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ABSTRACT 

 

Mouse F9 cells differentiate into primitive endoderm (PrE) when treated with retinoic 

acid (RA) and into parietal endoderm (PE) following subsequent treatment with dibutyryl 

cAMP. Wnt6 is up-regulated in PrE cell, and although it is sufficient to induce 

differentiation by signaling through the canonical WNT/β-catenin pathway, the 

mechanism by which the Wnt6 gene is regulated is not known. In addition to WNT 

signaling, PrE differentiation is accompanied by an increase in reactive oxygen species 

(ROS). ROS have been implicated in regulating the canonical WNT/β-catenin signaling 

pathway through Nucleoredoxin (NRX), but whether they are sufficient to induce 

extraembryonic endoderm in vitro is not known. In F9 cells the overexpression of Gata6 

or Foxa2, which are two integral members responsible for patterning extraembryonic 

endoderm, induces biochemical and morphological markers of PrE by directly up-

regulating the expression of Wnt6, and activating the canonical WNT/β-catenin signaling 

pathway. Treating cells with H2O2, or knocking down the expression of Nrx also activates 

canonical WNT/β-catenin signaling leading to the induction of these markers. Treating 

cells with antioxidants, however, impedes the ability of RA to induce PrE. Furthermore, 

and regardless as to how F9 cells are induced, these PrE cells remain competent and 

differentiate into PE when treated with db-cAMP. Together, these results indicate that 

Gata6 and Foxa2 are responsible for initiating the canonical WNT/β-catenin pathway in 

F9 cells and ROS, impinging on NRX, regulate the pathway necessary for PrE 

differentiation. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Early mouse embryogenesis 

 

In mammals, the fertilization of the egg occurs in the oviduct through complex 

processes that are not yet fully understood. Following successive rounds of cell divisions, 

a blastocyst forms and around the time of implantation, it is comprised of three cell layers: 

the epiblast, derived from the inner cell mass (ICM), contains embryonic stem (ES) cells 

expressing Oct4 and Nanog [1, 2] that give rise to the entire fetus (embryo proper); the 

trophectoderm (TE), which contains trophoblast stem (TS) cells expressing Cdx2 [3] that 

gives rise to the placenta; and Gata6 and Foxa2 expressing primitive endoderm (PrE) [4, 

5], which eventually forms the extraembryonic layers of the parietal and visceral 

endoderms (PE and VE, respectively; Fig. 1.1). The specification of these 

extraembryonic tissues (TE and PrE), the first to occur during embryogenesis and well 

before any cell fate decisions take place within the embryo proper, is of paramount 

importance for normal embryonic development [6-8]. The cells of the TE, in direct 

contact with the ICM, attaches to the uterine epithelium to initiate implantation [7] and 

the placenta forms shortly thereafter [9]. The PrE further differentiates into PE, which 

migrates beneath the TE to form the parietal yolk sac and the VE, which forms the 
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Figure 1.1 Mouse early development. The extraembryonic endoderm (primitive, parietal, 

and visceral endoderm) is derived around the time of implantation from embryonic stem 

cells of the inner cell mass of the blastocyst. Formation of the extraembryonic endoderm, 

which later contributes to the yolk sac, is necessary for the proper development of the 

epiblast. The trophoblast stem cells play an important role in the proper implantation and 

formation of the placenta. Inner cell mass (ICM); ES (embryonic stem); TS (trophoblast 

stem); E (embryonic days post-coitus); PrE (primitive endoderm); PE (parietal endoderm); 

VE (visceral endoderm).  Modified from Boiani and Scholer (2005).          
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visceral yolk sac [6]. The proper segregation and development of the extraembryonic 

tissues are crucial for the survival and patterning of the embryo proper [10, 11]. Given 

that these tissues arise early during development and are responsible for subsequent 

developmental processes, elucidating the signaling events responsible for establishing 

these lineages will be instrumental in better understanding the mechanisms responsible 

for patterning the mammalian embryo. 

 

1.2 F9 teratocarcinoma cells as a model for extraembryonic endoderm 

differentiation 

 

In mouse development, the differentiation of the ICM first to PrE and then to PE 

is the earliest epithelial-to-mesenchymal transitions (EMTs) in mouse development. An 

EMT, a process by which cells lose their polarity and cell-cell adhesion, and gain 

migratory and invasive properties, have been shown to be critical for the development of 

tissues and organs in the developing embryo [12]. Cells of the extraembryonic lineage are 

essential for supporting the growth of the fetus in utero and are sources of signals 

required for the normal development of the embryo [13]. Given the technical difficulties 

in studying the differentiation of extraembryonic endoderm (ExE) in vivo, alternative 

strategies have been adopted. The first relies on isolation of primary cell cultures from 

pre- or post-implanted tissues, whereas the more favored and second approach relies on 

established lines of ES or embryonal carcinoma (EC) cells.  
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 The F9 teratocarcinoma EC line was established by transplanting a 6 day old male 

embryo into the testis of a 129/Sv mouse [14]. F9 cells grow in culture as tightly packed 

colonies that appear homogenous [15]. The addition of retinoic acid (RA) to the culture 

induces morphological and biochemical changes that result in the differentiation of cells 

into PrE [15]. PrE cells remain competent and can be induced to differentiate into PE and 

complete the EMT by subsequent treatment with dibutyryl cyclic adenosine 

monophosphate (db-cAMP) or cAMP elevating agents [16]. PrE and PE cells that 

differentiate from the parental F9 cells express and secrete many of the same factors 

found in extraembryonic tissues of the developing mouse embryo [10, 17]. These factors 

activate numerous signal transduction pathways including those that rely on the Wnt 

ligand and β-catenin [18].  

 

1.3 WNT signaling pathways 

 

 Wnt genes were first identified in Drosophila [19] and in mammals, there are 19 

Wnt genes all encoding secreted lipid-modified glycoproteins [20, 21]. In mouse, Wnts 

are first detected in the ICM and the cells surrounding the blastocyst cavity shortly after 

fertilization. That their expression continues throughout gastrulation, organogenesis, and 

into adult life underscores their involvement in a number of developmental processes [22-

24]. Despite the presence of Wnts during the pre-implantation stages, the signaling 

pathway may not be active; active β-catenin is not detected at the pre-implantation stages 
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[25], however, recent evidence suggests that the first active WNT signaling may occur at 

the time of implantation during PrE differentiation [18]. 

 Historically, WNTs have been grouped into two classes based on their activity in 

in vitro and in vivo assays: canonical and non-canonical WNTs. The canonical WNT/β-

catenin signaling pathway, involved in the regulation of cell differentiation, proliferation 

and self-renewal of stem and progenitor cells, is conserved from nematodes to mammals 

[26-28]. Under normal circumstances, the pathway is activated by a secreted member of 

the WNT family, serving as a ligand for one or more members of a group of seven-

transmembrane Frizzled (FZD) receptors [4]. In the absence of WNT, a degradation 

complex composed of glycogen synthase kinase-3β (GSK-3β), casein kinase 1α, Axin, 

and adenomatous polyposis coli (APC), targets β-catenin for phosphorylation, 

ubiquitination, and ultimately proteasomal degredation. In the presence of WNT, 

however, the interaction between WNT, FZD, and a co-receptor lipoprotein-related 

protein 5/6 (LRP5/6), activates one or more of the Dishevelled (DVL) cytoplasmic 

phosphoproteins, which recruits Axin away from the destruction complex, which now is 

no longer active. This inactivation allows cytoplasmic β-catenin levels to increase. β-

catenin is now positioned to translocate to the nucleus, where with T-cell factors-

lymphoid enhancer factors (TCFs-LEFs) serves as a transcriptional co-activator of many 

target genes (Fig. 1.2). 

 As noted above, not all WNTs are involved in the canonical signaling pathway; 

two β-catenin independent or non-canonical pathways also utilize FZD and/or DVL. In 

the planar cell polarity pathway (PCP), the binding of WNT to FZD recruits DVL to the 

plasma membrane, which results in the activation of the Jun-N-terminal Kinase-Rho-Rac 
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Figure 1.2. Canonical WNT/β-catenin signaling pathway. (A) In the absence of a Wnt 

signal, a protein complex comprised of Axin, adenomatous polyposis coli (APC), and 

Glycogen Synthase Kinase-3β (GSK3) initiates the phosphorylation of β-catenin. 

Phosphorylated β-catenin is then ubiquitinated (Ub) and targeted for degradation. (B) 

When present, the Wnt ligand interacts with its receptor Frizzled and a co-receptor 

lipoprotein-related protein 5/6 (LRP5/6) to recruit and activate the phosphoprotein 

Dishevelled (Dvl). Active Dvl prevents the degradation complex from forming thereby 

allowing cytoplasmic levels of β-catenin to increase. β-catenin translocates to the nucleus, 

where it interact with transcription factors of the T-cell/lymphoid enhancing factor family 

(TCF), to activate expression of target genes. Modified from Gordon and Nusse (2006). 
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 pathway. This activation is necessary to induce the changes to the cytoskeleton that are 

needed by cells during gastrulation [29-31]. The second or least understood non-

canonical WNT-Calcium pathway involves the activation of FZD, G-proteins, 

calcium/calmodulin-dependent-kinase II, and protein kinase C [32], and much like the 

PCP pathway, seems to play a fundamental role in body axis specification and cellular 

movements during embryogenesis [33, 34].  

 

1.4 Reactive oxygen species 

 

 In addition to classical signaling pathways, recently the impact of other factors 

has been shown to have important roles during early mouse embryogenesis. Reactive 

oxygen species (ROS), such as hydrogen peroxide (H2O2), hydroxyl radical (HO-), and 

superoxide anion (O2
-), consist of radical and non-radical oxygen species. Historically, 

ROS are considered by-products from the incomplete reduction of oxygen through 

cellular respiration resulting in oxidative stress. This oxidative stress results in ROS-

mediated damage of nucleic acids, lipids, and proteins, and has been implicated in age-

related and vascular diseases like neurodegeneration and atherosclerosis, respectively 

[35-38]. Although ROS are known for their deleterious effects on various targets, 

convincing studies have shown that the specific production of ROS, especially by 

membrane bound NADPH oxidases (NOX), is beneficial where the products are used for 

a variety of physiologically and developmentally relevant purposes [39].  
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1.5 NADPH oxidase  

  

 NADPH oxidase or Nox proteins are membrane-associated, multi-unit enzymes 

that catalyze the reduction of oxygen using NADPH as an electron donor. Nox proteins 

produce O2
- radicals via a single electron reduction. Previous studies have reported on 

Nox involvement in a respiratory burst in phagocytes of the innate immune system [40]. 

Over the last decade, however, NOX family members and the ROS they produce have 

been identified as contributors to many important signaling pathways [41]. In mammals, 

the NOX family consists of isoforms 1-5, and Dual oxidase (DUOX) 1 and 2 [42-48]. 

Structurally, all of the NOX members contain both transmembrane and cytosolic domains, 

and share many of the regulatory subunits necessary for their activities [41]. A detailed 

review of Nox enzymes by Brown and Griendling [41] discuss recent literature on 

distribution, localization, and activation. For the purpose of my thesis, I will focus on 

Nox4, as outlined below. 

 

1.6 NOX4 

  

 NOX4 originally described as Renox from its expression levels in the kidney, is 

unique among the catalytic NOX subunits, since it only requires the membrane subunit 

p22phox for ROS-producing activity (Fig. 1.3) [49]. Unlike NOX1, 2, and 3 whose 

activity depends on the presence of activator or organizer subunits [50] NOX4 is active in 

cells that do not express these cytoplasmic subunits [51]. Since its discovery in the 
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Fig. 1.3. NOX4 produces hydrogen peroxide. Oxidase activity occurs when NADPH 

binds to Nox on the cytosolic side and transfers electrons to FAD and then to oxygen (O2) 

on the outer membrane surface, resulting in oxygen anion (O2
-) formation. Since O2

- is 

highly unstable, hydrogen peroxide (H2O2) is formed rapidly. The transmembrane subunit 

p22phox associates with the catalytic Nox4 subunit regardless of enzymatic activity. N: 

amino-terminus; C: carboxy terminus; COOH: carboxylic acid; FAD: flavin adenine 

dinucleotide; NADPH: nicotinamide adenine dinucleotide phosphate. Modified from 

Brown and Griendling (2009).  
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 kidneys, Nox4 has been shown to be expressed in endothelial cells, fibroblasts, and 

embryonic stem cells [52-54]. The observations that Nox4 is an inducible NOX, that its 

ability to produce ROS in the form of H2O2 is proportional to NOX4 protein expression 

[49], and its ubiquitous tissue distribution compared to other NOX homologues [55], has 

implicated NOX4 as the prime candidate for my thesis research. 

 

1.7 NRX: The link between ROS and WNT 

 

 It has been recently reported that when F9 cells are treated with RA to induce 

differentiation to PrE, there is an accompanied increase in ROS levels and in the absence 

of RA, F9 cells treated with H2O2 differentiate to PrE [56]. This work also highlighted 

the importance of ROS in the differentiation process as reducing ROS levels by using 

antioxidants attenuated differentiation [56]. The mechanism(s) by which ROS act on PrE 

differentiation is/are not known, but evidence from other models suggests the 

involvement of Nucleoredoxin (NRX). Amino acid sequence comparisons indicate that 

NRX is part of the Thioredoxin (TRX) family of redox sensor proteins [57]. TRX, a 

ubiquitously expressed and evolutionarily conserved protein, catalyzes NADPH-

dependent reductions of disulfide bridges and functions as a disulfide oxidoreductase [57]. 

Under oxidizing conditions, the thiol functional group on the two cysteine residues form 

a disulfide bridge capable of changing protein function or modulating protein-protein 

interactions [58].  
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 Evidence from whole-mount in situ hybridization studies using mouse embryos 

show strong NRX expression in growing limb buds and somites [57], but nothing until 

our report was known regarding a role for NRX in ExE formation [59]. The inaugural 

report by Funato et al., using NIH3T3 cells, showed that canonical WNT/β-catenin 

signaling is redox regulated resulting from the interaction between NRX and DVL [60]. 

