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Abstract 

Among the broad palette of surgical techniques employed in the current orthopaedic 

practice, joint replacement represents one of the most difficult and costliest surgical 

procedures. While numerous recent advances suggest that computer assistance can 

dramatically improve the precision and long term outcomes of joint arthroplasty even in the 

hands of experienced surgeons, many of the joint replacement protocols continue to rely 

almost exclusively on an empirical basis that often entail a succession of trial and error 

maneuvers that can only be performed intraoperatively. Although the surgeon is generally 

unable to accurately and reliably predict a priori what the final malalignment will be or even 

what implant size should be used for a certain patient, the overarching goal of all 

arthroplastic procedures is to ensure that an appropriate match exists between the native and 

prosthetic axes of the articulation.  

To address this relative lack of knowledge, the main objective of this thesis was to 

develop a comprehensive library of numerical techniques capable to: 1) accurately 

reconstruct the outer and inner geometry of the bone to be implanted; 2) determine the 

location of the native articular axis to be replicated by the implant; 3) assess the insertability 

of a certain implant within the endosteal canal of the bone to be implanted; 4) propose 

customized implant geometries capable to ensure minimal malalignments between native and 

prosthetic axes. The accuracy of the developed algorithms was validated through 

comparisons performed against conventional methods involving either contact-acquired data 

or navigated implantation approaches, while various customized implant designs proposed 

were tested with an original numerical implantation method.  
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It is anticipated that the proposed computer-based approaches will eliminate or at least 

diminish the need for undesirable trial and error implantation procedures in a sense that 

present error-prone intraoperative implant insertion decisions will be at least augmented if 

not even replaced by optimal computer-based solutions to offer reliable virtual “previews” of 

the future surgical procedure. While the entire thesis is focused on the elbow as the most 

challenging joint replacement surgery, many of the developed approaches are equally 

applicable to other upper or lower limb articulations. 

Keywords 

Computer-assisted surgery; total elbow arthroplasty; flexion-extension axis; implant 

malalignment; humerus; computed tomography; insertion trajectory; implant design; 

numerical optimization 
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Chapter 1  

1 Introduction 

1.1 Overview 

This introductory chapter reviews elbow anatomy, elbow disorders and total elbow 

arthroplasty. This chapter also highlights the challenges involved in total elbow 

arthroplasty.  

1.2 Joints and Implants 

Joints articulate with bones of the human body and are responsible for movement. Joints 

can be classified functionally and structurally based on the range of motion and type of 

joint, respectively. Functionally, joints can be classified into three classes; 1) synarthrosis 

joints with no movement, (2) amphiarthrosis or joints with slight amount of movement, 

and (3) diarthrosis or freely movable joints. The last group of joints such as the elbow, 

knee, shoulder and hip are more prone to different dislocations and injuries.  

Orthopedic implants are incorporated to restore normal kinematic and range of 

motion of the diseased joint. Although employing these implants reduces the pain and 

replicate the motion of the damaged joint, they may loosen, wear or break in place. 

Proper and efficient positioning of an implant into the cavity of the bone of a joint, not 

only contributes to suppressing all these defects, but it also helps to reform the normal 

functional joint.  

In the recent years, computer-assisted surgery has been employed clinically in 

some centers for the placement of the implants to improve the accuracy and precision of 

orthopedic implant positioning, even in the hands of experienced surgeons. Freely 
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movable joints of the human body vary markedly in terms of degrees of freedom, 

complexity, overall size, bone structure and also canal shape. The current research which 

investigates the interaction between the implant and bone focuses on the elbow joint and 

the humeral canal with a more kinematic complexity, complicated canal shape and 

smaller size. However, the general methodology related to implant-bone contact/collision 

of this research is applicable to all other joints of the body.  

1.3 Elbow 

1.3.1 Anatomy and Biomechanics 

The elbow joint, one of the most complicated joints of the body, connects the upper arm 

to the forearm [Bernardino, 2010]. The humerus of the upper arm, and the ulna and radius 

from the forearm, are three bones that form this synovial hinge joint. Structurally, the 

elbow joint is a synovial joint, while functionally behaves as a hinge joint. As a synovial 

joint, which is the most common and movable type of joints in human body, the elbow is 

capable of achieving movement at the contact point of the articulating bones. In order to 

ease this movement, articular cartilage covers the surfaces of the bones where they meet 

and acts as a smooth substance which protects the bones during movement. As one of the 

characteristics of synovial joints, all remaining surfaces inside the elbow joint are also 

covered by a thin smooth tissue, called synovial membrane. Muscles, ligaments, and 

tendons hold the elbow structure together to provide stability. 

 The human elbow is comprised of 3 articulations/joints; The humeroulnar joint in 

which trochlear notch of the ulnar articulates with trochlea of the humerus, the 

radiohumeral joint in which the concavity on the superior aspect of the radius head 
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articulates with capitulum of the humerus, and the radioulnar joint in which the head of 

the radius articulates with radial notch of the ulna (Figure 1.1). Although there are three 

joints performing in the elbow, they provide two different motions only. The first two 

joints (humeroulnar and radiohumeral joints) are in fact two hinge joints, which together 

function as a hinge joint, providing flexion-extension movement for the elbow, while the 

radioulnar joint is a pivot joint and responsible for supination-pronation motion. 

Traditionally, the two hinge joints of the elbow are considered as the representation of the 

elbow because the major task of the joint is to properly place the hand in space, while the 

radioulnar joint does not have any share in this functionality [Palastanga and Soames, 

2012]. 
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Humerus 

Ulna 

Radius 

Radiohumeral joint 

Humeroulnar joint 

Radioulnar joint 

(a) 

(b) 

Figure ‎1.1: Elbow anatomy: (a) anterior view of right arm, showing the three elbow 

bones: humerus, radius and ulna, and (b) the three joints of elbow: radiohumeral, 

humeroulnar and radioulnar joints.  

Adapted from [http://www.cea1.com/anatomy-sistems/skeleton-of-the-arm/; 

http://phs.psdr3.org/science/anatomy/notes/skelenotes.html] 
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The humerus is the longest bone in the upper limbs consisting of a body and two 

extremities, which connects to shoulder joint from upper (proximal) side and to the elbow 

joint from lower (distal) side. The body is composed of a cylindrical compact cortical 

bone, thicker at the center while the structure of the two extremities is cancellous tissue 

covered by a thin and compact layer. The cylindrical shaft contains an inner endosteal 

medullary canal that runs along the length of the diaphysis. Cross-sections of the humerus 

for both the periosteal shaft and medullary canal are not circles since the humerus is 

wider in medial-lateral direction rather than in anterior-posterior, especially close to the 

elbow.  

The inner shape of endosteal canal is significantly important in positioning of the 

humeral implant during elbow replacement surgeries. On the other side, the lower 

extremity (distal) of the humerus plays a crucial role in surgical exposures since it 

contains several anatomical features that help surgeons to identify native regions of the 

elbow joint. These landmarks include two lateral and medial epicondyles which are 

located on each side of the distal humerus, two articular surfaces which are capitellum 

and trochlea, and three fossae comprised of the radial fossa, coronoid fossa and olecranon 

fossa (Figure 1.2). The articular surfaces are a bit lower than (distal to) the epicondyles. 

The lateral portion of the articular surfaces is a smooth rounded feature named the 

capitellum, while the medial part is a hyperbolic concaved surface, named the trochlea, 

which is separated by a groove called the trochlea sulcus. The capitellum articulates with 

the radius to form the radiohumeral joint. The trochlea of the humerus articulates with the 

ulna to represent the humeroulnar joint [Morrey and Bryan, 1982]. As reported 

previously [Amis, 2012], the transmission of loads to these joints is different, where 57% 
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of the load applied to the hand is transmitted through the radiohumeral joint and the rest 

is transmitted through the humeroulnar joint [Bernardino, 2010].  

 

Medial 

epicondyle 

Capitellum 
Trochlea 

Coronoid fossa 

Radial fossa 

Figure ‎1.2: Anterior view of the distal humerus. 
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1.3.2 Motion and kinematics 

The motions of the elbow joint consists of the flexion-extension movement provided by 

the humeroulnar and radiohumeral hinge joints and the pronation-supination movement 

provided by the radioulnar pivot joint (Figure 1.3). The flexion-extension motion occurs 

over an axis of rotation which is in fact the axis of the elbow hinge joint. In order to study 

the exact location of this axis, concurrent study of the centers of motions for both 

engaged joints (humeroulnar and radiohumeral joints) is required. The center of motion 

for the humeroulnar joint was reported to coincide with the center of trochlea sulcus arc 

for the majority of the flexion-extension range of motion, while the center of motion for 

the radiohumeral joint was reported to almost match the center of capitullum arc. As a 

result, the flexion-extension axis is a unique line that passes through arc centers described 

by trochlea sulcus and capitellum, except at extremes of flexion and extension [London, 

1981]. Further details will be discussed in Chapter 3. 
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Figure ‎1.3: Motion of the elbow: (a) flexion-extension movement, and (b) 

supination-pronation movement.  

Adapted from [http://www.eorthopod.com/content/adolescent-osteochondritis-

dissecans-of-the-elbow; http://www.arn.org/docs/glicksman/eyw_040901.htm] 

Extension 

Flexion 

Supination Pronation 

(a) 

(b) 
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1.3.3 Disorders 

The study of biomechanics of the elbow can help surgeons to plan surgeries and apply 

suitable treatments in difficult clinical problems, similar to other joints of the body. Many 

routine activities highly depend on the performance and functionality of the elbow joint, 

which is affected by both osseous and soft tissue structures. In the occurrence of different 

types of disorders, the large ranges of motion are subject to significant losses and they 

can impair the functionality of the elbow [Amis et al., 1982]. There are three major 

groups of elbow disorders consisting of different types of arthritis, tumors, fractures, and 

dislocations.  

Arthritis involves inflammation in the joint. Swelling, joint stiffness, difficulty 

with moving the joint, and muscle ache are other symptoms. One typical treatment option 

with overall satisfactory results for patients with osteoarthritis is total elbow arthroplasty, 

however, depending on the age and stage of the disease other treatment options might be 

recommended [Baksi, 1998; Throckmorton et al., 2010]. Fractures can also lead to joint 

replacement. Radial head and neck, olecranon, coronoid, the distal humerus, and condylar 

fractures are common elbow fractures. In adults radial head fracture is the most common 

fracture, while distal humerus fracture can be more challenging in elderly patients, 

especially when associated with previous damages such as rheumatoid arthritis [Antuna 

et al., 2012]. As one of the first studies, Cobb et al. [Cobb and Morrey, 1997] suggested 

total elbow arthroplasty for elderly patients with the distal humerus fractures and reported 

successful results after the surgery. As a result, replacement surgeries are more and more 

accepted for the elbow as the use of hip replacement surgeries for elderly patients with 

femoral neck fracture is fairly well accepted [Cobb and Morrey, 1997]. Due to high rate 
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of complications for open reduction and internal fixation, total elbow arthroplasty as a 

treatment decision for extensively comminuted fractures of the distal humerus is highly 

recommended. The rate of this type of surgery for these patients is increasing due chiefly 

to the rise in elderly population [Ali et al., 2010]. 

1.4 Medical Imaging 

Medical Imaging is an important tool in the diagnosis and planning for joint replacement. 

There are different methods, processes and instruments involved in creating the medical 

images, among which X-ray, Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), and ultrasound are the most common techniques.  

1.4.1 Radiographs 

In the X-ray technique, a source emits X-rays to the human body and on the other side a 

recording film produces X-ray images from the patient. Depending on the absorption rate 

of the different parts of the body, X-rays are absorbed or reflected and therefore the X-

rays that reach the recording film make the film dark. In this way, the recording film 

records the attenuation of the X-rays, passing through human body. The resolution of the 

image depends on the amount of energy generated by X-ray source, tube current, and 

exposure time (Figure 1.4).  
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Figure ‎1.4: X-ray of a total elbow arthroplasty. 

Adapted from [http://www.orthop.washington.edu/?q=patient-care/hand/elbow-

arthritis.html] 
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1.4.2 Computed Tomography  

Computed Tomography (CT) is a non-invasive medical examination procedure that uses 

specialized X-ray equipment to produce cross-sectional images of the body. The 

difference between CT and X-ray is that CT produces multi-sliced 3D images, while X-

ray is a 2D representation of the human body (Figure 1. 5). In this technique, a detector 

rotates around the patient and as a result takes images at different angles. All the images 

are processed and reconstructed into multiple cross sectional (slices) images. Obviously, 

3D image comparing to a 2D image delivers larger amount of information.  

In orthopedics-related CT applications [Wang, 2009], accurate representation of 

the endosteal cavity of the humerus is a mandatory and preliminary step for positioning 

of the humeral implants during total elbow arthroplasty. Furthermore, this information is 

critical in determination of optimized implant stem. This calls for an accurate geometric 

representation of the cortical bone as one of the decisive premises of successful 

reconstruction.  

 

1.4.3 Digital Imaging and Communication in Medicine (DICOM)  

In 1983, the American college of Radiology (ACR) and National Electrical 

Manufacturers Association (NEMA) introduced the first standard named Digital Imaging 

and Communication in Medicine (DICOM), capable of storing, handling, and 

transmitting information in medical imaging. DICOM became the global format for 

encoding the images acquired from different system. DICOM enables integration of 

http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MedicalX-Rays/default.htm
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different scanners, work-stations, and servers from multiple manufacturers into a Picture 

Archiving and Communication System (PACS). 

Each DICOM file contains grids of pixels which depending on the density of the 

tissue forms a grayscale spectrum (Figure 1.5). One of the applications of DICOM files in 

orthopedics field is to extract the 3D geometry of the bone from a stack of DICOM slices. 

In order to accomplish this, pixels belonging to outside and inside boundaries of the 

cortical bone are detected in each single DICOM file and then these boundaries are 

assembled to reconstruct the bone geometry.  
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  (b) 

(a) 

Figure ‎1.5: (a) 3D representation of distal humerus acquired by CT scanner, and (b) 

the distal humerus cross section in transverse, sagittal and coronal planes. 
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1.4.4 Edge Detection Methods 

Edge detection aims at identifying points/pixels in a digital image at which sharp changes 

in image intensity occurs. Edge detection techniques benefit from a set of mathematical 

methods to locate the boundaries of objects within an image which are characterized by 

abrupt discontinuities due to change in image brightness [Nadernejad et al., 2008; Maini 

and Aggarwal, 2009]. Edge detection filters and keeps important structural properties 

(i.e., boundaries of objects). Detecting the edges/boundaries is an essential step in image 

segmentation and image reconstruction. All the methods in edge detection employ either 

gradient-based method which searches for maximum or minimum in first derivative of an 

image, or Laplacian-based technique which employs zero crossings in the second 

derivative of an image.  

Canny, Sobel, Prewitt, Robert, and Laplacian of Gaussian are the major edge 

detection techniques in image processing. The Canny edge detector method [Canny, 

1986] is known as the standard technique. The Canny algorithm is based on converting 

the edge detection problem into a signal processing optimization problem in which there 

is a minimum deviation between the distance of the edge pixels, found by the algorithm, 

and the actual edge [Canny, 1986; Maini and Aggarwal, 2009]. As the first step of this 

algorithm, the Canny algorithm smoothens the image with a two-dimensional Gaussian to 

eliminate the noise, and then calculates the gradient of the image in both directions to 

identify regions with high spatial derivatives. Since edges occur at points where the 

generated gradient is a maximum, Canny applies a non-maximum suppression to 

eliminate non-maximum pixels. Canny then uses high and low thresholds (named as 

hysteresis) to generate edges among candidate pixels. Sobel [Matthewes, 2002] uses a 
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simple 3*3 convolution kernels to create a series of gradients in both x and y directions. 

These magnitudes of gradients are plotted at the end to represent edges/boundaries of an 

image. The main characteristic of Sobel technique is that it is incredibly sensitive to 

noises in images. Prewitt technique [Seitz et al., 2010; Shirvakshan, 2012] is similar to 

the Sobel algorithm in terms of kernels involved in generating gradient values. Unlike 

Sobel technique, the Prewitt operator is a fast operator that does not put emphasis on 

pixels that are close to the center of the masks and therefore it is only suitable for well-

contrasted noiseless images. The Roberts algorithm [Roberts, 1965] benefits from 2*2 

convolution kernels to calculate 2D spatial gradient measurements. The Roberts 

technique highlights regions of high spatial frequency which at the end correspond to 

edges. The most common use of this technique is its application on grayscale images as 

input and output [Shirvakshan, 2012]. Laplacian of Gaussian function known as LOG 

function employs a smoothening filter, performed by convolution with a Gaussian 

function and followed by a derivative operation. The LOG operator is a 2D isotropic 

measure of the 2nd derivative of an image, which is sensitive to noises [Juneja and 

Sandhu, 2009].  

It is really essential to understand the differences between different edge detection 

techniques, their advantages, disadvantages, and their special applications (Figure 1.6). 

Typically, gradient-based algorithms such as Prewitt are sensitive to noise although they 

might work faster than others. It is reported in [Juneja and Sandhu, 2009] that under 

noisy conditions, Canny, Robert, and Sobel represent better performance respectively. 

The other factor, which is important, is the quality of output images, which under these 

circumstances Sobel, Prewitt, and Roberts provide low quality images comparing to other 
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methods. Canny algorithm depends heavily on adjustable factors such as standard 

deviation for the Gaussian filter and threshold values. Although Canny method is 

computationally more expensive comparing to the others, it performs accurate edge 

detection on images [Miani and Aggarwal, 2009; Juneja and Sandhu, 2009; Nadernejad et 

al., 2008; Shirvakshan, 2012] (Figure 1.6). 
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Figure ‎1.6: Comparison of different edge detection techniques; (a) original sample 

image, adapted from [http://en.wikipedia.org/wiki/Statue_of_Liberty], (b) Prewitt, 

(c) Canny, (d) Sobel, (e) Roberts, and (f) LOG methods. 

(b) 

(d) 

(c) (a) 

(e) (f) 
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1.5 Total Elbow Arthroplasty 

Total Elbow Arthroplasty (TEA) involves replacement of the damaged elbow joint with 

artificial components (implants) aiming at restoring elbow function and relieving pain in 

the patient (Figure 1.7).  Operatively, surgeons identify the native articulation axis and 

remove diseased portions of the elbow and then prosthetic replacement is performed for 

the humeral and ulnar sides. Implant stems are inserted into the medullary canals of the 

corresponding bones and fixed by cement while surgeon ensures the flexion-extension 

axis best matches the native articulation axis of the elbow [Brownhill, 2007]. The implant 

configuration/alignment inside the bone canals affects the kinematics and load transfer of 

the elbow after surgery. The crucial issue here is to replicate the same kinematics and 

load transfer system as accurate as possible to avoid potential failure [Bauer and Schils, 

1999; Brownhill, 2007].  
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Figure ‎1.7: (a) Anatomical features of the native elbow joint, and (b) elbow joint 

after total elbow arthroplasty with prosthetic components. 

Adapted from [http://www.doctorre.com/commoninjuries/elbow/; 

http://www.littleastonoasis.com/Pages/ElbowReplacement.aspx] 
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1.5.1 Surgical Techniques 

Following joint exposure, component sizing is performed by comparing humeral spool 

size with articulation of the distal humerus from medial to lateral since the width of the 

component is more important than spool diameter. The size of the spool determines the 

size of the humeral, ulnar, and radial head components [Marsh and King, 2013; Gramstad 

et al., 2005]. The flexion-extension axis is then determined by a line from the center of 

the capitellum to the anterior-inferior aspect of the medial epicondyle. The humeral 

implant is then inserted into the canal and the ulnar component is implanted into the ulnar 

medullary canal. When trial components are in place and linked together to form the trial 

elbow joint, the elbow is placed through a range of motion and tested for stability [Marsh 

and King, 2013; Gramstad et al., 2005]. The spool is fixed to the humeral stem first by a 

screwdriver and the radial head is snapped onto the stem.   

1.5.2 Implant Types 

Implants used in total elbow arthroplasty can be divided into two general categories; 

linked (coupled) and unlinked implants. The distinction between these two groups is the 

way humeral and ulnar implants are linked [Little et al., 2005; Sanchez-Sotelo, 2011]. 

For linked implants, humeral and ulnar components are connected via a physical linking 

(i.e. screw) to avoid further dislocation between them. Linked implants can also be 

divided into two groups; fixed hinge/constrained implants that are early generations of 

linked implants and sloppy hinge implants that are current type of linked implants. Since 

the main kinematic characteristic of the elbow is the flexion-extension movement, early 

designs for linked implants were considered to contain a simple fixed hinge joint as 

linking joint representing native kinematics of the elbow. The main two drawbacks of 
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such design are transmitting higher stresses to implant/cement and cement/bone 

interfaces and also high rate of failure in total elbow arthroplasty [Little et al., 2005; 

Sanchez-Sotelo, 2011]. As reported in [Little et al., 2005], the overall functionality of 

fixed hinge implants is lower than sloppy hinge or unlinked implants with higher 

loosening rate of 11% and lower successful results of 73%. The majority of loosening 

comes from the humeral stem rather than the ulnar component, which might be increased 

to 25%, due to high amount of forced transferred to the joint [Morrey and Bryan, 1982]. 

Therefore, current linked implants are semi-constrained implants with sloppy hinge of 

linking mechanism, which allows internal-external rotational laxity and varus-valgus play 

of 5
0
-10

0
 degrees [Baksi, 1998; Hastings, 2004; Lee et al., 2005; Little et al., 2005]. 

