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REVIEW

Recommendations for genetic testing to
reduce the incidence of anthracycline-induced
cardiotoxicity
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AIMS
Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of
anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been
identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further
individualize therapy based on ACT risk.
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METHODS
We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical
appraisal, and the development of clinical practice recommendations with an international expert group.

RESULTS
RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent
evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1,
CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional
validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and
UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy
(Level B –moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a
number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic
options within the current standard of clinical practice.

CONCLUSIONS
Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at
higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an
improved prevention of ACT.

Introduction
Anthracyclines are highly effective anticancer drugs that
have contributed to 5-year survival rates of over 80% for some
cancer types [1, 2]. They are among the most commonly used
agents for the treatment of adult and childhood leukaemia,
lymphoma and various solid tumours including breast, ovar-
ian and lung cancers as well as sarcomas. Anthracyclines
block DNA and RNA synthesis by inhibiting the topoisomer-
ase II enzyme. The ensuing disruption of DNA replication and
transcription prevents the replication of rapidly dividing
cells. Through the creation of iron-mediated free oxygen rad-
icals, anthracyclines also damage DNA, proteins and cell
membranes of rapidly dividing cells [3].

The clinical utility of anthracyclines is limited primarily
by high inter-individual variability in cumulative dose-
dependent cardiac toxicity known as anthracycline-induced
cardiotoxicity (ACT). ACT is the deleterious effect of
anthracyclines on normal cardiac function due to the toxic
effect on cardiac muscles and their conducting system. The
clinical diagnosis, classification and grading of ACT accord-
ing to the National Cancer Institute Common Terminology
Criteria for Adverse Events (CTCAE) v3.0 is shown in
Table 1 [4]. Although most studies use the definition of ACT
based on CTCAE, the specific grading criteria varies between
studies. ACT manifests as asymptomatic cardiac dysfunction
in up to 57% of treated patients [5–8], and as restrictive or di-
lated cardiomyopathy resulting in congestive heart failure
(CHF) in up to 16–20% of patients [9–12]. Anthracycline-
induced CHF is often resistant to therapy and has a mortality
rate of up to 79% [10, 13, 14]. While some patients tolerate
high anthracycline doses without ACT, others are affected
even at low doses. ACT can be divided into three types based
on the temporal relationship to treatment: acute/subacute
cardiotoxicity develops within a week of anthracycline admin-
istration, is rare (<1% of childhood cancer patients) and usu-
ally resolves after discontinuation of treatment [12, 13]; early-

onset chronic progressive cardiotoxicity occurs within a year after
completion of therapy and is observed in approximately 2%
of treated children [15, 16]; and most commonly, ACT mani-
fests as late-onset chronic progressive cardiotoxicity developing
more than a year after therapy completion with up to 65%
of patients affected [7, 8].

The pathophysiology of ACT is not fully understood. It is
thought to be mediated in part by reactive oxygen species
formed as a result of anthracycline treatment, leading to lipid
peroxidation and DNA damage in cardiomyocytes [13, 17].
Other suggested causes of ACT include the accumulation of
cardiotoxic anthracycline metabolites in the heart, disrup-
tion of calcium homeostasis, mitochondrial damage, and in-
duction of apoptosis [13, 17–21]. Higher lifetime cumulative
anthracycline dose, concurrent or prior cardiac irradiation,
concomitant administration of other cardiotoxic chemother-
apeutic agents (particularly paclitaxel, trastuzumab and cy-
clophosphamide), pre-existing cardiovascular disease,
comorbidities (including renal dysfunction, pulmonary dis-
ease, infection, pregnancy), higher individual dose, shorter
infusion time, age extremes (younger or elderly age at treat-
ment), female sex, African American ancestry and Trisomy
21 [5, 9, 11, 13, 22–26] are known risk factors for ACT. The
variable susceptibility to ACT, even when considering these
clinical and demographic risk factors, suggests a genetic
component. Candidate gene and genome-wide association
studies have identified genetic variants associated with ACT
[27–49]. However, no recommendations have been devel-
oped on the incorporation of genetic information into clini-
cal therapeutic, management and follow-up decisions for
cancer patients with an indication of anthracycline-based
treatment regimens. Therefore, the intentions of this review
were to: (1) review and summarize current evidence on geno-
mic markers associated with ACT; (2) provide evidence-based
recommendations as a basis for the use of a patient’s genetic
information to predict ACT risk and for guiding treatment,
management and follow-up decisions; and (3) identify gaps
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in knowledge to prioritize future research. Specifically, recom-
mendations for the following key questions were developed:

1. Should genetic testing be performed in patients with an in-
dication for anthracycline therapy to predict risk of ACT?
Which genetic test(s) should be performed and who
should be tested?