The observation that the interaction between NRX and DVL increases under reduced 

conditions and decreases when subjected to oxidizing conditions suggests the redox state 

of the cell regulates these signal transduction events [60]. Under reducing conditions, the 

interaction between NRX and DVL augments the negative regulation of β-catenin in the 

WNT pathway via the destruction complex, while under oxidizing conditions NRX 

dissociates from DVL, allowing the latter to destabilize the destruction complex in the 

presence of a WNT ligand, leading to β-catenin dependent gene activation [60].  

 

1.8 Objectives of study and hypotheses 

 

 The goal of this study was to investigate whether the canonical Wnt signaling 

pathway is involved in the differentiation of ExE. As mentioned earlier in relation to the 

mouse model system, ExE differentiation is the first EMT to occur during mouse 

development. Since this EMT occurs in utero at the peri-implantation stage of 

development, I used the F9 model cell line to investigate how this process occurs in vivo. 

RA-induction of F9 cells mimic morphological and biochemical characteristics of 

primitive endoderm. Since RA induces many target genes ultimately leading to canonical 
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WNT/β-catenin signaling necessary for PrE differentiation [18], I hypothesized that 

Gata6 and Foxa2, two regulators of extraembryonic endoderm, act in a positive fashion 

during these inductive events. Furthermore, the noted increase in ROS induced by RA 

leading to PrE and its cytosolic source led to the additional hypothesis that NOX proteins 

played a role in ExE differentiation [56]. Pre-treating cells with DPI, a NOX inhibitor, 

attenuated PrE formation [56]. Lastly, I tested the hypothesis that canonical WNT/β-

catenin signaling which is obligatory for ExE formation [56], is influenced by crosstalk 

imparted by ROS and provide evidence that this influence is dependent on NRX. 

Together, this new data provide the requisite foundational studies required to address 

questions pertaining to WNT signaling and ExE formation in vivo. 
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CHAPTER 2 

GATA6 AND FOXA2 REGULATE WNT6 EXPRESSION DURING 

EXTRAEMBRYONIC ENDODERM FORMATION 

 

2.1 Introduction 

 

2.1.1 Extraembryonic endoderm 

 

In mouse development the differentiation of cells in the inner cell mass (ICM) to 

primitive and then to parietal extraembryonic endoderms (PrE and PE, respectively), is 

one of the earliest epithelial-to-mesenchymal transitions (EMTs) [1, 2].  Cells of the 

extraembryonic lineage are essential for supporting the growth of the fetus in utero and 

are sources of signals required for the normal development of the embryo [3, 4].  The F9 

teratocarcinoma cell line is an ideal model to study how extraembryonic endoderm (ExE 

or XEN) differentiates in vitro.  The addition of retinoic acid (RA) to these cells induces 

morphological and biochemical changes, leading to the formation of PrE [5].  PrE cells 

remain competent and can be induced to differentiate into PE and complete the EMT by 

subsequent treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP) [6].  

Gene profiling studies on F9 cells have shown that RA regulates the expression of many 

genes [7, 8].  Furthermore, our lab and others have reported on specific proteins that are 
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sufficient to induce cells to form PrE [9, 10], and many of these are linked to the 

canonical WNT/β-catenin signaling pathway [11-13].   

 

2.1.2 Canonical WNT signaling 

 

WNTs are secreted glycoproteins that are involved in a plethora of developmental 

processes [14-17].  Wnt expression is first detected in the ICM and in cells surrounding 

the blastocoele cavity, [18-20].  In humans, one or more of the 19 different WNTs are 

expressed normally throughout gastrulation, organogenesis, and into adulthood, but they 

can also be expressed inadvertently, as evident in a variety of dissimilar cancers [21-23]. 

Historically, WNTs have been classified based on their ability to signal through either the 

canonical β-catenin or non-canonical pathways.  The canonical WNT pathway is 

activated when a WNT ligand binds to one of a group of seven-transmembrane Frizzled 

(FZD) receptors [2].  The pathway involves a complex of proteins that are regulated by 

post-translational modifications.  In the absence of WNT, β-catenin is recruited to a 

destruction complex of proteins including APC and AXIN, where it is phosphorylated by 

GSK-3β and CK1γ.  Phosphorylation primes  β-catenin for ubiquitination, leading to its 

degradation in a proteasome-dependent manner.  When WNT is present, however, it 

binds to its FZD receptor and LRP5/6 co-receptor, which recruits the multi-domain 

containing protein Dishevelled (DVL) to the plasma membrane where it binds to FZD.  

GSK-3β and CK1γ now phosphorylate LRP5/6, which together with DVL facilitates the 

translocation and binding of AXIN to DVL and LRP5/6.  AXIN can no longer participate 
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as part of the destruction complex, allowing β-catenin to accumulate in the cytoplasm.  

Subsequent translocation of β-catenin into the nucleus facilitates its interaction with 

TCF/LEF transcription factors to impart changes in gene expression.  

 

2.1.3 Non-canonical WNT signaling 

 

In the case of either the planar cell polarity (PCP) or WNT/Ca2+ non-canonical 

pathways, signaling occurs via WNT, FZD and DVL, but further downstream events are 

independent of β-catenin [24].  In the PCP pathway, WNT binding to FZD recruits DVL 

to the plasma membrane, which results in the activation of Rho-Rac-JNK pathway.  This 

activation is necessary to induce the changes to the cytoskeleton that are needed for 

coordinated cell movement [25-27].  In the WNT/Ca2+ pathway, the activation of FZD, 

Knypek, Ror2, and G-proteins, trigger downstream effectors including 

calcium/calmodulin-dependent kinase IIα, and PKC [24]. Much like the PCP pathway, 

the WNT/Ca2+ pathway influences cell polarity, cell adhesion, cell shape, as well as the 

nuclear factor of activated T-cells (NF-AT) [14, 28, 29].  The involvement of the 

WNT/Ca2+ pathway during ExE differentiation is not well understood, but there is 

evidence that p38 MAPK activation in F9 cells engineered to express rat FZD2, occurs in 

a DVL-independent manner following WNT5a stimulation [30].  In contrast, the 

canonical WNT and the PCP signaling pathways are known to play an important role 

during PrE differentiation.   
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2.1.4 Primitive endoderm differentiation 

 

RA treatment of P19 cells activates RhoA, Rac1, and JNK in the PCP pathway, 

which is sufficient to induce PrE differentiation [31].  RA also up-regulates the 

expression of Wnt6 in F9 cells, which activates the canonical β-catenin pathway, leading 

to PrE formation [12]. The same is true for WNT3a, when applied to F9 cells ectopically 

expressing rat FZD1 [32].  Although the link between RA and the differentiation of ExE 

in vitro is clear, that between RA and WNT is not.  Towards that end and before 

implementing in vivo studies, we decided to elucidate the mechanism(s) responsible for 

the RA-dependent induction of Wnt6 that initiates PrE formation in vitro.  Numerous 

studies have identified possible candidates as regulators involved in PrE differentiation [7, 

33].  Gata6, a direct target gene of RA signaling [7], and Foxa2, a target gene of GATA6 

[34], are well known players in endoderm formation.  In the mouse embryo GATA6 is 

expressed in some ES cells of the ICM [1, 2], which later become the cells of the ExE 

[35].  Gene targeting experiments has revealed that Gata6 null mice die shortly after 

implantation [35].  Furthermore, in vitro studies show that Gata6 expression is up-

regulated when ES cells are treated with RA and this is sufficient to down-regulate the 

pluripotency marker Oct-3/4, and to induce ExE differentiation [34].  Interestingly, Gata6 

null ES cells do not differentiate in the presence of RA, while transfection and expression 

of Gata6 in the absence of RA is sufficient to induce ExE differentiation [34-36].  

Although the evidence indicates that GATA6 is sufficient and necessary for RA-induced 

ExE differentiation of ES cells [34], and has also been proposed to bind to the rat and 
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human WNT6 promoters [37], it is not known whether or not it signals directly or 

indirectly through WNT6 to induce ExE.  

FOXA2 (HNF3β), initially identified as a liver-specific transcription factor [38], 

is another regulator of mouse visceral and definitive endoderm formation [39-42].  The 

visceral endoderm, a derivative of PrE [43], has been classified as extraembryonic tissue 

required for supporting the proper growth of the embryo [44].  FOXA2 expression is also 

essential as Foxa2 null mice die between 6.5 and 9.5 days post fertilization due to a lack 

of a definitive node and notochord, and severe constriction at the embryonic-

extraembryonic junction [40, 45].  Furthermore, these authors noted that mutant embryos 

often develop outside of the yolk sac, with defects in axial elongation and anterior 

development.  Although FOXA2 is considered a marker of visceral endoderm [46], it is 

also expressed in PrE as evident in F9 cells induced by RA [47], and like GATA6, may 

bind to the rat and human WNT6 promoters [37].  This information, together with that for 

GATA6 was enough to warrant further investigation on how Wnt6 is regulated during 

extraembryonic endoderm formation.   

 

2.1.5 Objectives of study 

 

 Here we provide new evidence for a role for GATA6 and FOXA2 regulating a 

canonical WNT/β-catenin signaling pathway involved in the differentiation of F9 cells to 

primitive extraembryonic endoderm.  In this study we show that overexpression of Gata6 

or Foxa2 in the absence of RA was accompanied by an increase in Wnt6 expression and 
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corresponding changes in cell shape that are hallmarks of PrE derived from F9 cells.  

Immunoblot and immunocytochemistry revealed that in the absence of RA, F9 cells 

overexpressing Gata6 or Foxa2 induced the appearance of TROMA-1 intermediate 

filaments characteristic of ExE.  Gata6 or Foxa2 overexpressing F9 cells also had 

elevated levels of TCF-dependent transcription, indicative of active canonical WNT/β-

catenin signaling.  ChIP analysis showed that GATA6 and FOXA2 could bind to the 

Wnt6 promoter and when Gata6 or Foxa2 is overexpressed, there was increased activity 

in gene expression of a Wnt6 reporter construct.  Furthermore, these Gata6 or Foxa2 

expressing F9 cells, when treated with db-cAMP, were competent to complete the 

epithelial-to-mesenchymal transition leading to parietal extraembryonic endoderm.  

Together these results highlight a signaling hierarchy between RA, GATA6, FOXA2, and 

WNT6 during the specification of primitive endoderm. 

 

  



26 
 

 
 

2.2 Materials and methods 

 

2.2.1 Plasmids and reagents 

 

 pCMV-Gata6 was provided by Dr. E. E. Morrisey (University of Pennsylvania), 

pBS/KS-Foxa2 by Dr. K. H. Kaestner (University of Pennsylvania), pRL-TK by Dr. 

Rodney DeKoter (University of Western Ontario), and pGL3-BARL by Dr. S. Anger 

(University of Toronto).  Gata6 and Foxa2 were subcloned into pcDNA3.1 (Invitrogen). 

All trans RA and db-cAMP were from Sigma, and neomycin (G418) from Calbiochem. 

 

2.2.2 Cell culture, transfection, and treatment 

 

 Mouse F9 teratocarcinoma cells (ATCC) were cultured in Dulbecco’s Modified 

Eagle’s Medium (Lonza) supplemented with 10% fetal bovine serum (Gibco), 100 

units/ml penicillin and 100 mg/ml streptomycin (Lonza).  Cells were transfected with 

empty vector, pcDNA3.1-Gata6, pcDNA3.1-Foxa2, pGL3-Wnt6, pGL3-BARL, and 

pRL-TK constructs using FuGENE6 according to the manufacturer’s recommendations 

(Roche).  Briefly, 3 µl of FuGENE6 reagent was mixed with a total of 1.5 µg of 

expression construct to transfect cells grown to 60% confluence in 35 mm TC dish (BD 

Falcon); for co-transfection experiments, equal amounts of each of the constructs were 

used with FuGENE6 reagent to DNA ratio of 3:1.5.  Cells transfected with pcDNA3.1-
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Gata6, pcDNA3.1-Foxa2 or the empty vector control, were passed to 60 mm TC dishes 

(BD Falcon) 24 hours post transfection and treated with 400 µg/ml G418.  Cells were 

treated with 0.05% DMSO (vehicle control), 10-7 M RA or 10-7 M RA and 1 mM db-

cAMP.  All cells were incubated at 37oC and 5% CO2. 

 

2.2.3 Reverse transcription polymerase chain reaction (RT-PCR) 

 

Oligodeoxynucleotide primers were designed to the mouse Wnt6 (Accession # 

M89800), Gata6 (Accession # AK142381), Foxa2 (Accession # AL845297), and 

Thrombomodulin (TM) (Accession # BC019154) nucleotide sequences.  Wnt6 sense (5’ 

GCG GTA GAG CTC TCA GGA TG) and antisense (5’ AAA GCC CAT GGC ACT 

TAC AC), Gata6 sense (5’ CTC TGC ACG CTT TCC CTA CT) and antisense (5’ GTA 

GGT CGG GTG ATG GTG AT), Foxa2 sense (5’ ACC TGA GTC CGA GTC TGA GC) 

and antisense (5’ CAT GGT GAT GAG CGA GAT GT), and TM sense (5’ CCA GGC 

TCT TAC TCC TGT A) and antisense (5’ TGG CAC TGA AAC TCG CAG TT) primers 

were designed to amplify partial Wnt6, Gata6, Foxa2, and TM cDNAs.  RNA was 

isolated from F9 cells treated with RA, RA and db-cAMP, or F9 cells transfected with 

pcDNA3.1-Gata6, pcDNA3.1-Foxa2 or the empty vector, and converted into first strand 

cDNA using SuperScript II reverse transcriptase (Invitrogen).  The cDNAs were used as 

a template for PCR under the following reaction conditions: Wnt6 – 35 cycles of 30 s at 

94oC, 30 s at 62oC, and 45 s at 72oC; Gata6 – 35 cycles of 30 s at 94oC, 30 s at 55oC, and 

30 s at 72oC; Foxa2 – 35 cycles of 94oC, 30 s at 58oC, and 30 s at 72oC; TM – 32 cycles 
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of 94oC, 30 s at 60oC, and 30 s at 72oC.  Primers to L14 sense (5’ GGG AGA GGT GGC 

CTC GGA CGC) and antisense (5’ GGC TGG CTT CAC TCA AAG GCC) were used to 

amplify a constitutively expressed ribosomal gene.  Samples were run on 1% agarose gels 

containing ethidium bromide and visualized using the FluorChem 8900 gel imaging 

station (Alpha Innotech).  Amplicons from all PCRs were sequenced at the Robarts 

Research Sequencing Facility (London, ON) to confirm their identity. 

