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Abstract

Aims: Three types of cardiovascular calcification are commonly found in humans: arterial 

calcification, intimal calcification, and calcific aortic valve disease. Very little is known about 

the mechanisms driving cardiovascular calcification despite serious clinical implications and 

a clear association with morbidity and mortality. Indeed, it is even unclear whether the same 

factors are involved in arterial, intimal, and valvular calcification. The objective of this study 

was to elucidate the effects of an angiotensin II type 1 receptor blocker (ARB) on the 

progression of cardiovascular calcification in male New Zealand White rabbits. Where 

appropriate, statins were examined in conjunction and in combination with ARBs.

Methods and Results: In vivo and ex vivo techniques were used to assess overall disease 

burden and the extent of calcification including magnetic resonance imaging, micro-

computed tomography, histology, and immunohistochemistry. ARB administration 

significantly inhibited progression of arterial calcification (2.80 ± 1.17 versus 0.01 ± 0.01 % 

calcified tissue in Cholesterol and ARB-treated, respectively; P < 0.05), but not intimal or 

valvular calcification. ARB treatment significantly reduced atherosclerotic lesion area when 

delivered alone (95.50 ± 1.94 versus 61.61 ± 10.17 % lesion area in Cholesterol and ARB-

treated, respectively; P < 0.05), but not when combined with statin therapy (92.39 ± 3.25 % 

in ARB+Statin; P < 0.05 when compared to ARB monotherapy). Finally, ARB-treated 

animals had significantly increased valvular calcium.

Conclusions: This study provides evidence that ARBs robustly inhibit arterial calcification 

and is the first to suggest ARBs as a novel treatment option for those at risk for 

cardiovascular calcification. It also suggests that ARBs may not be beneficial for those at risk 

for intimal or valvular calcification. These disparate results suggest that the three types of 

cardiovascular calcification are distinct from one another and provides impetus to further 

examine the underlying molecular mechanisms at play in these debilitating disease processes.
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Chapter 1

1 General Introduction

Cardiovascular calcification can be broadly grouped into three categories: arterial 

calcification, intimal calcification, and calcific aortic valve disease (Figure 1.1). Each 

class of cardiovascular calcification is associated with unique pathologies. While arterial 

calcification is mainly associated with diabetes mellitus (DM) and chronic kidney disease 

(CKD),1 intimal calcification and calcific aortic valve disease is found more commonly in 

the elderly and associated with typical risk factors of atherosclerosis.2-5

Clinical consequences of cardiovascular calcification are numerous and diverse. In 

dialysis patients, arterial calcification is responsible for calcific uremic arteriolopathy, a 

condition causing necrosis of the skin which has a very high mortality rate.6 Moreover, 

arterial calcification is correlated with future cardiovascular events in patients with DM 

and is a strong predictor of mortality in patients with CKD.7,8 Intimal calcification is 

associated with an increased risk of myocardial infarction (MI)9,10 and may promote 

plaque instability.11,12 Patients who have aortic valve disease without concomitant 

coronary artery disease have a 50% increased risk of MI and cardiovascular death 

compared to patients who have a normal aortic valve,13-16 and calcification of valvular 

tissue is recognized as the primary mode of valve failure in both native and bio-prosthetic 

valves.17

Despite the myriad of clinical implications and the clear association with morbidity and 

mortality, very little is known about the underlying molecular mechanisms leading to 

cardiovascular calcification. Indeed, it is even unclear whether the same mechanisms are 

at play in arterial, intimal, and valvular calcification. Most importantly, there is no 

preventive therapy available to physicians or patients.

1.1 Renin-Angiotensin System

Dysregulation of the Renin-Angiotensin System (RAS) is well known to promote 

hypertension and cardiovascular disease.18-20 The RAS is normally responsible for 
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Figure 1.1: The sinus of valsalva and three types of cardiovascular calcification. 

Arterial calcification presents as large masses localized along the internal elastic lamina 

and within the tunica media. Intimal calcification typically begins as micro-calcifications 

within the cholesterol-rich atherosclerotic plaque, which develops in the cellular tunica 

intima. Calcific aortic valve disease also involves micro-calcifications, typically near the 

base of the collagenous fibrosa layer of the aortic valve.
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maintaining fluid volume and preventing ischemia during fluid loss. The main vasoactive 

agent, angiotensin II (AngII), induces vasoconstriction and sympathetic activation, raises 

aldosterone levels, and promotes salt and water retention via the AngII type 1 receptor 

(AT1R).21 The canonical RAS cascade is rather simple (Figure 1.2). Angiotensinogen, the 

precursor peptide that is produced in the liver, is cleaved by renin, an enzyme produced 

by juxtaglomerular cells in the kidney in response to low blood pressure or low sodium 

levels.22 Cleavage of angiotensinogen by renin produces angiotensin I (AngI), which 

appears to have no biological activity.23 AngI is further cleaved by angiotensin converting 

enzyme (ACE), usually in the endothelium,24 to produce AngII.21 However, ACE is not 

the only AngII-producing enzyme in the cardiovascular system. Several groups have 

shown that mast cell-derived chymase and cathepsin G can also produce AngII in blood 

vessels,25 the heart,26,27 and heart valves.28-30 Angiotensin(1–12), which contains two 

extra amino acids on the C-terminus of AngI, is the substrate for chymase production of 

AngII.31-33 Regardless of its source, AngII exerts its cellular effects via the ATIR. Certain 

cell types, including much of the cardiovascular system, also express the AngII type 2 

receptor which, when bound by AngII, generally opposes the effects of the AT1R.34

There are a number of clinically available pharmaceuticals that modulate the RAS 

(Figure 1.2). The direct renin inhibitor aliskiren first became available in 2007 and 

inhibits the rate limiting step of the RAS cascade, the conversion of angiotensinogen to 

AngI, thereby reducing the synthesis of all downstream components.21 ACE inhibitors 

(ACEIs), as their name implies, directly inhibit ACE and prevent the conversion of AngI 

into AngII.24 They also prevent ACE-mediated degradation of bradykinin which elicits 

positive cardiovascular effects.24 Unfortunately, chronic administration of ACEIs 

sometimes leads to reactivation of AngII, which is linked to poorer outcomes.35 Finally, 

AngII type 1 receptor blockers (ARBs) inhibit the binding of AngII to the AT1R and thus 

they are able to inhibit the function of AngII regardless its source, which is particularly 

important given the capability of mast cell-derived chymase to produce AngII. 

Furthermore, the affinity of ARBs for the AT1R provide an opportunity for AngII to bind 

the AngII type 2 receptor and elicit positive cardiovascular effects. Finally, ARBs are

3



Figure 1.2: The canonical pathway of the renin-angiotensin system (RAS). 

Angiotensinogen, produced in the liver, is cleaved by renin, an enzyme produced by 

juxtaglomerular cells in the kidney, to form angiotensin I (AngI). Angiotensin converting 

enzyme (ACE), typically found in the endothelium, cleaves AngI to form angiotensin II 

(AngII). AngII acts through the AngII type 1 receptor (AT1R) to elicit vasoconstriction, 

sympathetic activation, salt retention, and water retention. Pharmaceutical inhibitors of 

the RAS (shown in red) include direct renin inhibitors (DRIs), ACE inhibitors (ACEIs), 

and angiotensin receptor blockers (ARBs).
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generally more tolerable than other antihypertensives, with significantly less cough and 

angioedema.18,36,37

1.2 Arterial Calcification

Arterial calcification, also known as medial artery calcification or Mönckeberg sclerosis,
38 involves calcification of the internal elastic lamina and elastic fibers within the medial 

layer of the artery resulting in hardening and increased pulse pressure (Figure 1.1). 

Commonly associated with advanced age, hypertension, CKD, DM, and osteoporosis, 

arterial calcification is closely related to cardiovascular morbidity and mortality.8,39,40

1.2.1 Initiation and Progression of Arterial Calcification

Originally considered a passive, degenerative and, most importantly, irreversible process, 

arterial calcification is now considered to be a highly regulated process resembling 

natural bone formation (Figure 1.3).41,42 The initiating event appears to be the deposition 

of hydroxyapatite-like material on degraded or damaged elastin fibers. Vascular smooth 

muscle cells (VSMCs) cultured in a pre-calcified elastin matrix down-regulated their 

typical biological markers (α-smooth muscle actin and myosin heavy chain) and up-

regulated markers of osteogenic differentiation including core-binding factor alpha1/runt-

related transcription factor 2 (Cbfα1/Runx2), alkaline phosphatase, and osteocalcin 

(OCN).43 When the calcified conditions were removed, VSMCs reverted to their original 

phenotype, which suggests some potential for regression. In response to elevated levels of 

extracellular phosphate, VSMCs release matrix vesicles that contain calcium and 

phosphate ions, especially if local (matrix gla-protein) or circulating (feutin-A) inhibitors 

are lost.44 It is likely, therefore, that VSMCs transdifferentiate to an osteoblast-like 

phenotype after the local microenvironment is altered.

1.2.2 Osteoblast Transdifferentiation of VSMCs

An elegant fate-mapping study by Speer et al.45 has shown VSMCs are capable of 

osteoblast transdifferentiation in calcifying arteries. This transdifferentiation was 

associated with downregulation of smooth muscle cell (SMC) markers and upregulation 

of the osteoblast transcription factor Cbfα1/Runx2.46 Additional osteoblast transcription 

5



Figure 1.3: The cellular interactions underlying cardiovascular calcification. Arterial 

calcification (top right) involves calcification of the internal elastic lamina and tunica 

media, a cellular environment consisting of vascular smooth muscle cells (VSMCs). 

Intimal calcification (top centre) occurs within the cholesterol-rich atherosclerotic plaque, 

and environment rich with VSMCs, macrophages, lymphocytes, and mast cells. Calcific 

aortic valve disease (bottom left) exists primarily in the collagenous fibrosa of the aortic 

valve, involving native valvular interstitial cells (VICs) as well as macrophages, 

lymphocytes, and mast cells. Solid arrows represent known interactions; dashed arrows 

represent unclear or unknown processes.
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factors, including muscle segment homeobox 2 (Msx2) and osterix, have also been 

implicated in VSMC transdifferentiation and in the progression of arterial calcification.
47,48 A number of factors have been shown to induce VSMC differentiation and promote 

an osteoblast-like phenotype including fibroblast growth factor-2,49 tumor necrosis 

factor-alpha,50 oxidized-low density lipoprotein (LDL),47 and bone morphogenetic 

protein (BMP) 2.51 Although tremendous progress has been made in this area, the 

molecular mechanisms underlying this process remain to be fully defined.

1.2.3 RAS and Osteoblast Transdifferentiation

There is growing evidence that vasoactive agents are important modulators of vascular 

calcification. Naturally existing peptides such as endothelin-1 and urotensin II can 

promote arterial calcification, while others – adrenomedullin and C-type natriuretic 

peptide – act to inhibit its progression.52-54 Until recently, the role of the RAS and its 

vasoactive agent, AngII, had not been thoroughly investigated. AngII plays a number of 

roles in vascular pathology, and was thought to exert its effects by inducing nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase and increasing cellular reactive 

oxygen species (ROS).19 In turn, ROS stimulate the expression of BMP2 and the 

osteoblast transcription factor Cbfα1/Runx2, thereby inducing osteoblast 

transdifferentiation.46 The first evidence that AngII affected calcification in VSMCs was 

from Jaffe and Mendelsohn,55 who suggested it (along with aldosterone) acted through 

the mineralocorticoid receptor to promote fibrosis and calcification.56 More recently, an 

in vitro study by Jia et al.57 showed that AngII promoted vascular calcification via Cbfα1/

Runx2 and nuclear factor κB (NF-κB). The receptor activator of NF-κB (RANKL) and 

BMP2 axis has been long implicated in arterial calcification, and a subsequent study 

suggested that AngII induced vascular calcification in vitro and in vivo via RANKL 

activation. In turn, RANKL promoted ACE and AT1R, members of the RAS pathway, 

creating a feedback loop.58

1.2.4 Clinical Implications

There is evidence to suggest that arterial calcification, at least in the peripheral arteries, 

may affect 30–50% of asymptomatic patients in the United States.59 In patients with 
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CKD, arterial calcification tends to be more advanced and is associated with increased 

morbidity and mortality.60-63 Indeed, the leading cause of death in CKD patients is 

cardiovascular disease.64 In patients with non-insulin-dependent DM, arterial calcification 

is a strong independent predictor of total, cardiovascular, and coronary heart disease-

related mortality. It is also associated with increased risk for MI, stroke, and amputation.
7,65 Tibial artery calcium score also predicts the short-term risk of amputation in patients 

with peripheral artery disease.66 There is also some evidence to suggest that calcification 

of small blood vessels can lead to necrosis and ulceration of the skin.67,68 Clearly, arterial 

calcification is prevalent in Western society and in dire need of preventive therapy.

1.2.5 Pharmaceutical Management

Blockade of the RAS has been shown to reduce morbidity and mortality in patients with 

hypertension, atherosclerosis, heart failure, stroke, DM, and CKD,69-73 often independent 

of changes in blood pressure.69,71,73,74 To date, there have been no clinical studies 

examining the role of RAS blockade on arterial calcification. However, pre-clinical 

studies do provide some encouraging evidence. Recent studies have shown that ACEIs – 

specifically, perindopril and captopril – can prevent the progression of arterial 

calcification in rat models of CKD56,75 and hypertension.76 An older study in a 5/6 

nephrectomized rat model found that enalapril could not suppress arterial calcification 

but did decrease mortality.77 The ARB irbesartan has also been shown to prevent arterial 

calcification in a rat model of hypertension as long as therapy is initiated alongside insult, 

which in this case was warfarin and vitamin K1.78 Irbesartan is also capable of blocking 

AngII-induced expression of BMP2 in human endothelial cells.79

The effects of other pharmaceuticals have also been examined in relation to arterial 

calcification, with some success. The calcium channel blocker amlodipine, another 

antihypertensive, was able to induce regression of arterial calcification in a pre-clinical 

model.80 The endothelin receptor antagonist darusentan may also be able to induce 

regression.78,81 Interestingly, there is some evidence to suggest that osteoporosis 

therapies, including bisphosphonates, may provide benefit to patients with arterial 

8



calcification.82 Ultimately, however, no pharmaceuticals are clinically indicated for the 

specific prevention of arterial calcification.

1.3 Intimal Calcification

Intimal calcification occurs within the cholesterol-rich lesions characteristic of 

atherosclerosis which can result in MI, stroke, or limb ischemia (Figure 1.1). Commonly 

associated with old age, male sex, hypertension, smoking, and hypercholesterolemia,83 

intimal calcification is a reliable marker of plaque burden84,85 and may contribute to 

plaque instability.86

1.3.1 Initiation and Progression of Atherosclerosis

Atherosclerosis is a chronic, progressive disease of the vascular system. In areas 

predisposed to atherosclerosis, variations in hemodynamic forces can result in adaptive 

intimal thickening defined as an increase in SMCs and extracellular matrix lacking any 

inflammatory infiltrate.87 The initial atherosclerotic plaque (Type I or II), appearing in 

those as young as age 2,88 is described as a fatty streak or a visible accumulation of lipid-

laden macrophages (foam cells) and is capable of regressing naturally.89 The advanced 

atherosclerotic plaque (Type IV, V, or VI), or fibroatheroma, is characterized by a lipid-

rich necrotic core covered by a SMC-rich fibrous cap.90 The rupture of these advanced 

plaques can lead to either downstream arterial occlusion or localized thrombus formation 

and subsequent ischemic death of the tissue supplied.

