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Abstract

During the last decade biomedicine has developed at a tremendous pace. Every day a lot of

biomedical papers are published and a large amount of new information is produced. To help

enable automated and human interaction in the multitude of applications of this biomedical

data, the need for Natural Language Processing systems to process the vast amount of new in-

formation is increasing. Our main purpose in this research project is to extract the relationships

between genotypes and phenotypes mentioned in the biomedical publications. Such a system

provides important and up-to-date data for database construction and updating, and even text

summarization.

To achieve this goal we had to solve three main problems: finding genotype names, finding

phenotype names, and finally extracting phenotype–genotype interactions. We consider all

these required modules in a comprehensive system and propose a promising solution for each

of them taking into account available tools and resources.

Banner, an open source biomedical named entity recognition system, which has achieved

good results in detecting genotypes, has been used for the genotype name recognition task.

We were the first group to start working on phenotype name recognition. We have devel-

oped two different systems (rule-based and machine-learning based) for extracting phenotype

names from text. These systems incorporated the available knowledge from the Unified Medi-

cal Language System metathesaurus and the Human Phenotype Onotolgy (HPO). As there was

no available annotated corpus for phenotype names, we created a valuable corpus with anno-

tated phenotype names using information available in HPO and a self-training method which

can be used for future research.

To solve the final problem of this project i.e. , phenotype–genotype relationship extraction,

a machine learning method has been proposed. As there was no corpus available for this task

and it was not possible for us to annotate a sufficiently large corpus manually, a semi-automatic

approach has been used to annotate a small corpus and a self-training method has been pro-

posed to annotate more sentences and enlarge this corpus. A test set was manually annotated by

an expert. In addition to having phenotype-genotype relationships annotated, the test set con-

ii



tains important comments about the nature of these relationships. The evaluation results related

to each system demonstrate the significantly good performance of all the proposed methods.

Keywords: Relation Extraction, Named Entity Recognition, Phenotype, Genotype, Semi-

supervised learning
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Chapter 1

Introduction

During the last decade biomedicine has developed at a tremendous pace. Every day a tremen-

dous number of biomedical papers are published and a large amount of new information is pro-

duced. To help enable automated and human interaction in the multitude of applications of this

biomedical data, the need for Natural Language Processing (NLP) systems to process the vast

amount of new information is increasing. Current NLP systems try to extract from the biomedi-

cal literature different knowledge such as: protein–protein interactions [13, 38, 45, 63, 76, 117],

new hypotheses [47, 48, 105], relations between drugs, genes, and cells [36, 89, 106], relations

between genes and diseases [25, 88], protein structure [39, 51], and protein function [6, 109].

One of the important pieces of information contained in biomedical literature is the newly

discovered relationships between phenotypes and genotypes. The genotype refers to the entire

set of genes in a cell, an organism, or an individual. Phenotypes are the observable characteris-

tics of a cell or organism, including the result of any test that is not a direct test of the genotype

[103]. A phenotype of an organism is determined by the interaction of its genetic constitution

and the environment. Skin colour, height, and behaviour are some examples of phenotypes. It

is worth noting that throughout this thesis we do not take into account the phenotypes at the

cellular level (inside the cell).

A lot of research experiments are being performed to discover the role of DNA sequence

variants in human health and disease. The results of these experiments are published in the

1



Chapter 1. Introduction 2

biomedical literature. Experts want to know if a disease is caused by a genotype or a special

genotype determines certain characteristics in people. This information is very valuable for

biologists, physicians, and patients. There are some resources which collect this information

and visualize it for people who are interested. Because of the large quantity of information, a

reliable automatic system to extract this information for future organization is desirable. Such

a system provides important and up-to-date data for database construction and updating, and

even text summarization.

Our purpose in this research project is to make an automatic system which extracts the

relationships between phenotypes and genotypes from biomedical papers. Assume that we

have the following sentence in a research paper:

• Mutations of the MECP2 gene at Xq28 are associated with Rett syndrome in females

and with syndromic and nonsyndromic forms of mental retardation in males.

Our final system should be able to extract the following information from this sentence.

1. Mutations of the MECP2 gene at Xq28 is a genotype.

2. Mental retardation and Rett syndrome are phenotypes.

3. According to this sentence there are two relationships in this sentence between the men-

tioned genotype and two phenotypes.

Therefore our system must have the ability to accomplish three different tasks: recognizing

phenotype names, recognizing genotype names and finally detecting the relationships between

them according to the sentences. Throughout this thesis we will explain our proposed methods

for each of these fundamental tasks.

Phenotype name recognition is a very difficult and complicated task. According to our

knowledge we are the first group to start working on this topic. We proposed a rule-based

system [55] and a machine learning-based system [56] to solve this problem and a method for

improving the results in the machine-learning based system. So far, we are aware of only one

other published paper [21] on this subject.



Chapter 1. Introduction 3

Recognizing gene and protein names in biomedical literature is a well-studied problem.

In the previous years the BioCreAtIvE challenge evaluation1 [1] had several competitions in

this area. Many groups participated in these competitions and some very good systems were

proposed. We decided to use one of the available systems named Banner [62] in our own

system to extract genotype names from biomedical text.

Extracting relationships between phenotypes and genotypes is the last step in this project.

We are not aware of any other work on this topic. We proposed a machine learning based

approach to attack this problem. As there was no available corpus for training our machine

learning model we generated a corpus semi-automatically and using a semi-supervised learning

method we improved our final results.

The text from which the relations are extracted has been drawn from the full-text arti-

cles from PubMed (2009) and BioMedCentral (2004), the abstracts obtained from querying

PubMed [3], and abstracts from Phenominer [21].

The remainder of the thesis is organized as follows: Chapter 2 describes a general rela-

tion extraction system, its modules and previous works related to each module. Chapter 3

explains the idea behind semi-supervised learning and its algorithms. Chapter 4 gives a brief

introduction to Conditional Random Fields (CRF), a machine learning algorithm for labelling

sequence data. Chapter 5 gives a short description of NLP tools that have been used in this

project. Chapter 6 is devoted to Banner, the tool we applied to the genotype recognition task.

Chapter 7 describes a rule-based method we proposed for phenotype name recognition. Chap-

ters 8 and 9 explain a machine learning-based method for phenotype name recognition and a

suggestion for improving it. Our phenotype-genotype relation extraction system is described

in Chapter 10 . Finally we conclude the work presented in this thesis in Chapter 11 and discuss

directions for possible future work.

1BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) challenge is an effort for

evaluating text mining and information extraction systems applied to the biomedical domain.



Chapter 2

A General Relation Extraction System

The ultimate goal of this thesis is to extract phenotype-genotype relations from biomedical text.

Many systems have been developed to find the relationships between different entities from

biomedical text. Some of these systems extract the relationships between homogeneous entities

like protein-protein interactions [13, 38, 45, 63, 76, 117] and some others suggest methods to

extract relations between heterogeneous entities like relations between drugs, genes, and cells

[36, 89, 106], or relations between genes and diseases [25, 88]. Figure 2.1 [118] illustrates a

general block diagram for a system which finds the relationship between biomedical entities.

This system is composed of different modules. The remainder of this chapter provides a general

discussion of each of these modules with some details related to the focus of this thesis.

Figure 2.1: General block diagram for finding relationships between entities

4



Chapter 2. A General Relation Extraction System 5

2.1 Tokenizer

The first module is the tokenizer. Tokenization is the process of breaking the text up into

its constituent units or its tokens. Tokens may vary in granularity depending on the particu-

lar application. Consequently, chapters, sections, paragraphs, sentences, words, syllables, or

phonemes can be used as tokens. Many different algorithms exist for breaking up the text into

any level of tokenization.

Ding et al. [31] applied different levels of tokenization such as phrases, sentences, and

abstracts from MEDLINE to find their effectiveness in the application of mining interactions

between biochemical entities based on co-occurrences. Experimental results showed that ab-

stracts, sentences, and phrases can produce comparable extraction results, with sentences being

more effective than phrases and being as effective as abstracts. In this work we have tokenized

full-text articles and abstracts at the sentence and word level.

In breaking up a text into sentences, the most challenging part is distinguishing between

a period that shows an end of sentence and a period that is a part of a previous token like the

abbreviations ”Mr.”, ”Dr.”, etc. This is a well-studied problem. MedPost [100] is one of the

excellent performing and freely available software solutions that deal with biomedical text.

MedPost was originally designed for Medline abstracts. A modified version was developed in

Dr. Mercer’s Cognitive Engineering Laboratory to work with full-text articles and was named

PostMed to distinguish it from the original.

2.2 Named entity recognition

Named entities are phrases that contain the names of people, companies, cities, etc., and specifi-

cally in biomedical text entities such as genes, proteins, diseases, drugs, or organisms. Consider

the following sentence as an example:

• The RPS19 gene is involved in Diamond-Blackfan anemia.

There are two named entities in this sentence: RPS19 gene and Diamond-Blackfan anemia.
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Named Entity Recognition (NER) is the task of finding references to known entities in

natural language text. An NER technique may consist of some natural language processing

methods like part-of-speech (POS) tagging and parsing.

An NER system has to deal with three different problems: the recognition of a named entity

in text, assigning the named entity to a predefined class (gene, protein, drug, etc), and finding

the most suitable name for the entity if there are some synonyms for naming the entity [65].

The latter is especially important if the recognized entities are to be combined with information

from other resources, such as databases and ontologies.

Over the past years it has turned out that finding the names of biomedical objects in litera-

ture is a difficult task. Some problematic factors are: the existence of millions of entity names,

a constantly growing number of entity names, the lack of naming agreement, an extreme use of

abbreviations, the use of numerous synonyms and homonyms, and the fact that some biological

names are complex names that consist of many words, like “increased erythrocyte adenosine

deaminase activity”. Even biologists do not agree on the boundary of the names [65].

Named Entity Recognition in the biomedical domain has been extensively studied and, as a

consequence, many methods have been proposed. Some methods like MetaMap [7] and mgrep

[28] are generic methods and find all kinds of entities in the text. Some methods, however,

are specialized to recognize particular types of entities like gene or protein names [39, 58],

diseases and drugs [89, 94, 114], mutations [46] or properties of protein structures [39].

NER techniques are usually classified into three categories [65]. Dictionary-based tech-

niques are used by, for example, Krauthammer et al. [58] to match phrases from the text against

some existing dictionaries. Rule-based techniques used by, for example, Fukuda et al. [37]

make use of some rules to find entity names in the text. Machine learning techniques as, for

example, used by Nobata et al. [79] transform the NER task into a classification problem.

2.2.1 Dictionary-based techniques

Dictionaries are large collections of entity names. Exactly matching words and phrases in

texts against entity names in a dictionary is a very precise NER method but it cannot find



Chapter 2. A General Relation Extraction System 7

all named entities and yields low recall 1 [65]. To improve this method some researchers

use inexact matching techniques, or try to generate typical spelling variants for each name

and add them to the available dictionary. Then they use this new dictionary to find exact

matches against text words. Swiss–Prot [9] is a biological database of protein sequences which

is widely used for protein NER. Flybase [40], the Unified Medical Language System (UMLS)

[50], the Pharmacogenetics Knowledge Base (PharmGKB) [57], and the Online Mendelian

Inheritance in Man (OMIM) [73] are examples of other biomedical databases. Coulet et al.

[25] use PharmGKB [57] to extract genes, drugs, and phenotypes in the literature.

The Human Phenotype Ontology (HPO) [90] is an ontology that tries to provide a stan-

dardized vocabulary of phenotypic abnormalities encountered in human disease. The HPO

was constructed using information initially obtained from the Online Mendelian Inheritance

in Man (OMIM) [73] after which synonym terms were merged and the hierarchical structure

was created between terms according to their semantics. The hierarchical structure in the HPO

represents the subclass relationship. The HPO currently contains over 9500 terms describing

phenotypic features.

The Human Genome Nomenclature (HUGO) [110] contains a list of approved human gene

names and symbols. In addition this list contains some symbols and names that are used before

approval. The HUGO Gene Nomenclature Committee assigns a unique symbol for each gene.

It has approved over 29,000 human gene symbols and names. The committee tries to facilitate

communication and electronic information retrieval of human genes avoiding any conflicts

among gene symbols.

The Gene Ontology (GO) [8] contains defined terms representing gene product properties.

This ontology covers three domains: cellular component, molecular function, and biological

process. This ontology consists of many databases, including several of the world’s major

repositories for plant, animal, and microbial genomes.

The GENIA corpus [80] is a collection of 2000 Medline abstracts which were collected

1Recall is the percentage of correct entity names found compared to all correct entity names in the corpus and

can be used as a measure of completeness.
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Figure 2.2: Conversion Table [59]

using the three MeSH 2 terms, “human”, “blood cells”, and “transcription factors”. This corpus

has been annotated for biological terms and can be used to train entity extraction algorithms.

Krauthammer et al. [59] use BLAST as an inexact matching algorithm. The BLAST

[5] programs are capable of searching similarities between sequences in protein and DNA

databases. In this approach, they translate a list of gene and protein names extracted from

GenBank3 [2] into an alphabet of DNA sequences using a conversion table (Figure 2.2). Each

character of the name is substituted with a unique nucleotide string. As an example, the gene

name zgap1 would be translated into: AGATAAGCAAACACCCAGCG. Then they translate

the scientific papers into a continuous string of nucleotides using the same table. For exam-

ple, the sentence “For instance ErbB, Ras and Raf all lie on the ERK MAP kinase (MAPK)

pathway.” would be represented by Figure 2.3. Finally they search the whole paper string to

find similarities between nucleotide strings of gene and protein names in the standard BLAST

library and translated papers. A BLAST output file contains the list of these similarities and

their corresponding protein and gene names [59].

2Medical Subject Headings (MeSH) is a comprehensive controlled vocabulary for the purpose of indexing

journal articles and books in the life sciences; which is used by the MEDLINE/PubMed article database.
3The GenBank sequence database is an open access, annotated collection of all publicly available nucleotide

sequences and their protein translations.
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Figure 2.3: Example

2.2.2 Rule-based techniques

Rule-based approaches (e.g. , [37, 55, 88]) make use of lexical and linguistic rules to find entity

names in the text. In early systems, rules were created manually using human experts. These

rules specify the characteristics of named entities and their context, for example, surface clues

(capital letters, symbols, digits). Using these rules, some candidate entity names are chosen

and then these candidates can be expanded using some syntactic rules. For example, some

functional terms surrounding a candidate are included in the protein name (such as kinase or

receptor). A part-of-speech (POS) tagger may be used to provide grammatical data for further

expansion rules. For instance, if a part of a nominal phrase is identified as a named entity the

whole nominal phrase can be recognized as a named entity.

One problem in rule-based systems is that they are not robust enough to recognize previ-

ously unseen names. In addition, the process of writing rules manually is too time-consuming

and labourious. The precision4 and recall5 in these systems depend on how specific the rules

are. Usually the rules cover special situations and systems achieve high precision and low

recall.

2.2.3 Machine learning techniques

In this approach the NER task is transformed to a classification problem. Dictionary matches,

word occurrence, context, and word morphology are used as features. Here, Support Vec-

4Precision is the percentage of correct entity names as determined by a human in all entity names found and

can be seen as a measure of soundness.
5Recall is the percentage of correct entity names as determined by a human found compared to all correct

entity names in the corpus and can be used as a measure of completeness.
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tor Machines (SVM) [75], Hidden Markov Models [86], Conditional Random Fields [61] and

naı̈ve Bayes [75] are broadly and successfully applied. ABGene [107], BANNER [62], AB-

NER [96] and LingPipe [15] are some examples of machine learning-based NER methods in

the biomedical domain.

2.3 Relation extraction

The extraction of relations between biomedical objects has attracted much attention and several

different approaches have been proposed. Generally, current approaches can be divided into

three categories [118]: Computational linguistics-based, rule-based, and machine learning and

statistical methods. Furthermore some systems ([13, 38, 88], for instance) have combined these

approaches and have proposed hybrid methods.

2.3.1 Computational linguistics-based methods

These methods define grammars to describe the syntax of sentences and make use of parsers

to find the grammatical structure of sentences and dependency relations among words. In the

first step of these methods the corpus is parsed to find the structure of each sentence and find

the relationships between different phrases in a sentence. Using this information is very useful

to extract relations between protein and gene names. However, efficient and accurate parsing

of unrestricted text (like biomedical texts) is beyond the capability of current techniques. It is

not applicable to use standard parsing algorithms because they are too expensive to use on very

large corpora and they are not robust enough [98]. For example the BLLIP parser [17] spends

about 1 minute to parse a sentence and its F-score 6 is reported to be 91.02 [17] on section 23 of

the Penn Treebank [68]. An alternative way is to use shallow parsers [53]. In shallow parsing

techniques, the sentence is not parsed completely. Instead, the sentence is broken up into

non-overlapping word sequences or phrases, such that syntactically related words are grouped

together.

6The harmonic mean of equally weighted precision and recall.
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Shallow parsing approaches

Shallow parsers decompose each sentence partially into some phrases and find the local de-

pendencies between phrases. Each phrase is tagged using a set of predefined grammatical tags

such as: Noun Phrase, Verb Phrase, Prepositional Phrase, Adverb Phrase, Subordinate Clause,

Adjective Phrase, Conjunction Phrase, and List Marker.

Leroy et al. [64] develop a shallow parser to extract relations between entities from ab-

stracts. The type of these entities has not been restricted. They start from a syntactic perspec-

tive and extract relations between all noun phrases regardless of their type. Their parser looks

for certain patterns in the text based on English closed-class words, e.g. , conjunctions and

prepositions. Closed-class words do not change over time. By using them, the resulting tem-

plates are general and do not depend on a pre-specified biomedical vocabulary. The parser is

composed of four cascaded finite state automata (FSA) to capture the content of paper abstracts

and then find the structure of the content: the FSA for Basic Sentences, the FSA for the prepo-

sition of, the FSA for the preposition by and the FSA for the preposition in. The recognized

patterns in each FSA contain the binary relations between two noun phrases. Each relation can

contain up to five elements and requires a minimum of two elements.

