA2 is involved in TGF-β1-induced growth arrest, 3×10
5 

MCF-10A cells were plated in 6 cm plates in duplicate. Then, these cells were infected 

with lentiviral vector carrying MTA2 shRNA along with shLuc as a control. After 

lentiviral infection and selection with puromycin, the infected cells were expanded for 

further experiments.  

To confirm knockdown efficiency, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for MTA2 shRNA and shLuc. TGF-β1 (100 pM) was added to 

one plate of each shRNA for 24 hours. After TGF-β1 treatment, RNA was isolated and 

converted to cDNA and Real-Time PCR was performed for MTA2. As shown in Figure 

3-7A, the level of MTA2 transcript was significantly reduced in MCF-10A cells. 
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To do TGF-β1 growth arrest assay, 4×10
5 

infected MCF-10A cells were plated in 

6 cm plates in duplicate for each shRNA. TGF-β1 (100 pM) was added to one plate of 

each shRNA. After 24 hours TGF-β1 treatment, the cells were pulse-labeled with BrdU 

for 4 hours. Then, flow cytometry was performed to quantify the number of cells 

incorporating BrdU. As shown in Figure 3-7B, MCF-10A cells expressing shLuc showed 

a significant decrease in BrdU incorporation in response to TGF-β1 whereas the ability of 

MTA2 depleted cells to induce to TGF-β1 growth arrest was reduced. This suggests that 

depletion of MTA2 compromises TGF-β1-induced growth arrest. 
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Figure ‎3-7 Depletion of MTA2 compromises TGF-β1 mediated growth arrest 

 (A) MCF-10A cells were infected with shRNA to deplete the expression of MTA2. 

After infection and three days selection, the infected cells were treated with TGF-β1 for 

24 hours; the mRNA level of MTA2 was measured by Real-Time PCR to verify 

knockdown efficiency. All values for Real-Time PCR experiments were normalized to 

the level of GAPDH mRNA abundance. (B) MTA2 depleted cells were treated with 

TGF-β1 for 24 hours, pulse-labeled with BrdU for 4 hours. The percentage of cells 

incorporating BrdU was measured by flow cytometry. The average of three independent 

experiments is shown. The asterisks indicate a statistically significant difference from 

untreated shLuc (Student's t test; P < 0.05). The error bars indicate one standard deviation 

from the mean. (+ve, positive) 
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3.1.6.2 TGF-β signaling is intact in absence of MTA2 

In order to investigate whether depletion of MTA2 affects TGF-β1 signaling 

pathway upstream of pRB dephosphorylation and activation, the ability of MTA2 

depleted MCF-10A cells to phosphorylate Smad2 in response to TGF-β1 was examined. 

To do this, 2.8×10
7
 MTA2 depleted MCF-10A cells were  plated in 15 cm plates in 

duplicate along with MCF-10A cells infected by shLuc as a control and treated one plate 

of each with TGF-β1 (100 pM) for 24 hours. After treatment with TGF-β1, the nuclear 

extract was isolated and was blotted for phospho-Smad2. As shown in Figure 3-8A, 

Smad2 is phosphorylated in response to TGF-β1 in absence of MTA2. This suggests that 

depletion of MTA2 does not block TGF-β1 receptor expression and function. In addition, 

the Smad-dependent transcription of MTA2 depleted MCF-10A cells was examined; To 

do this, Real-Time PCR was performed to look at the transcription level of Smad7. As 

shown in Figure 3-8B, Smad complexes are able to activate transcription of Smad7 in the 

absence of MTA2 suggesting that Smad-dependent transcription is intact in absence of 

MTA2.  
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Figure ‎3-8 TGF-β‎signaling‎is‎intact‎in‎absence‎of‎MTA2 

(A) Total phospho-Smad2 expression levels were measured in TGF-β1-treated and 

untreated MTA2 depleted MCF-10A and shLuc MCF-10A by Western blot analysis. (B) 