1.3.2 The Vulnerable Plaque

The difference between a stable and a vulnerable plaque is primarily related to the 

thickness and composition of the fibrous cap. The concept of a vulnerable plaque, or a 

plaque that is prone to rupture, was first introduced by Muller and Tofler.91 The 

vulnerable plaque was described as having a lipid-rich necrotic core and a generally thin 

fibrous cap,92 until Burke et al.93 refined the classification to those plaques with a fibrous 

cap less than 65 µm thick. They also noted that the fibrous cap of vulnerable plaques 

often had macrophage infiltration and a loss of SMCs, characteristics which would 

certainly promote fibrous cap degradation and plaque rupture.94

9



1.3.3 Initiation and Progression of Calcification in Atherosclerosis

Calcification of the atherosclerotic plaque begins as micro-calcifications, typically less 

than 15 µm in diameter.95,96 Micro-calcifications are present in all types of lesions, 

including fatty streaks, and their abundance increases as atherosclerosis advances.97,98 

They also precede the appearance of the bone-promoting proteins BMP2 and OCN which 

suggests that, at least initially, the calcification process in atherosclerotic plaques is 

distinct from typical bone formation.98 Micro-calcifications may be initiated by matrix 

vesicles of apoptotic SMCs99-101 or macrophages (Figure 1.3).95,102 Once initiated, there is 

evidence to suggest a highly regulated process which involves several bone-related 

proteins that promote (BMP2, BMP4, osteopontin, and osteonectin) and inhibit (matrix 

gla-protein and bone sialoprotein) atherosclerotic calcification.103-106 Furthermore, the 

mineral composition of calcific atherosclerotic plaques is chemically similar to that 

observed in bone.107-111

1.3.4 Calcification and Vulnerability

There is controversy as to whether plaque calcification stabilizes advanced lesions or 

promotes rupture. Generally, the presence of calcification is correlated with the incidence 

of cardiovascular disease,112 and is associated with increased atherosclerosis progression.
85,113 While some have reported an association between calcification and stability,114,115 

others suggest calcification is a marker of vulnerability86,116 and may even promote 

rupture.94 These disparate reports suggest that the localization of calcification, rather than 

the volume, may be an important indicator of plaque vulnerability. Indeed, an 

intravascular ultrasound study suggested that calcification near the base of the lesion 

increased stability,117 and a mathematical modeling study suggested that calcification in 

the fibrous cap may as well.118 However, several studies have suggested that micro-

calcifications within the fibrous cap directly promote plaque rupture.95,96,119 Taken 

together, these reports suggest that the relationship between calcification and plaque 

rupture is biphasic. Abedin et al.120 argue that the principal site of stress is the interface 

between hard, calcified areas and soft, cellular areas within the plaque; therefore, stress 

would initially increase as calcification increases until such time that individual calcified 
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areas enlarge and coalesce, thereby reducing interface area and overall stress. This 

argument was validated by Motoyama et al.,121 who observed spotty calcification more 

frequently in ruptured plaques from acute coronary syndrome patients than stable ones 

from angina pectoris patients. Conversely, they observed large calcification more 

frequently in stable plaques.122 Clearly, a deeper understanding of the processes 

underlying atherosclerotic calcification and its relationship to vulnerability is required.

1.3.5 Clinical Implications

For almost a century, cardiovascular disease has accounted for more deaths than any 

other major cause in the United States, and a majority of these deaths are a result of 

atherosclerosis.83 Coronary arterial calcification is present in 52.9% of men and 32.0% of 

women over the age of 45, and its severity is predictive of overall cardiovascular risk.123 

Obviously, the acute clinical implications of atherosclerosis depend on the location of 

individual vulnerable plaques. Rupture of a plaque in the coronary arteries or the carotid 

can lead to MI or stroke, respectively. Furthermore, the implications of intimal 

calcification rely on its relationship to plaque vulnerability. This is an area that requires 

considerably more study, including a reliable mechanism for blockade of calcification.

1.3.6 Pharmaceutical Management

Current clinical guidelines recommend an LDL-cholesterol goal of less than 100 mg/dL 

in patients at risk for cardiovascular disease,124,125 and statins play a role in achieving that 

goal. Statins, or 3-hydroxy-3-methylglutaryl Co-enzyme A (HMG-CoA) reductase 

inhibitors, inhibit the rate limiting enzyme in endogenous cholesterol production and thus 

are frontline drugs for the management of hypercholesterolemia. It is well known that 

statins reduce the incidence of cardiovascular events,126 including MI and stroke,127 and 

studies have shown that statins alter the progression of subclinical atherosclerosis. Statins 

are effective at reducing atherosclerotic lesion volume,128-132 reducing the size of the lipid 

core,133 and reducing progression of carotid intima-media thickness.134,135 Pre-clinical 

models have provided more information about the specific effects of statins, including 

pleiotropic effects (those not related to cholesterol-lowering). Statins have been shown to 

reduce expression of monocyte chemotactic protein-1, intercellular adhesion molecule-1, 
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and vascular cell adhesion molecule-1,136,137 down-regulate cyclooxygenase 2,138 improve 

nitric oxide bioavailability,139 suppress oxidation of LDL140, and reduce the overall 

inflammatory burden within atherosclerotic plaques.141 The effects of statins on intimal 

calcification have not been thoroughly examined, although Kizu et al.142 showed that 

cerivastatin could inhibit calcification of VSMCs in vitro. In contrast, a recent clinical 

study found progression of coronary calcium was significantly higher in frequent statin 

users versus those who used statins infrequently.143

Inhibition of the RAS may also have benefits in atherosclerosis. Three of the four 

prospective clinical trials examining the effect of ARBs on cardiovascular outcomes 

showed little144 or no145,146 benefit; however, the OLIVUS (Impact of OLmesartan on 

progression of coronary atherosclerosis: evaluation by IntraVascular UltraSound) trial 

found a lower rate of coronary atherosclerosis progression and decreased incidence of 

major adverse cardio- and cerebrovascular events in patients treated with olmesartan.
147,148 More recently, Zhao et al.149 showed that telmisartan reduced plaque size, 

macrophage infiltration, lipid deposition, and apoptosis in atherosclerotic plaques in a 

pre-clinical model. Three clinical trials examining ACEIs showed improved 

cardiovascular outcomes;70,150,151 however, two more recent trials showed no benefit.
152,153 Recently, meta-analysis suggested that ARBs and ACEIs reduce the incidence of 

cardiovascular death, non-fatal MI, and non-fatal stroke, even in normotensive 

atherosclerosis patients.154 Other clinical studies have shown that ARBs reduce plaque 

volume155 and decrease inflammation.156 A pre-clinical study in monkeys also observed a 

regressive effect of ARBs, albeit on fatty streaks.157 Interestingly, aliskiren, a renin 

inhibitor, was associated with increased progression of atherosclerosis.158

There have also been a number of studies examining various combinations of statin 

therapy and RAS blockade. Several pre-clinical studies examining statins in combination 

with ARBs have found an additive reduction of atherosclerosis burden in mice159-161 and 

rabbits.162,163 Another pre-clinical study examined the effects of simvastatin and a 

peroxisomal proliferator-activated receptor-gamma (PPARɣ) agonist and showed that the 

addition of PPARɣ agonist provided an additive benefit to atherosclerotic plaque 

12



regression;164 which is of particular interest since some ARBs have been shown to have 

PPARɣ agonist activity.165-167 

It remains unclear whether aggressive medical management of intimal calcification will 

provide a reduction in cardiovascular events. However, improving our understanding of 

the mechanisms underlying calcification could provide an opportunity to prevent it 

which, in turn, could help reveal its relationship to plaque vulnerability.

1.4 Calcific Aortic Valve Disease

Calcific aortic valve disease, encompassing early aortic valve sclerosis (AVS) and clinical 

aortic stenosis, results in calcification of the aortic valve cusps and hardened, non-pliable 

valve tissue, decreased orifice area, and increased aortic jet velocity (Figure 1.1).168 

Commonly associated with old age, male sex, hypertension, smoking, increased plasma 

LDL, increased plasma lipoprotein (a), and DM,13,20,169-178 calcific aortic valve disease is 

associated with an increased risk of MI and cardiovascular death.13-16

1.4.1 The Aortic Valve

The normal human aortic valve has a three-layered structure measuring 1 mm in 

thickness169,179 with the fibrosal layer on the aortic side, the ventricularis on the 

ventricular side, and the spongiosa centrally (Figure 1.1). The fibrosa primarily contains 

highly organized collagen bundles between which lie valvular interstitial cells (VICs). 

The ventricularis is less organized and generally less cellular; it contains elastin sheets 

and some collagen. In contrast, the spongiosa is rich in cells and proteoglycans, but 

contains little collagen.

1.4.2 Calcific Aortic Valve Disease

A chronic progressive disease, AVS is characterized by five factors: endothelial 

dysfunction, lipid deposition, chronic inflammation, activation of a local RAS and 

eventually, tissue calcification. The development of AVS results in distinctive anatomical 

changes first described by Otto et al.169 as sub-endothelial thickening and fibrosis, 

disruption of the basement membrane, and accumulation of both intra- and extra-cellular 
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lipids. In the same year, Olsson et al.171 independently reported large numbers of 

activated T-lymphocytes located in subendothelial areas in close proximity to calcium 

deposits.

The initiating event in AVS appears to be endothelial cell activation in areas of 

mechanical stress, thereby predisposing the tissue to infiltration by plasma lipoproteins,
180,181 a course similar to the development of atherosclerosis (Figure 1.3). In the aortic 

valve, lipid deposition tends to be localized to the fibrosa where it co-localizes with 

components of atherogenic apolipoproteins.170,182 Over time, lipid particles become 

oxidized and are taken up by infiltrating macrophages to form foam cells.169,171 Oxidized 

LDL is highly cytotoxic for many cells including endothelial cells and VICs; in addition, 

native LDL has been shown to co-localize with ACE both in human plasma and aortic 

valve lesions,20 creating an environment for the local production of AngII. More recently, 

Helske et al.29,30 described the participation of two additional AngII-forming enzymes: 

mast cell-derived chymase and cathepsin G.

1.4.3 Angiotensin II in Aortic Valve Disease

The pro-inflammatory and pro-fibrotic effects of AngII are well understood183 and are 

often cited as its main contribution to AVS.184-186 It is likely, however, that AngII is 

affecting all aspects of aortic valve disease, including lipid retention, inflammation, 

endothelial integrity, and calcification. In cardiac fibroblasts and VSMCs, AngII has been 

shown to induce the production of biglycan, a proteoglycan with enhanced LDL binding 

properties.187,188 Production of biglycan in aortic valves would promote retention of LDL 

and associated ACE, creating a positive feedback loop for AngII production. Blockade of 

AngII improves endothelial integrity in a rabbit model of AVS, and also up-regulated 

endothelial nitric oxide synthase, an enzyme that is generally considered to be 

cardioprotective.189 Most importantly, AngII has been shown to transactivate NADPH 

oxidase in VSMCs, leading to production of ROS. In turn, ROS have been shown to 

promote vascular calcification,190 and specifically localize around calcifying foci in 

human aortic valves.191
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1.4.4 Clinical Implications

The prevalence of AVS is estimated to be 25–30% in those over age 65 and up to 40% in 

those over age 75,4,192 typically progressing to severe aortic stenosis in 6% of patients 

over a period of 7 years.193 Even early AVS without concomitant coronary artery disease 

is predictive of a 50% increase in cardiovascular death.13 Considering that the primary 

cause of valve failure is extensive calcium deposits, it is no surprise that calcified volume 

correlates with the severity of AVS194 and is associated with the incidence of coronary 

events and all-cause mortality.195-197

1.4.5 Pharmaceutical Management

Once AVS is initiated, increased physical activity or a change in diet is not sufficient to 

alter the disease process.198 However, an excellent environment exists for preventive, 

pharmaceutical management. The average time interval from subjective diagnosis of AVS 

to the development of severe stenosis is eight years,193,199 and it is increasingly clear that 

intervention should start as early as possible.200

The overlap in clinical factors associated with AVS and atherosclerosis had suggested a 

shared disease process,201 thus the demonstrable benefits of statins on atherosclerosis 

provided support for their use in AVS. Several pre-clinical studies also promoted the 

effectiveness of statins for inhibiting hypercholesterolemia-induced cellular 

proliferation202 and calcification.203,204 In all, twelve clinical studies have evaluated the 

role of statins on AVS progression but the results have been conflicting.205-216 Six small 

retrospective studies, with a mean follow up of 6–44 months, showed a lower rate of AVS 

progression in patients treated with statins.205-209,211 Conversely, a larger retrospective 

study with a mean follow up of 66 months did not observe slower progression.210 Five 

prospective trials observed little213 or no212,214-216 effect of statins on the progression of 

AVS. The SEAS (intensive lipid lowering with Simvastatin and Ezetimibe in Aortic 

Stenosis) trial was the largest to date and the only one to measure clinical outcomes. 

Patients treated with simvastatin and ezetimibe showed a decrease in ischemic cardiac 

events but there was no effect on outcomes related to the aortic valve.215 Hamilton et al.
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217 confirmed the ineffectiveness of statins in a pre-clinical model, observing a reduction 

of inflammation but retention of lipids and the continuation of calcium deposition.

Compared to statins, blockade of the RAS has received relatively little clinical 

examination as a preventive therapy for AVS. A retrospective study found that ACEIs 

could not slow the increase in aortic jet velocity associated with AVS;209 however, a 

separate retrospective study, specifically examining aortic valve calcium, showed a 

significant reduction in progression.218 The ACEI ramipril was effective in reducing 

progression of AVS,219 and the ARB olmesartan has been shown to reduce atherosclerotic 

changes and endothelial disruption in short-term animal models;189 however, neither 

study examined effects on calcification. More recently, a clinical study of excised aortic 

valves observed lower remodeling scores and decreased weight in those valves from 

patients who had been treated with ARBs.220,221 A retrospective study compared the 

effects of ARBs and ACEIs on AVS and found that only ARBs were effective at reducing 

progression.222 A small clinical study of the aldosterone receptor blocker epleronone 

showed no effect on AVS,223 but a pre-clinical study examining the early stages of the 

disease suggested some effects, including a small, qualitative reduction in micro-

calcification.224

There has been limited examination of other potential therapies for AVS. In an 

observational clinical trial, a cohort of patients receiving osteoporosis therapy – 

bisphosphonates, calcitonin, or estrogen receptor modulators – had a lower rate of AVS 

progression.225 A pre-clinical trial also had success with bisphosphonates, suggesting they  

are able to robustly inhibit valve calcification.82 An experimental recombinant 

apolipoprotein, Apo-A1Milano, was successful in reversing AVS in a pre-clinical model, 

including a qualitative reduction of micro-calcification.226

To date, clinical guidelines provide no recommendation for the managements of AVS, 

suggesting additional trials with patients earlier in the disease continuum and with longer 

follow-up periods are required.168 In addition, the multitude of mechanisms involved in 

the progression of AVS suggests that drug therapy may have to be multifactorial.227
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1.5 Study Rationale and Hypothesis

In summary, little is known about the mechanisms driving cardiovascular calcification 

despite serious clinical implications and a clear association with morbidity and mortality. 

Indeed, it is even unclear whether the same mechanisms are at play in arterial, intimal, 

and valvular calcification. There is some evidence to suggest that the RAS and its 

vasoactive agent, AngII, are involved in promoting cardiovascular calcification; however, 

ARBs have not been robustly examined as potential therapies. As such, we set out to test 

the hypothesis that the ARB olmesartan medoxomil inhibits progression of established 

cardiovascular calcification in vivo.