Interacting proteins usually have similar biological functions. He and DiMarco [45] base

their method on this characteristic of protein-protein relationships. In this paper the idea of

lexical chaining has been used. While looking for a protein-protein interaction they focus on

finding some biological terms about the common functions of two interacting proteins in the

context surrounding the protein-protein interaction. If such terms are found, there is strong

evidence that the interaction is a valid biological interaction.

SemGen [88] identifies and extracts causal interaction of genes and diseases from MED-

LINE citations. Texts are parsed using MetaMap. The semantic type of each noun phrase

tagged by MetaMap is the basis of this method. Twenty verbs (and their nominalizations)

plus two prepositions, in and for, are recognized as indicators of a relation between a genetic

phenomenon and a disorder.

Sekimizu et al. [95] use a shallow parser to find noun phrases in the text. The most fre-
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quently seen verbs in the collection of abstracts are believed to express the relations between

genes and gene products. Based on these noun phrases and frequently seen verbs, the subject

and object of the interaction are recognized.

Obviously, shallow parsers extract simple binary relationships successfully but when there

are more complex relations among more than two entities they usually have erroneous results.

Deep parsers yield better and more precise results but they are expensive to use in terms of

time.

Deep parsing approaches

Systems based on deep parsing determine the complete syntactic structure of a sentence or

a string of symbols in a language and therefore are potentially more accurate. Deep parsing

approaches are divided into two main types according to the way of constructing grammars:

rationalist methods and empiricist methods. Rationalist methods define grammars manually,

while empiricist methods generate the grammar automatically using some observations.

Coulet et al. [25] propose a method to capture pharmacogenomics (PGx) relationships and

build a semantic network based on relations. They use lexicons of PGx key entities (drugs,

genes, and phenotypes) from PharmGKB[57] to find sentences mentioning pairs of key entities.

Using the Stanford parser [30] these sentences are parsed and their dependency graphs7 are

produced. According to the dependency graphs and two patterns, the subject, object, and the

relationship between them are extracted.

RelEx[38] makes dependency parse trees from the text and applies a small number of sim-

ple rules to these trees to extract protein–protein interactions. We will explain RelEx later in

Section 2.3.2 because it is a rule-based method too. Temkin and Gilder [108] use a lexical an-

alyzer and a context free grammar to make an efficient parser to capture interactions between

proteins, genes, and small molecules.

Yakushiji et al. [115] propose a method based on full parsing with a large-scale, general-

purpose grammar. A parser converts the various sentences that describe the same event into a

7A directed graph representing dependencies of words in a sentence.
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canonical structure (argument structure) regarding the verb representing the event and its ar-

guments such as the (semantic) subject and object. Interaction extraction is done using pattern

matching on the canonical structure.

Deep parsing approaches analyze the whole sentence structure to achieve higher accuracy.

However dealing with the whole sentence is time-consuming and expensive. Furthermore these

approaches cannot process all kinds of sentences and they usually cannot find the correct struc-

ture of complex sentences.

2.3.2 Rule-based methods

In rule-based approaches a set of rules is used. These rules express the format of the text

containing relations between entity names. These rules can be defined over words or part-of-

speech (POS) tags. The rule-based methods and computational linguistics-based methods are

different. Rule-based methods have explicit rules and these rules can be non-linguistic. The

BioNLP module [76] is a rule-based module which finds protein names in text and extracts

protein-protein interactions using pattern matching. The following five rules are some exam-

ples of pattern matching rules in BioNLP. In these rules the symbols A, B refer to protein names

and fn refers to the interaction verb or its nominalized form.

• A ... fn ... B: This rule models basic sentences like “A inhibits B, C, and D”;

• A ... fn of ... B: This rule models sentences such as “A, an activator of B, is found to be

lacking in the patient population”.;

• A ... fn by ... B: This rule describes sentences in the passive voice, such as “A is inhibited

by the activities of B.”;

• A ..., which ... fn ... B, ...: This rule models sentences such as “A, which inhibits the

activities of B, is found to be lacking in the patient population”;

• fn of A is ... B: This template models sentences such as “Induction of A is caused by B.”.
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Obviously, such simple rules cannot produce good results. Many people have used some rules

that they produced manually. Using predefined rules can generate nice results but it is time-

consuming and if you want to move to another domain, significant manual work is required

to change the rules appropriate for the new domain. So, some people tried to automatically

construct the entity interaction patterns.

Huang et al. [49] propose a method based on dynamic programming [24] to discover pat-

terns to extract protein interactions. As a first step, part-of-speech tagging is used. Then using

dynamic programming by processing and aligning sentences, similar parts in the sentences

could be extracted as patterns. They use a threshold d in the algorithm. A pattern is discarded

if it appears fewer than d times. Using these patterns, protein–protein interactions can be iden-

tified.

Fundel et al. [38] describe a system called RelEx. RelEx generates dependency parse trees

using the Stanford Lexicalized Parser8. It extracts protein–protein interactions in three steps:

preprocessing, extracting and post processing. In the preprocessing step, the sentences are POS

tagged and then noun-phrase chunks are identified by fnTBL39. The POS-tagged sentences are

submitted to the Stanford Lexicalized Parser in order to get a dependency parse tree (Figure 2.4,

upper panel) for each sentence and assign word positions to each word. Gene and protein names

are identified by ProMiner [44] based on matching to a synonym dictionary. A dependency

chunk tree is produced. In this tree, for each chunk, the corresponding nodes in the dependency

tree are combined into a chunk-node (Figure 2.4, lower panel).

In the extracting phase, the candidate relations are extracted from dependency parse trees.

To find these relations, some paths that connect two protein names are recognized. These

paths should contain relevant terms signalling the relation between two proteins. Currently

they use three rules to describe protein-protein relations: effector–relation–effectee, relation–

of–effectee-by-effector, and relation-between-effector–and–effectee.

8http://nlp.stanford.edu/software/lex-parser.shtml
9fnTBL is a customizable, portable and free source machine-learning toolkit primarily oriented towards Natu-

ral Language-releated tasks. http://nlp.cs.jhu.edu/∼rflorian/fntbl/
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Figure 2.4: Upper panel: Dependency parse tree in RelEx, showing words along with their

positions, dependencies, dependency types and the head of the sentence (Root). Lower panel:

Corresponding chunk dependency tree [38].
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For example in the first rule, if a chunk is recognized as the subject it is marked as the start

point and RelEx will search for a relation and a protein or gene name as the end point. If the

dependency tree does not contain any subject each protein or gene name can be a start point or

an end point and the path between each two names can be their relation.

In the post-processing step candidate relations are filtered. Negative relations are omitted,

because they show that there is no relation between proteins. If a node or one of its child

nodes contains negative words such as no, not, nor, neither, without, lack, fail(s,ed), unable(s),

abrogate(s,d), absen(ce,t), the relation is considered negative.

Effector–effectee position may change. Usually the first name in a sentence is the effector

and the second one is considered the effectee. But in some situations like passive sentences,

the effector and effectee places are interchanged.

This approach supports enumeration. This can be detected from the dependency tree. If

noun phrase chunks are connected by the relations and, or, nn 10, det 11 or dep 12, each chunk

is analyzed separately and for each of them a separate relation is created.

A list of terms is created. This list shows more important relation words and contains

interaction verbs and derived nouns and adjectives. Involved terms in candidate relations are

checked against this list.

SemGen [88] uses a mechanism for interpreting semantic relationships based on depen-

dency grammar rules to identify and extract semantic propositions on the causal interactions of

genes and diseases from biomedical literature.

It has been found that the ability of rule-based approaches to recognize interactions is lim-

ited. Rules are not complete enough to cover all situations. Rule-based approaches can only

process short and straightforward statements correctly. However biomedical texts are usually

complex. Furthermore, they cannot recognize some important features of sentence construction

such as mood, modality, and sometimes negation, which can change the meaning of sentences

10A noun compound modifier of an NP is any noun that serves to modify the head noun.
11A determiner is the relation between the head of an NP and its determiner.
12A dependency is labeled as dep when the system is unable to determine a more precise dependency relation

between two words.
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[118].

Ibn Faiz’s rule-based approach [34]

Ibn Faiz [34] proposed a rule-based method for extracting protein-protein interactions. This

approach is an extension of RelEx [38]. In this method the dependency tree of each sentence is

made. The tree is traversed according to a set of rules and various candidate dependency paths

are extracted. Each candidate path undergoes a filtering stage. The author prepared a list of

interaction terms by combining relation lists used in previous works by [13] and [38], which

indicate the occurrence of a relationship in a sentence. If a candidate path does not contain any

relation term then this path is removed from further consideration.

This method is able to find relationships with the following patterns:

• Protein1 Relation Protein2

• Relations in which the entities are connected by one or more prepositions:

– Protein1 Relation (of | by | to | on | for | in | through | with) Protein2; e.g. Protein1

binding by Protein2 is blocked by MAb.

– (PREP | REL | N)+(PREP)(REL | PREP | N)* Protein1 (REL | N | PREP | PROT)+

Protein2; where PREP is any preposition, REL is any relation term, N is any noun,

and PROT is any protein instance. e.g. Activation of Protein1 by Protein2 in NIH

3T3 cells and in vitro.

– Relation (of | by | to | on | for | in | through | with | between) Protein1 and Protein2,

e.g. A direct interaction between Protein1 subunits and Protein2.

• Protein1 (/ | \ | −) Protein2; for extracting relations of the form “Protein1/Protein2”

binding or “Protein1-Protein2” compound.

This method has been evaluated on the unified PPI corpora [84] and the results are illus-

trated in Table 2.3.2. These results are at least as good as results obtained by a reproduction
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Corpus AIMed BioInfer HPRD50 IEPA LLL

Precision 44.85 55.82 72.0 68.02 78.40

Recall 60.9 39.15 66.26 69.85 77.44

F-score 51.65 44.97 69.01 68.92 77.91

Table 2.1: Ibn Faiz’s rule-based PPI method performance.

of RelEx [84] on the corpora used in the evaluation and this system achieved better results on

AIMed and BioInfer.

2.3.3 Machine learning and statistical methods

A number of different machine learning (ML) methods have been proposed ranging from sim-

ple methods such as deducing a relationship between two terms based on their co-occurrence

in suitable text fragments to more complex methods which employ NLP technologies.

Katrenko and Adriaans [54] propose a representation based on dependency trees which

takes into account the syntactic information and allows for using different machine learning

methods.

Craven [26] describes two learning methods (Naı̈ve Bayes and relational learning) to find

the relations between proteins and sub-cellular structures in which they are found. The naı̈ve

Bayes method is based on statistics of co-occurrence of words. To apply the relational learning

algorithm, text is first parsed using a shallow parser.

Marcotte et al. [67] describe a Bayesian approach to classify articles based on 80 discrimi-

nating words, and to sort them according to their relevance to protein-protein interactions.

Bui et al. [13] propose a hybrid method for extracting protein-protein interactions. This

method uses a set of rules to filter out some PPI pairs. Then the remaining pairs go through a

SVM classifier.

Stephens et al. [102], Stapley and Benoit [101], and Jenssen et al. [52] discuss extracting

the relation between pairs of proteins using probability scores.
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Corpus AIMed BioInfer HPRD50 IEPA LLL

Precision 73.69 82.35 79.33 79.39 98.0

Recall 59.61 73.90 77.34 75.75 87.66

F-score 65.85 77.86 77.52 77.27 88.12

Table 2.2: Ibn Faiz’s machine learning-based PPI method performance.

Ibn Faiz’s machine learning-based approach [34]

Ibn Faiz [34] proposed a machine learning approach to extract protein-protein interactions.

This method considers this problem as a binary classification task. Ibn Faiz uses a maximum

entropy classifier. The Stanford dependency parser produces a dependency tree for each sen-

tence. For each pair of proteins in a sentence the dependency path between them, the parse tree

of the sentence and other features are extracted. These features include: dependency features

coming from the dependency representation of each sentence, syntactic features and surface

features derived directly from the raw text (the relation terms and their relative position).

The extracted features along with the existence of a relationship between protein pairs in a

sentence make a feature vector. A machine learning model is trained based on these positive

(interacting) and negative (non-interacting) pairs of proteins. To avoid sparsity and overfitting

problems, feature selection has been done by Mallet (see Chapter 5).

Table 2.3.3 represents the 10-fold cross validation results obtained by testing this system

on the unified PPI corpus [84]. These results are competitive with results reported by a hybrid

protein-protein interaction method [13].

2.4 Conclusion

In this chapter we discussed a general relation extraction system and the necessary modules for

implementing such a system. Each module was explained separately and the available methods

and the previous works related to it were described. The only module left is the Visualization
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[32] which provides a friendly interface for users to acceess the extracted information and it is

beyond the scope of this thesis.



Chapter 3

Semi–Supervised Machine Learning

Training classifiers using supervised machine learning requires a large number of feature values—

class label pairs. Obtaining this labelled data for training machine learning classifiers is not

always easy. Annotating the data is a time-consuming task. For applications in some specific

domains, annotation must be done by experts and it can be expensive. As well, sometimes

special devices are needed for annotating the data. However, in most cases it is easier and

cheaper to obtain unlabelled data than labelled data. Semi-supervised learning is a bootstrap-

ping method which incorporates a large amount of unlabelled data to improve the performance

of the supervised learning methods which lack sufficient labelled data.

At first it might seem impossible that unlabelled data can help to improve machine learning

systems. Summarizing the explanation given in [119], we try to illustrate the idea behind semi-

supervised learning methods. Let each instance be represented by a one-dimensional feature

x ∈ R. Assume that we have only two annotated instances, each from a different class: positive

and negative. Now we want to find the best boundary between these classes. Figure 3.1 is

used to visualize what we now describe. If we only consider the two tagged instances, like

what we have in supervised learning, the best estimate of the decision boundary would be x=0.

On other hand, if we consider the unlabelled instances shown in green, we observe that they

form two separate groups. Assuming that the instances in each class belong to one coherent

group (p(x | y) is a Gaussian distribution) the best decision boundary between these two classes

21
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Figure 3.1: How semi-supervised learning works. This Figure is taken from [119].

seems to be x ≈ 0.4.

As we saw in this example the assumption we take about the relationship between x and

p(x | y) has an important role in the success of the semi-supervised learning method that

we choose. There are different types of semi-supervised learning methods; co-training, self-

training, generative models, graph-based learning and so on. The difference between these

semi-supervised learning methods lies in the difference between the assumptions they make

about the relationship between x and p(x | y). Making a wrong assumption leads us to choose

a wrong method and ends up generating worse results than using only the labelled data. Figure

3.2 represents an example to clarify this point.

Assume that we have a classification task with two different classes. The top panel of Figure

3.2 shows two Gaussian distributions corresponding to these two classes. These distributions

heavily overlap. The dotted line in the middle of the two distributions is the real decision

boundary. The other panels in the figure show the decision boundaries found by four different

algorithms having five different sets of labelled and unlabelled data.

A supervised learning algorithm only considers the labelled instances and ignores the un-

labelled instances. It draws a decision boundary at the mid-point between the negative labelled

instance and the positive labelled instance. Whenever we change the labelled instances this de-

cision boundary changes and it is always off a little bit. Supervised learning decision boundary

has high variance.
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Figure 3.2: Two classes drawn from overlapping Gaussian distributions (top panel). Decision

boundaries learned by several algorithms are shown for five random samples of labelled and

unlabelled training samples. This figure is taken from [119].
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A generative model is a semi-supervised learning model which assumes two classes have

two Gaussian models and finds these distributions using the expectationmaximization (EM)

algorithm [75]. This method makes the correct assumptions so its decision boundaries are

close to the correct decision boundary and also close to one another i.e. , this method has low

variance.

S3VM is a semi-supervised Support Vector Machine, which assumes that the decision

boundary should not pass through dense unlabelled data regions. This is not always a cor-

rect assumption especially in the instances shown here. However the result decision boundary

does not seem so bad because this approach has also used the fact that the two classes have

approximately the same number of instances.

Graph-based semi-supervised learning has a special way of generating the graph. In this

graph any two instances of labelled and unlabelled data are connected by an edge. The edge

weight depends on how close (large weight) or far away (small weight) the two instances are.

The model assumption is that the instances connected with large weight edges have the same

label. However in this particular example where two distributions overlap, instances from two

different classes can be quite close yet be connected with large weight edges. So the model

prediction is not close to the correct distributions of the classes and this model performs even

worse than the supervised learning method.

As the above example shows, making a correct assumption is very important in semi-

supervised learning. It is important to choose a suitable semi-supervised algorithm for the

problem. But how to choose this algorithm still is an open question.

In the remainder of this chapter we will discuss two important semi-supervised learning

algorithms: co-training and self-training algorithms.

3.1 Co-training

Co-training [10] is a kind of semi-supervised learning. In co-training we have two (or more)

different views of the data (each example is described by two separate feature sets). Starting
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with the labelled data, the classifier learns from each view separately. Then, using the two

learned models, the unlabelled data gets annotated and the most confident predictions from

each model are added to the labelled data. This process continues for a number of iterations.

As each classifier is providing extra, informative labelled data for the other classifier(s) the

training should progress.