The mRNA level of Smad7 was measured in TGF-β1-treated and untreated MTA2 

depleted MCF-10A and shLuc MCF-10A by Real-Time PCR. All values for Real-Time 

PCR experiments were normalized to the level of GAPDH mRNA abundance. The 

average of three independent experiments is shown. The asterisks indicate a statistically 

significant difference from treated samples (Student's t test; P < 0.05). The error bars 

indicate one standard deviation from the mean.  
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3.1.6.3 E2F target genes are deregulated in response to TGF-β in 

absence of MTA2 

To determine the status of E2F target genes expression in the absence of MTA2 

and in response to TGF, Real-Time PCR was performed to measure the mRNA level of 

three E2F-responsive genes including PCNA, CCNE1 and CCNA2 in response to TGF-β. 

As shown in Figure 3-9, these E2F target are repressed in response to TGF-β1 in shLuc 

MCF-10A cells. However, MTA2 depleted MCF-10A cells show a slight increase in the 

expression of E2F target genes. This suggests that E2F target genes are derepressed in 

MTA2 depleted cells. This finding is consistent with previous experiment in our lab 

suggesting that E2F target genes are derepressed in Rb1
ΔL

 MEFs in response to TGF-β1. 
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Figure ‎3-9 E2F target genes are deregulated in response to TGF-β‎in‎absence‎

of MTA2 

(A-C) The mRNA level of CCNA2, CCNE1 and PCNA was measured in TGF-β1-treated 

and untreated MTA2 depleted MCF-10A and shLuc MCF-10A by Real-Time PCR. The 

average of three independent experiments is shown. The asterisks indicate a statistically 

significant difference from untreated shLuc (Student's t test; P < 0.05). The error bars 

indicate one standard deviation from the mean. All values for Real-Time PCR 

experiments were normalized to the level of GAPDH mRNA abundance. 
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4 Discussion 

4.1 Summary 

pRB is a key regulator of cell proliferation in the G1 phase of the cell cycle. 

Previously, it was thought that pRB`s function as a tumor suppressor was only due to its 

ability to inhibit E2F target gene transcription in the G1 phase. Now, it is believed that 

there are many proteins, which cooperate with pRB to act as a tumor suppressor. TGF-β 

induces G1 growth arrest by inhibiting CDK`s activity which leads to dephosphorylation 

and activation of pRB (63, 64). While many scientists did not consider TGF-β as a part of 

the pRB pathway; our lab, using a knock-in mouse that carries a three amino acid 

substitution mutant to disrupt LxCxE cleft in pRB (called Rb1
∆L

), showed that mammary 

epithelial cells from Rb1
ΔL/ΔL 

mice do not respond to TGF-β-induced growth arrest (261). 

We found that TGF-β stimulation of epithelial cells results in dephosphorylation of pRB 

and the defect in growth inhibition is downstream of pRB’s activation. Furthermore, 

repression of E2F responsive cell cycle genes is defective in the Rb1
ΔL/ΔL 

cells in response 

to TGF-β (261). This shows that the interactions mediated by the LxCxE binding cleft of 

pRB are necessary for TGF-β mediated growth arrest. Using shRNAs to deplete the 

expression of chromatin regulating complexes, we tried to identify specific proteins, 

which interact with pRB through the LxCxE binding cleft in mediating E2F target gene 

repression in response to TGF-β. First, data showed that TGF-β mediated growth arrest is 

pRB dependent in MCF-10A cells and pRB depletion deregulates E2F target gene 

expression in these cells confirming that these cells are a suitable system for our study. 

Then, our results showed that the depletion of MTA2 and SAP30 compromises TGF-β 
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mediated growth arrest. In addition, depletion of MTA2 and SAP30 did not block TGF-

β1 signaling upstream of pRB as demonstrated by phosphorylation of Smad2 and 

upregulation of Smad7 level. Furthermore, depletion of MTA2 resulted in derepression of 

E2F target genes in response to TGF-β while depletion of SAP30 repressed the 

expression of E2F target genes. These data suggest that SAP30 induces TGF-β1 mediated 

arrest in an E2F independent manner. It has been demonstrated that TGF-β enhances the 

interaction of pRB with the MCM complex at the G1 phase of the cell cycle, which 

prevents the activation of replication origin and the G1- S phase transition (277). 