 

2.2.4 Immunoblot analysis 

 

Total cell lysates were prepared in 1% SDS lysis buffer containing 62.5 mM Tris-

HCl pH 6.8, 10% glycerol, 5% Mercapto-2-ethanol, and 1X Halt Protease Inhibitor 

Cocktail (Thermo Scientific).  Protein concentrations were quantified using a Bradford 

protein assay (Bio-Rad) and equal amounts were separated on denaturing 10% 

polyacrylamide gels and transferred to nitrocellulose membranes (Biotrace; Pall Corp.).  

The membranes were blocked in 5% skim milk, probed with antibodies, and the signals 

were detected using the SuperSignal West Pico Chemiluminescent Detection Kit (Pierce).  

The primary antibodies were directed against TROMA-1 (1:50; Developmental Studies 

Hybridoma Bank), and β-ACTIN (1:10000; Santa Cruz).  Secondary antibodies were 

HRP-conjugated goat anti-rat and anti-mouse (1:10000; Pierce).  

 

2.2.5 Immunofluorescence and light microscopy 
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Cells were fixed in 4% paraformaldehyde in PBS, blocked with 4% goat serum 

and then incubated with TROMA-1 antibody (1:50).  After the incubation with the 

primary antibody, the cells were incubated in Alexa488-conjugated anti-rat secondary 

antibody (1:200; Invitrogen).  Cells were mounted on slides using ProLong Gold antifade 

reagent (Invitrogen), examined using a Zeiss Imager Z1 microscope, and images were 

captured using a Zeiss Axiocam MRm digital video camera.  For light microscopy, cells 

were examined using a Zeiss Axio Observer A1 and images were captured using a 

QImaging Retiga digital video camera.  All images were assembled as plates using 

Adobe Photoshop CS3 and Adobe Illustrator CS3. 

 

2.2.6 TCF/LEF reporter assay 

 

 Cells transfected with pGL3-BARL and then treated with 0.05% DMSO (vehicle 

control) or 10-7 M RA, or co-transfected with pGL3-BARL and pcDNA3.1 empty vector, 

pcDNA3.1-Gata6, or pcDNA3.1-Foxa2 in equal amounts, were prepared 24 h post-

treatment or post-transfection using the Dual Luciferase Assay Kit as per manufacturer’s 

instructions (Promega).  Luciferase expression was quantified using the GloMax Multi 

Detection System (Promega).  Cells were also co-transfected with pRL-TK to normalize 

luciferase levels. 
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2.2.7 Chromatin Immunoprecipitation (ChIP) 

 

 ChIP assays were performed using the ChIP-IT kit (Active Motif, Carlsbad, CA) 

according to the manufacturer’s protocol.  Anti-GATA6 and anti-FOXA2 antibodies (sc-

7244 and sc-6554, respectively) were from Santa Cruz (Santa Cruz, CA).  PCR analysis 

was performed on DNA isolated by ChIP, using the following primers to amplify the 

GATA6 binding and the FOXA2 binding regions within the mouse Wnt6 promoter: 

GATA6-F, 5’ TGT TCT CCG TTT CCA CTT CT; GATA6-R, 5’ AGT GCA GAG GGA 

CAG GTG; FOXA2-F, 5’ CAG TTG GAC AGC CTT CTA CC; FOXA2-R, 5’ CGG 

GAT GAA TAG TCG AGA AG.  Cycling temperatures were as follows: GATA6 – 35 

cycles of 30 s at 94oC, 30 s at 52oC, and 30 s at 72oC; FOXA2 – 35 cycles of 30 s at 94oC, 

30 s at 58oC, and 30 s at 72oC.  Samples were separated on 1.5% agarose gels containing 

ethidium bromide and visualized using the FluorChem 8900 gel imaging station.  

Amplicons were sequenced at the Robarts Research Sequencing Facility (London, ON) to 

confirm their identity. 

 

2.2.8 Wnt6 promoter assay 

 

 The promoter region of the Wnt6 gene was cloned into the pGL3-luciferase vector 

(pGL3-Wnt6) and was co-transfected with pcDNA3.1-Gata6 or pcDNA3.1-Foxa2 in 

equal amounts.  Cells were prepared using the Luciferase Assay Kit as per 
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manufacturer’s instructions (Promega).  Luciferase expression was quantified using the 

GloMax Multi Detection System (Promega).  Cells co-transfected with pGL3-Wnt6 and 

pcDNA3.1 served as control. 

 

2.2.9 Statistical analysis 

 

Data from all experiments are representative of at least three independent 

biological replicates performed on separate occasions.  Densitometry data were obtained 

using a FluorChem 8900 Chemiluminescence and Gel Image (Alpha Innotech).  Analysis 

of data between control and treated or transfected groups was performed using a 

Student’s t-Test assuming unequal variances (Excel, Microsoft Corp., Redmond, WA).  P 

values were one-sided and considered statistically significant at the 0.05 level.  Statistical 

data is presented as the mean ± S.E. 
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2.3 Results 

 

2.3.1 Gata6 and Foxa2 up-regulation by RA leads to Wnt6 expression in F9 cells  

 

 Mouse F9 teratocarcinoma cells grown in monolayer differentiate into primitive 

endoderm (PrE) and parietal endoderm (PE) when exposed to RA or RA and db-cAMP, 

respectively.  Although Gata6 and Foxa2 were previously reported to be up-regulated in 

RA and RA and db-cAMP-treated F9 cells, respectively [48, 49], for our purposes it was 

necessary to re-examine their expression profiles in PrE cells, which were induced by 

treating F9 cells with RA alone.  Gata6 was not expressed in pcDNA3.1-containing cells 

(control), but was present in RA- and RA and db-cAMP-treated cells (Fig. 2.1).  The 

expression of Foxa2 was detected in RA-treated cells, confirming an earlier report [47] 

and in RA and db-cAMP-treated cells.  cDNA from Gata6-transfected cells was also used 

in a PCR with Foxa2 primers, to test the notion that Foxa2 is regulated by GATA6 in F9 

cells, as it is in ES cells [34].  Likewise, cDNA from Foxa2-transfected cells was used in 

a PCR with Gata6 primers.  Results from these experiments revealed an amplicon 

corresponding to Foxa2 in Gata6-expressing cells (Fig. 2.1).  Thus, the hierarchy at this 

point would indicate that RA up-regulates Gata6 and Foxa2 expression, the latter either 

directly or indirectly via GATA6.  

 With the evidence that Wnt6 is up-regulated in F9 cells in response to RA and can 

promote PrE differentiation when overexpressed in F9 cells [12], and given the putative 

RA-responsive transcription factor (GATA6 and FOXA2) binding sites in a region of the  
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Figure 2.1. Gata6 and Foxa2 mRNA are up-regulated during RA-induced 

differentiation. Total RNA from cells treated with RA or RA and db-cAMP, and cells 

transfected with empty vector (control), Gata6 or Foxa2, and selected with G418, was 

collected and reverse transcribed into first strand cDNA for PCR. A Gata6 amplicon was 

seen in RA and RA and db-cAMP lanes, and as expected in cells ectopically expressing 

Gata6, but not in the control or cells ectopically expressing Foxa2. A Foxa2 amplicon 

was seen in RA and RA and db-cAMP lanes, and in cells ectopically expressing Gata6 or 

Foxa2, but not in the control. The L14 positive control amplicon was seen under all 

conditions. Representative results from five independent experiments are shown. 
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conserved human and rat WNT6 promoters [37], we hypothesized that in the absence of 

RA, the overexpression of Gata6 or Foxa2 would up-regulate Wnt6 expression in F9 

cells.  To test this, total RNA was collected and reverse transcribed into cDNA from cells 

treated with RA and RA and db-cAMP, and from cells transfected with pcDNA3.1-Gata6, 

pcDNA3.1-Foxa2, or the empty vector (negative control); the latter three following 7 

days of G418 selection.  PCR results with cDNAs and Wnt6 or L14 primers showed 

relatively equal levels of L14 expression under all treatments (Fig. 2.2).  For Wnt6, no 

amplicon was seen in controls, but was as previously reported [12], present in cells 

induced to form PrE and to some extent in those treated with RA and db-cAMP to induce 

PE.  Results also showed a Wnt6 amplicon of the expected size in F9 cells transfected 

with the Gata6 expression construct (Fig. 2.2).  Experiments were repeated for the 

analysis of Foxa2 over-expressing cells and results were similar to that seen for Gata6 

(Fig. 2.2).  Sequencing confirmed the identity of the amplicon as being Wnt6 and the 

appearance of the L14 amplicon confirmed that cDNAs were present under all conditions.  

Taken together, these results would indicate that in the absence of RA, Gata6 or Foxa2 

overexpression was sufficient to up-regulate the endogenous Wnt6 gene in F9 cells. 

 

2.3.2 Gata6 and Foxa2 expression is sufficient to induce extraembryonic endoderm  

 

 Since Gata6 expression was RA-responsive and could up-regulate a Wnt known 

for its ability to induce PrE [12], we hypothesized Gata6 overexpression would induce 

PrE in the absence of RA.  The appearance of TROMA-1, a cytokeratin A intermediate  
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Figure 2.2. Overexpression of Gata6 or Foxa2 induces Wnt6 expression. Total RNA 

from cells treated with RA to induce PrE or RA and db-cAMP to induce PE, and cells 

transfected with empty vector (control), Gata6 or Foxa2 and selected with G418, was 

collected and reverse transcribed into first strand cDNA for PCR. Oligodeoxynucleotide 

primers for PCR were designed to detect Wnt6 or the constitutively expressed ribosomal 

gene L14. A Wnt6 amplicon was seen in the RA and RA and db-cAMP lanes, in cells 

transfected with Gata6 or Foxa2, but not in the control. The L14 amplicon was present in 

all lanes. Representative results from three independent experiments are shown. 
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filament, was used as a definitive marker of extraembryonic endoderm [50].  Immunoblot 

analysis showed that TROMA-1 was expressed in cells treated with RA and RA and db-

cAMP, but not in empty vector transfected controls (Fig. 2.3A).  TROMA-1 was also 

expressed in cells transfected with the Gata6 construct, providing evidence for a role in 

ExE differentiation (Fig. 2.3A).  Densitometry analysis confirmed that the relative levels 

of TROMA-1 induced by chemical treatment and by Gata6 overexpression were 

significantly higher than that in untreated F9 cells (Fig. 2.3B). 

 The assembly of TROMA-1-positive cytokeratin A filaments was also used as a 

molecular readout of PrE and PE formation.  To examine for the presence of TROMA-1-

positive intermediate filaments, cells were treated with RA or transfected with either the 

Gata6 or the empty vector construct, selected with G418 and then processed for 

immunocytochemical analysis (Fig. 2.3C).  The extensive network of intermediate 

filaments that formed when F9 cells were treated with RA corroborates the immunoblot 

data.  A similar staining pattern was seen in cells transfected with the pcDNA3.1-Gata6 

plasmid and selected using G418 (Fig. 2.3C).  A control for the non-specific binding of 

the secondary antibody alone showed no TROMA-1 staining (inset, Fig. 2.3C).  Together, 

these results indicate that the overexpression of Gata6 alone is sufficient to increase the 

levels of cytokeratin A, which in turn get assembled into intermediate filaments 

indicative of extraembryonic endoderm. 

 Having established the expression pattern of Gata6 following RA treatment, the 

ability of Foxa2 overexpression to induce cells to form PrE was examined.  Furthermore, 

since Gata6 overexpression induced markers of differentiation (Fig. 2.3), caused changes 

in cell morphology, and could induce the expression of Foxa2 (Fig. 2.1), then by  
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Figure 2.3. Overexpression of Gata6 induces extraembryonic endoderm. (A, B) 

Protein lysates from cells treated with RA or RA and db-cAMP, and cells transfected 

with the empty vector (control) or Gata6 and selected with G418, were collected and 

processed for immunoblot analysis using antibodies to TROMA-1 and β-ACTIN. (A) 

Representative blot showing TROMA-1 signals in RA and RA and db-cAMP-treated 

cells, and in those transfected with Gata6. (B) Analysis of the average integrated 

densitometric values between TROMA-1 and β-actin from three independent blots 

showed that there was a significant increase in TROMA-1 expression in RA- or RA and 

db-cAMP-induced or Gata6-transfected cells relative to the control. * P<0.05. (C) Cells 

treated with RA, or transfected with the empty vector (control) or with Gata6 and 

selected with G418, were fixed and processed for immunocytochemistry using the 

TROMA-1 antibody. TROMA-1 filaments surrounding DAPI-positive nuclei were seen 

in RA-treated and Gata6-transfected cells, but not in the controls. (Inset) A control for 

non-specific binding of the secondary antibody alone showed no staining. Scale bar = 50 

µm. 
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inference we predicted that Foxa2 overexpression would also induce PrE in the absence 

of RA.  Immunoblot analysis showed that TROMA-1 was expressed in cells treated with 

RA and RA and db-cAMP, but not in empty vector transfected controls (Fig. 2.4A).  