In the original definition of co-training, Blum and Mitchell [10] made two important as-

sumptions about the effectiveness and applicability of co-training: (1) each of the two views is

sufficient to classify the data; (2) the two views are conditionally independent given the class

label. When these two assumptions hold, Blum and Mitchell [10], derive PAC-like1 guarantees

on learning. However, Abney [4] argues that the Blum and Mitchell independence assumption

is too restrictive and typically violated in the data, and shows a weaker independence assump-

tion suffices. He also proposes a greedy algorithm to maximize agreement on unlabelled data

between classifiers, which produces good results in a co-training experiment for named entity

classification.

Moreover, Clark et al. [19] investigate the use of co-training in POS tagging. They use two

types of co-training. In the first one (agreement-based co-training), theoretical arguments of

Abney [4] that directly maximize the agreement rates between the two classifiers are used. In

the second one a naı̈ve co-training process which simply retrains classifiers on all the newly

labelled data is tested. The results show that the naı̈ve co-training process leads to similar

performance, at a much lower computational cost.

Later research by Nigam and Ghani [78] shows that when the feature set is naturally divided

into independent and redundant splits, co-training algorithms outperform other algorithms us-

ing unlabelled data.

In natural language processing, co-training has been used for word sense disambiguation

[74], statistical parsing [92], reference resolution [77], part-of-speech tagging [19], etc. and

has achieved good results when lacking an annotated corpus.

1Probably Approximately Correct (PAC) is a framework for a mathematical analysis of machine learning.



Chapter 3. Semi–SupervisedMachine Learning 26

Figure 3.3: Self-training algorithm

3.2 Self-training

Self-training is another type of semi-supervised learning. While there is a common agreement

about the co-training definition, different definitions have been proposed for self-training.

Ng and Cardie [77] define self-training as “a single-view weakly supervised learning al-

gorithm” and show that it outperforms the multi-view algorithms when there are not obvious

independent and redundant feature splits. They used bagging [12] and majority voting [66] in

their implementation. A set of classifiers get trained on the labelled data then they classify the

unlabelled data independently. Only those predictions which have the same label by all classi-

fiers are added to the training set and the classifiers get trained again. This process continues

until a stop condition is met.

Clark et al. [19] define self-training differently. In self-training “a tagger is simply re-

trained on its own labelled cache at each round”. This definition is in agreement with Nigam

and Ghani’s [78] definition. We adopt this definition in our work. Figure 3.3 illustrates the

self-training algorithm according to this definition. Based on this definition there is only one

classifier which is trained on labelled data, then the resulting model is used to train the un-

labelled data, the most confident predictions are added to the training set and the classifier is

retrained on this new training set. This procedure repeats for several rounds.
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Self-training assumes that its own predictions, at least the high confidence ones, are correct.

This is a correct assumption if the classes are well-separated clusters.

It is understandable that early mistakes in the first iterations of the algorithm can reinforce

themselves through the next iterations by generating incorrect labels. So re-training with this

data can cause worse models in each iteration. Various heuristics have been proposed to solve

this problem.

The major advantage of the self-training algorithm is that it is a wrapper method and it is

very simple to apply. If given very complicated learning algorithm, it can be used within the

self-training framework as a black-box, without needing to know its details.

Yarowsky [116] applied self-training learning for word sense disambiguation. He used the

“one sense per collocation” and the “one sense per discourse” properties of human languages

for word sense disambiguation. From observation, words tend to exhibit only one sense in

most given discourse and in a given collocation.

Self-training has been applied for learning subjective nouns [87], spam filtering [23] and

phenotype name recognition [56].
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Conditional Random Fields

Segmenting and labelling sequences is fundamental in many different applications in several

scientific fields including bioinformatics, computational linguistics and speech recognition [33,

69, 85]. Part-of-speech tagging is one simple example of such an application.

Hidden Markov Models (HMMs) [86] are commonly used techniques in labelling sequence

data. HMMs are a form of generative model that define the joint probability of p(X,Y) where X

is a random variable over observation sequences and Y is a random variable over corresponding

label sequences.

p(X,Y) = p(X)p(Y |X) (4.1)

For example, in part of speech tagging, X ranges over tokens in a sentence and Y ranges

over the POS tags. According to HMMs independence assumption the current observation

is statistically independent of the previous observations. To find the joint probability over

observation and label sequences a generative model has to enumerate all possible observation

sequences which is not possible unless observation elements are represented as isolated units

such as words or nucleotides, independent from the other elements in an observation sequence.

Practically the dimensionality of observations (X) can be very large and the features may also

have complex dependencies, so making a probability distribution over them is difficult and the

inference problem for such models is intractable [61].

28
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Figure 4.1: Graphical structure of a chain-structured CRF for sequences. This is taken from

[111].

An alternative representation method is the Conditional model. A conditional model spec-

ifies the conditional probability p(Y | X) directly. Therefore there is no need to model the

observation and also to make the independence assumption between features.

Conditional Random Fields (CRF) is a non-generative probabilistic framework for labelling

and segmenting sequential data based on conditional models. The conditional nature of CRF

relaxes the independence assumptions required in HMMs, resulting in enriched features and

improved performance.

A conditional random field can be considered as an undirected graph or Markov random

fields [20], conditioned on X. Let G = (V, E) be an undirected graph such that there is a node

v ∈ V for each Yv ∈ Y . Then G = (V, E) is a conditional random field if each random variable Yv

obeys the Markov property 1 with respect to the graph. Theoretically the structure of graph G

may be arbitrary but the simplest and most common graph structure in CRF is shown in Figure

4.1 in which the elements corresponding to elements of Y form a first-order chain.

According to the fundamental theorem of random fields [43], we can factor the joint distri-

bution over the label sequence Y given X based on the cliques in G [61].

p(Y |X) = exp(
∑

j

λ jt j(yi−1, yi, x, i) +
∑

k

µksk(yi, x, i)) (4.2)

where t j(yi−1, yi, x, i) is a transition feature function of the entire observation sequence and the

1A stochastic process has the Markov property if the conditional probability distribution of future states of the

process (conditional on both past and present values) depends only upon the present state.
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labels at positions i and i − 1 in the label sequence; sk(yi, x, i)) is a state feature function of the

label at position i and the observation sequence; and λ j and µk are parameters to be estimated

from training data.

We assume that feature functions t j and sk are given and fixed. For example a boolean

feature sk is true if the word Xi is uppercase and tag Yi is “proper noun”.

The parameter estimation problem is to determine the parameters λ j and µk from training

data. Lafferty et al. [61] proposed two iterative scaling algorithms to find the parameters that

maximize the log-likelihood of the training data.

CRFs have been used successfully in many applications. In the NLP domain CRFs have

been applied for named entity recognition (NER) [56, 62, 97], shallow parsing [97, 104], seg-

menting addresses in Web pages [27], information integration [112], finding semantic roles

in text [91], identifying the sources of opinions [18], word alignment in machine translation

[11], citation extraction from research papers [82], extraction of information from tables in text

documents [83], Chinese word segmentation [81], Japanese morphological analysis [60], and

many others.

Banner [62] is a biomedical NER system which is based on CRF. This system has been used

in this research project for extracting genotype names. As CRF id the best method for sequence

tagging, we proposed a CRF-based machine learning method for extracting phenotype names

(see Chapter 8).
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Natural Language Processing Tools

We used several available NLP tools to implement our proposed methods. This Chapter gives

a short description for each tool that has been used in this thesis.

5.1 MetaMap

MetaMap, a program developed by the National Library of Medicine (NLM) [7], provides a

link between biomedical text and the structured knowledge in the Unified Medical Language

System (UMLS) Metathesaurus. To map phrases in the text to concepts in the UMLS Metathe-

saurus, MetaMap analyzes the input text lexically and semantically. First, MetaMap tokenizes

the input text. In the tokenization process the input text is broken into meaningful elements,

like words. After part-of-speech tagging and shallow parsing using the SPECIALIST Lex-

icon 1, the text has been broken into phrases. Phrases then undergo further analysis: Each

phrase is mapped to a set of candidate UMLS concepts, each candidate being given a score

that represents how well the phrase matches the candidates. An optional last step is word sense

disambiguation (WSD) which chooses the best candidate sense with respect to the surrounding

text [7].

1The SPECIALIST Lexicon contains information about common English vocabulary, biomedical terms, terms

found in MEDLINE and terms found in the UMLS Metathesaurus.
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Figure 5.1: MetaMap output for “the Fanconi anemia”

MetaMap is configurable with options for vocabularies and data models in use, output

format and algorithmic computations. An example of the human-readable output format for

the text “Fanconi anemia” from the sentence “Fanconi anemia is a genetic disease with an

incidence of 1 per 350,000 births.” is shown in Figure 5.1. MetaMap finds 4 candidates for this

phrase and after WSD it maps the phrase to the “Disease or Syndrome” concept.

In UMLS each Metathesaurus concept is assigned to at least one semantic type. In Figure

5.1 the semantic type of each concept is given in the square brackets. Semantic types are

categorized into groups, called Semantic Groups (SG), that are sub-domains of biomedicine

such as Anatomy, Living Beings and Disorders [72]. Each semantic type belongs to exactly

one SG.

Figure 5.2 illustrates a part of this hierarchy. In this Figure Physiology, Disorders and

Anatomy are semantic groups and the other ones are all semantic types under SG Disorders. A

list of semantic types and semantic groups used in this project is available in Appendix A.
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Figure 5.2: A part of UMLS semantic types and semantic groups hierarchy.

5.2 Mallet

MAchine Learning for LanguagE Toolkit (Mallet) [70] is an open source, java-based package

for natural language processing, document classification, clustering, topic modelling, infor-

mation extraction, and other machine learning applications on text. This software has been

written by Andrew McCallum with contributions of several graduate students and staff at the

University of Massachusetts Amherst. Mallet includes efficient routines for converting text

to “features”, a wide variety of algorithms (including Naive Bayes, Maximum Entropy, and

Decision Trees), and code for evaluating classifier performance using several commonly used

metrics. In addition Mallet includes tools for sequence tagging which is useful in a variety

of NLP applications such as Named Entity Recognition. Algorithms include Hidden Markov

Models, Maximum Entropy Markov Models, and Conditional Random Fields. Mallet is capa-

ble of converting the text into a numerical representation for efficient processing. In this project

the Maximum Entropy algorithm in Mallet has been used for finding the relationships between

phenotypes and genotypes in a sentence. We used version 2.0.7.
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5.3 BLLIP reranking parser

The BLLIP reranking parser [17] (also known as the Charniak-Johnson parser, the Charniak

parser and the Brown reranking parser) is a statistical parser developed by Charniak and John-

son. This parser is composed of the Charniak parser followed by a reranker. The parser uses

a dynamic programming n-best parsing algorithm that utilizes a heuristic coarse-to-fine refine-

ment of parses. The n2 best parses produced by this algorithm go through a Maximum Entropy

discriminative reranker. The reranker selects the best parse among the input parses using a

wide variety of features. The original model in BLLIP was trained on the Wall Street Journal

articles in Penn TreeBank corpus [68] but McClosky and Charniak [71] used a self-training

method to produce a biomedical model.

5.4 BioText

BioText [93] is an open source tool based on a simple algorithm for finding abbreviations

and their full forms from biomedical text. Although the algorithm is very simple, it is really

effective and reliable. Furthermore it is very fast, which makes it suitable for many NLP tasks.

5.5 PostMed

PostMed is a local modification of MedPost [100] done by Art Bugorski. MedPost is a high

accuracy part-of-speech-tagger for biomedical text. MedPost only works on abstracts but its

modified version, PostMed, works on full articles. During the process of POS tagging the text

is segmented to sentences. In this project we use PostMed to segment the text into sentences

because our experiments showed that it is the best for biomedical text.

2n is 50 by default.
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5.6 Stanford dependency parser

The Stanford dependency parser3 is a statistical parser that generates the Stanford dependency

representation. The Stanford typed dependencies representation provides a simple description

of the grammatical relations in a sentence. In this representation every relationship is illustrated

by a triple of relations between two words. For example “The subject of ate is John” in sentence

“John ate an apple.”. These dependencies are mapped to a directed graph representation in

which words in the sentence are nodes in the graph and grammatical relations are edge labels

[30]. In this project the Stanford dependency parser has been used to provide a dependency

representation of sentences because it is the best dependency parser available.

3http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Genotype Name Recognition

Extracting gene names from biomedical literature has been extensively studied and many meth-

ods have been proposed for this task. We used, BANNER, one of the best available methods in

this research project.

BANNER [62] is an open-source biomedical named entity recognition system implemented

using second order conditional random fields (CRF), a machine learning technique. The BAN-

NER architecture is illustrated in Figure 6.1. A BANNER input file consists of a text which

has been separated into sentences. Each sentence is taken individually and is tokenized. The

tokenization process in BANNER breaks tokens into either a contiguous block of letters and/or

digits or a single punctuation mark. As an example, the string “Bub2p-dependent” is broken

into three tokens: “Bub2p”, “-”, and “dependent”.

In the next step, features are assigned to each individual token. Each feature is a name/value

pair for use by the machine learning algorithm. And finally in the labelling process, each

feature gets exactly one label. BANNER makes use of the Mallet CRF [70] in both feature

generation and labelling. The set of machine learning features used in BANNER is listed in

Table 6.1.

BANNER considers a token window of 2 to make features, meaning that the features of

each token contain the features of the two previous and the two following tokens. It uses the

IOB label model (Inside, Outside, beginning).
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Figure 6.1: BANNER Architecture [62]

Feature set definition Description

The part of speech which the token

plays in the sentence

Provided by the Dragon toolkit imple-

mentation of the Hepple tagger.

The lemma for the word represented

by the token, if any

Provided by the Dragon toolkit.

A set of regular expression features Includes variations on capitalization

and letter/digit combinations.

2, 3 and 4-character prefixes and suf-

fixes

2 and 3 character n-grams Including start-of-token and end-of-

token Indicators

Word class Convert upper-case letters to “A”, lowercase

letters to “a”, digits to “0” and other

characters to “x”

Numeric normalization Convert digits to “0”

Roman numerals

The names of the Greek letters

Table 6.1: Set of features in BANNER [62]
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BANNER detects situations in which the matching of parentheses, brackets or double quo-

tation marks receives different labels. Since these punctuation marks are always paired, they

should have the same labels otherwise the labelling engine made a mistake. In the case of

unmatched labels BANNER will drop these named entities.

BANNER has been used for NER in the gene names and the disease names domains, and

it has achieved results superior to the most commonly used baseline NER systems in the lit-

erature (LingPipe [15] and ABNER [96]). Table 6.2 provides a representative performance

of BANNER, ABNER and LingPipe in genotype name recognition. The evaluation was per-

formed using the freely available BioCreative 2 GM corpus [1] and 5× 2 cross validation. The

BioCreative 2 GM corpus contains 15,000 sentences from MEDLINE abstracts and mentions

over 18,000 entities. This corpus was prepared for the BioCreative contest in October 2006.

We used the same corpus to train BANNER and extract genotypes from text.

Method Precision Recall F-measure

BANNER 85.09 79.06 81.96

ABNER 83.21 73.94 78.30

LingPipe 60.34 70.32 64.95

Table 6.2: BANNER evaluation results [62]
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Rule–Based Phenotype Name Recognition

The last few years have seen a remarkable growth of NER techniques in the biomedical domain.

However, these techniques tend to emphasize on extracting genes, proteins, diseases and drugs

names. Currently, many systems which use phenotypes to find information like phenotype-

genotype relations or build semantic networks (for instance, [25]) use only dictionary-based

techniques to recognize the phenotypes in the text.

Many biomedical dictionaries and databases are made for applications in this domain.

However we are not aware of any data source which is both comprehensive and ideally suited

for phenotype name recognition. Generally, because the speed of introducing new concepts

like new phenotypes to biomedicine world is so fast, no data source can keep up with new

terms and concepts.

The Unified Medical Language System (UMLS) Metathesaurus [50] is a very large, multi-

purpose, and multi-lingual vocabulary database that contains more than 1.8 million concepts.

Each concept in UMLS is mapped to at least one semantic type (see examples of semantic

types in Appendix A) but Phenotype is not one of UMLS semantic types. Therefore, UMLS

does not give enough information for recognizing phenotypes in text.

The aim of Pharmacogenetics Knowledge Base (PharmGKB) [57] is to gather the informa-

tion about the effect of human genetic variation on drug–response phenotypes from published

papers. It is a highly respected database queried by clinicians and bioinformaticians. This
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manually curated database summarizes published gene–drug–phenotype relationships. Clearly

this manual process cannot keep the database as up to date as it should be.

The Online Mendelian Inheritance in Man (OMIM) [73] is an important and comprehensive

information source of human genes and genetic phenotypes [90]. However, OMIM does not

use a controlled vocabulary to describe the phenotypic features in its clinical synopsis section

making it inappropriate for data mining purposes [90]. It was also manually curated.

The Human Phenotype Ontology (HPO) [90] provides a standardized vocabulary of human

phenotypes. It has been developed using information from OMIM. Although it contains ap-

proximately 10,000 terms, it is incomplete. It is constantly refined, corrected, and expanded

manually but it has difficulty keeping pace with all the new phenotypes.

We proposed two different approaches to recognize phenotype names in text. The first one

is a rule–based approach [55] and the second one is a machine learning–based system [56].

The rule-based system is explained in this chapter and the machine-learning based system is

elaborated in Chapter 8.

7.1 The proposed method

We started working on a phenotype name recognition system when we could not find any

available comprehensive resource or method for this application. We started using HPO but as

it is not complete, it does not list all published phenotypes. We ended up developing our own

system which is able to detect phenotype names even if they are not available in HPO. It is

worth noting that phenotypes can be classified into two groups. Phenotypes like hair color that

correspond to a normal characteristics in human being and phenotypes related to abnormalities.

Most phenotypes in the first group are available in HPO. We are more interested in finding the

phenotypes in the second group and finally extracting their relationships with phenotypes.