Since rotational and varus-valgus forces in a native elbow joint are dispersed through 

surrounding soft tissue and not the articulation mechanism, sloppy hinge implants are 

designed to replicate this semi-constrained native kinematics of the elbow and to reduce 

the amount of forces being applied on joint articulation [Gramstad et al., 2005; Morrey 

and Bryan, 1982; Little et al., 2005]. It is believed that semi-constrained implants lead to 

a long-term fixation due to less transmission of stress to implant articulation interfaces 

and also more and more advances in geometric and mechanical design [Sanchez-Sotelo, 

2011]. Coonrad-Morrey, Discovery, GSB III, Norway, Pritchard Mark II, and Pritchard 

Walker are common linked implants available for total elbow arthroplasty, among which 

Coonrad-Morrey is the major one in this type of group and widely used in current TEA 

[Sanchez-Sotelo, 2011; Prasad and Dent, 2008; Mansat et al., 2013; Gill and Morrey, 

1998; An, 2005]. 
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Unlike semi-constrained implants, unlinked/resurfacing implants (also termed 

unconstrained implants) do not have a mechanical connection between the humeral and 

ulnar components. The articulation consists of two curved surfaces that slide on each 

other to replicate the elbow motion. The stability of unlinked implant is achieved by 

accurate positioning of each component, ligament integrity and muscle stability 

[Sanchez-Sotelo, 2011]. Theoretically, unlinked implants lead to a lower loosening rate 

comparing to linked implants due to lower implant/cement and cement/bone interfaces 

stresses [Kamineni et al., 2005]. As a contradiction to unlinked implants, extensive loss 

of bone for implant preparation and ligamentous support can be a source of instability for 

this type of implant. Capitellocondylar, iBP, Kudo, Norway, Pritchard II, Sorbie and 

Souter-Strathclyde are current options for unlinked implants to be used in total elbow 

arthroplasties among which Kudo, Sorbrie and Souter-Strathclyde are the more common 

from other options [Sanchez-Sotelo, 2011; An, 2005; Kamineni et al., 2005]. 

The new generation of implants are termed convertible implants due to the fact 

that these new types of implants can be both linked and unlinked implants depending on 

the intra-operative decision of surgeon in terms of stability for TEA. Comparing to 

existing linked and unlinked implants, convertible implants include a better bearing 

surface design and a geometrical design with the focus on anatomic reconstruction. The 

Latitude is the major available option for these convertible implants [Sanchez-Sotelo, 

2011; Gramstad et al., 2005]. 

1.5.3 Complications 

Despite of the advancements in implant designs and surgical techniques, the rate of 

complications after total elbow arthroplasty is 25% as reported in [Voloshin et al., 2011] 
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while some studies show a high rate of 45% [Gschwend et al., 1996]. Studies on 

complications after TEA vary in terms of number of patients, number of months followed 

after surgery, indication of TEA, age of patients, year of surgery and patients referral to 

the same hospital for revision surgery and as a result a wide range of complication rate is 

reported in different studies [Voloshin et al., 2011; Gschwend et al., 1996; Seitz et al., 

2010; Wright et al., 2000; Morrey and Bryan, 1982; Mansat et al., 2013]. However, 

common complications are aseptic loosening, deep infection, ulnar nerve lesions, bushing 

wear/failure, implant fracture, dislocation and intra-operative fractures. As previously 

indicated, these can be attributed to varied extents to implant alignment in bone. 

Aseptic loosening is the most prominent complication occurring mostly about 

humeral component due to insufficient bone stock, ligament instability, improper cement 

fixation and failure of bone/cement interface [Voloshin et al., 2011; Gschwend et al., 

1996]. Unlike semi-constrained implants, unlinked prostheses lead to less aseptic 

loosening due to reductions in stress at the cement-bone interface.  

Several studies investigated the intrinsic constraints and attributes of various types 

of implants utilized in total elbow arthroplasty through cadaveric studies [An, 2005; 

Kamineni and Morrey, 2008; Brownhill, 2007].These studies can help surgeons to decide 

which implant types better replicate the kinematics of the elbow, despite of various 

geometric designs and in vitro biomechanical behavior of implants.  

1.6 Component Alignment and Collision Detection 

The final position of humeral implant in the humeral canal during TEA determines the 

flexion-extension (FE) axis of the joint, however, the overall success of determination of 
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the optimal insertion path of the implant into the intramedullary convoluted canal with no 

collision is the challenging step in implantation. Determination of the optimal insertion 

trajectory is a part of classical peg-in-hole path planning problem, in which the primary 

goal is to determine a collision-free trajectory of a moving object (peg) from an outside 

position to the final inside position within confined spaces (hole). This is where 

calculation of collision detection is relevant.  This is a fundamental problem in 

Computer-Aided Design and Machining (CAD/CAM), robotics, automation, 

manufacturing, computer graphics, animation and computer simulated environments. The 

major goal of collision detection is to identify a geometric contact when collision is about 

to occur [Lin and Gottschalk, 1998]. As an example, in robotics, motion planning of 

robots depends highly on collision detection technique aiming at maneuvering the robot 

away from obstacles. Generally speaking, determination of a collision-free trajectory 

involves identification within the pool of instantaneously possible object position and 

orientations (i.e. poses or postures) of those who are characterized by a non-overlapping 

status with neighboring objects.   

Typically, various model representations define collision detection algorithms, 

however the desired query types and simulation environments are essential parameters. 

There are many model representations in CAD/CAM, while polygonal models, 

constructive solid geometry, implicit surfaces and parametric surfaces are important ones. 

Most of earlier studies in collision detection focused on algorithms for convex polytopes 

[Dobkin and Kirkpatrick, 1990; Gilbert et al., 1988; Seidel, 1990; Lin and Gottschalk, 

1998].   
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Gottschalk et al. introduced RAPID algorithm in which collision detection was 

based on oriented bounding boxes. K-DOPs method was introduced by Klosowski et al. 

which used discrete orientation polytopes for approximating bounded geometry. In the 

context of non-polygonal models, there are several attempts for computing the 

intersection of surfaces represented as splines or algebraic surfaces [Krishnan and 

Manocha, 1997]. We can divide non-polygonal models into three groups; 1) Constructive 

Solid Geometry (CSG) models, (2) Parametric surfaces and (3) Implicit surfaces. In CGS 

models, efficient and accurate computation of the boundary is a challenging area. S-

bounds were introduced by Cameron to speed up the intersection testing by one or two 

orders of magnitude on CSG systems, using limited sample points [Cameron and Culley, 

1986]. In the Duff approach [Duff, 1992] interval arithmetic was used to evaluate implicit 

function in box-like regions which is in fact extended version of classical point 

classification scheme. By using this technique, he could determine whether regions lie 

inside or outside or lay across the boundaries.  

Four techniques are common algorithms for collision detection in parametric 

surfaces: subdivision methods, analytic methods, lattice methods and tracing methods. 

Subdivision methods subdivide the domain of two surface patches in tandem and then 

inspect the relationship between these patch subsections [Snyder et al., 1993]. Lattice 

methods try to find specific points on the preimage curve of the intersection curve of two 

surfaces in the domain of both surfaces. In this method, many isoparametric curves are 

defined to criss-cross the surface like a lattice-work [Prasad and Dent, 2008]. Tracing 

methods start from a given point on the intersection curve of two surfaces and then try to 

trace the intersection curve in small steps [Krishnan and Manocha, 1997]. In analytic 
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methods, the parametric representation of the curve is substituted for the implicit function 

to end up with a scalar function in terms of parametric variables. The locus of roots of 

this scalar function maps out the preimage intersection curve of two surfaces [Manocha 

and Canny, 1991]. To accomplish collision detection for implicit surfaces, [Pentland and 

Williams, 1989] used point samples and implicit functions to represent the shape of the 

intersection curve.  

1.7 Thesis Rationale 

1.7.1 Motivation 

Implant alignment is a critical factor in replicating native kinematics of the elbow and 

durability of the artificial components. In order to better position the implant into 

medullary canals of the elbow bones, both anatomical understanding of the bones and 

biomechanical properties should be considered [Schunid et al., 1995; Figgie et al., 1986]. 

Brownhill and colleagues [Brownhill et al., 2012a] studied the anatomical perspective of 

the distal humerus and derived geometric features of the distal humeral canal, to better 

investigate implant positioning. It was shown that the anteriorposterior curvature of 

medullary canal of the distal humerus along with FE axis anterior offset from axis of this 

canal play an important role in the design and implantation of distal humerus implants 

[Brownhill et al., 2012b]. 

Collision detection can have broad applications in medical area and so many 

studies were conducted in this area. In a study by Tutunea-Fatan et al. [Tutunea-Fatan et 

al., 2010], collision detection was utilized to assess the insertability of the stem in the 

humeral canal during total elbow arthroplasty. In this study CEA software was used to 
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accomplish the insertion. As another application, collision detection was used in virtual 

surgery simulators in [Lombardo et al., 1999] to train surgeons on virtual patients. 

Nowadays, since non-invasive surgeries contain a majority of surgeries, practicing with 

various tools during surgery is essential in which surgical simulators can be a great help. 

Successful clinical outcome of surgical joint arthroplasty is decisively influenced 

by the pre-operative planning procedures aiming to establish an optimized implant 

insertion trajectory into the bone cavity. Since computation of the insertion path of a 

body into a cavity represents a traditional instance of a path planning problem often 

encountered in robotics field, the proposed research is expected to reinforce the 

importance of engineering approaches in the context of Computer-Aided Orthopaedic 

Surgery (CAOS). The use of collision detection algorithms – involving advanced 

geometric representations and/or computations will enable the determination of optimal 

implant insertion trajectory with significant implications with respect to preoperative 

prediction of implant alignment and optimal implant design. 

1.7.2 Objectives and Hypothesis 

The main objective of the proposed research is to develop a library of numerical 

algorithms that will constitute the core of a computationally-intensive geometry 

visualization module capable of achieving accurate predictions related to implant 

insertability into the bone’s endosteal canal as defined by patient-specific CT scans. 

The methods to be developed within the scope of the proposed research will 

permit the replacement of error-prone implant insertion decisions made preoperatively by 

the surgeon with optimized computer-based solutions. This approach will eliminate or at 
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least diminish the need for unreliable and undesirable trial and error validation 

procedures. Over the long term, it is expected that the knowledge generated through this 

study will be incorporated into a complex virtual total arthroplasty training simulator that 

will integrate these geometry-based modules with elements of haptic feedback.  

The central hypothesis of the proposed research is that by analyzing 

preoperatively the implant and medullary canal geometries involved in total elbow 

arthroplasty, an accurate prediction can be made with respect to their relative fit. To 

address this hypothesis, the objectives are: 

 1) To develop a computer-aided method capable to reconstruct with minimal user 

intervention accurate parametric-based representations of the bone geometry starting 

from computer tomography (CT) data;  

2) To assess the insertability of particular implant geometry in the context of a 

specific humeral specimen by means of numerical techniques; and  

3) To use the developed numerical algorithms as validation tools for new implant 

stem geometries. 

1.7.3 Contributions 

The major contributions emerging from this thesis are related to the development 

of several numerical techniques of performing aforementioned tasks. Indeed, the 

developed techniques within the scope of this study were aimed to automatically 

represent humeral canal in a parametric format and determine FE axis and to derive 
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optimal insertion trajectory pre-operatively to serve surgeons have an efficient plan for 

intra-operative surgery. 

This work is one of the first attempts in the context of implant insertion into the 

cavity of bone with minimum malalignment benefiting from a computer-assisted 

technique. As such, by utilizing the developed technique surgeons can assess insertability 

of different implant sizes while investigating malalignment between native FE axis and 

bone implant axis to achieve optimal final position for implant and consequently better 

final outcome of TEA. 

1.7.4 Outline 

Chapter 2 outlines a numerical algorithm developed initially for a highly accurate and 

automatic conversion of source CT data into parametric (B-Spline/NURBS-based) data. 

The automatic DICOM to B-Spline conversion entails determination of an appropriate 

thresholding method, to be followed by an edge detection procedure required to establish 

inner and outer cortical bone boundaries.  

Chapter 3 contains a numerical algorithm to determine the theoretical/ideal 

location of the flexion-extension (FE) axis of the humeral bone based on reconstructed 

geometry of the bone. The output of this algorithm was compared and validated against 

conventional FE axis determination methods employing marching cube approaches 

followed by least square fitting methods through extracted VTK data points. 

Chapter 4 is focused on the final posture of the implant to match the natural FE 

axis of the bone, provided that this constitutes a feasible solution for analyzed bone canal 

geometry. Then, the optimal insertion trajectory was analyzed in reversed motion (final to 



31 

 

initial) in order to reduce the amount of computational time required to detect 

inaccessible final implant orientations located – most likely – towards the end of the 

insertion trajectory. 

Chapter 5 explores new geometry for stems by benefiting from the previously 

developed computational tool in conjunction with various implant stem geometries and a 

broad variety of humeral bones in an optimization process.  

Chapter 6 provides the conclusion of the thesis.  
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Chapter 2  

2 B-Spline-Based Representations of Humeral Bone 

2.1 Overview 

This chapter proposes an accurate B-Spline fitting technique based on deformable control 

polygon approach to reconstruct the humerus geometry in a user-independent manner. 

This technique was then validated by comparison against data points of outer bone 

surface acquired from CMM. This validation revealed that the developed technique is 

capable of accurate replication of the geometry of the bone. 

2.2 Introduction 

As the boundaries between engineering and medical disciplines fade away, new fields 

began to emerge by providing links between once disjoint areas. One of good examples 

in this category is represented by Bio-CAD, a field found at the confluence of several 

established research domains including: mathematics, engineering, computer science, 

medicine, etc. While it is still relatively difficult to define such a novel and broad topic in 

just few words, it can be probably briefly stated here that one of the main objectives of 

Bio-CAD is to propose efficient and accurate ways for computer-assisted representation 

and visualization of anatomical structures associated with various forms of life. As 

outlined out by Sun et al. [Sun et al., 2005], this form of computer-aided representation 

has begun to play an increasingly important role in numerous biomedical applications 

focused on design and fabrication of the artificial human tissue replacements [Sun et al., 

2005], manufacturing of the prosthetic implants and fixation systems [Singare et al., 

2006; Liao et al., 2009] and preoperative surgical planning [Singare et al., 2009]. 
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However, regardless of the application focus, one of the mandatory steps to be 

completed resides in fast and precise geometric reconstruction of the analyzed anatomical 

features of the human body, whose dimensions broadly vary since dental [Wu  et al., 

2007], osseous [Singare et al., 2006; Singare et al., 2006; Liao et al., 2009; Au et al., 

2008] or even full body modeling might be necessary [Gayzik et al., 2011]. While soft 

tissues could be part of the developed geometric representation [Gayzik et al., 2011], 

numerous research studies focus exclusively on bone geometry [Singare et al., 2006; 

Singare et al., 2006; Liao et al., 2009; Au et al., 2008]. It is perhaps of importance to note 

here that while pixel/voxel-based representations of the geometry are also suitable for 

visualization of the biomedical structures, they generally lack the accuracy of detail, 

formulation brevity, scalability, topological context and mathematical rigorousness that 

are characteristic to parametric-based data which constitutes the foundation of modern 

CAD [Grove et al., 2011]. Furthermore, once the geometry of the anatomical features has 

been converted to CAD-based representations, they can be further investigated by means 

of conventional mechanical engineering tools that are now embedded in most commercial 

CAD systems: dimensional and strength analysis, motion simulation, and so on.  

The techniques developed so far for geometry reconstruction of various 

components of the human skeleton rely on relatively diverse approaches. Regardless of 

their specifics, all existent bone reconstruction methods fall under the general category of 

reverse engineering, and they all have as an input the initial cloud of points generally 

placed on the delimiting surfaces of the osseous feature of interest. However, unlike in 

the reverse engineering of the mechanical components in which the initial dataset can be 

acquired through contact (e.g. coordinate measurement) or non-contact (e.g. laser 
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scanning) methods, Bio-CAD relies on an input consisting of a cloud of points 

determined through segmentation of the stack of images obtained through CT scanning of 

the relevant human body part. The accurate segmentation of CT data constitutes the 

object of an extensive area of research in medical imaging, in an attempt to precisely 

detect the boundaries of the scanned anatomical features since the CT data acquired for 

clinical purposes is generally noisy due to the limitations imposed on the scanner power.  

So far, the process of “reverse engineering” in the context of Bio-CAD relied 

either on commercial CAD software [Singare et al., 2006; Singare et al., 2006; Liao et 

al., 2009; Au et al., 2008; Gayzik et al., 2011; Starly et al., 2005; Viceconti et al., 1998] 

or on custom-written codes aiming to enhance the accuracy and efficacy of the fitting for 

segmented data. While each of the two approaches has its own advantages and 

disadvantages, it could be probably safely assumed that while the first technique will 

enable faster implementations and thereby solutions, the latter will provide more accurate 

answers to a certain problem, since all parameters are accessible to the user who often 

shares the code/method developer status. Numerous studies have proposed custom-

written CT data fitting algorithms focused on determination of the most suitable 

expressions for the parametric curves [Wytyczak-Partyka and Klempous, 2012; Wu et al., 

2007], or surface patches [Grimm et al., 2002; Jaillet and Vandorpe, 1997; Yoo, 2011] to 

approximate the given dataset. Furthermore, some of the newer Bio-CAD techniques 

advocate for generation of heterogeneous models to incorporate both geometry and 

material properties [Kou and Tan, 2007; Warkhedkar and Bhatt, 2009; Grove et al., 

2012].  
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Despite the relatively large number of research studies focused on the 

reconstruction of the bone geometry from CT data, only a very limited subset of works 

was concerned with the accuracy of the model generated with respect to its physical 

counterpart. While the correspondence between real and virtual shapes of human body 

parts is relatively hard to establish in case of soft tissues that tend to deform under the 

external action of the measurement probe, this is not the case with bone. The techniques 

that have been used to verify the precision of the reconstructed geometric models often 

rely on optical/non-contact measurement approaches that could involve a broad variety of 

equipment ranging from simple flatbed scanners [Aamodt et al., 1999] to more advanced 

options involving laser probes mounted on a coordinate measurement machine (CMM) 

frame [Gelaude et al., 2008]. Since – debatable to some extent – the precision of non-

contact methods would be always somewhat lower than that of contact-based approaches, 

a number of researchers have validated their bone reconstruction algorithms by means of 

“hard” measurements performed either with calipers used on phantoms [Noser et al., 

2011] and bones [Laine et al., 1997] or with CMM [Au et al., 2008]. For accessibility 

reasons, contact measurement points can only be acquired on the outer (periosteal) 

surface.  

The accuracy of the bone reconstruction from CT slices is dependent on a number 

of parameters, among which the value of segmentation threshold along with the overall 

precision of the reverse engineering process – essentially set by the fitting tolerance – are 

probably the most important ones. So far, the reported mean reconstruction error for outer 

bone surface has varied broadly from 0.3-0.4 mm [Au et al., 2008] up to 1.2-1.5 mm 

[Laine et al., 1997], most likely as a consequence of the conceptual differences between 
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the techniques used. However, as Au et al. [Au et al., 2008] noted, when it comes to 

shape reconstruction, the inner (i.e. canal or endosteal) surface of the bone is relatively 

difficult to capture due to the inherent segmentation difficulties.  

Building on this, the current study proposes an automated bone reconstruction 

technique based on a B-Spline fitting method involving a novel deformable control 

polygon (DCP) approach to eliminate the need for powerful, but rather unspecialized 

commercial CAD software. To better control the overall precision of the reconstruction a 

straightforward, but effective CT segmentation will be used as part of the bone 

reconstruction method. The technique to be introduced further will be validated through 

comparisons with CMM-acquired data points placed on the outer surface of the bone, a 

feature that is generally lacking from studies focused on the development of custom-

written CT data fitting numerical procedures. Although the overall surgical context in 

which this work was performed imposed a strict focus on humeral reconstruction, the 

techniques detailed further can be effortlessly extrapolated to other osseous geometries. 

2.3 Segmentation of Bone Contours 

Determination of the bone contours through numerical processing methods represents an 

active area of medical-oriented imaging research. While segmentation, edge detection,  

and contour extraction are presently being used to denote this process, its essence is 

always the same, namely to enable meaningful divisions or partitions of the digital 

images acquired through various noninvasive body scanning techniques (e.g. CT, MRI, 

X-ray, ultrasound, etc.) that can also be used on live organisms. In the context of the 

current study, segmentation constitutes an indispensable phase of “reverse engineering” 

of the bone geometry since it provides the cloud of points to be subsequently used during 
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for fitting purposes. While – by contrast with the vast majority of the segmentation 

proposed so far – the approach used here for segmentation might be regarded as relatively 

effortless, its accuracy will be demonstrated later. Evidently, it is important to note that 

the simplicity of the bone detection method presented hereafter is tightly related to the 

characteristics of the CT data being analyzed.  

The principal steps of the bone segmentation process – typically performed 

sequentially on each axial bone slice – are outlined in Figure 2.1. The value of the 

threshold applied in step c) is critical for the generation of an accurate representation of 

the bone geometry since small variations in its value could cause important 

underestimations or overestimations of the object size, to be further amplified through 

subsequent fitting. As it can be noticed from Figure 2.1b, the precise determination of 

bone contours is made extremely difficult by the relatively large noise and low resolution 

of the CT data acquired, which is mainly caused by the restrictions imposed on the power 

of the CT scanning procedure when used for clinical purposes.  
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Figure ‎2.1: Segmentation of the bone contours: a) overall positioning of the 

analyzed axial CT slice, b) raw DICOM image of the axial slice, c) thresholded  

outer and inner bone contours, and d) detailed bone contour data points. 

 

(a) 

(b) 

(c) (d) 
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By following Hangartner’s suggestions for accurate geometric representations [ 

Hangartner, 2007], the threshold was set at a fixed percentage of the brightest pixel 

intensity as determined through the scan of the analyzed DICOM slice. Since typical CT 

slices are acquired as grayscale images characterized by two-dimensional arrays:  

 CT [ ]abII  (2.1) 

where A, Ba b   with A,B and max X
a a  and maxY

b b . The max X
a and maxY

b  

constitute pixel limits on X and Y directions respectively that are generally set by the 

resolution of the CT scanner (Figure 2.2). Furthermore, the common definition of 

grayscale images relies on 12 bits/pixel to store pixel intensity, such that 
0

abI 

(nonnegative integers) with 4095abI . 