2. How should patients with an indication for anthracycline
therapy be managed based on the genetic test results?

These recommendations are intended to provide guid-
ance on the use of pharmacogenomic testing to improve the
management of ACT risk and reduce the occurrence of
cardiotoxicity and congestive heart failure in patients
receiving anthracyclines for their cancer treatment.

Methods
A standard guideline development process was followed, as
previously described [50]. A comprehensive systematic search
of the relevant English-language, published, peer-reviewed
literature was performed to identify available evidence on
the association of different genetic variants and ACT. Embase
from the period 1974–June 2011 (using the OVID interface)
and MEDLINE from the period 1946–July 2011 (using the
OVID interface) were searched. Titles and abstracts of all re-
cords retrieved were scanned for relevance to the guideline
key questions. English language original studies relevant to
the guideline questions were selected for full-text review.
Conference abstracts, editorials, notes, short surveys, and re-
view articles were not included in the full-text review. All
studies involving patients treated with anthracycline as part
of their chemotherapy were included, whereas experimental
in vitro and animal studies were excluded. The outcome of

the studies included any clinical assessment of cardiac function
(left ventricular (LV) ejection fraction (EF), ventricular shorten-
ing fraction (SF), LV volume, diastolic function, strain, molecu-
lar imaging, circulating biomarkers and others) and any grading
of ACT (CTCAE and others). Study inclusion was not restricted
with respect to the study design. Updates of the systematic
literature search were performed until January 2016 (Supple-
mentary Methods online). This was followed by an evaluation
of the strength of evidence on pharmacogenomic markers for
the prediction of ACT.

A level of evidence was assigned to each genetic bio-
marker, which reflects the consistency of independent study
results, the magnitude of effect (e.g., reported as odds ratio),
and the number and quality of studies conducted, expert
clinical opinion and the deliberations of the CPNDS Clinical
Recommendations Group (Table 2). The quality of individual
studies and available evidence were assessed based on the
quality of the clinical characterization (clinical and demo-
graphic information), the genotyping (e.g. call rates,
reproducibility/replication error, Hardy-Weinberg equilibrium,
cryptic relatedness verification and population stratification)
and the data analysis and interpretation (statistical analytic ap-
proach and conclusions). Clinical practice recommendations
were developed during a workshop meeting of recommenda-
tion development group members (Supplementary Methods
online). Each clinical practice recommendation was assigned a
level of strength, based on the strength of supporting evidence,
the balance between benefits and risks of genotype-guided
treatment, and the likelihood of variability in the individual
values and preferences of patients (Table 3) [50]. Draft
recommendations were submitted to a tiered review process,
which included internal review by the Recommendation Group
members, followed by external review by content experts and
members of the intended target audience (Supplementary
Methods online). Pharmacogenomic test performancemeasures
(e.g. sensitivity, specificity, posttest probabilities) were

Table 1
Clinical characterization of anthracycline-induced cardiotoxicity

Patients National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v3.0 [4].

No ACT ▪ No cardiotoxicity

– SF ≥ 30%, ≥5yr follow-up

ACT ▪ Grade 1 toxicity:

– Shortening fraction: 24% ≤ SF < 30%

– Resting ejection fraction: 50% ≤ EF < 60%

▪ Grade 2 toxicity: Moderate to severe cardiotoxicity

– Shortening fraction: 15% ≤ SF < 24%

– Resting ejection fraction: 40% ≤ EF < 50%

▪ Grade 3 toxicity: Symptomatic congestive heart failure

– Shortening fraction: SF < 15% or

– Resting ejection fraction: 20% ≤ SF < 40%

▪ Grade 4 toxicity: Congestive heart failure requiring heart transplant or ventricular assist device

– Resting ejection fraction < 20%

Genetic testing recommendations for anthracycline-induced cardiotoxicity
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calculated as described in the Supplementary Methods online
for variants with a recommendation for testing.