UMLS is another source of data which could be used for extracting phenotypes. The UMLS

Semantic Network includes 133 semantic types. Although Phenotype is not one of these se-

mantic types, they still give important and useful information for detecting phenotypes. These
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semantic types are categorized into 15 Semantic Groups (SG) [72] that are more general and

more comprehensive for non-experts. The Semantic Group Disorders is one of these semantic

groups which contains semantic types very close to the definition of phenotype. This seman-

tic group has been used in other research [14] to map terminologies between the Mammalian

Phenotype Ontology (MPO)[99] and the Online Mendelian Inheritance in Man (OMIM) [73].

The Semantic Group Disorders contains the following semantic types: Acquired Abnormal-

ity, Anatomical Abnormality, Cell or Molecular Dysfunction, Congenital Abnormality, Disease

or Syndrome, Experimental Model of Disease, Finding, Injury or Poisoning, Mental or Be-

havioural Dysfunction, Neoplastic Process, Pathologic Function, Sign or Symptom.

In our first attempt to develop such a system, we integrated the valuable information in

both HPO and UMLs Metathesaurus. In this method, the text was processed by MetaMap and

each noun phrase was mapped to a semantic type. If the semantic type was in SG Disorders

we considered it as a phenotype. However, after testing this method and analyzing positive

and negative results, a more sophisticated system was proposed. This system incorporates

the available knowledge in UMLs Metathesaurus and HPO and integrates it with five rules

to enhance the system and improve the results. A block diagram representing our system

processing is shown in Figure 7.1. The system performs the following steps:

I MetaMap (see Chapter 5) tokenizes the input text and finds the boundary of sentences and

then chunks each sentence into phrases. Each noun phrase is assigned to several UMLS se-

mantic types and finally after word sense disambiguation, the best semantic type(s) is pro-

vided. We used the strict model and word sense disambiguation embedded in MetaMap.

II The Disorder Recognizer uses the MetaMap output to find phenotypes and phenotype

candidates. This part is original to our system and is described in detail in Section 7.1.1.

III OBO-Edit [29] is an open source tool that makes it possible to edit or search in ontol-

ogy files in OBO format. The phenotype candidates found by Disorder Recognizer are

searched in HPO. The candidates available in the HPO are considered as phenotypes.
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Figure 7.1: System block diagram.

IV Result Merger merges the phenotypes found by Disorder Recognizer and OBO-Edit and

makes the final list of phenotypes extracted from the input text.

7.1.1 Disorder recognizer

The text was processed by MetaMap and noun phrases were matched by semantic types. Now

it is the time to extract phenotypes. Our initial plan was to tag every noun phrase with a

semantic type in the SG Disorders as a phenotype but this approach made some mistakes.

After analyzing these mistakes, several post processing steps and five rules were proposed to

overcome the remaining problems:

1. A number of problems caused by acronyms. Authors tend to use acronyms in their

papers. Unfortunately when phenotypes appear in their short form, it gets difficult for

the system to recognize them. MetaMap is able to recognize acronyms references but

its database does not contain all the acronyms. Furthermore, some acronyms refer to

more than one concept and MetaMap cannot disambiguate their references correctly.

Usually the authors indicate the local unambiguous reference for each acronym in its

first appearance in the paper. We used this information to create a local list of acronyms

and their references in each paper using BioText [93]. This list is used to resolve the



Chapter 7. Rule–Based Phenotype Name Recognition 43

acronyms found in the remainder of the text. The first rule is proposed to solve this

problem.

Rule 1 Resolve the acronym referencing problem by making and using a list of acronyms

occurring in each paper.

2. In some cases the phenotype contains more than one biomedical or clinical term and the

complete phenotype is not available in UMLS. MetaMap breaks these kind of pheno-

types into several parts and assigns a different ST to each part. The question is which

of these STs should be considered as the semantic type of the whole phrase which helps

us to detect the phenotype. Figure 7.2 represents the UMLS output for “[The] presented

learning disabilities”. There are two separate concepts in the MetaMap output. The first

one is “presented” which is assigned to the semantic type [Idea or Concept] and the

second one is “learning disabilities” with the semantic type [Mental or Behavioral Dys-

function]. As “presented” is only an adjective for “learning disabilities” so the ST of the

whole phrase should be [Mental or Behavioral Dysfunction] which is in SG Disorders.

So, in these situations the semantic type of the noun phrase head is the most important

part and our system should consider the head’s semantic type in order to recognize the

semantic type of the whole phrase. The second rule handles such situations.

Rule 2 The semantic type of a noun phrase is the semantic type assigned by MetaMap

to its head.

3. We found a common template among some phenotypes like “large ventricles” that are

not recognized by MetaMap. These phenotypes begin with a special modifier followed

by terms which are assigned to SGs Anatomy or Physiology by MetaMap. Burgun et

al. [14] mentioned this class of phenotypes where a list of 100 special modifiers (see

Appendix B), having to do with some sort of unusual aspect or dysfunction (like large,

defective and abnormal), is given. This list was created collecting the modifiers that

occur most frequently with MPO terms. We found this list incomplete for our application

and three more modifiers found in our small corpus were added to the list. Missing,
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malformed, and underdeveloped are these three modifiers. We may find more modifiers

to add to this list in the future. The third rule describes the template of this kind of

modifiers.

Rule 3 If a phrase is “modifier (from the list of special modifiers) + [Anatomy] or [Phys-

iology]” it is a phenotype name.

4. In some cases non-phenotype phrases are assigned to some specific semantic types in

SG Disorders leading to false positives in phenotype name recognition. Analyzing these

specific semantic types, we concluded that only assignment of a phrase to one of these

semantic types is not enough to consider that phrase as a phenotype. For example,

MetaMap assigns “responsible” to the semantic type [Finding]. The word “responsi-

ble” is clearly not a phenotype. On the other hand “overgrowth”, which is a phenotype,

is assigned to the semantic type [Finding], too. The problematic semantic groups are:

Finding, Disease or Syndrome, Experimental Model of Disease, Injury or Poisoning,

Sign or Symptom, Pathologic Function, and Cell or Molecular Dysfunction. If any of

these semantic types are mapped to a phrase, that phrase is considered as a phenotype

candidate that needs further analysis. Phenotype candidates are searched in HPO in step

III of the system process described above to be confirmed as phenotypes. If a phenotype

candidate is found in HPO, it is recognized as a phenotype. While making the candidates

list we should consider rules 4 and 5 below.

5. In several cases the phenotype is a plural term but only its singular form is available in

HPO. One example is “deep set eyes”. It is not in the HPO but “deep set eye” is. Rule 4

allows us to consider a plural term as a phenotype, if the singular form is found in HPO.

Rule 4 If the single form of a phrase is a phenotype the plural form is a phenotype, too.

6. Several phenotypes consist of adjectives and adverbs followed by terms found in HPO.

In these cases the whole phenotype phrase cannot be found in HPO, however their head

is in HPO. Therefore system will remove the adjective and adverbs and search only for
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the heads in HPO.

Rule 5 If the head of a phenotype candidate phrase is a phenotype, the whole phrase is

a phenotype.

In summary, the system analyzes all noun phrases extracted by MetaMap and their semantic

types, one by one. If a phrase contains an acronym, its reference is resolved based on Rule

1. If the phrase matches Rule 3, it is added to the phenotype list, otherwise if the phrase is

broken into more than one concept and mapped to more than one semantic type, its semantic

type is assigned according to Rule 2. If the semantic type is in the Semantic Group Disorder,

the phrase is recognized as either a phenotype or a phenotype candidate. Phenotype candidates

are added to the phenotype candidate list along with their heads and their singular form if they

are plural (according to Rules 4 and 5), to be processed in step III.

7.2 Evaluation

The proposed Method was evaluated using a corpus containing 120 sentences with 110 phe-

notype phrases. These sentences were collected from four random full-text journal articles

specialized in human genetics. Some sentences do not have any phenotypes. Precision, recall

and F-measure were used to measure the performance of this system. Table 7.1 represents the

performance of differently configured systems to measure the contributions of each rule in the

final results. The basic form is the integration of UMLS and HPO using none of the rules

discussed above. The results of adding each of the rules are listed in the table.

As these rules were found from the same corpus, we thought it is better to evaluate the

system using a separate test set. This test set contained 96 sentences and 74 phenotypes. This

test set was consisted of two randomly selected biomedical papers. Table 7.2 shows the results

obtained from testing the system. As the table shows, the results dropped. This is the prob-

lem of rule-based methods which cannot achieve their previously good results when they are

evaluated on new test sets.
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Phrase: "[The] presented learning disabilities"

>>>>> Phrase

presented learning disabilities

<<<<< Phrase

>>>>> Candidates

Meta Candidates (9):

901 Learning Disabilities [Mental or Behavioral Dysfunction]

882 Learning disability (Learning disability - speciality)

[Biomedical Occupation or Discipline]

827 Learning [Mental Process]

827 Disabilities (Disability) [Finding]

743 Disabled (Disabled Persons) [Patient or Disabled Group]

743 Disabled [Qualitative Concept]

660 Presented (Presentation) [Idea or Concept]

627 Present [Quantitative Concept]

627 Present (Present (Time point or interval)) [Temporal Concept]

<<<<< Candidates

>>>>> Mappings

Meta Mapping (901):

660 Presented (Presentation) [Idea or Concept]

901 Learning Disabilities [Mental or Behavioral Dysfunction]

<<<<< Mappings

Figure 7.2: An example of Rule 1
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Method Precision Recall F-measure

Basic Form 88.78 74.21 80.84

Applying Only Rule 1 89.38 78.9 83.81

Applying Only Rule 2 97.19 75.91 85.24

Applying Only Rule 3 89.09 76.56 82.35

Applying Only Rule 4 88.9 75.78 81.32

Applying Only Rule 5 89.38 78.9 83.81

Applying All Rules 97.58 88.32 92.71

Table 7.1: Results of evaluating the system on the original corpus.

Precision Recall F-measure

Applying All Rules 94.87 62.71 75.51

Table 7.2: Results of evaluating the system on a separate test set.

The analysis of errors has shown that some errors originate in shortcomings of our method,

but other errors are caused by incorrect information provided by the systems that we use. Some

phenotypes are detected as phenotype candidates and searched in HPO but because HPO is not

complete, they are not found and as a result they are not recognized as phenotypes. In other

cases MetaMap parser breaks a phenotype phrase into two different noun phrases by mistake

and it prevents the system from recognizing the phenotype. And finally in several examples,

MetaMap makes mistake during WSD. The percentage of total errors that these three sources

cause are shown in the Table 7.3.

7.3 Summary

In this chapter we introduced a rule-enhanced dictionary-based phenotype name recognition

system. This system integrates the available knowledge in HPO and UMLS Metathesaurus

and uses MetaMap in an innovative way to find phenotype names in biomedical texts. Our

approach applies five specific rules to enhance the phenotype name recognition procedure.
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The performance of the system was evaluated using two different corpora, the one which

is used to extract the rules and a separate test set. Results showed that the performance of the

system was better for the original corpus. We should keep this in mind that generally, rule-

based systems have this problem. Applying the rules extracted from one set to another corpus

might reduce the results.

After analyzing the errors, we found that some errors were caused because of HPO incom-

pleteness, Word Sense Disambiguation Function in MetaMap or MetaMap parser.

Collier et al. [21] have combined our proposed rule-based system with machine learning

techniques (CRF and HMM) to find phenotype candidates in genetic texts. Their system con-

sists of two modules: the machine learning labeller and the knowledge-based labeller (our

rule-based system and dictionary matching) and these modules’ predictions are merged. They

have considered both cellular-level and supercellular-level phenotypes in their system. They

used our manually created corpus to test their system against the rule-based method and it did

not outperform our rule-based system. However it had better results on their corpus [21]. Their

corpus is called Phenominer and we have used it (see Chapter 10) for extracting genotype-

phenotype relationships.
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Cause of Error Example of Error Description of Error Percentage

MetaMap parser Partial hypoplasia of

the corpus callosum

MetaMap finds two separate

phrases: “Partial hypoplasia”;

“of the corpus callosum”

20

missing vertebrae MetaMap finds two separate

phrases: “missing”; “vertebrae”

MetaMap WSD learning deficit [Functional Concept] chosen in-

stead of [Disease or Syndrome]

25

triphalangeal thumb [Gene or Genome] chosen in-

stead of [Congenital Abnormal-

ity]

aplastic anemia [Gene or Genome] chosen in-

stead of [Disease or Syndrome]

osteosarcoma [Gene or Genome] chosen in-

stead of [Neoplastic Process]

diabetes insipidus [Functional Concept] chosen in-

stead of [Disease or Syndrome]

Phenotype thumb duplication 25

candidates

not in HPO thrombopenia

increased erythrocyte

adenosine deaminase

activity

macrocytosis

Table 7.3: Three sources of errors



Chapter 8

Machine Learning–Based Phenotype

Name Recognition

Chapter 7 described our first proposed system for extracting phenotype names from biomedical

text. It is a rule-based system which integrates available knowledge in the Human Phenotype

Ontology (HPO) [90] and the Unified Medical Language System (UMLS) Metathesaurus [50].

This system achieves good results; however it, like other rule-based methods, has some short-

comings. As we extracted the rules from a small corpus, they may be overfitted to that corpus

and cannot cover new phenotypes in other texts. And if we try to use it on a different corpus,

we may need to add extra rules. It is not easy to analyze the errors manually to generate the

new rules. So, we decided to take a different path and extend the capabilities of our rule-based

system using machine learning methods.

Banner [62] (see Chapter 6) is a biomedical named entity recognition system implemented

using second order conditional random fields (CRF) (Chapter 4), a machine learning technique.

It has been used for gene and protein and also for disease name recognition. It is open-source

and provides a good infrastructure for NER. Its results are convincing and features can be

easily added. Therefore starting with Banner and its CRF method, our rule-based method was

the incorporated.

Figure 8.1 illustrates the block diagram of the proposed machine learning-based system.

50
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Figure 8.1: System Block Diagram

The first phase in this system is finding acronyms in the input text and resolving them. Usually,

papers indicate the local unambiguous reference for each acronym used at its first usage. So

a list of local full forms for acronyms is made for each paper and acronym resolution is done

based on this list (according to rule 1 of the rule-based method (Chapter 7)). Then the output

which does not contain any acronyms is processed by MetaMap. According to our settings,

MetaMap finds composite noun phrases with up to three simple phrases and prints out the

syntax of each noun phrase. A semantic type is assigned to each noun phrase; these semantic

types provide important information for detecting phenotype names. The Analyzer analyzes

the MetaMap output and changes it to Banner input format. Our feature-enhanced Banner

takes each sentence separately and using the features, finds some but not all phenotypes. In the

last step the system uses HPO and searches for phenotypes mentioned in HPO in the text. the

found phenotypes are added to our list of phenotypes. The details of how we made use of rules

and features in our machine learning method are explained in the following sections.

8.0.1 Incorporating the rules

This section explains how we used our rules proposed in the rule-based system in implementing

the machine learning-based method.

Rule 1 Resolve the acronym referencing problem by making and using a list of acronyms

occurring in each paper.
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Rule 1 is implemented in Acronym Resolution. Acronym Resolution finds the full forms

of acronyms using their local unambiguous references in the text and replaces acronyms

with their unabbreviated forms. BioText [93] has been used to make a list of acronyms

and their full forms in the text.

Rule 2 The semantic type of a noun phrase is the semantic type assigned by Metamap to its

head.

Analyzer implements this rule. It finds the noun phrases and their heads processing

the MetaMap output. If Metamap breaks a noun phrase into different parts and assigns

different semantic types to them, the Analyzer assigns the semantic type of the head to

the whole phrase. An example of such a phrase and the Analyzer output is shown in

Figure 8.2. The phrase “of Diamond-Blackfan anemia patients” is broken into two noun

phrases “Diamond-Blackfan anemia” and “patients”, each with a different semantic type.

MetaMap output shows that the head of the whole phrase is “patients” so analyzer assigns

its semantic type, i.e. , Patient or Disabled Group, to the whole phrase.

Rule 3 If a phrase is “modifier (from the list of special modifiers) + [Anatomy] or [Physiol-

ogy]” it is a phenotype name.

We did not implement this rule directly. Instead we tried to teach it to our machine

learning method. To help our machine learning method learn this rule, three binary

features were added to the system: Special Modifier, Anatomy and Physiology to indicate

whether a noun phrase is in the list of special modifiers [14] (see Appendix B) or in the

semantic groups (SG) Anatomy or Physiology. Furthermore, some sentences containing

this class of phenotypes (Special Modifier + [Anatomy] Or [Physiology]) were added to

our training set.

Rule 4 If the singular form of a phrase is a phenotype the plural form is a phenotype, too.

When the Result Merger searches for HPO phenotypes in the text, it searches for their

singular and plural forms too and if it finds any of them, it will list the found term as a

phenotype.
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Rule 5 If the head of a phenotype candidate phrase is a phenotype, the whole phrase is a

phenotype.

This rule is considered in Result Merger: if the head of a noun phrase is found in HPO

the whole noun phrase is tagged as a phenotype.

8.0.2 Adding features

To implement the rule-based system completely, Rule 3 was added as three features to the

CRF, in addition to the features already possessed by Banner. Finally, some other features

which seemed to be helpful were added to the system. These features were tested several times

and finally the best set of features were selected. These features include:

Figure 8.2: Analyzer Example

• Phenotype: In Chapter 7 (the rule-based method) we discussed two different categories
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of semantic types in the SG Disorders. Phenotype is a binary feature that indicates

whether a noun phrase is in the Phenotypes category.

• Phenotype Candidates: This feature is a binary feature that indicates whether a noun

phrase is in the Phenotype Candidates category of SG Disorders.