1.6 Objectives and Future Directions

1.6.1 Investigate Effects of an ARB on Arterial Calcification in a Pre-
Clinical Model

In Chapter 2, a version of which has been published in Cardiovascular Research,228 we 

use New Zealand White rabbits to investigate the effects of the ARB olmesartan 

medoxomil on established arterial calcification. This pre-clinical model has been used 

successfully by others to investigate potential pharmaceutical therapies.229 Using micro-

computed tomography (micro-CT), histology, and immunohistochemistry, we are the first 

to show robust inhibition of arterial calcification by an ARB. Calcified areas in our 

animals displayed a down-regulation of α-smooth muscle actin, a smooth muscle cell 

marker; up-regulation of BMP2 and the ATIR; and expression of the osteoblast-specific 

protein OCN.

1.6.2 Investigate Effects of an ARB on Intimal Calcification in a Pre-
Clinical Model

In Chapter 3, a version of which has been submitted for publication in the Canadian 

Journal of Cardiology, we use New Zealand White rabbits to investigate the effects of the 

ARB olmesartan medoxomil, alone or in combination with atorvastatin, on established 

atherosclerosis and intimal calcification. The long-term, low-level cholesterol rabbit 

model we employed for this study was developed previously by our lab and has been 
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shown to produce significant atherosclerosis over a period of six months with 58% of the 

aortic surface covered by atheroma and up to 75% of those lesions considered to be 

advanced.230,231 Previous examination of these lesions revealed their similarity to human 

atherosclerosis; VSMCs and collagen extracellular matrix formed a fibrous cap over a 

core of lipids, cholesterol crystals, and necrotic debris.231 Using classical lesion area 

analysis, micro-CT, histology, and immunohistochemistry, we show a significant 

reduction of atherosclerotic burden in animals treated with ARB monotherapy, but not in 

combination therapy (ARB+Statin). In addition, both ARBs and statins may have slowed 

progression of intimal calcification.

1.6.3 Investigate Effects of an ARB on Calcific Aortic Valve Disease in 
a Pre-Clinical Model

In Chapter 4, a version of which has been accepted for publication in the Canadian 

Journal of Cardiology,232 we use the same animals as in Chapter 3 but examine the 

effects of the ARB olmesartan medoxomil, alone or in combination with atorvastatin, on 

established calcific aortic valve disease. Previously, Cimini et al.233 examined the 

development of calcific aortic valve disease in our long-term, low-level cholesterol rabbit  

model.230,231 Rabbits have been shown to develop aortic valve thickening, inflammation, 

and lipid deposition over a period of ten months. While calcification was not observed in 

the initial report, it was present in aortic valves after 30 months of cholesterol feeding.217 

We did not observe any demonstrable treatment effects using in vivo magnetic resonance 

imaging. However, ex vivo histological and immunohisochemical analyses revealed 

structural changes to the aortic valve. In particular, ARB-treated animals had significantly 

increased levels of valvular calcification.

1.6.4 Conclusions and Future Directions

Finally, in Chapter 5, I summarize the results and conclusions of my work. Namely, the 

disparate effects of the ARB in treating arterial, intimal, and valvular calcification suggest 

distinct cellular and molecular mechanisms are at play in each disease process. More 

work needs to be done to fully understand these differences but the robust inhibitory 

effect of the ARB on arterial calcification cannot be ignored. Therefore, I suggest a 
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prospective, randomized trial in patients with chronic kidney disease, a group prone to 

rapid development of arterial calcification. Such a trial would be valuable, given there is 

currently no preventive therapy for arterial calcification. In all, the studies herein have 

advanced our understanding of cardiovascular calcification and, together with future 

work, may lead to novel therapies.
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Chapter 2

2 Angiotensin II Type 1 Receptor Blocker Inhibits Arterial 
Calcification in a Pre-Clinical Model*

Arterial calcification, also known as Mönckeberg sclerosis, involves mineralization of the 

internal elastic lamina (IEL) and elastic fibers within the medial layer resulting in 

hardened arteries and increased pulse pressure. Commonly associated with advanced age, 

chronic kidney disease, diabetes mellitus, and atherosclerosis, arterial calcification is 

closely related to cardiovascular morbidity and mortality.1-3 In the past, it was considered 

a passive, degenerative and, most importantly, irreversible process.4 More recently, it has 

become clear that this process is highly regulated, involving a number of pro- and anti-

calcification mediators, and resembles natural bone formation.5 Indeed, a recent study by 

Speer et al.6 has shown that vascular smooth muscle cells (SMCs) are capable of 

osteoblast transdifferentiation in calcifying arteries. This transdifferentiation was 

associated with downregulation of SMC markers and concomitant upregulation of the 

osteoblast transcription factor Runx2/Cbfα1. Although tremendous progress has been 

made in this area, the molecular mechanisms underlying this process remain to be fully 

defined.

There is growing evidence that vasoactive agents are important modulators of vascular 

calcification. Naturally existing peptides such as endothelin-1 and urotensin II can 

promote arterial calcification, while others – adrenomedullin and C-type natriuretic 

peptide – act to inhibit its progression.7-9 However, the role of the renin-angiotensin 

system (RAS) and its vasoactive agent, angiotensin II (AngII), has not been investigated. 

AngII plays a number of roles in vascular pathology, and is thought to exert its effects by 

inducing NADPH oxidase and increasing cellular reactive oxygen species (ROS).10 In 

turn, ROS stimulate the expression of bone morphogenetic protein (BMP) 2 and the 

osteoblast transcription factor Runx2/Cbfα1, thereby inducing osteoblast 

transdifferentiation.11 Blockade of RAS has been shown to reduce morbidity and 
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mortality in hypertension, atherosclerosis, heart failure, stroke, diabetes, and chronic 

kidney disease,12-17 often independent of changes in blood pressure.12,14-15,17

Here, we test the hypothesis that an angiotensin II type 1 receptor blocker (ARB) can 

inhibit arterial calcification in vivo. We also further characterize the mechanism by which 

vascular calcification occurs using immunohistochemical methods.

2.1 Methods

2.1.1 Pre-Clinical Model

Male New Zealand White rabbits (1.6 to 2.0 kg, Charles River Laboratories, St-Constant, 

QC) were fed either regular chow (Control; n = 9) or an atherogenic diet (Cholesterol; n 

= 9) consisting of 0.5% cholesterol and 10,000 IU/day Vitamin D2 for 12 weeks to 

rapidly induce atherosclerosis and arterial calcification. The treatment group (ARB; n = 

6) received the atherogenic diet for 12 weeks with the ARB olmesartan medoxomil (1 

mg/kg/day) in the final 4 weeks. Olmesartan medoxomil, suspended in 60% molasses, 

was administered daily via oral gavage. Vitamin D2 and its analogs have been used 

extensively to induce vascular calcification in animal models,18 and there is controversy 

as to whether or not it contributes to vascular calcification in humans.19 After 8 weeks, a 

subset of the Control (n = 3) and Cholesterol fed (n = 3) groups were euthanized to assess 

lesion progression at the time of pharmacological intervention. At twelve weeks, animals 

were euthanized via intravenous ketamine injection and perfused with Hank’s balanced 

salt solution and heparin (1 U/mL). Immediately upon dissection the thoracic aorta was 

fixed in 10% neutral buffered formalin. The investigation conforms with the Guide for 

the Care and Use of Laboratory Animals published by the US National Institutes of 

Health (NIH Publication No. 85-23, revised 1996). All animal protocols were approved 

by the University of Western Ontario Animal Use Subcommittee (reference number 

2007-023).

2.1.2 Plasma Chemistry

Blood samples were obtained for the measurement of total cholesterol and inorganic 

phosphate. EDTA was used in the isolation of plasma, preventing analysis of calcium. 
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Total cholesterol was measured at weeks 0, 4, 8, 10, and 12 (endpoint) using a WAKO 

Cholesterol E Kit, according to the manufacturer’s instructions. Inorganic phosphate was 

examined at endpoint using standard autoanalyzer methods at the London Health 

Sciences Centre Core Laboratory (London, ON, Canada).

2.1.3 Micro-Computed Tomography

Thoracic aortae were placed in a humidified chamber to prevent dehydration and scanned 

with an eXplore Locus micro-computed tomography (micro-CT) scanner (General 

Electric Medical Systems, London, Ontario). Scans were acquired at 80 kVp, 130 mAs 

and reconstructed with isotropic voxel spacing of 90 µm. Images were analyzed for the 

presence of calcium using MicroView analysis software (V2.2, GE Medical Systems, 

London, Ontario). Specifically, the total volume of all voxels containing calcified tissue 

(identified by setting a threshold level) was calculated and expressed as percent of total 

vessel volume.

2.1.4 Histological and Immunohistochemical Analysis

Thoracic aortae were embedded in Tissue-Tek OCT compound and frozen in liquid 

nitrogen-cooled isopentane. Frozen sections (10 µm) were taken as cross-sections through 

the aorta distal to the first intercostal ostia. Serial sections were stained with Alizarin Red 

S and von Kossa for calcium deposition. Immunohistochemical studies were performed 

using the following primary antibodies: mouse anti-α-smooth muscle actin (clone 1A4), 

mouse anti-angiotensin II type 1 receptor (clone 1E10-1A9), mouse anti-BMP2 (clone 

1A11), mouse anti-osteocalcin (clone OC4-30), mouse anti-osteopontin (clone 

MPIIIB10), and mouse anti-rabbit activated macrophage (clone RAM11). Sections were 

subjected to single label immunohistochemistry using an Alkaline Phosphatase Substrate 

Kit (Vector Laboratories) and secondary antibody horse anti-mouse IgG (H + L) Alkaline 

Phosphatase-conjugate according to the manufacturer’s instructions. Negative controls 

which omitted the primary antibody were routinely employed.
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2.1.5 Statistical Analysis

Data are expressed as mean ± SEM. All analyses were performed using GraphPad Prism 

(V4.0, GraphPad Software, La Jolla, CA, USA). Statistical analyses were performed 

using a Kruskal-Wallis test with Dunns post-hoc test, or one-way repeated measures 

ANOVA with Tukey’s post-hoc test, as appropriate. P < 0.05 was considered statistically 

significant.

2.2 Results

2.2.1 Animals and Plasma Chemistry

A subset of Control (n = 3) and Cholesterol (n = 3) animals were euthanized after 8 

weeks to assess the extent of disease before administration of the ARB (Supplementary 

Figure 2.1). A single ARB-treated rabbit died due to unknown causes after a week of 

treatment (9 weeks total) and was not included in the analysis. To assess systemic effects 

of ARB treatment we examined plasma levels of total cholesterol and inorganic 

phosphate. While total cholesterol levels were significantly increased in Cholesterol 

animals as compared to Control (1394.00 ± 352.16 versus 15.49 ± 6.31 mg/dL in 

Cholesterol and Control, respectively; n = 6/group; P < 0.001) there was no significant 

effect of ARB treatment (1531.18 ± 334.51 mg/dL; n = 5; P < 0.001 versus Control; P = 

ns versus Cholesterol; Supplementary Figure 2.2A). Levels of inorganic phosphate were 

the same in all groups (3.43 ± 0.17, 4.38 ± 0.40, and 3.83 ±  0.87 mg/dL in Control, 

Cholesterol, and ARB, respectively; n = 5, 6, and 4; P = ns; Supplementary Figure 2.2B), 

and within the normal physiological range for New Zealand White rabbits.

2.2.2 Arterial Calcification is Abolished After Treatment with the ARB

To evaluate the effects of ARB treatment on arterial calcification we administered 

olmesartan medoxomil for the final four weeks of the twelve-week protocol. Calcification 

was significantly increased in Cholesterol animals (non-detectable versus 2.80 ± 1.17 % 

calcified tissue in Control and Cholesterol, respectively; n = 6/group; P < 0.01) and, in 

contrast, was completely inhibited in all but one ARB-treated animal (0.01 ± 0.01 % 

calcified tissue in ARB; n = 5; P < 0.05 versus Cholesterol; Figure 2.1A). Calcification, 
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Figure 2.1: Treatment with the angiotensin II type 1 receptor blocker (ARB) 

inhibited arterial calcification. (A) Representative maximum intensity projections, 

derived from micro-computed tomography (CT) scans, and corresponding quantitation of 

Control (n = 6), Cholesterol (n = 6) and ARB (n = 5) animals reveals a significant 

increase in arterial calcification after 12 weeks on the atherogenic diet, except in ARB-

treated animals where no significant calcification was detected. Scale bar = 4 mm. 

Kruskal-Wallis test with Dunns post-hoc test: *p < 0.01 versus Control. †p < 0.05 versus 

Cholesterol. (B) Histological examination of calcium (Alizarin Red S, top) and calcium 

salts (Von Kossa, bottom) reveals that they are localized primarily to the internal elastic 

lamina (IEL) and medial layer, typical of arterial calcification.  Scale bar = 500 µm. ND = 

none detected. Arrows indicate calcification.
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when present, was primarily localized to the IEL and media (Figure 2.1B). Some animals 

(3 of 6 Cholesterol, 2 of 5 ARB) exhibited micro-calcifications within atherosclerotic 

plaques (Figure 2.2) either in addition to, or independent of, IEL/media calcification. It 

should be noted that the calcification found in the ARB-treated animals was minor (< 10 

µm in size) and was localized to the plaque. These calcifications were too small to be 

detected by micro-CT because their signal was masked by the surrounding tissue, which 

occupied the majority of the 90 µm3 voxel.

2.2.3 Calcified Regions Express the Bone-Related Proteins BMP2 
and Osteocalcin and Dramatically Increase Expression of 
the AT1R

To gain insight into the mechanisms underlying this calcification process, we 

characterized the calcified regions using immunohistochemical methods. Adjacent 

sections acted as negative controls (omission of primary antibody) and showed no 

positive staining (data not shown). Calcified areas, and the tissue immediately 

surrounding them, showed expression of the osteogenic growth factor BMP2 (Figure 

2.3). Calcified areas also exhibited increased expression of the bone protein and 

osteoblast-specific marker osteocalcin (Figure 2.3).22 In addition, calcified areas display 

dramatic upregulation of the angiotensin II type 1 receptor (AT1R; Figure 2.3), which has 

been shown to increase in expression as osteoblasts mature. Calcified areas also showed 

limited expression of the calcium binding protein osteopontin (data not shown). 

Corresponding low power images can be found in Supplementary Figure 2.3. Taken 

together, this strongly suggests the presence of osteoblasts within areas of calcification.

2.2.4 Calcified Areas of the Media are not Associated with SMCs or 
Macrophages

To eliminate other possible cell types within calcified areas, we examined the expression 

of α-smooth muscle actin, a marker of smooth muscle cells, and RAM11 as a marker of 

macrophages. Calcified areas were associated with a downregulation of α-SMA (Figure 

2.4). In addition, some areas not associated with calcification also displayed 

downregulation of α-SMA (Supplementary Figure 2.4), possibly indicating initial 
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Figure 2.2: Arterial calcification versus micro-calcification of atherosclerotic 

plaques. Animals fed the atherogenic diet primarily displayed calcification of the IEL 

and medial layer (arrows). However, histological examination revealed that a number of 

animals (3/6 Cholesterol, 2/5 ARB) exhibited micro-calcifications within atherosclerotic 

plaques (arrowheads). It is important to note that these are generally considered distinct 

processes, and that the minor calcification displayed in the ARB animals was localized to 

the plaque. Scale bar = 500 µm and 100 µm (inset). Abbreviations as in Figure 2.1.
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Figure 2.3: Characterization of calcified regions indicates an osteoblast-like 

phenotype. Immunohistochemical characterization of calcified regions (arrows) and 

adjacent sections reveals colocalized expression of the osteogenic growth factor bone 

morphogenetic protein 2 (BMP2), the bone protein and osteoblast-specific marker 

osteocalcin (OCN), and dramatic upregulation of the angiotensin II type 1 receptor 

(AT1R). This data suggests an osteoblast-like phenotype within calcified areas. Scale bar 

= 500 µm.
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Figure 2.4: Calcified regions of the media are not associated with smooth muscle 

cells or macrophages. Examination of α-smooth muscle actin (α-SMA), a marker of 

smooth muscle cells, reveals dramatic downregulation in calcified regions (arrows). 

