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Abstract 

The relationship between American ginseng immunostimulatory and immunoinhibitory 

effects and the unique bioactive fractions of its different extracts namely aqueous (AQ) and 

alcoholic (ALC) extracts was investigated. AQ extract up-regulated the production of nitric 

oxide (NO), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), while ALC extract 

did not upregulate macrophage function. ALC extract but not AQ extract suppressed 

lipopolysaccharide (LPS) induced macrophage NO and TNF-α production. Macrophage-

stimulating activity of the AQ extract was inhibited in the presence of ALC extract. 

Fractionation of AQ extract revealed that its crude polysaccharides (PS) are the only 

immunostimulatory phytochemical. Fractionation study of ALC extract showed that its 

macromolecule and ginsenoside fractions contribute to the extract’s immunoinhibitory effect. 

ALC extract which was devoid of PS, was immunoinhibitory whereas the AQ extract which 

contained PS, was immunostimulatory. These effects may be considered as the paradoxical 

immunomodulatory actions of ginseng.  

Recent studies suggest that ginseng PS also suppress induced proinflammatory responses.  

Investigation was performed ex vivo and in vivo to determine whether American ginseng 

roots polysaccharides (AGRPS) stimulates basal innate immune function and at the same 

time can suppress LPS proinflammatory response. An in vitro mechanistic study was used to 

identify the fractions responsible for AGRPS immunobioactivities. Orally administered 

AGRPS exerted immunostimulation and suppressed LPS immune response under basal and 

LPS proinflammatory conditions ex vivo and in vivo. Similar AGRPS immunostimulatory 

and immunouppressive effects were observed in vitro, and these AGRPS immunodulatory 

effects were mediated primarily by acid PS and its species with molecular weights ≥100 kDa 
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and 50 - 100 kDa. 

The intestinal absorption of orally administered immunomodulatory AGRPS is yet to be 

ascertained. Absence of a method to analyze ginseng PS created the need for a novel method 

to investigate the intestinal absorption of orally administered unlabeled AGRPS into systemic 

circulation. Perchloric acid-protein precipitation of plasma and high performance size 

exclusion chromatography (HPSEC) with right angle light scattering detection was used as 

novel approach to analyze AGRPS in plasma of rats after oral administration of AGRPS. 

Outcome of this study indicates that orally administered immunomodulatory AGRPS is 

absorbed from the gastrointestinal tract into systemic circulation. 

Keywords: American ginseng, aqueous extract, alcoholic extract, phytochemical, 

polysaccharides, macromolecules, immunostimulation, suppression of LPS induced 

immunologic response, ex vivo, in vivo, in vitro, gastrointestinal tract absorption, plasma 

analysis, systemic circulation.   
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1.  Introduction 

1.1 Medicinal Plants 

1.1.1 The Use of Medicinal Plants in Traditional Medicine 

Our experience with medicinal plants can be traced back to biblical times as described in the 

book of Ezekiel chapter 44 verse 12 which states ‘and the leaf thereof for medicine’ [1]. Since 

ancient times mankind has utilized the properties of plants not just for food and shelter, but also 

for health and well-being’ [2]. Early empirical observations served as the basis for the use of 

plants as prophylactic and therapeutic agents in herbal medicine [3]. Traditional medicine can be 

described as the combination of knowledge and practice used for diagnosing, preventing, or 

curing disease which relies exclusively on past experience and observation handed from 

generation to generation, verbally or in writing [4]. Traditional medicine (TM) covers a wide 

variety of medicinal plants and their concoctions which vary from country to country and region 

to region. Practice of herbal medicine is often referred to as "complementary" or "alternative" 

medicine (CAM) in some countries. Since the 1990s its use has surged in many developed and 

developing countries as Eastern and Western medicines intersect [5].  

Traditional Chinese, East Indian Ayurveda, Native American and African medicine are examples 

of different systems of traditional medicine, with the philosophy and practices of each being 

influenced by the prevailing diseases, environments for plant growth, and geographic areas 

within which they first evolved. Generally, in each of these regions, a common philosophy 

evolved with a holistic approach to life, i.e. equilibrium of the mind, body, and the environment, 

and an emphasis on health rather than on disease [3-4, 6-9].  
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The use of medicinal plants is a central part of all these systems of traditional medicine in which 

a restoration of health, rather than on treating a particular ailment or disease from which the 

patient is suffering is usually the main goal [8-9]. 

A medicinal plant (herb) is any plant which, in one or more of its organs or parts (e.g. leaf, 

flower, fruit, seed, stem, wood, bark, root, rhizome, juice, gum, fixed oil, resin) contains a 

variety of substances that can be used for therapeutic purposes or which are precursors for the 

synthesis of useful drugs [4].   

Scientists from academic institutions and industrial firms have turned to plants as a source of 

either new drugs or of compounds from which more efficacious or less toxic drugs can be 

developed based on their long-standing use in traditional medicine [10]. The World Health 

Organization (WHO) has estimated that 80% of the world’s rural population relies on TM’s use 

of plant extracts or their active principles for their primary health care needs. Despite tremendous 

progress in synthetic chemistry, some 25% of prescription medicines are still derived either 

directly or indirectly from plants [2, 11-12].  

A 2010 survey shows that 73% of Canadians regularly take natural health products (NHPs), 

Health Canada defines NHPs as: vitamins and minerals, herbal remedies, homeopathic 

medicines, traditional medicines such as traditional Chinese medicines, probiotics, or other 

products like amino acids and essential fatty acids. NHPs must be safe to use as over-the-counter 

products and do not require a prescription to be sold [13].  
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1.1.2 The Use of Medicinal Plants in Drug Discovery  

Of the 252 drugs considered as basic and essential by the WHO, 11% are exclusively of plant 

origin and a significant number are synthetic drugs obtained from natural precursors [14]. 

Examples of important drugs obtained from plants are taxol which is isolated from Taxus (T. 

brevifolia and T. bacata), artemisinin from Artemisia annua, digoxin from Digitalis spp., quinine 

and quinidine from Cinchona spp., vincristrine and vinblastine from Catharanthus roseus, 

atropine from Atropa belladonna and morphine and codeine from Papaver somniferum [2]. 

About 6% of higher plant species (angiosperms and gymnosperms) have been screened for 

biological activity and 15% of them have been reported to be phytochemically active [14]. Since 

only 5–15% of the higher plants have been systematically investigated for the presence of 

bioactive compounds, nature’s biodiversity remains largely unexplored [15].  

Different approaches to drug discovery using higher plants include: chemical screening, 

biological assays, biological activity reports (e.g., ecology based), or ethnomedical (traditional 

medicine) use of plants [10]. A diversified approach to drug discovery involves the observation, 

description, and experimental investigation of indigenous medicinal plants and their biological 

activities. It is based on botany, chemistry, biochemistry, pharmacology, and many other 

disciplines that contribute to the discovery of natural products that are pharmacologically active 

[16]. Of the more than 120 pure drugs derived from plants in current commercial use, three 

quarters were discovered through scientific investigations of traditional uses [17]. Phytochemical 

and biological characterization of plants used in traditional herbal medicine is an important tool 

in the scientific research of potential medicinal agents which can be used for the prevention, risk 

reduction and treatment of human diseases [18]. 
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The goals of using plants as sources of therapeutic agents are to: a) isolate bioactive compounds 

for use as drugs; b) produce bioactive compounds that can be used for synthesis to produce 

entities of higher activity and/or lower toxicity, c) use agents as pharmacologic tools and d) use 

the whole plant or part of it as a herbal medicine [16].  

Interest in drugs of plant origin is due to several reasons, namely, conventional medicine can be 

inefficient (e.g. side effects and ineffective therapy), incorrect use of synthetic drugs results in 

side effects and other problems, a large percentage of the world’s population does not have 

access to conventional pharmacological treatment, and NHPs are considered harmless [2].  

Phytomedicines exists as extracts which are concentrated preparations of a liquid, powdered, or 

viscous consistency that are ordinarily made from dried plant parts (the crude drug) by 

maceration or percolation [19].  

1.1.3 Quality, Safety and Efficacy of Herbal Products from Medicinal Plants 

As the world’s market demand for herbal products from medicinal plants increases, quality 

control is of critical necessity to ensure that they are of consistent composition (quality), safety, 

and efficacy. Medicinal plants do not supply its phytochemicals with a consistent, composition, 

and unlike chemical drugs with a single entity, they contain multiple components. Factors such 

as soil, climate, species, age, geographical origin, cultivation method, processing (harvesting, 

storage, and manufacturing techniques), and contamination (pesticide, microbial and heavy 

metal) can affect the composition, safety, and efficacy of medicinal plants and their NHPs [19-

20]. When species are harvested from wild plant populations, collectors may inadvertently 

confuse desired species with close relatives, or even with unrelated species that are superficially 

similar in appearance. There may also be deliberate substitution of alternate species that are 
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difficult to differentiate, especially when the financial incentive is great [21].  

The use of good agricultural practice (GAP) and good manufacturing practice (GMP) is 

encouraged by health regulatory agencies to ensure consistent quality from the point of 

cultivation and harvesting of medicinal plants until the stage of processing and final delivery of 

the NHPs [22]. The WHO has published general guidelines for GMP procedures which can be 

employed for the manufacture of plant derived herbal products involving; the raw material 

production, botanical taxonomic identification to assure species identification; the processing 

and manufacturing stage, and analytical procedures similar to those employed for the 

manufacture of conventional drugs to assure quality and purity by appropriate protocols [23-25]. 

Ensuring quality can be controlled in part by removing plant material that does not meet strict 

quality standards and limiting further processing of plants that are not sufficiently consistent in 

their relevant constituents. Thus, quality control of plant derived NHPs begin with the selection 

and mixing of the herbal raw materials [19].  

A major challenge when using herbal products is being able to consistently formulate a product 

via the identification of a particular “marker compound” which is believed to be responsible for 

the physiological effect [26]. A reported study on selected commercial ginseng products 

prepared from Panax ginseng and Panax quinquefolius marketed as botanical supplements in 

North America in the 1995-1998 period showed that the ginsenoside contents of P. ginseng and 

P. quinquefolius products ranged from 0.00% to 13.54% and from 0.009% to 8.00%, 

respectively, and close to 26% of these products did not meet label claims [27-28]. 

The percentage of a particular marker for a particular plant derived NHPs varies from product to 

product, and in some cases batch to batch from the same company [26]. Often these marker 



 

7 

 

compounds are chemicals that are merely characteristic components of the herb in question and 

may not have been tested for their actions or therapeutic efficacy in pharmacologic test models 

or in clinical studies. Chemical characterization (extraction, fractionation, purification and 

structural identification) are only meaningful when the purified and identified marker 

compounds (fractions) have the same or similar biological activity as the plant or its extract [18]. 

Proper in vitro and in vivo assay methods need to be established for each step of the fractionation 

and purification process [29]. Only those with sufficient activity should be used for further 

purification. 

The presence of multiple active compounds in herbal products can provide either synergistic or 

antagonistic effects that may not be achievable by any single-component. These complex 

interactions can present a unique challenge for bioactivity-guided fractionation, because the 

relative activity of fractions may decrease with greater purity and may even be lost entirely [8]. 

The activity of the individual active components of botanicals can be assessed by recombining 

the fractions after separation followed by confirmation of biological activity [29]. Consistency of 

botanical therapeutic products can only be achieved when the active marker compounds are 

identified and their biological activities verified.  
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   Figure 1.1 - Summarized Scientific Approach of Evaluating Herbs and Herbal products [30]. 
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Quality control of plant derived NHPs involve finger printing of phytochemical markers to 

ensure consistency in quality, safety and efficacy for consumers. Depending on the technology 

and solvent used, chromatographic and spectrometric techniques can generate chemical 

chromatographs and spectra that characterize the multicomponent active principle as uniquely as 

a fingerprint. Phytochemical fingerprinting of test samples with authentic reference standards is a 

fundamental quality control step for ensuring consistency.  This is particularly true when little is 

known about the relation of these constituents to actions and efficacies or about the 

quantitative/qualitative makeup of the remaining components [19].  

The initial challenge in the quality control process is isolating and analyzing medicinal plants 

and their NHPs due to the complexity of their sample matrices and the presence of multiple 

phytochemical components. Isolation of active constituents from medicinal plants serves as a 

means by which constituents can be processed into safe medicinal products tailored towards 

obtaining a quality product that has a consistent, uniform composition [31]. The nature of the 

solvent and of the extraction and drying processes critically affects the phytochemical 

composition of the finished product. Polar compounds are soluble in water, while lipophilic 

constituents are soluble in alcohol. For example an aqueous extract of medicinal plant such as 

ginseng will have a different spectrum of ingredients than an extract that has been isolated using 

ethanol [19]. 

Novel technologies are required for separating and isolating these phytochemicals before they 

are characterized using physicochemical techniques. A high quality chemical library of reference 

standards is vital for research in the structure-activity relationship, and investigation of the 

mechanism of NHPs [14, 18]. Some reference compounds are commercially available, such as 

ginsenosides, but their high cost and limited supply make many studies challenging [32]. In 
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addition, insufficient availability of phytochemical reference standards such as ginseng 

polysaccharides adds another level of difficulty and challenge to evaluate these components from 

medicinal plants. Chromatographic or spectral phytochemical characterization is used and 

accepted worldwide for the evaluation of medicinal plants and their NHPs. This fingerprinting 

enables the detection and quantitation of desired markers present and for the assessment of the 

pattern of the phytochemicals [19].  

There is also a belief that plant derived NHPs are inherently safe without side effects when 

properly used at normal therapeutic doses. However, these NHPs may also have undesirable side 

effects and herb–drug or herb–herb interactions are possible [8]. Where safety information is 

lacking on any medicinal plants being contemplated for NHPs, relevant research must be 

performed prior to its employment [20]. The WHO has established guidelines for such studies 

[33].  Adverse events, including drug-herb interaction must also be monitored to promote a safe 

integration of efficacious herbal medicine into conventional medical practices [20]. Hence there 

is a need to screen medicinal plants such as ginseng to identify novel bioactives for the 

promotion of human health.  

1.2 Ginseng   

The name ginseng comes from the Chinese words ‘‘Jen Sheng,’’ meaning ‘‘man-herb,’’ because 

of the humanoid shape of the root or rhizome of the plant, which is the part of the plant most 

commonly used for extraction. The ginseng plant is a deciduous perennial belonging to the 

Family Araliaceae and genus Panax. The genus name of ginseng "Panax" is derived from the 

Greek pan (all) akos (cure), meaning "cure-all" or ‘‘all healing,’’ which describes the traditional 

belief that ginseng has properties to heal all aspects of the body [34-37]. There are about thirteen 
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different species of ginseng which have being identified all over the world. The most commonly 

used species of ginseng are P. ginseng (Asian ginseng) and P. quinquefolius (American ginseng). 

P. ginseng has been used in the Orient for thousands of years, while P. quinquefolius has been 

used by Native Americans for at least hundreds of years [9, 34-44].  

In 1714 while at St Louise, Canada (near Montreal), Father Lafitau stumbled across ginseng 

growing at the site of a new house with an appearance that accurately fit the ginseng roots Father 

Jartoux (French Jesuit missionary) described to him in a letter in 1709 from China [36]. 

American ginseng was first introduced in the “New Compilation of Materia Medica” in 1757. 

There are three kinds of American ginseng namely; cultivated, simulated wild, and wild. 

American ginseng is also cultivated in some Asian countries, like China. As a perennial herb, 

most wild populations of American ginseng thrive in the upland, north and east-facing woods 

where shade and loamy soils are typical [40]. American ginseng has been harvested in North 

America primarily for export to Asia since the 1700s and is highly valued for its medicinal and 

herbal use [41]. The quantity of wild ginseng was not sufficient to meet the demand, so 

experiments on cultivation were undertaken in 1878 and was achieved in Fabius, New York by 

George Stanton, a retired tinsmith turned to farmer. Cultivation of Panax ginseng in Asia started 

around 11 B.C. by transplantation of wild ginseng. In 1122 A.D., ginseng cultivation was also 

attempted through the propagation of transplanted ginseng from seeds [36]. American ginseng is 

distributed in the eastern temperate forest areas of North America; Ontario and Quebec in 

Canada, Minnesota, Wisconsin, Oklahoma and Georgia in the United States of America [40].  

Ginseng is prepared and used in several ways: as fresh ginseng (sliced and eaten, or brewed in a 

tea), white ginseng (peeled and dried), red ginseng (peeled, steamed, and dried), extract (tincture 

or boiled extract), powder, tea, tablet or capsule [35-36]. According to Traditional Chinese 
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Medicine (TCM), Asian ginseng is believed to have a ‘warm’ or ‘yang’ property, while 

American ginseng has a ‘cool’ or ‘ying’ characteristic [37]. Ginseng products are often referred 

to as “tonics,” a term that has been replaced by “adaptogen”. The term “adaptogen” can be 

defined as an agent that increases resistance to physical, chemical, and biological stress and 

builds up general vitality, including the physical and mental capacity for work [43]. Ginseng root 

is used as a medicinal plant in traditional herbal medicine to improve overall health, restore the 

body to balance, help the body to heal itself, and to reduce stress [37, 44].  

Ginseng’s broad spectrum of biological activity has been attributed to its multiple bioactive 

components namely ginsenosides, polysaccharides, peptides, polyacetylenic alcohols, and fatty 

acids. These known active phytochemicals are present in most ginseng species, although there 

can be slight variation in different species [39, 44].  Scientific studies have shown that ginseng 

exhibits a wide range of beneficial pharmacological effects including immunomodulation, anti-

tumor, anti-oxidation, anti-depression, hypoglycemia, inhibition of gastric lesions, attenuation of 

leptin-induced cardiac hypertrophy, heart protection against ischemia and reperfusion injury, 

prevention of glucose-induced oxidative stress, prevention of diabetic nephropathy, retinopathy 

and cardiomyopathy [38, 41, 45-59].  

1.2.1 Ginseng Bioactives 

1.2.1.1 Ginsenosides 

Ginsenosides belong to a family of steroids with a four trans-ring rigid steroid skeleton that 

shares a unique triterpenoid saponin structure of the dammarane type (Figure 1.2). More than 

100 different ginsenosides have been isolated from the roots, leaves, stems, flower buds, and 

berries of Asian and American ginseng which exhibit considerable structural variation [40]. 
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Ginsenosides differ from one another by the type of sugar moieties, sugar number, and site of 

sugar attachment at positions C-3, C-6, or C-20. The structural isomerism and stereoisomerism, 

the number and site of attachment of hydroxyl groups, and available modified side chain at C-20 

also increase their diversity.  Ginsenosides from ginseng are divided into several groups. 

Protopanaxadiol (PPD) and protopanaxatriol (PPT) groups are the main constituents; while 

ocotillol and oleanane groups are minor ones [37, 39-40]. The PPD group has sugar moieties 

attached to the β-OH at C-3 and/or C-20, and the PPT group has sugar moieties attached to the α-

OH at C-6 and/or β-OH at C-20. The ocotillol group has a five- membered epoxy ring at C-20, 

and the oleanane group has a modified C-20 side chain [40]. Ginsenoside Rb1, Re, Rd, Rc, Rg1, 

and Rb3 are the six major saponins in American ginseng, and the variability in individual 

ginsenosides and total ginsenoside amount in different commercial products of American 

ginseng may be responsible for different or even opposing reported pharmacological activities, 

which is in part associated with natural variations such as climate, geographical location and 

cultivation length conditions [40]. Quality control of ginseng products will ensure consistency in 

quality, safety and efficacy for consumers. Ginseng extracts (aqueous and alcoholic) contain 

relative variable amount of ginsenoside components [54]. Ginsenosides have been reported to 

exert numerous pharmacological activities including immunomodulatory, anti-oxidant, anti-

inflammatory, anti-cancer, anti-obese and anti-diabetic effects [60-62]. 

 

 



 

14 

 

 

 

Figure 1.2 - Chemical Structures of Panaxadiol ginsenosides [39].  
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Figure 1.3 - Chemical Structures of Panaxatriol ginsenosides and Oleanic acid (nonsteroidal 

saponin) [39]. 
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1.2.1.2 Polysaccharides 

Plant polysaccharides are biopolymers of various monosaccharides linked together through 

glycosidic bonds, resulting in complex structures. Plants polysaccharides are usually isolated by 

hot water extraction of the plant material, after which they are purified and precipitated with 

alcohol from the water extract [63]. It is noteworthy that, in comparison with other biopolymers 

such as proteins and nucleic acids, polysaccharides offer the highest capacity for carrying 

biological information because they have the greatest potential for structural variability [64]. 

Scientific studies have demonstrated that plant polysaccharides such as water-soluble 

polysaccharides used in NHPs are non-toxic and exhibit a number of beneficial biological 

activities, including immunostimulation, anti-tumor, wound-healing, hematopoietic, 

radioprotective, anti-ulceric and anti-atherosclerotic effects [65-66]. 

Ginseng polysaccharides are biopolymers formed from a complex chain of monosaccharides rich 

in L-arabinose, D-galactose, L-rhamnose, D-galacturonic acid, D-glucuronic acid and D-

galactosyl residue linked together through glycosidic bonds, resulting in complex 

macromolecular architectures [46, 63, 67]. Their molecular weights range from 3500 to 

2,000,000 Da [47, 67-72] which contribute to their diverse physicochemical properties and 

biological activities. CVT-E002™ (sold commercially as COLD-FX
®
) is a herbal product rich in 

poly-furanosyl-pyranosyl-saccharides extracted by an aqueous method from the root of 

American ginseng as described in its patent [67-68]. The process of preparing ginseng fraction 

CVT-E002 comprises: combining American ginseng dried ground root with a first solvent 

comprising an alcohol in a proportion of about 7 to 9 ml of first solvent per gram of ginseng. The 

resulting solution is then heated at a temperature of about 80 to 100° C for a time period of about 

2 to 4 hours, to produce a first ginseng solution.  
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Figure 1.4 - Chemical Structure of Ginseng Polysaccharides [69].  
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Thereafter, the first ginseng solution is separated to produce an alcohol/ginseng solution and a 

first ginseng residue. Thereafter, the first ginseng residue is combined with water in a proportion 

of about 7 to 9 ml of water per gram of ginseng residue. The ginseng residue solution is then 

heated at a temperature of about 80 to 100° C for a time period of about 2 to 4 hours, to produce 

a ginseng residue solution. Thereafter, the ginseng residue solution is separated to produce a 

second ginseng residue and an aqueous extract solution containing a ginseng extract. The 

aqueous extract solution is then dried to produce ginseng fraction CVT-E002 [68].  

1.3 Immunomodulation 

The immune response of a host is its key defense and surveillance system capable of eradicating 

invading infectious microorganisms (bacteria, fungi, virus, and protozoa) and maintains 

homeostasis required for a normal healthy condition. The immune system is divided into the 

innate and adaptive (specific) immunity which can distinguish between foreign pathogenic 

micro-organisms and the body’s cells and tissues via surface cell receptors that can recognize 

toxic surface pathogen-associated molecular patterns (e.g. lipopolysaccharides of Gram negative 

bacteria) as foreign [73]. Components of the innate immunity are macrophages, natural killer 

cells (NK-cells), dendritic cells (DC), granulocytes (neutrophils, basophils, eosinophils), 

proinflammatory mediators e.g. cytokines (tumor necrosis factor, interleukins), reactive oxygen 

/nitrogen species (e.g. nitric oxide) and prostanoids (e.g. prostaglandins). While that of the 

adaptive (acquired or specific) immunity include T lymphocytes, B lymphocytes and antibodies 

[74].  

Compounds that are capable of interacting with the immune system to up-regulate or down-

regulate specific aspects of the host immune response can be classified as immunomodulators or 
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biologic response modifiers [75]. A broad spectrum of such compounds are still being 

investigated and characterized. Biopolymers like plant polysaccharides which have long been 

believed to have benign biologic properties, have recently been shown to act as biological 

response modifiers. They can either up-regulate or down-regulate specific aspects of biological 

responses of the host [65-66]. A current significant problem is the rise of microbial infections 

and their resistance to synthetic antimicrobial agents and naturally derived antibiotics. Unlike the 

use of antibiotics and antimicrobials to kill pathogens, a key immunotherapeutic strategy to 

address this challenge will be to identify bioactive agents which can interact with the host 

immune response defense to enhance its ability to fight diseases and infections or neutralize 

immunotoxic response.  

1.3.1 Macrophage-mediated Innate Immunity 

Macrophages, first described by Metchnikoff in the 1880s, are large mononuclear phagocytic 

cells, which are derived from monocytes which originate from haematopoietic stem cells in the 

bone marrow. Monocytes differentiate further into macrophages as they leave the blood and 

enter the tissue. In tissues, a small number of macrophages differentiate under the influence of 

cytokines and, depending on the tissue type, they may become osteoclasts (bone), kupffer cells 

(liver), microglia (brain),  alveolar macrophages (lung) and peritoneal macrophages (peritoneum) 

[76]. Fast acting macrophage-mediated innate immunity is the first line of defense in identifying, 

neutralizing, destroying and removing microbial pathogens and influencing the subsequent slow 

adaptive immune response. Macrophages act by means of a number of different mechanisms: (a) 

directly via phagocytosis by destroying bacteria, parasites, viruses and tumor cells; (b) indirectly 

via the secretion of proinflammatory mediators (e.g. tumor necrosis factor-alpha [TNF-α]) which 
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can activate other cells; (c) as accessory cells, by processing antigen and presenting digested 

peptides to T lymphocytes; and (d) by repairing tissue damage [65, 77].  