Although we currently do not know how pRB controls MCM function molecularly. One 

possible explanation is that pRB recruits other regulatory factors to MCM complexes to 

mediate this interaction. Since our data suggests that SAP30 mediates TGF-β growth 

arrest independent of E2F transcription, it is possible that SAP30 plays a role in pRB`s 

interaction with replication origins to induce growth inhibition. In addition, our data 

suggests that MTA2 is involved in an E2F dependent TGF-β1 mediated growth arrest. In 

summary, SAP30 and MTA2 are involved in TGF-β1 mediated growth arrest. However, 

they will use different mechanisms to induce growth inhibition.  

4.2 Plausible mechanisms of MTA2 mediated TGF-β 

growth arrest  

These findings suggest that MTA2 is one of the components involved in E2F 

transcriptional repression in response to TGF-β. There are several possibilities for how 

MTA2 represses the transcription of E2F target genes and how this protein induces TGF-

β mediated growth arrest (Figure 4-1).  
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One possibility is that MTA2 in the NuRD complex is recruited independent of 

LxCxE interaction and through the direct interaction with chromatin, because the C-

terminal domain of MTA proteins in the NuRD complex directly interacts with histone 

H3 tails (278). Furthermore, it has been shown that the NuRD complex can be recruited 

to chromatin through the interaction with other proteins (278). One example is that the 

NuRD complex can associate with chromatin by interacting with different co-factors such 

as HP1. In this case, NuRD complex is recruited to E2F target genes through the direct 

interaction of MTA2 with chromatin. Once recruited, the NuRD complex uses its ability 

to remodel chromatin structure and repress the transcription of E2F target genes (Figure 

4-1A).  

Another possibility is that MTA2 in the NuRD complex is recruited through 

HDAC1, because HDAC1 can bind to pRB through the LxCxE binding cleft and MTA2 

is required for the assembly of HDAC complex (51, 276). In this scenario, pRB recruits 

the NuRD complex through the HDAC1 interaction to E2F target genes promoters. Once 

recruited, the NuRD complex changes chromatin dynamics and represses E2F target 

genes transcription (Figure 4-1B). Since MTA2 directs the assembly of the complex, its` 

depletion makes the complex incapable of repressing E2F target genes transcription in 

response to TGF-β. This will lead to defective TGF-β mediated growth arrest in absence 

of MTA2.  

Lastly, the NuRD complex may interact with chromatin through the MBD2 

subunit, which has the ability to bind to the methylated DNA (279). In this scenario, pRB 

interacts with DNMT1, an enzyme responsible for catalyzing DNA methylation of 

promoters, through the LxCxE binding cleft (280, 57). Once E2F target genes are 
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methylated, MBD2 subunit in the NuRD complex binds to the methylated DNA and 

recruits the NuRD complex to E2F target genes. The NuRD complex has the HDAC 

activity and once it is recruited, can repress transcription of E2F target genes by 

deacetylating histones on E2F target genes` promoter (Figure 4-1C). The experiments 

proposed in the next section will examine these models. 
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Figure ‎4-1 Plausible mechanisms of MTA2 mediated TGF-β growth arrest 

(A) NuRD complex is recruited to E2F target genes through the direct interaction of 

MTA2 with chromatin. Once recruited, the NuRD complex uses its ability to remodel 

chromatin structure and repress the transcription of E2F target genes. (B) pRB recruits 

the NuRD complex through HDAC1 interaction with E2F target genes promoters. Once 

recruited, the NuRD complex changes chromatin dynamics and represses E2F target 

genes transcription. (C) pRB interacts with DNMT1 through the LxCxE binding cleft. 