TROMA-1 was also expressed in cells transfected with the Foxa2 construct (Fig. 2.4A), 

and densitometry analysis confirmed that the relative levels of TROMA-1 induced by 

chemical treatment and by Foxa2 overexpression were significantly higher than that in 

the controls (Fig. 2.4B).  Immunocytochemistry was also used to confirm that the Foxa2-

dependent increase in TROMA-1 levels would translate into the assembly of cytokeratin 

A intermediate filaments (Fig. 2.4C).  Cells were treated with RA or transfected with 

either the Foxa2 or the empty vector construct, and then selected with G418 before being 

processed for immunocytochemistry with the TROMA-1 antibody.  Results confirmed 

the immunoblot data and the appearance of intermediate filaments in cells transfected 

with pcDNA3.1-Foxa2 was reminiscent of that in the positive control cells treated with 

RA (Fig. 2.4C).  A control for the non-specific binding of the secondary antibody alone 

showed no TROMA-1 staining (inset, Fig. 2.4C).  These results indicated that the 

overexpression of Gata6 or Foxa2 alone was sufficient to induce a marker of primitive 

and parietal endoderm, and to cause changes in the morphology of these cells, both of 

which parallel the effects when F9 cells are treated with RA. 

 

2.3.3 Gata6 and Foxa2 signal through the canonical WNT/β-catenin signaling 

pathway 
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Figure 2.4. Overexpression of Foxa2 induces extraembryonic endoderm. (A, B) 

Protein lysates from cells treated with RA or RA and db-cAMP, and cells transfected 

with the empty vector (control) or Foxa2 and selected with G418 were collected and 

processed for immunoblot analysis using antibodies to TROMA-1 and β-ACTIN. (A) 

Representative blot showing TROMA-1 signals in RA and RA and db-cAMP treated 

cells, and in those transfected with Foxa2. (B) Analysis of the average integrated 

densitometric values between TROMA-1 and β-actin from three independent blots 

indicated that there was a significant increase in TROMA-1 expression in the induced 

and transfected cells relative to the control. * P<0.01. (C) Cells treated with RA, or 

transfected with the empty vector (control) or with Foxa2 and selected with G418, were 

fixed and processed for immunocytochemistry using the TROMA-1 antibody.  TROMA-

1 filaments were seen in RA-treated and Foxa2-transfected cells, but not in the controls. 

(Inset) A control for non-specific binding of the secondary antibody showed no staining. 

Scale bar = 50 µm. 
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Since Gata6 or Foxa2 were found to up-regulate Wnt6 (Fig. 2.2A) and WNT6 

activates the canonical WNT signaling pathway [12], then one would expect that Gata6 

or Foxa2 overexpression should activate canonical WNT/β-catenin signaling.  The 

activation of the canonical pathway and β-catenin/TCF/LEF-dependent transcription was 

tested directly using a pGL3-BARL reporter assay [51].  F9 cells co-transfected with 

pGL3-BARL and a Renilla luciferase construct (pRL-TK) and then treated with DMSO 

(vehicle control), had 10 fold less luciferase activity relative to that in RA-treated cells 

(Fig. 2.5).  F9 cells were also co-transfected with pGL3-BARL and pcDNA3.1-Gata6, 

pGL3-BARL and pcDNA3.1-Foxa2, or pGL3-BARL and pcDNA3.1 empty vector, and 

then assayed for luciferase activity after 24 h.  Luciferase activity in cells overexpressing 

Gata6 or Foxa2 was significantly higher (12 fold) than the controls.  Together, this 

evidence allows us to place GATA6 and FOXA2 between RA and β-catenin/TCF/LEF 

dependent signaling in a hierarchy responsible for the induction of F9 cells to form ExE. 

 

2.3.4 GATA6 and FOXA2 bind the Wnt6 promoter and regulate its activity leading 

to primitive endoderm formation 

 

 To assign a direct link between GATA6 and FOXA2 and WNT6 expression 

during ExE differentiation, it was first necessary to demonstrate that GATA6 and 

FOXA2 could bind to the endogenous Wnt6 promoter.  Once established, the next 

question was to ask whether or not binding was sufficient to drive the expression of a 

Wnt6 reporter construct.  To begin, DMSO- and RA-treated F9 cells were processed for  
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Figure 2.5. Gata6 and Foxa2 activate canonical WNT/β-catenin/TCF dependent 

transcription. Cell lysates from cells transfected with pGL3-BARL, then treated with RA 

or DMSO vehicle, and cells co-transfected with pGL3-BARL and the empty vector 

control, Gata6 or Foxa2, were collected and processed for luciferase activity 24 hr post 

RA treatment or transfection. Cells treated with RA had a 12 fold increase in luciferase 

activity relative to the DMSO-treated controls. Gata6- or Foxa2-transfected cells 

exhibited a 9 fold increase in luciferase activity relative to the transfected empty vector 

controls. Data are representative of three independent experiments. Bars represent mean 

fold change in relative luciferase units (RLU) ± S.E., normalized for Renilla luciferase 

activity. * P<0.05.  
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chromatin immunoprecipitation using antibodies against GATA6 and FOXA2.  IgG 

served as a negative control.  PCR, using primers spanning the putative GATA6 and 

FOXA2 binding sites within the Wnt6 promoter [37], was first performed on sheared 

DNA prior to immunoprecipitation (input, Fig. 2.6A).  Results revealed amplicons of the 

expected size in DMSO- and RA-treated cells, and sequencing confirmed their identity.  

PCR following immunoprecipitation with antibodies against GATA6 or FOXA2 

produced similar results, but only in RA-treated cells (Fig. 2.6A).  Amplicons were not 

seen in DMSO-treated cells, or when the immunoprecipitation was performed with IgG.  

Together, the data indicated that both transcription factors were capable of binding the 

Wnt6 promoter in F9 cells.  

Satisfied with the data from the ChIP analysis, we next employed a luciferase 

reporter assay using approximately 1.2 Kb of sequence of the mouse Wnt6 promoter 

upstream of the ATG start site.  COS-7 cells were co-transfected with the pGL3-Wnt6 

reporter and either pcDNA3.1-Gata6 or pcDNA3.1-Foxa2, and then assayed for 

luciferase activity.  The cell line was chosen since it does not express Wnt6 (data not 

shown), Foxa2 [52], or any significant levels of Gata factors [53].  Furthermore, 

evidence also exists that Foxa2 expression is not enhanced in COS cells transfected with 

Gata4 [54], which has a similar consensus binding site found in GATA6 and plays a role 

during PrE differentiation [55, 56].  Results revealed that when either the Gata6 or Foxa2 

constructs were present, the luciferase activity was significantly higher relative to the 

empty vector control (Fig. 2.6B).  Thus, GATA6 and FOXA2 acted directly on the Wnt6 

promoter and although reports indicate that the activation of these transcription factors is  
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Figure 2.6.  GATA6 and FOXA2 bind to and activate the Wnt6 promoter. (A) PCR of 

sheared DNA from DMSO- and RA-treated F9 cells prior to immunoprecipitation (input) 

revealed amplicons corresponding to the putative GATA6 and FOXA2 binding sites 

within the Wnt6 promoter. Similar results were seen in RA-treated cells following 

immunoprecipitation with antibodies against GATA6 or FOXA2. No amplicons were 

seen following GATA6 or FOXA2 immunoprecipitation of DMSO-treated cells, or from 

cells of either treatment regimen following immunoprecipitation with IgG. (B) Cell 

lysates from COS-7 cells co-transfected with pGL3-Wnt6 and Gata6, or Foxa2 were 

collected and processed for luciferase activity 24 hours post transfection. Overexpression 

with Gata6 or Foxa2 showed a 5 fold and 1.5 fold increase in luciferase activities, 

respectively, relative to the transfected empty vector control. Data are representative of 

three independent experiments. Bars represent mean fold change in relative luciferase 

units (RLU) ± S.E. * P<0.005. 
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sufficient to induce cells to form PE [1, 49], our previous work would argue that the up-

regulation of Wnt6 is only sufficient to induce cells to form PrE. 

 

2.3.5 Gata6- and Foxa2-expressing cells are competent to form parietal endoderm 

 

 We demonstrated previously that WNT6 was sufficient to induce F9 cells to form 

PrE, but not PE [12], whereas the expression of constitutively active Gα13 permitted 

cells to proceed through to PE [9].  A previous study has also reported that Gata6 and 

Foxa2 expression is up-regulated when F9 cells are induced to PE and Gata6 

overexpression in Sox7-silenced cells was also able to induce PE [49].  Thus, it is still not 

clear whether or not the overexpression of Gata6 or Foxa2 alone is sufficient to induce 

PE.  To address this issue cells were treated with RA or RA and db-cAMP, or transfected 

with pcDNA3.1-Gata6 or pcDNA3.1-Foxa2 and then treated with db-cAMP or left 

untreated, and then examined for changes in morphology using phase contrast 

microscopy (Fig. 2.7).  Empty vector transfected and DMSO-treated cells (controls) were 

morphologically similar as compact bodies (top panels Fig. 2.7).  Morphologically, these 

cells were indistinguishable from cells treated with db-cAMP (data not shown).  In 

contrast, RA-treated cells shared morphological similarities with those transfected with 

pcDNA3.1-Gata6 or pcDNA3.1-Foxa2.  Specifically, cells had migrated away from the 

compact bodies and flattened out over the surface of the plate.  Cells transfected with 

pcDNA3.1-Gata6 or pcDNA3.1-Foxa2 and then treated with db-cAMP resembled the 

RA and db-cAMP-treated positive control.  Under these conditions, cells appeared to  
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Figure 2.7.  Gata6- or Foxa2-induced primitive endoderm is competent to complete 

the EMT and form parietal endoderm. Untreated or DMSO-treated cells showed 

similar morphology. Likewise, cells treated with RA to induce primitive endoderm were 

morphologically similar to those transfected with Gata6 or Foxa2. In each case, cells 

migrated from the compact bodies, characteristic of the undifferentiated cells, and 

adopted a stellate shape with numerous filopodia. Cells transfected with Gata6 or Foxa2, 

and then treated with db-cAMP, showed morphological similarities to RA and db-cAMP 

treated cells. Under these conditions, the cells were more spherical in shape, were highly 

refractile and possessed relatively long filopodia. Total RNA from cells treated with 

DMSO, RA, or RA and db-cAMP, and cells transfected with Gata6, Foxa2, or 

transfected with Gata6 or Foxa2 and then treated with db-cAMP, was collected and 

reverse transcribed into first strand cDNA for PCR. Oligodeoxynucleotide primers for 

PCR were used to detect Thrombomodulin (TM) expression, indicative of parietal 

endoderm, or L14, a constitutively expressed ribosomal gene. TM expression is only seen 

in cells treated with RA and db-cAMP and in those transfected with Gata6 or Foxa2, and 

then treated with db-cAMP. The presence of the L14 amplicon indicated that cDNAs 

were present under all conditions. The Gata6- or Foxa2-transfected cells were selected 

with G418 for 7 days or selected with G418 for 5 days and then treated with db-cAMP 

for 4 days under continual G418 selection. Scale bars in = 20 µm. 
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have lost their stellate shape and instead have rounded up, developed long slender 

filopodia and became more refractile.  These changes in morphology prompted further 

investigation using molecular markers to determine the fate of the cell resulting from the 

individual treatments.  PCR analysis was performed with primers to Thrombomodulin 

(TM), a PE marker that increases 4 fold over the barely detectable levels in PrE [9, 57].  

Results showed that TM was not detected in empty vector transfected or DMSO-treated 

cells or when cells were treated with RA alone.  As expected, TM was expressed in the 

positive controls, which were those cells induced to form PE by RA and db-cAMP.  

Interestingly, TM amplicons were not seen in Gata6- or Foxa2-overexpressing cells, 

although cDNA was available for amplification as evident by the L14 amplicons in all 

lanes.  In contrast, TM amplicons were seen in Gata6- or Foxa2-transfected cells that 

were treated with db-cAMP.  Thus, we are proposing that these transfected cells had 

developed into PrE and remained competent to form PE and complete the EMT following 

the appropriate stimulation to augment PKA activity.  Taken together, our study provides 

new evidence that GATA6 and FOXA2 signal through a canonical WNT/β-catenin 

signaling pathway in F9 cells to induce PrE, but like WNT6 [12], neither one of these 

transcription factors permit cells to differentiate into PE.  Furthermore, GATA6 appears 

to have a dual role, inducing the expression of Wnt6 as well as Foxa2.  
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2.4 Discussion 

 

 In the mouse embryo several transcription factors including those of the SOX, 

GATA and FOX (HNF) families are expressed shortly after fertilization [58].  GATA6 is 

expressed initially in some cells of the inner cell mass at the time of implantation, while 

FOXA2 expression is only apparent in cells of the ExE [1, 35, 42, 47, 59].  My study 

with the F9 teratocarcinoma cell line, which differentiates into PrE and PE following 

treatment with RA and RA and db-cAMP, respectively, confirmed that RA-induced 

differentiation into ExE was accompanied by the up-regulation of the Gata6 and Foxa2 

genes (Fig. 2.1).  Furthermore, results indicated that the overexpression of Gata6 or 

Foxa2 alone was sufficient to induce biochemical and morphological markers of ExE, 

specifically PrE (Figs. 2.3 and 2.4).  TROMA-1 serves as a useful marker of 

extraembryonic endoderm [50], but it does not discriminate between PrE and PE.  To 

distinguish between the two, a PCR-based assay was employed to detect changes in the 

expression of Nanog, Sox2, Utf-1 and others candidates (data not shown).  Unfortunately, 

we were unable to find a marker unique to PrE (Ren, Caraher and Kelly, unpublished).  

In contrast, TM expression is used to distinguish between PrE and PE [57], and its 

presence together with the refractile appearance of the cells (this study) and changes to 

their morphology [6], indicated that cells ectopically expressing Gata-6 and treated with 

db-cAMP had differentiated into PE (Fig. 2.7).  That these changes were not seen in cells 

ectopically expressing Gata-6 alone would indicate that PE differentiation is also 

dependent on other factors (Fig. 2.7).  Not to undermine its importance, GATA6 is a 

master regulator of ExE differentiation.  Furthermore, it is one of the first ExE-specific 
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transcription factors to be expressed in vivo, and its loss-of-function results in the absence 

of ExE and Foxa2 expression, and the death of the developing embryo [1, 35, 36, 60].  