• Special Modifier: A binary feature that indicates whether a word is in the list of special

modifiers [14].

• Anatomy: A binary feature which means a noun phrase is in SG Anatomy or not.

• Physiology: A binary feature which means a noun phrase is in SG Physiology or not.

• List Separator: We found from many examples in the biomedical literature when a num-

ber of elements in a list are phenotypes, there is a good chance that the other elements

are phenotypes too. The List Separator feature was added to designate the availability of

list indicators (and or comma) in the sentence.

• Semantic type: The semantic type which is assigned by MetaMap to noun phrases. This

feature is null for other phrases.

• NP: A binary feature which indicates whether a token is a part of a noun phrase.

• POS: The part of speech of a token. This feature is a part of the Banner feature set.

• Lemma: The lemma of each token. This is available in Banner.

• NPstart: A binary feature to indicate whether a token is the first token in a noun phrase.

• NPend: A binary feature to designate whether a token is the last token in a noun phrase.

• 2, 3 and 4-character prefixes and suffixes: This is a part of Banner.

• 2 and 3 character n-grams: This is a part of Banner.
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Also, it should be remembered that Banner makes a window of size two for each token, i.e.

features of each token contain features of the two tokens before and the 2 tokens after it. We

used the default configuration of Banner. The NP feature comes from the MetaMap results

and the POS feature is provided by Banner. They do not align perfectly, but it is the task of the

CRF to find a solution using these conflicting features.

8.0.3 Corpus

The most challenging problem for us in applying the machine learning method was the lack

of an annotated specialized corpus of sufficient size. As no one before has used machine

learning on phenotype name recognition, no corpus was available for us to train and test our

system with. Therefore we had to make our own corpus with a sufficient number of sentences.

However, making a large corpus is a very difficult and time consuming task. Therefore, we

proposed an automatic method to annotate a corpus and then using semi-supervised learning

we expanded the corpus.

Collecting the papers

To find the papers which are relevant to phenotypes, we started with two available databases:

PubMed (2009) and BioMedCentral (2004). All HPO phenotypes were searched for in these

databases and every paper which contained at least three different phenotypes was added to

our collection. In this way we found 100 papers which were used to train the system. We had

another 13 papers which had been collected for the development of the rule-based method (see

Chapter 7) and were annotated manually. These 13 papers were used to test the system.

Annotating the corpus

As it was not possible for us to annotate the 100 papers manually, we started with the infor-

mation provided by HPO to annotate our corpus and then using a self-training method the

annotation process continued. This process is illustrated in Figure 8.3. First, HPO phenotypes

were searched for in the set of papers and were tagged as phenotypes. These papers along with
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their tags made our initial training corpus. When annotating the corpus, it should be noted

that the last phase of the system (the Result Merger) was omitted because all HPO-annotated

phenotypes were already annotated. The trained model was used to annotate the training set

Figure 8.3: Process of corpus annotation

again. The newly found phenotypes were analyzed manually and the correct ones were added

as annotations to the training set. Also, on each iteration, the system was tested using the test

set to find out how many iterations would be sufficient for training the system. This process

was repeated 3 times until we reached the results that we were satisfied with when testing the

last model on the test set and when more iterations reduced the results. Doing more iterations

could cause the overfitting problem.

One important point to mention is that we only included positive sentences (sentences with

at least one phenotype) in our training set, because the number of negative sentences was far

greater than positive sentences and it prevented the system from training efficiently. There-
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fore, whenever new phenotype names were found, the number of sentences in the training set

increased for the next iteration.

8.1 Evaluation

We compared the performance of our system against the rule-based system [55] explained in

Chapter 7, which is the only specialized system for phenotype name recognition that we are

aware of. The final training corpus which is made from 100 papers contains 2755 sentences

and 4233 annotated phenotypes. All sentences in this corpus include at least one phenotype.

A test set is collected from 13 papers and annotated manually includes 216 sentences and 373

phenotypes.

To evaluate the system, 10-fold cross validation has been used. Furthermore, the separate

test set has been used to test the system. Table 8.1 gives the details of the results. The base

system is our machine learning method ignoring the Result Merger module. Result Merger

finds HPO phenotypes in text and adds them to the list of phenotypes. The results after using

Result Merger are mentioned in the column labelled HPO added. The rule-based system has

been tested using the test set and the results are displayed in Table 8.2. To calculate these

results, a returned phrase is considered to be a true phenotype if its head contains a pheno-

type. For example, in the phrase “acute myloid leukemia” the head is “leukemia”, a phenotype

that is confirmed by its inclusion in HPO. However, in the phrase “Diamond-Blackfan ane-

mia patients” the correct phenotype is: “Diamond-Blackfan anemia”. If the system returns

“Diamond-Blackfan anemia patients” as the phenotype, it is deemed false.

As this table demonstrates, the results are comparable with other named entity recogni-

tion systems which are specialized for finding other biomedical entities even though they may

have larger training corpora. For example, Banner has been trained and tested for finding

gene names, using BioCreative 2 GM corpus containing 15,000 sentences (7500 for training

and 7500 for testing) which is much larger than our current corpus. However our results are

significantly better than Banner’s (Precision 85.09, Recall 79.06 and F-measure 81.96)[62].
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Although our task is different, these results mean that our system is performing well.

In addition the machine learning method outperformed the rule-based method, even though

the corpus is not fully annotated. We believe that if we had a fully annotated corpus the system

would achieve an even better performance.

Base system HPO Added

Precision Recall F-measure Precision Recall F-measure

10-Fold 82.83 68.13 74.35 86.89 98.33 92.25

Test Set 93.44 57.37 71.09 95.76 90.88 93.25

Table 8.1: System Evaluation Results

Precision Recall F-measure

Machine Learning Method 95.76 90.88 93.25

Rule-Based Method 88.34 73.19 80.05

Table 8.2: Comparing the system with the Rule-Based Method

To have an idea of how well our annotation process works, we selected 100 random sen-

tences from our corpus. Then, we tagged these sentences manually. There were 157 phenotypes

in these 100 sentences. Our self-training method found 142 phenotypes and one of its pheno-

types was incorrect, i.e. it missed 16 phenotypes. So, the annotation process misses about 10

percent of the phenotypes.

8.2 Discussion

Finding the best set of features is one of the most important parts of developing the system.

Tables 8.3 and 8.4 show the role and importance of each feature. To illustrate the contribution of

each feature in Table 8.3 we considered a small set of features as the basic set of features for our

system. These features came from the rule-based system and are very important in signifying

phenotype names in the text. Then, in each line a feature is added to the basic feature set until
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we have the complete feature set in the last line. Adding some features (Phenotype candidates,

List separators, Semantic Types, and Lemma) drops the results slightly but the results of the

last feature set is better than the previous feature sets.

Analysing Table 8.3, it may seem that including some features is not necessary. Table

8.4 illustrates the role of each feature in a different way. In each line of Table 8.4 only one

feature is ignored from the feature set and the system is tested using the separate test set. Note

that the results are calculated without adding the HPO. As one can see, removing each feature

reduces the results slightly. The exception to this modest reduction in performance is the

removal of the NP feature which causes a significant drop in precision and recall, because not

having NP information causes errors in finding NP end and NP start. In some cases (Lemma,

Phenotype candidates, NP start and NP end, and Physiology) ignoring the feature causes small

improvement in precision or recall. However the F-score is always less than the F-score of final

results.

Features Precision Recall F-Score

Phenotype, Anatomy, Physiology, Special Modifier 89.89 47.72 62.34

+Phenotype candidates 90.72 47.18 62.07

+List Separator 90.41 40.48 55.92

+Semantic type 90.24 49.59 64

+NP 90.24 49.59 64

+POS 91.15 55.22 68.77

+Lemma 92.72 54.69 68.79

+NP start, NP end 93.44 57.37 71.09

Table 8.3: Contribution of each additional feature

Reviewing the results, it has been found that both the rule-based and machine learning

methods are dependent on MetaMap. MetaMap does make mistakes. MetaMap makes some

errors in finding the boundaries of NPs and in determining the semantic types. NP boundaries

and semantic types are features used by both methodologies, so the errors made by MetaMap
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Ignored Feature Precision Recall F-Score

Anatomy 92.82 55.49 69.45

Lemma 93.57 54.69 69.03

List Separator 91.66 56.03 69.54

Phenotype 92.54 56.56 70.20

NP 81.81 38.6 52.45

Phenotype Candidate 92.64 57.37 70.85

NP start and NP end 93.18 54.95 69.13

Physiology 93.21 55.22 69.35

POS 92.05 52.81 67.11

Semantic Type 91.89 54.69 68.56

Special Modifier 92.44 55.76 69.56

Table 8.4: Contribution of each feature

have effects on the performance of each system. However the rule-based system is more depen-

dent on MetaMap output and errors in MetaMap output changes the results completely. But the

machine learning system is more robust and it sometimes finds the correct phenotype names

despite MetaMap errors. For example, consider the sentence “Diamond-Blackfan anemia is

a rare inherited bone marrow failure syndrome.”. The phrase Diamond-Blackfan anemia is a

phenotype but MetaMap assigns the [Gene or Genome] semantic type to it, which is not in the

SG Disorders. So the rule-based system does not tag it as a phenotype. The phrase missing

vertebrae is another example of MetaMap errors. MetaMap does not consider this phenotype

name as one NP. It separates this phenotype name into two phrases missing and vertebrae.

In addition, determining the boundary of an NP is very important in the rule-based system.

MetaMap has an option to make larger NPs by merging simpler NPs. If we only use simple

NPs, we cannot get larger phenotype names as one NP and the system will miss them. The

phrase Partial hypoplasia of the corpus callosum is an example of a phenotype name with

composite NPs. On the other hand if we use composite NPs, the head of the NP may change
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and the semantic type of the NP may change as a result. This is problematic for the rule-

based system. The phrase the associations of facial dysmorphism is an example. The word

“associations” is the head of this phrase, so the semantic type [Mental Process] is assigned to

it and it is not tagged as a phenotype name by the rule-based system.

On the other hand, there are some cases in which MetaMap assigns the correct semantic

type to a phrase and found a good boundary for a phenotype name but the machine learning

method does not mark it as a phenotype. For example “arhinia” is not tagged as a phenotype by

the machine learning method in the following sentence “These phenotypes may resemble that of

the only confirmed case of an individual with a lethal compound heterozygous PAX6 mutation

and may include anophthalmia, arhinia and severe central nervous system defects” although

MetaMap assigns the semantic type [Congenital Abnormality] (which is in the category of

Phenotypes) to it.

Table 8.5 shows how many false negatives and true positives are available in the final results

for both the machine learning and the rule-based methods. Table 8.6 illustrates the percent of

these errors caused by MetaMap or the boundary of noun phrases.

Rule-based Machine Learning

True positives 273 339

False negatives 100 34

Table 8.5: Number of TPs and FNs in each method

Rule-based Machine Learning

MetaMap errors 37% 11.76%

NP boundary errors 26% 8.82%

Table 8.6: Analysis of NPs

Comparing the precision errors gave interesting observations. There are no common errors

between the two systems. False positive errors in the rule-based system were caused by the

rules not being discriminating enough. For each returned phrase, one of the rules produced
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that phrase. But there are exceptions to each rule that can cause these false positive errors. The

exceptions to the rules cause fewer problems for the machine learning system. The machine

learning system was able to learn all of these exceptions. For the false phenotypes returned

by the machine learning system, analysis indicates that none of these would be suggested by

application of a rule in the rule-based system, explaining why there are no common errors.
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Improving Phenotype Name Recognition

The proposed phenotype Name Recognition systems are dependent on MetaMap. MetaMap

output provides the basic information for extracting the noun phrases (NP), their semantic types

(ST) and finally deciding whether they are phenotypes or not. One of the important rules in

the proposed (rule-based and machine learning) systems declares how to map an ST to an NP.

Sometimes MetaMap cannot find the whole NP in UMLS so it breaks the NP into pieces and

maps one ST to each part. According to the second rule in the rule-based system:

Rule 2 The semantic type of a noun phrase is the semantic type assigned by MetaMap to its

head.

We call this rule the Head rule. Figure 9.1 shows an example of such an NP. The phrase “an

autosomal disorder’’ is broken into two parts; “autosomal” and “disorder’’ and each part has

a different ST. According to MetaMap output “disorder” is the head of this phrase, so the ST

of the whole phrase would be “Disease or Syndrome”.

However sometimes MetaMap makes errors or finding STs based on the Head rule does

not work. Figure 9.2 shows an example of an NP which includes a phenotype. Consider

the sentence “In 40 to 50% of Diamond-Blackfan anemia patients, congenital abnormalities

mostly in the cephalic area and in thumbs and upper limbs have been described.”. Diamond-

Blackfan anemia is a phenotype but according to MetaMap output “Diamond-Blackfan anemia

patients” is an NP which is completely correct. However the head of this NP is “patients” and

63
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Figure 9.1: MetaMap output for “an autosomal disorder”

based on the Head rule the ST of this phrase is “Patient or Disabled Group” and the system

is not able to recognize “Diamond-Blackfan anemia” as a phenotype.

As we mentioned in the previous Chapter, about 8.82% of the errors in our machine learning

based system are caused by the incorrect determination of NP boundaries. Figure 9.3 illustrates

an example of an error made by MetaMap which results in detecting a wrong NP boundary.

The sentence, “One of them (GUE) presented learning disabilities while this information was

unavailable for N2603 and OLI who were 4 and 3 years old at the examination time, respec-

tively.” is processed by MetaMap. As you can see in Figure 9.3, MetaMap has decided that

“presented learning disabilities” is an NP which is clearly wrong. This error causes problems

in finding the phenotypes. Based on this output, “presented learning disabilities” is a pheno-

type while we know that the correct phenotype is “learning disabilities” and “presented” is

the verb.

In this Chapter we propose solutions for these kinds of problems which directly affect the

performance of the phenotype name recognition systems.
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Figure 9.2: MetaMap output for “Diamond-Blackfan anemia patients” in the sentence “In 40

to 50% of Diamond-Blackfan anemia patients, congenital abnormalities mostly in the cephalic

area and in thumbs and upper limbs have been described.”

9.1 Proposed method

As we mentioned earlier we want to consider two types of problems and propose solutions for

each. The problems are caused when:

1. A phenotype name modifies the head of the NP containing it.

2. MetaMap identifies a wrong boundary for the NP containing a phenotype name.



Chapter 9. Improving Phenotype Name Recognition 66

Figure 9.3: MetaMap output for “learning disabilities” in the sentence “One of them (GUE)

presented learning disabilities while this information was unavailable for N2603 and OLI who

were 4 and 3 years old at the examination time, respectively.”

9.1.1 Empty heads

The first problem occurs when the semantic type of the head is assigned to the whole NP and

the system cannot recognize the phenotypes embedded inside the NP. To solve this problem we

used the concept of empty heads.

Empty heads [41] is a widespread phenomenon in biomedical text. When an NP has an

empty head, its head semantic type does not represent the semantic type of some of the embed-

ded NPs. In our system, we refer to a head as an Empty head, when the head of a NP prevents

the system from recognizing the phenotype name embedded inside it. Figure 9.2 shows an

example of such a phenomenon, where patients is the head. But if we assign its semantic type

to the whole NP, the system cannot detect the phenotype name inside the NP.
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As our purpose is to extract phenotype names we only consider the empty heads problem-

atic for detecting phenotypes. We found the following terms in our corpus which cause the

empty head problem (In a larger corpus there might be other empty heads.).

1. Affected (patients, individuals, women, children, males, etc.) e.g. Diamond-Blackfan

anemia-affected patients

2. Patients e.g. Amyotrophic lateral sclerosis patients

3. Cells e.g. Cancer cells

4. Spectrum e.g. Holoprosencephaly spectrum

5. Cases e.g. Diamond Blackfan anemia cases

6. Type (enumeration) e.g. Neurofibromatosis type 1

These empty heads can be classified into two categories:

• In the first five examples the head of the NP is not a part of the phenotype.

• In the last example the head is a part of the phenotype.

To solve the problem related to the first class of empty heads, whenever one of these terms

is the head of an NP, we just map its semantic type to the head and assign the semantic type of

the previous term to the remainder of the NP. To solve the problem related to the word “type”,

whenever it is the head of an NP, its semantic type is ignored and the semantic type of the

previous term is assigned to the whole NP.

Table 9.1 represents examples in which the mapped STs improved by ignoring the empty

heads. These examples are phenotypes but their semantic types before ignoring the empty

heads is not in SG Disorders so the system will not recognize them as phenotypes. However,

after applying the solutions their STs fall into SG Disorders.
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NP ST before ignoring

empty heads

ST after ignoring empty

heads

Wolf-Hirschhorn syndrome

patients

Patient or Disabled

Group

Disease or Syndrome

X-linked ocular albinism type

1

Classification Disease or Syndrome

the Holoprosencephaly spec-

trum

Conceptual Entity Congenital Abnormality

Table 9.1: Examples showing the effectiveness of ignoring empty heads.

9.1.2 NP boundary

A problem occurs when MetaMap does not recognize the correct boundary of an NP. This

problem has two consequences:

• A large NP is broken into several smaller NPs (for example “Diamond-Blackfan anemia”

is broken into “Diamond” and “Blackfan anemia”).

• An example of this problem is shown in Figure 9.3 where a term (“presented”) which

does not belong to an NP is considered as a part of it.

We considered three solutions for this problem:

1. Changing the MetaMap parser: MetaMap uses a shallow parser called Specialist minimal

commitment. We thought about changing its source code to use another parser which

makes fewer mistakes. MetaMap source code is in SICStus Prolog which is a commercial

version of Prolog. So this solution would have incurred an expense that was not in budget

and would have also been time-consuming to understand the source code.