Based on the results of an extensive heuristic search on the values, the threshold 

value was set in this study at: 

 
threshold

A, B
0.6 max ( )ab

a b
I I I

 
    (2.2) 

such that pixels located on outer and inner bone contours can be identified through their α 

and β pairs of coordinates ( A, B   ). However, to be subsequently useful for 

geometry reconstruction purposes, each of the thresholded pixels has to be mapped back 

into Cartesian coordinate system: 
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where 
voxelmaxX and 

voxelmaxY are the maximum limits of the voxel acquired through CT 

scanning. Since this fast, but rather simplistic thresholding method seemed to be capable 

to identify relatively accurate bone boundaries – as assessed through qualitative visual 

comparisons (Figure 2.3) – the proposed threshold was qualitatively compared against 

few conventional edge detection algorithms [Trichili et al., 2002] as shown in Figure 2.4. 

Given the relative match between the proposed and conventional methods, the extracted 

data was taken into further processing. 

 
  

Y 
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b 
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b

 

max X
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b 

Figure ‎2.2: 2D pixel intensity mapping in CT slices. 
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(a) 

(b) 

Bone  

contours 

Bone contour 

Figure ‎2.3: Bone contours extracted through the proposed approach from 

representative: a) middle, and b) extreme distal cross sections of the humerus. 
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(a) (c) 

(d) (e) 

(b) 

Figure ‎2.4: Comparison of the proposed segmentation (blue and green contours) 

against conventional edge detection methods: a) Canny, b) Prewitt, c) Laplacian of 

Gaussian, d) Roberts, and e) Sobel. 
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2.4 Planar B-Spline Fitting Through Deformable Control 
Polygon Technique 

Assuming inner and outer contours of the bone have been extracted in a discrete point-

based form, the next task to be accomplished consists of fitting of planar curves to 

extracted data points. As mentioned above, in addition to parametric data fitting options 

offered by commercial CAD software, a number of custom solutions have been proposed 

in the past to address the specifics of CT bone datasets [Grove et al., 2011; Wytyczak-

Partyka and Klempous, 2012; Wu  et al., 2007]. Furthermore, a number of imaging-

oriented techniques based on classical snake or B-snake formulations have been 

developed for similar reasons, but in addition to their known drawbacks [Wu et al.,2007], 

their interfacing with general purpose CAD/Bio-CAD modules remains difficult. 

Generally speaking, the wide majority of existent B-Spline fitting algorithms rely on one 

of the two approaches detailed in the comprehensive monograph on NURBS [Piegl and 

Triller, 1997] involving either knot removal or degree elevation techniques. However, 

none of these two methods seems to work well for CT-originated data points, such that 

supplementary smoothing and/or fairing operations are typically required [Grove et al., 

2011]. Alternate B-Spline fitting techniques involved either Bezier into B-Spline merging 

[Deng and Yang, 2008] or iterative square-distance minimization (SDM) methods as 

initially proposed by Pottmann et al. [Pottmann et al., 2002] and later enhanced by others 

[Yang et al., 2004; Wang et al., 2006].  

Perhaps important to mention, the view taken in [Pottmann et al., 2002; Yang et 

al., 2004; Wang et al., 2006] differs significantly by others in a sense that the 

significance of intrinsic B-Spline parametrization based on given data points location is 
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greatly reduced owed to SDM approach, such that faster and better convergences are 

ensured [Yang et al.,2004]. Following up on this concept, the current study proposes a 

novel B-Spline fitting method based on control deformation. The main idea of the 

proposed method was originally mentioned by Floater [Floater, 2008] who has indicated 

that for fitting purposes, a good curve will not deviate too much from its control polygon. 

This view will be speculated in the context of the current work by enforcing that control 

points (CP) of approximating B-Spline are nothing but a subset of the initial CT dataset. 

Then, if the curve does not deviate much from its control polygon, it is reasonable to 

expect that it will also not deviate more from the data points to be approximated. 

2.4.1 Closed B-Spline Formulation 

According to classic parametric curve theory, the general formulation of a closed B-

Spline curve whose shape is determined by 1,n n   control points 

T

CP CP CP CPi i i i
X Y Z   P  as shown in Figure 2.5 is: 

 
B , CP 1

0

( ) ( ) , [ , ]
i

n

i k p n

i

u N u u u u 



  P P  (2.4) 

where 1k p   represents the order of the p-th degree curve. Although particularities of 

CT data approximation require a more narrow focus on planar B-Spline case ( CP 0
i

Z  ) 

only, it can be assumed that many of the upcoming considerations are extendable to non-

planar situations.  

In Eq. (2.5), ,i kN are B-Spline blending functions defined by the well-known Cox-

deBoor recursion: 
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that is valid for 0, , ( 1)andi j i n k j j k      and assumes 
0

0
0
 . The initial 

conditions of the recursion are set by:  

 
1

,1

1, when [ , )

0,otherwise

i i

i

u u u
N


 


 (2.6) 

 

 

For closed and planar B-Spline formulations built through the control point 

wrapping technique described by Alavala [Alavala, 2008], although the total length of 

knot vector  0 1 ... mu u uU  is 1m n k   , the feasible range of parameter u is 

restricted to 1[ , ]p nu u   range, to a total of 2m p  knots. The aforementioned technique 

assumes a perfect overlap between the first and last p control points of the control 

polygon of an initially open B-Spline: 
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Figure ‎2.5: Parametric formulation of a closed B-Spline. 
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1

0

CP CP , , ( 1)
i n p i

i i p
  

   P P  (2.7) 

Evidently, the definition of a closed B-Spline implies that B B 1( ) ( )p nu u P P . Based on 

Eq. (2.4-7) it becomes clear that three elements are required to uniquely define its shape: 

i) order (degree); ii) knot vector U; and iii) control polygon CPP .  

When it comes the degree of the approximating B-Spline, most of the studies in 

the area have already pointed out that there are little incentives to explore anything else 

beyond cubics. As such, the current study makes no exception from selection of cubics 

( 3)p  . On the other hand, when it comes to B-Spline parametrization, the issues are not 

as straightforward and hence a number of alternate parametrization schemes have been 

explored in addition to the classical uniform, chordal and centripetal [Floater et al., 

2008]. However, as pointed out in [Haron et al., 2012], with few exceptions [Park, 2001] 

most of prior work on parametrization was devoted to general (i.e. open) curves and 

ultimately “the best parametrization” continues to remain a somewhat subjective notion 

that is highly dependent on the designer [Haron et al., 2012].  

As such, only the three more conventional types of parametrizations (e.g. 

uniform, chordal and centripetal) have been investigated by the present study, while the 

latter two of them merely for comparison purposes. All these parametrizations are 

encompassed by the following generic formulation: 

 
0

1 , , ( 1)i i iu u t i i m       (2.8) 
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where ui are the components of knot vector U that correspond to known curve points BP
i

such that 
BB P( )

i
iu P P . In Eq. (2.8), ti represents the consecutive knot increments as 

determined by the following recursive relationship: 

 
B 1 BP P| |

i i
it




 P P  (2.9) 

where 0   corresponds to uniform, 0.5   to centripetal, and 1   to chordal 

parametrization, respectively. However, by taking the view expressed by Yang et al. 

[Yang et al., 2004] according to which the knot sequence should be straightforward, fixed 

and independent of the shape of the approximating curve, the developed B-Spline fitting 

technique was built around the uniform knots: 

 1 1, { , ( 1),..., }i iu u i p p n      (2.10) 

 

2.4.2 Determination of the Control Polygon 

The accuracy of the fitting is controlled at two different levels via global (or “rough”) and 

local (or “finish”) tolerances defined as functions of the Euclidian distance between the 

analyzed data points to be approximated Di and their respective projections 
B

Pr oj(D )i
 on 

the current B-Spline shape: 
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As already mentioned, {CP} {D}  such that each control point of the approximating B-

Spline can be identified within the initial array of given data points: CPCP D D
ii l  , 

with D {D}l  . Data point projection 
B

Pr oj(D )i
 is calculated through a nonlinear 

constrained optimization technique based on Newton’s method, although more advanced 

methods can be used [Chen et al., 2008].  

With these theoretical notions at hand, the algorithm developed to determine the 

location of the control points relies on the following three major steps:  

1. Initialization: Build a cubic B-Spline based on the location of four control points 

located at extreme X and Y positions of the CT point dataset: 

 

0 D
D

1 D
D

2 D
D

3 D
D

CP {D | min( )}

CP {D | max( )}

CP {D | max( )}

CP {D | min( )}

i

i

i

i

i

i

i

i

X X

Y Y

X X

Y Y

 

 

 

 

 (2.12) 

2. Global modification: Ensure that at the end of this step the resulting curve has the 

mean deviation global  smaller than a predefined limit global : 

 global global    (2.13) 

The verification of the tolerance condition is performed before performing a new 

iterative “round check” of the entire control polygon. If the global tolerance condition 

is not satisfied at the current iteration level, new control points are being inserted 

between each pair of consecutive control points. The new control points Dmax inserted 
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between 
currCPi  and 

curr

1CPi  for the next iterative “round check” are those located at the 

maximum distance from the analyzed side of the current (i.e. “curr”) control polygon: 

 
curr curr curr curr

max 1 1
min max

new

, 1 max D DCP CP CP CP{ ,..., }
CP {D | ( ) | max (| ( ) |)}

ji i i i
i i

j j j 



     P P P P P P  (2.14) 

where 

 
min max

curr curr

1CP D ,CP Di j i j  for 
curr

D{0,1,..., }i n  (2.15) 

As soon as the last pair of control points has been analyzed at the current iterative 

cycle ( cur1i n  ), the current array of control points is updated along with its total 

length currn that will include for the next iterative cycle all newly identified points 

new

, 1CPi i  (Figure 2.6). After a number of “round check”, Eq. (2.13) will be satisfied, case 

in which the developed numerical algorithm will advance to the local modification 

phase. The primary reason for adoption of this particular type of control polygon 

deformation strategy resides in its efficiency, an essential attribute at the current 

“rough” data fitting phase whose primary role is to quickly reshape the curve 

according to the actual location of the data points to be approximated. 



56 

 

 
   

 

3. Local modification: Once the global tolerance constraint is satisfied, a check is being 

performed to verify that B-Spline approximates all given data points with a tolerance 

smaller than a certain preset value local : 

  local local    (2.16) 

The goal of this test is to eliminate CT data points that are more than local  away from 

the current B-Spline approximant simply by including them in the revised version of 

the control polygon. More specifically, if Eq. (2.16) is not satisfied for the current 

shape of the B-Spline, the new points to be added to the revised version of the control 

polygon are exactly those found in a violation of the tolerance constraint. As such, all 

Dmax points found to obey the following condition: 

max

curr

1CP Di j   

new

, 1 maxCP Di i   

“current”  

curve 

“new”  

curve 

min

currCP Di j  

Figure ‎2.6: Control polygon deformation through global modification. 
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are automatically inserted between 
currCPi and 

curr

1CPi for the next “round check” iteration 

(Figure 2.7). After a number of alterations performed to each of the segments of the 

current control polygon, Eq. (2. 6) will be satisfied. At the end of the current “finish” 

fitting phase, no CT points to be approximated should be than 
local  further away from the 

resulting curve. Given the known local modification properties associated with B-Splines, 

multiple control polygon deformations can be performed in a single “round” pass. 
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2.4.3 Robustness of the Proposed Approach 

As an overall illustration of the control polygon deformation concept, Figure 2.8 depicts 

the gradual evolution of the closed B-Spline shape as a result of the continuous 

deformation of the control polygon subjected to global and local modification techniques. 

To achieve the desired final precision local, extensive testing has shown that global 

tolerance should be set at values larger than the local one: 

 
local global    (2.18) 

  

min
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max
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1CP Di j   

new

, 1 maxCP Di i   
“current”  
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“new”  

curve 

Figure ‎2.7: Control polygon deformation through local modification. 
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Figure ‎2.8: Closed B-Spline fitting through control polygon deformation: a) to b) 

global modification;c) to h) local modification. 

(a) (b) 

(d) (c) 

(e) (f) 

(g) (h) 
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(a) (b) 

Figure ‎2.9: Local behavior of closed B-Spline approximants: a) outer, and b) inner 

bone contours. 
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While large number of control points will generally translate into superior fitting 

accuracies, they also tend to cause unnecessary undulations of the curve, especially when 

approximating the more complex configuration of the endosteal surface that is 

characterized by uneven/rougher walls. On the other hand, large numbers of control 

points are undesirable for data manipulation purposes, such that their number should be 

kept at a minimum, but this should not happen on the expense of the fitting precision. 

Extensive testing performed on outer and inner bone contours has shown that a judicious 

allocation of the two tolerances will enable smooth fitting curves for both outer and inner 

bone contours (Figure 2.9). Obviously, the geometric complexity of the inner contour 

warrants its representation through a larger number of control points but – as the detail in 

Figure 2.9b reveals –the fitted curve follows smoothly and closely the segmented data 

points. 

The method described in previous sections was also compared to alternate but 

approximately similar techniques, in which the successive adjustments performed on the 

control points were substituted by those performed on knot points (KP) themselves. Here, 

knot points were defined as: 

 
KP B B={ ( ) | and ( ) D}

i i i iu u u P P U P  (2.19) 

where 
0 , ( 1)i i m   . The initial set of knot points was chosen in a manner analogous 

with the one described by Eq. (2.12), while parametrizations have followed the three 

cases encompassed by Eq. (2.9). Under these conditions, the problem at hand is a 

classical closed B-Spline fitting problem in which the location of the control points can 

be determined from: 
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 1

CP KP[ ] [ ] [ ] P N P  (2.20) 

where [ ]N  and KP[ ]P  are blending functions and knot point matrices, respectively. While 

no supplementary details on their expression will be provided here, the reader is referred 

to [Piegl and Triller, 1997] for further information on the curve fitting topic.  

Since in this case the global modifications based on the evaluation of the 

distances between data points and control polygon sides were inefficient for fitting 

purposes, the last two steps of the approach above were merged into a single “round 

check” that – after the initial fit of the closed B-Spline through the “current” knot points – 

will add to the updated knot array
new( )P U , all data points located at the maximum 

distance with respect to the “current” curve: 

max max
DB B

new

max D proj(D ) D proj(D )
{0,1,.., }

KP {D | | max (| |)
j jj n

   P P P P  (2.21) 

The algorithm will continue to add knot points as long as both local and global 

tolerances determined through Eqs. (2.13) and (2.16) will remain unsatisfied. 

Table ‎2.1: The comparison of the proposed B-Spline method against uniform, 

chordal and centripetal methods 

  

 

  

Method 

Average number 

of control points 

for outside 

boundary 

Average number 

of control points 

for inside 

boundary 

Time [s] 

Uniform 24 46 158 

Chordal 15 44 124 

Centripetal 11 46 122 

Proposed B-Spline 35 47 91 
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Data points 

Uniform parametrization 

Chordal parametrization 

Centripetal parametrization 

Deformable control polygon 
(a) 

(b) 

Figure ‎2.10: Graphical comparison between the tested closed B-Spline fitting 

methods. 
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The qualitative comparison of the four different curve fitting approaches analyzed 

in this study (Figure 2.10) revealed that with the exception of uniform parametrization, 

all other three methods seem to arguably follow reasonably well the subset of segmented 

data points, regardless if used for inner or outer bone contours. All fittings were 

performed with identical local and global fitting tolerances. However, even if no notable 

graphical differences can be distinguished between three of the approaches used, Table 

2.1 implies that – if nothing else – the proposed method is at least 25% faster than all 

other analyzed fitting methods even if the final number of control points was 

approximately identical for all analyzed cases. As expected, B-Spline representations 

cause dramatic reductions in the amount of data points required to define the shape of 

inner and outer bone contours that decrease from 200 – 300 range to the values illustrated 

in Table 2.1. As a final comment on the topic of comparison, it could be asserted – on a 

somewhat subjective visual basis – that the approximating curves generated through the 

proposed deformable control polygon technique are typically smoother than their 

counterparts.  

2.5 Accuracy of the Proposed Bone Reconstruction 
Technique 

Traditionally, the topic of accuracy tends to be overlooked when it comes to geometric 

reconstruction of the osseous specimens. Intentionally or not, many of the previously 

proposed methods in this category were primarily focused on the computational 

efficiency of the algorithms proposed, and less concerned with the precision of the 

generated geometric dataset as compared with its physical counterpart – although this 
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represents one of the common concerns of any shape-oriented reverse engineering 

process.  

By contrast, imaging-focused approaches have attempted more frequently to 

compare digital and physical models, although the latter ones were sometimes measured 

with rather imprecise devices, regardless if contact [Laine et al.,1997] or non-contact 

[Aamodt et al., 1999]. Unlike this, newer studies seem to regard the coordinate 

measurement machine (CMM) as a veritable “gold standard” to be used towards the 

dimensional characterization of the physical objects [Au et al., 2008]. Based on these 

considerations, comparisons of the proposed bone reconstruction method against contact-

acquired data were included in the present study. However, since the two sets of data 

involved in the aforementioned side-to-side comparisons were referencing different 

coordinate systems, registration of the two point datasets had to be performed prior to the 

intended error analysis. 

2.5.1 Pair-wise Registration of Point Datasets 

According to the common taxonomy of the field, pair-wise registration is equivalent with 

the process of geometrical alignment of two correlated datasets between which the initial 

relative pose is known [Huber and Hebert, 2003] as depicted in Figure 2.11. Given the 

wealth of resources available on this topic [Rueckert and Schnabel, 2011], it will be 

briefly reminded ere that the key components of a pair-wise registration are: fixed ( F

DP ) 

and moving ( M

DP ) sets of data, coordinate transformation (typically of affine/rigid type), 

similarity assessment, and alignment optimization. The transformation of coordinates 

involved in a pair-wise registration is given by: 
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 F F M

D M D[ ] P T P  (2.22) 

where F

M[ ]T  represents the homogeneous matrix to convert point coordinates from 

moving to fixed coordinate systems. 

 

  

  

Rigid/affine 

transformation 

Moving 

dataset 

Fixed 

dataset 

Figure ‎2.11: Pair-wise registration of two correlated point datasets. 
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Given the ubiquity of registration problems in computer vision and medical 

imaging, a broad palette of numerical techniques have been developed to determine 

F

M[ ]T . Among them, those comprised from a sequence of coarse and fine registration 

steps seem to provide the best outcome in terms of stability and accuracy in case of non-

correspondent datasets [Salvi et al., 2007]. Based on these considerations, the current 

study has employed a succession of principal component analysis (PCA) and iterative 

closest point (ICP) methods to determine the required coordinate transformation matrix. 

Since both approaches are well described in literature, no further details on them will be 

provided here and the reader is referred to appropriate bibliographic resources instead 

[Besl and McKay, 1992; Salvi et al., 2007]. As a closing comment on this topic it will be 

stated here that similar to prior observations, the lack of a “perfect” correspondence 

between the pairs of datasets involved in the present work has largely prevented the 

convergence of ICP when used alone. By contrast, the use of PCA as a fast, but relatively 

inaccurate initial estimate for ICP has yielded plausible results. 

2.5.2 Comparison with Contact-Acquired Data 

The precision of the developed technique was tested against data collected through “hard 

contact” measurements performed with CMM. However, the finite length of the CMM 

probe combined with the large anatomical irregularity of the inner bone surface makes its 

measurement impractical. As such, the comparison to be further outlined was solely 

restricted to outer bone surface. While the collection of both inner and outer bone data 

would have been a preferable scenario, it is reasonable to anticipate that – given the 

consistency of approaches used for outer and inner contour reconstruction – the results 

obtained for outer bone profile are comparable to those applicable to endosteal canal. 
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To acquire the data, the extreme portions of the humeral specimens were first 

removed through disk sawing (Figure 2.12). This trimming operation was necessary 

because of the limitations of the subsequent contact measurement procedure whose 

precision decreases considerably at larger overhang lengths of the specimen. After that, 

the reduced humeral specimen was scanned with a GE Discovery 750 HD CT scanner set 

at a field of view of 9797 mm. The scanner generated monochrome 16-bit CT slices of 

512512 pixels (0.189 mm/pixel) and voxels of 0.625 mm thickness. Approximately 70 

slices were acquired in the region of interest with a beam set at 120 kVp and 240 mA to 

maintain the clinical relevance of the data (Figure 2.13).  
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(a) (b) 

Reference feature used  

for end flattening purposes 

Figure ‎2.12: Separation of humeral fragment of interest: a) approximate location of 

detached humeral segment within the overall distal humerus, and b) detail view of 

the reduced humeral specimen. 
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Figure ‎2.13: Typical cross sections through reduced humeral specimen as obtained 

in principal CT planes. 
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After the completion of the CT scanning, the top and bottom surfaces of the 

reduced humeral specimen were flattened at minimal depths through milling operations 

performed with the periphery of an end mill while the specimen was mounted – with 

appropriate precautions – in a chuck-like fixture. To ensure a better quality of the contact 

data acquired, flattening was performed in planes approximately parallel to the direction 

of the CT scanning planes. For this purpose, appropriate measuring references set with 

respect to the extremities of the specimen were used and its pre-cut orientation with 

respect to the milling tool was continuous adjusted by means of a rotary/swivel-tilt table 

installed on a Kugler Microgantry Nano5X machine tool. The system allows a 

simultaneous five-axis positioning with an accuracy of 1 m and resolution of 1 nm and 

is equipped with a multifunctional head that includes a high speed spindle as well as a 

contact measurement probe. One important observation has to be made with respect of 

the relative order in which the flattening and CT scanning were performed. Although – in 

principle – these operations could have been performed in reversed order (i.e. end 

flattening first), the positioning/guiding features available on clinical CT scanners are 

insufficiently precise to enable a reliable alignment between CT scanning planes and 

top/bottom surfaces of the reduced specimen.  

To allow the acquisition of CMM data, the reduced specimen was mounted in a 

horizontal position on the rotary table of the five-axis machine, such that outer surface 

points can be easily contacted through the rotation of the osseous sample (Figure 2.14). 