The nomenclature of the drug and molecular targets in-
cluding phase I and phase II drug metabolism enzymes, drug
transporters, drug receptors, ion channels, transcription fac-
tors and other drug targets included in this review conforms
to the British Journal of Pharmacology’s Guide to Receptors and
Channels [51].

Results

Evidence synthesis and critical appraisal
Overall, existing evidence demonstrates that genetic factors
have the potential to improve the discrimination between in-
dividuals at higher, moderate and lower risk for ACT. RARG
rs2229774, SLC28A3 rs7853758 and UGT1A6*4 rs17863783
currently have the strongest evidence (+++ evidence) as
pharmacogenomic markers for ACT [27–29]. Associations of
these biomarkers with ACT have been consistently shown
and replicated at least twice in large well-characterized patient
populationswith clinically relevant effect sizes (reported as odds
ratios > 3 or < 0.3) [27–29]. Genetic variants in other genes
(ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4,
CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17,
HFE and NOS3) have also been associated with ACT, but
these associations require additional validation (++/+ evidence)
[30–49]. A brief summary of the evidence regarding these associ-
ations with ACT is provided below. A more detailed discussion
of these potential genetic risk factors for ACT is provided online
in the SupplementaryMaterial and in the Supplementary Tables
(S1-S14).

Retinoic acid receptor gamma (RARG). RARG has been shown to
be involved in cardiac development and remodelling, which
may implicate critical processes in the pathophysiology of
ACT [52–58]. A recent genome-wide association study (GWAS)
uncovered a non-synonymous coding variant (rs2229774,
S427L) in RARG that was associated with ACT in children [29].
This association was replicated in European, African, East
Asian, Hispanic and Aboriginal Canadian patient populations
[29]. The RARG rs2229774 variant has been shown to alter
RARG function leading to a reduced repression of the key ACT
genetic determinant, TOP2B (Table S1) [29]. Although the
number of studies is limited, the evidence for the role of RARG
in ACT is consistent across different populations, and is
further supported by mechanistic studies (+++ evidence).

Solute carrier (SLC) transporters. Two variants in the SLC
transporter SLC28A3 (rs7853758, rs885004) have shown
consistent associations with doxorubicin and daunorubicin-
induced cardiotoxicity in three independent well-
characterized paediatric cohorts with the minor allele of the
variant conferring a reduced ACT risk (+++ evidence; Table
S2) [27, 28]. Current evidence indicates that the effect of
SLC28A3 may be specific to children receiving doxorubicin
and daunorubicin, as two recent studies in adult cancer
survivors did not detect any association with ACT [31, 32].
The two associated variants are in high linkage
disequilibrium and rs7853758 has been associated with
altered SLC28A3 mRNA levels, suggesting a functional effect
related to this synonymous (L461L) variant [59]. In
addition, genetic associations of SLC22A17 rs4982753 and
SLC22A7 rs4149178 have been discovered and replicated in
large well-characterized paediatric patient populations (++
evidence) [30]. The known function of the SLC super family

Table 3
Grading scheme used for grading of clinical practice recommendations

Level Strength Evidence basis

A Strong Based on strong scientific evidence; benefits clearly outweigh risks

B Moderate Based on reduced confidence scientific evidence and expert opinion; benefits likely to outweigh risks

C Optional Based mainly on expert opinion, for use with evidence development in a research context

Table 2
Grading scheme used for critical appraisal of evidence

Grade Results Description

++++ Consistent, generalizable Strong general conclusions can be drawn that are unlikely to change based on further research

+++ Consistent, but limited quantity,
quality or generalizability

Evidence allows general conclusions, but with reduced confidence; further research
is likely to have an important impact on confidence in conclusions

++ Inconsistent or insufficient
quantity/quality, encouraging

No general conclusions can be drawn or conclusions are likely to change based on
further research, but current evidence is encouraging

+ Inconsistent or insufficient
quantity/quality, discouraging

No conclusions can be drawn or conclusions are likely to change based on future studies,
and current evidence is discouraging
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as drug transporters (80) and the reported transport of
anthracyclines by SLC transporters [60] provides biological
support for these genetic associations.