Furthermore, macrophages are localized specifically to atherosclerotic plaques, and are 

not associated with areas of calcification. Scale bar = 500 µm.
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progression toward an osteogenic phenotype. Interestingly, some of these areas also 

showed upregulation of BMP2 (data not shown). Macrophages were localized 

specifically to atherosclerotic lesions and were not observed within the medial layer 

(Figure 2.4). Corresponding low power images can be found in Supplementary Figure 

2.4. Taken together, this suggests a phenotypic switch from vascular to osteoblast-like 

cells.

2.3 Discussion

The present study is the first to show the dramatic inhibition of arterial calcification by an 

ARB. Using micro-CT and histology, we have shown that ARB administration, given 

after induction of disease, can robustly inhibit the calcification observed in animals not so 

treated. While others have used doses of 25,000-50,000 IU/day Vitamin D2,23-24 we 

achieved significant levels of vascular calcification in the same time period using 10,000 

IU/day. The calcification we observed was localized to the IEL and medial layer, typical 

of Mönckeberg sclerosis as well as vascular calcification associated with chronic kidney 

disease and diabetes mellitus.20-21 In chronic kidney disease, up to 55% of deaths are 

cardiovascular related, and cardiovascular mortality is 10-100 times greater than that for 

age-matched populations.25 In type 2 diabetes, arterial calcification is a strong predictor 

of mortality and lower extremity amputation.26-27 Inhibiting progression of arterial 

calcification remains the goal of several groups,6,28-32 but it is generally thought to be 

irreversible. In contrast, at least one group has shown reversibility of vascular 

calcification in rats with normal renal function.33 Here, we provide the first evidence that 

an ARB is capable of halting progression of arterial calcification.

While the underlying pathologies (diabetes, chronic kidney disease, advanced age) are 

distinct, the process ultimately leading to vascular calcification is related. Although 

vascular SMC transdifferentiation to osteoblasts is under intense investigation,33-37 the 

molecular mechanisms are not fully understood. Characterization of the calcific lesions 

we observed suggests that they result from such a transition. Expression of BMP2, an 

osteogenic growth factor, in the areas in and around calcification suggests that it is 

involved in directing this transition, as others have suggested.38 Calcified areas display 
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expression of the bone-associated proteins osteopontin and OCN. Osteopontin can be 

expressed by a range of cell types, including bone cells and macrophages, and has been 

shown to contribute to arterial calcification.39 Osteocalcin, an osteoblast-specific marker, 

is often used as a biomarker for bone formation, and is also implicated in calcium ion 

homeostasis.22 Calcified regions also displayed marked upregulation of the AT1R. The 

AT1R is commonly expressed in the vasculature, and is responsible for mediating 

signaling of the RAS. Indeed, we observed diffuse staining for AT1R in aortas from all of 

our animals. However, recent work by Bandow et al.40 has shown that osteoblasts, as they 

mature, greatly increase expression of the AT1R. We observed regional upregulation of 

the AT1R in areas associated with calcification, again suggesting an osteoblast-like 

phenotype. Furthermore, calcified areas showed dramatic downregulation of α-SMA, a 

smooth muscle marker, providing evidence for a phenotypic switch from vascular to 

osteoblast-like cell. Here, we provide the first evidence that the RAS is involved in 

vascular osteogenesis, and that an ARB is capable of modulating the process.

Despite the dramatic effect on calcification, ARB therapy had no effect on systemic 

disease indicators (hypercholesterolemia and hyperphosphatemia), suggesting its effects 

are specific to the vascular system, rather than a result of secondary phenomena. As 

expected, ARB therapy did not normalize total cholesterol.41-42 There was also no effect 

on plasma levels of inorganic phosphate, either by the atherogenic diet or by ARB 

therapy. It is important to note that we were unable to reliably quantify changes in the 

extent of atherosclerosis, as extensive calcium deposition in Cholesterol animals 

prevented both ultrasound examination and en face lipid staining.

Here, we show that angiotensin receptor blockade robustly inhibits the progression of 

arterial calcification. This form of calcification, commonly associated with advanced age, 

chronic kidney disease, and diabetes mellitus, is a result of osteoblast transdifferentiation 

of vascular cells,6 a process replicated here in a pre-clinical model. This study is the first 

to suggest ARB therapy as a novel treatment option for patients at risk for cardiovascular 

calcification.
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Chapter 3

3 Potential Negative Interaction between Statin Therapy 
and Angiotensin Receptor Blockade in Atherosclerotic 
Lesion Regression*

While the mortality rate associated with cardiovascular disease is in decline, it remains 

the most prevalent cause of death in the United States.1 Atherosclerosis, the underlying 

cause of most clinical cardiovascular events, is a chronic disease process involving the 

formation of atherosclerotic plaques within the arterial intima. These plaques, which 

contain lipid deposits, inflammatory cells, as well as areas of fibrosis and calcification, 

are often clinically silent.2 Vulnerable plaques are those that are considered high-risk for 

disruption or thrombosis leading to an acute coronary event.3 Pathologically, they are 

described as having a large necrotic core, a thin fibrous cap, and inflammatory activity.4,5

While calcification correlates with increased atherosclerotic plaque burden,6,7 the 

relationship between calcification and plaque vulnerability is less clear. An intravascular 

ultrasound study suggests that an increase in calcification near the base of the lesion is 

associated with lower risk of plaque rupture.8 In contrast, Abedin et al.9 argue that as 

plaques begin to calcify there is an initial increase in plaque vulnerability because stress 

concentrates at the interface between the hard calcium deposits and other, softer 

components of the plaque. When these calcium deposits begin to coalesce the risk of 

rupture decreases as the interface area decreases.

The renin-angiotensin system directly influences the progression of atherosclerosis and 

vascular calcification.10,11 Angiotensin II type 1 receptor blockers (ARBs) have been 

shown to cause stabilization,12-14 or even regression,15,16 of atherosclerotic plaques in pre-

clinical and clinical studies. When ARBs are combined with statin therapy, a synergistic 

reduction of atherosclerosis burden has been reported.17-19 However, it should be noted 
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that these studies introduced treatment before the disease was established, and that the 

treatment periods were relatively short (4-10 weeks).

The current study uses a model of dietary hypercholesterolemia to further examine the 

effects of the ARB olmesartan medoxomil, alone or in combination with atorvastatin 

calcium, on the progression of established atherosclerosis. Interestingly, our results 

suggest that ARBs promote regression of advanced atherosclerosis when administered 

alone, but not in conjunction with statin therapy.

3.1 Methods

3.1.1 Pre-Clinical Model

The animals used in this study have been described previously.20 Briefly, male New 

Zealand White rabbits were fed either regular chow (Control, n = 8) or an atherogenic 

diet of 0.25% cholesterol to induce atherosclerosis. After 12 months, a subset of Control 

(n = 3) and cholesterol-fed (n = 6) rabbits were euthanized for pathological assessment of 

disease progression. The remaining diseased rabbits continued on an atherogenic diet of 

0.125% cholesterol and received either no treatment (Cholesterol, n = 6), olmesartan 

medoxomil (ARB, n = 7), atorvastatin calcium (Statin, n = 7), or a combination of both 

drugs (ARB+Statin, n = 7) for an additional 6 months. Olmesartan (1 mg/kg/day) and 

atorvastatin (2.5 mg/kg/day) were administered orally. All animals were individually 

housed and cared for in accordance with the Canadian Council on Animal Care and all 

protocols were approved by the University of Western Ontario Animal Use 

Subcommittee.

3.1.2 Micro-Computed Tomography

Following euthanasia, intact aortae were placed in a humidified chamber to prevent 

dehydration and scanned with a Locus Ultra micro-computed tomography (micro-CT) 

scanner (General Electric Medical Systems, London, ON). Scans were acquired at 

80 kVp, 55 mAs and reconstructed with isotropic voxel spacing of 150 µm. Images were 

analyzed for the presence of calcium using MicroView analysis software (V2.2, GE 

Medical Systems, London, ON). Specifically, the total volume of all voxels containing 
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calcified tissue (identified by setting a threshold level) was calculated and expressed as 

percent of total vessel volume, as described previously.21

3.1.3 Quantification of Lesion Area

Lesion area was quantified in the thoracic aorta as previously described.22 Aortae were 

stained with Oil Red O in propylene glycol for 30 minutes, opened along their ventral 

surface and pinned flat for en face analysis. Lesion area was analyzed by a blinded 

observer using Adobe Photoshop CS4 Extended (V11, San Jose, CA) and expressed as a 

percent of total vessel area.

3.1.4 Histological and Immunohistochemical Analysis

Aortic samples (distal to the first intercostal ostia) were cryopreserved using increasing 

concentrations of sucrose (up to 30%) then immediately embedded in Tissue-Tek OCT 

(Sakura Finetek, Torrance, CA) compound and frozen in liquid nitrogen-cooled 

isopentane. Frozen Sections (10 µm) were taken as cross sections through the aorta. 

Serial sections were stained with Oil Red O for extracellular lipid deposition and Alizarin 

Red S for calcium deposits (from Sigma-Aldrich, Oakville, ON, Canada). 

Immunohistochemical studies were performed using mouse anti-α-smooth muscle actin 

(α-SMA; clone 1A4) and mouse anti-rabbit activated macrophage (clone RAM11). 

Sections were subjected to single-label immunohistochemistry using an Alkaline 

Phosphatase Substrate Kit (Vector Laboratories, Burlingame, CA) and secondary 

antibody horse anti-mouse IgG (H+L; Vector Laboratories) Alkaline Phosphatase-

conjugate according to the manufacturer’s instructions. Negative controls which omitted 

the primary antibody were routinely employed. Positive staining areas were calculated by 

setting a threshold value in ImageJ (National Institutes of Health, Washington, DC) and 

expressed as a percent of total lesion area.

3.1.5 Statistical Analysis

Data is expressed as mean ± SEM and statistically analyzed by one-sample t-test, 

unpaired t-test with Welch’s correction, one-way ANOVA with Tukey’s post-hoc test, or 

Pearson correlation, as indicated. All analyses were performed using GraphPad Prism 
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(V5, GraphPad Software, Inc., La Jolla, CA). Values of p < 0.05 were considered 

statistically significant.

3.2 Results

3.2.1 Twelve Months Cholesterol Feeding Induces Advanced 
Atherosclerotic Lesions

Atherosclerotic lesion area was significantly increased in Cholesterol animals when 

compared to Controls following 12 months of cholesterol feeding (78.15 ± 14.43 % 

versus non-detectable for Cholesterol and Control, respectively; n = 6 and 3; p < 0.01; 

Figure 3.1A). Total volume of calcium in the thoracic aorta, as examined by micro-CT, 

was also significantly increased in Cholesterol animals (1.81 ± 0.50 versus 0.33 ± 0.08 in 

Cholesterol and Control, respectively; n = 6 and 3; p < 0.05; Figure 3.1B). Pathological 

examination of the thoracic aorta (Figure 3.1C) revealed smooth muscle cell and 

macrophage infiltration, predominantly near the surface of the lesion, the area known as 

the fibrous cap. Extensive lipid deposition was observed throughout the lesion. Calcium 

deposition was also observed, forming as punctate nodules, typically near the base of the 

lesion. Taken together, these hallmarks clearly indicate that animals exhibit advance 

atherosclerotic lesions after 12 months. This formed the basis upon which progression, 

stabilization, or regression during the 6 month treatment period could be assessed.

3.2.2 ARBs Cause Significant Regression of Advanced 
Atherosclerotic Lesions when Delivered Alone, but not when 
Combined with Statin Therapy

Following the six month treatment period, atherosclerotic lesion area was measured using 

en face Oil Red O staining. When compared to Control animals, all treatment groups had 

significantly increased lesion area (non-detectable in Control, 95.50 ± 1.94 % in 

Cholesterol, 61.61 ± 10.17 % in ARB, 82.50 ± 6.78 % in Statin, and 92.39 ± 3.25 % in 

ARB+Statin; n = 5, 5, 7, 7, and 6; P < 0.001 for each group when compared to Control, 

significance not shown; Figure 3.2). When compared to untreated Cholesterol animals, 

ARB-treated animals had significantly reduced lesion area (P < 0.05). Interestingly, 

lesion area was also significantly reduced in ARB-treated animals when compared to 
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Figure 3.1: Significant atherosclerosis progression is achieved after 12 months. A: 

Atherosclerotic lesion area was significantly increased in Cholesterol animals versus 

Control. Each data point represents an individual animal with the mean represented by a 

horizontal line. **P < 0.01; by one sample t-test. B: Total volume of aortic calcium, as 

measured by micro-computed tomography, was significantly increased in Cholesterol 

animals versus Control. Each data point represents an individual animal with the mean 

represented by a horizontal line. *P < 0.05; by unpaired t-test with Welch’s correction. C: 

Histological and immunohistochemical analyses reveal several markers of 

atherosclerosis. Lesions in Cholesterol animals were advanced, with smooth muscle cells 

(as indicated by α-smooth muscle actin) forming a fibrous cap, macrophage (indicated by 

RAM11) and lipid (indicated by Oil Red O) infiltration, and extensive calcification 

(indicated by Alizarin Red S) near the lesion base. Aortae from Control animals showed 

no indication of disease. Inset: high-power image of the area indicated by the box.
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Figure 3.2: ARB treatment causes regression of established atherosclerosis. 

Atherosclerotic lesion area was significantly increased in Cholesterol, ARB, Statin and 

ARB+Statin animals when compared to Control (P < 0.001, not shown). Interestingly, 

lesion area in ARB animals was significantly reduced as compared to both Cholesterol 

and ARB+Statin animals. Each data point represents an individual animal, with the mean 

represented by a horizontal line. *P < 0.05; by one-way ANOVA with Tukey’s post-hoc 

test.
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ARB+Statin (P < 0.05), suggesting addition of atorvastatin may interfere with the 

beneficial effects of olmesartan. It should also be noted that lesion area in ARB animals 

after treatment (Figure 3.2) appears to be lower than before treatment (Figure 3.1A), 

consistent with Olmesartan inducing regression of advanced atherosclerotic lesions.

3.2.3 ARBs and Statin Therapy Slows Progression of Atherosclerotic 
Plaque Calcification

Given the robust inhibitory effects of olmesartan already observed in aortic medial 

calcification,21 the aortae in this study were also examined for total calcium volume using 

micro-CT. Cholesterol rabbits had a significantly increased calcium volume when 

compared to Control (4.74 ± 1.77 % versus 0.87 ± 0.06 % in Cholesterol and Control, 

respectively; n = 6 and 5; P < 0.05; Figure 3.3). This increase was not observed in any of 

the treatment groups (1.69 ± 0.25 % in ARB, 1.62 ± 0.41 % in Statin, and 2.47 ± 0.40 % 

in ARB+Statin; n = 7, 6, and 6, respectively).