Compelling evidence indicates that Gata6 expression is indicative of and required for the 

formation of the primitive endoderm lineage that precedes the parietal and/or visceral 

endoderm lineages [2, 33, 36, 61, 62].  The ability of GATA6 to induce the expression of 

Foxa2 (Fig. 2.1) might explain the absence of the latter reported for the Gata6 nulls.  

That FOXA2 is not required for early embryogenesis and visceral endoderm forms in its 

absence [40, 42, 63, 64], is also indicative of the placement of GATA6 in the hierarchy of 

coordinated signaling required during ExE patterning and formation.  Irrespective of this 

placement and despite the numerous in vivo and in vitro assays showing the necessity for 

GATA6 and FOXA2 in the proper development of ExE, many questions remain as to 

what genes are regulated by these transcription factors during differentiation, and what 

subsequent impact do the proteins they encode have on embryonic patterning.  Our 

previous study found that one of these genes is Wnt6, which is up-regulated during PrE 

differentiation and down-regulated during PE differentiation [12].  Furthermore, we also 

reported that the overexpression of Wnt6 leads to the activation of the canonical WNT/β-

catenin pathway, allowing for the accumulation and translocation of β-catenin into the 

nucleus, where it can interact with TCF/LEF to regulate the genes necessary for PrE 

specification.  The present study is the first to report that the overexpression of Gata6 or 

Foxa2 can regulate the expression of the mouse Wnt6 gene (Fig. 2.2), and the ChIP 

analysis provided evidence to indicate that this regulation is directly the result of GATA6 

or FOXA2 binding to the Wnt6 promoter (Fig. 2.6).  Interestingly, this regulation may be 

mammalian-specific as in Xenopus WNT6 appears to regulate GATA4 and 6 during heart 
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development [65].  Despite this difference between model systems, we provide evidence 

that in a feed-forward manner, GATA6 and FOXA2 activate the WNT/β-catenin pathway, 

which leads to ExE differentiation.  Inactivation of GSK-3β by phosphorylation is one of 

the hallmark indicators that this pathway has been activated [17].  Likewise, the presence 

of nuclear β-catenin is highly suggestive of active WNT signaling, but this localization 

does not necessarily equate to transcriptional activation [66].  To clarify this distinction in 

the case of ExE, we provide direct evidence for TCF/LEF-dependent transcriptional 

activity resulting from ectopic expression of either Gata6 or Foxa2 (Fig. 2.5).  Thus, we 

are confident that the expression of these transcription factors, are responsible for 

elevating the expression of a Wnt gene involved in canonical β-catenin signaling.  

Although differentiation is temporarily halted at the PrE stage, as evident by the fact that 

these cells do not express TM, a marker of PE, and they appear similar morphologically 

to PrE, these cells nevertheless remain competent to form PE when PKA activity is 

increased (Fig. 2.7).  Again, this evidence corroborates our earlier work that Wnt6 

expression is only sufficient to induce cells into the PrE lineage [11, 12], and puts into 

context the limitations in inductive capabilities of GATA6 and FOXA2.  Finally, that the 

Wnt6 reporter construct is activated by Gata6 overexpression (Fig. 2.6B), puts Wnt6 in 

the ever-growing list of genes including Dab2, laminin, Afp, HNF4 and others, regulated 

by GATA6 during endoderm formation [35, 67, 68].  That Foxa2 overexpression also has 

the ability to induce the Wnt6 reporter (Fig. 2.6B), points to a complex signaling 

hierarchy involved in a transcriptional network controlling the specification of PrE in the 

very early development of the mouse (Fig. 2.8).  This complexity, as evident from the 

fact that embryos carrying targeted deletions in either Foxa2 [40, 45] or Gata6 [2, 35] die  
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Figure 2.8. Model of the signaling hierarchy during primitive endoderm specification 

in F9 cells. Retinoic acid induces the expression of Gata6 and GATA6 in turn, induces 

the expression of Foxa2, two transcription factors that directly up-regulate the Wnt6 gene. 

WNT6 signals to neighbouring cells by destabilizing the GSK-3β degradation complex, 

which allows cytoplasmic β-catenin levels to increase and eventually translocate to the 

nucleus, where with TCF/LEF transcription factors, activates/represses the genes required 

for primitive endoderm differentiation. 
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from ExE defects, underscores the importance of each protein in regulating the 

expression of a number of genes and gene families, including those encoding WNT 

proteins, required for embryogenesis.  

The question pertaining to the WNT family is whether or not WNT6 is the key 

member involved in establishing the ExE lineage in vivo.  Wnt6 mRNA is expressed at 

the correct time [18, 69], but studies have also revealed that Wnt1, 2b, 3, 3a, 4, 5a, 7a, 7b, 

10b, and 11 are also expressed at early stages of mouse development [70, 71], and many 

as protein ligands activate the canonical WNT/β-catenin pathway [72-76].  Based on the 

readout of their overexpression in F9 cells, care must be exercised when extrapolating 

how these WNTs function in vivo.  For instance, WNT3a will induce F9 cells ectopically 

expressing rat FZD1 to form ExE [32], however, in RA-induced wild type F9 cells, 

WNT3a treatment blocks differentiation [77].  It is also interesting to note that Wnt6 is 

dispensable for embryonic development [78], which means that another WNT is likely to 

act in a functionally redundant manner to ensure embryo viability.  Identifying the 

WNT(s) compensating for the loss of WNT6 during ExE formation will require a 

systematic in vitro approach using si/shRNAs, but to begin it may be more advantageous 

to continue focussing on how these genes are regulated at the transcriptional level.  For 

instance, GATA6 and FOXA2 are also known to bind to and activate the Wnt7b promoter 

[79], a WNT that also signals through the canonical pathway [80].  While we are 

currently using the F9 model to test the likely possibility that more than one WNT is 

involved in ExE formation, a concerted effort to create mice with double gene knock-outs 

will be necessary to provide evidence for this in vivo.   
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CHAPTER 3 

REDOX REGULATION OF CANONICAL WNT SIGNALING AND 

EXTRAEMBRYONIC ENDODERM FORMATION 

 

3.1 Introduction 

 

3.1.1 Extraembryonic endoderm 

 

During mouse embryogenesis the differentiation of a distinct population of cells 

in the inner cell mass (ICM) to primitive endoderm and then subsequently into parietal 

endoderm (PrE and PE, respectively) is one of the earliest epithelial-to-mesenchymal 

transitions (EMTs) [1, 2]. Cells of the PrE and PE lineages, collectively termed 

extraembryonic endoderm (ExE), are essential for fetal development in utero and are 

major signaling sources required for proper development of the embryo [3, 4]. Due to the 

difficulties of studying this process in vivo, F9 teratocarcinoma cells have been used as a 

model to study ExE differentiation in vitro. The addition of retinoic acid (RA) to these 

cells induces cellular changes required for the formation of PrE [5]. To complete the 

EMT, these competent PrE cells are treated with dibutyryl cyclic-adenosine 

monophosphate (db-cAMP) to induce PE [6]. Genetic studies on F9 cells have shown that 

RA regulates the expression of many genes [7, 8], some of which encode for proteins that 
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are sufficient to induce PrE formation [9, 10], and many linked to the canonical WNT/β-

catenin signaling pathway [11-13]. 

 

3.1.2 Canonical WNT signaling 

 

 The canonical WNT pathway, activated when a Wnt ligand binds to the Frizzled 

(Fzd) receptor [14], facilitates the localization of Dishevelled (DVL) to the plasma 

membrane, where it interacts with Axin, a protein that serves in a destruction complex 

with APC and GSK-3β. In the absence of WNT, the destruction complex phosphorylates 

β-catenin leading to its ubiquitination and proteasomal degredation. When WNT is 

present, however, formation of the destruction complex is prevented leading to the 

accumulation of β-catenin in the cytoplasm, and eventual translocation into the nucleus 

where it interacts with TCF-LEF transcription factors to induce changes in gene 

expression. DVL, a key component in the WNT signaling pathway, contains three major 

functional domains allowing for Dvl to interact with over 60 proteins [15]. Within the list 

of DVL-interacting proteins, nucleoredoxin (NRX) is of particular interest in this study.  

 

3.1.3 Nucleoredoxin 

 

NRX is a thioredoxin family member that is sensitive to reactive oxygen species 

(ROS). Funato et al., reported that NRX when bound to DVL acts as an inhibitor of the 
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WNT signaling pathway [16, 17]. In the presence of ROS, however, NRX is displaced 

from DVL, which lifts the inhibition on canonical Wnt signaling in the absence of a 

WNT ligand. In this regard, the WNT pathway is considered to be redox regulated and 

ROS, which are not just highly reactive and dangerous by-products of cellular 

metabolism, actually functions as mediators in this signaling pathway. An expanding 

body of evidence indicates that the specific production of ROS, at levels below those that 

can damage proteins, nucleic acids, and lipids, to affect gene expression and cell fate 

determination, are products of membrane bound NADPH oxidases (NOX) [18]. In 

reference to EMTs, ROS in the form of superoxide (O2
-) and hydrogen peroxide (H2O2), 

trigger responses such as differentiation and the expression of mesenchymal markers in 

epithelial-like cells [19]. Furthermore, these ROS are also accepted as being 

physiologically relevant mediators of developmental processes, likely to impact 

embryonic redox homeostasis [20-22]. 

 

3.1.4 Objectives of study 

 

In light of these recent evidence, I investigated the role of ROS signaling during 

differentiation of F9 cells in order to test the hypothesis that ROS participate with 

canonical WNT signaling to initiate extraembryonic endoderm formation. I found that 

cells treated with H2O2 induced the morphological and molecular characteristics of PrE, 

and these cells were competent to form PE following db-cAMP treatment. Culturing the 

cells in the presence of H2O2 induced canonical Wnt signaling while pre-treating these 
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cells with N-acetyl cysteine or Trolox attenuated the ability of RA to induce PrE. Real 

time PCR revealed that Nox1-4 and Duox2 mRNAs, candidates encoding proteins 

responsible for producing ROS, were up-regulated in response to RA. Moreover, ectopic 

expression of Gata6, a master regulator of extraembryonic endoderm, induced the 

expression of Nox4 and ROS, while ectopic expression of Nox4 alone induced ROS 

necessary for PrE formation. Since Funato et. al., showed Nucleoredoxin (NRX) 

impinges on canonical WNT signaling through DVL in NIH3T3 cells [16], I 

hypothesized that it plays a role during RA-induced PrE formation. Although NRX 

mRNA and protein expression did not change in response to RA, reducing NRX mRNA 

levels by RNAi induced morphological and molecular markers of PrE, with a significant 

increase in canonical WNT signaling. Furthermore, these NRX-depleted cells completed 

the EMT and differentiated into PE when treated with db-cAMP. Together, these results 

indicate that NRX is involved in maintaining F9 cells in an undifferentiated state, while 

an up-regulation in Nox expression by RA, and the subsequent increase in ROS leads to 

conditions favourable for NRX dissociation from DVL and activation of canonical WNT 

signaling required for PrE formation.  
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3.2 Materials and methods 

 

3.2.1 Cell culture, transfection, and treatment 

 

Mouse F9 teratocarcinoma cells (ATCC) were cultured in Dulbecco’s modified 

Eagle’s medium (Lonza) supplemented with 10 % fetal bovine serum (Gibco), 100 

units/mL penicillin, and 100 mg/mL streptomycin (Lonza). Chemical treatments used are 

as follows: dimethyl sulphoxide (DMSO; Caledon Labs) as vehicle control; 10-7 M 

retinoic acid (RA all-trans; Sigma), 50 or 100 µM hydrogen peroxide (H2O2; EMD); 50 

µM dibutyryl cyclic adenosine monophosphate (db-cAMP; Sigma); 1 mM N-acetyl 

cysteine (NAC; Sigma); 0.1 mM 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic 

acid (Trolox; Sigma). Cells were transfected with pcDNA empty vector, pcDNA-Gata6, 

pcDNA-mNox4 (gift from Dr. M. Jaconi, University of Geneva), sc-NRX (scrambled 

control NRX), sh-NRX (short hairpin NRX), pGL3-BARL, or pRL-TK constructs using 

Lipofectamine 2000, according to the manufacturer’s recommendations (Invitrogen). 

Treated and transfected cells were grown at 37oC and 5% CO2. 