2. Extracting NPs using another parser and giving only the extracted NPs (without their

sentences) to MetaMap: This solution ignores the dependency of the MetaMap word

sense disambiguation module on other parts of a sentence to extract the correct sense

and the semantic type of the NP.
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3. Extracting the boundary of NPs using another parser and giving the whole sentence with

marked-up NPs to MetaMap.

The third solution seemed reasonable but the question was how to mark up the NPs in the

MetaMap input sentences: One idea we considered was to bracket the NPs with parentheses.

Table 9.2 shows a part of a test we performed to understand if bracketing the boundary of NPs

in MetaMap input would help MetaMap make better decisions in detecting appropriate NPs. As

this table illustrates, when the original sentences are processed by MetaMap the detected NPs

are not what we expected and it makes phenotype name recognition difficult. However, when

the NPs are wrapped in brackets, MetaMap extracts the correct NPs. As a result MetaMap

maps better STs to the NPs and it makes phenotype name recognition more effective.

9.2 Implementation

Implementing the idea of ignoring empty heads was straightforward. MetaMap provides the

syntactic information of each sentence made by its parser. Using this information we can check

whether the head is in our list of empty heads and, if so, do the appropriate action based on

which class of empty heads it belongs to.

To implement the bracketing idea we added a pre-processing step to our system to bracket

the text before giving it as an input to MetaMap. Two available NLP tools have been used.

Figure 9.4 illustrates a partial block diagram of our system after adding these tools for the pre-

processing step. PostMed extracts and annotates sentences from the text. Then Bllip parses

each sentence individually and provides the syntactic structure of each sentence. Finally Ex-

tract NPs which is implemented by the author, processes the Bllip output and brackets the NPs.

The NPs tagged by Bllip are extracted and bracketed by Extract NPs in two ways:

1. Complete bracketing: If an NP is inside another NP, both of them are bracketed. In case

only one token is inside an NP it is not bracketed.

2. Biggest NP: In the case of embedded NPs, only the outermost one is bracketed.
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Bracketed NP MetaMap returned NP before

bracketing

MetaMap returned NP

after bracketing

Sentence: Patients with mild to moderate bone deformities and variable short stature are clas-

sified as Osteogenesis imperfecta type IV.

(Osteogenesis imperfecta

type IV)

classified as Osteogenesis im-

perfecta type IV

Osteogenesis imperfecta

type IV

Sentence: Clinical signs include a typical facial appearance, resembling the “Greek warrior

helmet” profile, mental retardation, severe growth delay, hypotonia, congenital heart mal-

formations, midline defects, such as cleft palate and hypospadias, ocular colobomas, renal

abnormalities and seizures.

(severe growth delay) Two NPs: severe, growth de-

lay

severe growth delay

Sentence: A sister (II-2, bilateral cleft lip/palate, microcephaly), brother (II-3, cervical rachis-

chisis, missing vertebrae) showed characteristics within the Holoprosencephaly spectrum.

(bilateral cleft lip/palate) Two NPs: bilateral cleft lip,

/palate

bilateral cleft lip/palate

(missing vertebrae) Two NPs: missing, vertebrae missing vertebrae

Sentence: Diamond-Blackfan anemia is a rare inherited bone marrow failure syndrome (five

to seven cases per million live births) characterized by an aregenerative, usually macrocytic

anemia with an absence or less than 5% of erythroid precursors (erythroblastopenia) in an

otherwise normal bone marrow.

(an aregenerative, usually

macrocytic anemia)

characterized by an aregener-

ative, usually macrocytic ane-

mia

an aregenerative, usually

macrocytic anemia

Table 9.2: Experimental results showing the effectiveness of bracketing the MetaMap input to

affect its NP boundary detection.
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Figure 9.4: Block diagram of the pre-processing step.

The following presents an example of bracketing performed by Extract NPs:

• The original sentence: Patients with mild to moderate bone deformities and variable

short stature are classified as Osteogenesis imperfecta type IV.

• BLLIP result: (S1 (S (S (NP (NP (NNS Patients)) (PP (IN with) (NP (NP (ADJP (JJ

mild) (TO to) (JJ moderate)) (NN bone) (NNS deformities)) (CC and) (NP (JJ variable)

(JJ short) (NN stature))))) (VP (VBP are) (VP (VBN classified) (PP (IN as) (NP (NN

Osteogenesis) (NN imperfecta) (NN type) (CD IV)))))) (. .)))

• Complete bracketing: (Patients with ((mild to moderate bone deformities) and (variable

short stature))) are classified as (Osteogenesis imperfecta type IV).

• Biggest NP: (Patients with mild to moderate bone deformities and variable short stature)

are classified as (Osteogenesis imperfecta type IV).

9.3 Results and discussion

To evaluate the performance of the proposed pre-processing step, the same training and test

sets discussed in Chapter 8 have been used. The training set is made from 100 papers and

contains 2755 sentences. The test set is collected from 13 papers and includes 216 sentences.

There are two approaches in evaluating named entity recognition systems: loose evaluation

and strict evaluation [35]. Under a strict evaluation scheme, a method needs to find the exact
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term specified by the annotator, with exact left and right boundaries. Under loose evaluation,

the found named entity only needs to overlap with the specified term.

The named entity boundary detection task is one of the most difficult tasks in NER [65]. To

interpret the results correctly, it is worth noting that in strict evaluation, performance drops sig-

nificantly because the system is punished twice for every prediction with a different boundary,

once because the predicted named entity is not true (false positive) and once because the correct

term is not found (false negative). Gapscore [16] (a method for finding gene and protein names

in text) encountered a 24.9 percentage points difference in F-measure between loose and strict

evaluation results. Hakenberg et al. [42] proposed a machine learning system for extracting

gene and protein names from literature. They found a 10 percentage point difference in their

strict and loose evaluation results.

Chapters 7 and 8 only report the loose evaluation results of our proposed machine learning

method for extracting phenotype names; however, in this Chapter we are trying to improve the

strict evaluation results as well as the loose evaluation results. Table 9.3 illustrates the loose

and strict evaluation results of our previuosly proposed phenotype name recognition system

before adding HPO to it. As we expected, the strict evaluation performance is less than the

loose evaluation one.

Precision Recall F-measure

Loose evaluation using MetaMap 2012 93.33 57.37 71.09

Strict evaluation using MetaMap 2012 86.99 50.78 64.12

Loose evaluation using MetaMap 2013 93.64 57.85 71.51

Strict evaluation using MetaMap 2013 87.28 53.92 66.66

Table 9.3: Strict and loose evaluation results for our base phenotype name recognition system.

The reported results in Chapter 8 were achieved using MetaMap 2012. While we were

working on improving the performance of our system, MetaMap 2013 was released. MetaMap

2013 solved some of our problems and some other problems remained unsolved. For example

in Table 9.2 problems with “severe growth delay” and “bilateral cleft lip/palate” are solved but
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Without HPO HPO Added

Precision Recall F-measure Precision Recall F-measure

Base system 93.64 57.85 71.51 95.85 90.83 93.27

Empty head 94.33 52.21 67.21 96.54 87.17 91.61

Complete bracketing 93.30 54.71 68.97 95.77 89 92.26

Biggest NP 94.64 55.49 69.96 96.63 90.31 93.36

Empty head+ Complete

bracketing

93.39 55.49 69.61 95.78 89.26 92.40

Empty head+ Biggest

NP

94.06 53.92 68.54 96.34 89.79 92.94

Table 9.4: The contribution of each solution in the loose evaluation results to the results pro-

vided by the base system using MetaMap 2013.

Without HPO HPO Added

Precision Recall F-measure Precision Recall F-measure

Base system 87.28 53.92 66.66 91.95 89.79 90.85

Empty head 88.31 49.47 63.42 93.05 87.69 90.29

Complete bracketing 87.94 51.57 65.01 92.58 88.21 90.34

Biggest NP 89.28 52.35 66.00 93.46 89.79 91.58

Empty head+ Complete

bracketing

87.22 51.83 65.02 92.09 88.48 90.24

Empty head+ Biggest

NP

88.73 51.57 65.23 93.24 90.31 91.75

Table 9.5: The contribution of each solution in the strict evaluation results to the results pro-

vided by the base system using MetaMap 2013.

the other problems remain. Therefore the performance of our phenotype recognition system

improved somewhat.
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NP ST before ignoring

empty heads

ST after ignoring empty

heads

Diamond Blackfan anemia Congenital Abnormality,

Disease or Syndrome

Congenital Abnormality,

Disease or Syndrome

Bilateral cleft lip/palate Disease or Syndrome Disease or Syndrome

Diamond Blackfan anemia in

“Diamond Blackfan anemia

patients”

Patient or Disabled

Group

Congenital Abnormality,

Disease or Syndrome

Neurofibromatosis type 1 in

“our group of Neurofibro-

matosis type 1 patients”

Patient or Disabled

Group

Neoplastic Process

Table 9.6: Examples of the phenotypes found in the base system but after ignoring the empty

heads, system could not extract them.

Tables 9.4 and 9.5 represent the contribution of our proposed solutions on loose and strict

evaluation results of the phenotype recognition system. In both cases, ignoring empty heads

improves the precision somewhat but drops the recall. Although it improves the correctness of

STs assigned to NPs with empty heads, it is not effective. Our test results show that after ignor-

ing the empty heads the number of found phenotypes decreased. Furthermore no phenotype

was found which was not available in the list of phenotypes extracted by the base system. Ta-

ble 9.6 presents some examples of the phenotypes found in the base system but after ignoring

the empty heads, the system could not extract them. As seen in the table, in all cases the STs

stayed the same or improved after ignoring the empty heads. The reason might be because the

frequency of NPs containing empty heads in our training set is less than 1%, and these are the

only cases of phenotypes where NPs heads are not a part of the phenotype. We are trying to

teach the system an exception without having enough related training examples. Apparently, it

just confuses the system and decreases the performance.

Between the two bracketing solutions, Complete bracketing and Biggest NP, the perfor-
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mance of Biggest NP is better. The best result of applying Biggest NP is achieved in strict

evaluation where precision is improved 2% and recall dropped only 1.57% before adding HPO

and after adding HPO phenotypes to the list of found phenotypes precision improved 1.51%

and recall stays the same. This result was expected because:

• As shown in the Table 9.2 the remaining problems in MetaMap 2013 are mostly related

with its confusion between verbs and past participles or gerunds. Bracketing the biggest

NPs helps to solve this problem. Based on the results we can conclude that in the case

of embedded NPs, MetaMap determines better NP boundaries without any bracketing.

Actually, in some cases the bracketing of inner NPs is more confusing. For example,

consider the sentence “De novo mutation p.V137RfsX18 was detected in a 10-month-old

girl with semilobar Holoprosencephaly (partial hypoplasia of the corpus callosum).”

– When biggest NPs are bracketed: (De novo mutation p.V137RfsX18) was detected

in (a 10-month-old girl with semilobar Holoprosencephaly (partial hypoplasia of

the corpus callosum)).

– After complete bracketing: ((De novo mutation p.V137RfsX18) was detected in ((a

10-month-old girl) with ((semilobar Holoprosencephaly) (((partial hypoplasia) of

(the corpus callosum))))).

– MetaMap 2013 considers “partial hypoplasia of the corpus callosum” as one NP

after processing the non bracketed sentence.

– MetaMap 2013 considers “partial hypoplasia of the corpus callosum” as one NP

after processing the biggest NPs bracketed sentence.

– MetaMap 2013 considers “partial hypoplasia of the corpus callosum” as two sepa-

rate NPs (partial hypoplasia and corpus callosum) after processing the completely

bracketed sentence.

• Strict evaluation is more sensitive to the NP boundaries. Solving the NP boundary prob-

lem helps the system to recognize a better boundary for phenotypes.
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Although ignoring empty heads did not improve the system performance, combining it with

Biggest NP provides the best results after adding HPO. These two solutions together improve

the precision somewhat but the recall reduces slightly but recovers when the information from

HPO is added. Adding HPO causes a significant increase in both the precision and the recall.

This is the only case that recall is better than the base system. It seems that the phenotypes were

missed before adding the HPO are not significant because HPO already include them. In addi-

tion these two solutions find more phenotypes which are not available in HPO in comparison

with the base system.



Chapter 10

Phenotype–Genotype Relation Extraction

In Chapters 6, 7, 8 and 9 methods for extracting genotype names and phenotype names from

biomedical text have been discussed. This Chapter covers the last step in achieving the goal of

this thesis: extracting relationships between phenotypes and genotypes.

Finding the relationships between entities (mostly proteins) from information contained in

the biomedical literature has been studied extensively and many different methods to accom-

plish these tasks have been proposed. However, we are not aware of any other system dedicated

to extracting phenotype-genotype relations, therefore no information about the nature of these

relations and how they differ from relations between other biomedical entities was available to

us. Furthermore, there was no annotated data to start with.

Using computational linguistics or rule-based approaches requires analyzing a large set of

annotated data to capture linguistic and semantic rules that capture relationships between geno-

types and phenotypes and often it demands prior knowledge about the domain. This process is

very time consuming and the lack of sufficient quantity of labelled data made it impossible for

us.

Applying machine learning based methods could alleviate one of the problems because

it does not need extensive prior knowledge about biomedicine and it can prove to be faster

because manual processing of the data is not required. However, supervised machine learning

is impossible without having labelled data to be used for training a model. The lack of labelled

77



Chapter 10. Phenotype–Genotype Relation Extraction 78

data still posed a significant problem for us. Therefore, we decided to take advantage of semi-

supervised learning.

Semi-supervised learning can be done with a small labelled set but we did not have even

a small set of labelled data. Instead we have proposed a semi-automatic method for creating

a small set of labelled data by applying two available protein-protein interaction methods [34]

to the phenotype-genotype relationship problem. Then using this seed in a self-training frame-

work, a machine learning model has been trained. We will cover the details of each step in the

remainder of this chapter.

10.1 Curating the data

As mentioned before we did not have access to any prepared data for the phenotype-genotype

relation extraction task, so our first task was to collect enough data containing phenotype and

genotype names. Three sources of data have been used in this project:

• We made a corpus for the phenotype name recognition task [56], which is designated as

MKH here. This Corpus is comprised of 113 full papers and 2971 sentences. Genotype

and phenotype names in this corpus were located using the proposed methods (Chapters

6 and 8).

• PubMed was queried for “Genotype and Phenotype and correlation” and 5160 paper ab-

stracts were collected. Genotype and phenotype names were located using the previously

explained methods (Chapters 6 and 8).

• Collier et al. [21] generated and made available to us the Phenominer corpus which con-

tains 112 PubMed abstracts. The annotation was carried out with the same experienced

biomedical annotator who accomplished the GENIA corpus [80] tagging. Both pheno-

types and genotypes are annotated in this corpus. Phenominer contains 1976 sentences

with 1611 genotypes and 472 phenotype candidates. However there are two issues with

this corpus:
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– The phenotypes at the cellular level are labelled in this corpus while according to

the definition of phenotype in this thesis we do not consider them as phenotypes.

– Generic expressions (e.g. , gene, protein, expression) referring to a genotype or a

phenotype earlier in the text are tagged in this corpus as phenotypes and genotypes.

For example locus is tagged as a genotype in the following sentence: “Our original

association study focused on the role of IBD5 in CD; we next explored the potential

contribution of this locus to UC susceptibility in 187 German trios.”

Only sentences with both phenotype and genotype names have been selected from the

above resources to comprise our data and the remaining sentences have been ignored. In this

way we have collected 460 sentences from the MKH corpus, 3590 sentences from the PubMed

results and 207 sentences from Phenominer. These sentences made our initial set of sentences.

All the sentences are represented by the IOB label model (Inside, Outside, beginning). The

selected sentences go through the following pre-processing step. The phenotype names and

genotype names are tagged by their token offset from the beginning of each sentence. This step

is necessary because sometimes an entity name repeats in a sentence and it gets confusing for

both labelling the data and understanding the relationships. To understand this tagging step,

consider the following sentence:

• Common esr1 gene alleles are unlikely to contribute to obesity in women, whereas a

minor importance of esr2 on obesity cannot be excluded.

Assume that we labelled this sentence and a relation between obesity and esr2 is annotated.

The system gets confused about obesity. It is not clear which obesity has a relation with esr2,

the first one or the second one. Although these words are the same, their grammatical roles

and the relations with other tokens in the sentence are completely different. Therefore, this

sentence is changed to the following form after pre-processing (note punctuation is considered

a token.):

• Common esr1 gene alleles-4 are unlikely to contribute to obesity-10 in women, whereas

a minor importance of esr2-19 on obesity-21 cannot be excluded.
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10.1.1 Training set

For supervised learning the training set must consist of labelled data. Even for semi-supervised

learning, the initial training set must consist of labelled data. However, at the beginning of the

project we did not have any labelled data. Preparing labelled data would require hiring anno-

tators knowledgeable in biomedicine. This proves to be expensive and very time-consuming.

Neither of the resources, research money nor time, were in abundance. So, we decided instead

to use two available protein-protein interaction extraction tools on our data and use their best

outputs as our labelled training set.

Ibn Faiz [34] proposed a rule-based (see Section 2.3.2) and a machine learning-based sys-

tem (see Section 2.3.3) for extracting relations between pairs of proteins. Although these tools

were not implemented for extracting phenotype-genotype relations, they are able to detect the

more general types of relationships which are similar between pairs of proteins and phenotype-

genotype pairs. For example the rule-based system is able to find the following relationships:

• Entity1 Relation Entity2; e.g., Genotype causes Phenotype

• Relations in which the entities are connected by one or more prepositions:

– Entity1 Relation (of | by | to | on | for | in | through | with) Entity2; e.g., Phenotype

is associated with Genotype

– (PREP | REL | N)+(PREP)(REL | PREP | N)* Entity1 (REL | N | PREP)+ Entity2;

where PREP is any preposition, REL is any relation term, N is any noun. e.g.,

Activation of Phenotype by Genotype

– Relation (of | by | to | on | for | in | through | with | between) Entity1 and Entity2,

e.g., Correlation between Genotype and Phenotype.