The overall kinematics of the measurement process resembles that of a four-axis 

machining operation. The specimen was positioned in such a way that the center of mass 

for its mounting face was reasonably close to the rotational axis invoked during 
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measurements, such that the location of the probe contact points did not have 

unnecessarily large deviations which in turn would have translated in longer than  

necessary measuring times.  

  

(a) 

(b) 

Measuring 

probe 

Humeral 

specimen 

Rotary 

table 

Measurement 

zone 

Artifact 
Fixturing table 

Figure ‎2.14: Contact data acquisition setup: a) overview of Kugler CNC 

measurement system, and b) kinematics of the measurement process. 
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A total number of 5,760 points over 160 planes (36 points/plane = 10 indexing 

rotation) located at 0.125 mm apart from each other were collected over approximately 

21 hours by means of a measurement script that was run for each of the analyzed 

specimens (Figure 2.15a). The large amount of data acquired was meant to facilitate the 

subsequent pair-wise registration between the two datasets. Few prior trials revealed that 

lower resolutions of the CMM data were unable to yield accurate/reliable registrations 

results. The contact points were acquired over a humeral length of approximately 20 mm 

that was located in the median zone of the osseous specimen, in an attempt to avoid both 

(c) 

Figure ‎2.15: Comparison between contact-acquired data and proposed bone 

reconstruction method: a) CMM point dataset, b) B-Spline fitting technique, and c) 

overlay of the two datasets. 
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some pre-existing artifacts (e.g. fixturing holes) and collisions between contact probe 

holder and fixturing table.  

After the bone data collected through the transmissive approach was segmented 

by means of the method outlined in Section 2.3, outer contours were fitted with B-Splines 

determined with the proposed deformable control polygon technique described in Section 

2.4 (Figure 2.15b). To ensure accurate comparisons between the two datasets, CMM 

points were registered via the combined PCA + ICP approach detailed at Section 2.5.1 to 

the cloud of points yielded through the discretization of the aforementioned B-Splines 

with a parametric increment 0.01u   (Figure 2.15c).  

After registration, the deviation between the CMM points and the parametric 

curves approximating the segmented CT data was assessed in each of the 33 CT planes 

located in the measurement zone of the CMM. It is important to note here that since pair-

wise registration was unable to ensure a perfect correspondence/coincidence between 

CMM and CT planes – characterized by angular deviations of 0.3 – 0.9 between their 

normals – the CMM points located in the close vicinity of CT planes had to be projected 

on them to enable deviation evaluation. The positioning error of the CMM points caused 

by registration imperfections was estimated as being less than 0.002 mm (

0.125 tan(0.9 )   ). 
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Figure ‎2.16: Deviation between reconstructed geometry and contact-acquired data: 

a) sample of relative positioning between CMM points and parametric curves; and 

b) variation of the deviation around outer contour circumference. 
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For all CT plane-projections of the CMM points, the deviation was defined with 

respect to their corresponding footprints on the neighboring parametric curves (Figure 

2.16). The iterative assessment performed on three different humeral specimens revealed 

that the mean deviation between the outer bone geometry reconstructed through the 

proposed approach and the baseline/“gold standard” data acquired with precise contact 

measurement equipment was 0.187  0.106 mm with a maximum outlier of 0.376 mm. 

These results suggest that the proposed bone reconstruction technique is capable to 

replicate with sufficient accuracy the physical geometry of the analyzed humeral 

specimens. 

2.6 Conclusion 

The present study presents a numerical algorithm capable to develop for a highly accurate 

and automatic conversion of raw CT data into B-Spline data. The automatic raw DICOM 

to B-Spline conversion entailed determination of an appropriate thresholding method, to 

be followed by an edge detection procedure required to establish inner and outer cortical 

bone boundaries. Once these boundaries have been identified, a novel curve fitting 

technique based on closed B-Spline was passed through each of the two sets of extracted 

CT points defining inner and outer bone surfaces in each of the analyzed CT slices. The 

primary goal of this curve fitting procedure was to generate high accuracy representations 

of the bone geometry with reduced computational loads. Various available classic 

methods were also investigated for this operation, ranging from conventional NURBS-

based global interpolation methods to imaging-specific ones like B-snakes. To verify the 

accuracy of the automatic conversion technique, the generate parametric representation of 

the bone geometry was compared against physical point data sets acquired with a five-
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axis Coordinate Measuring Machine (CMM). The alignment between pairs of planar data 

sets was achieved through a combination of principal axis of inertia and iterative closest 

point (ICP) techniques. As a result, the proposed thresholding method was capable to 

generate clean (minimal noise) data that is suitable for further parametric curve fitting 

procedures and also the developed curve fitting technique was able to accurately 

reconstruct the bone geometry. 
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Chapter 3  

3 Determination of Elbow Flexion-Extension Axis Based 
on Planar and Closed B-Splines 

3.1 Overview 

This chapter covers a novel technique for determination of elbow flexion-extension axis 

from acquired CT slices related to the distal humerus. The validation of this method was 

performed by comparing the results of three specimen against a conventional voxel-based 

determination. The developed technique is capable of accurate automatic determination 

of the flexion-extension axis of the elbow based on employing the curve fitting technique 

described in Chapter 2 followed by employing least squares fitting method.   

3.2 Introduction 

Among human body joints, elbow is generally regarded as the articulation with the most 

complex anatomy. The role of the elbow within the complex kinematics and dynamics of 

the upper limb is often more prominent than that of the wrist and shoulder. As such, any 

impairments of its functionality, caused either by accidents or by various pathological 

conditions (fractures, arthritis, bone tumors, etc.) have to be addressed promptly.  

One of common surgical procedures aiming to restore much of the lost 

functionality of middle articulation of the upper extremity is total elbow arthroplasty. 

Within the scope of this procedure, the damaged elbow articulation is partially or totally 

replaced by an artificial prosthetic device attempting to match its native equivalent. One 

of the main factors contributing to the successful long term outcome of the surgical 

arthroplastic procedure is related to the accurate replication of the primary rotational axis 
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of the elbow [Gramstad et al., 2005], commonly termed flexion-extension (FE) axis. 

Indeed, the misalignment between native and artificial FE axes alters elbow kinematics 

and eventually leads to implant failures, whose avoidance is highly desirable from both 

patient and health care economics perspectives [McDonald et al, 2010].  

In conventional biomechanics, the FE axis is somewhat axiomatically defined as 

the line that connects the centers of a spherical-like and circular-like feature which are 

easily identifiable on the anatomy of the distal humerus and are termed capitellum and 

trochlear sulcus, respectively (Figure 3.1). Historically, one of the first studies to 

characterize the direction of FE axis belongs to [London, 1981] who showed that the 

elbow rotates as a uniaxial joint. London proposed to define its rotational axis as the line 

passing through the centers of the arcs outlined by the bottom of the trochlear sulcus and 

the periphery of the capitellum. Further attempts to determine the location of the FE axis 

were performed in vitro by [Shiba et al., 1988] who used milled slices of cadaveric 

humeral specimens to obtain points along the line connecting the proposed geometric 

centers. While the development of modern electromagnetic and radiostereometric devices 

allow “online” in vivo determinations of the perhaps variable FE axis posture (i.e. 

position and orientation) [Stokdijk et al., 1999; Ericson et al., 2003], these methods rely 

heavily on the accuracy of the equipment used and are relatively difficult to instrument in 

a clinical setting. 
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Since accurate determination of the FE axis is of paramount importance during 

the elbow replacement procedure, surgeons are generally required to establish intera-

operatively its position based on alternate humeral bony landmarks that are exposed and 

thereby visible during surgery [Morrey and Hotchkiss, 2000]. However, the inherent 

subjectivity of this approach makes it susceptible for generation of clinically significant 

implant alignment errors [Bhatt and Warkhedkar, 2008].  

A different approach for FE axis determination relies on the use of alternate 

methods to reconstruct the shape of the distal humerus, followed by geometry-specific 

techniques to locate the position of the two relevant centers. While simple quasi-lateral 

radiographic images could be sufficient to establish the position of the two anatomical 

landmarks [Bottlang et al., 2000], other types of digital data would also be suitable for 

(a) 

Trochlear 

sulcus 

Flexion-extension 

axis 

Capitellum  

center b) c) 

Trochlea 

center 

Capitellum  

(c) (b) 

Figure ‎3.1: Anatomical position and orientation of the flexion-extension axis: (a) 

medial, (b) anterior, and (c) lateral views of the distal humerus. 
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more precise and in-depth analyses of the FE axis posture. One of the first ideas in this 

regard was to digitize the anatomy of the capitellum and trochlea by means of a contact-

based stylus, followed by the use of least-square fitting method to determine the 

corresponding geometric centers [King et al., 1999; Duck et al., 2003]. However, since 

this approach is only possible in context of in vitro studies, its later enhancements relied 

on CT-acquired data [Brownhill et al., 2007; McDonald et al., 2008; McDonald et al., 

2010]. One of the major advantages of the “offline” imaging-based methods is that after 

the incipient in vitro development and validation, they can be subsequenly extended to 

patients by means of conventional fiducial-based registration procedures [McDonald et 

al., 2008]. On the other hand, since in this case user interaction along with manual 

manipulation of the data is required, it is relatively difficult to preserve the consistency of 

the results among users with undesirable consequences on FE axis posture accuracy.  

To address this issue, automated shape recognition methods based on imaging 

techniques could be employed [Mundy, 2006], especially when combined with 

appropriate orientation estimation techniques that are specifically oriented towards 

anatomical structures [Bagci et al., 2011]. However, when it comes to practical 

engineering applications, the effectiveness of voxel-originated representations – 

regardless if surface or volume-based - that are omnipresent in medical imaging is at least 

questionable for at least two reasons [Anderson and Crawford-Hines, 2000; Grove et al. 

2011]. On one hand, the accuracy of voxel-originated data is direct proportional with its 

overall size. Moreover, its accuracy is inherently limited by the initial size of the 

pixel/voxel used during body scan procedure that in turn cannot be decreased too much 

due to patient radiation overexposure concerns. Because of this, while the advancements 
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in computer graphics might be arguably capable to keep up with the data volume 

requirements, resolution restrictions are unavoidable. Secondly, the use of the 

pixel/voxel-originated data within the wide range engineering applications available is 

impossible, since many of them require parametric (B-Spline/NURBS) data formats in 

order to make full use of their capabilities.  

Numerous attempts were made to develop heterogeneous parametric 

representation of various human body external or internal elements/organs [Bhatt and 

Warkhedkar, 2008]. In most studies, parametric models were generated through 

specialized reverse engineering operations performed on data acquired via CT or MRI 

scans. Very often, the reconstruction of the human anatomical features comes down to 

approximation of the planar segmented point datasets with parametric curves determined 

by means of custom-written routines [Ane and Roller, 2010; Grove et al. 2011] or 

commercial CAD software [Ameddah and Assas, 2011].  

The survey of the available literature reveals that in relatively rare instances the 

precision of the parametric models of the human body-originated shapes was checked 

either against their physical correspondent or against alternate imaging-based methods. 

Within the scope of the current study, an automated technique was developed to establish 

the orientation of the elbow FE axis based on the parametric models of the distal 

humerus. The position of the two geometric centers involved in FE axis determination 

was tested against a conventional method involving medical imaging-specific data and 

procedures. More details about the developed FE axis determination technique will be 

provided in the subsequent sections. 
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Accurate determination of the flexion-extension axis of the elbow affects the outcome of 

implant replacement. This study proposes an automated approach capable of determining 

the FE axis based on a stack of axial computer tomographic (CT) imaging slices of the 

distal humerus. The core of the algorithm consists of an original technique employing 

control polygon deformation used to approximate the segmented outer cortical bone 

points with closed B-Splines, followed by curvature-based and least squares fitting 

methods for determination of the two relevant geometric centers. The new approach was 

validated against a conventional voxel-based FE axis determination procedure involving 

marching cubes algorithm. 

3.3 B-spline Based Determination of Flexion- Extension 
axis 

In order to determine the location of the two geometric centers that are determinant for 

the direction of the elbow FE axis, the first task to be accomplished is generation of a 

parametric representation of the distal humerus based on an input consisting of axial 

slices of the bone acquired through CT scanning.  

3.3.1 Detection of Outer Cortical Bone Contours 

The method used in this study to extract the outer contours of the cortical bone represents 

a direct derivation of the concept proposed by [Hangartner, 2007], according to which an 

accurate threshold for geometric segmentation purposes has to be set at 49% of the 

difference of the density between the adjacent tissues. It is important to outline here that 

when CT data is acquired with low power – which is generally the case in clinical 

settings – the resulting images are blurred and this has a significant impact on the 
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dimensional precision of the segmented bone contours. Specifically, when segmentation 

threshold value is set too high, the resulting representation of the bone will be smaller 

than its physical correspondent, whereas when threshold value is set too low, CT bone 

model will yield larger than the actual object.  

The thresholding technique used in this study was based on the percentage of the 

brightest pixel identified in each of the CT slices analyzed. After performing a series of 

preliminary tests involving outer bone contour segmentation with various thresholds, 

followed by verification against the scanned humeral specimen, it was established that 

the best dimensional match between digital and physical representations of the bone is 

achieved when 40% from the brightest pixel intensity is used as a cutoff value. By 

employing this threshold value, the segmentation algorithm zigzagged through the 

columns of the 2D matrix of pixels characteristic to each CT slice and retained the row of 

the first and last pixel of each column satisfying the set thresholding condition. 

Obviously, no pixels were extracted for columns placed away from bone cross sectional 

area (Figure 3.2a).  
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Figure ‎3.2: Representative axial cross sections through distal humerus: (a) raw CT 

slices, and (b) parametric curve-approximated outer bone contours. 
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Furthermore, the characteristics of the scanning (column zig-zag and horizontal 

left-right) process performed on the 2D matrix of pixels ensure that segmented CT data 

points form an array that can be easily ordered based on their X (or Y) coordinates, such 

that geometrically adjacent/neighboring points become consecutively placed in the array. 

This sequentiality bears a particular importance from the perspective of the curve fitting 

technique to be detailed below.  

3.3.2 Planar and Closed B-Spline Fitting by Control Polygon 
Deformation 

Given the level of maturity acquired by the parametric representations in context of 

engineering applications, this type of curves was chosen to approximate the point dataset 

extracted through the thresholding technique outlined at previous chapter. Furthermore, 

among the existing pool of parametric curves, planar and closed B-Splines are deemed to 

be capable to trace the outer contours of distal humerus with sufficient precision. Both 

planar and closed characteristics of the parametric curves used are dictated by the 

intrinsic features of the acquired CT slices and humeral cross sections, respectively.  

According to generic computer-aided geometric modeling theory, the parametric 

form of planar and closed B-Splines (Figure 3.2b) is:   
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1[ , ]p nu u u   is the 

inherent parameter of the curve. In Eq. (3.1) 1k p   represents the order of the p -th 
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degree curve. The present study relied on the control point wrapping technique to 

generate the parametric expression of closed and planar (
CPi

Z = const.) B-Splines as 

described by [Alavala, 2008]. According to this method, the last p  points are to coincide 

with the first p  points of the control polygon in order to close an initially open B-Spline: 

 
1CP CP , for {0,1,..., ( 1)}

i n p i
i pP P  (3.2) 

The closed form of the curve implies that  
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The
, ( )i kN u parametric functions used to blend the influence of 1n  control 

points CPi
P  in Eq. (3.1) are defined by the well known Cox-de Boor recursive formula: 
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with initial conditions set by: 
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It is important to emphasize here that while the total length of the knot vector 

0 1{ ... }mu u uU  of the cubic B-Spline curve is 1m n k , the active range of its 
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closed form is defined only between
pu and

1nu , to a total of 2m p  knots. The planar 

and closed B-Splines built on these theoretical premises are 1pC continuous. 

When it comes to the actual determination of knot values, numerous attempts 

were made to propose robust parametrization schemes capable to trace even highly sparse 

and/or unevenly distributed datapoints. While the number of studies focused on 

determination of adequate parametrizations for closed B-Spline is considerably smaller, 

some progress in this direction was also reported in the literature [Park, 2001]. Within the 

limited scope of the current study and by taking into consideration the relative uniformity 

and density of the datapoints to be approximated by the closed B-Spline, just uniform 

parametrization was tested: 

 
1 1,for { ,( 1),..., }iiu u i p p n  (3.6) 

Based on mathematical formulation outlined by Eqs. (3.1-7) above, planar and 

closed B-Spline curves are fully determined once their control polygon and knot vector 

are known. Because of this, the current problem at hand comes down eventually to the 

development of a robust B-Spline fitting technique, capable to approximate with a certain 

tolerance/accuracy a given of extracted data points. Many of the presently available 

solutions in this regard rely or are derived – to a larger or a lesser extent – on the knot 

removal techniques as originally detailed by [Piegl and Tiller, 1997] in their 

comprehensive monograph on NURBS. Nevertheless, the current work employed a 

completely different approach, essentially inspired from a recent observation according to 

which a “good” B-Spline would not deviate much from its control polygon [Floater, 

2008].  
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The novel approach developed in the framework of the present study for B-Spline 

fitting purposes is based on a knot insertion technique performed to support a deforming 

control polygon whose length increases progressively to enable a superior approximation 

of the given datapoints. The continuous reshaping of the closed B-Spline is controlled at 

two different levels, via global and local tolerances, respectively. To satisfy this 

condition, global control mean  is defined as a mean deviation of all given CT data points 

Di to the closed B-Spline curve: 
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where Dn represents the number of extracted CT data points, and D
B

proj( )
i

P represents the 

location of the projection (footprint) of Di  on the closed B-Spline curve. For each 

analyzed data point, the projection is determined through a nonlinear bounded 

optimization technique employing golden section search and parabolic interpolation 

while seeking for the point on the curve whose normal passes through Di . As expected, 

| |P in Eq. (3.7) represents the Euclidian norm of the three-dimensional vector P .  

In addition to mean , a local control was also used: 

 
D

max D D
{0,..., } B

max (| proj( ) |)
i ii n

P P  (3.8) 

The core of the developed curve fitting algorithm consists in the iterative addition 

of new control points that are selected in a manner capable to gradually reduce the 

distance between given dataset and approximating curve. Following Floater’s idea 

[Floater, 2008], control points are in fact intentionally chosen to be a subset of the data 
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points to be approximated (
D0 1CP {D ,D ,...,D }i n

).  Due to the particularities of the CT 

thresholding method used, each control point of the approximating B-Spline can be 

uniquely identified within the initial array of given data points (
CPCP D D

ii l
). 

The algorithm used to fit a closed and planar cubic B-Spline to the segmented 

points of the distal humerus consists of the three major steps: 

Step 1: Initialization.  

The algorithm starts off by generating a closed B-Spline whose shape is determined by 

the location of four control points selected in extreme positions with respect to the initial 

dataset of segmented CT points (Figure 3.3a): 
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Step 2: Global modification.  

This step ensures that the mean error defined by Eq. (3.7) becomes smaller than a certain 

predefined tolerance: 

 
mean global

  (3.10) 

To achieve this goal, a new control point is dichotomically added between each pair of 

successive control points, such that each control point segment is practically replaced by 

two new ones.  The new points added to the control dataset in each iteration are those 
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located at maximum distances with respect to the current location of the control polygon 

segments according to the following relationship: 

 new
max max 1 1D D DCP CP CP CPCP { ,...,( 1)}

| ( ) | max (| ( ) |)
ji ii ii j l l

P P P P P P P P  (3.11) 

This step iterates around the contour of the bone until global tolerance condition in Eq. 

(3.10) is satisfied. The new control point 
newCPi

P  is inserted in the control point array 

between 
CPi

P and 
1CPi

P . 

Step 3: Local modification.  

Once the global condition of tolerance was met, fitting algorithm moves in the local 

modification stage, according to which a new preset modifier is being enforced: 

 
max local

  (3.12) 

The maximum distance condition between given points and fitted B-Spline 

expressed through the definition of max  in Eq. (3.8) is now being checked around the 

entire contour of the parametric curve. A new control point is added to the dataset 

whenever the condition outlined by Eq. (3.12) is not verified. The new control point to be 

included for the next iterative representation of the fitted curve represents precisely the 

point located at the maximum distance with respect to the  

 new
max max maxD D D D DCP { ,...,( 1)}B B

| proj( ) | max (| proj( ) |)
j ji j l l

P P P P P P  (3.13) 

Similar to the global modification phase, the new control points identified in a 

certain iterative step are always inserted in the control point array according to their 
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sequential position, i.e. between CPi and 
1CPi
which correspond to l and 1l  counters in 

Eq. (3.13), respectively. Based on the known local modification properties of the B-

Spline curves, each iterative step around the closed contour performs a gradually 

decreasing number of control point additions until the local tolerance condition is met.  

 

Figure ‎3.3: Progressive adaptation of the fitted B-Spline curve shape: (a) initial set 

of segmented CT points, (b) approximating curve after one global modification 

iteration (one Step 2), (c) approximating curve at the end of the global modification 

phase (end of Step2), and (d) final shape of the approximating curve (end of Step 3). 

 

The iterative application of the B-Spline fitting technique based on control 

polygon deformation enables a progressive wrapping of the control polygon around the 

extracted CT points, as depicted in Figure 3.3. All decisions made during technique 

development phase were meant to ensure the efficiency, simplicity and precision of the 
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proposed approach, but at the same time one of the major objectives of the novel curve 

fitting method was to reduce the need for subsequent B-Spline fairing/smoothing.  