 

3.2.2 Reverse transcription polymerase chain reaction (RT-PCR) and quantitative 

RT-PCR (qRT-PCR)  
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Total RNA was collected using the RNeasy kit (Qiagen) and converted into first 

strand cDNA using reverse transcriptase qScript cDNA Supermix (Quanta BioSciences) 

according to the manufacturer’s recommendations. RNA was isolated following 

treatment, transfections, or transfections then treatments of F9 cells as mentioned in the 

results and figure legends. Primers were designed to: L14 sense (5’GGG AGA GGT 

GGC CTC GGA CGC) and antisense (5’GGC TGG CTT CAC TCA AAG GCC), a 

constitutively expressed gene in F9 cells used as an internal control; NRX sense (5’TCT 

GCT CAC CAT TCT GGA CA) and antisense (5’ACA CGC TGG AAA AGT CCA AG); 

Gata6 sense (5’CTC TGC ACG CTT TCC CTA CT) and antisense (5’GTA GGT CGG 

GTG ATG GTG AT); Foxa2 sense (5’ACC TGA GTC CGA GTC TGA GC) and 

antisense (5’CAT GGT GAT GAG CGA GAT GT); Wnt6 sense (5’GCG GTA GAG 

CTC TCA GGA TG) and antisense (5’AAA GCC CAT GGC ACT TAC AC);  

Thrombomodulin TM sense (5’CCA GGC TCT TAC TCC TGT A) and antisense (5’TGG 

CAC TGA AAC TCG CAG TT); Nox1 sense (5’AAT GCC CAG GAT CGA GGT) and 

antisense (5’GAT GGA AGC AAA GGG AGT GA); Nox2 sense (5’ACC TTA CTG 

GCT GGG ATG AA) and antisense (5’TGC AAT GGT CTT GAA CTC GT); Nox3 

sense (5’TGT CAT GCC GGT GTG CTG GA) and antisense (5’CCC GTA GGC AAC 

GAG TTT GTG GA); Nox4 sense (5’GAT CAC AGA AGG TCC CTA GCA) and 

antisense (5’GTT GAG GGC ATT CAC CAA GT); Duox1 sense (5’AAA ACA CCA 

GGA ACG GAT TGT) and antisense (5’AGA AGA CAT TGG GCT GTA GG); Duox2 

sense (5’AGC TGG CTG AGA AGT TCG AC) and antisense (5’CCT GTG GAT GGA 

CTT CCT GT). Primers were used with first strand cDNA template for RT-PCR and the 

following conditions: NRX – 35 cycles of 30 s at 94oC, 30 s at 55oC, and 30 s at 72oC; 
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Gata6 – 35 cycles of 30 s at 94oC, 30 s at 55oC, and 30 s at 72oC; Foxa2 – 35 cycles of 

30 s at 94oC, 30 s at 58oC, and 30 s at 72oC; Wnt6 – 35 cycles of 30 s at 94oC, 30 s at 

62oC, and 45 s at 72oC; TM – 32 cycles of 30 s at 94oC, 30 s at 60oC, and 30 s at 72oC; all 

Nox and Duox – 35 cycles of 30 s at 94oC, 30 s at 58oC, and 30 s at 72oC. RT-PCR 

products were separated by electrophoresis on 1% agarose gels containing ethidium 

bromide and images were captured using a FluorChem 8900 gel imaging station (Alpha 

Innotech). Amplicons were also sequenced (Robarts Research Inst., London, ON) to 

confirm their identity. For qRT-PCR, analysis was carried out in triplicate using the 

Corbett Research Rotar Gene RG-300. Each reaction contained 500 nM concentrations of 

each primer, 1X PerfeCTa SYBR Green FastMix (Quanta BioSciences), and 50 ng of 

cDNA. Gene expression analysis was performed using the comparative cycle threshold 

(delta/delta CT) method, normalized to L14 expression, and fold changes were calculated 

relative to the DMSO vehicle-treated or pcDNA empty vector transfected control cells. 

 

3.2.3 Immunoblot analysis 

 

Total cell lysates were prepared in 2% sodium dodecyl sulfate lysis buffer 

containing 62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 5% mercapto-2-ethanol, and 1X 

Halt Protease Inhibitor Cocktail (Thermo Scientific). Protein concentrations were 

quantified using a Bradford protein assay (Bio-Rad), and equal amounts were separated 

on denaturing 10% polyacrylamide gels and transferred to nitrocellulose membranes 

(Biotrace; Pall Corp.). The membranes were blocked in 5% skim milk and probed with 
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antibodies, and the signals were detected using the SuperSignal West Pico 

Chemiluminescent Detection Kit (Pierce). The primary antibodies were directed against 

TROMA-1 (1:25; Developmental Studies Hybridoma Bank), and β-Actin (1:10,000; 

Santa Cruz). Secondary antibodies were HRP-conjugated goat anti-rat and anti-mouse 

(1:10,000; Pierce). 

 

3.2.4 Microscopy and intracellular reactive oxygen species detection 

 

For microscopy, cells were observed with a Zeiss Axio Observer A1, and images 

were captured using a QImaging Retiga digital video camera. Intracellular ROS 

generation was determined using 5-(and-6-)-chloromethyl-2’,7’-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA; Life Technologies, Invitrogen) in 

conjugation with fluorescence microscopy. CM-H2DCFDA was prepared in DMSO 

according to the manufacturer’s recommendations. Following treatment or transfection, 

cells were incubated with 2 µM CM-H2DCFDA in PBS for 10 min at 37oC and 5% CO2. 

Immediately after incubation, cells were washed twice with PBS and images were 

captured as mentioned above. All images were assembled as plates using Adobe 

Photoshop and Adobe Illustrator (CS5.1). 

 

3.2.5 sh-NRX and RNAi 
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The following sequence derived from the mouse NRX cDNA was used for the 

knockdown studies: sh-NRX (AA) GAT CAT TGC CAA GTA CAA; for the scrambled 

control the following sequence was used: sc-NRX (AA) GAT CAT TGC ACA GTA 

CAA A [16]. Oligonucleotide primers designed to amplify this sequence was used with 

PCR to clone the NRX sh-RNA into the pRS sh-RNA vector (a gift from Dr. Robert 

Cumming, UWO). Cells were transfected with sh-NRX, sc-NRX, or CMV-GFP constructs, 

the latter two serving as negative and transfection efficiency controls, respectively.   

 

3.2.6 TCF/LEF reporter assay 

 

Cells transfected with pGL3-BARL and then treated with DMSO (vehicle control) 

or 10-7 M RA, or co-transfected with pGL3-BARL and sc-NRX or sh-NRX in equal 

amounts, were prepared 24 h post-treatment or post-transfection using the Dual-Glo 

Luciferase Assay System as per the manufacturer’s recommendations (Promega). 

Luciferase expression was quantified using the GloMax Multi Detection System 

(Promega). Cells were also co-transfected with pRL-TK to normalize luciferase levels. 

 

3.2.7 Statistical analysis 

 

Data from all experiments are representative of at least three independent 

biological replicates performed on separate occasions. Densitometry data were obtained 
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using a FluorChem 8900 Chemiluminescence and Gel Image Doc (Alpha Innotech). 

Analysis of all data was performed using a one way ANOVA and Tukey’s HSD post-hoc 

test (SPSS PASW Statistics v. 19). P values were considered statistically significant at 

the 0.05 level. Statistical data are presented as the mean ± S.E. 
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3.3 Results 

 

3.3.1 H2O2 induces primitive endoderm and these cells are competent to form 

parietal endoderm 

 

The ability of RA to induce differentiation of F9 cells into PrE has been 

documented previously [5]. Recently, work in our lab demonstrated that when F9 cells 

are induced by RA to form PrE, there is an increase in ROS levels [23]. To test if H2O2, a 

ROS, is sufficient to induce molecular and morphological features of PrE in the absence 

of RA, cells were first treated with RA or H2O2 and then examined for hallmark changes 

of PrE differentiation (Fig. 3.1). Untreated cells or those treated with DMSO vehicle were 

similar in morphology, appearing round in shape and growing in compact bodies (Fig. 

3.1A). RA-treated cells adopted a more flattened morphology and had spread out over the 

plate (Fig. 3.1A). Cells treated with H2O2 shared the morphological features seen in RA 

treatment, suggesting they had differentiated into PrE (Fig. 3.1A). This was confirmed by 

RT-PCR analysis of Gata6, Foxa2 and Wnt6, which are markers of PrE differentiation 

(Fig. 3.1B) and immnoblot analysis for TROMA-1, an endo-A cytokeratin present in 

differentiated ExE cells (Fig. 3.1C-D). An up-regulation of Gata6, Foxa2 and Wnt6 with 

a positive TROMA-1 signal was detected in RA-, and H2O2-treated cells, with little to no 

signal in DMSO-treated controls (Fig. 3.1B and Fig 3.1C-D, respectively). Confident that 

ROS has the ability to induce PrE differentiation, the next step was to determine if these 

cells remained competent to complete the EMT and form PE. Although the ability to 
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chemically induce F9 cells to form PE is well known [6], no report has documented 

whether H2O2 in the presence of db-cAMP would have the same outcome. To test this, 

cells were treated with RA and then db-cAMP as a control to induce PE, or with H2O2 

and db-cAMP, and examined by phase contrast microscopy and using RT-PCR for 

Thromobomodulin (TM), a marker of PE [24] (Fig. 3.1A and 3.1E, respectively). My 

previous work reported that subtle morphological differences exist between PrE and PE, 

specifically the refractile nature of PE cells and the presence of filopodia [25]. Both of 

these features were obvious when cells were treated with RA and db-cAMP, or H2O2 and 

db-cAMP (Fig. 3.1A, arrows). Amplicons for TM were detected in the RA and db-cAMP 

positive control (Fig. 3.1E lane 5), as well as in the H2O2 treatments containing db-cAMP, 

but not in the DMSO negative control, or in samples from cells treated with either RA or 

H2O2 alone (Fig. 3.1E). Together, these results indicated that in the absence of RA, cells 

treated with H2O2 had differentiated into PrE and were competent to form PE when 

treated with db-cAMP. 

 

3.3.2 H2O2 activates canonical WNT/β-catenin/TCF signaling 

 

Activation of the WNT/β-catenin/TCF pathway in F9 cells is an obligatory step 

for RA-induced PrE differentiation [11, 13, 25] and evidence indicates that ROS interact 

at the level of DVL to positively regulate this pathway [16, 26]. Furthermore, my lab has 

shown that the addition of RA to cells pre-treated with antioxidants N-acetyl cysteine 

(NAC) or Trolox attenuated RA’s ability to induce PrE [23]. Together with the ability of  
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Figure 3.1. H2O2 induces morphological and molecular markers of primitive 

endoderm and these cells are competent to complete the EMT to parietal endoderm. 

(A) Untreated or DMSO-treated F9 cells showed similar morphology. Likewise, cells 

treated with RA to induce primitive endoderm were morphologically similar to those 

treated with H2O2. RA-induced primitive endoderm cells treated with db-cAMP were 

morphologically similar to those treated with H2O2 and db-cAMP. These cells had long 

protrusions (white arrows), and were more refractile in appearance than those treated 

with RA or H2O2 alone. Scale bar = 50 µm. (B) RT-PCR analysis showed the up-

regulation Gata6, Foxa2 and Wnt6 following RA or H2O2 treatments. (C) Immunoblots 

with the TROMA-1 antibody to detect the primitive endoderm marker endo-A 

cytokeratin showed an increase in endo-A protein levels from day 2 through 4 post-RA 

treatment. (D) H2O2-treated cells also expressed endo-A cytokeratin. (E) RT-PCR 

analysis showed Thrombomodulin (TM), a marker of parietal endoderm, was up-regulated 

in cells treated with RA and db-cAMP (lane 5). Up-regulation was also detected in cells 

treated with H2O2 (two concentrations) and db-cAMP (lanes 6 and 7). H2O2 alone had no 

obvious effect on TM expression. (A-E) Data are representative of three independent 

experiments. 
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RA and H2O2 to induce markers of PrE, the correlative changes in ROS levels following 

RA treatment [23], and evidence linking ROS to canonical WNT/β-catenin signaling [16, 

26], I hypothesized that H2O2 would activate the canonical WNT/β-catenin pathway. A β-

catenin/TCF-responsive luciferase reporter assay was used to test this hypothesis (Fig. 

3.2). The reporter activity in cells treated with DMSO vehicle control was comparable to 

that recorded in cells treated for 1 or 3 h with H2O2 (Fig. 3.2, top). This activity increased 

significantly in cells exposed for 1 day with H2O2, as well as in those treated with RA 

(Fig. 3.2). When cells were pre-treated with NAC, however, and then treated with RA or 

H2O2 for 1 day, there was no significant difference in luciferase activity compared to the 

DMSO controls (Fig. 3.2B). The same was true for cells pre-treated with Trolox and then 

treated for 1 day with H2O2 (Fig. 3.2C). In contrast, cells pre-treated with Trolox and then 

with RA showed a small increase in luciferase activity compared to the controls. Despite 

this increase, the activity was significantly less when compared to cells treated with RA 

alone (Fig. 3.2C). These results indicated that H2O2 was responsible for increasing the 

readout of active canonical WNT/β-catenin signaling and this was independent of RA. 

Furthermore, that antioxidants impede the ability of RA or H2O2 to activate canonical 

WNT/β-catenin signalling, would suggest ROS are necessary in the RA-induced 

induction of PrE.   

 

3.3.3 RA induces NADPH-oxidase (Nox) expression 
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Figure 3.2. Antioxidants attenuate RA- or H2O2-induced canonical WNT/β-

catenin/TCF signaling. (A) Cells transfected with the pGL3-BARL TCF-luciferase 

reporter construct were treated 24 h post-transfection with DMSO or RA for 1 day, or 

H2O2 for 1 h, 3 h or 1 day. (B, C) Cells were pre-treated for 1 h with either: (B) N-acetyl 

cysteine (NAC) or (C) Trolox and then treated as described above in (A). Following all 

treatments, cells were lysed and luciferase activity determined using a GloMax 

luminometer. (A-C) Cells treated with RA or H2O2 for 1 day showed a significant 

increase in TCF reporter activity compared to DMSO controls (* P<0.05). (B, C) Cells 

pre-treated with (B) NAC or (C) Trolox and then treated with RA or H2O2 showed no 

difference in TCF-luciferase activity compared to DMSO-treated control. (C) Cells pre-

treated with Trolox and then treated with RA showed a slight increase in TCF-luciferase 

activity, but this was significantly less when compared to cells treated with RA alone (# 

P<0.05). (A-C) Data are representative of three independent experiments. 
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The mitochondria and the cytoplasm are two major sources of ROS production in 

a cell. Since previous work in my lab has shown that mitochondrial ROS may not play a 

significant role in RA-induced increase in ROS levels [23], my focus turned to the NOX 

family of proteins, which are known for their widespread expression patterns and their 

role in producing ROS that affects various biological processes [27]. To test if Nox genes 

are expressed in F9 cells and more importantly if their regulation is in response to RA, 

Nox1-4 and Duox1 and 2, levels were investigated by qRT-PCR (Fig. 3.3). Results 

showed that all but the Duox1 gene was RA responsive relative to the DMSO vehicle 

control. It is interesting to note that significant differences were seen beginning on day 3 

for Nox2 and 4, whereas it took one additional day for these differences to be seen for 

Nox1, 3 and Duox 2 (Fig. 3.3). These results indicated Nox transcripts are up-regulated in 

response to RA and presumably, the proteins these transcripts encode participate in 

complexes that produce the ROS. 