The pathogen-associated molecular patterns (PAMPs) of pathogens (bacteria to fungi, protozoa, 

and viruses) are the targets of innate immune recognition with the help of their pattern 

recognition receptors (PRRs) which can distinguish between self (host) and pathogens via their 

PAMPs [78]. During activation of macrophage function by plant polysaccharides or 

lipopolysaccharide (LPS) endotoxin (a PAMP) from microbial infection caused by Gram 

negative bacteria, plant polysaccharides or LPS ligand binds to the transmembrane PRRs such as 

Toll-like receptors (TLRs) of innate macrophage cells which induce down-stream intracellular 

events [79]. As seen in Figure 1.5, the recognition and binding of plant polysaccharides or LPS 

ligand by Toll-like receptor 4 (TLR-4) leads to the recruitment of various cytoplasmic TIR 

(Toll/IL-1 receptor) domain-containing adaptors such as MyD88 (myeloid differentiation factor 

88), TIRAP (TIR domain-containing adaptor protein) and TRAM (TRIF-related adaptor 

molecule) [80]. MyD88 recruits IRAKs (interleukin-1 receptor-associated kinases) which then 

activates TRAF6 (TNF receptor associated factor 6), leading to the activation of TAK1 

(transforming growth factor-beta activated kinase 1). At the point of TAK1 activation, the 

signaling pathway bifurcates. One limb of the pathway leads to TAK1 activating the IKK 

(inhibitory kappa kinase) complex which phosphorylates and degrades IκB, resulting in the 

release and translocation of NF-κB (nuclear factor kappa B) transcription factor from the 

cytoplasm into the nucleus. Activated NF-κB binds to the promoters of diverse proinflammatory 

mediators including TNF-α, interleukin-6 (IL-6), and enzymes such as iNOS (inducible nitric 

oxide synthase) and COX-2 (cyclooxygenase-2), thereby activating the transcription and 

expression of their genes [78, 81]. The other limb of the pathway activates one or more members 
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of the MAPK (mitogen-activated protein kinase) kinases such as p38, JNKs (Jun n-terminal 

kinases) and ERK1/2 (extracellular signal-regulated kinases 1/2), which leads to the activation of 

AP-1 (activator protein 1) transcription factor that induces the transcription of proinflammatory 

mediators [79, 80]. The expression of TNF-α, IL-6, iNOS and COX-2 induced by activated NF-

κB transcription factor results in the production of TNF-α, IL-6, nitric oxide (NO) and 

prostaglandin E2 (PGE2) respectively. NF-κB is highly activated in inflammatory disease 

conditions such as endotoxemia [82]. LPS induced macrophage overproduction of TNF-α, IL-6, 

NO and PGE2 have been shown to play critical roles in the pathological process of many 

inflammatory diseases, including endotoxemia and septic shock [83-90]. The presence of a large 

amount of LPS endotoxin in the bloodstream, as observed during severe gram-negative bacterial 

infections or as caused by translocation of enterobacteria from the gut, induces excessive 

macrophage stimulation with uncontrolled production of proinflammatory mediators and 

cytokines. This endotoxin is harmful and leads to endotoxemia with dramatic pathophysiological 

reactions such as fever, leukopenia, tachycardia, tachypnea (acute respiratory failure), 

hypotension, disseminated intravascular coagulation, myocardial dysfunction and multi-organ 

failure which ultimately results in endotoxic shock syndrome [91-98].  
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Figure 1.5 – LPS and Plant polysaccharides initiation of Innate Immune response via TLR-4 

Signaling pathway [78-81]. 
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LPS is a glycolipid that constitutes the major portion of the outermost membrane of Gram-

negative bacteria and is essential for bacterial growth and survival [97]. It is a complex, 

negatively charged molecule composed of a polysaccharide chain called the O-specific chain and 

a lipid moiety referred to as lipid A. The latter is the actual toxic moiety of the LPS molecule and 

contains phosphate groups shown to be essential for its immunostimulatory activity [98].        

The interaction of lipid A moiety of LPS with macrophages is important and subsequent cellular 

activation results in the release of systemically active proinflammatory molecules, which in turn 

mediates systemic toxicity. LPS is an extremely potent toxin: macrophages can be activated at 

concentrations of LPS as low as 1 pg/mL [97]. LPS endotoxin exerts its profound immunotoxic 

effects by stimulating host cells (mainly monocytes/ macrophages, but also endothelial cells, 

smooth muscle cells, and neutrophils) to produce and release proinflammatory mediators and 

cytokines (NO, IL-6 and TNF-α).  The presence of high amounts of LPS leads to the release of 

these proinflammatory mediators and cytokines in large quantities, resulting in the described 

pathophysiological reactions [91]. The suppression of LPS immunotoxic (anti-inflammatory) 

effects of various immunomodulation compounds have been evaluated using both in vitro and in 

vivo models [99-101]. The ability of an agent to inhibit LPS-induced macrophage overproduction 

of proinflammatory mediators is called an immunosuppressive (anti-inflammatory) effect, while 

the ability of an agent to stimulate or enhance macrophage production of proinflammatory 

mediators is called an immunostimulatory effect. Antibiotics capable of killing Gram negative 

bacteria are currently used in the management of endotoxin mediated inflammatory diseases, 

although the continued rise in antibiotic resistance and mortality from infections caused by these 

organisms has led to investigation of beneficial therapies aimed at inhibiting or neutralizing the 

toxic action of endotoxins including LPS. Polymyxin B, a molecule that binds tightly to LPS 
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endotoxins, has been investigated and found to neutralize many endotoxic activities (including 

lethality), and was more protective than antibodies to core LPS. Unfortunately, the neurotoxicity 

and nephrotoxicity of polymyxin B limits its potential as a therapeutic agent [102]. Hence a less 

toxic anti-LPS agent would be highly desirable as a therapeutic (prophylactic or curative) agent. 

Therapies directed at the neutralization of proinflammatory mediators or LPS that are promising 

in experimental models have been largely ineffective in clinical trials. Therefore, the 

development of new therapies is of major interest [103-105].  

1.3.2 Modulation of Macrophage Function as a Target for Immunotherapy 

The innate immunity (e.g. macrophage function) of a host which is responsive to LPS is also a 

known target for plant polysaccharides which are biological response modifiers. Plant 

polysaccharides can up-regulate macrophages production of proinflammatory mediators to fight 

infection, they can also neutralize or suppress immunotoxic response by down-regulating 

macrophage production of proinflammatory mediators [65, 75]. Bioactive compounds which can 

inhibit LPS endotoxin from triggering excess macrophage production of NO, TNF-α and IL-6 

proinflammatory mediators will be very useful in the prevention and treatment of inflammatory 

diseases such as endotoxemia. New approaches to the prophylaxis of diseases like endotoxemia 

can be based on comprehensive blockade of the LPS signaling pathways in macrophages. The 

immune response to LPS can take a number of different forms (immunostimulation and 

immunosuppression). Low doses of endotoxin have been known since the 1940s to induce a state 

of tolerance (desensitization), in which the immune response to subsequent LPS challenge is 

altered. This alteration is characterized by suppression of proinflammatory mediators and 

upregulation of anti-inflammatory mediators [106]. Mouse macrophages as well as human 

monocytes exposed to LPS have been reported to show an inability to respond to further LPS 
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challenge. The key readout for tolerance in these cells was the drastic reduction of TNFα 

production as compared to the cells exposed to LPS only once [107].  

Interestingly, bioactive polysaccharides have been shown to exhibit both macrophage-mediated 

immunostimulatory and suppression of induced proinflammatory effects [46, 65, and 108-109]. 

A possible mechanism by which plant polysaccharides suppress LPS-induced macrophage 

stimulatory effect may be through their ability to desensitize immune cells (e.g. macrophages) 

from LPS toxic stimulation, similar to the tolerance ability of LPS pre-exposure to desensitize 

subsequent LPS challenge. Bioactive polysaccharides can serve as useful prophylactic and 

therapeutic agents for immune and inflammatory diseases. The ability to neutralize LPS 

immunotoxicity is a desired requirement for future immunobioactive compounds that can be 

used as a prophylactic against endotoxemia. Ginseng polysaccharides may provide such 

immunobioactive compounds. Evaluation of an herb like ginseng provides an opportunity for the 

discovery of novel agents that can combat disease conditions mediated by LPS such as 

endotoxemia.  

1.3.3 Ginseng Modulation of Immune Function  

Different immunomodulatory effects of ginseng have been reported, including both 

immunostimulatory and immunosuppressive effects [110-119]. Aqueous (AQ) and alcoholic 

(ALC) ginseng extracts have been reported to exert immunostimulatory [53, 110-113] and 

immunoinhibitory [45, 114-118] effects respectively. On the contrary, ginseng AQ extract has 

also been reported to possess immunoinhibitory effects [119]. The basis for the apparent 

paradoxical immunomodulatory effects is unclear but may be attributed to different experimental 

conditions, e.g. choice of extraction solvents. There is a need to delineate the paradoxical 
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immunomodulatory effect of ginseng and provide a basis for explaining the apparently 

contradictory reporting in the literature. The anti-inflammatory (immunosuppressive) effect of 

ginseng ALC extract has been attributed to the combined effects of its ginsenosides constituent 

[45], with molecular weights less than 3KDa [120-122]. The immunoinhibitory macromolecules 

of ginseng ALC extract are not well known and are overlooked by many investigators who focus 

mainly on ginsenosides biological activities. There is paucity of data concerning the 

immunomodulatory effects of ginseng ALC extract macromolecular components.  

Ginseng polysaccharides are generally known for their immunostimulatory effects [53, 111, 

123]. CVT-E002™ a natural health product of American ginseng polysaccharides is used for the 

prevention and treatment of the common cold and has been reported to exhibit 

immunostimulatory effects namely; enhances IL-2 and interferon gamma (INF- γ) productions in 

murine spleen cells [67], increased proliferation of spleen cells (B lymphocytes), increased 

plasma level of immunoglobulin G, enhanced macrophage production of NO, TNF-α, IL-6 [124], 

elevated the number of spleen, bone marrow and natural killer cells [125]. CVT-E002 has been 

shown to be effective for preventing acute respiratory illness due to influenza and respiratory 

syncytial virus [126]. Recent studies suggest that ginseng polysaccharides also suppress induced 

proinflammatory responses, e.g. one study reported that ginseng polysaccharides inhibited 

immunological response associated with collagen-induced arthritis [127]. Intravenous treatment 

of mice with ginseng polysaccharides was reported to exert a protective effect against 

Staphylococcus aureus-infected septic mice by suppressing early acute inflammation [128-129]. 

Another study revealed that intranasal and intravenous administered ginseng polysaccharides 

showed a protective effect on influenza viral infection by lowering levels of inflammatory 

cytokine (IL-6) and lung viral titers [69]. Studies also suggest that CVT-E002 suppresses 
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induced immunoinflammatory responses which include reduction in the activation of neutrophils 

[130], inhibition in the development of allergic airway inflammation and airway hyper-

responsiveness [131], decrease in LPS-induced spleen production of IL-2 and IFN-γ production 

[46]. 

There have been different reports of ginseng acidic and neutral polysaccharides (PS) 

immunomodulatory effects in the literature [72]. Kim et al. (1990) reported that acidic PS and 

neutral PS of P. ginseng (Asian ginseng) may stimulate B cells and macrophages [48], Fan et al. 

(2010) reported that neutral PS of P. ginseng stimulated the proliferation of lymphocytes; 

increased natural killer cell cytotoxicity; enhanced the phagocytosis and NO production by 

macrophages and increased the level of TNF-α in serum [132]. Zhou et al. (2009) reported that 

both neutral PS and acidic PS of P. ginseng were potent B and T cell stimulators [71], Tomoda et 

al. (1993) reported that two acidic PS of P. ginseng enhance the phagocytic activity of 

macrophages [133]. Shin et al. (2004) reported that acidic PS of P. ginseng shows 

immunomodulatory activities via macrophage NO production [134], while the study by Kim et 

al. (1998) showed that ginsan an acidic PS from of P. ginseng induces Th1 cell and macrophage 

cytokines [135]. Sonoda et al. (1998) found that one acidic PS of P. ginseng was a potent inducer 

of IL-8 production by human monocytes and THP-1 cells [136]. Lemmon et al. (2012) reported 

that the immunomostimulatory effects of ginseng PS (P. quinquefolius) are mediated by PS with 

a molecular weight higher than 100 kDa [137].    

1.4 Phytochemical Analysis of Ginseng Polysaccharides  

For the separation, purification and physicochemical characterization of biopolymers such as 

ginseng polysaccharides (PS), size exclusion chromatography (SEC), also known as gel 
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permeation chromatography (GPC) or gel filtration chromatography (GFC) is a widely accepted 

analytical method [54]. The determination of molecular weights of polymers is one of the 

primary uses of SEC/GPC, and currently most SEC/GPC analyses are performed by comparing 

the molecular weight of a sample against standards of known molecular weight. This method is 

often described as classical SEC/GPC. A newer method is becoming increasingly common, 

which uses multiple detectors to provide absolute molecular weight information [138] which is 

referred to as high performance SEC or HPSEC in this thesis. 

Size exclusion chromatography utilizes a non-interactive mode of separation with a stationary 

phase composed of a macromolecular gel containing a porous network. As the PS sample passes 

through the column containing the gel, the components of the sample are separated. Elution order 

is based on molecular size, with molecules with a hydrodynamic (retention) volume larger than 

the largest pores of the stationary phase not being able to penetrate the pores of the gel. These 

large molecules then pass through the space between gel particles un-retarded, while molecules 

with smaller hydrodynamic volumes enter the pores and the open network of the gel, and are 

separated depending on their size and shape [138]. Analytical SEC combined with multiple 

detectors such as refractive index (RI), ultraviolet (UV), and multi-angle light scattering is a 

rapid method to separate, characterize the structure, average molecular weight, and chain 

conformation of PS [139]. Light scattering detectors measure the light scattered inelastically (i.e., 

Rayleigh scattering) and, with the use of the Zimm relationship, the PS weight-average 

molecular weight (Mw) can be obtained directly [140]. Analytical SEC with a light scattering 

detector directly measures the PS molecular mass and potentially molecular size (root-mean 

square radius), and the conformation or shape of the polymers can be derived from their 

correlation.  
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The intensity from a light scattering detector is proportional to three important variables: 

molecular mass, concentration, and the specific refractive index increment. The RI detector is 

used to measure polymer concentrations across the chromatographic peaks [138, 140]. The 

viscosity detector measures the pressure drop and, in combination with a concentration detector, 

allows calculation of the intrinsic viscosity (inverse molecular density). This structural 

information can be used to probe such important features of the polymer system as its shape and 

branching characteristics [138]. The ability of SEC to determine the molecular weight averages 

and molecular weight distribution of naturally occurring polymers makes it a chromatographic 

method of choice in the separation and analysis of PS.  

1.5 Absorption of Orally Administered Ginseng Polysaccharides 

The oral route is the most convenient way to administer drugs and bioactives (e.g. ginseng PS), 

with absorption across the intestinal barrier into systemic circulation being prerequisite for these 

biochemical compounds to exert their pharmacological effects. Therefore it has been of great 

interest to study intestinal absorprtion of biochemical compounds even if the possibilities are 

limited for obvious reasons such as their physicochemical properties (e.g. 

lipophilicity/hydrophilicity and molecular weight) [141]. The natural function of the 

gastrointestinal tract (GIT) is to digest and absorb nutrients which sustain the living system. 

After oral administration, biochemical compounds travel across the gastrointestinal barrier into 

systemic circulation [142-143]. Orally administered ginsenosides have been reported to 

demonstrate low bioavailability due to their low membrane permeability across the intestinal 

mucosa, active biliary excretion, decomposition in the stomach, metabolism in the large intestine 

and elimination in the liver. Of these factors, low membrane permeability and active biliary 
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excretion has been attributed to be the two major factors that limits the absorption of orally 

administered ginsenosides from the gastrointestinal tract into systemic circulation [144-147]. 

PS of medicinal plants such as Radix ophiopogonis (Mw = 4.8 kDa) have been reported to have 

low bioavailability of about 1.7 % in rats after oral administration, which was attributed to their 

large molecular size and hydrophilic characteristics [148]. Orally administered ginseng PS have 

been reported to exert numerous pharmacological activities including immunomodulation [46, 

124- 125, 130-131], anti-depressant [50] and anti-ulcer effects [149], but their absorption from 

the GIT into systemic circulation is yet to be ascertained.  

Despite PS such as ginseng PS being soluble in water, their weak chromophore group and the 

complexity of the plasma matrix are barriers to overcome in their analysis in plasma. 

Chromatographic analytical methods have been used to analyze plant PS tagged with a 

fluorescent label or subjected to a post column fluorescence derivatization method with 

fluorometric detection in biological matrices (e.g. plasma) after in vivo treatments [148, 150-

156]. Pending the establishment of the safe use of fluorescently-labeled PS for human studies, 

the development of a chromatographic method to analyze unlabeled PS in plasma will serve as a 

useful tool in human studies. The knowledge of bioactive PS concentrations in plasma will 

enhance their prophylactic and therapeutic use in herbal medicine.  

However, there is currently no available method to analyze ginseng PS in plasma. Such a method 

will be a useful tool in determining whether orally administered ginseng PS is absorbed from the 

GIT into systemic circulation. Perchloric acid-protein precipitation of plasma and high 

performance size exclusion chromatography with right angle light scattering detection is a new 

approach to analyze orally administered unlabeled ginseng PS in rat plasma. This new approach 
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is a key that opens the door to investigating the absorption of ginseng PS from gastrointestinal 

tract (GIT) into systemic circulation after oral administration of ginseng PS. 

A possible mechanism by which polysaccharides is absorbed via the GIT may be endocytosis, 

whereby molecules are engulfed by the membrane and move through the intestinal cell in 

vesicles, which would be subsequently released on the membrane`s other side [147].                 

Orally administered PS (GFPBW1, β-1,3-linked glucan, extracted from Grifola frondosa, WGE, 

α-1,4-linked glucan, extracted from Gastrodia elata and Lentinan extracted from Lentinula 

edodes) have been reported to be detected in rat serum by high performance liquid 

chromatography analysis. These PS were found to be internalized in human intestine mucosa 

epithelial cells and the underlying mechanism of their intestinal absorption was found via 

clathrin-mediated endocytosis [157]. 
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Figure 1.6 – Gastrointestinal absorption of orally administered biochemical compounds into 

systemic circulation [142]. 
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1.6 Summary and Knowledge Gaps to be addressed 

Medicinal plants (e.g.  American ginseng) contain multiple bioactive compounds with long-

standing use in traditional medicine; hence they are a rich source of potential prophylactics and 

biotherapeutics for the improvement of human health including the immune function. In vitro 

and in vivo bioassay screen of medicinal plants and their bioactives help to fill in the gap where 

efficacy and safety data is lacking. The extract solvent matrix (aqueous or alcoholic) and their 

bioactive components play a crucial role in the biological effects of medicinal plants and their 

natural products. This is especially true of immunotherapeutics, where their up-regulatory and 

down-regulatory interaction with innate component of the immune system (e.g macrophages) 

determines their observed immunopharmacological effects. Identification of the bioactive(s) and 

extract of medicinal plants and natural products associated with immunomodulatory effect(s) is 

vital to provide appropriate prophylaxis or therapy. The use of chromatography technology is a 

good tool for the isolation, fractionation and phytochemical analysis of medicinal plants and their 

bioactives in extract and plasma matrices.    

The relationship between American ginseng immunostimulatory and immunoinhibitory effects 

and the unique bioactive fractions of its different extracts namely AQ and ALC extracts will be 

investigated as the first knowledge gap to be addressed in chapter three of this thesis. This first 

knowledge gap will be addressed by examining the immunomodulatory effects of AQ extract, 

ALC extract and their fractions on murine macrophage (RAW 264.7) production of NO and 

cytokine. The suppression of LPS-stimulation by AQ extract, ALC extract and their fractions 

will also be examined in vitro. The second knowledge gap that will be addressed in chapter three 

of this thesis is the identity of immunoinhibitory fractions of ginseng ALC extract. To address 
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this second knowledge gap, the suppression of LPS-stimulation by the ginsenoside and 

macromolecule fractions of ginseng ALC extract will be examined in vitro. 

In view of the reported paradoxical immunomodulatory effects of ginseng polysaccharides, the 

first knowledge gap that will be addressed in chapter four of this thesis is; whether American 

ginseng roots polysaccharides (AGRPS) stimulates basal innate immune function and at the same 

time can suppress LPS induced proinflammatory response ex vivo and in vivo.                            

To address this first knowledge gap, the ex vivo and in vivo immunomodulatory effects after oral 

administration of AGRPS extract will be studied in adult rats by measuring cultured alveolar 

macrophage production of NO and changes of plasma cytokine level, modification of LPS 

immunological effects by AGRPS extract will also be examined followed with a lung 

histochemical study. In view of the different reports of ginseng acidic PS and neutral PS 

immunomodulatory effects, the second knowledge gaps that will be addressed in chapter four of 

this thesis are; (i) the identity of AGRPS bioactive fractions. (ii) the relationship between 

AGRPS bioactive fractions physicochemical properties (ionic charge and molecular weight) and 

their influence on AGRPS up-regulation and down-regulation of macrophage function under 

basal and LPS endotoxic conditions. To address these second knowledge gaps an in vitro 

mechanistic study will be used in chapter four to identify the underlying immunobioactive 

fractions of AGRPS extract by examining; (i) the immunobioactivities of AGRPS extract and its 

fractions (isolated by ion exchange chromatography and ultrafiltration) using murine 

macrophages (RAW 264.7) and rat alveolar macrophages stimulation of NO and cytokine.       

(ii) the suppression of LPS-stimulation by AGRPS extract and its fractions pretreatments in vitro. 

There is currently no available method to analyze ginseng PS in plasma. Such a method will be a 

useful tool in determining whether orally administered ginseng PS is absorbed from the GIT into 
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systemic circulation. Perchloric acid-protein precipitation of plasma and high performance size 

exclusion chromatography with right angle light scattering detection will be used in chapter five 

of this thesis as a new approach to analyze orally administered unlabeled AGRPS in rat plasma. 

This new approach will address the GIT absorption of orally administered AGRPS into systemic 

circulation gap in knowledge. 
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Chapter 2 
             

                SPECIFIC AIMS AND HYPOTHESES 
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2.1 SPECIFIC AIMS 1 

1. To evaluate the immunostimulatory and immunoinhibitory effects of ginseng aqueous and  

    alcoholic extracts. 

 2. To identify what bioactive fractions in these extracts cause the immunomodulatory effects. 

Choice of solvents influences the bioactive components in plant extracts including American 

ginseng aqueous (AQ) and alcoholic (ALC) extracts. This factor is often overlooked by many 

investigators who focus mainly on the pharmacological effects of ginseng extracts. Inconsistent 

immunomodulatory effects of ginseng have been reported, including both immunostimulatory 

[1-5] and immunosuppressive effects [6-12]. The basis for the apparent paradoxical 

immunomodulatory effects is unclear but may be attributed to different experimental conditions, 

e.g. choice of extraction solvents. 

Chapter three of this thesis investigates whether the paradoxical immunomodulatory effect is 

related to unique bioactive fractions of different American ginseng extracts, namely AQ and 

ALC extracts. AQ and ALC ginseng extracts have been reported to exert immunostimulatory [2-

3] and immunoinhibitory [6, 9-10] effects respectively. On the contrary, ginseng aqueous extract 

have also been reported to possess immunoinhibitory effect [12]. There is need to delineate the 

paradoxical immunomodulatory effect of ginseng and provide a basis for explaining the 

apparently contradictory reporting in the literature. The relationship between American ginseng 

immunostimulatory and immunoinhibitory effects and the unique bioactive fractions of its 

different extracts namely aqueous (AQ) and alcoholic (ALC) extracts was investigated. 
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HYPOTHESIS:  

Ginseng AQ extract is immunostimulatory while its ALC extract is immunoinhibitory. 

To address the hypothesis, AQ and ALC extracts were prepared and their immunostimulatory 

effects were studied in vitro in murine macrophages (Raw 264.7) by measuring the direct 

production of proinflammatory mediators and cytokines. The suppression of lipopolysaccharide 

(LPS) induced production of proinflammatory mediators and cytokines by the two extracts was 

evaluated as readout for their immunoinhibitory effects. Gel permeation chromatography was 

used to separate and isolate fractions of ginseng AQ and ALC extracts, which were then 

characterized in vitro for immunostimulatory and immunoinhibitory effects. 

 

2.2 SPECIFIC AIMS 2 

1. Investigate the effects of American ginseng root polysaccharide (AGRPS) extract on  

    basal immune function ex vivo and in vivo, and determine whether or not this  

    treatment would also suppress the proinflammatory response of LPS endotoxin. 

2. Identify the bioactive fractions responsible for AGRPS extract immunobioactivities; separate  

    AGRPS extract by ionic charge and molecular weight to examine their immunobioactivities. 

Polysaccharides of ginseng root are known to stimulate the immune system [13-15] but have 

recently been shown to suppress response to proinflammatory challenge [16-18].               

Chapter four of this thesis aims to determine whether AGRPS stimulates basal innate immune 
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function and at the same time can suppress LPS proinflammatory challenge. The bioactive 

fractions responsible for AGRPS extract immunobioactivities was identified by investigating the 

influence of variations in ionic charge and molecular weight on AGRPS immunomodulatory 

effects.  

HYPOTHESES:  

1. AGRPS extract possess both immunostimulatory and immunosuppressive effects under 

basal and LPS endotoxic conditions respectively.  

2. The ionic charge and molecular weight variations contribute to AGRPS 

immunomodulatory activities.  

To address these hypotheses, the ex vivo and in vivo immunomodulatory effects after oral 

administration of AGRPS extract were studied in adult rats by measuring cultured alveolar 

macrophage production of NO and changes of plasma cytokine level. The modification of LPS 

immunological effects by AGRPS extract was examined followed by a lung histochemical study. 

To identify the bioactive fractions responsible for AGRPS extract immunobioactivities, fractions 

of AGRPS extract isolated by ion exchange chromatography and ultrafiltration were used for in 

vitro mechanistic study. For this study, murine macrophages (RAW 264.7) and rat alveolar 

macrophages were used to evaluate the stimulation of NO and cytokine by AGRPS extract and 

its fractions. The suppression of LPS-stimulation by AGRPS extract and its fractions was also 

examined in vitro.  
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2.3 SPECIFIC AIMS 3 

1. Develop and apply a method for the determination of AGRPS in plasma. 

 2. Ascertain that orally administered AGRPS can be absorbed from the gastrointestinal tract into  

     systemic circulation. 