UDP-glucuronosyltransferase family 1A, isoform 6 (UGT1A6).
A synonymous coding variant (rs17863783, V209V) in
UGT1A6 showed evidence for an association with an
increased risk of ACT in three independent paediatric
patient populations (+++ evidence; Table S3) [27, 28].
Rs17863783 is a tag marker of the UGT1A6*4 haplotype,
which has been reported to cause a 30–100% reduction in
enzyme activity [61, 62]. Given the role of UGT1A6 in the
drug detoxification glucuronidation pathway [63], reduced
UGT1A6-mediated glucuronidation of anthracycline
metabolites may lead to accumulation of toxic metabolites
in patients carrying UGT1A6*4, resulting in the observed
increased ACT risk.

ATP binding cassette (ABC) transporters. Associations of
genetic polymorphisms in ABC transporter genes with ACT
have been reported by several studies, including ABCC1
(rs45511401, rs246221, rs4148350, rs246214), ABCC2
(rs8187694-rs8187710 haplotype, rs4148391, rs4148399),
ABCC5 (rs7627754), ABCB1 (rs2235047) and ABCB4
(rs1149222, rs4148808) (Table S4) [27, 31, 33, 34, 36]. Only
three of these associations (ABCC1 rs246221, ABCC2
rs8187694-rs8187710 haplotype and ABCC5 rs7627754)
have been replicated in independent cohorts [29, 31, 32,
35], but the consistency of findings, and the quantity and
quality of the evidence remains limited. All other genetic
associations in ABC transporters have not yet been
replicated. Considering the role of ABC transporters in the
transport of a variety of drugs including anthracyclines [64],
more studies are required to clarify the relevance of these
genetic variants in ACT (++ evidence).

Carbonyl reductases (CBR). The rs1056892 variant of CBR3
was found to be associated with ACT in two paediatric studies
[38, 39], with additional supporting evidence from a third in-
vestigation (Table S5) [40]. In addition, functional studies
suggest an effect of this variant on the metabolism of doxoru-
bicin into the cardiotoxic metabolite doxorubicinol by CBR3
[39]. However, no association of rs1056892 with ACT was ob-
served in other studies (Table S5) [27, 29, 35, 41]. Overall, the
evidence regarding this association is thus inconsistent (++
evidence).

Nicotinamide adenine dinucleotide phosphate (NADPH)
multienzymes complex. Evidence of genetic associations
with polymorphisms in NAD(P)H oxidase subunits involved
in the production of reactive oxygen species (ROS) have
been reported. Associations for NCF4 rs1883112, CYBA
rs4673 and RAC2 rs13058338 have been discovered and
replicated at least once in independent studies (Table S6)
[31, 33, 35, 37, 44]. In addition, it was shown that mice
deficient in NAD(P)H oxidase activity were protected from
the adverse cardiac effects of chronic doxorubicin treatment
[33]. However, the reported genetic associations could not
be replicated in other studies [27, 29, 31] and current
evidence for genetic associations of NAD(P)H oxidase
subunits with ACT thus remains limited and conflicting (++
evidence).

Glutathione S-transferase (GST) enzymes. An association of
genetic variants in GSTP1 with ACT has been reported in
two small studies [40, 65], but has not been replicated
elsewhere [27, 29, 37, 46], resulting in inconsistent evidence
overall (++ evidence; Table S7).

Catalase (CAT) enzyme. A relatively small paediatric study
(<100 patients) focused on genes involved in ROS
metabolism identified an intronic variant (rs10836235) in
CAT as marginally associated with ACT (Table S8) [47].
However, a recent GWAS in children did not find any
associations with this and other variants in CAT with ACT
[29]. Current evidence thus remains unclear (+ evidence).

Sulfotransferase family cytosolic 2B member 1 (SULT2B1)
enzyme. An association of the rs10426377 variant in
SULT2B1 involved in the sulfate conjugation of drugs with
ACT has been identified and replicated in independent
paediatric patient populations [27, 28] (Table S9). The
replication of SULT2B1 rs10426377 was only marginally
significant and additional evidence is required to confirm
this association (++ evidence).