3.2.4 ARBs Do No Affect the Cellular Composition of Atherosclerotic 
Plaques

Atherosclerotic lesions were advanced, showing all the hallmarks of classical 

atherosclerosis (Figure 3.4). Migration of smooth muscle cells (as indicated by α-SMA) 

was robust and typically concentrated on the surface of the lesion, forming a fibrous cap. 

Extracellular lipids (indicated by Oil Red O) were distributed throughout the entire 

lesion, but were occasionally found concentrated within the core. Macrophage infiltration 

(as indicated by RAM11) was also observed throughout the lesion, but was the most 

intense on the surface. Calcium was observed as small punctate deposits distributed 

throughout the lesion. While lesion area analysis was performed, no significant 

differences between groups were observed (Table 3.1). Interestingly, we observed a 

significant inverse correlation between macrophage ratio and calcium ratio, such that as 

the ratio of macrophages increased, the calcium ratio decreased (P = 0.025; r = -0.43; 

Figure 3.5).
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Figure 3.3: Pharmaceutical intervention slows progression of atherosclerotic 

calcium. Total volume of aortic calcium was significantly increased in Cholesterol 

animals, but not in ARB, Statin, or ARB+Statin animals when compared to Control. Each 

data point represents an individual animal, with the mean represented by a horizontal 

line. *P < 0.05; by one-way ANOVA with Tukey’s post-hoc test.
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Figure 3.4: Atherosclerotic lesion composition is unaffected by pharmaceutical 

intervention. Histological and immunohistochemical analyses reveal hallmark features 

of advanced atherosclerotic lesions including fibrous cap formation and smooth muscle 

cell (as indicated by α-smooth muscle actin) migration to the surface of the lesion; 

macrophage accumulation (indicated by RAM11) both at the surface of the lesion and 

within the core; lipid infiltration (indicated by Oil Red O) throughout the lesion, and 

extensive calcification (indicated by Alizarin Red S) particularly deep within the core of 

the lesion. Morphometric analysis of lesion composition did not reveal any significant 

differences between groups (see Table 1). Inset: high-power image of the area indicated 

by the box.
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Table 3.1: Lesion composition analysis of thoracic aorta in hypercholesterolemic rabbits.

Smooth Muscle Cell (SMC) AreaSmooth Muscle Cell (SMC) AreaSmooth Muscle Cell (SMC) AreaSmooth Muscle Cell (SMC) AreaSmooth Muscle Cell (SMC) Area
Group N Total Lesion Area (mm2) SMC Area (mm2) SMC Ratio (%)

Control 5 ND ND ND
Cholesterol 6 8.58±1.61 3.42±0.59 42.32±4.23
Statin 7 6.23±1.34 3.99±1.07 60.90±3.88
ARB 7 4.30±1.04 2.11±0.48 59.95±12.82
ARB+Statin 7 6.31±0.70 3.14±0.58 48.68±4.81

Macrophage (MΦ) AreaMacrophage (MΦ) AreaMacrophage (MΦ) AreaMacrophage (MΦ) AreaMacrophage (MΦ) Area
Group N Total Lesion Area (mm2) MΦ Area (mm2) MΦ Ratio (%)

Control 5 ND ND ND
Cholesterol 6 8.30±1.50 1.28±0.51 13.34±3.86
Statin 7 6.27±1.32 2.01±0.91 25.63±6.00
ARB 7 4.81±1.12 0.79±0.33 16.38±4.46
ARB+Statin 7 6.21±0.61 1.25±0.25 19.81±3.90

Lipid AreaLipid AreaLipid AreaLipid AreaLipid Area
Group N Total Lesion Area (mm2) Lipid Area (mm2) Lipid Ratio (%)

Control 5 ND ND ND
Cholesterol 6 8.29±1.51 6.04±1.02 76.03±4.34
Statin 7 6.26±1.25 5.01±1.31 75.95±6.78
ARB 7 4.99±1.15 3.77±0.90 74.34±3.30
ARB+Statin 7 6.51±0.89 5.07±0.70 75.21±4.34

Calcium AreaCalcium AreaCalcium AreaCalcium AreaCalcium Area
Group N Total Lesion Area (mm2) Calcium Area (mm2) Calcium Ratio (%)

Control 5 ND ND ND
Cholesterol 6 8.16±1.63 1.60±0.32 20.99±2.83
Statin 7 5.97±1.32 0.92±0.24 15.33±2.55
ARB 7 4.53±1.08 1.10±0.31 20.64±3.17
ARB+Statin 7 6.14±0.76 1.13±0.30 17.28±3.53
Total lesion area was determined as the area between the luminal surface and the internal elastic lamina. 
SMC and Macrophage (MΦ) area were determined as positive areas using anti-α-smooth muscle actin 
(1A4) and anti-macrophage (RAM11) antibodies, respectively. Lipid and Calcium area were determined as 
positive areas using Oil Red O and Alizarin Red S staining, respectively. Data are expressed as mean±SEM. 
ND = non-detectable.

Total lesion area was determined as the area between the luminal surface and the internal elastic lamina. 
SMC and Macrophage (MΦ) area were determined as positive areas using anti-α-smooth muscle actin 
(1A4) and anti-macrophage (RAM11) antibodies, respectively. Lipid and Calcium area were determined as 
positive areas using Oil Red O and Alizarin Red S staining, respectively. Data are expressed as mean±SEM. 
ND = non-detectable.

Total lesion area was determined as the area between the luminal surface and the internal elastic lamina. 
SMC and Macrophage (MΦ) area were determined as positive areas using anti-α-smooth muscle actin 
(1A4) and anti-macrophage (RAM11) antibodies, respectively. Lipid and Calcium area were determined as 
positive areas using Oil Red O and Alizarin Red S staining, respectively. Data are expressed as mean±SEM. 
ND = non-detectable.

Total lesion area was determined as the area between the luminal surface and the internal elastic lamina. 
SMC and Macrophage (MΦ) area were determined as positive areas using anti-α-smooth muscle actin 
(1A4) and anti-macrophage (RAM11) antibodies, respectively. Lipid and Calcium area were determined as 
positive areas using Oil Red O and Alizarin Red S staining, respectively. Data are expressed as mean±SEM. 
ND = non-detectable.

Total lesion area was determined as the area between the luminal surface and the internal elastic lamina. 
SMC and Macrophage (MΦ) area were determined as positive areas using anti-α-smooth muscle actin 
(1A4) and anti-macrophage (RAM11) antibodies, respectively. Lipid and Calcium area were determined as 
positive areas using Oil Red O and Alizarin Red S staining, respectively. Data are expressed as mean±SEM. 
ND = non-detectable.
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Figure 3.5: Negative correlation between calcium and macrophage ratio in advanced 

atherosclerotic lesions. The calcium (as indicated by Alizarin Red S) and macrophage 

(as indicated by RAM11) ratio was determined by dividing the total positive staining 

area, defined using a threshold value, by the total lesion area, defined as the area between 

the luminal surface and the internal elastic lamina. Each data point represents an 

individual animal; P = 0.025; r = -0.43.
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3.3 Discussion

The current study examines the effects of an ARB, alone or in combination with statin 

therapy, on advanced atherosclerotic lesions. ARB treatment induced atherosclerosis 

regression when delivered alone, but not when combined with Statin therapy, a novel 

finding that is in contrast with existing pre-clinical studies.18,19,23-26 We also observed a 

significant negative correlation between macrophage content and calcification of 

atherosclerotic plaques. 

Atherosclerotic lesion area was significantly reduced in ARB-treated animals when 

compared to untreated Cholesterol animals (Figure 3.2), a result reported consistently by 

others.27-31 ARBs induce plaque stabilization,32 decrease expression of adhesion 

molecules33 and monocyte adhesion,33,34 reduce production of inflammatory cytokines,35 

and inhibit smooth muscle cell migration.36 These pleiotropic effects of ARB therapy may 

explain its effectiveness in the treatment of atherosclerosis.

However, we also observed significantly reduced lesion area in ARB-treated animals 

compared to those given ARB+Statin therapy (Figure 3.2). Others pre-clinical studies 

have reported an additive, 18,19,23 or even synergistic24-26 effect of ARBs and statin therapy 

in the prevention of atherosclerosis. These studies have all examined the effects of 

therapy in models which employ genetic mutation to induce hypercholesterolemia. Such 

models are akin to familial hypercholesterolemia and are not directly translatable to 

dietary hypercholesterolemia experienced by the majority of Western society. 

Furthermore, only two of these studies induce atherosclerosis before initiating treatment;
19,23 the others have limited ability to analyze treatment effects. Only our model 

specifically replicates the chronic, progressive nature of atherosclerosis and properly 

examines treatment after disease is established.20,22

While the mechanisms driving smooth muscle cell-mediated calcification in 

atherosclerotic plaques have been thoroughly examined,37,38 the relationship between 

macrophages and calcification is less clear. In this study we have shown a negative 

correlation between macrophages and calcium in atherosclerotic plaques, similar to that 
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observed in coronary arteries.39 Conversely, some have suggested that macrophages may 

directly promote calcification in atherosclerotic plaques by secreting matrix vesicles that 

act as a nidus for hydroxyapatite.40 In addition, Naik et al.41 have shown that up to 20% 

of osteochondrogenic cells in atherosclerotic plaques are bone marrow-derived. Clearly, 

further studies are required to fully understand the mechanistic interactions between 

statins and ARBs in the treatment of atherosclerosis.

82



3.4 References

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford 

ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard 

VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, 

Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, 

McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, 

Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, 

Virani SS, Wong ND, Woo D, Turner MB, and American Heart Association 

Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and 

Stroke Statistics--2014 Update: A Report From the American Heart Association. 

Circulation 2014;129:e28–292.

2. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden 

coronary death: a comprehensive morphological classification scheme for 

atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75.

3. Ambrose JA, Srikanth S. Vulnerable plaques and patients: improving prediction of 

future coronary events. Am J Med 2010;123:10–6.

4. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the Vulnerable Plaque. 

J Am Coll Cardiol 2006;47:C13–8.

5. Underhill HR, Yuan C, Zhao X-Q, Kraiss LW, Parker DL, Saam T, Chu B, Takaya 

N, Liu F, Polissar NL, Neradilek B, Raichlen JS, Cain VA, Waterton JC, Hamar 

W, Hatsukami TS. Effect of rosuvastatin therapy on carotid plaque morphology 

and composition in moderately hypercholesterolemic patients: A high-resolution 

magnetic resonance imaging trial. Am Heart J 2008;155:584.e1–584.e8.

6. Frink RJ, Achor RWP, Brown AL Jr., Kincaid OW, Brandenburg RO. Significance 

of calcification of the coronary arteries. Am J Cardiol 1970;26:241–7.

7. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary 

artery calcium area by electron-beam computed tomography and coronary 

83



atherosclerotic plaque area. A histopathologic correlative study. Circulation 

1995;92:2157–62.

8. Ge J, Chirillo F, Schwedtmann J, Görge G, Haude M, Baumgart D, Shah V, 

Birgelen von C, Sack S, Boudoulas H, Erbel R. Screening of ruptured plaques in 

patients with coronary artery disease by intravascular ultrasound. Heart 

1999;81:621–7.

9. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical 

ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161–70.

10. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BMW. Renin-angiotensin 

system and cardiovascular risk. Lancet 2007;369:1208–19.

11. Imaizumi S, Miura S-I, Yahiro E, Uehara Y, Komuro I, Saku K. Class- and 

Molecule-specific Differential Effects of Angiotensin II Type 1 Receptor 

Blockers. Current Pharmaceutical Design 2013;19:3002–8.

12. Cipollone F. Blockade of the Angiotensin II Type 1 Receptor Stabilizes 

Atherosclerotic Plaques in Humans by Inhibiting Prostaglandin E2-Dependent 

Matrix Metalloproteinase Activity. Circulation 2004;109:1482–8.

13. Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, 

Komatsubara I, Murakami M, Hirose E, Sato S, Ohkawa K, Ishizawa M, Yamaji 

H, Kawamura H, Kusachi S, Murakami T, Hina K, Ohe T. Impact of olmesartan 

on progression of coronary atherosclerosis a serial volumetric intravascular 

ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of 

coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll 

Cardiol 2010;55:976–82.

14. Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, 

Komatsubara I, Hirose E, Kobayashi Y, Ohkawa K, Ohara M, Takafuji H, Sano F, 

Toyama Y, Kusachi S, Ohe T, Ito H. Four-year clinical outcomes of the OLIVUS-

84



Ex (impact of Olmesartan on progression of coronary atherosclerosis: evaluation 

by intravascular ultrasound) extension trial. Atherosclerosis 2012;220:134–8.

15. Takai S, Jin D, Sakaguchi M, Muramatsu M, Miyazaki M. The regressive effect of 

an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-

cholesterol diet. J Hypertens 2005;23:1879–86.

16. Ishii H, Kobayashi M, Kurebayashi N, Yoshikawa D, Suzuki S, Ichimiya S, 

Kanashiro M, Sone T, Tsuboi H, Amano T, Uetani T, Harada K, Marui N, 

Murohara T. Impact of angiotensin II receptor blocker therapy (olmesartan or 

valsartan) on coronary atherosclerotic plaque volume measured by intravascular 

ultrasound in patients with stable angina pectoris. Am J Cardiol 2013;112:363–8.

17. Katoh M, Egashira K, Usui M, Ichiki T, Tomita H, Shimokawa H, Rakugi H, 

Takeshita A. Cardiac angiotensin II receptors are upregulated by long-term 

inhibition of nitric oxide synthesis in rats. Circ Res 1998;83:743–51.

18. Li Z, Iwai M, Wu L, Liu H-W, Chen R, Jinno T, Suzuki J, Tsuda M, Gao X-Y, 

Okumura M, Cui T-X, Horiuchi M. Fluvastatin enhances the inhibitory effects of 

a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 

2004;44:758–63.

19. Imanishi T, Ikejima H, Tsujioka H, Tsujioka A, Kuroi A, Kobayashi K, Shiomi M, 

Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T. Combined effects of 

an 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor and angiotensin II 

receptor antagonist on nitric oxide bioavailability and atherosclerotic change in 

myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. 

Hypertens Res 2008;31:1199–208.

20. Armstrong ZB, Boughner DR, Carruthers CP, Drangova M, Rogers KA. Effects of 

an angiotensin II type 1 receptor blocker on aortic valve sclerosis in a pre-clinical 

model. Canadian Journal of Cardiology 2014.

85



21. Armstrong ZB, Boughner DR, Drangova M, Rogers KA. Angiotensin II type 1 

receptor blocker inhibits arterial calcification in a pre-clinical model. Cardiovasc 

Res 2011;90:165–70.

22. Daley SJ, Herderick EE, Cornhill JF, Rogers KA. Cholesterol-fed and casein-fed 

rabbit models of atherosclerosis. Part 1: Differing lesion area and volume despite 

equal plasma cholesterol levels. Arterioscler Thromb 1994;14:95–104.

23. Kato M, Sada T, Mizuno M, Kitayama K, Inaba T, Koike H. Effect of combined 

treatment with an angiotensin II receptor antagonist and an HMG-CoA reductase 

inhibitor on atherosclerosis in genetically hyperlipidemic rabbits. J Cardiovasc 

Pharmacol 2005;46:556–62.

24. Grothusen C, Bley S, Selle T, Luchtefeld M, Grote K, Tietge UJF, Drexler H, 

Schieffer B. Combined effects of HMG-CoA-reductase inhibition and renin-

angiotensin system blockade on experimental atherosclerosis. Atherosclerosis 

2005;182:57–69.

25. Chen J, Li D, Schaefer R, Mehta JL. Cross-talk between dyslipidemia and renin-

angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies 

with the combined use of rosuvastatin and candesartan. Atherosclerosis 

2006;184:295–301.