• Entity1 (/ | \ | −) Entity2; e.g., Genotype/Phenotype Correlation.

These protein-protein interaction (PPI) extraction tools are available to us and we modified

them as follows. The rule-based method has a list of relation terms demonstrating a relationship
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between two proteins in a sentence. Rindflesch et al. [88] mentioned a list of 20 verbs and two

prepositions (in and for) which encode a relation between a genetic phenomenon and a disorder

(Appendix C). We added these words to the list of relation terms found in Ibn Faiz’s original

system.

Our initial corpus is pre-processed and then is separately processed by Ibn Faiz’s rule-based

and machine learning-based PPI extraction tools. Each of these tools finds some relations in

the input sentences. After the results are compared those sentences that contain at least one

agreed- upon relationship 1 are initially considered as the training set. From the original corpus,

519 sentences comprised the initial training set as the result of this process. However, as our

utilized tools were originally developed for finding protein-protein interactions, not phenotype-

genotype relationships we could not be certain that even their similar results produced correctly

labelled examples. Therefore, the initial training set was further processed manually. Several

interesting issues were observed.

1. Some sentences do not state any relationship between the annotated phenotypes and

genotypes. Instead, these sentences only explain the aim of a research project. However,

these sentences are labelled as containing a relationship by both tools. e.g. , “The present

study was undertaken to investigate whether rare variants of TNFAIP3 and TREX1 are

also associated with systemic sclerosis.”

2. The negative relations stated with the word “no” are considered positive by both tools.

e.g. , “With the genotype/phenotype analysis , no correlation in patients with ulcerative

colitis with the MDR1 gene was found.”

3. Some sentences from the Phenominer corpus are substantially different compared to

other sentences, because of the two issues we discussed earlier about this corpus. The

phenotypes below the cellular level have different relations with genotypes. For exam-

1Phenotype-genotype pairs that have a relationship are the positive instances. Phenotype-genotype pairs that

do not have a relationship are the negative instances. The sentences mentioned have both positive and negative

instances.
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ple, they can change genotypes while the supercellular-level phenotypes are affected by

genotypes and are not capable of causing any change to them.

4. Some cases have both tools making the same mistakes: suggesting incorrect relationships

(i.e. , negative instances are suggested as positive instances) or missing relationships (i.e.

positive instances are given as negative instances).

After making corrections (see issues 1 and 4) and deleting sentences with issues 1 and 3,

430 sentences remained in the training set. These corrections and deletions were made by the

author. This data set is skewed: there are many fewer negative instances than positive instances.

To address this imbalance, 40 sentences without any relationships have been selected manually

and are added to the training set. Also, to increase the training set size 39 additional sentences

have been labelled manually and have been added to the training set. The final training set has

509 sentences. There are 576 positive instances and 269 negative instances.

10.1.2 Test set

To select the sentences to be included in the test set, the results from processing our initial set

with the two PPI tools have been used. In some cases both tools extract relations from the

same sentence but the relations differ. For example in sentence “Common esr1 gene alleles-4

are unlikely to contribute to obesity-10 in women, whereas a minor importance of esr2-19 on

obesity-21 cannot be excluded.”, the machine learning-based tool finds a relationship between

esr2-19 and obesity-21 but the rule-based tool claims that there is also a relationship between

esr1 gene alleles-4 and obesity-10. Since we were confident that this type of sentence would

provide a rich set of positive and negative instance, this type of sentence is extracted to make

our initial test set of 298 sentences.

In order for the test set to provide a reasonable evaluation of the trained model, the sen-

tences must be correctly labelled. A biochemistry graduate student was hired to annotate the

initial test set. Pairs of genotypes and phenotypes are extracted from each sentence and her task

was to indicate whether there was any relationship between them. We also asked her to give
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Figure 10.1: An example of an annotated sentence.

any comments about the correctness of the extracted genotypes or phenotypes and indicate the

verb that creates the relationship between each pair. Figure 10.1 presents a sample annotated

sentence.

Issues 1 and 3 discussed in Section 10.1.1 have been observed by the annotator in some of

the sentences. Also, there were some cases where she was not sure if there was a relationship

or not. Furthermore, she disagreed with several annotated phenotypes and genotypes. After

deleting some problematic sentences and fixing several problems the final test set comprising

244 sentences has been formed.

10.1.3 Unlabelled data

After choosing the training and testing sentences from the initial set of sentences the remaining

sentences have been used as unlabelled data. The unlabelled set contains 3440 sentences.

10.2 Training a model

Now that we have a labelled training set, it is possible to train a machine learning model using

a supervised method to be evaluated on the test set. On the other hand, because the training set

is so small, using supervised learning does not lead to good results (precision: 76.47, recall:

77.61), so a self-training algorithm has been proposed to improve the results.
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10.2.1 Machine learning method

We applied the machine learning method proposed by Ibn Faiz [34] for PPI extraction to our

task. This method uses a maximum entropy classifier and converts the relation extraction

problem to a binary classification problem. A genotype-phenotype pair is represented by a

set of features derived from a sentence. The features are classified into three different groups:

dependency features extracted from the dependency path between the two entities, syntactic

features derived from the syntax tree of the sentence, and surface features obtained directly

from the raw text. Tables 10.1 and 10.2 represent the list of features.

Figure 10.2 shows the dependency tree produced by the Stanford dependency parser2 for

the sentence “The association of Genotype1 with Phenotype2 is confirmed.”. Using this depen-

dency tree, the dependency path between the two entities, which contains important informa-

tion, is extracted. The dependency path between the phenotype and the genotype in this figure

is “Genotype1-prep of -association-prep with-Phenotype2”. Association is the relation term in

this path and prep of and prep with are the dependency relations related to it. The presence of

a relation term can be a signal for the existence of a relationship and its grammatical role along

with its relative position gives valuable information about the entities involved in the relation-

ship. Sometimes two entities are surrounded by more than one relation term. The key term

feature is introduced to find the relation term which best describes the interaction. Ibn Faiz

[34] used the following steps to find the key term, when one step fails the process continues to

the next step but if the key term is found in one step the following steps are ignored.

1. Any relation term that occurs between the entities and dominates them both in the de-

pendency representation is considered as the key term.

2. A word is found that appears between the entities, has a child which is a relation term

and dominates the two entities. That child is considered as the key term.

3. Any relation term that occurs on the left of the first entity or on the right of the second

entity and dominates them both in the dependency representation is considered as the
2http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Figure 10.2: Dependency tree related to the sentence “The association of Genotype1 with

Phenotype2 is confirmed.”

key term.

4. A word is found that appears on the left of the first entity or on the right of the second

entity, has a child which is a relation term and dominates the two entities. That child is

considered as the key term.

10.2.2 Self-training algorithm

The first model is trained using the training set and the machine learning method explained in

Section 10.2.1. To improve the performance of our system, a self-training process has been

applied. Figure 10.3 outlines this process. This process starts with the provided labelled data

and unlabelled data. The labelled data is used to train a model which is used to tag the unla-

belled data. In most self-training algorithms the instances with the highest confidence level are

selected to be added to the labelled data. However, in our application this methodology did not

work. The most confident instances were tagged incorrectly. So we considered the following

two measures to select the best unlabelled instances.

• The confidence level must be in an interval. It must be more than a threshold α and less

than a specified value β.

• The predicted value of selected instances must be equal to their predicted value by the

rule-based system.
3Collins’ head finding rule [22] has been used.
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Features Description

Relation term Root of the portion of the dependency tree

connecting phenotype and genotype

Stemmed relation term Stemmed by Mallet

Relative position of relation term Whether it is before the first entity, after the

second entity or between them

The relation term combined with the

dependency relation

To consider the grammatical role of the rela-

tion term in the dependency path.

The relation term and its related posi-

tion

Key term described in Section 10.2.1

Key term and its related position

Collapsed version of the dependency

path

All occurrences of nsubj/nsubjpass are re-

placed with subj, rcmod/partmod with mod,

prep x with x and everything else with O.

Second version of the collapsed depen-

dency path

Only the prep * of dependency relations are

kept.

Negative dependency relation A binary feature shows whether there is any

node in the path between the entities which

dominates a neg dependency relation. This

feature is used to catch the negative relations.

prep between A binary feature checks for the existence of

two consecutive prep between links in a de-

pendency path.

Table 10.1: List of dependency features

In each iteration at most a bounded number of instances are selected and added to the labelled

data to prevent adding lots of incorrectly labelled data to the training set in the first iterations
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Features Description

Syntactic features

Stemmed version of relation term in

the LCA node of the two entities

If the head3 of Least common ancestor

(LCA) node of the two entities in the syntax

tree is a relation term then this feature takes

a stemmed version of the head word as its

value, otherwise it takes a NULL value.

The label of each of the constituents

in the path between the LCA and each

entity combined with its distance from

the LCA node

Surface features

Relation terms and their relative posi-

tions

The relation terms between two entities or in

a short distance (4 tokens) from them.

Table 10.2: List of syntactic and surface features

when the model is not powerful enough to make good predictions. The number of instances

selected according to these factors could be less than the upper bound.

As we know in some self-training algorithms (e.g. , SVM) choosing the most confident

unlabelled instances and adding them to the labelled data causes overfitting [119]. We encoun-

tered a similar overfitting when we added the most confident unlabelled instances. Because the

mistakes the algorithm makes in the first iterations propagate to the following iterations, the

first measure was added to our method to prevent overfitting in our model.

We used relation extraction output from Ibn Faiz’s rule-based tool as a constraint in the

decision to add an unlabelled instance to the training set. The rule-based tool is implemented

for protein-protein interactions. It does not have good performance on phenotype-genotype

relation extraction. So, using this tool’s advice along with the confidence level means that the

relationship must be of a more general category than just phenotype-genotype relationships.
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Figure 10.3: The self training process described in Section 10.2.2
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However, at some point this constraint holds the system back from learning broader types of

relationships in the phenotype-genotype category. Therefore this selection factor is used only

for the first i iterations, and after i iterations the best unlabelled data is chosen only based on

the confidence level. Again, here, the confidence level must be in an interval.

This proposed self-training algorithm has been tried with various configurations and each

variable in this process has been given several values. Each resulting model has been tried

separately with our test set and the best system is selected based on its performance on the test

set. In our best configuration 15 unlabelled instances are added to the labelled data in each

iteration, in the first 5 iterations predictions made by the rule-based tool are taken into account,

the least confidence level is 85%, the highest confidence level is 92% and the process stops

after six iterations.

10.3 Results and discussion

The proposed system has been evaluated using the separate test set manually annotated by a

biochemistry graduate student. The distribution of our data (number of sentences and number

of genotype-phenotype pairs in each set) is illustrated in Table 10.3. The number of positive

instances and negative instances in the unlabelled data are not available.

Data Set Sentences Instances Positive instances Negative instances

Training set 509 845 576 269

Test set 244 823 536 287

Unlabelled data 408 823 NA NA

Table 10.3: Distribution of data in our different sets.

Table 10.4 shows the results obtained by the supervised learning algorithm and the proposed

self-training algorithm. The results of testing Ibn Faiz’s [34] rule-based and machine learning

based tools are included in the table. Although these tools were not designed to be used for

such an application, it is interesting to see that we could use these tools as the basis of a new
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system for a different yet related application.

Method Precision Recall F-measure

Ibn Faiz’s ML-based tool 75.19 53.17 62.29

Ibn Faiz’s rule-based tool 77.77 38.04 51.09

Supervised learning method 76.47 77.61 77.03

Self-training method 77.40 77.98 77.69

Table 10.4: Evaluation results

As can be seen in the table, Ibn Faiz’s tools especially the rule-based system have good

precision. This, we believe, is why considering rule-based predictions as a factor for choosing

the best predictions was useful. However, their recall are quite low as one would expect.

These results mean that there are some forms that are common between protein-protein and

phenotype-genotype interactions, and these forms are what can be detected by these two tools.

However, there are some forms of phenotype-genotype interactions which are not covered by

the knowledge contained in these tools.

As illustrated in the table, our attempt to use knowledge (rules in the rule-based system

and features in the machine learning-based system) incorporated in these earlier systems for

training a new system was successful. We obtained good performance by only making a small

training set and then we are able to improve the results by using our proposed self-training

algorithm.

As mentioned before (see Section 10.1), there are some issues related to sentences from

the Phenominer corpus which make them different from other sentences in our data. Table

10.5 shows the results after deleting the Phenominer sentences from our test set. The results

are improved. Our proposed system is more effective for working with phenotypes not at the

cellular level.

While we tried to add some negative sentences to our data to make it more balanced, Table

10.3 shows that our data is still biased: the number of negative instances is less than the number

of positive instances. A more balanced training set is likely to improve the performance of the
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Method Precision Recall F-measure

Supervised learning method 80.20 79.79 80.00

Self-training method 80.05 81.07 80.55

Table 10.5: Results after deleting Phenominer sentences from the test set.

trained model.

Although we used a self-training algorithm to increase the size of our training set, be-

cause the best results were reached only after six iterations, the last training set has only 935

instances. Adding more instances using previously mentioned factors only decreased the per-

formance. Our suggestion is to add more manually annotated sentences to the training set, so

that the first model made by this set makes better predictions with more reliable confidence

level, then use the self-training algorithm to improve the results.

The annotated sentences in the test set can be used as a valuable source of information.

Going through the comments provided by the expert annotator, we have gained some insights

on which important elements should be considered in a future system. The results of analyzing

these sentences may imply modifying the feature set in the machine-learning method. We

especially note the relation terms indicated by our annotator. The relation terms are specific to

phenotype-genotype relationships and can be used to enhance this feature.

Our system is not capable of differentiating between sentences which include a relationship

and sentences which only address the main objective of the research being discussed and do

not conclude any interaction between phenotypes and genotypes. Finding and ignoring such

sentences could improve the results. Here are some examples of such sentences:

• A cross-sectional study to determine the relationship of serum Haptoglobin-12 concen-

tration with glycated albumin-16 and hemoglobinA (1c)-21 concentrations was con-

ducted .

• We investigated whether mutations in the PRSS1 gene-8 are associated with hereditary

and non-hereditary pancreatitis-17.
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• The objective of this study was to investigate gene polymorphisms of detoxification en-

zymes and to determine whether the enzyme concentration and activity of glutathione S

transferase microliter 1-28 correlates with the genotype in patients with cancer-36 of the

oral cavity .

When the sentence is more complicated the system fails to find the correct relations. For

example in the following sentence “Serum levels of anti-gp70 Abs-7 were closely correlated

with the presence of renal disease-16, more so than anti-dsDNA Abs-24.” only the relationship

between anti-gp70 Abs-7 and renal disease-16 are extracted but the more complicated relation

between renal disease-16 and anti-dsDNA Abs-24 is missed. More examples of this type will

be needed in the training set and possibly features capturing the necessary linguistic features

will need to be added to the feature set.



Chapter 11

Conclusions and Future Work

Throughout this thesis we have talked about the importance of a specialized system for extract-

ing phenotype-genotype interactions from biomedical text. Such a system extracts important

information about the complex heritable diseases caused by genes which is useful to both pa-

tients and physicians and also can be used in biomedical database curation. Developing this

system demands finding solutions for three different issues: genotype name recognition, phe-

notype name recognition and phenotype-genotype relation extraction.

Extracting gene and protein names from biomedical literature is a well-studied problem.

Different methods for gene and protein name extraction have been proposed and many of them

participated in the BioCreative [1] contest. We decided to use Banner [62], an open source

biomedical named entity recognition system which was trained and tested on the BioCreative

corpus and achieved good results in comparison with other named entity recognition systems.

Phenotypes, unlike genotypes, are complex concepts and do not consist of a homogeneous

class of objects. Therefore phenotype name recognition is a very complicated task. We were

the first group 1 to start working on this problem. We proposed two different phenotype name

recognition methods.

• The first method is a rule-enhanced dictionary-based method. This system uses MetaMap

to map UMLS semantic types to phrases in text then applies five rules and makes use of
1Maryam Khordad, Dr. Robert E. Mercer, Dr. Peter Rogan
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HPO to decide if a phrase is a phenotype or not.

• The second method is a machine learning-based method based on Conditional Random

Fields (CRF). The rules acquired in the rule-based method were incorporated in this

system using features and some specific processing steps. This system also makes use of

MetaMap and HPO.

Developing the machine learning-based method required a corpus to train a model and test

it. As we did not have access to any prepared data, we created a corpus using a self-training

algorithm and HPO. Furthermore, a separate test set was annotated manually. The system was

then evaluated using both a 10-fold cross validation and a separate test set. The results are quite

promising.

Our phenotype name recognition system was extremely dependent on MetaMap and also

made mistakes in case the head of an NP was among a list of empty heads. We proposed

solutions to overcome these problems and improve the performance of the system. The effec-

tiveness of these solutions has been discussed based on both loose and strict evaluation results.

The final part of the thesis was related to phenotype-genotype relation extraction. Again we

started this task without having any available resources or any previous knowledge about the

nature of these relations. A semi-automatic method was proposed to construct a small train-

ing set. Then a self-training algorithm was applied to build a machine-learning model which

could be used in extracting phenotype-genotype relations. The final system was evaluated us-

ing a separate test set annotated manually by a biochemistry graduate student and the results

confirmed its good performance.

To summarize, our contributions in this thesis are the following:

• Using MetaMap and the semantic group Disorders to extract phenotype names.