 

3.3.4 Gata6 induces Nox4 expression, leading to increases in ROS and primitive 

endoderm differentiation 

 

Although Nox activity is regulated at the level of the protein subunits that 

comprise the functional ROS producing complex, changes in gene expression of the 

various Nox isoforms have also been reported to be critical for NOX activity [28-30]. To 

investigate the latter I used an in silico analysis of the promoter regions of the various 

Nox genes and found putative binding sites for GATA6 (data not shown). Since GATA6  
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Figure 3.3. RA induces expression of Nox mRNAs. Total RNA isolated from F9 cells 

treated with RA for 1-4 days or from DMSO-treated cells grown for 4 days, was reverse 

transcribed into cDNA and then processed for real time PCR. The expression of Nox 

mRNAs was quantified relative to the expression of the constitutively expressed L14 

gene. The expression of Nox1-4 and Duox2 increased after RA treatment. Levels of 

Duox1 did not change appreciably over time. * denotes significant difference (P<0.05) 

between treatment and DMSO control. Data are representative of three independent 

experiments. 
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is a master regulator of PrE formation [1, 31] and is up-regulated in response to RA (Fig. 

3.1B), I hypothesized that ectopic expression of Gata6 in the absence of RA would 

induce Nox expression. To test this, total RNA from cells transfected with pcDNA-Gata6 

were collected and reverse transcribed into first strand cDNA for qRT-PCR analysis (Fig 

3.4A). Although RA induced the expression of Nox1-4 and Duox2 (Fig. 3.3), Gata6-

transfected cells only induced the expression of Nox1 and Nox4 (data not shown and Fig. 

3.4A, respectively). The ability of Gata6 to induce Nox expression prompted me to 

determine whether or not the ectopic expression of Gata6 alone was sufficient to induce 

ROS in the absence of RA. DCF, a ROS indicator, was used in conjunction with 

fluorescence microscopy to analyze cells that were treated with RA, transfected with 

pcDNA empty vector, or transfected with pcDNA-Gata6. Results showed that cells 

transfected with pcDNA-Gata6 exhibited a prominent increase in fluorescence similar to 

those treated with RA, while the empty vector transfected controls showed no 

fluorescence (Fig. 3.4B). Taken together, the data would suggest that in the absence of 

RA, Gata6 induces the expression of Nox1 and 4, which led to the increase in the levels 

of ROS detected by DCF.  

 Nox4 was chosen to be investigated further since its promoter contains a putative 

binding site for GATA6 (data not shown), a master regulator of ExE. Furthermore, the 

ROS produced by NOX4 is in the form of extracellular H2O2 and the activity of NOX4 is 

determined by Nox4 mRNA expression [32]. To address whether or not ectopic 

expression of Nox4 would induce ROS, cells were transfected with pcDNA-Nox4 or 

pcDNA empty vector and then loaded with DCF. Results showed that cells transfected 

with pcDNA-Nox4 exhibited an increase in fluorescence, while the empty vector  
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Figure 3.4. Overexpression of Gata6 induces Nox4 expression and increases 

intracellular ROS levels. (A) Total RNA isolated from F9 cells treated with RA or 

transfected with the empty vector (pcDNA) or Gata6 (pcDNA-Gata6) were reverse 

transcribed to cDNA and processed for real time PCR. Both RA-treated and Gata6-

transfected cells showed an up-regulation of Nox4 mRNA compared to the empty vector-

transfected controls (* P<0.05). (B) Cells treated with RA or transfected with pcDNA-

Gata6 or pcDNA empty vector were exposed to CM-H2DCFDA (DCF), an indicator of 

intracellular ROS. DCF fluorescence was evident in RA-treated and Gata6-transfected 

cells, but not in the pcDNA-transfected controls. The morphology of cells following the 

different treatment regimens was examined using differential interference contrast (DIC) 

microscopy. (A, B) Data are representative of three independent experiments. 
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transfected control showed little fluorescence (Fig. 3.5). It is interesting to note that the 

flattened, stellate shaped morphology of the Nox4-transfected cells resembled that seen 

when cells were treated with RA or transfected with Gata6 (Fig. 3.5 and Fig. 3.4B, 

respectively). Taken together, these data suggests a signaling hierarchy between RA, 

Gata6 and Nox4, leading to the increase in ROS, an activation of the canonical WNT/β-

catenin pathway and changes in cell morphology that accompany PrE formation. 

 

3.3.5 NRX negatively regulates primitive endoderm formation 

 

NRX is a redox-regulated protein that modulates the WNT/β-catenin pathway in 

NIH3T3 cells and Xenopus embryos [16, 17, 33]. Given the ROS data described above, 

and its apparent link to WNT signaling, it seemed logical to propose that NRX may also 

be involved in PrE formation. To address this, NRX was knocked down in F9 cells using 

an sh-NRX approach, and the efficiency of the knockdown was evaluated by qRT-PCR 

(Fig. 3.6A). Treating cells with DMSO or RA had no effect on NRX levels and the same 

was true for RA and db-cAMP (Fig. 3.6A, lanes 1-3). In contrast, NRX amplicons were 

absent when cells were transfected with sh-NRX (Fig. 3.6A, lanes 6 and 7), which 

contrasts that seen in cells transfected with the sc-NRX scrambled control or sc-NRX and 

db-cAMP (Fig. 3.6A, lanes 4 and 5, respectively).  

 Confident that the sh-NRX would effectively knock down endogenous expression, 

the effects on cell morphology were examined by phase contrast microscopy (Fig. 3.6B). 

Cells transfected with the sc-NRX control appeared morphologically similar to those  
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Figure 3.5. Overexpression of Nox4 induces intracellular ROS. Cells transfected with 

pcDNA-mNox4 or the pcDNA empty vectors were exposed to CM-H2DCFDA (DCF), an 

indicator of intracellular ROS. DCF fluorescence was evident in mNox4-transfected cells, 

but not in pcDNA-transfected controls. Differential interference contrast (DIC) 

microscopy highlights the morphological similarities between the different treatment 

regimens. Data are representative of three independent experiments. 
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Figure 3.6. Depletion of NRX induces primitive endoderm formation. (A) Total RNA 

from F9 cells transfected with sc- or sh-NRX (sc: scrambled control; sh: short hairpin), or 

transfected and then treated with db-cAMP, were collected, reverse transcribed into first 

strand cDNA, and then used as a template for PCR and qRT-PCR with primers specific to 

NRX and L14 (control). An NRX amplicon was present in all lanes except those from cells 

that were transfected with the sh-NRX plasmid (lanes 6 and 7). qRT-PCR confirmed that 

the decrease in NRX expression, as a result of the sh-NRX transfection, was significant. 

(B) F9 cells transfected with sc-NRX were morphologically similar to those treated with 

DMSO, appearing in tightly compact groups reminiscent of undifferentiated cells. In 

contrast, F9 cells transfected with sh-NRX showed a flattened, more elongated 

morphology, comparable to RA-induced primitive endoderm. Scale bar = 50 µm. (C) F9 

cells were transfected with sc- or sh-NRX, or treated with DMSO or RA, and protein 

lysates collected to detect the primitive endoderm marker endo-A cytokeratin. 

Immunoblot analysis with the TROMA-1 antibody, which detects endo-A cytokeratin, 

showed little to no signal in the DMSO control or sc-NRX control. Signals were seen in 

RA-treated or sh-NRX-transfected cells. An antibody to NRX confirmed the efficacy of 

the knockdown, while one to β-Actin served as the loading control. Densitometry 

analysis confirmed that there was a significant increase in TROMA-1 positive signal 

when cells were treated with RA compared to DMSO, and the same was true for endo-A 

levels in cells transfected with sh-NRX compared to sc-NRX. (A-C) Data are 

representative of three independent experiments. (A, C) * denotes P<0.05. (C) 

Densitometric data represents the mean ± S.E. 
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treated with DMSO. Specifically, cells were round in shape and grew in compact masses 

(Fig. 3.6B). In contrast, those transfected with sh-NRX were elongated and flattened out, 

which are characteristic changes in morphology associated with RA-induced PrE cells 

[25]. The ability of NRX depleted cells to differentiate into PrE was confirmed by 

immunoblot analysis (Fig. 3.6C). DMSO or RA treatment had no affect on the levels of 

NRX, while cells transfected with sh-NRX showed reduced NRX levels. Analysis with 

the TROMA-1 antibody to detect the endo-A marker of PrE showed, as expected, a 

strong signal in the RA lane compared to those treated with DMSO (Fig. 3.6C). The 

signal also appeared higher in cells transfected with sh-NRX compared to the sc-NRX 

transfected controls. Densitometry data confirmed these results and showed there was not 

only a significant increase in TROMA-1 levels in RA-treated cells compared to those 

seen in DMSO treatments, but also a significant increase resulting from the NRX 

knockdown. Together, the molecular and morphological data confirmed that the NRX 

knockdown in the absence of RA was sufficient to induce F9 cells to form PrE. 

 

3.3.6 Loss of NRX correlates with an increase in canonical WNT signaling 

 

The evidence I have shown so far appears to be in agreement from an earlier 

study showing NIH3T3 cells having elevated β-catenin/TCF activity when NRX is 

depleted [16]. I used a TCF-luciferase assay to confirm my hypothesis that an increase in 

TCF-mediated activity, as a result of NRX depletion, contributes to PrE formation (Fig. 

3.7). Cells were co-transfected with pGL3-BARL and a Renilla luciferase construct and 
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then treated with RA, or co-transfected with sc-NRX or sh-NRX. Results showed that RA 

induced a 2.5-fold increase in luciferase activity in cells depleted of NRX relative to 

those transfected with the sc-NRX control (Fig. 3.7). Thus, depleting cells of NRX is 

sufficient to activate canonical WNT/β-catenin signaling. 

 

3.3.7 NRX-depleted cells are competent to form parietal endoderm 

 

PrE is an intermediate step and the completion of the EMT is required for cells to 

adopt the parietal fate [11]. The data above would indicate that depleting cells of NRX 

was sufficient to induce cells to form PrE, but the questions remained as to whether or 

not these cells were in fact PrE in nature and if so, were they competent to complete EMT 

and differentiate into PE. To address these questions, cells transfected with either sc-NRX 

or sh-NRX were treated with db-cAMP and their morphology and molecular 

characteristics were assessed by phase contrast microscopy and qRT-PCR, respectively 

(Fig. 3.8). Those transfected with sc-NRX and treated with db-cAMP were 

morphologically indistinguishable from those treated with DMSO (data not shown). In 

contrast, cells transfected with sh-NRX and treated with db-cAMP were morphologically 

similar to those treated with RA and db-cAMP (Fig. 3.8A). Further analysis using RT-

PCR/qRT-PCR showed the up-regulated expression of the PE marker TM in cells 

transfected with sh-NRX and treated with db-cAMP (Fig. 3.8B). Although the increase 

was not as dramatic as that seen in PE cells induced by RA and db-cAMP, the amount 

was significant compared to that in the other treatments (Fig. 3.8B). Thus, although the 
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Figure 3.7. Depletion of NRX induces canonical WNT/β-catenin signaling in the 

absence of RA. Protein lysates from cells transfected with pGL3-BARL and then treated 

with RA, and from cells co-transfected with pGL3-BARL and sc- or sh-NRX (sc: 

scrambled control; sh-short hairpin) plasmid, were collected and processed for luciferase 

activity 24 h post-RA treatment or transfection. Cells treated with RA had a 2.5-fold 

increase in TCF-luciferase activity relative to DMSO-treated controls, while sh-NRX-

transfected cells showed a 1.8-fold increase relative to the sc-NRX controls. Data 

represents the mean fold change ± S.E. of three independent experiments. * denotes 

P<0.05. 
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effect of knocking down NRX in the presence of db-cAMP on PE formation may not be 

as robust as treating cells with RA and db-cAMP, it is nevertheless sufficient to induce 

the competent PrE cells to differentiate into PE. 
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Figure 3.8. Cells transfected with sh-NRX are competent to form parietal endoderm. 

(A) F9 cells treated with RA and db-cAMP to form parietal endoderm have flattened out 

over the dish and are more refractile with multiple protrusions. In contrast, cells 

transfected with sc-NRX (scrambled control) and then treated with db-cAMP grow in 

tightly compact groups, similar to that seen when cells were treated with DMSO alone 

(Fig. 3.6B). Cells transfected with sh-NRX and then treated with db-cAMP share 

morphological features in common with RA and db-cAMP-induced parietal endoderm, 

specifically the protrusions and the refractile appearance [23, 25]. Scale bar = 50 µm. (B) 

Total RNA from F9 cells treated with DMSO, RA, or RA and db-cAMP, transfected with 

sc- or sh-NRX, or transfected with sc- or sh-NRX and then treated with db-cAMP, was 

isolated, reverse transcribed into cDNA, and then used as templates for PCR analysis 

with primers designed to the parietal endoderm marker, Thrombomodulin (TM). The 

constitutively active L14 gene was used as a control. RT-PCR analysis showed that TM 

was up-regulated in parietal endoderm cells that were induced by RA and db-cAMP (lane 

3). A slight increase was also seen in cells transfected with sh-NRX and then treated with 

db-cAMP (lane 7). qRT-PCR analysis confirmed that these increases in TM expression 

seen in lanes 3 and 7 were significant. * denotes P<0.05. Data represents the mean ± S.E. 

of three independent experiments.  
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3.4 Discussion 

 

The canonical WNT/β-catenin signaling pathway has been elucidated in great 

detail and numerous reports underlie its importance in key events required for normal 

embryonic development and those in adult life [34]. Abnormal WNT signaling, however, 

is at the root of several human diseases and its importance in maintenance of embryonic, 

adult, and cancer stem cells has gained notable attention in the last few years [35]. For 

these reasons, it is important to identify how WNT pathways are regulated under normal 

conditions in the effort of being able to target these regulatory mechanisms to prevent the 

onset and/or progression of disease states. Towards that end, I have used the F9 

teratocarcinoma stem cell model to study how the activation of canonical WNT/β-catenin 

signaling in naïve cells leads to the initiation of EMTs required to pattern extraembryonic 

endoderm in the mouse embryo. An obligatory step required for the differentiation of F9 

cells into PrE is the activation of TCF/LEF-dependent transcription [13], which is the 

downstream readout of active canonical WNT/β-catenin signaling. Previous work from 

my lab has shown that Wnt6 is at the center of this EMT [11] and the transcription factors 

responsible for Wnt6 expression have been identified (Chapter 2). Given that RA causes 

an increase in ROS [23] and the ability of ROS to impinge on the WNT pathway [36], it 

seemed plausible that ROS was initiating and/or modulating the WNT response in F9 

cells. 