3.3.3 Automated Detection of Relevant Features through Local 
Curvature Analysis 

Once the outer contours of the distal humerus were approximated with planar and closed 

cubic B-Splines, the next task comes down to identification of their regions with 

relevance in FE axis position determination. Given the fact that capitellum and trochlea 

regions (Figure 3.2a) are involved in sphere and circle fitting respectively, a number of 

points have to be placed on the parametric curves in appropriate locations. In the current 

approach, determination of the regions of interest of the B-Splines has been performed 

through an in-depth analysis of their local curvature pattern. Figure 3.4 illustrates the 

variation of the local curvature along a sample B-Spline whose nonessential lateral 

portion was trimmed off for clarity purposes.  
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Figure ‎3.4: Sample of local curvature pattern along distal humeral B-Splines. 
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As it can be observed, all significant points of the analyzed planar B-Spline slices 

(
1 2 1 2C ,C ,T ,T ) are in fact associated with major changes in the curvature variation. As such, 

their spatial location can be uniquely specified in conjunction with curvature-related 

conditions.  

According to the fundamentals of differential geometry, the curvature of a 

parametrically-expressed planar curve can be determined with: 
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where B ( )X u and B ( )Y u constitute the components of the general B-Spline curve defined 

by Eq. (3.1). Since this signed value can be easily calculated for each of the reconstructed 

B-Splines of the distal humerus, the geometric position of the four points with relevance 

in FE axis determination can be established based on the following criteria: 
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(3.15) 

For the two points outlining the trochlea region ( 1 2T ,T ) as well as for one of the 

bounds of the capitellum region ( 2C ), numerical searches based on golden section search 

were used to determine their corresponding parameter values (
1 2 2T T C, ,u u u ) along the 

analyzed B-Spline. These searches were facilitated by the local extremum or zero 

conditions outlined by Eq. (3.15), as well as by the particular position of these points with 
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respect with cross sectional landmarks defined by Eq. (3.9), which essentially became the 

initial guess points of the numerical technique. A special mention has to be made about

2C , which actually requires a triple pass through zero curvature condition, while the 

trochlea points 1 2T ,T were found at the first curvature extremum encountered at the left of 

1CP  and at the right of 3CP , respectively. Here, the “left” and “right” directions are 

associated with search direction expressed in terms of parameter u , which decreases in 

both situations. Once 2C was found, 1C will be always located at the left end of the 

approximately constant curvature region of the B-Spline. This represents a direct 

consequence of the spherical geometry of the capitellum. Once both 
1Cu and 

2Cu are 

assessed, a number of discrete points are generated on the curve segment between them, 

to be subsequently used in the geometric feature evaluation. Minor adaptations of the 

search directions/boundaries in Eq. (3.15) are required when switching between left and 

right hand humeral specimens.  
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Figure ‎3.5: Determination of the geometric characteristics of FE axis through least 

squares fitting. 
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After all relevant capitellum and trochlea points are identified and then extracted 

from closed B-Splines, standard least squares fitting methods based on Gauss Newton 

searches were employed to establish the geometric characteristics of the spherical and 

circular features associated with capitellum and trochlear shapes (Figure 3.5). The 

circular profile of the trochlea requires determination of its characteristic plane prior to 

other geometric computations. As mentioned in the introductory section, the line 

connecting capitellum and trochlea centers is generally acknowledged as the FE axis of 

the elbow articulation. In addition to their positional attributes, the fitting technique 

facilitates radius-based dimensional characterization of the two anatomical landmarks of 

interest. 

3.4 Conventional Voxel-based Determination of FE axis 

This imaging-oriented method was used to provide a comparison basis for the original B-

Spline based approach described in previous section. The conventional technique, 

originally developed in a clinical study [King et al., 1999], was subsequently tested also 

in a navigated implantation and/or computer simulated context [McDonald et al., 2008; 

Tutunea-Fatan et al., 2010]. 

Similar to parametric geometry approach, the procedure relies on an input 

consisting of CT scans of the analyzed humeral specimen. Following image acquisition 

and thresholding/segmentation, the polygonal mesh representation of the distal humerus 

is generated by means of a custom-written numerical code developed in conjunction with 

Visualization Toolkit graphic libraries [Schroeder et al., 2006]. The core of the polygonal 

mesh generation engine consists of marching cubes algorithm [Lorensen and Cline, 

1987]. Once the humeral surface has been constructed, the user is required to roughly 
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locate in a graphically interactive manner the capitellum and trochlea regions. This 

operation is performed by selecting manually nine and three points on capitellum and 

trochlea respectively that are capable to delimit the shape of the analyzed anatomical 

features (Figure 3.6).  

 

 

 

Once their boundaries have been identified, the developed numerical algorithm 

employs a proximity search to determine all polygonal mesh vertices that are placed 

within the previously selected limits of the feature. Once the coordinates of all relevant 

points of the humerus have been found (Figure 3.6), least squares method was once more 

used to establish the posture of the FE axis, along with dimensional characteristics of the 

capitellum and trochlea. 

3.5 Results and discussion 

In order to compare the two approaches, fresh-frozen specimens of distal humerus were 

acquired with a 64-slice GE LightSpeed Ultra computer tomography. The CT scans were 

acquired by placing the humeral bone in a position of approximate coaxiality between its 
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Figure ‎3.6: Graphical localization of the anatomical features of interest through 

manual delimitation of their boundaries for: (a) capitellum, and (b) trochlea. 
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longitudinal canal “axis” and that of the CT scanner. The scanning parameters were set 

to approximately replicate the clinical settings with a field of view of 16x16 cm and a 

power of 120 kVp at 90 mAs. The stack of raw CT slices generated was characterized by 

a resolution of 512x512 pixels and a voxel size of 0.3125x0.3125x0.625 mm. Once the 

images were acquired, the position and orientation of the FE axis was determined 

through parametric and voxel-based techniques detailed in Sections 3.3 and 3.4, above. 

The two end tolerances for Steps 2 and 3 of the parametric approach were set at 

global 0.2 and 
local 0.5  respectively. 

A visual comparison of the results for one of the analyzed specimens is presented 

in Figure 3.7. As it can be noticed, the size and location of the two relevant features 

determined through the B-Spline approach matches reasonably well both the position of 

the real anatomical landmarks, as well as the set of points used to determine the FE axis 

through the conventional approach that will be further used as a baseline in the following 

quantitative comparisons.  

It should be noted here that the term “error” is intentionally avoided from the 

upcoming discussion, as it would somehow imply that a “golden standard” has been used 

as a baseline - perhaps in the form of hard measurements performed directly on physical 

specimens. While this type of investigations is possible, they were simply regarded as out 

of the scope of the current study since they would require a more detailed understanding 

of the effect of environmental conditions (temperature, humidity) on the surface hardness 

and dimensional characteristics of the distal humerus. Because of these considerations, 

the conventional voxel-based approach will be treated as a reliable reference, since it was 

previously validated in the clinical context.  
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Figure 3.7: Qualitative comparisons between the resulting point datasets obtained through 

B-Spline (green) and conventional (blue) approaches achieved through: (a)-(d) combined 

fitted features and bone overlay, (e)-(h) direct result overlay 

 

To better quantify the differences in output between the two techniques, three 

different specimens were processed in parallel through both methods and Table 3.1 

summarizes the main geometric discrepancies between them.  

 

Table ‎3.1: Quantitative comparisons between B-Spline and voxel-based methods 

Feature Name 

Conventionally 

Determined Feature 

Size 

Difference 

between 

Methods  

Difference 

between Methods 

[%] 

Capitellum radius 9.02 – 11.24 mm 0.39 – 1.78 mm 4.31 – 15.83 

Trochlea radius 6.95 - 8.98 mm 0.48 - 0.76 mm 6.94 – 8.51 

FE axis length 17.67 – 22.03 mm 0.34 – 0.77 mm 1.52 - 4.34 

Capitellum center 

location 
- 1.23 – 3.16 mm - 

Trochlea center 

location 
- 1.35 – 1.67 mm - 

FE axes 

misorientation 
- 4.11 – 7.71º - 

Troch planes - 4.53 - 7.31º - 

 

The main goal of this validation was to provide a more qualitative comparison 

rather than a quantitative comparison. As it can be observed, while the two techniques 

(a) (b) (c) (d) 

(f) (e) (g) (h) 

Figure ‎3.6: Qualitative comparisons between the resulting point datasets obtained 

through B-Spline (green) and conventional (blue) approaches achieved through: (a)-

(d) combined fitted features and bone overlay, (e)-(h) direct result overlay. 
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will yield comparable results, their output does not overlap perfectly. The numbers 

presented in Table 3.1 seem to imply that while a better match and consistency exists for 

trochlea geometry, larger variations are generally present in conjunction with capitellar 

geometry. Given the inherent complexity of the two procedures presented for FE axis 

determination, the differences between them are somewhat expectable, especially since 

their only commonalities are related to the initial stack of raw CT slices and least squares 

fitting procedure, among which the latter one is prone to yield different results when 

initialized with different guess values.  Among the other factors that can be deemed 

responsible for result variability, the differences in segmentation and outer bone surface 

generation techniques would most likely play a major role. The difference in thresholding 

parameters would explain well the consistently smaller size of the features obtained 

through the parametric approach. Furthermore, some supplementary inconsistencies were 

probably also introduced via the manual input required from the user in the conventional 

approach in order to delimit the two relevant anatomical features.  

On the other hand, given the stability of the anatomical conformation of the distal 

humerus, the automated feature recognition method described in Section 3.3.3 can be 

automatically applied to different humeral specimens, since it requires a minimal input 

from the user. However, this pattern-oriented method assumes that: 1) the analyzed 

planar slices are characterized by a certain morphological consistency, and 2) the CT data 

was acquired in a certain orientation of the humeral specimen. While assumption 2 can be 

easily corrected through successive coordinate transformations, assumption 1 prevents 

the application of this technique in regions of the distal humerus where cross sectional 

slices are truncated/incomplete with respect of the standard shape shown in Figure 3.3. 
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As such, the extreme top and bottom slices through capitellum and trochlea regions 

cannot be included in the developed parametric-based determinations of FE axis and this 

will cause additional result deviations. This limitation of the developed method becomes 

obvious in Figure 3.7e and 7h, but – taken alone – it should not represent a major source 

of result mismatch, provided that the capitellum shape is indeed spherical, as assumed. 

3.6 Conclusions 

The present study presents a novel method capable to automatically determine the 

posture of elbow flexion-extension axis by starting off with a minimal input consisting of 

a stack of raw of CT slices of the distal humerus. A three-specimen validation of the 

proposed approach against a conventional voxel-based determination revealed that while 

their outcomes are reasonably comparable, a number of factors might cause deviations 

between results that could add up to 15%. However, while from a pure engineering 

perspective the magnitude of the discrepancies might be regarded as borderline 

satisfactory, the current medical practices will likely treat them as acceptable, since 

surgeons generally lack the adequate means to accurately position the two relevant 

centers during surgery. Future extensions of this work will aim the validation of the 

proposed methodology via physical measurements, in an attempt to improve further its 

inherent reliability and precision. 
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Chapter 4  

4 Assessment of the insertability of a certain implant 
within the endosteal canal of the bone 

4.1 Overview 

In this chapter a genetic algorithm based method is developed to assess a certain humeral 

implant insertion possibility into the humerus cavity. Nine humeral specimens were then 

employed in an experimental implantation setup to validate the results of the developed 

method. We hypothesized that by using this computer-assisted insertion technique, the 

malalignment between flexion-extension axes of the elbow and the corresponding 

implant can be decreased significantly.  

4.2 Introduction 

Recent developments in navigation technologies along with the advancements in medical 

imaging technology have created ample opportunities for computer-assisted orthopedic 

surgeries to be routinely employed in healthcare industry. Pre-operatively, the use of such 

simulation techniques assists orthopedic surgeons in not only planning for the appropriate 

surgical procedure but also deciding about proper size of artificial components to be used 

during the surgery instead of routine intra-operative trial-and-error implant insertions. 

Although, this pre-planning can lower the risk of joint replacement failures in the future, 

due to low incidence of upper limb joint replacement surgeries, the effectiveness of 

surgical procedures still highly depends on the expertise of the surgeon for upper limb 

joints like elbow versus lower limb joints such as knee or hip. Intra-operatively, advance 

employments of computer-assisted technologies can diminish the peril of dependency on 
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surgeons’ expertise to help both surgeons by fitting the implants in bones more accurately 

as well as patients by having a better joint functionality, shortening hospital stay, and 

reducing hospital costs and the demand for repeating the surgery [Sankupellay et al., 

2005]. 

In the occurrence of various types of arthritis such as rheumatoid arthritis and 

different fractures to the elbow, one possible treatment option is elbow replacement 

surgery decided by surgeons based on the situation of the patient, severity of elbow 

disorder and ultimate clinical outcome of the surgery in order to enhance the elbow 

functionality.  Clinically, the ultimate goal of this surgery is to accurately replicate the 

native articulation of the elbow, provided by a hinge joint connecting humeral and ulnar 

implants being inserted into medullary canals of the humerus and ulna. However, there 

are some limitations during this type of joint replacement which debilitates the surgical 

procedure.  For the broad anthropomorphic distribution of the general population, the off-

the-shelf implants with a limited number of sizes should fit everyone. Moreover, other 

than dependency on the surgeon's experience, the complexity of the elbow joint 

comparing to knee and hip makes the associated replacement procedure more and more 

challenging. Due to low incidence of this type of surgery, i.e., only less than several 

thousand of these procedures are carried out in the United States annually, presence of a 

skilled elbow arthroplasty surgeon capable of performing the aforementioned surgery 

many times each year is uncommon. 

Since the position of the humeral implant in the canal determines the flexion-

extension (FE) axis of the artificial joint, the overall success of the joint arthoplasty can 

be improved by bringing pre-operative planning into the picture. Indeed, establishing the 
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existence of a feasible position of the implant that will essentially cause a minimal 

malalignment of the prosthetic flexion-extension (FE) axis of the joint with respect to the 

native one aids surgeons to guide the humeral implant toward its final position. 

Complications of improper fit of the implant and change in the kinematic of the elbow 

include fracture, instability of the joints, loosening or wear of implants, implant failure 

due to excess moments, and need for a revision surgery. Although there exist limitations 

in studies reporting the complication rates after elbow replacement, they all indicate 

higher values ranging from 8%-45%, comparing to other joint replacements [Voloshin et 

al., 2011; Krenek et al., 2011]. 

Current routine practices provide the orthopedic surgeon with relatively few 

means to accurately assess whether a certain implant fits within the endosteal canal of the 

articulation bones. As such, the preliminary assessment of the fit relies heavily on the 

experience of the surgeon, and is generally perceived as a relatively challenging task due 

to the convoluted geometry of the canal in which loose fit, excessive bone removal or 

bone splitting may happen for 5.1% of cases as reported in [Krenek et al., 2011; 

Joskowicz and Taylor, 1994].  

Intra-operatively, surgeons face three situations: i) the fit is possible with an 

acceptable joint malalignment at the articulation; ii) the fit is possible, but the canal needs 

to be reamed, in order to reduce the amount of malalignment; or iii) the fit is not possible 

with the current stem length, which thereby needs to be shortened with negative 

consequences on the implant durability. The actual decision related to these scenarios 

often involves repeated impingements of the implant into the canal walls, through trial-

and-error explorations that are not optimal. 
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In this chapter, a computer-assisted simulation technique is proposed in the 

context of humeral implant insertion in intramedullary canal of humerus. This method is 

capable of both assessing implant/bone fit possibility and finding a collision-free 

trajectory starting from an initial random implant pose located outside the bone cavity to 

one predicted as the final feasible position inside the bone. To make this accurate 

prediction on the feasibility of a certain implant/bone pair, the current study benefits from 

a local path planning algorithm aiming to minimize the malalignment between native FE 

axis of elbow joint and humeral implant artificial FE axis. The core of this algorithm is 

based on constrained search using genetic algorithm (GA) as an optimization technique, 

considering the humeral cavity as the constraint while targeting to determine feasible 

implant postures in each iteration. We hypothesized that implantation of a humeral stem 

using this approach will be an accurate solution, and can decrease the malalignemnt 

significantly. 

Assuming that a feasible final position of the humeral implant in humerus has 

been investigated, determination of the optimal insertion path of the implant into the 

intramedullary convoluted canal with no collision is the complementary step towards 

completing the insertion procedure. Determination of the optimal insertion trajectory can 

be regarded as a classical peg-in-hole path planning problem, in which the primary goal 

is to determine a collision-free trajectory of a moving object (peg) from an outside 

position to the final inside position within confined spaces (hole) [Latombe, 1991]. In 

humeral implant insertion application, the confined space can be derived from imaging 

scans of humerus canal.  Generally speaking, determination of a collision-free trajectory 

involves identification within the pool of instantaneously possible object position and 
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orientations (i.e. poses or postures) of those who are characterized by a non-overlapping 

status with neighboring objects. Obviously, once such a posture has been identified, the 

object has to continue its motion towards a finally desirable position that satisfies spatial 

constraints. The succession of the individual poses of the object between its initial and 

final configurations describes a collision free trajectory [Joskowicz and Taylor, 1993].  

While numerous physical and/or kinematic constraints have been used in prior 

collision detection studies to restrict the pool of instantaneous poses associated with 

movable object configurations, most of them are simply inapplicable in context of 

implant insertion motion to be performed by the surgeon. During insertion, the implant 

stem can take practically any orientation and position as long as it does not come in 

contact with inner canal of the bone. Currently, this procedure is performed “quasi-

blindly”, since the only information available to the surgeon is represented by the offline 

CT images acquired prior to surgery. 

One of the typical solutions proposed to address this type of problems relies on 

the use of global strategies. They involve an initial construction of a configuration space 

connectivity graph followed by its search for the desired path. Global methods require 

computation of the configuration space, whose complexity increases proportionally with 

geometric size of the objects analyzed and exponentially with their total number of 

degrees of freedom. The circumstances associated with implant insertability such as: 

complex 3D shapes, six degrees of freedom, tight fit and fine motion planning – 

practically rule out global strategies and their variations as it is, for instance, hierarchical 

configuration space decomposition [Lozano-Perez and Brooks, 1983; Faverjon, 1984] or 

planning in low-dimensional configuration space projections [Buckley]. In addition, any 



112 

 

global search strategy that would repeatedly invoke object overlap detection could be 

deemed impractical due to the geometric complexity of implant and intramedullary canal, 

coupled with the fact that unlike in most other collision detection related applications, the 

contact between the stationary (bone) and moving (implant) object should be avoided at 

all costs in order to reduce the number of patient-related side effects associated with 

surgical procedure.  

One possible alternative to global strategies is represented by the local ones that 

attempt to identify collision free path in a more direct manner by performing numerous 

collision avoidance computations as the search progresses. Local strategies depend on the 

efficiency of the geometric computations and the effectiveness of the search strategy. To 

exemplify, Donald’s algorithm for a moving six degree of freedom polyhedron [Donald] 

places a fine resolution grid on the configuration space and uses a set of heuristics based 

on the local configuration space geometry to search for the path. For a tight fit, this 

method requires a very fine grid resolution and precise geometric computations which 

will significantly affect the overall efficiency. The potential field methods reported in the 

literature also tend to make similar assumptions [Joskowicz and Taylor, 1993; Joskowicz 

and Taylor, 1994].  

In an extremely related, but almost singular study, [Joskowicz and Taylor, 1993] 

developed a numerical algorithm to determine femoral stem insertability. Their program 

was able to determine, based on the known shapes and dimensions of implant and inner 

femoral cavity, a collision/penetration free insertion trajectory. Subsequently, they 

developed a tool for computing and visualizing the interface free insertion path for an 

implant into a canal from a CAD description of their shapes [Joskowicz and Taylor, 
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1994]. As a notable simplification, these studies assumed a perfect match between 

implant and bone canal, such that the option of an impossible complete insertion was 

practically excluded. The previously developed navigated implantation procedures for 

total elbow arthroplasty [McDonald et al., 2010, McDonald et al., 2009a] have already 

outlined the importance of imaging data in the context of implant insertion. While the 

insertion trajectory is by no means optimized in case of navigated implantation and this 

might not be a viable option in case of live patients due to the impracticability required 

sensorized equipment, these studies revealed that superior implant alignments can be 

achieved by employing visualization principles. Implant insertion trajectory can also be 

generated by means of collision detection algorithms available in commercial CAE 

systems capable of motion analysis [Tutunea-Fatan et al., 2010], but in this case a 

minimal user control exists on the insertion trajectory, that is generated automatically by 

the software based on predefined inputs (geometry, external forces and moments) as well 

as constraints (3D contact at bone/implant interface). Since the user cannot adequately 

control insertion trajectory, the collision between implant and bone is in fact unavoidable 

and this represents in fact on the major limitations of this method. 

Since the amount of insertability studies available in the literature is extremely 

limited it seems logical to assert that this area needs more development. Compared to hip, 

elbow arthroplasty procedures are rare, and perhaps because of that, the surgeon feels 

more the need to visualize, be guided, be trained and practice the implant insertion 

maneuvers before the actual start of the surgical procedure. Compared to femur, the 

intramedullary canal of the humerus has a more convoluted shape, which makes insertion 

of a predefined stem length much more difficult [McDonald et al., 2009b] As a result, a 
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preoperative prediction of the relative fit between implant and inner bone cavity would 

significantly increase long term outcomes of any type of joint arthroplasty, and in 

particular those of the elbow.  

In this study, a computer-assisted simulation technique is proposed in the context 

of humeral implant insertion in intramedullary canal of humerus capable of both 

assessing implant/bone fit possibility and finding a collision-free trajectory starting from 

an initial random implant pose located outside the bone cavity to one predicted final 

feasible position inside the bone. To make this accurate prediction on the feasibility of a 

certain implant/bone pair, the current study benefits from a local path planning algorithm 

aiming to minimize the malalignment between native FE axis of elbow joint and humeral 

implant artificial FE axis. The core of the this algorithm is constrained genetic algorithm 

(GA) optimization searches, considering the humeral cavity as the constraint while 

targeting to determine feasible implant postures in each iteration. We hypothesized that 

implantation of a humeral stem using this technique would be an accurate way and can 

decrease the malalignemnt significantly. 