A recent study with rat shows that orally administered AGRPS exerts ex vivo and in vivo 

immunomodulatory effects [19]. Ophiopogon japonicas, Radix ophiopogonis, chitosan ester, 

dermatan sulfate and marine sulfated polysaccharides of high molecular weights have been 

analyzed in biological matrices (e.g. plasma) of animals after polysaccharide treatments using 

various chromatographic and spectroscopic analytical methods [20-26]. The weak chromophore 

group of AGRPS and complex nature of plasma matrix are challenging barriers to overcome to 

analyze AGRPS in plasma. Chromatographic methods involving fluorescent labeling 

(derivatization) coupled with fluorometric detection used for plasma analysis of polysaccharides 

shows that; high molecular weight polysaccharides such as Radix Ophiopogonis polysaccharides 

are absorbed from the gastrointestinal tract (GIT) into systemic circulation after oral 

administration [25]. There is no method available to detect and quantify AGRPS in plasma and 

show that orally administered AGRPS is absorbed from the GIT into systemic circulation.         

In chapter five of this thesis, perchloric acid-protein precipitation of plasma and high 

performance size exclusion chromatography (HPSEC) with right angle light scattering detection 

is used as a new approach to analyze orally administered unlabeled ginseng polysaccharides in 

rat plasma.  
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HYPOTHESIS:  

Orally administered AGRPS is absorbed from the GIT into systemic circulation.  

To address the hypothesis, AGRPS was isolated from plasma of rats orally treated with AGRPS, 

using protein precipitation with perchloric acid. The AGRPS analyte was then chromatographed 

on a HPSEC system and monitored using right angle light scattering detector system. To 

ascertain the intestinal absorption of orally administered AGRPS, enzyme hydrolytic method 

accompanied with HPSEC analysis was used to verify the identity of the AGRPS 

chromatographic peak in plasma of orally AGRPS treated rats. The time-dependent change in 

plasma concentration after oral administration of AGRPS in rats was evaluated to provide 

additional evidence of the intestinal absorption of orally administered AGRPS into systemic 

circulation.   
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Chapter 3 

 

IN VITRO IMMUNOSTIMULATORY AND ANTI-

INFLAMMATORY EFFECTS OF AMERICAN 

GINSENG AQUEOUS AND ALCOHOLIC 

EXTRACTS  

 

This chapter has been reproduced in part from: 

Chike G Azike, Paul A Charpentier, Jirui Hou, Hua Pei, Edmund MK Lui. The Yin and Yang 

actions of North American ginseng root in modulating the immune function of macrophages. 

Chinese Medicine, 2011, 6, 1-12 

Reprinted with permission of Chinese Medicine and BioMed Central Ltd. © 2011 
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3.1 Introduction 

Ginseng is a perennial herb of the Araliaceae family. Asian ginseng (Panax ginseng C.A. Meyer, 

Renshen) and American ginseng (Panax quinquefolius L., Xiyangshen) are the most commonly 

used ginseng species. While Asian ginseng has been used for thousands of years as a tonic to 

improve overall health, restore the body to balance, help the body to heal itself and reduce stress 

[1], the medicinal use of American ginseng traces back about 400 years ago. Canada is currently 

the largest producer of American ginseng [1-3]. Recognized by the Canadian regulatory agency 

as a natural health product for use as an adaptogen (biological response modifier) [4], American 

ginseng is a multi-action herb with a wide range of pharmacological effects on the central 

nervous system, cardiovascular system and endocrine secretion, reproductive and immune 

function [5]. 

Ginseng has influences on both innate and adaptive immunity. Macrophage-mediated innate 

immunity is the first line of defense against microbial pathogens and influences the subsequent 

adaptive immune response. Macrophages kill pathogens and cancer cells directly via 

phagocytosis and indirectly via the production of various pro-inflammatory mediators (e.g. NO) 

and cytokines (e.g. TNF-α) [6]. However, over production of pro-inflammatory mediators [7] 

may result in inflammatory diseases and/or tissue injury which are then managed by immune-

suppressive agents. Modulation of macrophage function, e.g. up-regulation of inflammatory 

mediator production in vitro or suppression of its stimulation by LPS has been used as an 

experimental tool to evaluate immunostimulatory and anti-inflammatory potency of herbal 

products respectively [8]. 

Ginseng contains bioactive compounds such as ginsenosides, which are steroidal saponins 
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containing different sugar moieties and possessing different lipid-solubility [5] and 

polysaccharides (PS) consisting of complex chain of monosaccharides rich in L-arabinose, D-

galactose, L-rhamnose, D-galacturonic acid, D-glucuronic acid and D-galactosyl residue [9-10]. 

There is paucity of data concerning the immunomodulatory effects of ginseng alcoholic (ALC) 

extract macromolecular components. Choice of solvents influences the bioactive components in 

the extracts. This factor is often overlooked by many investigators who focus mainly on 

biological activities. 

Inconsistent immunomodulatory effects of ginseng have been reported, including both 

immunostimulatory and immunosuppressive effects [11-22]. Aqueous (AQ) and ALC ginseng 

extracts have been reported to exert immunostimulatory [11-15] and immunoinhibitory [16-21] 

effects respectively. On the contrary, ginseng AQ extract has also been reported to possess 

immunoinhibitory effects [22]. The basis for the apparent paradoxical immunomodulatory 

effects is unclear but may be attributed to different experimental conditions, e.g. choice of 

extraction solvents. There is a need to delineate the paradoxical immunomodulatory effect of 

ginseng and provided a basis for explaining the apparently contradictory reporting in the 

literature.  

In this study, the apparent paradoxical effects of ginseng were characterized by examining the 

immunomodulatory effect of AQ and ALC extracts prepared from 4-year-old Ontario grown 

American ginseng roots in RAW 264.7 murine macrophage cell line. Characteristics of the 

immunobioactive fractions of ginseng were also explored. 
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3.2 Materials 

RAW 264.7 (ATCC TIB 67) murine macrophage cell lines were provided by Dr. Jeff Dixon 

(Department of Physiology and Pharmacology, University of Western Ontario, Canada). 

Sephadex G75 was purchased from GE healthcare bio-sciences AB (Sweden). Cell culture 

medium and reagents were purchased from Gibco laboratories (USA). BD OptEIA ELISA kits 

tumour necrosis factor-α and interleukin-6 (BD Biosciences, USA). LPS from Escherichia coli 

and Griess reagent were purchased from Sigma-Aldrich (USA), Amicon ultra-15 centrifugal 

filter units with molecular weight cut-off pore size of 100 KDa, 50 KDa, 30 KDa and 10 KDa 

were purchased from Millipore (USA). 

3.2.1 Ginseng and its extracts 

Four-year-old American ginseng roots collected in 2007 from five different farms in Ontario, 

Canada were provided by the Ontario Ginseng Growers Association. Ginseng extracts from each 

farm were prepared individually and combined to produce composite extracts which were used 

for phytochemical and pharmacological studies. 

3.3 Methods 

3.3.1 Preparation of the AQ, ALC and Crude PS ginseng extracts 

Dried ginseng root samples were shipped to Naturex (USA) for extraction. Samples were ground 

between ¼ and ½ inch and used to produce the AQ or ALC extract. Briefly, 4kg ground ginseng 

roots were soaked three times during five hours in 16 L of water or ethanol/water (75/25, v/v) 

solution at 40°C. After extraction, the solution was filtered at room temperature. The excess 

solvent was then removed by a rotary evaporator under vacuum at 45°C. The three pools were 
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combined and concentrated again until the total solids on a dry basis were around 60%. The 

Central Laboratory of Ontario Ginseng Research & Innovation Consortium (OGRIC) lyophilized 

these concentrates with a freeze dryer (Labconco, USA) at -50°C under reduced pressure to 

produce AQ or ALC ginseng extract in powder form. Yield of the powder extracts from the 

concentrates was about 66%. The yields of the final extract (mean ± standard deviation of % 

extractive) from the initial ground root were 41.74±4.92 and 35.30±5.01 for the AQ and ALC 

extracts respectively. A solution of AQ extract in distilled water (1 g/10mL) was prepared, and 

the crude PS was precipitated by the addition of four volumes of 95% ethanol. The PS fraction 

was collected by centrifugation at 350×g (Beckman Model TJ-6, USA) for 10 minutes and 

lyophilized to produce the crude PS extract. 

3.3.2 Chromatography of ginseng extracts 

3.3.2.1 Sephadex G-75 Chromatography 

Five hundred milligrams of AQ or ALC ginseng extract was dissolved in 5 mL distilled water 

and then fractionated by loading to a calibrated Sephadex G-75 column (47×2.5 cm) equilibrated 

and eluted with distilled water mobile phase at 4°C with a flow rate of 1 mL/min. Absorbance of 

the eluates was monitored at 230 nm, which is the wave length of maximum absorption for the 

extracts determined from a UV scan. 5 mL fractions were collected and four major fractions (I-

IV) were collected and lyophilized to produce four sub-fractions (I-IV) (Figure 5) for the study 

of bioactivity distribution. 
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3.3.2.2 Size Exclusion Chromatography for PS analysis 

Size exclusion chromatography of AQ, ALC and PS ginseng extract was carried out at 40°C with 

an AquaGel PAA-200 Series column (8×300 mm, PolyAnalytik, USA) connected to a Viscotek 

(Varian Instruments, USA) gel permeation chromatography system with Omnisec software 

(version 4.5, Viscotek, USA) for data acquisition. Solutions of AQ, ALC and PS extract (5 

mg/mL) were filtered with 0.2 µm nylon filter and used for analysis. Each sample (100 µl) was 

injected and eluted with 0.05 M sodium nitrate (NaNO3) mobile phase at a flow rate of 1 mL/min 

and monitored using a multiple detectors system for light scattering, refractive index and 

viscosity. Pullulan polysaccharide reference standard was analyzed as a positive control. 

3.3.2.3 Fractionation of the ALC extract by Molecular Weight 

Powdered ALC extract (800 mg) was dissolved in 40 mL of distilled water and 15 mL was 

placed in a 100 kDa amicon ultra-15 centrifugal filter unit (Millipore, USA) and centrifuged at 

10000rpm for 30 minutes. Fractions of the extract with molecular weight of 100 kDa and above 

(≥100 kDa) were retained on the filter unit, while fractions of less than 100 kDa in the filtrate 

obtained from this process was then placed in a 50 kDa amicon ultra-15 centrifugal filter unit and 

centrifuged as indicated above. Fractions of the extract with molecular weight of less than 100 

and above 50 kDa (100 - 50 kDa) were retained on the filter unit, while fractions of less than 50 

kDa in the filtrate obtained from this process was then placed in a 30 kDa amicon ultra-15 

centrifugal filter unit and centrifuged as indicated above. Fractions of the extract with molecular 

weight of less than 50 and above 30 kDa (50 - 30 kDa) were retained on the filter unit, while 

components of less than 30 kDa in the filtrate was then placed in a 10 kDa amicon ultra-15 

centrifugal filter unit and centrifuged as indicated above. Fractions of the extract with molecular 
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weight of less than 30 and above 10 kDa (30 - 10 kDa) were retained on the filter unit, while 

fractions of less than 10 kDa in the filtrate was then placed in a 3 kDa amicon ultra-15 

centrifugal filter unit and centrifuged as indicated above. Fractions of the extract with molecular 

weight of less than 10 and above 3 kDa  (10 - 3 kDa) were retained on the filter unit, while 

components of less than 3 kDa in the final filtrate was termed the ginsenoside fraction since 

ginsenosides have molecular weights less than 3kDa [23-25]. Ten mL of distilled water was used 

to wash and remove the fractions of ALC extract of different molecular weights ≥100 kDa, 100 - 

50 kDa, 50  - 30 kDa, 30 - 10 kDa, 10 - 3 kDa, <3 kDa (ginsenoside fraction) retained on the 

filter units, after which they were lyophilized at -50°C under reduced pressure (Labconco, USA). 

3.3.3 Cell culture 

Mouse macrophage cell line RAW 264.7 was grown and subjected to no more than 20 cell 

passages in Dulbeccos Modified Eagle’s Medium supplemented with 10% Fetal Bovine Serum, 

25 mM HEPES, 2mM Glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin. Cells in 

RPMI-1640 medium supplemented with 10% Fetal Bovine Serum, 25 mM HEPES, 2 mM 

Glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin were seeded in 96-well tissue 

culture plates at a density of 1.5×10
5 

cells per well and maintained at 37°C in a humidified 

incubator with 5% CO2 and used for experiments at 60-80% confluency. 

 

 

 

 



 

70 

 

3.3.4 Cell treatment 

3.3.4.1 Immunostimulatory effect 

Experiments to evaluate the dose-related stimulation of inflammatory mediators profile in vitro 

was carried out by treating and incubating macrophages (1.5×10
5
 cells / well) with 0, 20, 50 and 

200 μg/ml of ginseng extracts, their fractions or 1 μg/mL of LPS (positive control) for 24 hr. The 

end-points were the 24 hour-production of NO, TNF-α and IL-6 inflammatory mediators. 

3.3.4.2 Immunosuppression of LPS-induced effect 

To examine the direct inhibitory effect of ginseng extracts or their fractions on LPS-stimulated 

immune function, macrophages were pretreated with 0, 10, 20 50, 100 or 200 μg/ml of ginseng 

extracts two hours prior to the addition of 1 μg/mL of LPS. The 24-hour cytokine production 

induced by LPS was determined by measuring NO, TNF-α and IL-6 levels in the culture 

medium. 

3.3.4.3 Suppression of AQ extract-induced Macrophage NO stimulation by ALC extract 

Production of NO by 1.5×10
5
 macrophages / well in a 96 well-plate induced by 0, 50 and 200 

μg/ml of AQ ginseng extract was determined 24 hr after the presence and absence of 200 μg/ml 

ALC ginseng extract. 

3.3.4.4 Quantification of NO, TNF-α and IL-6 

TNF-α and IL-6 concentrations in supernatants from cultured cells were analyzed with Enzyme 

Linked Immunosorbent Assay (ELISA). Samples were evaluated with mouse cytokine-specific 

BD OptEIA ELISA kits (BD Biosciences, USA) according to the manufacturer’s protocol. NO 
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production was analyzed as accumulation of nitrite in the culture medium. Nitrite in culture 

supernatants was determined with Griess reagent (Sigma-Aldrich, USA). Briefly, 50 μL of 

culture supernatant from each sample was transferred to wells of a 96-well U-bottom microtiter 

plate, 50 μL Griess reagent (containing 0.5% sulfanilic acid, 0,002% N-1-naphtyl-

ethylenediamine dihydrochloride and 14% glacial acetic acid) was then added. The ultraviolet 

(UV) absorbance at 550nm wavelength was measured using Multiskan Spectrum microplate 

reader (Thermo Fisher Scientific, Finland) with SkanIt software (version 2.4.2, Thermo Fisher 

Scientific, Finland). Sample nitrite concentrations were estimated from a sodium nitrite standard 

calibration curve. 

3.4 Statistical analysis 

Each cell culture experiment was performed in triplicate on three separate occasions. All 

statistical analyses were performed with GraphPad prism 4.0a Software (GraphPad Software 

Inc., USA). Data were presented as the mean ± standard deviation (SD) of triplicates from three 

independent experiments. Data sets were evaluated by one-way analysis of variance (ANOVA) 

with Dunnett’s post-hoc test. P<0.001 was considered to be statistically significant. 
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3.5 Results 

3.5.1 Immunostimulatory effect of the AQ and ALC ginseng extracts in macrophages  

          in vitro 

Evaluation of the immunostimulatory effect of the ginseng extracts on RAW 264.7 murine 

macrophages revealed that exposure to 20-200 μg/mL of AQ extract significantly up-regulated 

macrophage production of NO, TNF-α and IL-6 compared to an untreated control in a 

concentration-dependent manner (Figures 3.1a and 3.1b). The responses to 200 μg/mL of AQ 

extract in NO and TNF-α production were similar to the maximum stimulatory response induced 

by 1 μg/mL of LPS. Moreover, the magnitude of maximum stimulatory response pertaining to 

NO and TNF-α (as a % of the positive control) was much greater than that of IL-6. By contrast, 

the ALC extract had no apparent immunostimulatory effect (Figure 3.1). 
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                     (a) Aqueous Extract                                             (b) Alcoholic Extract 
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 (ii) TNF-α Production 
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(iii) IL-6 Production 
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Figure 3.1 - Immunostimulatory effects of the (a) AQ and (b) ALC ginseng extracts on 24 hr 

macrophage production of (i) NO, (ii) TNF-α and (iii) IL-6. Murine macrophages (RAW 264.7 

cells 1.5×10
5
 / well) were treated with or without AQ and ALC ginseng extracts (20, 50, 200 

μg/ml), LPS (1 μg/ml) for 24 hr and the culture supernatants were analyzed for NO and TNF-

α/IL-6 by Griess reaction assay and ELISA respectively. Three independent experiments (n = 3) 

were performed and the data were shown as mean ± SD. Datasets were evaluated by ANOVA. 
* 

Values P<0.001 compared to the untreated (vehicle) control were statistically significant. 
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3.5.2 Effect of the AQ and ALC ginseng extracts on LPS-stimulated production of NO and  

          TNF-α in macrophages in vitro 

Figure 3.2 shows the influence of ginseng extract treatment on LPS-stimulated NO and TNF-α 

production in macrophages. LPS stimulated 24-hour production of NO markedly, which was 

significantly suppressed in the presence of 20-200 μg/ml of the ALC extract in a dose-dependent 

manner (Figure 3.2b). This inhibitory effect appeared to be extract-specific as the AQ extract 

was marginally effective and only at high concentrations (Figure 3.2a). Figure 3.2 also showed 

that the influence of ginseng was cytokine-specific, i.e. the magnitude of inhibition by ALC 

extract was much smaller with respect to TNF-α production. Moreover, the AQ extract had either 

no inhibitory effect at high concentration or additive effect at low concentration. 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

                  (a) Aqueous Extract                                                (b) Alcoholic Extract 
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Figure 3.2 -Effect of the (a) AQ and (b) ALC ginseng extracts on LPS-stimulated 24 hr 

macrophage production of (i) NO and (ii) TNF-α. Murine macrophages (RAW 264.7 cells 

1.5×10
5
 / well) were pretreated with or without the AQ and ALC ginseng extracts (50, 200 

μg/ml), for two hours after which LPS 1 μg/ml was added; and 24 hr later the NO and TNF-α 

contents of the culture supernatants were determined by Griess reaction assay and ELISA, 

respectively. Three independent experiments (n = 3) were performed and the data were shown as 

mean ± SD. Datasets were evaluated by ANOVA. 
* 
Values P<0.001 compared to the LPS 

positive control were statistically significant. 
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3.5.3 Suppression of the AQ ginseng extract-induced immunostimulation by the ALC 

         ginseng extract 

To further study the apparent extract-specific paradoxical immunomodulatory effects of ginseng, 

investigation was done to determine whether the immunostimulation induced by the AQ extract 

could be suppressed by subsequent treatment with the ALC extract. The dose-related up-

regulation of NO production in macrophages by the AQ extract was reduced by 50-65% with 

exposure to equivalent concentrations of the ALC extract (Figure 3.3). 
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Figure 3.3 - ALC ginseng extract suppressed up-regulation of macrophage NO production by the 

AQ ginseng extract. Murine macrophages (RAW 264.7 cells 1.5×10
5
 / well) were pretreated with 

or without the 200 μg/ml ALC ginseng extract (50, 200 μg/ml), for two hours after which the AQ 

ginseng extract (50, 200 μg/ml) was added, then NO contents of the culture supernatants were 

determined by Griess reaction assay 24 hr later. Three independent experiments were performed 

(n = 3) and the data were shown as mean ± SD. Datasets were evaluated by ANOVA. 
* 
Values 

P<0.001 were statistically significant. 
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3.5.4 Sephadex G-75 Chromatography of the AQ and ALC ginseng extracts 

To further study the apparent extract-specific paradoxical immunomodulatory effects of ginseng, 

the extract-specific bioactive fractions that mediated these effects was examined. Gel filtration of 

the AQ extract on a calibrated Sephadex G-75 column resulted in the appearance of two major 

peaks (Fractions I and III) based on UV absorbance at 230 nm (Figure 3.4a). The estimated 

average molecular weights (Mw) of Fractions I and III were about 73 kDa and 37 kDa 

respectively; and their yield accounted for 28% and 40% by dry weight of the AQ extract 

respectively. Since PS of ginseng possesses an immunostimulatory effect [1, 9, 10, 26], the crude 

PS fraction was isolated from the AQ extract by alcohol (40%) precipitation (with a yield of 10% 

by weight) and was subjected to a similar chromatographic procedure for comparison. As shown 

in Figures 3.4a and 3.4c, the major PS peak had a similar elution volume as Fraction I of the AQ 

extract. 
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(a) 

 
 

(b) 

 
 

(c)  

 

Figure 3.4 - Sephadex G-75 (47×2.5 cm) chromatographic fractionation of the (a) AQ, (b) ALC 

and (c) PS extracts of ginseng. Column was loaded with 500mg of extract, and then eluted with 

distilled water at flow rate of 1 mL/min. The y-axis is the UV absorbance at 230 nm while the x-

axis represents the elution volume (mL). 
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3.5.5 Immunobioactive Fraction(s) of the AQ ginseng extract 

Figure 3.5 shows the data concerning the stimulation of cytokine production in macrophages by 

Fractions I and III of the AQ extract. The immunostimulatory activity with respect to NO and 

TNF-α production was associated only with macromolecules of Fraction I (Mw = ~ 73 kDa) but 

not Fraction III (Mw = ~ 37 kDa). Fraction I was less active than the PS extract in terms of IL-6 

production. Since PS and Fraction I corresponded to 10% and 28% of the AQ extract by weight, 

it appeared that these isolated fractions could only account for part of the observed 

immunostimulatory activities of the AQ extract on the basis of the difference in their 

immunostimulatory potency.  
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C. Polysaccharide Extract 
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Figure 3.5 - Immunostimulatory effect of Fraction I (Mw = ~ 73 kDa) and III (Mw = ~ 37 kDa) 

of the AQ, PS extracts of ginseng. Murine macrophages (RAW 264.7 cells 1.5×10
5
 / well) were 

treated with Fraction I and III of AQ ginseng extract, PS extract of ginseng. (0, 20, 50, 200 

μg/ml), LPS (1 μg/ml) for 24 hr and the NO, TNF-α and IL-6 contents of the culture supernatants 

were determined. Three independent experiments were performed (n = 3) and the data were 

shown as mean ± SD. Datasets were evaluated by ANOVA. *Values P<0.001 compared to the 

untreated (vehicle) control were statistically significant.  
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3.5.6 Immunobioactive Fraction(s) of the ALC ginseng extract 

Fractions I (10%) and III (64%) obtained from the Sephadex G-75 chromatographic profile of 

the ALC extract contained no immunostimulatory activity (data not shown). Fraction I was not 

affected by treatment with 40% ethanol (data not shown). This observation was consistent with 

the lack of PS in the ALC extract. Figure 3.6 indicates that Fraction I (Mw = ~ 73 kDa) of ALC 

extract was particularly more active than Fraction III (Mw = ~ 37 kDa): causing significant and 

dose-dependent reduction in 24-hour NO production by macrophages induced by 1 μg/mL LPS.  
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Figure 3.6 - Effect of Fractions I (Mw = ~ 73 kDa) and III (Mw = ~ 37 kDa) of the ALC extract 

on LPS-stimulated 24 hr macrophage production of NO. Murine macrophages (RAW 264.7 cells 

1.5×10
5
 / well) were pretreated with or without the AQ and ALC extracts (10, 50, 100, 200 

μg/ml) for two hours after which LPS (1 μg/mL) was added, and the NO content of the culture 

supernatants were determined by Griess reaction assay 24 hr later. Three independent 

experiments were performed (n = 3) and the data were shown as mean ± SD. Datasets were 

evaluated by ANOVA. 
* 
Values P<0.001 compared to the LPS positive control were statistically 

significant. 
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3.5.7 Effect of the ginseng ALC extract, its macromolecule and ginsenoside fractions on  

         LPS stimulated macrophage production of NO, TNF- α and IL-6   

In this study the immunobioactive fractions that contribute to the ginseng ALC extract 

immunoinhibitory effect were investigated. The extract was fractionated into macromolecule 

fractions (≥100 kDa, 50-100 kDa, 30-50 kDa, 10-30 kDa, 3-10 kDa) and ginsenoside fraction 

(<3 kDa). Ginsenosides have been reported to possess molecular weights less than 3 kDa [23-

25]. The suppression of LPS induced production of NO, TNF-α and IL-6 by ALC, its 

macromolecule and ginsenoside fractions was studied in murine macrophages (RAW 264.7 cell 

line) in vitro. LPS stimulated 24-hour production of NO, TNF-α and IL-6 markedly, which was 

suppressed in the presence of ALC extract, its macromolecule and ginsenoside fractions. The 

≥100 kDa macromolecule suppressed NO more than the ALC extract at 20-50 ug/ml, while at 

200 μg/mL the ≥100 kDa macromolecule markedly suppressed LPS induced production of TNF-

α and IL-6 with a magnitude similar to that of the ALC extract. The 50 - 100 kDa and 30 - 50 

kDa macromolecule fractions were quite immunoinhibitory when compared with the ALC 

extract, they were better than 10 - 30 kDa, 3 - 10 kDa macromolecule fractions and the 

ginsenoside fraction (<3 kDa). Data generated from this study suggests that all the 

macromolecule and ginsenoside fractions exerted immunoinhibitory effect.  
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Figure 3.7 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside  

                     fraction on LPS-stimulated 24 hr macrophage production of NO 
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Figure 3.7 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside fraction on 

LPS-stimulated 24 hr macrophage production of NO.  Murine macrophages (RAW 264.7 cells 

2.0×10
5
 / well) were pretreated with and without the ALC ginseng extract, its macromolecules 

and ginsenoside fraction (20, 50, 100 and 200 μg/ml), for two hours after which LPS 1 μg/ml 

was added; and 24 hr later the NO contents of the culture supernatants were determined by 

Griess reaction assay. Three independent experiments (n = 3) were performed and the data were 

shown as mean ± SD. Datasets were evaluated by ANOVA.  *Values P< 0.001 compared to the 

LPS positive control (immunosuppressive effect) were statistically significant. 
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                                      Suppression of LPS-induced Production of TNF-α  
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Figure 3.8 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside   

                     fraction on LPS-stimulated 24 hr macrophage production of TNF-α  
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Figure 3.8 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside fraction on 

LPS-stimulated 24 hr macrophage production of TNF-α. Murine macrophages (RAW 264.7 cells 

2.0×10
5
 / well) were pretreated with without the ALC ginseng extract, its macromolecules and 

ginsenoside fraction (20, 50, 100 and 200 μg/ml), for two hours after which LPS 1 μg/ml was 

added; and 24 hr later the TNF-α contents of the culture supernatants were determined by 

ELISA.  Three independent experiments were performed (n = 3) and the data were shown as 

mean ± SD. Datasets were evaluated by ANOVA.  *Values P<0.001 compared to the LPS 

positive control (immunosuppressive effect) were statistically significant.  
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                                Suppression of LPS-induced Production of IL-6  
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Figure 3.9 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside  

                     fraction on LPS-stimulated 24 hr macrophage production of IL-6  
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Figure 3.9 - Effect of the ALC ginseng extract, its macromolecules and ginsenoside fraction on 

LPS-stimulated 24 hr macrophage production of IL-6.  Murine macrophages (RAW 264.7 cells 

2.0×10
5
 / well) were pretreated with without the ALC ginseng extract, its macromolecules and 

ginsenoside fraction (20, 50, 100 and 200 μg/ml), for two hours after which LPS 1 μg/ml was 

added; and 24 hours later the  IL-6 contents of the culture supernatants were determined by 

ELISA. Three independent experiments were performed (n = 3) and the data were shown as 

mean ± SD. Datasets were evaluated by ANOVA. *Values P<0.001 compared to the LPS 

positive control (immuno-suppressive effect) were statistically significant.   
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3.5.8 Size Exclusion Chromatographic Analysis of AQ and ALC ginseng extracts and their  

         fractions 

To further characterize the AQ and ALC extracts in view of the appearance of two peaks 

identified in their Sephadex G-75 chromatographic profiles at 230nm UV absorbance, size 

exclusion chromatography with multiple detectors (refractive index, right angle light scattering, 

lower angle light scattering and viscometer detectors) was used to differentiate the 

macromolecular constituents from the two extracts. Chromatographic analysis with light 

scattering detection gave the best qualitative and specific detection in identifying PS and 

differentiating the extracts. Light scattering data in Figures 3.10 and 3.11 shows the presence of 

PS in the AQ extract and Fraction I (Mw = ~73 kDa) of AQ extract on the basis of their 

similarity to the chromatographic profile of pullulan polysaccharide reference standard (Mw = 

112 kDa) and the crude PS fraction isolated from ginseng. In contrast, the ALC extract did not 

contain any detectable PS. Hence crude PS fraction is present in AQ extract and Fraction I of AQ 

extract but absent in ALC extract. Outcome of this chromatographic analysis showed the 

significant difference in crude PS fraction composition between the AQ and ALC extracts of 

ginseng.  
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Figure 3.10 – Visual comparison of the chromatograms obtained from size exclusion                        

chromatography of crude PS, AQ and ALC extracts of ginseng.  