26. van der Hoorn JWA, Kleemann R, Havekes LM, Kooistra T, Princen HMG, 

Jukema JW. Olmesartan and pravastatin additively reduce development of 

atherosclerosis in APOE*3Leiden transgenic mice. J Hypertens 2007;25:2454–62.

27. Yao R, Cheng X, Chen Y, Xie J-J, Yu X, Liao M-Y, Ding Y-J, Tang T-T, Liao Y-H. 

Molecular mechanisms of irbesartan suppressing atherosclerosis in high 

cholesterol-diet apolipoprotein E knock-out mice. Int J Cardiol 2010;139:113–22.

86



28. Fukuda D, Enomoto S, Hirata Y, Nagai R, Sata M. The angiotensin receptor 

blocker, telmisartan, reduces and stabilizes atherosclerosis in ApoE and AT1aR 

double deficient mice. Biomed Pharmacother 2010;64:712–7.

29. Bernardi S, Candido R, Toffoli B, Carretta R, Fabris B. Prevention of accelerated 

atherosclerosis by AT1 receptor blockade in experimental renal failure. Nephrol 

Dial Transplant 2011;26:832–8.

30. Cheng XW, Song H, Sasaki T, Hu L, Inoue A, Bando YK, Shi G-P, Kuzuya M, 

Okumura K, Murohara T. Angiotensin type 1 receptor blocker reduces intimal 

neovascularization and plaque growth in apolipoprotein E-deficient mice. 

Hypertension 2011;57:981–9.

31. Matsumura T, Kinoshita H, Ishii N, Fukuda K, Motoshima H, Senokuchi T, 

Taketa K, Kawasaki S, Nishimaki-Mogami T, Kawada T, Nishikawa T, Araki E. 

Telmisartan Exerts Antiatherosclerotic Effects by Activating Peroxisome 

Proliferator-Activated Receptor-  in Macrophages. Arterioscler Thromb Vasc Biol 

2011;31:1268–75.

32. Sasaki T, Kuzuya M, Nakamura K, Cheng XW, Hayashi T, Song H, Hu L, 

Okumura K, Murohara T, Iguchi A, Sato K. AT1 blockade attenuates 

atherosclerotic plaque destabilization accompanied by the suppression of 

cathepsin S activity in apoE-deficient mice. Atherosclerosis 2010;210:430–7.

33. Cicha I, Urschel K, Daniel WG, Garlichs CD. Telmisartan prevents VCAM-1 

induction and monocytic cell adhesion to endothelium exposed to non-uniform 

shear stress and TNF-α. Clin Hemorheol Microcirc 2011;48:65–73.

34. Ikeda F, Azuma K, Ogihara T, Toyofuku Y, Otsuka A, Mita T, Hirose T, Tanaka Y, 

Kawamori R, Watada H. Angiotensin II type 1 receptor blocker reduces monocyte 

adhesion to endothelial cells in spontaneously hypertensive rats. Endocr J 

2007;54:605–12.

87



35. An J, Nakajima T, Kuba K, Kimura A. Losartan inhibits LPS-induced 

inflammatory signaling through a PPARgamma-dependent mechanism in human 

THP-1 macrophages. Hypertens Res 2010;33:831–5.

36. Kyotani Y, Zhao J, Tomita S, Nakayama H, Isosaki M, Uno M, Yoshizumi M. 

Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle 

cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 

2010;113:161–8.

37. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis 

and related proteins in different stages of human atherosclerotic plaques. 

Circulation 1998;97:2307–15.

38. Speer MY, Yang H-Y, Brabb T, Leaf E, Look A, Lin W-L, Frutkin A, Dichek D, 

Giachelli CM. Smooth muscle cells give rise to osteochondrogenic precursors and 

chondrocytes in calcifying arteries. Circ Res 2009;104:733–41.

39. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. 

Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239–

44.

40. New SEP, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby 

P, Shanahan CM, Croce K, Aikawa E. Macrophage-derived matrix vesicles: an 

alternative novel mechanism for microcalcification in atherosclerotic plaques. 

Circ Res 2013;113:72–7.

41. Naik V, Leaf EM, Hu JH, Yang H-Y, Nguyen NB, Giachelli CM, Speer MY. 

Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo 

genetic fate mapping study. Cardiovasc Res 2012;94:545–54.

88



Chapter 4

4 Effects of an Angiotensin II Type 1 Receptor Blocker on 
Aortic Valve Sclerosis in a Pre-Clinical Model*

Aortic valve stenosis is a chronic progressive disease involving three factors: lipid 

deposition, chronic inflammation, and tissue calcification.1-5 It is the most prevalent 

valvular heart disease and the third most common cardiovascular disease behind 

hypertension and coronary artery disease.6 It has an incidence of 3–5% in those over the 

age of 65 while its precursor, aortic valve sclerosis (AVS), is found in over 25% of 

individuals in the same age group.7-9 Patients with AVS have a 50% increased risk of 

myocardial infarction and cardiovascular death compared with patients who have a 

normal aortic valve.10-12 Currently, there are no clinically-approved pharmaceuticals for 

the prevention of AVS; however, when symptoms develop it is managed by prompt valve 

replacement, an invasive surgical procedure with high morbidity and mortality.13

AVS shares many risk factors with atherosclerosis including advanced age, male gender, 

hypertension, smoking, increased plasma low-density lipoprotein, increased plasma 

lipoprotein(a), and diabetes mellitus.1-3,14 This overlap prompted several pre-clinical 

studies, the results of which suggested statin therapy as an effective intervention.15,16 

However, subsequent clinical trials investigating the effect of statin therapy on AVS 

proved unsuccessful.17-20 Indeed, only one pre-clinical study has been consistent with 

clinical trials showing lack of effect; Hamilton et al.21 suggested Atorvastatin was an 

effective anti-inflammatory agent, but had no demonstrable effect on lipid deposition or 

valve calcification.

Blockade of the renin-angiotensin system (RAS) has also been suggested as a potential 

therapy for AVS. Two conflicting retrospective studies—one showing no benefit of 

angiotensin converting enzyme inhibitors (ACEIs) compared to statins and another 

showing a 71% reduction in the progression of valvular calcification—could explain the 

89

* A version of this chapter has been accepted for publication: Armstrong ZB, Boughner DR, Carruthers CP, 
Drangova M, Rogers KA. Effects of an angiotensin II type 1 receptor blocker on aortic valve sclerosis in a 
pre-clinical model. Can J Cardiol 2014.



lack of prospective clinical trials investigating RAS blockade.22,23 More recent pre-

clinical studies have suggested that olmesartan, an angiotensin receptor blocker (ARB), 

can prevent atherosclerotic changes and endothelial disruption,24 while ramipril, an 

ACEI, can prevent hemodynamic changes in the valve.25 Indeed, recent results have 

prompted two prospective clinical trials investigating the role of ARBs on AVS 

(ClinicalTrials.gov Identifiers NCT00699452 & NCT01589380).

Given our recent observation that ARBs can robustly inhibit arterial calcification and the 

established anti-inflammatory effects of statin therapy,21,26-28 our objective in the current 

study was to investigate potential synergistic effects of these two pharmaceuticals in the 

treatment of AVS.

4.1 Methods

4.1.1 Pre-Clinical Model

Male New Zealand White rabbits (1.6 to 2.0 kg, Charles River Laboratories, St-Constant, 

QC, Canada) were fed either regular chow (Control, n = 8) or an atherogenic diet 

consisting of 0.25% cholesterol to induce aortic valve sclerosis.29,30 After 12 months, a 

subset of Control (n = 3) and cholesterol-fed (n = 6) rabbits were euthanized for 

pathologic assessment of disease progression. The remaining diseased rabbits continued 

on an atherogenic diet and were block randomly assigned to four treatment groups 

receiving either no treatment (Cholesterol, n = 6), olmesartan medoxomil (ARB, n = 7), 

atorvastatin calcium (Statin, n = 7), or a combination of both drugs (ARB+Statin, n = 7) 

for an additional 6 months (Supplementary Figure 4.1). During the treatment period, 

dietary cholesterol levels were decreased to 0.125% to reduce the chance of non-

cardiovascular health issues and prolong the life of the animals. Olmesartan medoxomil 

(1 mg/kg/day) and atorvastatin calcium (2.5 mg/kg/day) were administered via oral 

gavage, suspended in a solution of 50% molasses in water. Dosages were based on 

previous studies using olmesartan medoxomil24 and atorvastatin calcium21 which showed 

positive effects in New Zealand White rabbits. At endpoint, animals were euthanized via 

intravenous ketamine injection and perfused with Hanks’ balanced salt solution and 
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heparin (1 U/mL). All animal protocols were approved by the University of Western 

Ontario Animal Use Subcommittee (reference number 2007-023).

4.1.2 Physiological Data

Body weight and blood samples were collected at months 0, 3, 6, 9, 12, 15, and 18 for all 

animals. Blood samples were used for the measurement of total cholesterol using a 

WAKO Cholesterol E Kit (Wako Chemicals, Richmond, VA), according to the 

manufacturer’s instructions.

4.1.3 Magnetic Resonance Imaging

After 12 months of the atherogenic diet, and every three months thereafter, anesthetized 

rabbits were imaged using a standardized in vivo pulse sequence on a 3.0 Tesla magnetic 

resonance imaging (MRI) scanner (GE Healthcare, Piscataway, NJ), as previously 

described.30 Rabbits were imaged in the supine position with a customized two-channel 

phased array radio frequency coil positioned over the chest cavity. All imaging was 

executed using CINE fast spoiled gradient echo (fSPGR) sequences gated to the cardiac 

cycle (peripheral trigger, arrhythmia rejection window = 30, minimum trigger delay, 30 

cardiac phases, 2 segments/view). A finger plethysmograph attached to the rabbit’s ear 

provided the gating signal. All image analysis was performed off line using ImageJ 

(National Institutes of Health, Washington, DC). A blinded observer performed aortic 

valve area planimetry measurements at the moment of maximal valve opening using a 

double oblique axial image at each time point. In addition, a blinded observer measured 

thickness in the middle third of the cusp using the best oblique sagittal image of each 

cusp at each time point. We have found interreader variability for measurements such as 

these to be moderate with a kappa coefficient of 0.58.30

4.1.4 Histological and Immunohistochemical Analysis

Aortic valve cusps (non-coronary) were cryopreserved using increasing concentrations of 

sucrose (up to 30%) then immediately embedded in Tissue-Tek OCT compound (Sakura 

Finetek, Torrance, CA) and frozen in liquid nitrogen-cooled isopentane. Frozen Sections 

(10 µm) were taken vertically through the cusp and sinus such that sections are taken in 
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the radial direction.1 Serial sections were stained with Oil Red O for lipid deposition and 

Alizarin Red S for calcium deposits (both from Sigma-Aldrich, Oakville, ON, Canada). 

Immunohistochemical studies were performed using a primary antibody for mouse anti-

rabbit activated macrophage (clone RAM11, Sigma-Aldrich, Oakville, ON, Canada). 

Sections were subjected to single-label immunohistochemistry using an Alkaline 

Phosphatase Substrate Kit (Vector Laboratories, Burlingame, CA) and secondary 

antibody horse anti-mouse IgG (H + L; Vector Laboratories) Alkaline Phosphatase-

conjugate according to the manufacturer’s instructions. Negative controls which omitted 

the primary antibody were routinely used. Positive staining areas were calculated by 

setting a threshold value in ImageJ and expressed as a percent of total lesion area.

4.1.5 Statistical Analysis

Data is expressed as mean ± SEM and statistically analyzed by unpaired t-test, Kruskal-

Wallis with Dunns post-hoc test, or two-way repeated measures ANOVA with Bonferroni 

post-hoc test, as indicated. All analyses were performed using GraphPad Prism (V5, 

GraphPad Software, Inc, La Jolla, CA). Values of p < 0.05 were considered statistically 

significant.

4.2 Results

4.2.1 Physiological Data

Body weight increased generally with time but did not differ significantly between 

treatment groups (Supplementary Table 4.1). Total plasma cholesterol increased 

significantly in Cholesterol animals, but not Statin-treated animals, when compared to 

Controls (Supplementary Table 4.1).

4.2.2 Dietary Hypercholesterolemia Induced Significant AVS at 12 
Months

After 12 months of cholesterol feeding, cusp thickness in Cholesterol rabbits was 

significantly increased compared to Control rabbits (0.58 ± 0.03 versus 0.39 ± 0.03 mm 

for Cholesterol and Control at 12 months, respectively; n = 18 and 9; P < 0.0001; Figure 

4.1A), as assessed by in vivo MRI. While valve orifice area was not significantly affected 
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Figure 4.1: Significant AVS progression is achieved after 12 months. A: Cusp 

thickness, measured using in vivo MRI, is significantly increased in Cholesterol animals 

versus Control. B: Valve orifice area, a clinical measure of AVS, showed a trend toward 

disease, but this did not reach statistical significance (P = 0.128). Histological and 

immunohistochemical analyses reveal several markers of AVS. C: Aortic valves from 

Cholesterol animals were significantly thickened with marked lipid insudation (Oil Red 

O). D: Valves from Cholesterol animals display considerable macrophage (clone 

RAM11) infiltration. E: Valves from Cholesterol animals also show minor signs of 

calcification (Alizarin Red S). Valves from Control animal showed no indication of 

disease. A-B: Each data point represents an individual animal (in A: an individual cusp), 

with the median represented by a horizontal line. Statistical significance is indicated by 

different superscripts and determined by unpaired t-test. C-E: Representative images 

shown; scale bar = 500 μm Inset: High-power image of the area indicated by the box; 

scale bar = 100 μm. AVS, aortic valve sclerosis; MRI, magnetic resonance imaging.
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at this time point, there was a trend toward orifice narrowing (0.38 ± 0.03 versus 0.51 ± 

0.09 cm2 for Cholesterol and Control, respectively; n = 6 and 3; P = 0.128; Figure 4.1B) 

consistent with disease progression.  Histological assessment of non-coronary cusps from 

Cholesterol animals showed thickening of the fibrosa and other hallmarks of human AVS 

including lipid infiltration (Figure 4.1C), inflammation (Figure 4.1D), and calcium 

deposition (Figure 4.1E). Lipid infiltration, while not present in cusps from Control 

animals, was extensive in Cholesterol animals and distributed throughout the entire cusp 

(Figure 4.1C), in contrast with the human disease. Non-coronary cusps from Control 

animals contained a few macrophages, typically scattered along the ventricular surface of 

the valve. In contrast, cusps from Cholesterol animals contained extensive macrophage 

infiltration throughout a thickened fibrosa (Figure 4.1D). Calcification was not found in 

cusps from Control animals, and only very minor calcified deposits were found in cusps 

from Cholesterol animals at 12 months (Figure 4.1E). Together, these findings confirm 

that AVS was well established before pharmaceutical intervention, and provided the basis 

on which further progression, stabilization, or regression could be assessed.