Several pieces of evidence led to the proposal that ROS, like RA, was influencing 

the WNT signaling pathway involved in PrE formation. For instance, cell morphology 
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changed in response to both agents, as did the expression of molecular markers of 

differentiation, and the competency of both RA- and ROS-treated cells to further 

differentiate into PE in the presence of db-cAMP (Fig. 3.1). Given the significant 

increase in ROS within F9 cells following RA treatment [23], the question remained as to 

the link between RA and ROS. Increase in ROS levels may reflect either an increase in 

ROS production and/or decrease in antioxidant capacity or perhaps both as the two events 

are not mutually exclusive. Although intracellular antioxidant status was not investigated, 

it is interesting to note that during mouse embryonic stem cell differentiation, the redox 

status shifts to an oxidative state and antioxidant supplementation delays differentiation 

[37]. While an investigation to address the state of various redox-sensitive proteins would 

have been insightful, the focus first turned to identifying whether or not ROS were acting 

on the canonical WNT signaling pathway, which is integral in PrE formation, and to 

detect the source of the ROS. 

Funato et. al. [16] was first to report that ROS signaling in the form of H2O2 

displaces NRX from DVL, activating canonical WNT/β-catenin signaling. That 

exogenous H2O2 activates TCF/LEF-dependent transcription independent of a WNT 

ligand in NIH3T3 and HEK293 cells [16] was sufficient evidence to propose that the 

same phenomenon exists in F9 cells. This hypothesis was tested and the fact that H2O2 

treatment resulted in the activation of TCF/LEF-dependent transcription, while pre-

treatment of cells with the antioxidants NAC and Trolox attenuated the ability of H2O2 to 

induce TCF/LEF-dependent activity (Fig. 3.2) supports this notion. It is reasonable to 

speculate that ROS signaling in vivo has a direct role in mediating the WNT signaling 
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that directs ExE differentiation. While studies are underway to address this, one matter 

that remained was to identify the non-mitochondrial source of ROS. 

The NOX family of enzymes became the focus of attention because they are 

known to catalyze the reduction of oxygen by using NADPH as its electron donor and 

produce ROS, which stimulates the post-translational modification of proteins to 

influence cell signaling, differentiation and regulation of gene expression [27, 38]. 

Furthermore, recent evidence exists to indicate that RA signals through NOX to induce 

cell differentiation [39]. It was first necessary to determine if Nox genes are expressed in 

F9 cells and more importantly, if RA regulates them. Towards that end, I found that the 

expression of Nox1-4 and Duox2 increased in response to RA (Fig. 3.3). Nox4 was 

chosen to be investigated further since its promoter contains a putative binding site for 

GATA6 (data not shown), a master regulator of ExE. Furthermore, the ROS produced by 

NOX4 is in the form of extracellular H2O2 [32], which if formed by F9 cells under RA 

stimulation, would be available to signal in a paracrine fashion. I found that the 

expression of Nox4 is up-regulated in response to ectopic expression of Gata6 (Fig. 3.4A), 

followed by concomitant increase in ROS (Fig. 3.4B and Fig. 3.5). Although the type of 

ROS produced by ectopic expression of Gata6 or Nox4 alone was not determined, the 

morphological features between those ectopically expressing Gata6 or Nox4, and those 

treated with RA were strikingly similar. Coupled with the notion that an increase in the 

level of ROS is obligatory for differentiation [23], leading to active canonical WNT/β-

catenin signaling (Fig. 3.2), my attention turned on how ROS modulates canonical 

WNT/β-catenin signaling during ExE differentiation. 



105 
 

 
 

NRX is a member of the thioredoxin (TRX) family of evolutionarily conserved 

and ubiquitously expressed proteins that contain a redox sensitive active site motif [40]. 

TRX catalyzes NADP-dependent reductions of disulfide bridges and functions as a 

disulfide oxidoreductase. Under oxidizing conditions the thiol functional group on the 

two cysteine residues form a disulfide bridge capable of changing protein function or 

interactions [41]. The importance of TRX in embryogenesis is evident from the studies 

showing that the knockout of either of the two TRX genes in mouse embryos is lethal 

with TRX1-/- embryos dying shortly after implantation [42, 43]. It is also interesting to 

note that although NRX-/- pups show embryonic defects, they die later around birth [36]. 

Although the whole mount in situ hybridizations studies indicate that NRX plays a role in 

patterning tissues and regions during mouse embryogenesis [40, 44], nothing until now 

has been reported on its involvement in the early events associated with ExE 

development. My data showing the knockdown of NRX leads to the molecular and 

morphological changes that recapitulate those that occur as a result of RA treatment 

would indicate NRX acts to negatively regulate WNT signaling during ExE formation 

(Fig. 3.6). That NRX depleted cells have increased TCF/LEF-mediated transcriptional 

activity (Fig. 3.7) lends support to the idea that NRX serves as a negative regulator of the 

WNT pathway. It is interesting to note that a decrease in GSK-3β activity also occurs 

when cellular H2O2 levels increase [45] and under these conditions, β-catenin levels 

would also be expected to increase. This has not been examined in reference to F9 cells, 

but together it is easy to envision how the redox state of the cell can influence multiple 

signaling events. In the case of ExE formation, these changes led to PrE formation with 
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cells remaining competent to complete the EMT and further differentiate into PE under 

the appropriate conditions (Fig. 3.8). 
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CHAPTER 4 

GENERAL DISCUSSIONS 

 

4.1 Introduction 

 

 This thesis detailed the crosstalk imparted on a signal transduction pathway 

involved in the differentiation of extraembryonic endoderm. The goal of my thesis was to 

investigate the canonical WNT signaling pathway involved in extraembryonic endoderm 

formation with the hypothesis that GATA6 and FOXA2, two transcriptions factors 

necessary for primitive endoderm differentiation, can initiate two signaling events that 

were once perceived independent. Within the chapters of this thesis, the data on how 

canonical WNT/β-catenin signaling is initiated by GATA6 and FOXA2 (Chapter 2) and 

how ROS positively modulates WNT signaling (Chapter 3), provide new insight into how 

extraembryonic endoderm differentiates in the mammalian embryo.  

 

4.2 Markers of extraembryonic endoderm 

 

 Pre-implantation development in the mouse is characterized by the presence and 

differentiation of the extraembryonic lineages, as well as the pluripotent cells of the 

epiblast that gives rise to the embryo proper [1-4]. Positional cues direct the outer 
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extraembryonic cells to form trophectoderm, which surrounds the ICM at the blastocyst 

stage [5]. The mechanisms governing primitive endoderm differentiation from the 

epiblast is not very well understood, but involves the regulation of many genes followed 

by cell sorting and death [6-8]. Around the time of implantation, the morphologically 

distinct primitive endoderm expresses markers like Gata6, Gata4, Sox17, and Pdgfra and 

separates the epiblast from the blastocyst cavity [1, 8-10]. In vivo, Gata6 is required for 

primitive endoderm formation as well as for the expression of Gata4 and Foxa2 [1, 8, 11-

16]. In the F9 model system, the requirement for Gata6 can be by-passed by ectopically 

expressing Foxa2 (Chapter 2). These Foxa2 expressing cells form primitive endoderm in 

the absence of RA by directly up-regulating Wnt6 expression and canonical WNT/β-

catenin signaling, and are competent to complete the EMT and form parietal endoderm 

with subsequent treatment with db-cAMP (Chapter 2). Although many markers of 

primitive endoderm have been identified, it is difficult to establish independent markers 

for parietal and visceral endoderms due to the fact that they both share a common lineage 

precursor, the primitive endoderm.  

  

4.3 Non-mitochondrial induction of ROS 

 

 Over the last decade ROS have gained much attention as a modulator of signaling 

pathways involved in diverse biological processes including cell growth, differentiation, 

apoptosis, and angiogenesis [17, 18]. Specifically, the NOX family of catalytic enzymes 

are recognized as the proteins responsible for the non-mitochondrial production of ROS 
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[18]. NOX enzymes, which are transmembrane proteins with binding sites for NADPH 

and FAD, are responsible for transferring an electron to molecular oxygen to generate 

ROS [17, 18]. Due to the cellular compartmentalization and tissue-specific expression 

profiles of the seven different isoforms in humans, it is believed that each NOX enzyme 

plays very specific biological roles with distinct and overlapping regulatory systems. In 

addition to the regulation of NOX activity by their subunits, changes in gene expression 

levels of the Nox isoforms have been reported. For example, the expression of Nox2 in 

phagocytes is induced by IFNγ [19], while Nox1 expression is stimulated by PDGF and 

angiotensin II in vascular smooth muscle cells [20]. More recently, Nox1 was shown to 

be up-regulated directly by GATA6, HNF1α, Cdx1 and Cdx2 in colon cancer cells [21, 

22]. My results showing the RA-induction of Nox1-4 and Duox2 in F9 cells (Chapter 3) is 

in agreement with other reports highlighting the transcriptional regulation of Nox genes in 

other systems. Furthermore, ectopic expression of Gata6 in the absence of RA induced 

Nox1 and Nox4 expression (data not shown and Chapter 3, respectively), but had no 

effect on the expression of genes encoding the other NOX isoforms (data not shown). 

Although the expression levels of the NOX regulatory subunits were not examined during 

my studies, work is currently underway to determine their involvement on ROS 

production during extraembryonic endoderm differentiation. Moreover, the question still 

remains as to whether or not one or a combination of several Nox isoforms are necessary 

for the increase in ROS required for this differentiation. 

 

4.4 Model for primitive endoderm differentiation 



113 
 

 
 

 

 The induction of extraembryonic endoderm requires a complex interplay of many 

elements that regulate gene transcription and protein function. The literature as well as 

this thesis indicates that RA, WNT and ROS signaling are ideally suited to regulate each 

or a combination of the aforementioned elements required for primitive differentiation 

(Chapters 2 and 3). I have identified a novel mechanism and a signaling hierarchy leading 

to the induction of primitive endoderm in F9 cells. My working model proposes that in 

undifferentiated F9 cells, NRX prevents aberrant activation of the Wnt/β-catenin pathway. 

RA treatment induces differentiation where changes in gene expression including the up-

regulation of Gata6 and Foxa2, leads to Wnt6 and Nox4 expression and subsequent 

generation of ROS. An increase in the ROS load promotes the dissociation of NRX from 

Dishevelled, which essentially primes the pathway in preparation for full activation when 

the WNT ligand appears. When this occurs, the resulting increase in β-catenin levels 

leads to the subsequent activation of TCF/LEF-dependent regulation of WNT target 

genes, which encode proteins that promote the EMT associated with primitive endoderm 

formation (Fig. 4.1). Thus, the data in this thesis further delineates how a signal 

transduction pathway required for extraembryonic endoderm differentiation is initiated 

and as important, how it can be modulated by products that were once considered 

harmful to cells. 

 

4.5 Future Directions 
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Figure 4.1. A model for the differentiation of primitive endoderm. RA acts through 

RA receptors which bind RA response elements in the promoter regions of target genes. 

In undifferentiated F9 cells, NRX bound to Dvl, prevents Dvl from destabilizing the β-

catenin destruction complex. RA treatment induces differentiation where changes in gene 

expression, including Gata6, Foxa2, Wnt6, and Nox4, leads to the generation of ROS. An 

increase in ROS levels promotes the dissociation of Dvl from NRX, while Wnt6 binding 

to its Fzd receptor and LRP5/6 co-receptor ensures complete activation of the canonical 

Wnt pathway and regulation of Wnt target genes that promote the EMT associated with 

primitive endoderm formation. RA: retinoic acid; RAR/RXR: retinoic acid 

receptor/retinoid X receptor; RARE: retinoic acid response elements; O2: oxygen; O2
-: 

supoxide anion; H2O2: hydrogen peroxide; NADPH: nicotinamide adenine dinucleotide 

phosphate; Nox: NADPH oxidase; Fzd: frizzled; LRP5/6: lipoprotein related protein; 

NRX: nucleoredoxin; Dvl: dishevelled; GSK3β: glycogen synthase kinase; APC: 

adenomatous polyposis coli; Tcf/Lef: T-cell factor/lymphoid enhancer factor. 
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Although the data presented throughout this thesis (Chapters 2 and 3) supports the 

hypothesis that the induction of primitive endoderm requires a complex interplay of many 

elements that regulate gene transcription and protein function, several questions remain to 

be elucidated: 1) If both GATA6 and FOXA2 induce primitive endoderm and GATA6 

induces FOXA2 (Chapter 2), is GATA6 necessary for primitive endoderm formation in 

the presence of FOXA2? This can be addressed by using an RNAi approach to knock 

down Gata6 expression while ectopically expressing Foxa2; 2) Wnt6 is sufficient to 

induce the canonical WNT signaling required for primitive endoderm formation, but is 

Wnt6 necessary for this differentiation? An RNAi approach to knock down the expression 

of Wnt6 in the presence of retinoic acid could be used. This task may prove to be difficult 

because in vertebrates, there are 19 different Wnt genes, and any one or combinations of 

them can be functionally redundant; 3) Both Nox1 and Nox4 are up-regulated by GATA6 

(Chapter 3), however, whether this up-regulation is direct or indirect, and which NOX is 

sufficient and/or necessary for the production of ROS and induction of primitive 

endoderm remains unanswered. The direct or indirect relationship between GATA6 and 

Nox1 or Nox4 expression can be addressed using chromatin immunoprecipitation. To 

address if NOX1 and/or NOX4 is/are sufficient and/or necessary, selective chemical 

inhibitors of NOX1 or NOX4 or an RNAi approach to knock down Nox1 or Nox4 while 

ectopically expressing the other can be used; 4) Lastly, it would be very interesting to test 

whether the induction of primitive endoderm via the signaling crosstalk between WNT 

and ROS (Fig. 4.1) occurs in vivo. 
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