Each sample was injected and eluted with 0.05M NaNO3 mobile phase, this was monitored with 

refractive index, right angle light scattering, lower angle light scattering and viscometer detectors 

at 1mL/min flow rate to differentiate the macromolecular constituents from the extracts. The 

right angle light scattering detection gave a better Gaussian peak distribution in identifying PS 

and differentiating the extracts. Pullulan polysaccharide (Mw = 112 kDa) was used as 

comparable reference standard. The y-axis is the detector response (mV) while the x-axis 

represents the retention (hydrodynamic) volume (mL). The right angle light scattering detector 

identified the presence of polysaccharide in AQ and crude PS extracts but not in ALC extract, 

suggesting the absence of polysaccharide in the ALC extract. 
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Figure 3.11 – Summarized identification of polysaccharides in Fraction I (Mw = ~73 kDa) of the 

AQ extract, PS extract, AQ extract and ALC extract of ginseng by size exclusion 

chromatography with right angle light scattering detection.  

Each sample was injected and eluted with 0.05 M NaNO3 mobile phase, and this was monitored 

with right angle light scattering detector at 1 mL/min flow rate. Pullulan polysaccharide was 

used as a reference standard. The y-axis is the detector response (mV) while the x-axis represents 

the retention (hydrodynamic) volume (mL). Right angle light scattering detector identified the 

presence of polysaccharide in Fraction I (Mw = ~73 kDa) of AQ extract, PS extract and AQ 

extract but not in ALC extract of ginseng, suggesting the absence of polysaccharide in ALC 

extract.  
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3.6 Discussion 

The present study delineated the paradoxical immunomodulatory effect of ginseng and provided 

a basis for explaining the apparently contradictory reporting in the literature. The observed 

extract-specific immunostimulatory and immunosuppressive effects were described 

independently by a number of investigators who examined the activity of the aqueous [11-15] or 

alcoholic [16-21] extracts of ginseng. Moreover, there was a pattern of association of 

immunostimulation and immunosuppressive activities with aqueous [11-15] and alcoholic [16-

21] extracts respectively, with the exception of a study showing an aqueous extract to possess 

immunosuppressive effect [22]. In light of the observed paradoxical effects and similarity in the 

yield (% extractive of 41.4 and 35.3) and potency of the AQ and ALC extracts (Figure 1 and 2), 

the extract-specific inhibitory and stimulatory effect on macrophage function reported in the 

present study is considered as the paradoxical immunomodulatory actions of ginseng. This 

concept was considered as an extension of the paradoxical actions of ginseng proposed by other 

investigators on angiogenesis [27] and cancer cell proliferation [28-29]. 

Findings on the macrophage-stimulating effect of American ginseng (Figure 3.1) have provided 

new information on the immunostimulatory property of ginseng in term of its cytokine 

specificity and dose dependency, which also reflected on the specific pharmacological basis of 

its biological activity. One study has also demonstrated that the same AQ extract stimulated 

inflammatory cytokines (IL-1β, IL-6, TNF-α) as well as IL-10 response by human peripheral 

blood mononuclear cells (PBMC) [30]. Moreover, the changes reported were not due to LPS 

contamination of the extracts as documented by Limulus test and direct LPS assay.  

While ginseng is generally considered as an immuno-booster or adaptogen [1], a recent study 
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reported that Rb1 ginsenoside purified from an alcoholic ginseng extract induced an anti-arthritic 

effect in an animal model [31]. The present study also showed that the inhibitory effect of the 

ALC extract could be extended to the stimulation induced by the AQ extract, suggesting that 

both immunostimulatory and immunosuppressive components were present in ginseng root. Use 

of certain solvent systems may lead to an inactive extract. Although the magnitude of the 

inhibition on LPS-induced NO and IL-6 response by the ALC extract was quite significant, the 

suppressive effect was highly specific to the cytokine involved since TNF-α response was the 

least affected. Further studies are required to address the signaling pathways specificity of the 

ALC extract. 

Many medicinal plants possess immunostimulatory activity and polysaccharides have been 

recognized as the primary bioactives giving this activity [26]. In this study, the relative 

abundance of PS (Fraction I) in the AQ extract (Figure 3.4) was well correlated with its 

immunostimulatory activity (Figure 3.5). This result supports the immunostimulatory effect that 

has been reported for CVT-E002
TM

 (sold commercially as COLD-fX®), a natural health product 

of American ginseng polysaccharides [9-10, 32-36]. Plant bioactive polysaccharides were 

reported to have molecular weights ranging from 10 kDa to 150 kDa [9-10]. The estimated 

molecular weight of the ginseng immunostimulatory PS reported in this study was within the 

stated range. Figures 3.1 and 3.5 indicated that the total macrophage-stimulating activity of the 

AQ extract was not solely due to Fraction I and/or the PS fraction since the immunostimulatory 

effects of the AQ extract were more potent than those of the PS or Fraction I. It is possible that 

some of the bioactive material was lost during isolation or fractionation procedures. Figures 3.10 

and 3.11 indicated that Fraction I (Mw = ~73 kDa) macromolecular component of ALC extract 

was not PS. 
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It has been suggested that ginsenosides may be involved in immunosuppression [16, 19-20], 

which is consistent with the immunoinhibitory effect of the ginsenoside fraction (<3 kDa) 

observed in Figures 3.7-3.9. However, this study showed in Figures 3.6, 3.7, 3.8 and 3.9 that the 

macromolecule and ginsenoside fractions of ALC extract possess immunoinhibitory effects. 

Rhule et al. (2006) reported that a combination of ginsenosides did not attenuate TNF-α 

production to the extent that was observed on exposure to the whole ginseng ALC extract [20], a 

similar outcome was obtained in this study. This suggests the presence of additional 

immunoinhibitory bioactives in the extract which was identified in this study to be the 

macromolecule fractions. They are not well known and are overlooked by many investigators 

who focus mainly on ginsenosides pharmacological effects. There is a paucity of data concerning 

the immunomodulatory effects of ginseng ALC extract macromolecule fractions. Results from 

this finding should provide new directions for researchers exploring anti-inflammatory agents in 

ginseng. The iNOS (inducible nitric oxide synthase), MAPK (mitogen-activated protein kinase) 

kinases such as p38, ERK1/2 (extracellular signal-regulated kinases 1/2), PI3K (phosphoinositide 

3-kinase), and NF-kB (nuclear factor kappa B) signaling pathways may mediate the stimulation 

and suppression of LPS induced NO, TNF-α and IL-6 production effects observed in ginseng AQ 

and ALC extracts respectively as studies using ginseng AQ [12, 37] and ALC [17] extracts has 

demonstrated such.   

ALC extract suppressed AQ extract up-regulation of macrophage NO production, suggesting that 

consumption of both AQ and ALC extracts will lead to the loss of AQ extract 

immunostimulatory health benefit. Findings on the extract-specific immunomodulatory effect 

have significant implications in the safety, manufacturing, production, development and 

regulation of products based on ginseng extracts. It is unknown whether the use of organic 



 

97 

 

solvents or the extraction protocol may influence the potency and characteristics of the extracts 

of other ginseng species. It is imperative to carry out a systematic analysis of the physiochemical 

characteristics of various ginseng extracts to determine how these parameters may influence their 

immunomodulatory properties. The present study provides a lead for identifying 

immunobioactive constituents of ginseng. 

 

3.7 Conclusion 

ALC extract of American ginseng, its novel macromolecule (devoid of PS) and ginsenoside 

fractions are immunoinhibitory whereas the AQ extract and its PS phytochemical are 

immunostimulatory. These extract-related anti-inflammatory and pro-inflammatory effects may 

be considered as the paradoxical immunomodulatory actions of ginseng. 
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Chapter 4 
 

STIMULATION AND SUPPRESSION OF INNATE 

IMMUNE FUNCTION BY AMERICAN GINSENG 

POLYSACCHARIDES: BIOLOGICAL RELEVANCE 

AND IDENTIFICATION OF BIOACTIVES  

This chapter has been reproduced in part from:  

1. Edmund MK Lui,  Chike G Azike, José A Guerrero-Analco, Sherif J Kalda,  Ahmad A 

Romeh, Hua Pei, John T Arnason, Paul A Charpentier (2012). Bioactive Polysaccharides of 

American Ginseng Panax quinquefolius L. in Modulation of Immune Function: Phytochemical 

and Pharmacological Characterization. The Complex World of Polysaccharides. InTech 

Publications. Chapter 19, 513-534. 
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4.1 Introduction 

The immune system consists of both innate and adaptive immunity components. Fast acting 

macrophage-mediated innate immunity is the first step in the recognition, destruction and 

removal of microbial pathogens in a host. Macrophages kill pathogens and cancer cells directly 

via phagocytosis and indirectly via the production of various proinflammatory mediators (e.g. 

nitric oxide [NO]) and cytokines (e.g. tumor necrosis factor-alpha [TNF-α]) [1]. During 

microbial infection caused by Gram negative bacteria, lipopolysaccharide (LPS) endotoxin 

stimulates innate macrophage cells by binding to their Toll-like receptor 4 (TLR-4), and this 

induces down-stream intracellular events, activates kinases and transcription factors leading to 

production of proinflammatory mediators [2].  

However, excessive macrophage stimulation by LPS during Gram negative bacteria infection 

generates uncontrolled production of proinflammatory mediators evoking harmful inflammatory 

response such as endotoxemia. Endotoxemia is characterized by fever, hypotension, myocardial 

dysfunction, acute respiratory failure, and multiple organ failure. Currently, antibiotics are used 

in the prophylaxis and therapy of endotoxemia [2-6]. The ability to detoxify or neutralize LPS 

immunotoxicity is a desired requirement for future bioactive compounds against endotoxemia [7, 

8]. Considering the problematic rise of microbial infections and their resistance to synthetic 

antimicrobial agents and naturally derived antibiotics, a key immunotherapeutic strategy to 

address this challenge will be to identify immunomodulatory agents which can interact with host 

immune response defense in such a way as to neutralize or inhibit LPS from triggering excess 

macrophage production of proinflammatory mediators [9]. The innate immunity (e.g. 

macrophage function) of a host which is responsive to LPS is also a known target for plant 

polysaccharides which are biological response modifiers that can up-regulate or down-regulate 
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macrophage production of proinflammatory mediators [9-10]. Macrophage activation by plant 

polysaccharides is mediated via their binding to macrophage TLR-4 during initial phase of the 

immune response. Activation of this receptor leads to intracellular signaling cascades, resulting 

in transcriptional factor activation and the production of proinflammatory mediators which kills 

pathogenic microorganisms [9]. Interestingly, polysaccharides from medicinal plants such as 

Tripterygium wilfordii have been reported to suppress LPS-induced macrophage stimulation 

[11]. The use of plant polysaccharides as a new approach for the prophylaxis of LPS mediated 

diseases like endotoxemia may be dependent on their ability to inhibit LPS signaling pathways, 

which will lead to the down-regulation of macrophage production of proinflammatory mediators.  

Ginseng root is a multi-action herb, with ginsenosides and polysaccharides being the main 

bioactive components [12-13]. Previously, ginsenosides were considered to be responsible for 

most of ginseng's pharmacological effects; however, recent studies indicate that ginseng 

polysaccharides (PS) also possess a wide range of biological activities. These include 

immunomodulation, anti-tumor, anti-oxidation, anti-depression, and hypoglycemia [14-18]. 

Water soluble PS that can be extracted from ginseng root constitute about 10% of its dry weight.  

These hydrophillic macromolecules are formed from complex chains of monosaccharides, such 

as L-arabinose, D-galactose, L-rhamnose, D-galacturonic acid, D-glucuronic acid and D-

galactosyl residues linked together through glycosidic bonds [19-21]. The monosaccharide 

composition of American ginseng root polysaccharides (AGRPS) used in this study have been 

reported to contain glucose, galactose, arabinose, rhamnose and galacturonic acid [22], which is 

similar to that described previously [20, 23, 24]. Ginseng PS are known to exist as either acidic 

or neutral forms, and are believed to be heterogeneous in nature, with molecular weights ranging 

from 3.5 to 2000 kDa [15, 20-21, 23, 25-27]. Ginseng root polysaccharides (GRPS) are generally 
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known for their immunostimulatory effects [28, 24, 29-31], although recent studies suggests that 

they also suppress induced proinflammatory responses. Zhao et al. (2011) reported GRPS 

inhibited immunological response associated with collagen-induced arthritis [32]. Intravenous 

treatment of mice with GRPS was reported to exert a protective effect against Staphylococcus 

aureus-infected septic mice by suppressing early acute inflammation [33- 34]. One recent study 

has also revealed that intranasal and intravenous administered GRPS showed a protective effect 

on influenza viral infection by lowering levels of inflammatory cytokine (IL-6) and lung viral 

titers [35]. The examination of GRPS immunopharmacological effect under LPS endotoxic 

condition will shed light if GRPS can exhibit a beneficial prophylactic effect against LPS 

mediated immune and inflammatory disease conditions like endotoxemia. It’s possible that 

GRPS may inactivate signaling molecules which may account for its ability to suppress an 

induced proinflammatory immune response. 

In view of the reported paradoxical immunomodulatory effects of ginseng polysaccharides, 

investigation was performed to determine the effects of AGRPS extract on basal immune 

function, and whether or not this treatment will also suppress LPS immunologic response ex vivo 

and in vivo. Physicochemical properties such as water solubility, ionic charge and molecular 

weight, are known to affect the biological activity of polysaccharides, including 

immunomodulation [36-38]. An in vitro mechanistic study was used to identify the bioactive 

fractions responsible for AGRPS immunobioactivities. For the in vitro mechanistic study, 

AGRPS extract was separated into ionic charge (acidic and neutral) and molecular weight sub-

fractions using ion exchange chromatography and ultrafiltration respectively. The different 

fractions of AGRPS extract was subsequently examined for their immunobioactivities.  
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4.2 Materials 

4.2.1 Ginseng test materials. Four-year-old American ginseng (Panax quinquefolius) roots 

collected in 2007 from five different farms in Ontario, Canada were provided by the Ontario 

Ginseng Growers Association [31].  

4.2.2 Chemicals and biologicals 

Superdex G-200 was purchased from GE Healthcare Bio-Sciences AB (Sweden). Amicon ultra-

15 centrifugal filter units with molecular weight cut-off pore size of 100 KDa, 50 KDa, 30 KDa 

and 10 KDa were purchased from Millipore (USA). Cellu Sep H1® dialysis bags with a 

molecular weight cut-off pore size of 2 KDa were purchased from Membrane Filtration Products, 

Inc. (USA). The diethylaminoethyl (DEAE)-Cellulose was purchased from Sigma (Oakville, 

Ontario). All other chemicals were of analytical grade and used as received. Cell culture medium 

and reagents were purchased from Gibco laboratories (USA). BD OptEIA ELISA kits tumour 

necrosis factor-α and interleukin-6 (BD Biosciences, USA). Purified LPS from Escherichia coli 

serotype 0111:B4 and Griess reagent were purchased from Sigma-Aldrich (USA). The RAW 

264.7 (ATCC TIB 67) murine macrophage cell lines were provided by Dr. Jeff Dixon 

(Department of Physiology and Pharmacology, University of Western Ontario, Canada). 

4.3 Animals 

Adult male Sprague-Dawley rats weighing 200–250g (purchased from Charles River, St. 

Constant, QC, Canada) were used. The Animal Ethics Review Committee of the University of 

Western Ontario approved the study (Protocol No: 2009-070). 
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4.4 Methods 

4.4.1 Preparation of Aqueous and AGRPS Extracts  

Dried ginseng root samples were shipped to Naturex (USA) for extraction. Samples were ground 

between ¼ and ½ inch and used to produce the aqueous (AQ) extract. Briefly, 4kg ground 

ginseng roots were soaked three times during five hours in 16 L of water solution at 40°C. After 

extraction, the solution was filtered at room temperature. The excess solvent was then removed 

by a rotary evaporator under vacuum at 45°C. The three pools were combined and concentrated 

again until the total solids on a dry basis were around 60%. The Central Laboratory of Ontario 

Ginseng Research & Innovation Consortium (OGRIC) lyophilized these concentrates with a 

freeze dryer (Labconco, USA) at -50°C under reduced pressure to produce AQ ginseng extract in 

powder form. Yield of the powder extract from the concentrates was about 66%. The yield of the 

final extract (mean ± standard deviation of % extractive) from the initial ground root was 

41.74±4.92 for the AQ extract. 

A solution of AQ extract in distilled water (1g/10mL) was prepared, and the crude AGRPS was 

precipitated by the addition of four volumes of 95% ethanol. The mixture was left for 1 hr at 

room temperature for precipitation to occur. The crude AGRPS was collected by centrifugation 

at 350×g (Beckman Model TJ-6, USA) for 10 minutes and lyophilized to produce crude AGRPS 

fraction with a yield of about 10 %. The crude AGRPS (10 g) was re-dissolved in 300 mL of 

water and partitioned five times with Sevag reagent (1:4 n-butanol:chloroform, v/v, 100 mL 

each) to remove proteins and produce AGRPS [39]. AGRPS was precipitated again by ethanol 

and lyophilized to produce a light brownish AGRPS extract which was used for the 

pharmacological and phytochemical studies. 
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4.4.2 Ex vivo and In vivo Pharmacological Evaluation 

4.4.2.1 Ex vivo study to evaluate immunostimulation and suppression of LPS response 

Adult male rats (n = 5 per group) were randomly divided into both a sham control and treatment 

groups. The treatment group received 125 mg/kg of AGRPS or AQ extract dissolved in saline by 

oral gavage once daily for 3 or 6 consecutive days. The sham control group received saline 

orally. Animals were anesthetized with intramuscular injection of ketamine 80 mg/kg and 

xylazine 5 mg/kg and the trachea was cannulated for lung BAL with Dulbecco’s phosphate-

buffered saline (PBS) at 37°C to collect alveolar macrophages which were then cultured without 

or with LPS for 24hr and maintained at 37°C in a humidified incubator with 5% CO2. The ex 

vivo alveolar macrophage NO production from each animal was determined in triplicates. All 

experiments were done only once. 

4.4.2.2 In vivo study to evaluate immunostimulation and suppression of LPS response 

The rats (n = 5 per group) were given a single daily dose of 125 mg/kg AGRPS or AQ extract in 

saline by oral gavage for 6 consecutive days. The sham control group (n = 5) received saline 

orally. Animals were anesthetized with intramuscular injection of ketamine 80 mg/kg and 

xylazine 5 mg/kg and blood was collected into heparinized tubes by intracardiac puncture, 

samples were then immediately centrifuged at 3500×g (Beckman Model TJ-6, USA) for 10 

minutes and the plasma was separated, aliquoted and stored at -20 °C until use. Plasma TNF-α 

cytokine levels were measured as a marker for immunostimulation. To evaluate suppression of 

LPS induced immunological response, rats (10 treated with ginseng and 5 which received saline) 

were challenged with 5 mg/kg LPS intraperitoneal (IP) injection 24 hr after the last dose of 

ginseng or saline. Animals were examined 2hr later based on studies revealing that systemic 
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TNF-α cytokine production peaks 2hr after a LPS challenge [40-42]. The plasma TNF-α level in 

each animal was determined in triplicate. All experiments were done only once. This 

immunosuppression model was validated in past studies by other investigators to evaluate the 

immunomodulatory effects of orally administered pharmacological agents [43, 44].  

4.4.2.3 Quantification of NO and TNF-α    

TNF-α in culture medium and plasma was measured by ELISA using rat cytokine-specific BD 

OptEIA enzyme-linked immunosorbent assay (ELISA) kits (BD Biosciences, USA) according to 

the manufacturer’s protocol. Nitrite accumulation in the culture media was measured as an 

estimate of NO production using Griess reagent (Sigma-Aldrich, USA) as previously described 

in chapter three. 

4.4.2.4 Lung Histochemical Study 

Immediately after the collection of blood samples from the anesthetized rats used in the in vivo 

study, the lung samples of the right and left lobes from each rat were removed following animal 

sacrifice by thoracotomy. The lung samples (four from both lobes) were fixed with 10% 

formaldehyde solution at room temperature. The lung tissues were embedded in paraffin and cut 

into 5 mm sections and then stained with hematoxylin & eosin (H&E) by the London Laboratory 

Services Group of London Health Sciences Centre. Images of histopathologic changes in the 

lung tissues were observed under a light microscope. 

4.4.3 Ion exchange Chromatography of AGRPS  

AGRPS extract (3 g) was dissolved in water (200 mL) and loaded on a DEAE-Cellulose column 

(2.5 X 40 cm) pre-equilibrated with distilled water. The column was eluted first with 1.0 L of 
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distilled water at a flow rate of 1 mL/min to obtain the unbound or neutral fraction and then with 

1.0 L of 0.5 M sodium chloride (NaCl) to obtain the bound or acidic fraction. Absorbance of the 

eluates was monitored at 230 nm (wave length of maximum absorption for AGRPS determined 

from a UV scan) and 5 mL fractions were collected. The fractions were concentrated, dialyzed 

with Cellu Sep H1® dialysis bags (cut off pore size of 2 KDa) against water and freeze dried to 

give 0.9 g (30 % yield) of the neutral PS fraction and 0.36 g (12% yield) of the acidic PS 

fraction.  

4.4.4 Size Exclusion Chromatography via Superdex G-200 Fractionation of Acidic PS 

Five hundred milligrams of acid PS was dissolved in 5 mL distilled water and then fractionated 

by loading onto a Superdex G-200 column (40×2.5 cm) equilibrated and eluted with distilled 

water mobile phase at 4°C with a flow rate of 1 mL/min. Absorbance of the eluates was 

monitored at 230 nm and 5 mL fractions were collected. 

4.4.5 Fractionation of Acidic PS via Ultrafiltration 

Acidic PS (20 mg) was dissolved in 20 mL of water and 15 mL was placed in a 100 kDa amicon 

ultra-15 centrifugal filter unit (15mL capacity) and centrifuged at 3500×g (Beckman Model TJ-6, 

USA) for 30 minutes. The fraction with molecular weight of 100 kDa and above (≥100 kDa)  

were retained on the filter unit, while the fraction of less than 100 kDa in the filtrate obtained 

from this process was then placed in a 50 kDa amicon ultra-15 centrifugal filter unit and 

centrifuged as indicated above. The fraction with molecular weight of less than 100 and above 50 

kDa (50 - 100 kDa) were retained on the filter unit, while the fraction of less than 50 kDa in the 

filtrate obtained from this process was then placed in a 30 kDa amicon ultra-15 centrifugal filter 

unit and centrifuged as indicated above. The fraction with molecular weight of less than 50 and 
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above 30 kDa (30 - 50 kDa) were retained on the filter unit, while the fraction of less than 30 

kDa in the filtrate obtained from the above mentioned process was then placed in a 10 kDa 

amicon ultra-15 centrifugal filter unit and centrifuged as indicated above. The fraction with 

molecular weight of less than 30 and above 10 kDa (10 - 30 kDa) was retained on the filter unit. 