4.2.3 In Vivo Monitoring of AVS Progression did not Reveal 
Significant Treatment Effects

During 6 months of pharmaceutical intervention, AVS progression was monitored using 

MRI. While cusp thickness remained significantly greater in Cholesterol rabbits when 

compared to Control (0.465 ± 0.030 versus 0.388 ± 0.023 mm for Cholesterol and 

Control at 18 months, respectively; n = 30 and 15; P < 0.05; Figure 4.2A) there was no 

significant effect of any treatment group. Similar trends were observed in the data for 

valve orifice area, although they didn’t reach statistical significance; valve orifice area in 

Cholesterol animals was decreased as compared to Control animals, but no significant 

effects of treatment were observed (Figure 4.2B).
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Figure 4.2: In vivo monitoring of AVS does not reveal treatment effect of ARBs, 

alone or in combination with statin therapy. A: Aortic valve cusp thickness was 

measured at 12, 15, and 18 months using in vivo MRI. While cusp thickness in 

Cholesterol animals was significantly increased from Control, there was no significant 

effect of ARB, Statin, or ARB+Statin therapy. B: Valve orifice area was significantly 

decreased in Cholesterol animals as compared to Control, but there was no significant 

effect of ARB, Statin, or ARB+Statin therapy. Data are presented as mean ± SEM. P > 

0.05 (not significant) by 2-way repeated measures ANOVA. ARB, angiotensin receptor 

blocker; AVS, aortic valve sclerosis; MRI, magnetic resonance imaging.
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4.2.4 Histological Analysis of Non-Coronary Cusps Revealed 
Significant Morphological Changes in Response to 
Pharmaceutical Intervention

Although treatments were unable to produce macroscopic valvular changes, we did 

observe several changes within the valve microenvironment. As expected, cusps from 

Control animals showed no signs of lipid infiltration, inflammation, or calcification. 

While lipid infiltration into the fibrosa was present in cusps from all animals fed the 

atherogenic diet, morphometric analysis indicated that only cusps from Statin animals 

had a significantly increased level of lipid when compared to Control (Figure 4.3). 

Macrophage infiltration was robust with significantly increased levels of macrophage 

staining in cusps from Cholesterol, ARB, and ARB+Statin animals when compared to 

Control (Figure 4.4). Interestingly, macrophages in cusps from Cholesterol and ARB

+Statin animals typically concentrated on the surface and in the core of the lesion, while 

macrophages in cusps from ARB animals concentrated only in the core and macrophages 

in cusps from Statin animals concentrated only on the surface (Figure 4.4). Small, 

punctate nodules of calcification were observed in some animals, typically at the base of 

the fibrosa (Figure 4.5). Significantly increased levels of calcium were observed in cusps 

from ARB and ARB+Statin animals as compared to control. In contrast, cusps from 

Cholesterol and Statin animals did not have significantly elevated levels of calcium 

deposition.

4.3 Discussion

The current study examined the effects of an ARB, alone or in combination with statin 

therapy, on the progression of established aortic valve sclerosis. While clinically-relevant 

MRI was unable to detect modulation of disease in vivo, some structural changes were 

observed in the valve cusps ex vivo. When compared to Controls, animals treated with 

statin therapy alone had significantly increased levels of lipid insudation while animals 

from other groups (Cholesterol, ARB, and ARB+Statin) had significantly increased 

macrophage infiltration. More importantly, animals treated with ARBs, alone or in 

combination with statin therapy, had significantly increased levels of calcification.
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Figure 4.3: Lipid insudation is significantly increased in Statin treated animals, but 

not Cholesterol, ARB, or ARB+Statin treated animals. Histological analyses reveal 

extensive thickening of the aortic valve with lipid insudation (indicated by Oil Red O) in 

all groups except Control. Morphometric analysis revealed a significant increase of lipid 

deposition in Statin treated animals as compared to Control. This increase was not 

observed in Cholesterol, ARB, or ARB+Statin treated animals. Representative images 

shown; scale bar = 500 μm. Inset: High-power image of the area indicated by the box; 

scale bar = 100 μm. Each data point represents an individual animal, with the median 

represented by a horizontal line. Statistical significance is indicated by different 

superscripts and determined by Kruskal-Wallis test with Dunns post-hoc test. ARB, 

angiotensin receptor blocker.
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Figure 4.4: Macrophage infiltration is significantly increased in Cholesterol, ARB, 

and ARB+Statin treated animals, but not Statin treated animals. 

Immunohistochemical analyses reveal macrophage infiltration (indicated by RAM11) in 

all groups except Control. Morphometric analysis revealed a significant increase of 

macrophage staining in all animals except those treated with Statins. Representative 

images shown; scale bar = 500 μm. Inset: High-power image of the area indicated by the 

box; scale bar = 100 μm. Each data point represents an individual animal, with the 

median represented by a horizontal line. Statistical significance is indicated by different 

superscripts and determined by Kruskal-Wallis test with Dunns post-hoc test. ARB, 

angiotensin receptor blocker.
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Figure 4.5: Calcification is significantly increased in ARB and ARB+Statin treated 

animals, but not Cholesterol or Statin treated animals. Histological analyses reveal 

varying degrees of calcification (indicated by Oil Red O) in all groups except Control. 

Morphometric analysis revealed a significant increase of calcification in animals who 

received ARBs alone or in combination with Statins. Cholesterol and Statin treated 

animals did not have significantly increased amounts of calcification. Representative 

images shown; scale bar = 500 μm. Inset: High-power image of the area indicated by the 

box; scale bar = 100 μm. Each data point represents an individual animal, with the 

median represented by a horizontal line. Statistical significance is indicated by different 

superscripts and determined by Kruskal-Wallis test with Dunns post-hoc test. ARB, 

angiotensin receptor blocker.
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Despite several successful pre-clinical studies,15,16 clinical trials have consistently shown 

no beneficial effect of statin therapy in the management of AVS.17-19,31 To date, our long-

term dietary cholesterol model30 is the only pre-clinical model which suggests statin 

therapy has limited potential in the treatment of AVS and is the only pre-clinical model 

consistent with prospective human trials.21 As a result, after the failure of statin therapy in 

the treatment of AVS,17-19,21,31 we set out to examine the effects of ARBs, a strategy that 

has been suggested by us and others.32,33 Initial results using ACEIs were conflicting; 

however, two clinical trials studying the effects of ARBs on the progression of AVS are 

currently recruiting, suggesting continued interest in using ARBs to treat AVS 

(ClinicalTrials.gov Identifiers NCT00699452 & NCT01589380).

To our knowledge, the current study is the first to use a pre-clinical model to examine the 

effects of combined ARB and statin therapy in the treatment of AVS. Despite using 

clinically-relevant measures (Figure 4.2) and ex vivo histological analysis (Figures 

4.3-4.5), we did not observe any clinically significant treatment effect of ARBs, alone or 

in combination with statin therapy. Our findings contrast with those of previous work 

which suggested RAS blockade may prevent atherosclerotic changes within the aortic 

valve.24,25 It is important to note, however, that the models used in those studies were 

short-term and therefore could not replicate the slowly progressive nature of clinical AVS. 

Furthermore, neither study was able to show valvular calcification, a hallmark of 

advanced AVS.24,25 The valves in our study displayed varying degrees of calcification 

even before the introduction of therapy (Figure 4.1E), suggesting we initiated therapy in 

the late-stage of the disease process and thereby replicated the clinical practice. Given 

prevailing opinion that pharmaceutical intervention should be administered early,34 it 

remains possible that our intervention was initiated too late to affect the course of the 

disease.

While the current study was unable to demonstrate significant structural changes, 

significant changes in the valvular microenvironment were observed. Consistent with 

previous work done by our lab,21 we observed an inverse relationship between 

macrophage infiltration and lipids. In Statin animals we observed significantly increased 
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lipid deposition when compared to Control animals. Conversely, the Statin group was the 

only one without significantly increased levels of macrophages. This suggests, as we’ve 

argued previously, that the primary role of macrophages in AVS is lipid extraction.21 

Additionally, the localization of macrophages within cusps appeared to change depending 

on the treatment. Macrophages in the cusps of ARB-treated animals were found 

predominantly in the core of the valvular lesion, while macrophages in the cusps of 

Statin-treated animals concentrated on the fibrosa surface. Given recent reports 

suggesting macrophages may increase vascular calcification in a paracrine manner,35 it 

may be important to understand and manage the distribution of macrophages within the 

valvular microenvironment if we are to modulate valve calcification.

The current study suggests that angiotensin II type 1 receptor blockers, alone or in 

combination with statin therapy, may not be a suitable treatment for AVS. While we 

remain cautiously optimistic about ongoing clinical trials, it has become clear that further 

research into the unique mechanisms underlying aortic valve disease is required to 

generate suitable pharmaceutical management.
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Chapter 5

5 General Discussion

5.1 Summary of Results and Conclusions

We have utilized two pre-clinical models to examine the effects of an angiotensin II 

(AngII) type 1 receptor blocker (ARB), olmesartan medoxomil, on the three main classes 

of cardiovascular calcification: arterial calcification, intimal calcification, and calcific 

aortic valve disease. Where appropriate or suggested by evidence, statins were examined 

in conjunction and in combination with ARBs. In vivo and ex vivo techniques were used 

to assess overall disease burden and the extent of calcification including magnetic 

resonance imaging, micro-computed tomography, histology, and immunohistochemistry. 

Interestingly, the ARB olmesartan medoxomil was able to robustly inhibit arterial 

calcification, but showed little effect in halting intimal or valvular calcification (Figure 

5.1). Even when combined with statins, the ARB was unable to inhibit intimal or valvular 

calcification and, at least in the aortic valve, may have promoted its progression. Taken 

together, our results suggest that distinct molecular mechanisms may give rise to arterial, 

intimal, and valvular calcification.

5.1.1 Arterial Calcification

We have provided the first evidence that suggests ARBs as a novel therapy for arterial 

calcification. Using ex vivo micro-computed tomography and histology, we have shown 

that an ARB can robustly inhibit arterial calcification well after the disease process is 

underway. We also provided clues to the underlying molecular mechanisms involving 

osteogenic differentiation of vascular smooth muscle cells (VSMCs) including early 

down-regulation of the typical VSMC marker α-smooth muscle actin and upregulation of 

the osteogenic differentiation marker bone morphogenetic protein-2.

5.1.2 Intimal Calcification

We also examined the effects of an ARB and a statin, alone or in combination, on the 

progression of atherosclerosis and intimal calcification. ARBs may have induced 
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Figure 5.1: An angiotensin II type 1 receptor blocker effectively inhibits arterial 

calcification, but not intimal calcification or calcific aortic valve disease. The 

angiotensin II type 1 receptor blocker (ARB) olmesartan robustly inhibited arterial 

calcification within the medial layer of the artery, but may have only slowed progression 

of intimal calcification. In the aortic valve, the ARB may have promoted the progression 

of calcification.
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significant regression of atherosclerotic lesion area when delivered as monotherapy but 

not when combined with statins. In addition, the progression of intimal calcification may 

have been inhibited by both ARBs and statins, although the lack of longitudinal in vivo 

monitoring means this remains speculative. The effects of ARBs on atherosclerotic lesion 

composition were unclear.

5.1.3 Calcific Aortic Valve Disease

Finally, we examined the effects of an ARB, alone or in combination with a statin, on the 

progression of established aortic valve sclerosis (AVS). While in vivo magnetic resonance 

imaging was unable to detect any demonstrable treatment effects, ex vivo histological 

examination revealed significant structural changes within valve cusps. Interestingly, 

animals treated with ARBs, whether alone or combined with statins, had significantly 

increased levels of calcification in their aortic valve cusps when compared to those from 

control animals (Figure 4.5).

5.1.4 Three Distinct Mechanisms

While arterial calcification was generally thought to be irreversible, inhibiting its 

progression remains the goal of several groups.1-6 We were the first to describe the robust 

inhibition of arterial calcification by an ARB. However, the ARB only inhibited 

calcification of the tunica media. Indeed, a few micro-calcifications were observed within 

atherosclerotic plaques of both ARB-treated and untreated animals (Figure 2.2), 

providing evidence suggesting that ARBs may specifically inhibit arterial calcification of 

the media, and that the mechanisms giving rise to arterial calcification and intimal 

calcification are distinct. The failure of ARBs to inhibit progression of intimal 

calcification (Table 3.1) also supports this theory.

Recently, Speer et al.1 performed an elegant fate mapping study to understand the cell 

types that give rise to calcification of the media. They showed that transdifferentiation of 

resident VSMCs to an osteochondrogenic state was the crucial mediator of arterial 

calcification. More recently, Naik et al.7 have performed a similar fate mapping study 

examining calcification within atherosclerotic plaques. They found 75–88% of 
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osteochondrogenic cells observed in atherosclerotic plaques were derived from VSMCs, 

but they also noted up to 20% were bone-marrow derived. This could provide a clue as to 

the underlying mechanism whereby ARBs inhibit arterial calcification. If ARBs act 

directly on VSMCs to exert their anti-calcification effects, it is possible that the bone-

marrow derived cells are unaffected and able to continue the calcification process. 

However, macrophages in the atherosclerotic plaque have been shown to express the 

AngII type 1 receptor (AT1R) by us (Figure 2.3) and others,8 and AngII acting through 

the AT1R in macrophages has been shown to promote atherosclerosis.9 Therefore, it 

stands to reason that ARBs would also be effective at blocking the pro-calcific effects of 

AngII in bone-marrow derived cells. However, it remains possible that the mechanism 

driving osteochondrogenesis in bone-marrow derived cells is AngII-independent. It is 

also possible that bone-marrow derived cells secrete additional pro-calcific mediators that 

reactivate the osteochondrogenic transition in VSMCs in an AngII-independent manner. 

Clearly, more work needs to be done to understand the mechanisms at play in both 

arterial and intimal calcification.

The same is true for calcific aortic valve disease. Despite the effectiveness of ARBs at 

reducing advanced atherosclerotic lesions (Figure 3.2), they have little or no effect on 

AVS (Figure 4.2). Statins face a similar dilemma when treating atherosclerosis and AVS: 

effective in the former,10-15 but not the latter.16 Although much has been made of the 

strong resemblance of AVS to atherosclerosis, it must be remembered that these processes 

are separate and involve structurally distinct tissues. Arteries involved in atherosclerosis 

are three layered structures with atherosclerotic lesions developing in the thin cellular 

intima and the final clinical result being a lipid filled plaque and plaque instability. The 

aortic valve also has a three-layered structure, but the layer primarily involved in the 

disease process, the fibrosa, is a highly-organized, collagenous structure and the final 

outcome is a thickened, calcified valve that fails to perform its required function.17 

Furthermore, the resident cells are distinct: VSMCs play a role in atherosclerosis while 

valvular interstitial cells (VICs) are present in the valve. VICs, like VSMCs, possess 

osteochondrogenic potential and contribute to calcification.18 Osteogenic differentiation 

of VICs is regulated by many of the same inflammatory factors as VSMCs including C-
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type natriuretic peptide,19 reactive oxygen species,20,21 and transforming growth factor-

β1.22 However, VICs are also regulated by additional factors such as matrix stiffness23 

and mechanical stress.24 Clearly, a multitude of factors are involved in the progression of 

calcific aortic valve disease and it remains unclear whether the mechanisms underlying 

calcification of VICs is distinct from that observed in VSMCs. Indeed, the National Heart 

and Lung and Blood Institute Aortic Stenosis Working Group in 2011 recommended that 

further research be done to understand the basic biology of calcific aortic valve disease.25

5.2 Clinical Implications

The most important clinical implication of this work is the suggestion that ARBs may 

robustly inhibit arterial calcification. To date, there are no methods for pharmaceutical 

intervention of arterial calcification, a disease that may affect 30–50% of asymptomatic 

patients26 and is associated with increased morbidity and mortality,27-30 increased risk of 

amputation,31 and may lead to necrosis or ulceration of the skin.32,33 Despite an 

incomplete understanding of the underlying mechanisms leading to inhibition, the fact 

that ARBs are already approved for the treatment of hypertension means that they could 

rapidly move through clinical trials to assess arterial calcification. The evidence put 

forward by us and others34-37 should provide the impetus to explore the role of ARBs in a 

clinical setting.