• Proposing five rules to enhance phenotype name recognition.

• Using conditional random fields for phenotype name recognition.
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• Proposing new features to incorporate our previously proposed five rules in a machine

learning based system.

• Proposing a self-training algorithm to create a corpus automatically for phenotype name

recognition.

• Preparing a manually annotated test set for phenotype name recognition.

• Proposing the bracketing and empty head solutions to improve the phenotype name

recognition results.

• Proposing a semi-automatic method for making a small training set using two available

relation extraction tools.

• Using a maximum entropy classifier for phenotype-genotype relation extraction.

• Developing a self-training algorithm to enlarge the training set and improve the phenotype-

genotype relation extraction results.

11.1 Future work

Our rule-based phenotype recognition system had some problems. We proposed a machine

learning-based system to solve these problems and then discussed some solutions to improve

the results of the machine learning-based system. However, there are still more possible im-

provements.

• Our corpus is annotated automatically so it might include several incorrect phenotypes

while some other phenotypes might be missing. It would be good to select a statistically

representative subset of the phenotype corpus and ask an expert to annotate the corpus

manually to understand how complete and accurate the tagged corpus is.

• Changing the feature set and adding more features can be considered.
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• It would be beneficial to try other machine learning methods and compare their results

with what we achieved by using CRF.

• In our current training set the complete form of the phenotype name (phenotypes along

with their adjective and adverb modifiers) are not annotated. That is why our attempt

to improve the strict evaluation results was not so successful. Using the BLLIP parser

results, it might be possible to change the annotation of the corpus and test set to include

the modifiers of phenotypes to achieve better results in strict evaluation.

• The current test set was annotated by the author. I suggest asking an expert to annotate

the corpus. In this way we could be more confident about the performance of the system

and also we can find which types of phenotypes are confusing for even human beings

and find solutions for extracting them correctly.

Our proposed method for phenotype-genotype relation extraction achieved good results.

However, there is still room for improvement. The following are suggestions for the future

work related to this system.

• The training set made for this task was small. Despite our efforts to use a self-training

algorithm to enlarge the corpus, the final set is still small. Asking an expert to annotate

more sentences to be added to the corpus is recommended.

• The distribution of the training set shows that it does not have enough negative instances.

A significant number of sentences without any relations between phenotypes and geno-

types must be added to the training set in order to balance it.

• We have a small test set which was annotated manually by an expert. Analyzing the

sentences and the annotator’s comments could give some ideas about the nature of ex-

isting relations between phenotypes and genotypes. This information can be used in the

following ways:

– To understand if the system needs more features and if so what kind of features are

needed.
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– To recognize what types of relations exist between phenotypes and genotypes and

to add enough sentences for each type to the training set.

– To extract rules related to phenotype-genotype relations and make a hybrid system

which integrates both a rule-based and a machine learning-based method.

– Furthermore, the annotator tagged the verbs and terms that are used in the sentences

to relate a phenotype and a genotype. A list of relational words can be generated

based on these words and a feature can be added to show whether a word is in this

list or not.

• Our system is not able to detect and ignore the sentences like ”We investigated whether

mutations in the PRSS1 gene are associated with hereditary and non-hereditary pan-

creatitis.”. These sentences only mention the purpose of a study and do not confirm

any relations, but our system finds relations in them which leads to false positives. The

template of these sentences could be recognized and a pre-processing step could be incor-

porated in the system to disregard these types of sentences before from being considered

as a potential source of phenotype-genotype relationships.

• The current system is not able to extract complicated relations where a pronoun refers to

a phenotype or a genotype in the same sentence or the previous sentences (anaphora) or

where a part of or the whole genotype or phenotype is omitted (ellipsis) in a sentence. In

the case of anaphora, coreference resolution techniques can be used to find the objects

referred to by the pronouns. Finding and resolving ellipsis is a difficult task because

of the missing text elements. Winograd [113] discusses methods proposed for ellipsis

resolution.

• It is worth trying other machine learning methods, like Support Vector Machines which

have achieved good results in extracting interactions in other applications [13], for this

problem and compare the results with our current method.
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Appendix A

A partial list of UMLS semantic types and

semantic groups

Semantic Group Semantic Type

Anatomy Anatomical Structure

Body Location or Region

Body Part, Organ, or Organ Component

Body Space or Junction

Body Substance

Body System

Cell

Cell Component

Embryonic Structure

Fully Formed Anatomical Structure

Tissue
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Semantic Group Semantic Type

Disorders Acquired Abnormality

Anatomical Abnormality

Cell or Molecular Dysfunction

Congenital Abnormality

Disease or Syndrome

Experimental Model of Disease

Finding

Injury or Poisoning

Mental or Behavioral Dysfunction

Neoplastic Process

Pathologic Function

Sign or Symptom

Physiology Cell Function

Clinical Attribute

Genetic Function

Mental Process

Molecular Function

Organism Attribute

Organism Function

Organ or Tissue Function

Physiologic Function



Appendix B

List of special modifiers

1. abnormal

2. decreased

3. increased

4. reduced

5. absent

6. small

7. absence of

8. enlarged

9. short

10. dilated

11. impaired

12. thin

13. hypoplastic
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14. delayed

15. elevated

16. failure of

17. loss of

18. low

19. fused

20. altered

21. thick

22. pancreatic

23. hyperplastic

24. disorganized

25. kidney

26. uterine

27. renal

28. long

29. high

30. rudimentary

31. muscle

32. intestinal

33. enhanced



Chapter B. List of special modifiers 117

34. retinal

35. eye

36. embryonic

37. uterus

38. liver

39. truncated

40. large

41. hepatic

42. defective

43. prolonged

44. skin

45. pulmonary

46. lung

47. ectopic

48. vascular

49. immune

50. atrophic

51. heart

52. cardiac

53. white
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54. right

55. neurological

56. behavioral

57. mammary

58. t

59. respiratory

60. premature

61. male

62. early

63. bifid

64. urinary

65. skeletal

66. pancreas

67. ovarian

68. optic

69. ocular

70. hair

71. excessive

72. blood

73. b
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74. thickened

75. spinal

76. pituitary

77. lip

78. gastric

79. esophageal

80. degeneration of

81. cervical

82. central

83. aortic

84. ventricular

85. prostate

86. irregular

87. heterotopic

88. eyelid

89. detached

90. cranial

91. chronic

92. choroid

93. brain
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94. adrenal

95. vitreous

96. vaginal

97. type

98. tail

99. survival

100. spleen

101. reproductive

102. underdeveloped

103. hypoplasia of



Appendix C

List of relation verbs demonstrating

relationships between genotypes and

phenotypes [88]

1. account

2. cause

3. effect

4. evoke

5. generate

6. induce

7. lead

8. produce

9. provoke

10. result
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11. trigger

12. contribute

13. predispose

14. promote

15. predict

16. associate

17. characterise

18. characterize

19. correlate

20. decrease

21. involve

22. influence

23. link

24. mediate

25. occur

26. relate

27. restore



Appendix D

Relational terms used by Ibn Faiz’s

rule-based system [34]

abolish, abolished, abolishes, abolishing, abrogat, acceler, accelerat, acceptor, accompanied,

accompanies, accompany, accompanying, accumul, accumulation, acetylat, acetylate, acety-

lated, acetylates, acetylating, acetylation, acquir, act, acting, action, activ, activat, activate,

activated, activates, activating, activation, activator, acts, adapt, add, addit, adhe, adher, af-

fect, affects, affinities, affinity, aggregat, agoni, agonist, alter, altered, altering, amplif, an-

tagoni, apparat, assembl, assist, associat, associate, associated, associates, associating, as-

sociation, associations, attach, attached, attaches, attaching, attachment, attack, attacked, at-

tacking, attacks, attenuat, attenuate, attenuated, attenuates, attenuating, augment, augmented,

augmenting, augments, autophosphorylat, autoregulat, bind, binding, binds, block, blockage,

blocked, blocking, blocks, bound, carbamoylated, carbamoylation, carboxyl, carboxylate, car-

boxylates, carboxylation, cataly, cause, caused, causes, causing, change, changed, changes,

changing, characterization, characterized, cleav, cleavage, cleave, cleaved, cleaves, cleaving,

cluster, co-expression, co-immunoprecipitate, co-immunoprecipitated, co-immunoprecipitates,

co-immunoprecipitating, co-immunoprecipitation, co-immunoprecipitations, co-localization,

co-localized, co-localizing, co-operat, co-precipit, co-precipitate, co-precipitated, co-precipitates,

co-precipitating, co-precipitation, co-precipitations, co-purifi, co-stimulate, co-stimulated, co-
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stimulating, coactivat, coactivator, coassociation, coexist, coexpres, coexpression, coimmuno-

precipitate, coimmunoprecipitated, coimmunoprecipitates, coimmunoprecipitating, coimmuno-

precipitation, coimmunoprecipitations, colocaliz, colocalization, colocalized, compet, com-

pete, competed, competes, competing, complex, complexation, complexed, complexes, com-

plexing, component, compris, concentration, conjugat, conjugate, conjugated, conjugates, con-

jugating, conjugation, conserved, consisted, consisting, consists, contact, contacted, contact-

ing, contacts, contain, contained, containing, contains, contribute, contributed, contributes,

contributing, control, controled, controling, controlled, controlling, controls, convers, con-

vert, converted, converting, converts, cooperat, cooperate, cooperated, cooperates, cooperat-

ing, cooperative, coprecipit, coprecipitate, coprecipitated, coprecipitates, coprecipitating, cop-

urifi, correlat, correlate, correlated, correlating, correlation, costimulate, costimulated, costim-

ulating, counteract, counterreceptor, coupl, cripple, crippled, cripples, crippling, cross-link,

cross-linked, cross-linking, cross-links, cross-react, cross-reacted, cross-reacting, cross-reacts,

cross-talk, crosslink, crosslinker, crosslinking, crosstalk, deacetylat, deacetylate, deacetylated,

deacetylates, deacetylating, deacetylation, deaminated, deamination, decarboxylated, decar-

boxylates, decarboxylation, declin, decreas, decrease, decreased, decreases, decreasing, de-

grad, degrade, degraded, degrades, degrading, dehydrated, dehydrogenated, dehydrogenation,

depend, depended, dependent, depending, depends, dephosphorylat, dephosphorylate, dephos-

phorylated, dephosphorylates, dephosphorylating, dephosphorylation, deplet, deposi, depress,

depressed, depresses, depressing, deriv, destruct, determine, determined, determines, deter-

mining, dimer, diminish, diminished, diminishes, diminishing, direct, directed, directing, di-

rects, disrupt, disrupted, disrupting, disruption, disrupts, dissociat, dissociate, dissociated, dis-

sociating, dissociation, distribute, distributed, distributes, distribution, dock, docked, docking,

docks, down-regulat, down-regulate, down-regulated, down-regulates, down-regulating, down-

regulation, downregulat, downregulate, downregulated, downregulates, downregulating, down-

regulation, drive, driven, drives, driving, effect, effected, effecting, effects, elavating, elevat,

elevate, elevated, elevates, elevating, eliminate, eliminated, eliminates, eliminating, encod, en-

code, encoded, encodes, encoding, engage, engaged, engages, engaging, enhanc, enhance, en-
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hanced, enhances, enhancing, enrich, evoke, evoked, exert, exhibit, expos, express, expressed,

expresses, expressing, expression, facilitate, facilitates, facilitating, faciliteted, follow, fol-

lowed, following, follows, form, formation, formed, forms, formylated, functio, function, func-

tioned, functions, fuse, fused, fuses, fusing, generat, generate, generated, generates, generating,

glucosyl, glycosyl, glycosylated, glycosylates, glycosylation, govern, governed, governing,

governs, heterodimer, heterodimerization, heterodimerize, heterodimerized, heterodimerizes,

heterodimerizing, heterodimers, homodimer, homodimerization, homodimerize, homodimer-

ized, homodimerizes, homodimers, homologous, homologue, hydrol, hydrolyse, hydrolysed,

hydrolyses, hydrolysing, hydrolysis, hyperexpr, identified, imitat, immuno-precipit, immuno-

precipit, immunoprecipitate, immunoprecipitated, immunoprecipitates, immunoprecipitating,

impact, impacted, impacting, impacts, impair, impaired, impairing, impairs, implicate, impli-

cated, import, improv, inactivat, inactivate, inactivated, inactivates, inactivating, inactivation,

inactive, includ, incorporate, incorporated, incorporates, incorporation, increas, increase, in-

creased, increases, increasing, increment, induc, induce, induced, induces, inducing, induction,

influenc, influence, influenced, influences, influencing, inhibit, inhibited, inhibiting, inhibition,

inhibitor, inhibits, initiat, initiate, initiated, initiates, initiating, interact, interacted, interact-

ing, interaction, interactions, interacts, interfer, interrupt, involve, involved, involvement, in-

volves, involving, isomerization, isomerize, isomerized, isomerizes, isomerizing, lead, leading,

leads, led, ligand, ligate, ligated, ligates, ligating, ligation, limit, limited, limiting, limits, link,

linked, linking, links, localization, mediat, mediate, mediated, mediates, mediating, methylate,

methylated, methylates, methylating, methylation, migrat, mobili, mobilisation, mobilise, mo-

bilised, mobilises, mobilising, mobilization, mobilize, mobilized, mobilizes, mobilizing, mod-

erat, modif, modified, modifies, modify, modifying, modulat, modulate, modulated, modulates,

modulating, neutrali, neutralise, neutralised, neutralises, neutralising, neutralize, neutralized,

neutralizes, neutralizing, obstruct, operat, oppos, overexpress, overproduc, oxidis, oxidiz, ox-

idization, oxidize, oxidized, oxidizes, oxidizing, pair, paired, pairing, pairs, peroxidizing, per-

turb, perturbed, perturbing, perturbs, phosphoryates, phosphorylat, phosphorylate, phosphory-

lated, phosphorylates, phosphorylating, phosphorylation, potentiat, potentiate, potentiated, po-
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tentiates, potentiating, prducing, precede, preceded, precedes, preceding, prevent, prevented,

preventing, prevents, process, produc, produce, produced, produces, producing, prohibit, pro-

mot, promote, promoted, promotes, promoting, raise, raised, raises, raising, react, reactivate,

reactivated, reactivates, reactivating, recogni, recognise, recognised, recognises, recognising,

recognize, recognized, recognizes, recognizing, recruit, recruited, recruiting, recruitment, re-

cruits, reduc, reduce, reduced, reduces, reducing, reduction, regulat, regulate, regulated, regu-

lates, regulating, regulation, regulator, relate, related, releas, remov, replac, repress, repressed,

represses, repressing, requir, require, required, requires, requiring, respond, responded, re-

sponding, responds, respons, response, responses, responsible, result, resulted, resulting, re-

sults, reversed, secret, sequester, sequestered, sequestering, sequesters, sever, signal, signaled,

signaling, signals, splice, stabili, stabilization, stabilized, stimulat, stimulate, stimulated, stim-

ulates, stimulating, stimulation, subunit, suppress, suppressed, suppresses, suppressing, sus-

pend, synergise, synergised, synergises, synergising, synergize, synergized, synergizes, syner-

gizing, synthesis, target, targeted, targeting, targets, terminate, terminated, terminates, termi-

nating, tether, tethered, tethering, tethers, trans-activate, trans-activated, trans-activates, trans-

activating, transactivat, transactivate, transactivated, transactivates, transactivating, transami-

nation, transcri, transcribe, transcribed, transcribes, transcribing, transduc, transform, trans-

formed, transforming, transforms, translat, translocat, transport, transregulat, trigger, triggered,

triggering, triggers, ubiquitinate, ubiquitinated, ubiquitinates, ubiquitinating, ubiquitination,

up-regulat, up-regulate, up-regulated, up-regulates, up-regulating, up-regulation, upregulat, up-

regulate, upregulated, upregulates, upregulating, upregulation, use, utilis, utiliz, yield, clone,

cloning
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Relational terms annotated by our

annotator

• contribute

• associated

• implicates

• regulation

• overexpressed

• downregulation

• responsible

• down regulated

• association

• related

• relate to
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• development

• increased

• caused

• identified

• decreased

• contain

• between

• linked

• correlation

• causes

• observed

• arises

• lead

• characterized

• resulting

• accompanied

• derived

• present

• correlated

• play
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• explained

• depends

• induce

• cause

• increase

• moderate

• determine the relationship between

• presented

• predictor

• refers

• is (linked)

• evidenced

• confirmed

• may be

• determine (the role of)

• showed

• includes

• suggests

• were (predictors)

• include
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• confers

• are (responsible)

• associations of

• resulted

• influence

• have (been identified)

• (correlation) was observed

• found

• contribution

• contributes

• results

• predispose

• affect

• account

• revealed

• involve

• causative

• inhibited

• displayed

• map
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• evaluated

• screened



Appendix F

List of abbreviations

Abbreviation Meaning

PPI protein-protein interaction

UMLS Unified Medical Language System

PharmGKB Pharmacogenetics Knowledge Base

OMIM Online Mendelian Inheritance in Man

HPO Human Phenotype Ontology

SG Semantic Group

ST semantic Type

MPO Mammalian Phenotype Ontology

NLP Natural Language Processing

CRF Conditional Random Fields

NLM National Library of Medicine

WSD word sense disambiguation

Mallet MAchine Learning for LanguagE Toolkit

HMMs Hidden Markov Models

PAC Probably Approximately Correct

132



Chapter F. List of abbreviations 133

Abbreviation Meaning

NP noun phrases

CRF conditional random fields

NER Named Entity Recognition

POS part of speech

HUGO Human Genome Nomenclature

GO Gene Ontology

MAPK MAP kinase

FSA finite state automata

POS part-of-speech

ML machine learning
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