4.3 Genetic Algorithm Based Search on the feasibility of the 
Implant Insertion 

4.3.1 Materials 

We acquired computer tomography (CT) images of 9 fresh frozen cadaveric distal humeri 

using a 64-slice clinical scanner (GE-Light SpeedUltra, New Berlin, WI). The scanning 

parameters were set to a field of view of 16x16 cm and a power of 120 kVp at 90 mAs. 

While the longitudinal canal “axis” of each specimen was placed coaxial with the axis of 

CT scanner during the imaging procedure, the stack of generated raw CT slices was 
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characterized by a resolution of 512x512 pixels and a voxel size of 0.3125x0.3125x0.625 

mm. 

 

 

  

(a) 
Radial stem 

Short ulnar stem 

Radial head 

Humeral stem 

Humeral spool 

Standard ulnar stem 

(b) 

Ulnar cap 

Figure ‎4.1: : Latitude implant configurations: (a) unlinked, and (b) linked versions 

Adapted from [http://www.tornier-us.com/upper/elbow/elbrec001/index.php]. 
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4.3.2 Elbow Implants 

Although both linked and unlinked implants carry various advantages and disadvantages, 

the selection of linked or unlinked implant types mainly depends on the intra-operative 

patient situation likewise the amount of bone loss. Linkable implants are a new 

generation of implants capable of (1) converting into a linked or unlinked implant (Figure 

4.1) based on the intra-operative decision of the surgeon; and (2) providing better clinical 

outcome due to thicker bearing surface and better anatomical reproduction.  

As a result, linkable Latitude left elbow prostheses were selected for implantation 

procedure of this study. Humeral portion of this implant, being fit into medullary canal of 

the humerus, includes three main components; (1) humeral implant, (2) Spool, and (3) 

Screw (Figure 4.3). Indeed, the humeral implant and spool connect with the cannulated 

screw to form the implant humeral portion and flexion-extension axis. Since valgus angle 

of elbow FE axis varies from 2
0
 to 9

0
 with the mean of 6

0
, the articulation axis of humeral 

implant has a fixed 6
0 
valgus angulation.  

In order to secure stability of the humeral implant in its final position after the 

surgery, humeral implant (Figure 4.3) consists of medial and lateral fins to prevent 

intramedullary rotation and anterior flange accepting bone graft to prevent posterior 

movements. Off-the-shelf humeral implant stems come in 3 different sizes of small, 

medium and large while they should match corresponding spool sizes (small, medium, 

large and large plus) with three offsets (anterior, posterior and centered) in order to shape 

articulation in Latitude implants (Figure 4.2). What makes the implantation challenging is 

that unlike knee and hip joints replacements in which surgeons insert implants in a simple 

straight canal, the elbow has a more complex canal. Moreover, the bone size in the elbow 
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is smaller than in knee and hip which in turn makes the implantation more sensitive 

because of restricted room for implantation. 

 

  

(a) 

(d) 

(b) 

(c) 

Figure ‎4.2: Implant Components: (a) small, medium, large and X-large spool sizes, 

(b) anterior, centered and posterior offset spools, (c) different stem locations based 

on offset spools, and (d) small, medium and large stem sizes. 
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(a) (b) 

Bone (native) flexion-extension axis 

Spool 
Screw 

Humeral implant 

Capitellum  

Trochlear sulcus 

Capitellum 

center 

Trochlear 

center 

Figure ‎4.3: 3D representations of the humeral implant and the distal humerus: (a) 

Latitude humeral portion components containing humeral implant, spool and 

screw, and (b) anterior view of the distal humerus. 
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4.3.3 Bone Geometry Reconstruction 

As it is shown in Figure 4.4, the convoluted canal shape of the humerus prevents the 

surgeon to perfectly align implant FE axis with native FE axis of the humerus. Intra-

operatively, surgeons perform implantation by forcing the implant to sit in the canal with 

no prior knowledge of humeral walls and then try to orient the implant properly based on 

anatomical features. Unfamiliarity with implantation may lead to implant penetration into 

wall of the bone causing bone fractures (Figure 4.5). Not only proper insertion trajectory 

is essential for a perfect implantation, but also selecting the suitable size of the implant 

for insertion is difficult.  

To address this objective, the first task to be accomplished is precise 

reconstruction of the bone geometry from axial slices of each specimen acquired through 

CT scanning. The reconstruction is carried out by means of a control polygon 

deformation technique developed in the past [Mostafavi et al., 2012] and also described 

in Chapter 2. The thresholding technique is initially used to extract the inner contours of 

the humeral canal, and then a novel closed B-Spline fitting technique is proposed which 

enables us to approximate the extracted data points with a certain tolerance/accuracy in 

order to generate humerus 3D model [Mostafavi et al., 2012] (Figure 4.6).  This intended 

parametric representation enables robust and fully-controlled geometry discretization 

techniques to be further employed in the context of optimization algorithm.  
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Figure ‎4.4: Relative position of Latitude humeral implant in: (a) medial-lateral (ML) view (b) anterior-

posterior (AP) view of the distal humerus, and (c) 3D model of implant position in medullary canal of the 

humerus. 1
2
0
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(a) (b) 

Figure ‎4.5: (a) Implant penetration into the humerus due to improper fitting, and 

(b) 3D model of implant penetration, showing interference areas in red. 
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(a) (b) (c) 

Figure ‎4.6: Reconstruction of the distal humerus geometry: (a) DICOM images of 

the humerus acquired from CT scan, (b) generated inside and outside contours 

from DICOM images using developed control polygon technique, and (c) full 3D 

model of the humerus from contours. 
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4.3.4 Genetic Algorithm 

The problem of fitting one object (implant) inside another object (canal) with the goal of 

matching two corresponded features (FE axes) is a six variables constrained nonlinear 

minimization problem. The minimization algorithm used in this study is Genetic 

Algorithm (GA) which mimics the metaphor of natural biological evolution (Figure 4.9). 

This algorithm is a stochastic global search method that can best minimize the objective 

functions that are highly nonlinear in the domain of large number of variables. Since the 

output of this search should be the spatial location of the implant, six variables were set 

for this problem; three for position (Π) and three for orientation (Ω) (Figures 4.10 and 

4.11) with respect to a unique coordinate system [Mostafavi et al., 2013]. 

To simplify the inputs, the fit of a particular implant/bone combination was 

evaluated by means of only three critical cross sections of bone model (Figure 4.7) and 

two distal and proximal cross sections of humeral implant stem (Figure 4.8) for the 

intended feasibility assessment. For the humerus, all cross sections were presented in the 

form of convex polygons Ƥ
D,I,P

; the top (distal, D) and bottom (proximal, P) cross 

sections were selected to match the location of the two ends of the stem, provided that the 

alignment between prosthetic and native FE axes is enforced. In addition to them, a third 

and intermediate (I) cross section was identified as the most constraining/narrowest 

through iterative comparisons of consecutive slice geometries as determined from 

multiple visualization directions. The visual determination of intermediate cross section 

is just a rough intermediate posture limitation for the implant orientation to better 

position the implant inside the humerus cavity.   
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Both humerus critical cross sections and distal and proximal end cross sections of the 

implant are located in their local coordinate systems of BCS (Bone Coordinate System) 

and ICS (Implant Coordinate System), respectively (Figure 4.10). By translating the ICS 

origin to the BCS origin, implant cross sections are defined in BCS. In order to place the 

implant cross sections in proper initial location, the centroid of proximal cross section of 

the implant was then translated to centroid of distal cross section of the bone. In fact, the 

only limitation that helps GA in generating final implant position is to keep the proximal 

cross section of the implant inside the convex polygon of distal cross section of the bone (

D
PC

P ( , , )
i j jl Π Ω ). 
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Figure ‎4.7: Reconstructed bone model: (a) control polygon form and (b) selection of 

three critical cross sections as the GA input. 
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Figure ‎4.8: Selection of two distal and proximal ends of humeral implant stem as the 

GA input. 
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Figure ‎4.10: Bone and implant coordinate 
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Figure ‎4.11: Implant Coordinate System (ICS) orientation with respect of Bone 

Coordinate System (BCS) over: (a)‎θ‎rotation‎about‎XBCS axis,‎(b)‎ω‎rotation‎about‎

YBCS axis, and‎(c)‎ϕ‎rotation‎about‎ZBCS axis. 
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By having the two end cross sections of humeral stem, the spatial location of four 

corner points 
C

P ( , , )
i

j jl Π Ω with {0,1,2,3}i  of the stem for its entire length (L, [0, ]l L ) can 

be identified as a result. The last input was the location of the native and prosthetic FE 

axes, defined through their two end points (e.g. geometric centers of capitellum and 

trochlea, respectively). All prior geometric elements were expressed in BCS, which 

represents a data consistency requirement to be acquired through appropriate coordinate 

transformations. 

The GA-based search aims at the minimization of the implant malalignment with 

respect to the native FE axis of the humerus by enforcing non-interfering conditions in all 

three critical cross sections. The main role of these constraints is to ensure that the 

implant postures never penetrate into the bone canal envelope.  

The implant malalignment was calculated as the difference between native FE 

axis location and position and the implant FE axis. In order to report this malalignment 

one translation dCC (the distance between implant and native centers of capitella) and two 

angles: varus-varus αVV and internal-external αIE (Figure 4.12) were recorded to shape the 

objective function. Based on all these parameters, the mathematical formulation of the 

optimized search becomes: 

 

1 CC 2 VV 3 IE

D

C D

I

C I

P

C P

minimize( )

                   P ( , , )

Subject to:  P ( , , )

                   P ( , , )

      






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Π Ω

Π Ω

Π Ω

i

i

i

j j

j j

j j

d

l

l

l

 (4.1) 
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where {0,1,2,3}i and iteration number varies from 1 to a maximum convergence limit. The 

ω scalars in Eq. (4.1) are the weights associated with each of the malalignment 

components that are quantified in a normalized form with respect to their maximum 

allowable values. To determine these values, a number of previous studies were reviewed 

but due to existing insufficient information in this regard, arbitrary limits were chosen for 

the three malalignment values as below: 

 

1

2

3

1

1
2

1
2

mm


















 


 (4.2) 

The proposed GA method was tested over 9 humeri with the best corresponding 

implant to be fit properly (Figure 4.13). A population size of 100 was used for this 

algorithm, while the generation was set to 100 too. The mutation rate was 1% and the 

crossover probability was set to 100%. The constraint tolerance was 0.001. When 

convergence occurred in each optimization search, the implant final position was checked 

against all bone cross sections taken from DICOM images in order to make sure the 

implant had no penetration into the bone from distal to proximal ends. If penetration was 

observed in one or couple of slices, the corresponding cross sections were added to the 

list of intermediate cross sections. In case the implant was positioned fully inside the 

bone, the malalignment parameters were recorded to be validated against the results of 

experimental setup [McDonald et al., 2009a]. The overall schematic of the proposed 

algorithm is shown by Figure 4.14.  
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Figure ‎4.12: Geometric interpretation of implantation malalignment: (a) 3D view of 

implant position in bone cavity showing the translation error dCC, (b) anterior-

Posterior view of implant insertion showing varus-varus angulation‎error‎αVV, (c) 

medial-lateral view of implant insertion showing flexion-extension angle αFE and (d) 

distal-proximal view of implant insertion showing internal-external angulation 

error‎αIE. 
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4.3.5 Experimental Setup 

The experimental setup used for this study is in fact a navigated implantation setup 

developed by [McDonald et al., 2009a]. This setup benefits from a pre-operative plan for 

generating 3D model of target implant. Herein, intra-operative alignment is then 

performed by placing the tracked implant inside the medullary canal and adjusting its 

position such that the source implant was superimposed on top of the target implant. In 

order to perform the registration of each specimen, physical landmarks were screwed to 

the distal humerus and then by using ICP (iterative Closest Point algorithm) a surface-

based registration of the digitized landmark to corresponding CT surface was carried out. 

To obtain implant alignment error in translational and rotational directions, the position 

and orientation of the native FE axis were first achieved by digitizing capitellum and 

trochlea. Following each implantation and recording position and orientation of the 

implant FE axis with respect to humeral receiver, the implantation error is calculated 

subsequently.  

4.4 Result 

In order to validate the accuracy of the developed GA-based technique in identifying the 

optimized implantation described in the previous section, all 9 physical specimens were 

tested in the experimental setup while the CT images acquired from each subject were 

used in the proposed optimization technique, respectively. For the experimental setup, an 

expert surgeon was asked to perform the implantation in the context of a navigated 

implantation procedure aiming to find a possible final position for the humeral implant 

using landmarks, receivers and a set of implants and spools. In the event of a successful 

implantation, the final position and orientation of the implant and its FE axis were 
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recorded for both methods. In Figure 4.13a the initial and final positions of the implant 

during an insertion procedure are shown while Figure 4.13b demonstrates all the 

intermediate steps that the implant takes to reach its final position starting from the 

assumed initial position. 

  

(a) 
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  1   2   3 

  4   5   6 

Figure ‎4.13: Implant insertion procedure using GA technique: (a) 3D view of the 

humeral implant from initial to final position, and (b) intermediate steps of implant 

insertion. 
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Figure ‎4.14: Schematic presentation of GA algorithm. 
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It can be observed that although implant and bone capitellum centers are far away 

in almost 180 degree orientation, the developed genetic algorithm initiates to rotate the 

implant and make it closer to the capitellum center of the bone as the insertion procedure 

is advancing.  

Results of the implant alignment error represent a promising conclusion 

comparing to the results of the experimental setup (Figure 4.15). The translational error 

defined as the distance between capitella centers was 2.72 ± 1.66 mm for the developed 

method while for the experimental setup was 2.63 ± 0.83 mm. Although translational 

malalignment in medial-lateral direction for the developed method (2.25± 1.65 mm) is 

higher than experimental setup (0.83± 0.77 mm), the anterior-posterior and proximal-

distal translational errors (1.43± 1.34 mm and 0.31 ± 0.38 mm) are lower compared with 

the corresponding malalignment in the experimental setup (2.19 ± 1.00 mm and 0.63 ± 

0.52 mm). Maximum implant malalignment in translation occurred in medial-lateral 

direction (sagittal plane) for the developed method while for the experimental setup 

anterior-posterior direction (coronal plane) exhibited the maximum malalignment. In both 

methods, only 3 out of the 9 examined specimens showed a total implant alignment error 

of less than 2 mm whereas the remaining specimens had the error values ranging from 2 

mm to 5 mm. 
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Figure ‎4.15: Validation of the developed method results in comparison with 

experimental setup results: (a) implant alignment error in translation (mean + 1 

standard deviation) for both developed method and experimental setup. 

Translational malalignment was reported in three directional components of 

medial-lateral (MED) error, anterior-posterior (ANT) error and proximal-distal 

(PROX) error while Total represents square root of error components, and (b) 

implant alignment error in rotation (mean + 1 standard deviation) for both 

developed method and experimental setup. Rotational malalignment was reported 

in two components of varus-valgus (VV) error and internal-external (IE) error 

while Total represents square root of error components in rotation. 
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As it is observed, there was no significant difference in malalignment for both 

translation and rotation. In rotation, the amount of malalignment was 2.9
0
 ± 2.7

0
 for the 

developed method and 2.8
0
 ± 2.13

0
 for the experimental setup. Despite translational error, 

there was no significant difference in rotational angles between both developed method 

and experimental setup. Varus-valgus angulation error was 2.89
0
 ± 2.69

0
 for the 

developed method and 2.79
0
 ± 2.13

0
 for experimental setup. Malalignment in internal-

external angulation for the developed technique and experimental setup were 1.27
0
 ± 0.9

0
 

and 1.12
0
 ± 2.01

0
, respectively. Moreover, for both methods varus-valgus angulation 

showed the maximum contribution in rotational malalignment. For both methods, 3 out of 

9 specimens exhibited the rotational misalignment of less than 2
0
 and the rest of the 

specimens had the error between 2
0
 to 6

0
. Figures imply that while a better consistency 

exists for proximal-distal translational alignment and internal-external rotational 

alignment, large variations are generally present in conjunction with medial-lateral and 

anterior-posterior translational alignments and varus-valgus rotational alignment. 

Once the best possible final positions for each pair of the implant and the humerus 

specimen were found, the positioning of the implant inside the canal was analyzed for 

three random specimens. Accordingly, it was investigated that how the implant cross 

section is positioned with respect to inner boundary of the bone in each cross section. 

This analysis assists to assess both the efficiency of the insertion algorithm as well as the 

current shape of the implant based on the morphological characteristics of the distal 

humerus. As it is shown in Figure 4.16, a new parameter defined as the minimum 

distance from four corners of the implant to the inner boundary of the bone in each cross 

section, was calculated, and then was plotted for all distal to proximal bone cross 
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sections. This figure first of all shows that there is no penetration in any of the bone cross 

sections in all three specimens since no negative distance value was recorded for distal to 

proximal cross sections. However, for the majority of bone cross sections the implant was 

positioned very close (less than 0.5 mm) to the bone cavity. It shows that although there 

has been no penetration, a reasonable malalignment can be achieved only by positioning 

the current implant in the close vicinity of the bone cavity. Therefore, the current shape 

of the implant has an incompatible design with the inner space of the bone. 
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Figure ‎4.16: Definition of minimum implant distance to bone: (a) d1 to d4 represent 

the distances of each implant corner to bone inner boundary in one cross section 

while d1 denotes the minimum implant distance to bone, (b) relation between slice 

numbers and bone model, and (c) minimum implant distance to bone in each cross 

section from distal to proximal end of the bone.  
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In order to better assess the positioning condition of the implant, Figure 4.17 

represents another new parameter defined as area ratio of the implant to bone in each 

cross section from distal to proximal ends for the same humeral specimens as in previous 

figure. The implant area was considered to be the area within the rectangular shape 

formed by four corners of the implant while the cross sectional area of the bone was 

denoted as the bone area delimited within the parametric definition of bone inner 

boundary in each cross section. The parameter of area ratio of the implant to bone from 

the distal to proximal ends of the bone represents the space that implant occupies in each 

cross section. The ideal design of the shape of the implant based on morphological 

characteristic of the distal humerus cavity should have a constant area ratio from the 

distal to proximal cross sections. However, as it can be seen from this figure, the area 

ratio for all these three specimens vary a lot showing that although implant does not have 

enough room for distal cross section, there is a large area ratio for proximal cross section. 

Considering Figures 4.16 and 4.17, it can be concluded that although for the majority of 

cross sections there is a large area ratio, the minimal distance from the implant to bone is 

less than 0.5 mm and thus is close to the wall of the bone. Therefore, the current design 

for the shape of the implant needs to be modified to make its positioning inside the bone 

optimal.  
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Figure ‎4.17: Definition of area ratio: (a) A1 denotes implant area while A2 

represents bone area delimited within the parametric definition of bone inner 

boundary in one cross section, (b) relation between slice numbers and bone model , 

and (c) Area ratio of implant to bone behaviour from distal to proximal end of bone. 
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In order to evaluate the efficiency and productivity of the genetic algorithm developed in 

this study, couple of tests were accomplished as following. 

The first test belongs to insertion of a smaller size of the stem into the cavity of 

one random humeral specimen. Theoretically, smaller implant should lead to a better 

insertion and therefore a better malalignment, but in practice the story becomes a bit 

different. Note that a better insertion depends on the stem size of the implant, and better 

malalignment relies on relative position and orientation of the implant and bone FE axes. 

As it can be seen in Figure 4.18 although for initial iterations a better objective 

function/malalignment was achieved, and the algorithm converged faster, the final 

outcome depicted the fact that a smaller size of the stem would not necessarily lead to a 

better insertion and malalignment. Therefore, in order to provide a better implantation, 

both implant size and spool size have to be modified.  

The second test performed was the repeatability test. In this test, the current 

proper implant for insertion into one corresponded humeral specimen was tested five 

consecutive times with exactly the same initial position for the implant. The translational 

and rotational malalignment values were reported in Figure 4.19. This test reveals the 

consistency and repeatability of the developed genetic algorithm. Although the 

malalignment for rotational error was not significantly different for both varus-valgus and 

internal-external angles, less consistency was observed for translational malalignment 

especially for anterior-posterior direction. Accordingly, the maximum difference in 

translational malalignment between these five cases is approximately 0.3 mm; thus, it can 

be strongly concluded that despite non-linear behavior of genetic algorithm itself, the 
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presented algorithm is consistent and reliable. Moreover, the objective function for all 

these five runs shows a close value representing the consistency of this method. 

 

 

 

Figure ‎4.18: Impact of implant/spool size change in objective function value and 

final implant position 
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Figure ‎4.19: Repeatability test: (a) implant alignment error in translation (mean + 1 

standard deviation) for developed method starting from the same implant position 

in 5 runs, and (b) implant alignment error in rotation (mean + 1 standard deviation) 

for developed method starting from the same implant position in 5 runs.  

  

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

MED ANT PROX Total 

Im
p

la
n

t 
a

li
g

n
m

en
t 

er
ro

r 
[m

m
] 

Translational malalignment 

1st run 

2nd run 

3th run 

4th run 

5th run 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

VV IE Total 

Im
p

la
n

t 
a

li
g

n
m

en
t 

er
ro

r 
[d

eg
] 

Rotational malalignment 

1st run 

2nd run 

3rd run 

4th run 

5th run 

(a)
 

(b)
 



147 

 

The third test conducted was similar to the second test with the difference that the 

initial implant orientation was selected to be different in five consecutive runs. As it was 

described in the previous section, the initial position of the implant was set in a sense that 

the centroid of proximal cross section of the implant matches the centroid of distal cross 

section of the bone. This was a consistent setup for all 9 humeral specimens that tested in 

this study within the developed genetic algorithm. In this test, the impact of different 

initial posture of the implant at the same initial position was evaluated, and the resultant 

translational and rotational malalignment was reported in Figure 4.20. As it was shown in 

this figure, the final malalignment values obtained in the current test is identical to the 

outcome of the previous one. Again the translational malalignment especially for 

anterior-posterior direction is much more significant than the rotational malalignment. 