Hyaluronan synthase 3 (HAS3) enzyme. A coding variant in
HAS3 (rs2232228) was reported to be associated with
cardiomyopathy with evidence of replication in a case-only
cohort (Table S10) [36]. Specifically, an association of HAS3
rs2232228 with the risk of ACT was observed in patients
with high cumulative anthracycline exposure (>250 mg
m�2) [36]. Conversely, no association of HAS3 variants was
observed in a recent GWAS [29]. The association of HAS3
rs2232228 thus requires further independent replication (++
evidence). However, the known role of HAS3 in cardiac
remodelling [66] provides mechanistic and biological
support for this genetic association.

Histamine N-methyltransferase (HNMT) enzyme. An
association of HNMT rs17583889 with ACT has been
reported in childhood cancer survivors [27–29]. In addition,
the presence of the HNMT rs17583889 homozygous (high
risk) and heterozygous (intermediate risk) genotypes,
respectively, was detected in two adult sisters who
developed cardiotoxicity after low dose doxorubicin
treatment [48] (Table S11). However, the quantity of the
evidence remains limited and additional studies are needed
to further investigate the potential role of HNMT variants in
ACT and to strengthen the confidence in this association (+
+ evidence).

Human haemochromatosis (HFE) protein. HFE deficiency
increases the susceptibility to ACT [67]. The HFE variants
rs1799945 (H63D) and rs1800562 (C282Y) have been
associated with the risk of CHF and anthracycline-induced
cardiac injury, respectively [35, 49] (Table S12).
Furthermore, the association between anthracycline
treatment and dose-dependent myocardial iron overload
was shown to be modulated by HFE variants (C282Y and
H63D) [43]. No additional studies have observed the
association of HFEmutations with ACT to date (++ evidence).

Genetic testing recommendations for anthracycline-induced cardiotoxicity
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Cytochrome P450 oxidoreductase (CYPOR/POR). Genetic
associations with ACT for three intronic variants in POR
(rs2868177, rs13240755, rs4732513) have been reported in
a small study (<100 patients) of acute myeloid leukaemia
patients receiving daunorubicin [42]. Conversely, a previous
study investigating rs13240755 and rs4732513 did not find
any association with ACT [27] (Table S13). The quantity and
the strength of the evidence remain limited, thereby
reducing the confidence in the associations (+ evidence).
Considering the role of POR enzymes in the cytochrome
P450 system and in the biotransformation of a variety of
drugs including anthracyclines, more studies will be
required to clarify the effect of these genetic variants in ACT.

Nitric oxide synthase 3 (NOS3) enzyme. A genetic association
of NOS3 rs1799983 with doxorubicin cardiotoxicity has
been reported in a study that included survivors of
childhood acute lymphoblastic leukaemia (Table S14) [68],
but not in a recent GWAS that included other anthracycline
and tumour types [29]. Despite the essential role of NOS3 in
cardiovascular function, the evidence for the association of
NOS3 polymorphism with ACT remains limited and
inconsistent. Additional genetic and functional studies are
needed to further clarify the relevance of the NOS3 gene in
ACT (+ evidence).

Clinical practice recommendations
The goals of these recommendations are to provide guidance
on the use of pharmacogenomic testing to reduce the inci-
dence of cardiotoxicity and congestive heart failure in pa-
tients that receive anthracycline chemotherapy for cancer
treatment. Genetic information on risk of adverse effects are
an important part of chemotherapy decision making; there-
fore these guidelines are designed to assist clinicians in the in-
terpretation of genetic test results and in the use of this
information in providing optimal clinical care for patients.
They have been developed based on the quantity, quality
and consistency of the current scientific evidence and the de-
liberations of the CPNDS clinical recommendations group.

Should genetic testing be performed in patients
with an indication for anthracycline therapy to
predict the risk of ACT? Which genetic test (s)
should be performed and who should be tested?
Pharmacogenomic testing should be performed in all childhood
cancer patients with an indication for doxorubicin or daunoru-
bicin therapy for RARG rs2229774, SLC28A3 rs7853758 and
UGT1A6*4 rs17863783 variants (Level B – moderate recom-
mendation). Genetic testing is currently not recommended in
adult patients and in children receiving other types of
anthracyclines (Level C – optional recommendation).