Once E2F target genes are methylated, MBD2 subunit in the NuRD complex binds to the 

methylated DNA and recruits the NuRD complex to E2F target genes. The NuRD 

complex has the HDAC activity and once it is recruited, can repress transcription of E2F 

target genes by deacetylating histones on E2F target genes promoter. 
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4.3 Further investigating of the mechanism of MTA2 

mediated TGF-β growth arrest 

To examine our proposed models, we can use shRNAs against DNMT1 and 

MBD2 to knockdown their expression and examine whether depletion of these proteins 

compromise TGF-β mediated growth arrest. In addition, we can use methylation specific 

PCR for E2F target genes after TGF-β treatment to investigate if they become methylated 

in response to TGF-β and if their methylation pattern will change after DNMT1 and 

MBD2 knockdown. If DNA methylation is a mechanism by which the NuRD complex 

serves to induce the growth arrest, we expect that depletion of DNMT1 and MBD2 

compromise the growth arrest. Furthermore, since the NuRD complex has the HDAC 

activity and MTA2 can direct the assembly of an active HDAC complex, it is logical to 

examine the acetylation changes at E2F target genes in the absence of MTA2 in response 

to TGF-β1. To this end, MTA2-depleted MCF-10A would be treated with TGF-β1. Then 

chromatin immunoprecipitation (ChIP) assays will be performed to look at histone tail 

modifications using pan acetyl-Histone H3 antibody and pan acetyl-Histone H4 antibody. 

To do this, DNA released from precipitated complexes will be amplified by PCR using 

primers specific to the promoter regions of E2F target genes such as PCNA, CCNE1, 

CCNA2. The same ChIP assays also can be performed to determine whether MTA2 is 

recruited to E2F target genes promoter in a TGF-β1 dependent manner. 

Additionally, immunoprecipitation (IP) assays for other components of NuRD 

complex in absence of MTA2 can be performed to ensure that the complex integrity is 

intact in absence of MTA2 and the complex does not fall apart upon depletion of MTA2. 

This experiment would tell us whether MTA2 has a very specific role in TGF-β induced 
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arrest and its loss leaves the rest of the complex alone or the NuRD complex is 

completely disrupted by MTA2 depletion and that would explain why this would disrupts 

its ability to arrest proliferation.  

In summary, these experiments identify how the NuRD complex cooperates with 

pRB in response to TGF-β1 and determine how these downstream targets of the pRB-

LxCxE interaction function in response to TGF-β1 in this critical cancer-suppressing 

pathway. 

4.4 Other potential LxCxE partners involved in TGF-β 

growth arrest 

In addition to MTA2 and SAP30, there are other components in both Sin3 and 

NuRD complexes, which associate with HDAC. Therefore, they may have a role in 

transcriptional repression of E2F target genes in response to TGF-β. One such example is 

SDS3. SDS3 mutants showed very similar phenotypes previously observed in Sin3, 

suggesting that SDS3 plays an essential role in the Sin3 complex (281). Depletion of 

SDS3 results in a dramatic loss of HDAC activity and a significant reduction in Sin3-

mediated repression (119). SDS3-deficient cells fail to deacetylate pericentric 

heterochromatin histones, resulting in a general failure of cytokinesis and aneuploidy. 

These studies indicate that SDS3 is a core subunit in the Sin3 complex and augments 

HDAC activity. Therefore, it may have a role in transcriptional repression of E2F target 

genes in response to TGF-β. 
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In addition to Sin3 and NuRD complexes, CtBP binds to pRB through the LxCxE 

binding cleft. It appeared that CtBP mediates transcriptional repression in a HDAC-

dependent or HDAC-independent manner (135, 282). It has been suggested that CtBP 

mediates HDAC-independent repression through the recruitment of the Polycomb-group 

(PcG) complex and pRB by CtIP (283). Since CtBP serves its role as a transcriptional 

repressor through the recruitment of HDAC as well as PcG, it may have a role in 

transcriptional repression of E2F target genes in response to TGF-β.  

The complexes mentioned above (Sin3, NuRD and CtBP) contain subunits which 

are able to modify chromatin structure resulting in the loss of pRB proliferative control. 