Ten mL of distilled water was used to wash and remove the acidic PS fractions with different 

molecular weights ≥100 kDa, 50 - 100 kDa, 30 - 50 kDa, 10 - 30 kDa retained on the filter units 

after which they were lyophilized at -50°C under reduced pressure (Labconco, USA). 

4.4.6 In vitro Pharmacological Evaluation 

4.4.6.1 Cell culture 

Mouse macrophage cell line RAW 264.7 (grown to 60-80% confluence, and subjected to no 

more than 20 cell passages from Dr. Jeff Dixon) was cultured in RPMI-1640 medium 

supplemented with 10% Fetal Bovine Serum, 25 mM HEPES, 2 mM Glutamine, 100 IU/ml 

penicillin and 100 μg/ml streptomycin. Cells were seeded in 96-well tissue culture plates at a 

density of 2×10
5
 cells per well and maintained at 37°C in a humidified incubator with 5% CO2. 

To collect rat alveolar macrophages animals were anesthetized with intramuscular injection of 

ketamine 80 mg/kg and xylazine 5 mg/kg and the trachea was cannulated for lung 

bronchoalveolar lavage (BAL) using 10-mL syringe with three 10ml washes of PBS at 37°C. 

Fluid recovered from BAL was then centrifuged at 1000 rpm for 5 minutes. Cells were 

immediately cultured in RPMI-1640 medium supplemented with 10% Fetal Bovine Serum 

(FBS), 25 mM HEPES, 2 mM Glutamine, 100 IU/mL penicillin and 100 μg/ml streptomycin in 

96-well tissue culture plates, at a density of 2×10
5
 cells per well at 37°C maintained in a 

humidified incubator with 5% CO2. 
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4.4.6.2 Cell treatment 

4.4.6.2.1 Immunostimulatory effect 

Macrophages were treated with 0, 5, 10, 20, 50, and 100 μg/mL (RAW 264.7 cell line)  or 0, 50, 

100 or 200 μg/mL (rat alveolar macrophages) of AGRPS and AQ extracts, acidic and neutral PS 

fractions for 24 hr, maintained at 37°C in a humidified incubator with 5% CO2. Aliquots of 

culture medium were collected  and frozen at -20°C until ready for NO and TNF-α analysis. The 

experiments were performed in triplicate on three independent occasions.   

4.4.6.2.2 Indirect Suppression of LPS immunological response 

To examine the indirect inhibitory effect on LPS stimulation in vitro, macrophages were 

pretreated with 0, 5, 10, 20, 50 and 100 μg/mL (RAW 264.7 cell line) or 0, 50, 100 or 200 μg/mL 

(rat alveolar macrophages) of AGRPS and AQ extracts, acidic and neutral PS fractions for 24hr 

and maintained at 37°C in a humidified incubator with 5% CO2. Thereafter macrophages were 

washed twice with culture medium and then treated with 1μg/mL of LPS to determine the 24 

hour cytokine response. The experiments were performed in triplicates on three independent 

occasions. 

4.5 Statistical analysis 

All statistical analyses were performed with GraphPad prism 4.0a Software (GraphPad Software 

Inc., USA). Data were presented as the mean ± standard deviation (SD) for all experiments. Data 

sets were evaluated by one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test. 

P<0.05 was considered to be statistically significant. 
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4.6 Results 

4.6.1 Ex vivo Immunomodulatory Effects of AGRPS and AQ extracts 

Oral treatment of rats with AGRPS and AQ extracts for 3 and 6 days produced stimulation of 24 

hr ex vivo cultured alveolar macrophages (Figures 4.1A and 4.2A) which are higher than sham 

control as determined by increased production of nitrite, a marker for NO. Only the 6 days 

AGRPS extract treatment production of NO reached 50% of the LPS positive control (Figure 

4.1A), while similar magnitude of response was observed in both the 3 and 6 days AQ extract 

treatments (Figure 4.2A). The 6 days treatment of AGRPS extract gave two times higher NO 

production compared to that of the 3 days AGRPS extract treatment. Hence AGRPS extract 

immunostimulatory response is time-dependent while that of AQ extract is not. 

The responsiveness of macrophages collected from the 6 days AGRPS and AQ extract treated 

animals to LPS stimulation ex vivo showed about 50% reduction in NO production as compared 

to the non-ginseng treated controls (Figures 4.1B and 4.2B). The 3 days AGRPS and AQ extract 

treatments did not suppress LPS immunological response. Hence AGRPS and AQ extracts 

suppression of LPS induced immunological response is time-dependent.  

Macrophage stimulation is not a requirement to induce suppression of LPS since the 3 days 

AGRPS and AQ extract treatments was found to exert immunostimulation but did not suppress 

the LPS response as observed in the 6 days treatment. The 6 days AGRPS and AQ extract 

treatments exerted both immunostimulation and loss of LPS responsiveness. These data show 

that orally administered AGRPS and AQ extract has both immunostimulatory and suppression of 

LPS induced immunological effects.  
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Figure 4.1 - Orally administered AGRPS extract: (A) elevated NO production and (B) reduced 

LPS-stimulated NO production ex vivo in cultured alveolar macrophages. Alveolar macrophages 

of rats (n = 5 per group) treated orally with saline (sham control) or 125 mg/kg AGRPS extract 

for 3 and 6 days were cultured for 24 hr to measure production of NO (quantified as nitrite 

production). To determine responsiveness to LPS stimulation, ginseng treated macrophages were 

exposed to 1ug/ml LPS in culture to determine changes in 24 hr NO production. The ex vivo 

alveolar macrophage NO production from each animal was determined in triplicate and the data 

were shown as mean ± SD. Datasets were evaluated by ANOVA. * Values P<0.05 compared to 

the untreated control were statistically significant.  
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Figure 4.2 - Orally administered AQ extract: (A) elevated NO production and (B) reduced LPS-

stimulated NO production ex vivo in cultured alveolar macrophages. Alveolar macrophages of 

rats (n = 5 per group) treated orally with saline (sham control) or 125 mg/kg AQ extract for 3 and 

6 days were cultured for 24 hr to measure production of NO (quantified as nitrite production). To 

determine responsiveness to LPS stimulation, ginseng treated macrophages were exposed to 

1ug/ml LPS in culture to determine changes in 24 hr NO production. The ex vivo alveolar 

macrophage NO production from each animal was determined in triplicate and the data were 

shown as mean ± SD. Datasets were evaluated by ANOVA. * Values P<0.05 compared to the 

untreated control were statistically significant.  
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4.6.2 In vivo Immunomodulatory Effect of AGRPS and AQ extracts  

In light of the observed AGRPS and AQ extracts ex vivo effects on stimulation and suppression 

of LPS induced stimulation of alveolar macrophage immune function, additional studies were 

carried out in vivo to determine the pharmacological relevance in whole animal response. The 6 

days treatment with AGRPS and AQ extracts elevated plasma TNF-α levels compared to the 

untreated control (Figure 4.3A), suggesting AGRPS extract was more effective. The observed in 

vivo immunostimulatory effects of AGRPS and AQ extracts were very small when compared 

with that of 5mg/kg LPS. The LPS treatment resulted in marked elevation of plasma TNF, while 

pretreatment with AGRPS and AQ extracts suppressed LPS induced plasma TNF-α level by 78% 

and 38% respectively (Figure 4.3B).  

To determine whether the suppression of LPS-induced plasma TNF-α level by ginseng extracts 

has any impact on organ dysfunction in LPS-treated animals, lung histology was evaluated. As 

shown in Figure 4.4, 2hrs LPS challenge (5mg/kg) did not cause lung morphological and 

histopathological damages as demonstrated by the absence of neutrophils infiltration from the 

interalveolar septa into the alveolar space and the absence of alveolar hemorrhage. The 6 days 

oral AGRPS and AQ extract pretreatments prior to LPS exposure have similar morphology as the 

LPS challenge and sham control (Figure 4.5). There is dissociation between the changes of 

plasma TNF-α cytokine production and the lung response. 
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Figure 4.3 - Immunostimulatory and suppression of LPS induced immunological effects of 

AGRPS or AQ extract treatment in vivo. To evaluate imunostimulation, the rats (n = 5 per group) 

were treated orally with saline (sham control) or 125mg/kg AGRPS extract or 125mg/kg AQ 

extract for 6 days. To evaluate suppression of LPS, the 6 days AGRPS and AQ extract treated 

rats were challenged for 2hr with 5mg/kg LPS (IP) injection 24 hr after the last dose of saline or 

AGRPS extract or AQ extract. Plasma TNF-α cytokine concentrations were determined by 

ELISA. The plasma TNF-α level in each animal was determined in triplicate and the data were 

shown as mean ± SD. Datasets were evaluated by ANOVA. * Values P<0.05 compared to the 

untreated control (immunostimulatory effect) were statistically significant. * **Values P<0.05 

compared to the LPS positive control.   
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                                                              Control Group  
                                                                                                                  

    
 

 

 

 

                                                                  LPS Group  

 

   

Figure 4.4 – Lung histochemical study of Saline (Control) and LPS treated rats (magnification x40).  

The rats (n = 5 per group) received saline orally or 5mg/kg LPS (IP) injection. Lungs were processed 

for histochemical study at the end of 2hrs right after LPS challenge. The diagrams show the alveolar 

space surrounded by the interalveolar septa containing neutrophils are indicated by the arrows. 
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                                                               LPS + AGRPS Extract Group  

 

   
 

 

 

                                                               LPS + AQ Extract Group 
 

    

Figure 4.5 - Lung histochemical study of AGRPS and AQ extract treated rats after LPS Challenge 

(magnification x40). The rats (n = 5 per group) were orally administered with AGRPS or AQ extracts 

(125mg/kg) prior to 5mg/kg LPS (IP) injection. Lungs were processed for histochemical study at the 

end of 2hrs right after LPS challenge. The diagrams show the alveolar space surrounded by the 

interalveolar septa containing neutrophils are indicated by the arrows. 
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4.6.3 Mechanistic Identification of immunobioactive components of AGRPS  

To identify the immunobioactive fractions of AGPS extract, the extract was fractionated into 

acidic and neutral species by ion exchange chromatography, which was then fractionated further 

according to molecular size by size exclusion chromatography via Superdex G-200 fractionation 

and ultrafiltration fractionation. 

4.6.3.1 Ion Exchange Chromatography of AGRPS  

Ion exchange chromatography was used to separate AGRPS extract into both acidic (12.0%) and 

neutral fractions (30.0%). The chromatogram from the ion exchange chromatographic procedure 

showed the presence of two peaks. The first peak which eluted with the distilled water mobile 

phase corresponds to the neutral fraction, while the second peak which eluted with the 0.5M 

NaCl mobile phase corresponds to the acidic fraction. After lyophilization, the resulting neutral 

fraction was a white cottony substance while the acidic fraction was a light brownish substance 

similar to AGRPS extract. About 58.0% of the AGRPS materials were not recovered from the 

chromatographic procedure.  
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Figure 4.6 – DEAE-cellulose Ion exchange Column (40 × 2.5 cm) chromatographic 

fractionation of the AGRPS into neutral PS fraction and acidic PS fraction. The column was 

loaded with 3g of AGRPS extract, and then eluted sequentially with 1000mL distilled water, 

followed by 1000mL 0.5M NaCl at flow rate of 1mL/min to obtain the neutral and acidic PS 

fractions respectively. The y-axis is the absorbance at 230 nm while the x-axis represents the 

elution volume (mL). 
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4.6.3.2 Size Exclusion Chromatography of Acidic PS 

To perform activity guided fractionation of acidic PS, size exclusion chromatography with the 

aid of a Superdex G-200 column was then used as an analytical technique to examine in more 

detail the acid PS component. As shown in Figure 4.7, the acidic PS constitutes phytochemicals 

of different molecular weights with peaks which were poorly separated by the Superdex G-200 

column chromatographic technique. Ultrafiltration with molecular weight cut-off of 100 kDa, 50 

kDa, 30 kDa and 10 kDa was used as an alternative tool to separate the acid PS into 4 major 

fractions of different molecular weights (≥100 kDa, 50 - 100 kDa, 30 - 50 kDa, 10 - 30 kDa). 

The immunobioactivities of these fractions were then evaluated. 
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Figure 4.7 – Superdex G-200 size exclusion column (40 × 2.5 cm) chromatographic 

fractionation of acid PS. The column was loaded with 500mg of acid PS, and then eluted with 

700mL distilled water at flow rate of 1mL/min. The y-axis is the absorbance at 230 nm while the 

x-axis represents the elution volume (mL). 
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4.6.3.3 In vitro immunostimulatory effect of AGRPS and AQ extracts, Acidic and Neutral  

            fractions isolated from AGRPS  

The in vitro mechanistic study revealed that AGRPS extract, AQ extract and acidic PS 

significantly up-regulated murine cell line and rat alveolar macrophage production of NO 

(nitrite) and TNF-α compared to the untreated control in a dose-dependent manner. Figures 4.8 

and 4.9 showed the influence of ionic charge (acidic PS and neutral PS fractions) on AGRPS 

modulation of macrophage function in vitro. The immunostimulatory effects of AGRPS extract, 

AQ extract and acidic PS show a biphasic dose-response relationship, exhibited by a marked 

increase in effect at the low dose range. The mechanistic study also indicated that neutral PS did 

not stimulate production of NO, but showed some significant stimulation of TNF-α production. 

Figure 4.10 shows the interaction between acidic PS and neutral PS using the composite mixture 

that simulates the 12% acidic PS fraction and 30% neutral PS yield (ratio 1:2.5 of acidic PS: 

neutral PS) obtained from the ion exchange chromatographic procedure. This investigation 

revealed that neutral PS enhances the immunostimulatory effect of acidic PS.   
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(ii) AQ extract 
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Figure 4.8 - Immunostimulatory effects of AGRPS and AQ extracts, acidic and neutral PS fractions  

                     on 24 hours murine macrophage production of (A) NO and (B) TNF-α in vitro 
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Figure 4.8 - Immunostimulatory effects of AGRPS and AQ extracts, acidic and neutral PS 

fractions on 24 hours murine macrophage production of (A) NO and (B) TNF-α in vitro. Murine 

macrophages (RAW 264.7 cell line) were treated with 0, 5, 10, 20, 50, 100 μg/mL of AGRPS 

and AQ extracts, acidic and neutral PS fractions for 24 hours. The culture supernatants were 

analyzed for NO and TNF-α by Griess reaction assay and ELISA, respectively. Cells treated with 

LPS (1 μg/mL) were used as positive controls. The experiments were performed in triplicate at 

three independent times and the data were shown as mean ± SD.  Datasets were evaluated by 

ANOVA. * Values P < 0.05 compared to the untreated (vehicle) control were statistically 

significant. 
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Figure 4.9 - Immunostimulatory effects of AGRPS and AQ extracts, acidic and neutral PS fractions on  

                     24 hours rat alveolar macrophage production of (A) NO (nitrite) and (B) TNF-α in vitro 
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Figure 4.9 - Immunostimulatory effects of AGRPS and AQ extracts, acidic and neutral PS 

fractions on 24 hours rat alveolar macrophage production of (A) NO (nitrite) and (B) TNF-α in 

vitro. Rat alveolar macrophages were treated with 0, 5, 10, 20, 50, 100 μg/mL of AGRPS and 

AQ extracts, acidic and neutral PS fractions for 24 hours. The culture supernatants were analyzed 

for NO and TNF-α by Griess reaction assay and ELISA, respectively. Cells treated with LPS (1 

μg/mL) were used as positive controls. The experiments were performed in triplicates at three 

independent times and the data were shown as mean ± SD.  Datasets were evaluated by 

ANOVA. * Values P < 0.05 compared to the untreated (vehicle) control were statistically 

significant. 
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Figure 4.10 - Comparison of composite mixture (12% acidic PS fraction and 

                       30% neutral PS yield), acidic PS, neutral PS fractions immunostimulatory  

                       effects on 24 hours macrophage production of NO (nitrite) in vitro 
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Figure 4.10 - Comparison of composite mixture (12% acidic PS fraction and 30% neutral PS 

yield), acidic PS, neutral PS fractions immunostimulatory effects on 24 hours macrophage 

production of NO (nitrite) in vitro. Murine macrophages (RAW 264.7 cells) were treated with 0, 

5, 10, 20, 50, 100 μg/mL of composite mixture, acidic PS, neutral PS fractions for 24 hours. The 

culture supernatants were analyzed for NO by Griess reaction assay, respectively. Cells treated 

with LPS (1 μg/mL) were used as positive controls. The experiments were performed in 

triplicates at three independent times and the data were shown as mean ± SD.  Datasets were 

evaluated by ANOVA. * Values P < 0.05 compared to the untreated (vehicle) control were 

statistically significant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 

 

4.6.3.4 In vitro immunostimulatory effect of different molecular weight fractions isolated  

         from Acidic PS  

Since the acidic PS showed more immunostimulatory effect in the bioassay results as shown in 

Figures 4.8-4.9, ultrafiltration was used to fractionate the acidic PS into different molecular 

weight fractions (i.e. ≥100 kDa, 50 - 100 kDa, 30 - 50 kDa and 10 - 30 kDa) to evaluate the 

influence of molecular weight on AGRPS extract immunobioactivities. As a continuation of the 

mechanistic study, Figure 4.11 shows the influence of different molecular weight fractions of 

acidic PS on AGRPS extract modulation of macrophage function in vitro. The ≥100 kDa and 50 

- 100 kDa molecular weight fractions of acidic PS enhanced macrophage production of NO 

(nitrite) and TNF-α compared to the untreated control. The 30 - 50 kDa and 10 - 30 kDa 

molecular weight fractions of acidic PS were devoid of stimulating NO production, though they 

did slightly exhibit some TNF-a production. Hence, high molecular weight (≥100 kDa and 50 - 

100 kDa) is a vital property for AGRPS extract to exert an immunostimulatory effect.    

 

 

 

 

 

 

 



 

133 

 

 

                    (A) NO Production                                             (B)   TNF-α Production 

(i) ≥100 kDa Acidic PS fraction  

0 10 20 50
100

LPS

0

50

100

150

*

*

*
* *

Treatment Concentration (ug/mL)

N
itr

ite
 P

ro
du

ct
io

n 
(u

M
)

                     

0 10 20 50
100

LPS
0

1000

2000

3000

4000

5000

*

*

*

*

*

Treatment Concentration (g/mL)

TN
F-


 P
ro

du
ct

io
n 

(p
g/

m
L)

    

(ii) 50 - 100 kDa Acidic PS fraction  

0 10 20 50
100

LPS
0

20

40

60

80

100
*

* *
*

*

Treatment Concentration (ug/mL)

Ni
tr

ite
 P

ro
du

ct
io

n 
(u

M
)

                    

0 10 20 50
100

LPS
0

1000

2000

3000

4000

5000

*
* *

*
*

Treatment Concentration (g/mL)

TN
F-


 P
ro

du
ct

io
n 

(p
g/

m
L)

  

(iii) 30 - 50 kDa Acidic PS fraction 

0 10 20 50
100

LPS

0

20

40

60

80

100

Treatment Concentration (g/mL)

N
iit

rit
e 

P
ro

du
ct

io
n 

( 
M

)

                      

0 10 20 50
100

LPS
0

1000

2000

3000

4000
*

*

*

Treatment Concentration (g/mL)

TN
F-
 

Pr
od

uc
tio

n 
(p

g/
m

L)

 

(iv) 10 - 30 kDa Acidic PS fraction 

0 10 20 50
100

LPS
0

20

40

60

80

100 *

Treatment Concentration (g/mL)

Ni
itr

ite
 P

ro
du

ct
io

n 
( 

M
)

                  

0 10 20 50
100

LPS
0

1000

2000

3000

4000
*

*

*

Treatment Concentration (g/mL)

TN
F-
 

Pr
od

uc
tio

n 
(p

g/
m

L)

 

Figure 4.11 - Immunostimulatory effects of acidic PS fractions ≥100 kDa, 50 - 100 kDa,  

                       30 - 50 kDa, 10 - 30 kDa on 24 hours macrophage production of NO in vitro 



 

134 

 

Figure 4.11 - Immunostimulatory effects of acidic PS fractions ≥100 kDa, 50 - 100 kDa, 30 - 50 

kDa, 10 - 30 kDa on 24 hours macrophage production of NO in vitro. Murine macrophages 

(RAW 264.7 cells) were treated with 0, 10, 20, 50, 100 μg/mL of acidic PS fractions ≥100 kDa, 

50 - 100 kDa, 30 - 50 kDa, 10 - 30 kDa for 24 hours. The culture supernatants were analyzed for 

NO (nitrite) by Griess reaction assay. Cells treated with LPS (1 μg/mL) were used as positive 

controls. The experiments were performed in triplicates at three independent times and the data 

were shown as mean ± SD. Datasets were evaluated by ANOVA. * Values P < 0.05 compared to 

the untreated (vehicle) control were statistically significant.   
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4.6.3.5 In vitro suppression of LPS-induced stimulation by AGRPS and AQ extracts, Acidic  

            and Neutral fractions isolated from AGRPS  

The mechanistic study data presented in Figures 4.12 and 4.13 shows the inhibitory effect of 24 

hr pre-conditioning with ginseng on 24 hr accumulation of NO (nitrite) and TNF produced by 

murine cell line and rat alveolar macrophage induced by LPS challenge. In the absence of 

ginseng precondition, LPS induced a marked NO and TNF response. AGRPS extract, AQ extract 

and acidic PS significantly suppressed LPS stimulated 24-hour production of NO and TNF-α. 

Neutral PS had no significant effect suggesting that acidic PS is critical in AGRPS extract 

suppression of LPS induced immunological response. 

Bioassay of the composite mixture (simulating the 12% acidic PS fraction and 30% neutral PS 

yield obtained from the ion exchange chromatographic procedure) as seen in Figure 4.14, 

revealed that neutral PS enhances acidic PS suppression of LPS immunological response.   
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Figure 4.12 - Effects of AGRPS and AQ extracts, acidic and neutral PS fractions on LPS-stimulated  

                       24 hours murine macrophage production of (A) NO (nitrite) and (B) TNF-α in vitro 
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Figure 4.12 - Effects of AGRPS and AQ extracts, acidic and neutral PS fractions on LPS-

stimulated 24 hours murine macrophage production of (A) NO (nitrite) and (B) TNF-α in vitro. 

Murine macrophages (RAW 264.7 cells) were pretreated AGRPS and AQ extracts, acidic and 

neutral PS fractions (0, 5, 10, 20, 50, 100μg/mL) for 24 hours and were washed before challenge 

with LPS 1 μg/mL. The LPS-stimulated 24 hours production of NO and TNF-α were determined 

by Griess reaction assay and ELISA, respectively. The experiments were performed in triplicates 

at three independent times and the data were shown as mean ± SD. Datasets were evaluated by 

ANOVA. * Values P < 0.05 compared to the LPS positive control were statistically significant.  
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Figure 4.13 - Effects of AGRPS and AQ extracts, acidic and neutral PS fractions on LPS-stimulated  

                       24 hours rat alveolar macrophage production of (A) NO (nitrite) and (B) TNF-α in vitro 
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Figure 4.13 - Effects of AGRPS and AQ extracts, acidic and neutral PS fractions on LPS-

stimulated 24 hours rat alveolar macrophage production of (A) NO (nitrite) and (B) TNF-α in 

vitro. Rat alveolar macrophages were pretreated AGRPS and AQ extracts, acidic and neutral PS 

fractions (0, 5, 10, 20, 50, 100μg/mL) for 24 hours and were washed before challenge with LPS 

1 μg/Ll. The LPS-stimulated 24 hours production of NO and TNF-α were determined by Griess 

reaction assay and ELISA, respectively. The experiments were performed in triplicates at three 

independent times and the data were shown as mean ± SD. Datasets were evaluated by ANOVA. 

* Values P < 0.05 compared to the LPS positive control were statistically significant.  
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Figure 4.14 - Comparison of composite mixture (12% acidic PS fraction and  

                       30% neutral PS yield), acidic PS, neutral PS fractions on LPS-stimulated  

                       24 hours macrophage production of NO (nitrite) in vitro 
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Figure 4.14 - Comparison of composite mixture (12% acidic PS fraction and 30% neutral PS 

yield), acidic PS, neutral PS fractions on LPS-stimulated 24 hours macrophage production of NO 

(nitrite) in vitro. Murine macrophages (RAW 264.7 cells) were pretreated composite mixture, 

acidic PS, neutral PS fractions (0, 5, 10, 20, 50, 100μg/mL) for 24 hours and were washed before 

challenge with LPS 1 μg/mL. The LPS-stimulated 24 hours production of NO and TNF-α were 

determined by Griess reaction assay and ELISA, respectively. The experiments were performed 

in triplicates at three independent times and the data were shown as mean ± SD. Datasets were 

evaluated by ANOVA. * Values P < 0.05 compared to the LPS positive control were statistically 

significant.  
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4.6.3.6 In vitro suppression of LPS-induced stimulation by different molecular weight  

            fractions isolated from Acidic PS  

The mechanistic study data also indicates that ≥100 kDa and 50 - 100 kDa molecular weight 

fractions of acidic PS suppressed LPS induced macrophage immunological response. The 30 - 50 

kDa and 10 - 30 kDa molecular weight fractions of acidic PS did not suppress LPS 

immunological response (Figure 4.15). Hence, high molecular weight (≥100 kDa and 50 - 100 

kDa) is a vital property for AGRPS extract to suppress LPS induced immunological response.  
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Figure 4.15 - Effects of acidic PS fractions ≥100 kDa, 50 - 100 kDa, 30 - 50 kDa,  

                       10 - 30 kDa on LPS-stimulated 24 hours macrophage production of (A)  

                       NO (nitrite) and (B) TNF-α in vitro 
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Figure 4.15 - Effects of acidic PS fractions ≥100 kDa, 50 - 100 kDa, 30 - 50 kDa, 10 - 30 kDa, 

on LPS-stimulated 24 hours macrophage production of (A) NO (nitrite) and (B) TNF-α in vitro. 