However, since the values of the objective function for all five runs in this test were close 

enough to each other, it can be concluded that in spite of large deviations in the 

translational malalignment, the overall malalignment was compensated by rotational 

malalignment components.  
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Figure ‎4.20: Sensitivity to initial implant position in the developed GA technique: 

(a) implant alignment error in translation (mean + 1 standard deviation) for 

developed method starting from different implant orientation in 5 runs, and (b) 

implant alignment error in rotation (mean + 1 standard deviation) for developed 

method starting from different implant position and orientation implant position in 

5 runs. 
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4.5 Discussion 

Given the fact that both techniques presented for accurate implantation include 

completely different procedures, slightly higher alignment errors are extremely 

acceptable especially when the only commonality is related to initial stack of raw CT 

images. It should be noted that here the rationale behind the comparison of the developed 

technique to the experimental setup will not entail the fact that this study considers the 

experimental setup as the golden standard. However the only reason for making such a 

comparison was to validate and evaluate the developed technique. Therefore, although 

the malalignment and standard deviation of the developed method is to some extent 

higher than the experimental setup, it results in consistency and accuracy but less 

improvement in accurate implantation.   

Unlike the technique utilized in the experimental setup which cannot be applied in 

real surgical operations due to its dependency on landmarks being screwed to the distal 

humerus, the GA technique can be employed both pre-operatively and intra-operatively 

to better help surgeons complete implantation procedure in a more efficient way rather 

than the current semi-blind implantation. The other advantage of this technique is 

providing a simulation tool capable of deciding which size and combination of spool and 

stem can provide more accurate replication of flexion-extension axis of distal humerus 

with no damage to the physical bone. Due to the fact that the presented scheme can be 

applied to different humeral specimens with minimal user input, the generated tool can 

predict the best implant/bone fit in a quick time frame to help surgeons pre-operatively 

have a better plan for the surgery. 
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The selection of the intermediate cross section of the bone as one of the 

constraints of the algorithm was also investigated for all 9 humeral specimens. As a 

result, 40% of the distance from distal to proximal cross section is a region where the 

narrowest cross section of the bone exists. In order to ensure the selection of the 

narrowest cross section in 3 humeral specimens, various intermediate cross sections were 

selected and the resultant malalignment was assessed. This assessment revealed the fact 

the as long as the intermediate cross section is chosen within the region which is 40% of 

the way from distal to proximal cross section, there will be no significant impact on the 

implant insertion and final malaligmment between the implant and bone FE axes. 

However, since the insertion algorithm checks the interference of the implant into the 

bone for all cross sections from distal to proximal ends, if the algorithm finds that after 

the insertion there is a penetration in one or couple of the cross sections, it adds this/those 

cross sections to the list of constraints, and starts the insertion procedure again until no 

penetration is found. 

It should be noted here that based on Eq. (4.1), the weights associated with 

malalignment components play a major role in convergence point of the genetic 

algorithm. The reason behind this statement is that since genetic algorithm minimizes the 

objective function which depends highly on the values of both the weights and the 

malalignment components, inaccurate determination of the weights may lead to a 

convergence point with larger amounts for the malalignment components. Therefore, 

various combinations and limits were chosen for the weights, and the resultant objective 

function was tested within the scope of the genetic algorithm until it was decided that 
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normalizing dCC with 1mm value and αVV  and αIE with 2 degrees value will provide a 

reasonable range of malalignment at the end of insertion. 
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Chapter 5  

5 On the Design of Customized Implant Geometries   

5.1 Overview 

This chapter focuses on the shape optimization of the current humeral implants with the 

target of achieving minimum malalignment between native and prosthetic flexion-

extension axes. Four different optimization methods are introduced to modify the current 

shape of the humeral implant while the results of the new customized implant shapes are 

reported. We hypothesized that this optimization approach can significantly lower the 

malalignments between bone and implant axes. 

5.2 Introduction 

Recent developments in manufacturing technologies, alongside the advancements in 

engineering and imaging software have created ample opportunities for personalized 

medicines to emerge in the healthcare industry. As a tool for tailoring of treatments as per 

individuals, personalized medicine can eliminate trial-and-error inefficiencies that inflate 

health care costs and undermine patient care. Industry players have also rapidly adopted 

this field and are progressing towards achieving higher goals in the same approach. 

Meanwhile, it became clear that the growing applications of computer-assisted and 

simulation techniques in orthopedic surgeries not only allow surgeons to reliably replace 

the damaged joints with artificial components (implants), but they can also be the key 

element towards a desirable development of computer-based systems for optimized 

implant design for individuals. Although, in a perfect world successful clinical outcome 

of surgical joint arthroplasty relies on precise fit of an implant to a patient, in a real 
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world, the off-the-shelf implants come only in a limited number of sizes. As time went 

on, surgeons began to realize that this inefficient way of delivering implants should be 

replaced by using accurate implant size and geometry customized for each individual 

patient. 

The benefit of creating a true patient-specific implant is that it potentially 

addresses the driving factors of patient dissatisfaction after a joint arthroplasty. While the 

implant being too big or two small would be no longer an issue and it fits right every 

time, since the implants are covering all the cut bone, less blood loss, reduced risk of 

transfusion, less swelling of the joint and more importantly a significant drop in 

dissatisfaction rate will be observed. In addition, because the shape of the joint is more 

accurately reproduced, patients function better, sooner, and at the end of the recovery 

process have joints that feel and move more natural. In this chapter, four methods were 

developed to optimize the design parameters involved in the overall shape of the humeral 

implant. The new designed implants were then compared to the current shape of the 

implant.  

In conventional joint surgeries, the bone is customized to fit the off-the-shelf 

implants while in personalized surgeries the idea is to employ a customized implant to fit 

the patient’s bone. Studies reported that using standard artificial components for younger 

patients lead to a lower success rate comparing to older patients and that is why in so 

many countries delay the surgery time for younger patients [Harrysson et al., 2007]. The 

most common reason for surgical failure of younger patients is aseptic loosening which is 

caused by more daily activities of younger patients versus older patients. Since the 

relative fit between implant and bone is not guaranteed, routine activities cause implant 
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micro motions in the bone canal.  On the other side, reshaping the bone canal alters the 

rounded shape into an irregular shape. These two factors end up with uneven stress 

distribution on the endosteal surface of the bone, and therefore, uneven growths of bone 

(bone remodelling) on the implant-bone interface and loosening of the implant over time. 

The other benefit of using customized implants is for patients having abnormal 

anatomy or asymmetric bone loss. Using customized implants can compensate the 

abnormal anatomy of the bone or asymmetric bone loss by avoiding challenging surgeries 

and poor outcome after the surgery for these types of patients. Despite of major obstacle 

for extensive using of customized implants which is associated with the cost, many 

reports have emphasized this fact that custom-designed implant can solve complicated 

orthopedic surgeries and lead to a better outcome. Most of these studies reported using 

custom implants on knee and hip joints and rare studies were conducted on elbow joint 

[Cil et al., 2011]. 

Cil et al. [Cil et al., 2011] designed a new shape for the ulnar implant to be used 

in total elbow arthroplasty. They believed that this triflange outrigger ulnar component 

can provide roll stability by having a righting moment that resists any disturbance in the 

roll moment. This idea was perceived from the concept of roll stability in outrigger 

canoes. They tested these new types of ulnar implant in the revision surgery of 5 patients 

who had failure of Coonrad-Morrey total elbow prosthesis. The result of this new shape 

for ulnar implant was bigger range of motion and also reducing the amount of pain in the 

elbow. However, for one of the patients an extra humeral component revision surgery 

became needed after 4 years of the revision surgery. Cil et al. also suggested this new 

shape of the ulna implant for patients with absent humeral epicondyles. They believe that 
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this new type can delay the failure of total elbow arthroplasty due to bushing wear in 

these patients [Cil et al., 2011]. 

Gotze et al. analyzed the stability of custom-made femoral stem (Adaptiva) in 

seven pairs of fresh frozen cadaveric femurs for a hip replacement surgery. From CT 

scans, they derived the 3D model of the canal and by benefiting from CAD/CAM 

techniques they manufactured custom-made femoral implants. They added three ribs on 

the anterior surface of the implant in order to interdigitate with the metaphyseal 

cancellous bone. After positioning the implants into cadaveric femurs, they secured the 

bone in a biomechanical testing system which applied various load patterns on the femur. 

In order to validate this study, they compared the results of micromotions with 

conventional femoral stem implanted into femors [Gotze et al., 2002]. 

Gunther et al. employed custom insert glenoid implants in deficient glenoid bones 

during total shoulder replacement surgery for 7 patients. Indeed, deficiency in glenoid 

bone limits the treatment options and outcome of surgery because of lack of support for 

glenoid implant. Upon these circumstances surgeons usually prefer to perform a 

hemiarthroplasty instead of resurfacing the glenoid and current studies show that clinical 

results of hemiarthroplasty comparing to total shoulder arthroplasty is worse in patients 

with nonconcentric glenoid with bone loss. After these surgeries with new glenoid 

implants, patients had a better range of motion including 33 degrees for forward flexion 

and 34 degrees for external rotation. The pain level of patients after these surgeries 

dropped significantly from 6.9 to 0.1 (assuming that 10 represents the most severe pain 

and 0 to represent no pain situation) at the final follow-up [Gunther and Lynch, 2012]. 
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Viceconti et al. introduced a new software program named as HIDE for the design 

of custom-made hip prosthesis. This software program is able to design the shape of the 

femoral stem from CT images in a single operation. The operator can also control the 

shape of the stem by imposing control section directly on CT images. CAM part of this 

software is able to generate the Gcode needed to manufacture this part using CNC 

machines [Viceconti et al., 2001]. Similar to this software Jun and Choi [Jun and Choi, 

2010] developed another new software for designing custom-made hip implant out of 3D 

geometry parameters related to  atient’s  D bone geometry. Some of these parameters 

are femoral shaft isthmus, anatomical femoral axis, femoral head center/radius, head off-

set length and femoral neck. By manufacturing and designing this implant the contact 

area between implant and bone has been maximized.  

Harrysson et al. customized the shape of articulating surface and bone-implant 

interface for total knee arthoplasty implants and then used finite element analysis to 

verify this design in comparison with the conventional femoral implants. The advantages 

of such customized shape include better imitation of the shape of distal femur for 

articulating surface, even bone remodelling due to even distribution of stress and also less 

bone removel because of better bone-implant fit. They believe that this type of implant 

can be used for younger patients and those who have a more active life style [Harrysson 

et al., 2007]. 

Some of the studies have focused on patient-specific pre-operative and intra-

operative procedures such as computer-assisted surgeries or using navigation systems to 

better position the implant into the bone [Lombardi et al., 2008; O’connor and Kransdorf, 

2013] instead of changing the shape of the implant to fit the bone cavity. 
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5.3 Optimization Techniques on Elbow Implant Shape 

The main goal of this chapter is to define the numerical techniques developed to optimize 

the shape of the implant, aiming at minimizing the amount of malalignment between FE 

axis of the bone and implant. In Chapter  4, a numerical algorithm was developed to find 

an optimal final position of the current implants inside the cavity of the distal humerus 

using genetic algorithm as the optimization function. Comparison of these results with 

experimental ones reveals the fact that the current design and shape of the implants can 

decrease the amount of FE axes malalignment to some extent while efforts on lowering 

this malalignment seems to be impossible with the current shape of the implant.  

To our knowledge a limited number of researches have been published on the 

study of the humeral implant shape and also implant positioning to fit the endosteal 

cavity of the distal humerus. It should also be noted that the results achieved in the last 

chapter using cadaveric experiment and the numerical technique is really hard to achieve 

with intra-operative decisions of a surgeon during an elbow replacement surgery. 

Therefore a higher amount of malalignments should be expected as a result of the current 

shape of the implants and limitations of a real surgery. In order to avoid larger 

malalignment and achieve reasonable clinical results out of implantation during a 

surgery, a new shape of the humeral implant is required to be designed that theoretically 

results in a close to zero malalignment. In this way it can be ensured that this new design 

in a real surgical operation provides a minimum malalignment. 

The issue of optimizing the shape of the current implant with the target of 

matching FE axis of the implant to the native FE axis of the bone during implant insertion 

into the bone cavity is a constrained nonlinear optimization problem. The mathematical 
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formulation for describing this problem is the same as equation Eq. (4.1) in the previous 

chapter, 
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 (5.1) 

The only difference between this problem and the fitting problem of the previous 

chapter is in terms of the problem input, which contains an optimized shape of the 

implant, instead of the current shape of the problem. As indicated in the previous chapter 

the core algorithm that fits the implant into the distal humerus cavity is the genetic 

algorithm. In order to customize the shape of the current implant a global search solver 

was used on top of the local genetic algorithm. 

Global search benefits from a scatter-search mechanism to generate start points. 

Once it converges, the global search records this point and the end point and then 

estimates the radius of a basin of attraction. Based on the scatter-search mechanism, the 

global search tries a set of trial points and then evaluates where these initial points 

converges to. If these points converge reasonably well, the algorithm then checks to see if 

these points are local or global minima in the problem space. In case that a global 

minimum is found, the global solver stops the search and set this point as the output. 

The parameters that define the shape of the humeral implant can be divided into 

two groups. First group contains parameters that control the shape of the distal end of the 

implant on where the spool sits and second group includes parameters that control the 
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shape of the stem (proximal part) which fits into the bone canal. Optimizing the 

parameters of both groups change the implant shape, and therefore, can impact on the 

final result of the implant insertion in a sense that the first group can directly effect on the 

minimization function which is the function of malalignment while the second group 

alters the constraints of the optimization problem. 

In the context of this optimization problem, three different selection methods were 

decided to be considered for these parameters.  

5.3.1 Stem-Focused Optimization 

In the stem-focused optimization method, optimization variables were selected from the 

second group of parameters. In other words, only the stem shape of the implant was 

targeted for global optimization while the distal end of the implant was assumed to have 

the current shape.  Among entire parameters that define stem length, stem posture, and 

cross sectional size and orientation of the stem, it was assumed that only those parameters 

that are related to stem posture should be optimized.  

As it has been shown in Figure 5.1, the stem is supposed to have five degrees of 

freedom which includes two for translation and three for rotation. As Figure 5.1 indicates, 

the three rotations were defined with respect to the three axes of Stem Coordinate System 

(SCS with the origin at the center of distal implant stem) as rotation about SX (  angle), 

rotation about SY ( angle), and finally rotation about SZ ( angle).  

The translation vector P SS  is also defined as a planar vector in SX - SY  plane 

capable of translating center of distal implant stem in both SX  and SY directions by 
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corresponding values of SX  and SY . Therefore, the transformed posture of the implant 

stem can be expressed by TS transformation matrix, 

 
s s s
ˆ ˆ ˆS SSi j k

SS

T R ( ). R ( ). R ( ). T(P )

P [ ]S SΔX ΔY 0
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 (5.2) 
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Figure ‎5.1: Stem-focused optimization variables: (a) Stem Coordinate System 

(SCS) located in the centroid of distal implant cross section, and (b) and (c) 

represent two translational and three rotational variables defined for the change in 

the shape of the stem. 
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The calculation of this transformation matrix enables the calculation of eight 

vertices of implant stem in the new stem shape as described in Eq. (5.3). 

 

( , , ) T . ( , , )

( , , ) T . ( , , )

i i

i i

j j S j j

j j S j j

l l

l l

 

 

C D C D

C P C P

P Π Ω P Π Ω

P Π Ω P Π Ω  (5.3) 

Indeed, initial coordinates of implant vertices C D( , , )
i j jlP Π Ω  and C P( , , )

i j jlP Π Ω  

relate to distal and proximal cross sections of current implant shape, respectively. The 

transformed coordinates of implant vertices C D( , , )
i j jlP Π Ω  and C P( , , )

i j jlP Π Ω  denotes 

distal and proximal vertices of implant cross sections in the context of new shape of the 

stem. While forcing the change in the coordinates of implant vertices for intermediate 

cross too ( C I( , , )
i j jlP Π Ω ) section. By changing the shape of the stem, the problem 

constraints vary at each iteration, and so, the problem converts into below formulation: 
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The problem defined in Eq. (5.4) is now again a classical problem of optimization 

which was solved through genetic algorithm. On top of this local algorithm, the master 

optimization algorithm, which is the global search algorithm, optimizes the five variables 

that are described in Eq. (5.2) in order to find a global minima.  

In order to make this global optimization work it is needed to specify the initial 

guess along with the bounds for all the five variables that form the new shape of the stem. 
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The initial guess for this problem was set to be the current shape of the stem which is 

available in the market for elbow joint replacements. In fact, the algorithm starts with this 

shape and tries to optimize the five variables and converge into a new implant stem. On 

the other hand, bounds for each of the five variables specify the domain for the global 

solver to search the initial trial points. The primary goal behind selection of bounds was 

to achieve a new optimized stem shape with minimal possible change/deformation in the 

current shape of the stem aiming at lowering the malalignment significantly. In the area 

of selecting proper bounds, the literature lacks the information needed to characterize the 

domain of the variables. Therefore, arbitrary limits were chosen for each of the five 

variables, specifically,  
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5.3.2 Spool-Focused Optimization 

The second method is spool-focused optimization technique that optimizes the 

parameters of the first group. In this way only the distal end of the implant was targeted 

for global optimization while the implant stem was supposed to keep the current shape. 

The rationale behind the optimization of these parameters is that one of the main reasons 

that may result in larger malalignment is the posture of the distal end of the implant 



165 

 

where the spool is attached to the implant and therefore the location of capitellum and 

trochlea centers along with implant FE axis are specified.  
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Figure ‎5.2: Spool-focused optimization method representation: (a) change in the 

position of the capitellum and trochlea centers of the current shape of the implant, 

(b) current design of the implant with its FE axis, and (c) new design for the 

implant distal part (where spool is attached) with new FE axis. 
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In this method, it was believed that by optimizing the position of the implant 

capitellum and trochlea, it can be ensured that the resultant shape of the new implant lead 

to less malalignment. The problem of optimizing capitellum and trochlea spatial 

coordinates is a six-variable problem in which three variables ( , , )IC IC ICX Y Z  locate the 

position of capitellum center, and other three variables ( , , )IT IT ITX Y Z  define the spatial 

position of trochlea center.  

Again a global solver was employed to search possible new spatial locations for 

capitellum and trochlea centers and then a local genetic algorithm carried out finding the 

optimal final position of the new designed implant within the bone cavity in order to 

minimize the malalignment. Initial guess for the starting point of the global solver was set 

again to be the current shape of the implant. To specify the bounds of the six variables, it 

was assumed that each of the capitellum and trochlea centers can independently move 

within a sphere of radius 2mm with the center at the corresponding capitellum or trochlea 

center (Figure 5.2). Indeed, for each variable a bound of 2mm was applied as follows, 
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To set these bounds in the numerical algorithm, the Cartesian components of 

capitellum and trochlea centers were implemented and converted into spherical 

coordinates of ( , , )R   . Therefore, the new positions of capitellum and trochlea centers 

at each iteration were implemented as follows, 
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in which ( , , )IC IC ICX Y Z   and ( , , )IT IT ITX Y Z   are the new locations of cepitellum and 

trochlea centers and ( , , )C C CR    and ( , , )T T TR    are variables that define the spheres 

around current capitellum center ( , , )IC IC ICX Y Z and trochlea center ( , , )IT IT ITX Y Z . The 

bounds for this spherical coordinates change to following values, 
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5.3.3 Overall Implant Optimization 

This method covers parameters of both groups related to the distal end of the implant and 

as well as to the shape of the implant stem. In order to generalize the problem and 

provide enough degrees of freedom for the deformation/change of the implant shape, an 

optimization problem with twelve variables was considered for this method.  
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Figure ‎5.3: Overall implant optimization method representation: (a) change in the 

positions of the capitellum and trochlea centers and also centroids of the distal and 

proximal cross sections of stem for current shape of the implant, (b) current design 

of the implant with its current FE axis and current stem shape and (c) new design 

for the implant with new FE axis and new stem shape. 
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Out of these twelve variables, six variables define the new shape of the implant 

stem while the other six variables are related to the distal end of the implant and 

specifically implant capitellum and trochlea centers, similar to what was described in the 

second method. The six variables that are related to the implant stem are spatial 

coordinates of centroids of distal ( , , )ID ID IDX Y Z and proximal ( , , )IP IP IPX Y Z implant cross 

sections, as described in Figure 5.3.  

The bounds for all these twelve variables are similar to the second method in a 

sense that 2 mm limit was set for each variable. Therefore, the domain of this 

optimization problem is a 12D space in which capitellum and trochlea centers and 

centroids of distal and proximal implant cross sections can vary within a sphere with 

radius of 2mm to be positioned at the center of each corresponding centers. The 

methodology for solving this optimization is the same as previous methods. While a local 

genetic algorithm is responsible for finding an optimal position for a selected shape of the 

implant as input, a master global solver optimizes the shape of the implant in order to 

minimize the malalignment. 

Spherical coordinates were used for this method too in order to specify bounds for 

the variables. The new positions of capitellum and trochlea centers were named as 

( , , )IC IC ICX Y Z   and ( , , )IT IT ITX Y Z   in each iteration and centroids of distal and proximal 

implant cross sections were implemented as ( , , )ID ID IDX Y Z   and ( , , )IP IP IPX Y Z   and 

therefore their relation to the original corresponding centers can be calculated as, 
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In the Eqs. (5.9) and (5.10), ( , , )D D DR    and ( , , )P P PR   are variables that define 

the spheres around current centroids of distal and proximal implant cross sections. The 

bounds for this spherical coordinates change to the following values, 
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 (5.11) 

All aforementioned methods follow the below optimization chart: 
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Figure ‎5.4: Schematic chart of the first three methods (stem-focused, spool-focused 

and overall implant optimization) for optimizing the shape of the implant. 
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Beside all these global optimization methods, brute force method was also used 

primarily for comparison and reference purposes and in order to make sure it can 

potentially converge to a reasonable result with all the information provided for the 

global search method. 