A potential negative interaction between ARBs and statins is another important clinical 

implication of this work, since hypertension and hypercholesterolemia frequently coexist 

in patients.38,39 According to the United States National Health and Nutrition Examination 

Surveys from 1988-2010, more than 60% of hypertensive patients were also 

hypercholesterolemic.40 Over that same period, dual intervention for hypertension and 

low density lipoprotein (LDL)-cholesterol rose from 5.0 to 30.7%. It is unclear what 

proportion of prescribed antihypertensives were ARBs in this survey; however, another 

study has shown the proportion of patients taking ARBs to be 17–22.6%.41 Clearly, a 

significant number of patients are currently prescribed ARBs and statins which may be 

preventing some of the anti-atherosclerotic effects each drug confers when delivered as 

monotherapy.
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The renin-angiotensin system (RAS) has been the primary focus of several groups 

searching for pharmaceutical interventions for the clinical management of AVS.42-45 

Indeed, at the time of writing, two clinical trials were recruiting patients to examine the 

effects of ARBs. ROCK-AS (the potential of candesartan to retard the progression of 

aortic stenosis), by Kupari et al., is examining the role of candesartan on inflammation, 

calcification, lipid deposition, and fibrosis of the aortic valve (ClinicalTrials.gov 

Identifier: NCT00699452). ALFA (a randomized trial of Angiotensin receptor bLocker, 

Fimasartan, in Aortic stenosis), by Kim et al., is examining the effects of fimasartan on 

change in exercise capacity and other symptoms of AVS (ClinicalTrials.gov Identifier: 

NCT01589380). ALFA is also examining classical hemodynamic measures of AVS 

including aortic jet velocity and mean pressure gradient across the valve. While we 

remain cautiously optimistic about these ongoing clinical trials, our pre-clinical model 

suggests that ARBs may not be suitable for the prevention of AVS. They also provide 

impetus for a deeper examination of the molecular mechanisms underlying valvular 

calcification within the complex atherosclerotic milieu that characterizes AVS.

5.3 Limitations

The conclusions drawn in this work are based on pre-clinical models, which are useful 

tools for understanding mechanisms of disease processes that are difficult or impossible 

to study in humans. However, they are still based on animals, and may not be directly 

translatable to clinical practice. It should also be noted, with regard to Chapter 2, that the 

role of Vitamin D2 in the progression of arterial calcification in humans remains 

controversial.46,47

Often, pre-clinical treatment studies initiate the potential therapy alongside the disease-

initiating state.48,49 If this experimental design were theoretically applied to a clinical 

setting, it would involve treating children from birth. Others use an atherogenic diet that 

far exceeds any physiological norm (1 or 2% cholesterol), creating disease states that are 

morphologically and histologically dissimilar to the human condition and akin to familial 

hypercholesterolemia or lipid storage disease (>1000mg/dL plasma cholesterol).48,50-52 

Neither experimental paradigm is ideal since cardiovascular disease is developed slowly, 
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over the course of a lifetime and treatment is not initiated until the disease process is well 

established. Our work was done with painstaking commitment to replicate the clinical 

setting. Animals were administered a low-level cholesterol diet over a long time period 

and treatment was initiated well after the disease was underway. As an example, rabbits 

in our studies had approximately 75% of their aortic surface covered by atherosclerotic 

lesion and a 50% increase in the thickness of their aortic valve before treatment was 

initiated. In contrast, treatment studies by other groups have described atherosclerotic 

lesion areas in the range of 12% to 18% at endpoint,53,54 and studies that have identified 

regression of AVS have observed a reduction in valve thickness of only 30%.55,56 The 

experimental design is absolutely crucial when performing pre-clinical studies, and ours 

has been shown to remain consistent with clinical trials.16,57

The effect of statins in our model - or, indeed, in any animal model - also deserves 

attention. Statins, or 3-hydroxy-3-methylglutaryl Co-enzyme A (HMG-CoA) reductase 

inhibitors, lower cholesterol levels by inhibiting HMG-CoA reductase, the rate limiting 

enzyme in endogenous cholesterol production. Many animal models, including those in 

rabbits and rats, are based on exogenous cholesterol; they induce high cholesterol through 

an enriched diet. It is understandable, therefore, to question the effectiveness of a drug 

that inhibits endogenous cholesterol production when experimental models have very 

little endogenous cholesterol and induce disease via exogenous cholesterol. However, 

statins are well known to have anti-inflammatory pleiotropic effects that are unrelated to 

cholesterol lowering.58-61 Since our model is primarily exogenous cholesterol, we are able 

to study the pleiotropic effects of statins in isolation from their cholesterol lowering 

effects.

One of the chief methodological limitations in this work is the lack of blood pressure 

data. Obviously, when examining the effects of blood pressure lowering medication it 

would be prudent to assess the effects on blood pressure. However, measuring blood 

pressure in rabbits is notoriously difficult, in contrast to the simplicity of mice and man. 

Previous studies using an identical dose of olmesartan medoxomil in rabbits measured 

blood pressure invasively for 30 minutes using the SURFLO Flash catheter at the study 
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endpoint.62 While it is not noted in their manuscript, rabbits surely would have been 

anesthetized, however slightly, which undermines the reliability of pressure 

measurements. That being said, they observed no change in blood pressure after 4 weeks 

of treatment. We suspect that the effects of ARBs we observed are independent of its 

effect on blood pressure, but can’t be certain without quantitative data.

Another methodological limitation is the lack of hemodynamic data in relation to the 

aortic valve. Clinical severity of aortic valve disease is assessed using an array of 

hemodynamic and natural history data including aortic jet velocity, mean pressure 

gradient, and valve orifice area.63 In rabbits, standard Doppler echocardiography is used 

to assess the progression of aortic valve disease.64-66 Ultrasonic backscatter has been used 

with success in humans,67,68 rats,69 and rabbits70 to measure the echogenicity of the aortic 

valve as an indicator of disease severity. These methods have also been used to assess the 

effects of an Apo-A1 mimetic peptide,55,56 the angiotensin converting enzyme inhibitor 

(ACEI) rampril,43 as treatments of aortic valve disease. While these methods would have 

been a valuable addition to our work, we did not have the required facilities or technical 

expertise to perform these measurements. However, we did use MRI to monitor valve 

thickness and valve orifice area in our model. This showed limited success in detecting 

the presence of aortic valve disease, but was not sufficiently sensitive to detect changes as 

a result of treatment.

5.4 Conclusions

This work provides evidence that ARBs robustly inhibit arterial calcification, a disease 

commonly associated with advanced age, chronic kidney disease (CKD), and diabetes 

mellitus, and is the first to suggest ARBs as a novel treatment option for those at risk for 

cardiovascular calcification. It also suggests that ARBs may not be beneficial for those at 

risk for intimal or valvular calcification which are more commonly associated with an 

atherosclerotic milieu. These disparate results suggest that the classes of cardiovascular 

calcification are distinct from one another and provides impetus to further examine the 

underlying molecular mechanisms at play in these debilitating disease processes.
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5.5 Future Directions

Recognizing the fact that there is currently no pharmaceutical therapy available to 

patients and the robust inhibitory effect of ARBs we observed in our pre-clinical model, 

arterial calcification should be the primary focus of future research. To date, there have 

been no prospective, clinical trials specifically examining the role of RAS blockade on 

arterial calcification. Such a trial would be desirable, particularly if it focused on patients 

who are prone to rapid development of arterial calcification. To test the applicability of 

my results, we believe a prospective, randomized trial examining the effects of an ARB 

on arterial calcification in patients with Stage 3 CKD (glomerular filtration rate of 30-59 

mL/min) would be valuable. Exclusion criteria should include subjects on dialysis, 

subjects with a recent or scheduled kidney transplant, subjects who are pregnant or 

planning to become pregnant in the next 18 months, and subjects who are currently 

prescribed ARBs, ACEIs, or direct renin inhibitors. Patients would be randomly assigned 

to receive either placebo or olmesartan medoxomil (20 mg/day). Primary outcome 

measures should be the change from baseline in arterial calcification after 18 months, 

determined using spiral computed tomography. Secondary outcomes could include 

calcification of the superficial femoral arteries and/or arterial stiffness as measured by 

pulse wave velocity. A clinical trial by Toussaint et al.71 described the extent of 

progression of arterial calcification in CKD patients over a period of 18 months and 

found the difference from baseline for the entire cohort was +119.6 Hounsfield Units 

(HU). Using that number, as well as the typical standard deviation they observed (± 250 

HU), a sample size of 138 patients (69 each receiving placebo and olmesartan) would be 

required for 80% power.

Many questions remain about the underlying molecular mechanisms leading to 

cardiovascular calcification. Experimentally, arterial calcification is the most 

straightforward of the three diseases to study, at least from a molecular standpoint, and 

thus should represent the immediate focus of future in vitro studies. At its most basic 

level, arterial calcification is the calcification of VSMCs in an environment made up 

primarily of VSMCs, with some paracrine factors from adventitial myofibroblasts and 
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endothelial cells in the intima. In contrast, atherosclerosis and AVS are each characterized 

by a complex atherosclerotic milieu. In addition to resident VSMCs or VICs, a typical 

lesion may also contain macrophage foam cells, lymphocytes, and/or mast cells; even 

endothelial cells have been shown to influence the process in a paracrine manner.72 This 

complexity makes studying atherosclerosis and AVS in vitro extremely difficult. 

Therefore, a deeper understanding of the mechanisms driving VSMC transdifferentiation 

in arterial calcification could help focus attention on the most important aspects of that 

atherosclerotic milieu with regard to intimal or valvular calcification.

Ultimately, much more work needs to be done to understand the basic biology of 

cardiovascular calcification and its clinical implications. Future research should focus on 

areas with the potential for greatest impact, namely, clinical studies examining the effects 

of ARBs on arterial calcification and further investigating the biology underlying all three 

disease processes.
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Appendices

Supplementary Results

Arterial calcification is detected after eight weeks on the atherogenic 

diet
To assess the state of disease progression before pharmaceutical intervention, a subset of 

Control and Cholesterol animals were sacrificed after eight weeks on the atherogenic 

diet. Focal areas of calcification were detected by micro-CT in one Cholesterol animal 

but did not reach a statistically significant volume (non-detectable versus 0.58 ± 0.58 % 

calcified tissue in Control and Cholesterol, respectively; n = 3/group; P = ns; 

Supplementary Figure 2.1A). Subsequent histological examination revealed calcification 

in a second Cholesterol animal; these regions - reflecting calcification at the initial stages 

- were too small (~30 µm) to have been identified with the micro-CT protocol we 

employed. In all cases, calcification was localized to the IEL and extended outward to the 

media (Supplementary Figure 2.1B), typical of arterial calcification and Mönckeberg 

sclerosis.

128



Supplementary Figure 2.1: Arterial calcification, localized to the IEL and medial 

layer, is present after 8 weeks on the atherogenic diet. (A) Maximum intensity 

projections, derived from micro-computed tomography (CT) scans, and corresponding 

quantitation (n = 3/group) show calcification is widespread in one Cholesterol animal, but 

nonexistent in Control animals. Scale bar = 4 mm. One sample t-test: P = ns. (B) 

Histological examination of calcium (Alizarin Red S, top) and calcium salts (Von Kossa, 

bottom) reveals they are localized primarily to the internal elastic lamina (IEL) and 

medial layer, typical of arterial calcification. Scale bar = 500 µm. ND = none detected. 

Arrows indicate calcification.
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Supplementary Figure 2.2: Treatment with the angiotensin II type 1 receptor 

blocker has no effect on systemic disease parameters. (A) Total plasma cholesterol 

was significantly increased in Cholesterol animals as compared to Control, but was 

unaffected by ARB treatment. One-way repeated measures ANOVA with Tukey’s post-

hoc test: P < 0.001. (B) Levels of inorganic phosphate were affected neither by the 

atherogenic diet nor ARB therapy. Kruskal-Wallis test with Dunns post-hoc test: P = ns.
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Supplementary Figure 2.3: Characterization of calcified regions indicates an 

osteoblast-like phenotype. Immunohistochemical characterization of calcified regions 

(arrows) and adjacent sections reveals colocalized expression of the osteogenic growth 

factor bone morphogenetic protein 2 (BMP2), the bone protein and osteoblast-specific 

marker osteocalcin (OCN), and dramatic upregulation of the angiotensin II type 1 

receptor (AT1R). This data suggests an osteoblast-like phenotype within the calcified 

areas. Scale bar = 500 µm.
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Supplementary Figure 2.4: Calcified regions of the media are not associated with 

smooth muscle cells or macrophages. Examination of α-smooth muscle actin (α-SMA), 

a marker of smooth muscle cells, reveals dramatic downregulation in calcified regions 

(arrows). Interestingly, α-SMA is also downregulated in some non-calcified areas. 

Furthermore, macrophages are localized specifically to atherosclerotic plaques, and are 

not associated with areas of calcification. Scale bar = 500 µm.
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Supplementary Figure 4.1: Experimental design. A pre-clinical model was used to 

investigate the effects of an angiotensin II type 1 receptor blocker (ARB), alone or in 

combination with a statin, on intimal calcification and atherosclerosis. Male New Zealand 

White rabbits were fed either regular chow (Control) or an atherogenic diet to induce 

atherosclerosis (Cholesterol). After 12 months, a subset of Control and Cholesterol 

rabbits were euthanized for pathological assessment of disease progression. The 

remaining rabbits continued on an atherogenic diet and received either no 

treatment (Cholesterol), olmesartan medoxomil (ARB), atorvastatin calcium (Statin), or a 

combination of both drugs (ARB+Statin) for an additional 6 months.
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Supplementary Table 4.1: Physiological data

Control Cholesterol ARB Statin ARB+Statin

Body weight (kg)Body weight (kg)Body weight (kg)Body weight (kg)Body weight (kg)Body weight (kg)

Baseline 1.91 ± 0.02

Month 3 2.84 ± 0.03 3.04 ± 0.04*

Month 6 3.25 ± 0.07 3.37 ± 0.04

Month 9 3.31 ± 0.08 3.51 ± 0.04*

Month 12 3.48 ± 0.09 3.51 ± 0.04

Month 15 3.64 ± 0.13 3.59 ± 0.04 3.56 ± 0.08 3.73 ± 0.09 3.72 ± 0.08

Month 18 3.65 ± 0.14 3.57 ± 0.06 3.66 ± 0.08 3.83 ± 0.09 3.73 ± 0.05

Total plasma cholesterol (mg/dL)Total plasma cholesterol (mg/dL)Total plasma cholesterol (mg/dL)Total plasma cholesterol (mg/dL)Total plasma cholesterol (mg/dL)Total plasma cholesterol (mg/dL)

Baseline 115.2 ± 4.0

Month 3 76.1 ± 11.5 602.7 ± 45.9****

Month 6 30.4 ± 8.4 731.3 ± 65.1****

Month 9 48.1 ± 6.0 719.2 ± 64.1****

Month 12 23.1 ± 3.6 614.9 ± 58.4***

Month 15 26.2 ± 3.7 502.7 ± 94.1* 499.7 ± 118.8* 410.1 ± 59.5 514.3 ± 78.5*

Month 18 20.0 ± 2.9 400.2 ± 107.2 498.2 ± 122.2* 328.6 ± 46.3 517.0 ± 89.6**

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.

Data are mean±SEM
*Indicates significantly different from Control (P<0.05).
**Indicates significantly different from Control (P<0.01).
***Indicates significantly different from Control (P<0.001).
****Indicates significantly different from Control (P<0.0001).
All analyses used a Mann-Whitney test or Kruskal-Wallis test with Dunn’s post-hoc test, as 
appropriate.
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