Considerations: Current evidence regarding the associa-
tion of these variants with ACT is consistent with a similar ef-
fect observed across studies conducted so far (+++ evidence).
As the number of studies remains small (<5 studies), addi-
tional retrospective and prospective studies would further
strengthen the confidence in the associations. Similarly, as
all studies so far were performed in paediatric patients

receiving primarily doxorubicin or daunorubicin, the gener-
alizability of these findings to adult populations and other
anthracyclines is unknown. Therefore, based on current
evidence, this recommendation cannot be extrapolated to
adults and to other anthracyclines.

How Should Patients be Managed Based on
Genetic Testing Results?
Interpretation of the genetic test results. The RARG rs2229774
(G>A) risk variant (A-allele) and the UGT1A6*4 rs17863783
(G>T) risk variant (T-allele) have been associated with
significantly increased risk of developing ACT in childhood
cancer survivors. Childhood cancer patients carrying the
RARG rs2229774A or UGT1A6*4 risk variants should
therefore be considered at increased risk (high risk) of ACT
compared to a classification based on clinical risk factors
alone. The SLC28A3 rs7853758 A-allele has been associated
with a reduced risk of ACT. For patients carrying the
rs7853758A protective variant who do not carry RARG
rs2229774 or UGT1A6*4 risk variants, classification into a
lower ACT risk group should be considered. All other
patients should be considered at moderate genetic risk.
Predictive performance measures for RARG rs2229774,
SLC28A3 rs7853758 and UGT1A6*4 rs17863783 are shown in
Table 4 [29].

Management options based on ACT risk. The management of
patients based on the recommendations below should be
within the current standard of care guidelines, taking into
consideration both the risk of cardiotoxicity and possible
effects of management options on treatment effectiveness.
Management options based on risk stratification also vary as
evidence on specific treatment options may only be
available for certain cancer types. The recommended
management options address treatment considerations,
monitoring and prevention and should be interpreted
individually within the unique circumstances for each
patient.

Low risk patients: normal follow-up (level A
recommendation). Patients genetically and clinically
determined to be at low risk of ACT should receive
echocardiogram follow-up as usual. The Children’s Oncology
Group (COG) Long Term Follow-Up Guidelines v3.0 currently
recommend cardiac follow-up every 5 years for those deemed
to be low risk based on clinical factors [69, 70].

Moderate risk patients: increase frequency of monitoring
(level A recommendation). Patients initially determined to
be at low risk of ACT with a moderate genetic risk should
receive increased echocardiogram follow-up and monitoring
for cardiotoxicity. Based on COG guidelines for patients
deemed to be at moderate ACT risk based on clinical risk
factors [69, 70], we recommend cardiac follow-up every 2
years for patients with a moderate genetic risk.

High risk patients. For patients determined to be at high risk
of ACT based on genetic testing and clinical risk factors, the
following management options should be considered:
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Increase frequency of monitoring (level A recommendation).
Patients with a high risk of ACT should be followed more
closely, with serial yearly echocardiographic monitoring and
follow-up as recommended by COG guidelines [69, 70] for
high risk anthracycline-treated childhood cancer survivors.
High risk patients should also receive additional heart
monitoring before each administration of anthracyclines.

Aggressive screening and management of cardiovascular risk
factors (level A recommendation). In high risk patients, cardio-
vascular risk factors such as obesity, diabetes, arterial hyper-
tension, coronary artery disease, lipid disorders and
peripheral vascular disease should be screened regularly and
treated aggressively.

Prescription of dexrazoxane (level B recommendation).
Dexrazoxane is an iron chelator that protects the myocar-
dium from oxidative damage. It is approved for
cardioprotection in adult cancer patients but is also pre-
scribed off-label to children. Several randomized control trials
(RCTs) have shown that dexrazoxane is effective in
preventing myocardial damage without compromising anti-
tumour response and survival outcomes (Table S15) [71–82].
However, as a result of a suggested increased risk of secondary
malignancies, the European Medicines Agency limited its in-
dication to adult patients with advanced or metastatic breast
cancer and contraindicated its use in children and adoles-
cents [83]. Furthermore, the use of dexrazoxane can be associ-
ated with nausea, vomiting, stomatitis, diarrhoea, enhanced
myelosuppression and other adverse effects. Therefore, we
recommend its use when a high risk of ACT is expected with
careful consideration of potential benefits and risks individu-
ally for each patient.