All the methods described so far benefit from a global solver for shape 

optimization and a local genetic algorithm. Since these methods encounter as double-

optimization problems, the computation time grows significantly. In order to make such a 

double-optimization problem converges, it might be needed to wait for weeks in some 

cases. Although there are ways to optimize the coding behind these numerical algorithms 

in order to speed up the convergence, still the computation time is considerable. In the 

fourth method a new method will be introduced that avoids such double optimization 

problem and is capable of calculating the optimized shape of the implant in a different 

approach. 

5.3.4 Customized Implant Design 

Unlike previous methods that try to optimize current shape of the implant, the logic 

behind this method is sort of out-of-the-box idea aiming at shaping a new implant starting 

from scratch. Assuming that the endosteal canal of the distal humerus with its FE axis is 

provided, the problem only focuses on the challenge of obtaining the shape of the implant 

which best fits into this cavity while FE axes match perfectly. For starting point of the 

solution, it can considered that the FE axis of the implant match exactly the FE axis of the 

bone. Therefore, the problem can be easily narrowed down to finding the best shape for 

the stem that fits well in the bone cavity. Once it is ensured that the stem inserts the 

cavity with no challenge, since the FE axis of the proposed implant matches already with 
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FE axis of the bone, minimum possible malalignment (ideally close to zero) is 

guaranteed. 

Finding an optimal shape for the stem that from a starting point out of the bone 

canal can be transferred to a final point in the bone cavity with no penetration into the 

walls seems to be challenging. In order to solve this problem, it can be presumed that a 

final solution has been achieved and so there is a final position/posture for the implant 

stem in which all the constraints are satisfied. Due to the fact that most of the common 

implant stems have regular straight edges in the distal-proximal direction, the most 

accessible starting point out of the bone cavity based on the achieved final position of the 

implant stem, is a point that lies on the centerline of the implant stem. This centerline also 

represents the optimal insertion trajectory that provides the surgeon a linear direction for 

implantation. That being said, the problem can be converted to finding a 3D axis of the 

canal that best represents the centerline of the implant stem and satisfies all constraints. 

The optimal 3D axis lies where the largest volumetric envelope inside the bone cavity 

occurs for the linear insertion of the implant stem.  

To better calculate this volumetric envelope, it can be presumed that this envelope 

is close to a cylinder with an irregular cross sectional shape while the 3D axis 

characterizes the centerline of this cylinder. In order to maximize the volume of this 

envelope, it is required to search for the biggest cross sectional area of the cylinder. 

Indeed, this maximum irregular cross section of the cylinder-shape envelope is the 

biggest common area of the projections of all inner boundaries of the distal humerus onto 

a plane which is normal to the aforementioned optimal 3D axis, as shown in Figure 5.5.    
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Figure ‎5.5: Customized implant design method 

representation: (a) finding the proper 3D axis that 

represents the largest common area of the bone 

cross sections, and (b) the resultant envelope along 

the 3D axis. 
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The method developed within this section searches for the optimal 3D axis that 

maximizes the common area of projections of all inner boundaries of the bone onto the 

plane normal to this axis. The algorithm employs a simple searching function to search 

among all 3D axes that start from the geometric center of the distal cross section of the 

bone ( , , )BD BD BDX Y Z  and ends on a sphere with the arbitrary radius of 1mm positioned 

at the geometric center of the distal cross section. To decrease the computational 

complexity of this search, the bounds were set in a way that only a portion of the sphere 

that observes proximal cross section of the bone, was included in the search domain. The 

3D axis insertionA can be implemented as, 

 

min max

[cos sin sin sin cos ]

0 2

insertion     
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 (5.12) 

To find the projection ( )m

k
plane

proj  of k
th

 point on m
th

 inner bone cross section 
m

k onto 

a plane with the insertionA as the normal vector and tangent to the sphere at 

( , , )BD BD BDX Y Z   point, the following calculations are needed, 
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 P [ ]BD BD BD BDX Y Z     (5.14) 
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Once all points on each inner bone cross section were projected on the plane, the problem 

equation is converted to, 

 maximize(Area(proj( ) ... proj( )))D Pm m

k k
plane plane

   (5.16) 

Once this optimal axis is defined, there are couple of approaches that can be taken 

for finding the shape of the stem. Among all possibilities, it was decided to follow the 

cross sectional sizing of the current implant shape for this new method. By having this 

optimal axis, the algorithm then starts to rotate the implant stem along that axis until it 

finds an orientation for the implant stem that has no penetration into the bone. 

If we put the resultant two sections of implant FE axis, which was supposed to 

match bone FE axis and implant stem shape together, the new optimized shape of the 

implant can be achieved which can ensure a minimum malalignment. In order to check 

the efficiency of this method, the resultant shape of the implant was inserted into the bone 

cavity form a starting point out of the cavity using the method described in the previous 

section. 

5.4 Result 

 All the four methods described in the previous section were tested on a bone sample to 

evaluate their performances. For all the methods, the same input was provided including 

bone cross sections, initial implant position, and information on native FE axis and as the 
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output optimized variables, solving time, and malalignment values were reported in 

Tables 5.1-5.4. The only difference is that for the first three methods the first three best 

solutions were provided while for the last method only the final result was reported. 

Table ‎5.1: Summary of the best three implant designs with minimum malalignment 

developed by the stem-focused optimization method. 

 

 

Table ‎5.2: Summary of the best three implant designs with minimum malalignment 

developed by the spool-focused optimization method. 

Stem-

Focused 

Optimization 

Method 

Optimized Variables Malalignment 

fval 

Solving 

Time 

[min] 
X

[mm] 

Y  
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  

[rad] 

  

[rad] 

  

[rad] 
cc

d

[mm] 
VV



[rad] 

IE


[rad] 

-0.29 -0.04 -0.02 -0.03 -0.02 0.55 0.41 1.29 1.40 24060 

-0.25 -0.27 -0.02 -0.03 0.00 0.001 1.10 1.82 1.46 22480 

-0.08 -0.48 -0.02 -0.01 -0.01 0.001 0.22 2.74 1.48 22120 

Spool-

Focused 

Optimization 

Method 

Optimized Variables Malalignment 

fval 

Solving 
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[min] 
C

R
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C
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C
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T
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T
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T

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d

[mm] 
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

[rad] 

IE


[rad] 

1.74 0.63 0.55 0.94 1.10 2.26 0.00 0.01 0.01 0.01 17745 

1.76 0.07 0.58 0.92 1.24 2.25 0.01 0.04 0.12 0.09 12890 

1.74 0.63 0.55 0.94 1.10 2.26 0.05 0.01 0.13 0.12 9783 



 

 

Table ‎5.3: Summary of the best three implant designs with minimum malalignment developed by the overall implant 

optimization method. 

 

 

Table ‎5.4: Summary of the best three implant designs with minimum malalignment developed by the customized implant 

design method. 
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0.64 0.05 2.93 1.99 0.89 2.93 1.33 5.36 3.14 0.19 2.10 2.62 0.01 0.04 0.18 0.12 12524 

0.65 0.18 2.89 1.96 0.92 2.91 1.32 5.15 3.13 0.20 2.12 2.51 0.10 0.10 0.02 0.16 10371 
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As expected, differences in results are visible between various methods. However, 

the customized implant design method provides a more efficient solution to this problem. 

Not only this method decreases the amount of solving time significantly, it will also lead 

to a better (almost zero) malalignment since the rationale behind the solution of this 

method originates from the fact that the two FE axes should be matched in the primary 

stage. To better visualize the impacts of such solutions onto final optimized designs of 

the current implant, Figures 5.6 – 5.10 provide a 3D representation of all implant designs 

derived by the best solution obtained with each single method.  

It should be noted here that since the implant body is a single solid body, change 

in the design of the stem (parameters of group2) is convertible to change in the design of 

the distal section of humerus (parameters of group1). However, in order to make the 

results of all methods comparable, for all solutions the distal cross section of the stem 

part of the humerus matched in 3D representation. All these figures reveal the fact that 

current shape of the implant can be converted to a better design through multiple ways in 

different angular directions. The severe difference belongs to the result of the last method 

in which the current shape of the implant needs to be modified considerably to be able to 

minimize the malalignment. 
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 Current implant shape 
 New implant shape by the stem-focused optimization method 

 
  

(a) 

(b) 

Figure ‎5.6: Comparison of the developed implant design in the stem-focused 

optimization method versus current design (green): (a) 3D view, and (b) side views 

of this comparison implant designs. 
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 Current implant shape 
 New implant shape by the spool-focused optimization method 

 
  

(a) 
(b) 

Figure ‎5.7: Comparison of the developed implant design in the spool-focused 

optimization method versus current design (green): (a) 3D view, and (b) side views 

of this comparison implant designs. 
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 Current implant shape 

 New implant shape by the overall implant optimization method 

 
  

(a) 

(b) 

Figure ‎5.8: Comparison of the developed implant design in the overall implant 

optimization method versus current design (green): (a) 3D view, and (b) side views 

of this comparison implant designs. 
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 Current implant shape 
 New implant shape by the customized implant design method 

  

(a) 
(b) 

Figure ‎5.9: Comparison of the developed implant design in the customized implant 

design method versus current design (green): (a) 3D view, and (b) side views of this 

comparison implant designs. 
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 Current implant shape 
 New implant shape by the stem-focused optimization method 
 New implant shape by the spool-focused optimization method 
 New implant shape by the overall implant optimization method 
 New implant shape by the customized implant design method 

 
  

(a) 

(b) 

Figure ‎5.10: Comparison of the four developed implant designs versus current 

design (green): (a) 3D view, and (b) side views of the comparison of all implant 

designs. 
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For the first three methods, the first three best solutions (optimized variables) are 

interestingly close to each other and in the same range. This represents that the global 

search algorithm for these three methods and based on the variable range provided is 

convergent. Comparing the solutions for all the methods from Table 5.1 – 5.4 and Figure 

5.6-10 shows that the optimized shape of the implant can be reached in a variety of ways 

for each of the humeral specimens. In the stem-focused optimization method it has been 

suggested that a small change in the medial- lateral and anterior-posterior offset values 

can improve the malaligment by 50%. Solutions of the spool-focused optimization 

method focus more on the change in capitellum center position rather than trochlea 

position and try to make the implant FE axis more compatible with the native one, 

especially for varus-valgus angulation. In the overall implant optimization method other 

than correcting the implant FE axis by prominently changing the position of the trochlea, 

shortening of the stem length was highly recommended, by moving the two ends of stem 

toward each other, in order to provide a better alignment. In the customized implant 

design method, the insertion axis was found to have a small angulation with the z 

direction normal to the cross sectional planes.  

It needs to be noted here that in a broad population, the morphological 

characteristics of bone cavities of the distal humerus are all over the place and fitting a 

unique and single shape of the implant into all the canals with minimum malalignment 

can be problematic. However, the fact that there are a number of ways that can correct the 

overall shape of the implant and modify it for more efficient insertion into the bone 

cavity, implies that although these methods were only evaluated on one sample bone, the 

mitigation of all the results for a broad population of the humerus is not a hard goal to 
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achieve. Therefore, a final optimized shape for the implant can be reached by applying 

these methods on more samples, capable of fitting in all the distal humerus canals while 

providing a reasonable malalignment comparing to the current shape of the implant. 
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Chapter 6  

6 Conclusion 

6.1 Overview 

The demand for joint replacement surgery is expected to gradually increase over the next 

years as a result of a growingly aging population. However, the long term success of 

these surgical procedures is critically dependent upon the familiarity of the surgeon with 

elbow anatomy, his/her experience with respect to the available options in terms of 

implant design as well as with his/her overall expertise with respect to implantation 

protocols [Sanchez-Sotelo, 2011]. Since improper implant insertions often lead to failure 

of the prosthetic components which in turn translate into costly revision surgeries, 

accurate implant design and positioning represents an issue of paramount importance in 

surgical joint replacement procedures. As such, careful preoperative planning becomes a 

key element to ensure their success, from both patient and health care provider 

perspectives.  

The work presented in this thesis provides orthopedic surgeons with tools meant 

to enable them to better plan an upcoming elbow joint replacement surgery. To address 

this, a number of original computational techniques have been developed to determine 

the “insertability” of a certain implant design, to identify adequate insertion trajectories 

for specific implant/endosteal canal geometries or to propose patient-specific implant 

shapes capable to ensure superior replicas of the native kinematics of the articulation. 

Similar to the many other economic sectors which have benefited tremendously in the 

recent years from the advent of computer-assisted technologies, it is believed that the 
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implementation of such advanced computational/simulation tools in the current clinical 

practice could potentially translate into significant cost reductions for the health care 

system. These systems are relatively inexpensive compared to the overall costs associated 

with initial and revision surgeries and being exclusively in a preoperative manner – and 

typically outside of the operating room – they would pose a relatively small risk to the 

patient. Also,  

This study is virtually divided into two different sections characterized by distinct 

approaches. The first section is primarily concerned with the assessment of the 

insertability in the context of a specific geometric combination between implant and 

endosteal canal. By contrast, the second part of the study has slightly reversed the 

definition of the problem in a sense that implant geometry was treated as unknown in an 

attempt to find means to determine an implant shape that would ensure the least amount 

of malalignment for a patient-specific canal configuration. This latter idea is rather inline 

with a growing trend in the medical field arguing that the present “one size fits all” 

approach taken regardless if with respect to medication or orthopaedic implants is clearly 

not an optimal therapeutic strategy. 

For computer-assisted joint replacement surgeries, accurate representation of the 

endosteal cavity represents a mandatory and preliminary step towards adequate implant 

positioning since its stem needs to be immobilized into a bed of dense cortical bone to 

provide a maximized mechanical stability to the implant. A two-step approach was used 

for the first section of the study. During the first step, an accurate parametric-based 

representation of the humerus geometry was reconstructed from patient-specific CT scans 

and then the theoretical location of the native flexion-extension axis of the elbow was 
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determined by means of automatic curvature detection methods performed on capitellum 

and trochlea geometries. The core of the automatic reverse engineering of the bone shape 

consists of a global B-Spline fitting procedure based on control polygon deformation 

performed in such a way to ensure a minimal deviation between the fitted curve and 

given CT data set. In order to verify the accuracy of the proposed bone reconstruction 

methodology, the generated parametric representation was validated against a control 

dataset acquired through CMM-based measurements performed on the outer surface of 

the bone. Once the reconstruction of the osseous geometry was accomplished for the 

analyzed distal humerus, an in-depth analysis of their local curvature patterns was 

performed to identify the geometric centers of capitellar and trochear landmarks involved 

in FE axis definition. A three-specimen validation of the proposed approach against a 

conventional voxel-based determination revealed that their outcomes are reasonably 

comparable. 

The second developmental step of the initial section of the thesis was focused on 

devising a numerical method capable to predict whether a particular straight stem design 

can be inserted to an acceptable level into a particular endosteal canal of a distal humerus 

and if so, what would be the final malalignment to be expected between the native and 

prothetic FE axes. The developed numerical technique, primarily relying on genetic 

algorithm, was capable to establish the final implant posture based on collision 

detection/avoidance criteria set with respect to the two objects, all in the context of a 

targeted minimal malalignment between the FE axes of implant and bone. The numerical 

outcome of this technique was then compared to a previously devised experimental setup 

involving navigated implantation and the results obtained for nine different humeral 
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specimens have indicated that the precision of the developed insertion algorithm is 

comparable to that obtained through the experimental setup. The fact that no further 

reductions in the malalignment levels obtained through computational approaches was 

possible suggested that: i) the precision of the present manual insertion approaches is 

comparable to that yielded through automated methods and ii) lower implant 

malalignments can only be obtained if design changes are brought to the implant shape. 

However, by contrast with navigated implantation methods which are not yet easily 

transferrable to the operating room to the variety of invasive tracking devices required for 

registration purposes, the developed 3D simulation of an upcoming implant insertion 

procedure can be previewed by surgeons in context of patient-specific bone data.  

The idea of optimal implant design was taken further in the last section of study in 

which all previously developed numerical techniques have been employed to propose a 

geometry that will ensure a minimal (possible zero) malalignment with the native FE axis 

but without sacrificing much (if any) of the stem length. While the obvious solution in 

case of an inadequate alignment between natural and prosthetic FE axes is represented by 

total or partial stem abutment, this constitutes in fact an undesirable path to be taken since 

it will decrease the contact interface between implant and bone and thereby worsens the 

long term outcome of the surgical joint arthroplasty procedure. The four different 

optimization approaches tested revealed that a broad variety of optimal solutions can be 

identified. Ultimately, the absolute best implant design for a certain patient will be the 

one that warrants a zero malalignment between native and prosthetic FE axes. However, 

since this might not necessarily be a cost-effective solution, the question will practically 

revert to the amount of modifications that could be brought to the current implant shape 
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and Chapter 5 has indicated that different optimums will be obtained if only the stem 

orientation, spool size and/or both of them will be allowed to change. 

6.2 Limitations 

Like many other studies in the field, the work presented in this thesis is neither annulled 

by unrealistic assumptions nor limitations-free. Although the results of the numerical 

algorithms developed can be warranted in terms of correctness and accuracy, there are a 

number of errors that can be anticipated to affect to a certain degree the overall precision 

of the developed techniques. Most of these errors are commonly encountered in reverse 

engineering processes involving reconstructions of the physical objects and are caused by 

the inherent imprecision of the approaches used to collect and then to process the scanned 

data.  

In terms of CT data acquisition, the low intensity of the beam used for clinical 

purposes – which was used for all scans performed reported in this study – is known to 

introduce relatively large amounts of noise that typically prevent accurate segmentation 

of the bone contours. While arguably, more advanced/accurate scanning techniques could 

have been used – such as microCT - the amount of radiation involved in this case would 

have likely diminished the clinical relevance of the results. It is also logical to postulate 

that possible extrapolations of the developed techniques to patients will have to account 

for the difficulties associated with extraction of the relevant geometry from larger amount 

of data collected, an issue which was not present in the context of this work which relied 

exclusively on cadaveric specimens. All humeral samples were scanned by means of a 

special jig meant to ensure a certain degree of collinearity between the axis of the scanner 
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and that of the humeral shaft. However, since this particular and desirable orientation of 

the specimen with respect to the beam direction is difficult to obtain for a patient whose 

upper arms will be scanned in a different orientation. Furthermore, the inherent discrete 

nature of the voxelized data collected with the CT scanner combined with resolution (e.g. 

mm/pixel) of the images constituting the initial input into the reverse engineering process 

will contribute to further error buildup.  

With respect to data processing, it is reasonable to expect that the tolerances used 

to control the accuracy of the B-Spline fitting process are another likely source of error 

affecting the precision of the digital model of the bone that in turn will translate in slight 

variations of the FE axis location whose end points are in fact dependent on outer bone 

contours. Evidently, the fitting precision can be increased by means of tighter fitting 

tolerances, but this will inevitably translate in more control points and thereby more 

undulations on the curve – especially for inner contour – possibly leading to unacceptable 

singularities in terms of radius of curvature of the curve. 

Despite of all these errors, the validations performed against CMM data – 

presumably of high accuracy – have revealed fairly low differences in terms of outer 

bone geometry even when considering various sources of registration errors between the 

two datasets. However, although there are few reasons to believe that the accuracy of the 

inner contour would be different than the one measured for the outer contour, direct 

contact measurements – which is difficult to perform on convoluted and deep geometries 

such as that of the endosteal canal – would represent a more trustworthy verification. 

Along the same line of thoughts, the accuracy of the subsequent validations performed 

against navigated implantation methods could be challenged given that these methods are 
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affected by their own inherent imprecision. However, until comparison data acquired 

through different techniques will become available, the present study has revealed that 

comparable results can be expected through dissimilar methods.  

6.3 Future Direction 

As emphasized throughout the thesis, the position of the humeral implant into the 

humeral cavity represents one of the determining factors for the magnitude of the 

malalignment and the developed computational techniques are not only capable to predict 

its final value, but also the overall insertion trajectory. While – other than the associated 

inconveniences associated with trial and error procedures – the surgeon will almost 

always capable to identify an insertion path, its prior knowledge will become of particular 

importance in the context of future robotic-assisted surgeries in which this information 

will have to be conveyed in details to the main controller.  

 Another possible future extension of the current work would involve the 

extension of the developed algorithms to other optimal design geometries, possibly 

involving curved rather than straight stems, as well as different cross sectional shapes. 

While all techniques presented in this thesis have exclusively relied on straight and 

rectangular stems, they could be reconsidered from a different implant design 

perspective. With respect to the straight stems, one of the most interesting avenues that 

would not require extensive efforts would involve the application of the developed 

techniques to a much broader population, especially since the reasoning behind the 

current implant design is either inexistent or covered by proprietary and thereby 

confidential information.   
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Although for the purpose of this thesis, all computational methods were assumed 

to be useful primarily from a preoperative planning procedure, it could be inferred that 

their coupling with navigated implantation would convert them into more complex 

simulation packages to be also used also in an intraoperative environment. However, 

regardless if used in an pre or intra-operative manner, better simulation capabilities 

would likely increase the proficiency of both novice and experienced surgeons, especially 

if included in their training programs. Evidently, prior to any possible extensions towards 

clinical applications further validations of the techniques will have to be performed. 

Finally, one of the most interesting directions to be pursued in the future would be 

the extension of these techniques to other upper or lower articulations. While the 

exclusive focus of the current thesis on the elbow is fully justifiable by means of its 

complexity, the other joints are also interesting, especially due to their higher incidences.  

To conclude, the work presented in this thesis proposes a comprehensive platform 

capable to predict, simulate and validate the insertion of the implant stem into the 

endosteal canal of the humerus. Unlike most previously developed methods addressing 

similar topics and typically relying on relying on oversimplified insertion 

trajectories/implant designs, the algorithms developed in this thesis are capable to 

enhance surgeon’s confidence as well as precision with respect to joint replacement 

procedures. Owed to their versatility, these computer-assisted tools are expected to 

become in the future one of the essential components of surgeon’s armamentarium, 

regardless if used in the context of “virtual previews” of an upcoming surgery or the one 

related to validation of the customized implant designs. 
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