Murine macrophages (RAW 264.7 cells) were pretreated with acidic PS fractions ≥100 kDa, 50 - 

100 kDa, 30 - 50 kDa, 10 - 30 kDa (0, 10, 20, 50, 100 μg/mL) for 24 hours and were washed 

before challenge with LPS 1 μg/mL. The LPS-stimulated 24 hours production of NO and TNF-α 

were determined by Griess reaction assay and ELISA, respectively. The experiments were 

performed in triplicates at three independent times and the data were shown as mean ± SD. 

Datasets were evaluated by ANOVA. * Values P < 0.05 compared to the LPS positive control 

were statistically significant. 
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4.7 Discussion  

Medicinal plants are used as prophylactic and therapeutic agents in herbal medicine. 

Polysaccharides have recently been recognized as a major contributor to the bioactivity of herbal 

medicines. Polysaccharides from plant sources with immunomodulatory, anti-oxidant, anti-

hyperglycemic, anti-bacterial, anti-inflammatory, anti-viral and anti-tumor activities have been 

reported [9, 10, 16, 18, 25, 32, 35, 45]. Polysaccharides, incluing lentinan, a (1,3)-β-D-glucan, 

isolated and purified from Lentinus edodes has been licensed as an over-the-counter (OTC)  

dietary supplement and immunostimulatory drug in China [46]. In Canada, CVT-E002™ (sold 

commercially as COLD-FX
®

) a poly-furanosyl-pyranosyl polysaccharide-rich herbal product of 

the root of American ginseng was licensed in 2007 as a natural health product to ‘help reduce the 

frequency, severity and duration of cold and flu symptoms by boosting the immune system’ [20, 

47]. The paradoxical immunomodulatory effect of AQ and AGRPS extracts was examined ex 

vivo and in vivo. In the ex vivo study, Figures 4.1-4.2 shows that there was an increase in 

proinflammatory production in cultured alveolar macrophages obtained from AGRPS and AQ 

extracts treated rats. The AGRPS and AQ extract treatments reduced responsiveness of alveolar 

macrophages collected from ginseng-treated animals to LPS ex vivo challenge (Figures 4.1-4.2). 

The extracts ex vivo immunomodulatory effects were dependent on the duration of exposure. As 

shown in Figure 4.3, the in vivo study suggests that orally administered AGRPS and AQ extracts 

possess in vivo immunostimulatory and suppression of LPS induced immunological effects. This 

was evidenced by the extracts up-regulation and down-regulation of plasma TNF-α cytokine 

production under basal and LPS endotoxic conditions respectively. Overproduction of early and 

primary cytokines like TNF-α in the inflammatory process contributes significantly to the 

pathological complication observed in infectious and inflammatory diseases such as endotoxemia 
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[48-50]. There was a significant difference in cytokine production between LPS challenge and 

ginseng treatments exposed to LPS. However, in the lung histochemical study described in 

Figures 4.4-4.5, no difference was observed between ginseng treatments exposed to LPS and the 

LPS challenge. It may take a longer duration of exposure or a higher dose of LPS to observe lung 

pathological complication observed in infectious and inflammatory diseases like sepsis induced 

acute lung injury.  

An in vitro mechanistic study was performed to identify the underlying bioactive fractions 

responsible for AGRPS and AQ extracts ex vivo and in vivo immunobioactivities. For this study, 

AGRPS and AQ extracts and the fractions of AGRPS extract immunomodulatory effects were 

evaluated in vitro using murine cell line and rat alveolar macrophages. The relationship between 

physicochemical properties (ionic charge and molecular weight) of AGRPS fractions and their 

influence on AGRPS modulation of macrophage function was examined. The pharmacological 

effects of ginseng polysaccharides including immunomodulation can be attributed to its acidic 

and neutral polysaccharide components [25]. There have been different reports of ginseng acidic 

and neutral polysaccharide immunomodulatory effects in the literature. Kim et al. (1990) 

reported that acidic PS and neutral PS of P. ginseng (Asian ginseng) may stimulate B cells and 

macrophages [15]. While the study by Fan et al. (2010) showed that neutral PS of P. ginseng 

stimulated the proliferation of lymphocytes; increased natural killer cell cytotoxicity; enhanced 

the phagocytosis and NO production by macrophages and increased the level of TNF-α in serum 

[51]. The in vitro mechanistic study also delineated the influence of AGRPS (Panax 

quinquefolius) ionic charge fractions on AGRPS and AQ extracts modulation of macrophage 

function. The data revealed that acidic PS was the major bioactive species responsible for the 

immunostimulatory and suppression of LPS induced immunological effects of AGRPS and AQ 
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extracts (Figures 4.8-4.9 and 4.12-4.13). This outcome suggests that acidic (and not the neutral) 

PS physicochemical property is vital for AGRPS and AQ extracts macrophage-mediated 

immunomodulatory effects. Because neutral PS did not stimulate production of NO, but showed 

some significant stimulation of TNF-α production, investigation was done to determine if there 

was any interaction between acidic PS and neutral PS. Bioassay of a composite mixture of 12% 

acidic PS fraction and 30% neutral PS (Figures 4.10 and 4.14) revealed that neutral PS enhances 

acid PS macrophage-mediated immunostimulatory and suppression of LPS induced 

immunological effects. The observed enhancement of acidic PS immunostimulatory effect by 

neutral PS supports the previous finding by Fan et al. (2010) which reported that neutral PS of P. 

ginseng enhanced macrophage production of NO [51]. While the observed enhancement of 

acidic PS suppression of LPS immune response by neutral PS is a novel outcome. One study by 

Lemmon et al. (2012) [that used human peripheral blood mononuclear cells and ginseng 

concentrations similar to that utilized in this study] reported that the immunomostimulatory 

effects of AGRPS and AQ extracts are mediated by PS with a molecular weight higher than 100 

kDa [52]. Data from this study showed that ≥100 kDa and 100 - 50 kDa molecular weight 

fractions of acidic PS possess both immunostimulatory and suppression of LPS induced 

immunological effects which are a novel outcome. This indicates that the PS high molecular 

weight physicochemical property plays a significant role in AGRPS and AQ extracts 

macrophage-mediated immunostimulatory and suppression of LPS induced immunological 

effects (Figures 4.11 and 4.15).   

The in vitro mechanistic study revealed the importance of the acidic nature and high molecular 

weight of the polysaccharide fractions in AGRPS and AQ extracts modulation of macrophage 

function. Outcomes of this study correlate well with what has been previously reported regarding 
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ionic charge and molecular weight physicochemical properties being critical factors that affect 

the biological activity of polysaccharides [36-38]. Macrophages are activated through their 

recognition and binding of plant polysaccharides via Toll-like receptor 4 (TLR4). The activation 

of these receptors leads to intracellular signaling cascades, resulting in transcriptional activation 

and the production of proinflammatory mediators [9]. Results from this study suggests that acidic 

nature and high molecular weight (≥100 kDa and 100 - 50 kDa) polysaccharide fractions are 

vital for AGRPS and AQ extracts activation and suppression of macrophage function. These 

physicochemical properties may be associated with the ability  of the extract’s polysaccharide 

fractions to bind to TLR4 receptor and up-regulate or down-regulate TLR4 receptor expression, 

which triggers or inhibits intracellular signaling cascades and the production of proinflammatory 

mediators under basal or LPS endotoxic conditions respectively. Data from this study opens the 

door for future investigation of the possible association between the extracts polysaccharide 

fractions physicochemical properties and the the extracts ability to up-regulate or down-regulate 

TLR4 receptor expression. TLR4 has been shown to be expressed in murine macrophages 

activated by Carthamus tinctorius polysaccharides [53]. Studies which used TLR 4-deficient 

mice indicates that TLR4 is involved in murine macrophage recognition and activation of 

Platycodon grandiflorum polysaccharides [54] and Levan polysaccharide fraction from 

fermented soybean mucilage [55]. The expression of Toll-like receptors including TLR2, TLR4 

and the adaptor molecule MyD88 which were increased in murine macrophages stimulated with 

Staphylococcus aureus bacteria has been reported to be significantly reduced by ginseng 

polysaccharide pretreatment in vitro. Ginseng polysaccharide intravenous pretreatment was also 

reported to enhance macrophage-mediated bactericidal activity in mice by reducing the number 

of S. aureus bacteria present in the spleen, kidney, and blood [33-34]. The iNOS (inducible nitric 
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oxide synthase), MAPK (mitogen-activated protein kinase) kinases such as p38, ERK1/2 

(extracellular signal-regulated kinases 1/2), PI3K (phosphoinositide 3-kinase), and NF-kB 

(nuclear factor kappa B) signaling pathways may mediate the immunostimulatory effect 

observed in AGRPS and AQ extracts and high molecular weight acidic PS, as studies by Friedl 

et al. (2001) and  Lemmon et al. (2012) using AQ and PS extracts of P ginseng and American 

ginseng AQ and PS extracts [29, 52] demonstrated. The signaling pathways that mediate the 

extracts suppression of LPS induced NO and TNF-α production requires further investigation.  

The ion exchange chromatography was used to fractionate AGRPS extract into fractions of 

neutral and acidic charge. The 30.0% recovery for the neutral fraction of AGRPS (Panax 

quinquefolius) obtained from this study is close to the 33.0% recovery reported for Panax 

notoginseng polysaccharides [56]. The AGRPS (Panax quinquefolius) neutral fraction recovery 

is different from the 60.5% recovery reported for Panax ginseng polysaccharides [23]. In this 

study 12.0% recovery obtained for AGRPS (Panax quinquefolius) acidic fraction is close to the 

17.1% recovery reported for Panax ginseng polysaccharides [23]. This was different from the 

31.0% recovery reported for Panax notoginseng polysaccharides [56]. The difference in species 

of the ginseng herb may account for the variations in the recovery data of the neutral and acidic 

fractions between this study and other studies [23, 56].  

The study from chapter 3 of this thesis and that of Lemmon et al. (2012) suggests that concurrent 

treatment of AQ and AGRPS extracts did not inhibit LPS-induced immune response [29, 52]. 

While data from the in vitro study shows that direct treatment and 24hr pretreatment with 

AGRPS and AQ extracts exerts a direct immunostimulatory effect and an indirect suppression of 

LPS-induced immune response respectively as shown in Figures 4.8- 4.9 and 4.12-4.13. This 

suggests that the extracts in vitro immunomodulatory effects were dependent on the duration of 
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exposure. A similar situation was observed in the ex vivo study (Figures 4.1-4.2), where the 6 

days AQ and AGRPS extract pretreatments was more effective than that of the 3 days in 

suppressing the LPS-induced immune response. 

The ex vivo and in vivo immunomodulatory effects of AGRPS and AQ extracts (Figures 4.1, 4.2, 

4.3) were validated in vitro (Figures 4.8-4.9 and 4.12-4.13). The ex vivo, in vivo and in vitro 

studies support the observations from chapter three of this thesis, indicating that bioactive 

AGRPS isolated from AQ extract and its parent AQ extract exerted immunostimulatory effects. 

The in vivo immunostimulatory effect of AGRPS and AQ extracts was very small as compared 

with LPS toxic stimulatory effect, suggesting that American ginseng extract and its natural health 

product containing polysaccharides like CVT-E002™ are safe with health benefits with regards 

to immunostimulation [47]. The results from this study suggests that under LPS mediated 

excessive stimulatory infectious condition like endotoxemia; pretreatment with AGRPS and AQ 

extracts will not cause additive immunostimulatory effects, but rather the extracts will reduce 

and neutralize LPS immunologic stimulatory effect. The ability of AGRPS and AQ extracts to 

neutralize LPS immunological is a desired requirement for future prophylactics against 

endotoxemia. A possible mechanism by which AGRPS suppresses LPS immunotoxic 

stimulatory effect may be through its ability to desensitize immune cells (e.g. macrophages) from 

LPS toxic stimulation, similar to the tolerance ability of LPS pre-exposure to desensitize 

subsequent LPS challenge [57]. AGRPS and AQ extracts are not antagonists of LPS because 

they have low stimulatory effect and also requires pretreatment before they can suppress LPS 

stimulation. The data from this study supports the reported CVT-E002
TM

 immunostimulatory 

[21, 28, 47, 58-61] and suppression of proinflammatory effects [20, 62] under basal and induced 

proinflammatory conditions respectively. Therapies directed at the neutralization of 
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proinflammatory mediators or LPS that were promising in experimental models have been 

largely ineffective in clinical trials. Therefore, the development of new therapies is of major 

interest [63-65]. 

The in vitro stimulatory effect was stronger than that observed in vivo which may be due to low 

bioavailability of the orally-administered extracts. As described in the following chapter, a new 

method developed to analyze AGRPS in plasma detected low levels of AGRPS in the plasma of 

rats orally fed with AGRPS. The low plasma levels of AGRPS are pharmacologically in close 

agreement with the in vitro 50-200 µg/mL immunobioactive concentrations of AGRPS in 

cultured murine cell line and rat alveolar macrophages reported in this study and chapter 3. 

Evaluation of the total AGRPS concentration at Cmax in total plasma volume revealed that an 

estimated 9.49 % of the orally administered AGRPS was available in systemic plasma. 

Polysaccharides of Radix ophiopogonis have been reported to have low bioavailability of 1.7 % in 

rats after oral administration respectively, and this can be attributed to their large molecular size 

and hydrophilic character [66].  The 125mg/kg daily oral dose of American ginseng used in the 

ex vivo and in vivo studies, is in agreement with the 9g of ginseng daily dose [67] recommended 

for human consumption (assuming an average adult weighs 70 kg). 

The merit of this study is that a modern day approach of evaluating herbal medicines [68-69] was 

utilized via the phytochemical and immunopharmacological screening of AGRPS and AQ 

extracts from good agricultural practice quality American ginseng roots randomly collected from 

five different farms by the Ontario Ginseng Growers Association in Ontario, Canada. The acidic 

PS and its ≥100 kDa and 100 - 50 kDa molecular weight fractions were identified as the major 

bioactives responsible for the extracts immunomodulatory effects. AGRPS and AQ extracts in 

vivo stimulation was small in magnitude as compared to its suppression of LPS induced 
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immunologic response, suggesting attention should be focused more on their beneficial 

immunosuppressive effect which may be useful in the prophylaxis of LPS related disease 

conditions such as endotoxemia.  

 

4.8 Conclusion 

From this study it can be concluded that AGRPS and AQ extracts possess ex vivo, in vivo and in 

vitro immunostimulatory and immunosuppressive effects in basal immune function and LPS-

induced endotoxic conditions respectively, which can be attributed primarily to acidic PS and its 

higher molecular weight fractions and not neutral PS or the lower molecular weight fractions of 

acidic PS. Hence AGRPS and AQ extracts may have beneficial suppressive effect against LPS 

related disease conditions such as endotoxemia. 
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Chapter 5 

 

ANALYSIS OF INTESTINALLY ABSORBED 

AMERICAN GINSENG POLYSACCHARIDES IN 

PLASMA BY HIGH PERFORMANCE SIZE 

EXCLUSION CHROMATOGRAPHY  
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5.1 Introduction  

Studies have shown that water-soluble polysaccharides used in natural health products are good 

biological response modifiers [1]. A good example is ginseng polysaccharides which exhibit a 

wide range of beneficial pharmacological effects in cell culture and animal models, including 

immunomodulation, anti-tumor, anti-oxidation, anti-depression, hypoglycemia and inhibition of 

gastric lesions [2-10]. Extractable polysaccharides constitute about 10% of the dry weight of 

ginseng root, a multi-action widely used herb which belongs to the Araliacea family [11]. 

CVT-E002™ (sold commercially as COLD-FX®) is a poly-furanosyl-pyranosyl polysaccharide-

rich herbal product of the root of American ginseng (Panax quinquefolium), with purported 

beneficial effects on influenza and the common cold [2]. Ginseng polysaccharides are rich in L-

arabinose, D-galactose, L-rhamnose, D-glucuronic acid and D-galacturonic acid 

monosaccharides [2, 4, 5, 12]. These polysaccharides are heterogeneous in nature and have been 

reported to contain neutral and acidic polysaccharides [6, 8, 12],  with widely varying molecular 

weights ranging from 3.5 to 2000 KDa as reported by different investigators and using different 

methodologies [3, 5, 7, 12-15]. Chapter four of this thesis showed previously by using ion 

exchange chromatography and ultrafiltration, that American ginseng polysaccharides are 

heterogeneous in nature, consisting of both neutral and acidic polysaccharides with polydisperse 

molecular weight distributions.  

In the past, non-chromatographic studies such as radioactive labeling [16-17] and bioassay [18] 

have been used for the in vivo analysis of dermatan sulphate, dextran, and α-D-glucan 

polysaccharides in plasma and the intestinal tract, after intravenous, subcutaneous, oral and intra-

intestinal administration. Chromatographic methods have been reported for the determination of 
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glucans, chitosan ester, dermatan sulfate and Ophiopogon japonicus polysaccharides in plasma 

after intravenous [19-22] and intra-intestinal [23] administration. The polysaccharides used in 

these chromatographic studies were tagged with a fluorescent label prior to the in vivo treatments 

or subjected to a post column fluorescence derivatization method, which then required the use of 

fluorometric detection for their analysis in plasma. However, due to the heterogeneous-complex 

structures of ginseng polysaccharides, labeling can be nonspecific in that it may occur at 

different sites of the polysaccharides with not all active components labeled. Since the safety of 

fluorescently-labeled polysaccharides has not been established, the development of a 

chromatographic method to analyze unlabeled polysaccharides in plasma would be useful for 

both animal and humans. Here, the knowledge of bioactive concentration levels in body fluids, 

such as serum would allow pharmacotherapy to be optimized and provides the basis for studies 

on patient compliance, bioavailability, pharmacokinetics, genetics, organ function and the 

influences of co-medication [24]. There is currently no available method to detect and quantify 

ginseng polysaccharides in plasma.  

Analytical size-exclusion chromatography (SEC) combined with light scattering detection is a 

rapid method to analyze and characterize complex biopolymers like polysaccharide–protein 

complexes [25]. The light scattering detector provides an absolute measure of the biopolymers 

weight-average molecular weight (Mw) with the intensity from the detector being proportional to 

important variables such as molecular mass, concentration, and the specific refractive index 

increment [26]. The light scattering detector response of an analyte requires its corresponding 

refractive index (RI) detector response to generate the analyte’s absolute molecular weight. In 

the absence of the corresponding RI detector response, the approximate molecular weight can be 

determined from the calibration curve of standards of known molecular weights using light 
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scattering detector response. As previously described in chapter three of this thesis, SEC 

combined with a light scattering detector gave the best characterization of polysaccharides (PS) 

in ginseng aqueous and PS extracts with regards to the formation of a Gaussian peak distribution, 

when compared to data generated from the refractive index and viscometer detectors. 

In the previous chapter of this thesis, a study with ginseng orally treated rats showed that 

American ginseng root polysaccharides (AGRPS) exerts both an ex vivo and in vivo stimulatory 

and suppression of lipopolysaccharide induced proinflammatory effects. However, there is no 

confirmatory data that substantiates the absorption of AGRPS into systemic circulation. 

Chromatographic analysis of human and rat plasma samples have shown that heparin (Mw = 9 

KDa), marine sulfated polysaccharide (Mw = 11 KDa) and Radix ophiopogonis (Mw= 4.8 KDa) 

polysaccharides are absorbed from the gastrointestinal tract (GIT) into systemic circulation after 

oral administration [27-29].  

The primary purpose of this study was to develop a high performance size-exclusion 

chromatography (HPSEC) method that can analyze AGRPS in plasma of rats after oral 

administration to ascertain if AGRPS can be absorbed from the GIT into systemic circulation. To 

confirm that the peaks detected in rat plasma are from AGRPS, enzymatic hydrolysis of the 

plasma samples using pectinase and cellulase enzymes was examined prior to HPSEC analysis.  
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5.2 Materials and Methods 

5.2.1 Materials 

Methods for the preparation of AGRPS and aqueous (AQ) extracts used in this study were 

previously provided in chapter four of this thesis. CVT-E002™ (sold commercially as COLD-

FX
®

) was purchased from a commercial source (Lot number: 0805093, Afexa Life Sciences Inc. 

Mississauga, ON). According to the manufacturer’s description, each capsule of COLD-FX
®
 is 

certified to contain 200 mg of CVT-E002
TM

, a proprietary ChemBioPrint
®
 (CBP

®
) product rich 

in poly-furanosyl-pyranosyl-saccharides. These polysaccharides were extracted by an aqueous 

method from the root of Panax quinquefolius (American ginseng) as described by Shan et al 

(1999) [5]. 

 Pectinase (E.C.3.2.1.1) and cellulase (E.C.3.2.1.1) from Aspergillus niger were purchased from 

Sigma-Aldrich (USA) and used as received. Pullulan polysaccharide reference standards with 

different molecular weights 2150, 11800, 22800, 48000, 112000, 404000, 1220000 Da were 

purchased from PolyAnalytik (USA). 

5.2.2 Animals 

Adult male Sprague-Dawley rats weighing 240g (purchased from Charles River, St. Constant, 

QC, Canada) were used in accordance with the guidelines of the Canadian Council on Animal 

Care. The Animal Ethics Review Committee of the University of Western Ontario approved this 

study (Protocol No: 2009-070).  
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5.2.3 Methods 

5.2.3.1 HPSEC Method Validation  

Validation of the HPSEC method for the determination of AGRPS analyte in plasma samples 

used in this study was evaluated according to the US Food and Drug Administration (FDA) 

guideline for Bioanalytical Method Validation [30]. Specificity, linearity, accuracy, precision, 

sensitivity and recovery performance characteristics of the HPSEC method were evaluated 

according to the acceptance criteria and recommendations stated in this guideline. 

5.2.3.1.1 Specificity and Determination of AGRPS Molecular Weight  

The specificity of the method to measure AGRPS was investigated by comparing chromatograms 

of blank rat plasma, AGRPS and blank rat plasma spiked with AGRPS. The degree of 

interference by endogenous substances was assessed by the inspection of chromatograms derived 

from processed blank plasma, AGRPS and blank sample spiked with AGRPS. No peaks from 

endogenous or exogenous materials should interfere with AGRPS. To calculate the molecular 

weight of AGRPS, a standard calibration curve of known pullulan polysaccharide standards was 

constructed. The logarithm of the different molecular weights of pullulan polysaccharide (2150, 

11800, 22800, 48000, 112000, 404000, 1220000 Da) was plotted against their retention 

(hydrodynamic) volumes as shown in the Appendix 1. 

5.2.3.1.2 AGRPS Calibration Curve (Linearity) 

An eight point calibration curve was prepared of AGRPS in blank rat plasma with final 

concentrations of 125, 250, 500, 1000, 2000, 4000, 8000 and 16000 μg/mL. Replicate analysis (n 

= 5) was constructed by plotting the mean peak area against the mean concentrations of AGRPS 
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as shown in the Appendix. A correlation coefficient value of R² ≥ 0.99 is statistically considered 

a goodness of fit. Linearity of the calibration curve was evaluated by linear regression analysis 

using the equation Y = mX + c where Y is the peak area, X is the concentration of AGRPS; 

unknown concentrations were determined from the linear regression equation of the peak area 

against concentration for the calibration curve. To quantify the concentration of AGRPS in the 

plasma samples, the peak area of AGRPS was related to the calibration curve of AGRPS in blank 

plasma.   

5.2.3.1.3 Accuracy and Precision 

Accuracy and precision were evaluated from replicate analysis (n = 5) of test samples at three 

different concentrations (125, 1000 and 2000 µg/mL). Test samples were analyzed against 

calibration curves.  

The accuracy was calculated from the nominal concentration (Cnom) and the mean value of the 

observed concentration (Cobs) as:  

Accuracy = [Cobs/Cnom] x 100 %        (5.1).  

The precision (relative standard deviation, RSD) was calculated from the standard deviation and 

observed concentration as:  

Precision (RSD, %) = [standard deviation SD)/Cobs] x 100 %    (5.2)  

Accuracy was required to be within ±15% bias from the nominal values and the precision to be 

within ±15 % relative standard deviation (RSD). 
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5.2.3.1.4 Sensitivity 

The limit of detection and the limit of quantification were determined based on the standard 

deviation of the response and the slope of the calibration curve as stated in the International 

Conference on Harmonization (ICH) guideline for validation of analytical procedures [31]. 

The limit of detection is expressed as = 3.3 σ/S, where σ = the standard deviation of the response 

and S = the slope of the calibration curve. 

The limit of quantification is expressed as = 10 σ/S.  

 

5.2.3.1.5 Recovery 

The recovery of AGRPS from plasma was determined for different standard concentrations (at 

concentrations of 125, 1000 and 2000 μg/mL) from replicate analysis (n = 5) by spiking the 

AGRPS into blank plasma. The percentage (%) recovery was calculated from the mean peak area 

of AGRPS spiked before extraction (PA) and the mean peak area of AGRPS spiked post- 

extraction (PZ) as:  

% Recovery = [PZ/PA] x 100 %        (5.3).  

According to the acceptance criteria, the recovery of the analyte does not need to be 100%, but 

should be consistent and precise. 
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5.2.3.2   Animal studies 

5.2.3.2.1 Determination of the absorption of AGRPS following oral administration 

To determine the absorption of orally administered AGRPS, rats (n = 3 rats per time point of 0.5, 

1, 2, 4, and 8 hr) were fasted overnight with free access to water, and were given a single dose of 

125 mg/kg AGRPS in saline by oral gavage (30mg/1mL/0.240kg). The sham control group (n = 

3 rats) received saline (1mL/0.240kg) orally. To provide a positive control for the detection of 

AGRPS in systemic circulation, an additional group of fasted rats (n = 3 rats per time point of 

0.5, 1, 2, 4, and 8 hr) were administered with the same dose of 125 mg/kg AGRPS by IP 

injection (30mg/1mL/0.240kg). IP injection will allow the AGRPS to by-pass the GIT barrier 

allowing entrance to the systemic circulation from hepatic-portal circulation.   

5.2.3.2.2 Determination of the absorption of AQ extract following oral administration  

To determine the applicability of the chromatographic method, plasma samples from rats that 

received a 125 mg/kg single dose of AQ extract were dissolved in saline by oral gavage 

(30mg/1mL/0.240kg) for 6 days. These were collected 24 hr after the last dose.   