For example, LSD1 is a component of the NuRD, which is capable of demethylating 

H3K4me2 from nucleosomes (284). Furthermore, it has been demonstrated that 

trimethylation of histone 3 lysine 9 (H3K9Me3), which is mediated by Suv39h1 enzyme, 

is reduced at the E2F target genes at the senescent Rb1
∆L

 cells (100) and also long term 

exposure to TGF-β1 can induce cellular senescence (285). To complement shRNA 

approach and identify the other potential LxCxE partners, we can further investigate the 

chromatin modifications at E2F target genes after TGF-β1 treatment. To this end, Rb1
∆L

 

MECs will be treated with TGF-β1. Then, ChIP assays will be performed to look at 

histone tail modifications using methyl/acetyl-Histone H3 antibody and methyl/acetyl-

Histone H4 antibody. DNA released from precipitated complexes will be amplified by 

PCR using primers specific to the promoter regions of E2F target genes such as Pcna, 

Ccne1, Mcm3 and Mcm5.  

As a result, these experiments will determine chromatin structure changes at E2F 

target genes promoters in response to TGF-β1. This way, the change in chromatin 

http://en.wikipedia.org/wiki/Polycomb-group_proteins
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structure after TGF-β1 treatment will lead us to pick suitable components to continue 

forward in the experiments. These experiments will also determine the requirement of 

LxCxE interacting proteins in TGF-β1 mediated growth arrest. 

4.5 An unbiased approach to identify LxCxE partners 

involved in TGF-β growth arrest 

Many potential candidates have been identified that may cooperate with pRB in 

an LxCxE dependent manner to induce TGF-β mediated growth arrest. With such a 

diverse list, alternative approaches may be required to determine the mechanism behind 

of pRB-LxCxE dependent TGF-β mediated growth arrest. One unbiased approach would 

utilize shRNA library screening to identify proteins cooperating with pRB in response to 

TGF-β1 by knocking down proteins at random. To do this, NMuMG-Fucci cell line, a 

subline of the NMuMG cell line expressing a cell cycle marker, will be used. Fucci 

technology allows dual-color imaging, which can distinguish between live cells in the 

G1 (red) and the S/G2/M phases (green) (286). After knocking down with shRNA 

library, the cells would be tested for TGF-β1-induced growth arrest and those proteins, 

which cooperate with pRB in TGF-β1-induced growth arrest, can be identified. As a 

result, these experiments will identify the identity of any remaining LxCxE interacting 

proteins in TGF-β1 mediated growth arrest. 
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4.6 Therapeutic potential of uncovering the exact 

mechanism of TGF-β mediated growth arrest 

TGF-β has a tumor promoting effect in tumor development, when carcinoma cells 

become insensitive to TGF-β induced growth inhibition (142). Furthermore, the majority 

of triple-negative breast cancers (TNBCs) recur after chemotherapy. A subpopulation of 

cancer stem cells (CSCs) drives recurrences following treatment with anticancer 

chemotherapy (287, 288). Chemotherapy induces TGF-β activity, which has been shown 

to induce these tumor stem-like properties (289). Thus, TGF inhibitors are being 

developed by pharmaceuticals as anti-metastatic therapies in patients with this cancer to 

decrease the CSC population to prevent TNBC recurrences. However, TGF-β is essential 

for normal development and plays crucial roles in wound healing, inflammation and 

tissue repair; therefore, using these TGF-β inhibitors may create life-threatening side 

effects in other tissues later in life.  

Since TGF-β has a dual role in tumorigenesis, the detailed understanding of TGF-

β signaling pathways is required in order to differentiate between tumor suppressor and 

promoting effect of TGF-β to prevent unwanted side effects in other tissues. In order to 

develop new therapeutics that targets the TGF-β signaling pathway in tumor progression, 

it is important to determine the unique components that mediate the tumor promoting or 

tumor suppressor properties of TGF-β. My project provides an excellent opportunity to 

elucidate the exact growth-controlling mechanism and determine the unique components 

of tumor suppressor properties of TGF-β. My project provides a better understanding of 

the TGF-β growth inhibitory pathway in order to distinguish it from tumor promoting 
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role of TGF-β. This will lead to find better therapy for breast cancer patients, which 

minimizes unwanted off-target side effects in these patients. 
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