5.2.3.2.3 Determination of the absorption of CVT-E002
TM 

following oral administration  

To determine the applicability of the chromatographic method, plasma samples from rats that 

received a 125 mg/kg single dose of CVT-E002
TM 

(COLD-FX®) dissolved in saline by oral 

gavage (30mg/1mL/0.240kg) for 6 days were also collected 24 hr after the last dose.   
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5.2.3.2.4 Sample collection and processing to determine AGRPS plasma profile 

Animals were anesthetized with intramuscular injection of ketamine 80 mg/kg and xylazine 5 

mg/kg. Blood was collected from the anesthetized rats by cardiac puncture at time points of 0.5, 

1, 2, 4, and 8 hr post dose (n = 3 rats per time point) into tubes coated with 3.8% trisodium 

citrate solution by intracardiac puncture and then placed on dry ice. Blood samples were 

centrifuged at 3500×g (Beckman Model TJ-6, USA) for 10 minutes and the plasma was 

separated, aliquoted and stored at -80 °C until use. Plasma samples were removed from storage 

and warmed to room temperature prior to processing. All plasma samples, spiked calibration 

working solutions, or spiked test samples were treated in the same manner as described below. 

To 800 μL portion of each plasma sample, 320 μL of 1 M perchloric acid was added. The 

mixture was vortexed and then centrifuged at 6000 rpm (VWR Galaxy Mini Centrifuge, South 

Korea) for 10 min to precipitate denatured plasma proteins. After neutralizing 600 μL of the 

supernatant by the addition of 180 μL of 1 M sodium hydroxide, it was vortexed and submitted 

to HPSEC analysis.  

5.2.3.2.5 Enzymatic Hydrolysis of plasma samples 

To ascertain whether AGRPS was found in plasma of the AGPRS-treated rats, an enzyme 

hydrolytic method was developed by incubating AGRPS solution with pectinase or cellulase 

enzyme which was then subjected to HPSEC analysis. After identifying the enzyme and 

incubation time suitable for AGRPS hydrolysis, it was then applied to the plasma samples 

followed by HPSEC analysis. For this, 2000µg/mL of AGRPS was dissolved in 800µL distilled 

water and incubated with or without pectinase (100µL of 3800 Units) or cellulase (100µL of 

2000 Units) enzyme for 1hr, 8hr and 24hr at 37°C, pH was not adjusted. The samples were then 
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subjected to HPSEC analysis. After identifying the enzyme and incubation time suitable for 

enzymatic hydrolysis of AGRPS, it was then applied to 600µL of plasma samples obtained from 

4 hr oral and IP AGRPS treated rats. The enzymes were then inactivated with 240 μL of 1 M 

perchloric acid. The mixture was vortexed and then centrifuged at 6000 rpm (VWR Galaxy Mini 

Centrifuge, South Korea) for 10 min to precipitate denatured enzyme and plasma proteins. After 

neutralizing 450 μL of the supernatant by the addition of 135 μL of 1 M sodium hydroxide, it 

was vortexed and then submitted to the HPSEC analysis.   

 

5.2.3.3 Size-Exclusion Chromatography Analysis  

5.2.3.3.1 Instrumentation and Chromatographic Conditions   

Processed plasma samples were analyzed with AquaGel PAA-203 and PAA-204 columns (8 × 

300 mm, PolyAnalytik, USA) connected in series to a Viscotek HPSEC system (Varian 

Instruments, USA) with Omnisec software (version 4.5, Viscotek, USA) for data acquisition at 

40°C. Processed plasma samples were filtered with a 0.2 μm nylon filter prior to analysis. Each 

sample (100 μL) was injected and eluted using a 0.1M sodium nitrate (NaNO3) mobile phase at a 

flow rate of 0.7 mL/min and monitored using HPSEC system with right angle light scattering 

detection. Microsoft Excel 2010 software was used to process the HPSEC data and generate 

chromatograms presented in this study. 
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5.3 Statistical analysis 

All statistical analysis, the plotting and calculation of AGRPS plasma concentration-time 

profiles, peak plasma concentration (Cmax), time to reach Cmax (Tmax) and area under the plasma 

concentration-time curve (AUC0.5-8) from time 0.5 hr to 8 hr of oral and IP AGRPS administered 

rats were performed with GraphPad prism 4.0a Software (GraphPad Software Inc., USA). Data 

were expressed as means ± standard derivation (SD). Student’s t-test statistical analysis was used 

to compare oral and IP routes Cmax, Tmax and AUC0.5-8 values. Statistically significant differences 

are indicated by p-values of <0.05. 
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5.4 Results  

5.4.1 HPSEC Method Validation (Chromatographic Performance) 

5.4.1.1 Specificity and Determination of AGRPS Molecular Weight 

The specificity of the method was investigated for detection of AGRPS and assessment of 

potential interference of AGRPS from endogenous substances respectively. Typical 

chromatograms of the HPSEC analysis of blank plasma, AGRPS before plasma spiking and 

AGRPS added to plasma followed by extraction are shown in Figure 5.1. The AGRPS peaks are 

well shaped with no interfering peaks found at the retention volume region. These results 

indicate that the HPSEC method is specific with no interference from plasma constituents 

observed. The identity of the parent (unchanged) AGRPS in plasma of AGRPS treated rats is 

based on the retention volume matched with the AGRPS spiked into blank plasma. 

The weight average molecular weight of AGRPS was determined from the pullulan 

polysaccharide calibration curve plot, i.e.   (Rv = –2.9506 Log Mw + 29.203), where Rv is the 

retention volume and Mw is the molecular weight (see Appendix 4). AGRPS eluted with a 

retention volume of 11.22 mL which corresponds to a weight-average molecular weight (Mw) = 

1240 kDa based on the calibration curve. The refractive index detection did not give any signal 

profile for AGRPS, which is needed by the HPSEC system software along with the light 

scattering signal profile to generate the absolute molecular weight of AGRPS. Hence the weight 

average molecular weight polysaccharide samples in this study were determined from the 

pullulan polysaccharide calibration curve plot. 
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Figure 5.1 – Chromatograms obtained from high performance size exclusion chromatography 

analysis of (A) blank plasma (B) 2000 μg/mL AGRPS and (C) blank plasma spiked with 2000 

μg/mL AGRPS. Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase 

on a series of AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this 

was monitored with right angle light scattering detector at 1 mL/min flow rate. AGRPS eluted 

with retention volume of 11.22mL in both chromatograms of B and C. The y-axis is the right 

angle light scattering detector response (mV), while the x-axis represents the retention volume 

(mL). 
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5.4.1.2 AGRPS Calibration Curve (Linearity) 

The peak areas were linearly related to concentrations of AGRPS spiked into blank plasma over 

the range of 125–16000 µg/mL. The equation of the obtained calibration curve was:                    

Y = 0.16473X - 6.9623. The correlation coefficient value was found to be R² = 0.9915 which is 

statistically considered a goodness of fit, with Y being the peak area and X is the AGRPS 

concentration. 
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Figure 5.2 – Calibration curve of peak area against AGRPS concentration used in 

chromatographic analyses of plasma samples.   
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5.4.1.3 Accuracy and Precision 

The accuracy at 125, 1000 and 2000 µg/mL of test samples of AGRPS was calculated as 83.00 

% ± 0.01, 103.00 % ± 0.13 and 111.00 % ± 0.15 respectively based on equation 5.1.                 

The precision (RSD %) at the above concentrations was calculated as 6.90 % ± 0.01, 12.20 % ± 

0.13 and 5.00 % ± 0.13 respectively based on equation 5.2. For accuracy, the mean value for 

1000 µg/mL and 2000 µg/mL was within acceptable limits of ± 15% (85-115%) of the actual 

value, while the mean value of the 125 µg/mL (lowest concentration) was also within acceptable 

limits of ±20 % (80-120 %) of the actual value. For precision, 125, 1000 and 2000 µg/mL test 

samples of AGRPS were within ± 15% (85-115%) of the coefficient of variation. The HPSEC 

method was found to be within the limits of accuracy and precision for the quantitative 

measurement of AGRPS in plasma.       

5.4.1.4 Recovery 

The mean recovery (extraction efficiency) of AGRPS from plasma at 125, 1000 and 2000 µg/mL 

was calculated as 71.00 % ± 0.01, 92.00 % ± 0.11 and 107.00 % ± 0.03 respectively based on 

equation 5.3.  

5.4.1.5 Sensitivity  

The limits of detection and quantitation of the HPSEC method for the analysis of AGRPS in 

plasma were 14.4 µg/mL and 43.7 µg/mL respectively based on the standard deviation of the 

response and the slope of the calibration curve as stated in the ICH guideline for validation of 

analytical procedures [31]. 
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5.4.2 Determination of the absorption of orally administered AGRPS into systemic  

          circulation in rats 

The aim of this study was to investigate whether orally administered AGRPS can be absorbed 

into the systemic circulation in rats by measuring the AGRPS plasma concentration. After oral 

administration of AGRPS, a small peak with a retention volume of 11.22 mL appeared 0.5 hr 

post dose (Figure 5.3A) that increased after 4 hr duration of exposure (Figure 5.3B). A second 

peak appeared with a larger retention volume of 16.03 mL after 4 hr treatment, this peak was 

interpreted as a biotransformed endproduct of AGRPS in the plasma sample (Figure 5.3B). This 

additional peak identified after 4 hr treatment was absent in the plasma sample after 0.5hr oral 

administration (Figure 5.3A). The AGRPS and its biotransformed end product eluted with 

retention volumes of 11.22 mL and 16.03 mL, which have molecular weights of 1240 kDa and 

29 kDa, respectively based on the pullulan polysaccharide calibration curve.  
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Figure 5.3 – Chromatograms obtained from high performance size exclusion chromatography of 

AGRPS analyte (11.22 mL) and its biotransformed end product (16.03 mL) in plasma samples 

collected from rats orally fed with 125 mg/kg single dose of AGRPS for (A) 0.5 hr and (B) 4 hr. 

Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase on a series of 

AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this was 

monitored with right angle light scattering detector at 1 mL/min flow rate. The y-axis is the right 

angle light scattering detector response (mV), while the x-axis represents the retention volume 

(mL).  
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To substantiate the identity of the purported AGRPS peak observed after oral administration, the 

plasma profile after intraperitoneal (IP) administration of AGRPS was also investigated as this 

route of administration is known to bypass the gastrointestinal barrier. As shown in Figure 5.4A, 

a large peak, which has the same retention volume as the purported AGRPS peak, appeared 0.5 

hr post dose. This peak showed a progressive decrease reaching a minimum level at 4 hr after 

treatment with the appearance of a second peak (biotransformed end product peak) as seen in 

Figure 5.4B. The AGRPS and its biotransformed end product eluted with retention volumes of 

11.22 mL and 16.03 mL, which have molecular weights of 1240 kDa and 29 kDa, respectively 

based on the pullulan polysaccharide calibration curve.  
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Figure 5.4 – Chromatograms obtained from high performance size exclusion chromatography of 

AGRPS analyte (11.22 mL) and its biotransformed endproduct (16.03 mL) in plasma samples 

collected from rats treated IP with 125 mg/kg single dose of AGRPS for (A) 0.5 hr and (B) 4 hr. 

Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase on a series of 

AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this was 

monitored with right angle light scattering detector at 1 mL/min flow rate. The y-axis is the right 

angle light scattering detector response (mV), while the x-axis represents the retention volume 

(mL). 
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5.4.3 Verification of Polysaccharide peak in the plasma of AGRPS treated rats 

Previous studies have reported the use of pectinase enzyme to hydrolyze and release pectin 

polysaccharides from plant polysaccharides including ginseng polysaccharides [32-41]. Cellulase 

enzyme was also investigated being used as a negative control in the verification of AGRPS. 

Cellulase is not known to hydrolyze ginseng polysaccharides, but has been used to enhance the 

release of ginsenosides from ginseng root during extraction [42-43].   

To verify if the purported AGRPS peak from the plasma of the AGRPS treated rat is actually a 

polysaccharide peak, an enzyme hydrolytic method accompanied with HPSEC analysis was 

investigated. Two different enzymes (pectinase and cellulase) and incubation time points (1 hr, 8 

hr and 24 hr) were examined. The enzymatic condition that hydrolyzed AGRPS the most was 

then applied to plasma samples of AGRPS treated rats. Pectinase enzymatic hydrolysis was used 

as a positive control, while cellulase enzymatic hydrolysis was used as a negative control for the 

enzymatic hydrolysis study.  

HPSEC analysis of AGRPS solution incubated with pectinase for 1 hr showed the presence of a 

single peak as seen in Figure 5.5A, while 8 hr incubation of AGRPS solution with pectinase 

enzyme (Figure 5.5B) showed the presence of two peaks; with a decrease in the first peak 

detector intensity response. The 24 hr incubation of AGRPS solution with pectinase enzyme 

(Figure 5.5C) showed the presence of two peaks. The observed significant decrease in the first 

peak intensity and increase in the second peak intensity suggests the occurrence of hydrolysis of 

AGRPS by the pectinase enzyme. Only a single peak was observed after 1, 8 and 24 hr 

incubation with the cellulase enzyme (Figures 5.6A, 5.6B and 5.6C), which was used as a 

negative control for polysaccharide hydrolysis. The results clearly indicate the AGRPS peak of 



 

184 

 

interest was susceptible to hydrolysis by pectinase but not cellulase, substantiating the 

polysaccharides composition of AGRPS.  
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Figure 5.5 – Chromatograms obtained from high performance size exclusion chromatography 

analysis after (A) 1 hr (B) 8 hr and (C) 24 hr incubation of AGRPS solution with pectinase 

enzyme. Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase on a 

series of AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this was 

monitored with right angle light scattering detector at 1 mL/min flow rate. The y-axis is the right 

angle light scattering detector response (mV), while the x-axis represents the retention volume 

(mL). 
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Figure 5.6 – Chromatograms obtained from high performance size exclusion chromatography 

analysis after (A) 1 hr, (B) 8 hr and (C) 24 hr incubation of AGRPS solution with cellulase 

enzyme. Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase on a 

series of AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this was 

monitored with right angle light scattering detector at 1 mL/min flow rate. The y-axis is the right 

angle light scattering detector response (mV), while the x-axis represents the retention volume 

(mL). 
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The 24 hr incubation time with pectinase enzyme which gave the most significant hydrolytic 

outcome of the three investigated time points was then applied to the plasma samples obtained 

from rats treated 4hr orally and IP with AGRPS. As seen in Figures 5.7B and 5.8B, the HPSEC 

analysis of plasma samples incubated with pectinase enzyme showed the presence of two peaks. 

The detector response of the first peak and second peaks retention volumes decreased and 

increased respectively, suggesting that the pectinase enzyme was able to hydrolyze AGRPS in 

plasma due to its pectin polysaccharide composition. These data suggest that AGRPS is absorbed 

from the GIT barrier after oral administration. 
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Figure 5.7 – Chromatograms obtained from high performance size exclusion chromatography 

analysis after 24 hr incubation of rat plasma obtained from 4 hr oral AGRPS treatment (A) 

without pectinase enzyme and (B) with pectinase enzyme. Each processed sample was injected 

and eluted with 0.1 M NaNO3 mobile phase on a series of AquaGel PAA-203 and PAA-204 

columns (8 × 300 mm, PolyAnalytik, USA), this was monitored with right angle light scattering 

detector at 1 mL/min flow rate. The y-axis is the right angle light scattering detector response 

(mV), while the x-axis represents the retention (hydrodynamic) volume (mL). 
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Figure 5.8 – Chromatograms obtained from high performance size exclusion chromatography 

analysis after 24 hr incubation of rat plasma obtained from 4 hr IP AGRPS treatment (A) without 

pectinase enzyme and (B) with pectinase enzyme. Each processed sample was injected and 

eluted with 0.1 M NaNO3 mobile phase on a series of AquaGel PAA-203 and PAA-204 columns 

(8 × 300 mm, PolyAnalytik, USA), this was monitored with right angle light scattering detector 

at 1 mL/min flow rate. The y-axis is the right angle light scattering detector response (mL), while 

the x-axis represents the retention (hydrodynamic) volume (mL). 

 

 

 

 

 



 

190 

 

5.4.4 Determination of AGRPS at different times in plasma of rats treated with AGRPS 

The HPSEC method was applied to study the AGRPS plasma profile in rats, after 0.5, 1, 2, 4 and 

8 hr oral and IP administration of 125 mg/kg AGRPS (single doses), these data were identical to 

those presented in Figures 5.3-5.4. Plasma concentrations of AGRPS in rat at different time 

points after administration were estimated from the AGRPS calibration curve which was 

constructed by plotting the mean peak area against the mean concentrations of AGRPS as shown 

in Figures 5.2. The peak areas of AGRPS were derived from the software of the HPSEC system 

and related to the equation of AGRPS spiked into plasma calibration curve (Y = 0.16473X - 

6.9623), with Y being the peak area and X is AGRPS concentration. Following oral 

administration of AGRPS, the plasma concentration increased gradually until it peaked and then 

declined. Figure 5.9A shows the time-dependent change in rat plasma concentration of AGRPS 

after oral administration. Plasma profile parameters including peak plasma level (Cmax), time to 

reach the peak plasma concentration (Tmax), area under the concentration–time curve (AUC0.5-8) 

were evaluated. The Cmax, Tmax, and AUC0.5-8 parameters of AGRPS after oral and IP 

administration are listed in Table 5.1. AGRPS reached the peak concentration in 4 hr (Tmax) with 

a concentration of 188 ± 52 µg/mL (Cmax). After IP injection, AGRPS peaked in 0.5 hr (Tmax) 

with a concentration of 2112 ± 23 µg/mL (Cmax) in plasma. The area under the curve (AUC0.5-8) 

of AGRPS was observed to be 896 ± 39 µg.hr/mL and 2930 ± 13 µg.hr /mL for oral and IP 

routes respectively. The administration of AGRPS via the IP injection route resulted in a 

continuous decline as shown in Figure 9B. The plasma concentrations after oral administration 

were smaller than those measured after IP administration. As seen in Table 5.1, the total plasma 

volumes calculated from the Lee and Blaufox equation [44], estimates that 1.85± 52 mg of 

AGRPS are present at Cmax in plasma after AGRPS oral treatment. After IP injection, 20.82± 23 
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mg estimates of AGRPS were calculated from this equation to be present in plasma at Cmax. 
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Figure 5.9 – Plasma concentration–time curve of AGRPS in rats after 0.5–8 hr (A) oral and (B) 

IP administration of 125 mg/kg single doses of AGRPS. Each data point represents the mean ± 

SD (n = 3). The y-axis is AGRPS plasma concentration (µg/mL) while the x-axis represents the 

time post dose (hr). 
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Table 5.1. Plasma profile of AGRPS in rats administered by Oral and IP routes 

Route Body 

Weight  

 

 

 

 

 

 

 

 

(g) 

Estimated 

Plasma 

Volume 

**  

 

 

 

 

 

 

(mL) 

Dose of 

AGRPS 

Treatment  

 

 

 

 

 

 

 

(mg) 

Tmax  

 

 

 

 

 

 

 

 

 

(hr) 

AUC0.5-8  

 

 

 

 

 

 

 

 

 

(µg/mL.hr) 

Cmax ** 

 

 

 

 

 

 

 

 

 

(µg/mL) 

Estimated 

Amount of 

AGRPS @ 

Cmax in 

Plasma   

(Conc x 

plasma 

volume) ** 

 

 

(mg) 

Theoretical 

Amount of 

AGRPS @ 

Cmax in Plasma 

(Assuming  

100 % 

bioavailability) 

** 

 

 

(mg) 

 

Oral 

 

 

240 

 

9.86 

 

30 

 

4.0* 

 

896 ± 39* 

 

188 ± 52* 

 

1.85± 52* 

 

19.49 

 

IP 

 

 

240 

 

9.86 

 

30 

 

0.5 

 

2930 ± 13 

 

2112 ± 23 

 

20.82± 23 

 

19.49 

 

AUC0.5-8 (Area under the concentration–time curve from time 0.5 hr to 8 hr), Cmax (maximum 

plasma concentration), Tmax (time to attain Cmax).  

Data were expressed as means ± SD (n = 3). Statistical analyses were assessed using the 

Student’s t-test. *Values of oral route compared to the IP route that are statistically significant 

differences were indicated by p-values of <0.05 

** According to reported physiological parameter values, the AGRPS plasma concentrations at 

Cmax are 188 µg/mL (oral) and 2112 µg/mL (IP) and the estimated total AGRPS plasma 

concentrations are 1.85 mg (oral) and 20.82 mg (IP) in total plasma volume, whereas the 

theoretical maximum amount of AGRPS in total plasma is 19.49 mg (assuming 100% absorption 

and zero first pass elimination). This will give an estimated 9.49 % (1.85/19.49 x 100%) and 

106.82 % (20.82/19.49 x 100%) absorption of AGRPS for oral and IP routes respectively 

(assuming 100 % bioavailability). 
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5.4.5 Determination of the absorption of orally administered AQ extract into systemic  

         circulation in rats 

To further test the applicability of the HPSEC method, chromatographic analysis was done on 

the AQ extract and rat plasma samples collected 24 hr after the last day of a 6 day oral treatment 

with 125 mg/kg of AQ extract. Only one peak (Figure 5.10) eluted with retention volume similar 

to that of the peak interpreted as the biotransformed endproduct of AGRPS was detected. The 

absence of a measurable AGRPS peak may be due to the low levels of AGRPS in the sample, 

since AQ extract is known to contain about 10% of AGRPS by weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

195 

 

 

 

 

 

Figure 5.10 – Chromatogram obtained from high performance size exclusion chromatography of 

rat plasma sample collected 24 hr on the last day after a 6 days oral treatment with 125 mg/kg of 

AQ extract. Each processed sample was injected and eluted with 0.1 M NaNO3 mobile phase on 

a series of AquaGel PAA-203 and PAA-204 columns (8 × 300 mm, PolyAnalytik, USA), this 

was monitored with right angle light scattering detector at 1 mL/min flow rate. The y-axis is the 

right angle light scattering detector response (mV), while the x-axis represents the retention 

volume (mL).  
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5.4.6 Determination of the absorption of orally administered CVT-E002
TM

 into systemic  

          circulation in rats 

To further test the applicability of the HPSEC method, chromatographic analysis was done on 

CVT-E002
TM

 and rat plasma samples collected 24 hr after the last day of a 6 day oral treatment 

with 125 mg/kg of CVT-E002
TM

. Peaks obtained from the chromatographic analysis eluted with 

retention volumes of 11.22 mL, 14.00 mL and 16.03 mL which correspond to 1240 kDa, 142 

kDa and 29 kDa molecular weights respectively, based on pullulan polysaccharide calibration 

curve. The first peak in the plasma sample of the CVT-E002
TM

 treated rats has an elution profile 

similar to that of CVT-E002
TM 

(Figure 5.11) and AGRPS (Figures 5.1, 5.3-5.4), which 

demonstrates the applicability of the HPSEC method for plasma analysis of ginseng 

polysaccharides product.  
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Figure 5.11 – Chromatograms obtained from high performance size exclusion chromatography 

of (A) CVT-E002
TM

 (11.22 mL) and its biotransformed end products (14.00 mL and 16.03 mL ) 

in rat plasma sample collected 24 hr on the last day after a 6 days oral treatment with 125 mg/kg 

of CVT-E002
TM

 and (B) 2000 µg of CVT-E002
TM

. Each processed sample was injected and 

eluted with 0.1 M NaNO3 mobile phase on a series of AquaGel PAA-203 and PAA-204 columns 

(8 × 300 mm, PolyAnalytik, USA), this was monitored with right angle light scattering detector 

at 1 mL/min flow rate. The y-axis is the right angle light scattering detector response (mV), 

while the x-axis represents the retention volume (mL).  
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5.5 Discussion 

Despite polysaccharides such as AGRPS being soluble in water, their weak chromophore group 

and the complexity of the plasma matrix are barriers to overcome in their analysis in plasma. 

Various chromatographic and spectroscopic analytical methods have been used to analyze plant 

polysaccharides tagged with a fluorescent label or subjected to a post column fluorescence 

derivatization method with fluorometric detection in biological matrices (e.g. plasma) after in 

vivo treatments [19-23, 27-29]. The limitations of the use of labeled polysaccharides in previous 

chromatographic studies in plasma include; the difficulty of distinguishing metabolites from the 

parent of polysaccharide by these methods, polysaccharides may undergo isomerization, 

degradation or change of conformation during the labeling procedure, the isolation of the labeled 

polysaccharide from the reaction mixture is often complicated and time-consuming [20].    

The development of a chromatographic method to analyze native (unlabeled) polysaccharides in 

plasma will be useful in human studies. Perchloric acid-protein precipitation of plasma and 

HPSEC with right angle light scattering detection used in this study served as a new approach to 

analyze unlabeled polysaccharides such as AGRPS in the plasma of rats. The chromatographic 

performance of HPSEC analytical method was validated and found to be specific, sensitive and 

within the limits of accuracy and precision with a linear detector response for the analysis of 

AGRPS in plasma. The method was also selective in that it was able to distinguish AGRPS from 

its biotransformed end product, which gave a different retention volume (Figure 5.1 compared to 

Figures 5.3 and 5.4). The data generated in chapter four of this thesis using ion exchange 

chromatography and ultrafiltration methodologies revealed that American ginseng 

polysaccharides are heterogeneous with a wide range of different molecular weights and ionic 

charge (neutral and acidic polysaccharides). Though the HPSEC method was able to separate 
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(resolve) native AGPRS from its hydrolyzed end product by molecular weight (Figures 5.5, 5.7-

5.8), it was limited in that it could not separate native AGRPS into multiple species of acidic and 

neutral fractions.  

The HPSEC data of Figure 5.3 indicates that orally administered AGRPS is absorbed from the 

GIT into systemic circulation in rats. This relates well with the objective of this study which was 

to ascertain if orally administered AGRPS can be absorbed from the GIT into systemic 

circulation. Figures 5.5 and 5.7 provide supportive evidence of AGRPS intestinal absorption, in 

that it verified the identity of the purported AGRPS chromatographic peak, which was 

susceptible to 24hr pectinase enzyme (but not cellulase) enzyme hydrolysis, thereby 

substantiating the polysaccharide composition of AGRPS. The time-dependent change in 

AGRPS rat plasma concentration after oral administration of the AGRPS (Figure 5.9) provided 

additional evidence of the intestinal absorption of AGRPS into systemic circulation and its 

elimination in rats. This result is consistent with the concept of absorption and elimination of 

biochemical compounds in biological systems.  

There was a relative difference in the Cmax of oral treatment compared to IP injection which can 

be attributed to the gastrointestinal barrier: the latter was higher than the former by 11 fold. 

Evaluation of total AGRPS concentration at Cmax in total plasma volume was based on dose and 

total plasma volume using the Lee and Blaufox equation [44], which revealed that 9.49 % of 

orally administered AGRPS was available in systemic plasma 4 hr post dose. Since an 

intravenous route was not examined in this study, this value does not provide absolute 

bioavailability data, but serves as a useful predictor. One can infer that the oral route resulted in 

low AGRPS plasma level predicting a possible low bioavailability.  
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The polysaccharide analyte peak from the plasma of rats orally fed with AGRPS (Figure 5.3) had 

an elution profile similar to AGRPS (Figure 5.1B) and AGRPS spiked in blank plasma (Figure 

5.1C) with a retention volume of 11.22 mL and a corresponding molecular weight of 1240 kDa. 

The measured AGRPS molecular weight of 1240 kDa is close to the 1500 kDa, 1800 kDa and 

1900 kDa molecular weights that have been previously reported for ginseng polysaccharides [14-

15, 45]. 

The validated HPSEC analytical method from this work, which does not require labeling, was 

able to analyze AGRPS in plasma of rats orally fed with AGRPS (Figures 5.3 and 5.7). As seen 

in Figures 5.10 and 5.11, this promising new approach was found to be applicable in the plasma 

analysis of rats orally treated with AQ extract and CVT-E002
TM

. The achieved results from this 

study will be highly instructive for future use in human studies of AGRPS pharmacokinetics and 

the pharmaceutical development of AGRPS natural health products. 

The low levels of AGRPS in the plasma of orally fed rats are pharmacologically in close 

agreement with the in vitro 50-200 µg/mL immunobioactive concentration of AGRPS in cultured 

murine cell line and rat alveolar macrophages reported in chapters 3 and 4. Polysaccharides of 

Radix ophiopogonis (Mw = 4.8 KDa) have been reported to have low bioavailability of about 1.7 

% in rats after oral administration, which was attributed to their large molecular size and 

hydrophilic characteristics [29]. The low plasma profile of orally administered AGRPS 

compared to its IP treatment (Figure 5.9) can be attributed to several factors including low 

membrane permeability, poor or incomplete absorption, high molecular weight and 

hydrophilicity (water solubility) of AGRPS, poor blood flow from the gut compared to that of 

the peritoneal cavity, hepatic, gastric and/or intestinal first-pass metabolism (enzymatic, 

chemical, bacterial) [46-50] and difference in the route of administration. Orally administered 
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ginsenosides (bioactive component of ginseng root) have been reported to demonstrate low 

bioavailability due to their low membrane permeability across the intestinal mucosa, active 

biliary excretion, decomposition in the stomach, metabolism in the large intestine and 

elimination in the liver. Of these factors, low membrane permeability and active biliary excretion 

has been attributed to be the two major factors that limits the absorption of orally administered 

ginsenosides from the gastrointestinal tract into systemic circulation [51-54]. 

A possible mechanism by which AGRPS is absorbed via the GIT may be endocytosis, whereby 

molecules are engulfed by the membrane and move through the intestinal cell in vesicles, which 

would be subsequently released on the membrane`s other side [55]. Of recent, one 

chromatographic study reported that orally administered polysaccharides were detected in rat 

serum by high performance liquid chromatography analysis. These polysaccharides were found 

to be internalized in human intestine mucosa epithelial cells and the underlying mechanism of 

their intestinal absorption was found via clathrin-mediated endocytosis [56]. 

The natural function of the GIT is to digest and absorb nutrients which sustain the living system. 

By the oral route, biochemical compounds pass sequentially from the GIT lumen, through the gut 

wall and then the liver before entering the systemic circulation. Passive diffusion is the 

predominant mechanism for the permeation of biochemical compounds through the GIT 

membrane barrier. A compound must have favorable physicochemical properties (i.e. 

lipophilicity and low molecular weight) to undergo passive diffusion. Endogenous biochemical 

compounds that are necessary for life (including polysaccharides) do not have physicochemical 

properties that allow for sufficient passive diffusion to occur, so there are membrane transporters 

that greatly enhance their permeability [55]. It’s possible that AGRPS is a substrate of uptake 

membrane transporters which enables AGRPS absorption from the GIT into systemic circulation, 
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despite its high molecular weight and hydrophilic physicochemical properties. This possibility 

has not been reported for AGRPS.  

Chromatographic data from this study provides novel evidence and answers to the question of 

whether orally administered AGRPS extract can be absorbed from the GIT into systemic 

circulation. It also lends credence to the fact that orally administered AGRPS extract can be 

absorbed from the GIT into systemic circulation to exert the in vivo and ex vivo 

immunomodulatory effects observed in chapter 4 of this thesis. 

 

5.6. Conclusion 

A new approach using acid protein precipitation and HPSEC with light scattering detection was 

developed for the analysis of AGRPS in plasma and outcome from its application indicates that 

AGRPS is absorbed from the GIT into systemic circulation after oral administration. This new 

approach does not require labeling and is suitable for the analysis of AGRPS in plasma during a 

single analytical run. 
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6.1 Summary and Discussion 

6.1.1 Chapter Three: In vitro Immunostimulatory and Anti-inflammatory Effects of  

                                   American Ginseng Aqueous and Alcoholic Extracts 

In view of the reported ginseng inconsistent immunostimulatory and immunosuppressive effects 

[1-12], which may be attributed to different extraction solvent matrix, the aims of chapter three 

were to; (i) evaluate the immunostimulatory and immunoinhibitory effects of ginseng aqueous 

(AQ) and alcoholic (ALC) extracts and (ii) identify what bioactive fractions in these extracts 

cause the immunomodulatory effects. The immunobioactivities of the ginsenoside and 

macromolecule fractions of ginseng ALC extract was also examined to address the gap in 

knowledge of the immunoinhibitory fractions of the extract. 

The hypothesis was that ginseng AQ extract is immunostimulatory while its ALC extract is 

immunoinhibitory. Bioassay of the ginseng extracts revealed that the direct treatment of AQ 

extract up-regulate macrophage production of NO, TNF-α and IL-6 mediators while that of the 

ALC extract did not. The ALC extract was found to suppress lipopolysaccharide (LPS) induced 

macrophage NO, TNF-α and IL-6 production, while the AQ extract did not suppress LPS 

proinflammatory response. These outcomes support the stated hypothesis that ‘ginseng AQ 

extract is immunostimulatory while its ALC extract is immunoinhibitory’. A novel finding was 

achieved in chapter three in that the macrophage-stimulating activity of the AQ extract was 

inhibited in the presence of the ALC extract. Fractionation of the AQ extract revealed the 

presence of two major peaks with average molecular weights of ~73 kDa and ~37 kDa. The first 

fraction had a similar elution volume as the crude polysaccharide (PS) fraction isolated from the 

AQ extract, and it was the only bioactive species. A parallel fractionation study of the ALC 
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extract yielded novel macromolecules (devoid of PS) which are overlooked by many 

investigators who focus mainly on ginsenoside biological activities. To investigate the 

immunobioactive fractions that contribute to the ALC extract immunoinhibitory effect, the 

extract was fractionated into the macromolecule and ginsenoside fractions by ultrafiltration. 

Their suppression of LPS induced production of NO, TNF-α and IL-6 was studied in murine 

macrophages (RAW 264.7 cell line) using an in vitro model that emulates predominately LPS 

endotoxic condition. The macromolecule and ginsenoside fractions exerted immunoinhibitory 

effect. Hence, the macromolecule and ginsenoside fractions contribute to the immunoinhibitory 

effect of ginseng ALC extract.  

The ALC extract of American ginseng, its macromolecule and ginsenoside fractions which are 

devoid of PS are immunoinhibitory. The AQ extract and its PS phytochemical are 

immunostimulatory. Bioassay revealed that ALC extract suppressed AQ extract up-regulation of 

macrophage NO production, suggesting that concurrent consumption of both AQ and ALC 

extracts will lead to the loss of AQ extract immunostimulatory health benefit. Findings from this 

chapter provide evidence highlighting the important role of extraction solvent on ginseng 

bioactive phytochemicals and immunomodulatory effects. This has significant implications with 

regards to the production, the immunomodulatory efficacy and use of ginseng extracts and 

natural health products. The outcomes from chapter three provide a pathway for identifying 

immunobioactive fractions of ginseng. The immunobioactivities of ginseng are primarily 

associated with the presence of its polysaccharides, macromolecule and ginsenoside fractions 

which are dependent on the extraction solvent used in preparing ginseng extracts and its natural 

health products. 
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6.1.2 Chapter Four: Stimulation and Suppression of Innate Immune Function by American  

                                 Ginseng Polysaccharides: Biological Relevance and Identification of  

                                 Bioactives 

Polysaccharides which are the key immunostimulatory phytochemicals of American ginseng AQ 

extract have recently been shown to suppress response to proinflammatory challenge [13-20]. 

Physicochemical properties such as water solubility, ionic charge, molecular weight, are known 

to affect the biological activity of polysaccharides, including immunomodulation [21-23].                  

The aims of chapter four were to; (i) determine whether AGRPS extract stimulates basal innate 

immune function and at the same time can suppress LPS proinflammatory challenge and (ii) 

identify the bioactive fractions responsible for AGRPS extract immunobioactivities. The 

relationship between the ionic charge and molecular weight of AGRPS fractions and their 

influence on AGRPS modulation of macrophage function under basal and LPS proinflammatory 

conditions knowledge gap was also investigated.  

The first hypothesis was that AGRPS extract possess both immunostimulatory and 

immunosuppressive effects under basal and LPS endotoxic conditions respectively. While the 

second hypothesis was that the ionic charge and molecular weight variations contribute to 

AGRPS immunomodulatory activities. As shown in chapter four, culture of alveolar 

macrophages obtained from AGRPS extract treated rats resulted in an increase of ex vivo 

production of NO and also reduced the responsiveness of the alveolar macrophages to ex vivo 

LPS challenge. AGRPS extract ex vivo immunomodulatory effects were dependent on the 

duration of exposure. Oral treatment with AGRPS extract elevated plasma TNF-α concentration 

in vivo. This treatment also suppressed LPS-induced elevation of plasma TNF-α in vivo. AGRPS 
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extract also exerted in vitro immunostimulatory and immunosuppressive effects, under basal and 

LPS endotoxic conditions respectively. This outcome is in agreement with the first hypothesis 

that ‘AGRPS extract possess both immunostimulatory and immunosuppressive effects under 

basal and LPS endotoxic conditions respectively’. The in vitro mechanistic study revealed that 

the immunostimulatory and immunouppressive effects of AGRPS extract are mediated primarily 

by its acid polysaccharides components, particularly the species with molecular weights ≥100 

kDa and 100 - 50 kDa. This outcome supports the second hypothesis that ‘the ionic charge and 

molecular weight variations contribute to AGRPS immunomodulatory activities’.                     

The ability of AGRPS pretreatment to suppress LPS proinflammatory reponse suggests that for a 

person who consumes ginseng polysaccharides health products e.g. CVT-E002™ (sold 

commercially as COLD-FX
®

), exposure to LPS related stimulatory infectious condition will not 

cause additive toxic stimulatory effects, but rather there will be a suppression of LPS stimulatory 

effect. Such beneficial immunomodulatory response is desired for future prophylactics against 

LPS related disease conditions like endotoxemia.  

 

6.1.3 Chapter Five: Analysis of Intestinally Absorbed American Ginseng Polysaccharides  

                                in Plasma by High Performance Size Exclusion Chromatography 

Though scientific studies have reported that orally administered ginseng polysaccharides exerts 

numerous beneficial pharmacological effects namely; anti-depressant [24], anti-ulcer [25-26], 

anti-tumor effects [27] and immunomodulation [28-31] which was observed in chapter four, 

there is no method available presently to analyze ginseng polysaccharides in plasma. Such a 

method would serve as a key that opens the door to investigating the absorption of AGRPS from 
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gastrointestinal tract (GIT) into systemic circulation after oral administration of AGRPS.  

Chromatographic analytical methods have been used to analyze plant polysaccharides tagged 

with a fluorescent label or subjected to a post column fluorescence derivatization method with 

fluorometric detection in biological matrices (e.g. plasma) after oral treatment [32-37]. The 

development of a chromatographic method to analyze unlabeled polysaccharides in plasma will 

serve as a useful tool in human studies, and for ascertaining the gastrointestinal (GIT) absorption 

of orally administered ginseng polysaccharides into systemic circulation. The aims of chapter 

five were to; (i) develop and apply a method for the determination of AGRPS in plasma and (ii) 

ascertain that orally administered AGRPS can be absorbed from the gastrointestinal tract into 

systemic circulation. The hypothesis was that orally administered AGRPS is absorbed from the 

GIT into systemic circulation. Perchloric acid-protein precipitation of plasma and high 

performance size exclusion chromatography (HPSEC) with right angle light scattering detection 

was used in chapter five as; (i) a new approach to analyze orally administered unlabeled AGRPS 

in rat plasma and (ii) a tool to address the gap in knowledge with regards to the absorption of 

orally administered AGRPS from the GIT into systemic circulation.  

The HPSEC analytical method was applied to analyze unlabeled AGRPS in plasma and study its 

plasma profile in rats. The low plasma level of AGRPS obtained upon the application of the 

newly developed and validated HPSEC analytical method supports the stated hypothesis that 

‘orally administered AGRPS is absorbed from the GIT into systemic circulation’. The low 

plasma profile after oral treatment indicates that AGRPS is poorly absorbed from the GIT into 

systemic circulation may be due to its low membrane permeability, poor or incomplete 

absorption, high molecular weight and hydrophilicity (water solubility) of AGRPS, poor blood 

flow from the gut compared to that of the peritoneal cavity, hepatic, gastric and/or intestinal first-
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pass metabolism (enzymatic, chemical, bacterial) [38]. Polysaccharides of medicinal plants such 

as Radix ophiopogonis have been reported to have low oral bioavailability (1.7%) in rat which 

can be attributed to their large molecular size and hydrophilic character [37]. The verification of 

the identity of AGRPS from plasma of treated animals using an enzyme hydrolytic method 

accompanied with HPSEC analysis provided supportive evidence of the absorption of AGRPS 

from GIT into systemic circulation. The time-dependent change in plasma concentration after 

oral administration of the polysaccharides in rats provided additional evidence of the intestinal 

absorption of AGRPS into systemic circulation.   

HPSEC analysis of plasma samples from rats treated with CVT-E002™ (a polysaccharide herbal 

product of American ginseng root sold commercially as COLD-FX
®
) suggests the applicability 

of this new approach to the analysis of AGRPS in plasma. This work provides a new opportunity 

for human study of AGRPS pharmacokinetics. The knowledge of AGRPS plasma concentrations 

will enhance their prophylactic and therapeutic use in herbal medicine. The promising 

application of this new approach and the achieved results will be highly instructive for future 

pharmaceutical development of AGRPS natural products. Results from this study indicate that 

AGRPS is absorbed from the GIT into systemic circulation after oral administration. A possible 

mechanism by which AGRPS is absorbed via the GIT may be endocytosis; a recent 

chromatographic study which detected orally administered polysaccharides in rat serum has 

discovered the underlying mechanism responsible for their intestinal absorption to be via 

clathrin-mediated endocytosis [39].  
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6.2 Research Significance   

The bioactive components and the extract solvent matrix (aqueous or alcoholic) play a crucial 

role in the biological effects of medicinal plants (e.g. American ginseng) and their natural 

products. This is especially true of immunotherapeutics, where their up-regulatory and down-

regulatory interaction with innate component of the immune system (e.g macrophages) 

determines their observed immunopharmacological effects. Identification of the bioactive(s) and 

extract of medicinal plants and natural products associated with immunomodulatory effect(s) is 

vital to provide appropriate prophylaxis or therapy [40]. Ginseng has been used for thousands of 

years as a tonic to improve overall health, restoration of homeostasis, body healing and reduction 

of overall stress, the medicinal use of American ginseng traces back about 400 year [16, 41-42].  

The merit of the studies performed in this thesis is that a scientific approach of evaluating 

medicinal plants used in traditional medicine [40, 43] was utilized; via the phytochemical and 

immunopharmacological characterization of extracts and their bioactives from good agricultural 

practice quality American ginseng roots randomly collected from five different farms by the 

Ontario Ginseng Growers Association in Ontario, Canada. The outcomes of the studies 

performed in this thesis will be useful for future development of American ginseng products that 

may prevent and reduce risk of immune diseases such as endotoxemia. With the aid of new 

technology a novel approach was used for the analysis of AGRPS in plasma of rats orally fed 

with AGRPS and CVT-E002™, thereby enhancing its plausible future use in human study of 

AGRPS pharmacokinetics. The promising application of this novel approach and the achieved 

results will be highly instructive for future development of AGRPS natural health products.  
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6.3 Future Directions 

The phytochemical and immunopharmacological characterization of American ginseng provided 

valuable information on the immunoinhibitory activity of novel macromolecules in American 

ginseng ALC extract. This provides a new opportunity for future in vivo and clinical 

investigations into their use as plausible medicinal agents against endotoxic LPS related 

inflammatory diseases. As a follow up for investigating the in vivo immunomodulatory effects of 

these novel macromolecules, an analytical method should also be developed and validated for the 

detection and quantification of these novel macromolecules in plasma to ascertain their 

absorption into systemic plasma following oral administration. 

Investigation of the in vitro immunomodulatory effects of the acidic and neutral polysaccharide 

fractions of AGRPS extract revealed that ionic charge and molecular weight are key 

physicochemical properties that influence AGRPS extract immunomodulatory effects. It will be 

worthwhile for a further in vivo study to be carried out, since there is a paucity of information 

with respect to in vivo data in this regard. Such a study can be used to correlate the observed in 

vitro immunomodulatory effect. Future studies which examine the relationship between AGRPS 

ionic charge and molecular weight physicochemical properties and its ability to up-regulate and 

down-regulate TLR4 receptor expression under basal and LPS endotoxic conditions should be 

done. Chromatographic and spectrometric analytical techniques should be used in the future to 

elucidate structural information of the acidic and neutral polysaccharide fractions of AGRPS and 

that of ginseng ALC extract macromolecule fractions. 

The novel approach used in this thesis to analyze AGRPS in rat plasma, indicates that orally 

administered AGRPS is absorbed through the GIT into systemic circulation in rats. Hence, a 
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tissue distribution study in rats and a human pharmacokinetic study of AGRPS in plasma should 

also be carried out.  

In vitro bioavailability study should be done as a follow-up investigation in human epithelial 

Caco-2 cell line to determine the time and concentration dependent uptake and metabolism 

profiles of AGRPS. HPSEC should be applied in the proposed in vitro study to determine 

AGRPS and metabolite concentration in cells. Investigation should also be performed to 

determine whether clathrin-mediated endocytosis is an underlying mechanism responsible for the 

intestinal absorption of AGRPS. While perchloric acid-protein precipitation was used to isolate 

AGRPS from plasma in this study, a recent study has reported the use of a solid phase extraction 

(SPE) methodology to isolate oligo- and polysaccharides from maltodextrins, sugar syrup and 

honey [44]. The use of SPE methodology may have a favorable application and should be 

investigated for future use in the analysis of AGRPS in plasma.   

Sepsis is a leading cause of in-hospital mortality and morbidity in Canada, and its prevention and 

control are essential for patient safety and quality of life [45]. A prospective observational study 

of 12 Canadian community and teaching hospital critical care units found that mortality for 

patients with severe sepsis was slightly over 38% [46]. Sepsis is the most common cause of acute 

lung injury (ALI), since 40–60% of patients with sepsis develop lung injury, regardless of the 

anatomic site of infection [47-48]. Sepsis is a severe, systemic inflammatory response to 

overwhelming infection that can be triggered by LPS endotoxins of Gram-negative bacteria e.g. 

Escherichia coli [49].   

Sepsis-induced ALI and its most severe form, the acute respiratory distress syndrome (ARDS) is 

characterized by increased activation, influx and adhesion of inflammatory cells to pulmonary 
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microvascular endothelial cells (PMVEC) barrier, and their production of inflammatory 

mediators and oxidant stress [50-53]. These septic hallmark events cause vascular lung injury 

and increased EC barrier permeability with protein leaks, resulting in edema and lung 

inflammation [50]. Therapeutic options are limited once ALI develops, making prevention 

paramount [54]. Many treatments identified in preclinical studies have failed to improve patient 

outcomes despite compelling preclinical data [55-58]. Inadequate and delayed recognition of 

patients at risk and the subsequent development of the full blown septic ALI syndrome before 

therapy which obscured the therapeutic window have been linked as contributory factors [54]. 

Preliminary data suggests that ALI is rarely present at the time of hospital admission but 

develops over a period of hours to days in patients with predisposing conditions such as sepsis 

[59-66]. Patients admitted and treated for sepsis in the intensive care unit (ICU) are often 

transferred from operating rooms (ORs) and emergency departments (EDs) [67-68]. Early 

prevention and intervention with potential prophylactic pretreatment, targeted at these high risk 

septic ALI patients (in the ORs and EDs) at the time of hospital admission could improve the 

patient’s quality of life and reduce health costs. 

Based on the outcomes of this thesis it will be worthwhile in the future to examine whether 

American ginseng possesses any protective effect against sepsis-induced ALI by;  

1. Evaluating the in vitro protective effects of AGRPS extract and novel high molecular weight 

macromolecules of ALC extract against simulated septic ALI inflammatory cell activation, 

PMVEC barrier dysfunction and oxidant stress.  

2. Investigating if AGRPS extract and novel high molecular weight macromolecules of ALC 

extract exhibit in vivo protective effect against septic ALI, and examine their beneficial effects in 
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improving survival in septic ALI. 

 

6.4 Conclusions  

The ALC extract of American ginseng and its novel high molecular weight macromolecule 

fractions (devoid of polysaccharides) exert a direct immunoinhibitory effect. AGRPS possess ex 

vivo, in vivo and in vitro direct immunostimulatory and in-direct immunosuppressive effects in 

basal immune function and LPS proinflammatory conditions respectively. These 

immunobioactivities can be attributed to the acidic polysaccharides (PS) and its higher molecular 

weight fractions and not neutral PS or the lower molecular weight fractions of acidic PS. Hence 

AGRPS may have a beneficial suppressive effect against LPS related disease conditions such as 

endotoxemia. These unique pharmacological properties of American ginseng will hopefully be 

translated into future development of novel immunotherapeutics. The in vivo pharmacological 

effects including immunomodulation of orally administered AGRPS can be attributed to its 

absorption from the GIT into systemic circulation which enables its distribution to different 

pharmacological sites of action. The novel approach outlined in this thesis suggests that orally 

administered AGRPS has a low plasma profile. The promising application of the novel approach 

used in this thesis and the achieved results will be highly instructive for future human study of 

AGRPS pharmacokinetics and development of AGRPS natural health products. 
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Appendix 4: Standard curve of pullulan polysaccharide Log Molecular weight versus  

                      Retention volume for determination of molecular weight for Chapter 5 

 

 

The pullulan polysaccharide reference standards with molecular weights 2150, 11800, 22800, 

48000, 112000, 404000 and 1220000 Da eluted with corresponding retention volumes of 19.55 

mL, 17.31 mL, 16.40 mL, 15.16 mL, 13.83 mL, 12.61 mL and 11.64 mL. The weight average 

molecular weight of AGRPS was determined from the pullulan polysaccharide calibration curve 

plot, i.e.   (Rv = –2.9506 Log Mw + 29.203), where Rv is the retention volume and Mw is the 

molecular weight. 
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Appendix 5: Calculation of AGRPS Maximum Plasma Concentrations in Chapter 5  

The use of an arbitrary value of 7% (0.07) for estimation of blood volume can lead to significant 

errors. Blood volume of rat can be related to body weight using the experimentally determined 

equation of Lee and Blaufox (1985); BV = 0.06 X BW+ 0.77. In which blood volume = BV in 

mL and BW = body weight in grams. Lee and Blaufox (1985) also reported that plasma 

constitutes ~ 65 % of rat total blood volume [1]. 

Dose of AGRPS = 125 mg/kg.  

For 240g rat treated with 30 mg (30000 µg) used in this study; BV = 0.06 X 240 + 0.77 = 15.17 

mL total blood volume.  

Plasma constitutes ~ 65 % of rat total blood volume, hence plasma volume will be 

                                  = 65/100 x 15.17 mL = 9.86 mL.  

Assuming 100% bioavailability, 15.17 mL rat total blood volume will contain 30mg of AGRPS, 

while 9.86mL rat total plasma volume will contain = 9.86/15.17 x 30mg = 19.49mg of AGRPS. 

For Oral route, Cmax = 188 µg/mL of AGRPS; 

At Cmax , 9.86 mL of rat plasma volume will contain = 9.86 mL x 188 µg/mL 

                                                                                     = 1853 µg of AGRPS.  

                                                                                    = 1.85 mg of AGRPS 

At Cmax, after Oral dose, percentage of AGRPS in plasma = 1.85 mg/19.49 x 100% = 9.49 % 
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For IP route, Cmax = 2112 µg/mL of AGRPS;  

At Cmax, 9.86 mL of rat plasma volume will contain = 9.86 mL x 2112 µg/mL  

                                                                                     = 20824 µg of AGRPS  

                                                                                     = 20.82 mg of AGRPS. 

At Cmax after IP dose, percentage of AGRPS in plasma = 20.82 mg /19.49 x 100% = 106.82 %. 

 

Reference 

1. Lee HB, Blaufox MD (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26, 72- 
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