Use of liposomal encapsulated anthracycline preparations
(level C recommendation). Liposomal formulations of daunoru-
bicin and doxorubicin are thought to lower the amount of
the drug that is delivered to the heart, potentially making
treatment less cardiotoxic. Several clinical trials compared
the efficacy, safety and antitumour response of liposomal
anthracyclines to conventional preparations (Table S16). Li-
posomal doxorubicin was found to have similar efficacy and
survival outcomes as regular doxorubicin but significantly
lower risks of ACT and congestive heart failure in adult pa-
tients [84–87]. However, the number of studies is relatively
small with a lack of long-term follow-up data, and no RCTs
so far in children. Therefore, it is difficult to draw strong con-
clusions regarding the relative cardiac safety of these formula-
tions. Nevertheless, available data indicates that liposomal
anthracycline formulations may offer a clinical benefit for pa-
tients with a high ACT risk. We therefore recommend the use
of liposomal anthracyclines in the context of well-designed
clinical trials to further evaluate their benefits, safety and ef-
fects on antitumour response.

Use of continuous infusion or slower infusion rates (level C rec-
ommendation). Anthracycline administration by continuous
intravenous infusion or with slower infusion rates have been
used in an attempt to lower peak drug concentration and re-
duce ACT risk (Table S17). Three RCTs in adult cancer pa-
tients suggested that ACT can be reduced with the use of
continuous intravenous infusion [88–90], whereas two RCTs
in children did not find any cardioprotective advantage of
this mode of administration [91, 92]. Similarly, studies with
adult patients have suggested that prolonged administrationTa
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to minimize circulating dose volume may decrease the risk of
ACT [23, 90, 91, 93–96]. However, no high quality evidence re-
garding the cardiac safety and effectiveness of slower infusion
rates is available in children. Given the small number of studies
conducted overall, no definitive conclusions can bemade about
the effect of anthracycline administration rate on ACT risk and
drug effectiveness. We therefore recommend considering these
alternative administration options only in the context of well-
designed clinical trials to generate further evidence.

Use of less cardiotoxic types of anthracyclines (level C recom-
mendation). Although there is some debate about the type of
anthracycline used with significant differences between
Europe and North America, the quantity and quality of evi-
dence directly comparing different types of anthracyclines is
very limited (Table S18). An RCT comparing chemotherapy
response for epirubicin and doxorubicin treatment in
advanced breast cancer patients found no difference in the ef-
ficacy, safety, response rates and survival outcomes between
both treatments [97]. Another RCT comparing idarubicin
and daunorubicin in the treatment of AML in childhood can-
cer patients reported a better efficacy for idarubicin but no
difference in toxicity rates between treatment arms [98]
(Table S18). Taken together, no definitive conclusions can
be made about a possible reduction in ACT risk related to
the use of different anthracycline types. Further evaluation
in high-quality trials is needed to determine the potential of
this management option for patients with high ACT risk.

Use of other cardioprotective agents (level C recommendation).
Other cardioprotective drugs such as L-carnitine, probucol,
deferoxamine, ethylenediaminetetraacetic acid (EDTA),
coenzyme Q10, N-acetylcysteine, vitamin E, digoxin,
enalapril, phenethylamines, superoxide dismutase, monohy-
droxyethylrutoside and other ACE inhibitors or beta-blockers
have demonstrated significant cardioprotective effects
[99–110] but have been less well investigated compared to
dexrazoxane. RCTs have been performed for some of these
agents [82, 103, 111–114]. Based on the quantity and qual-
ity of the evidence, no definitive conclusions can be made
about their cardioprotective effects in ACT, effects on
antitumour efficacy, adverse effects, and long-term cardiac
safety. Therefore, we recommend these cardioprotective
agents only for the purpose of generating further evidence.

Prescribe alternative chemotherapy regimens for certain tumour
types where alternative regimens have been shown to be equally ef-
fective (level C recommendation). There is an ongoing COG trial
evaluating the use of chemotherapy protocols without
anthracyclines in children with acute lymphoblastic leukae-
mia (AALL0932). This trial and other similar trials are needed
to ascertain whether alternative chemotherapy regimens
have similar antitumour efficacy and survival outcomes com-
pared to anthracycline-based chemotherapy. In the mean-
time, no conclusions can be drawn about whether this
intervention can help prevent heart damage without reduc-
ing the antitumour efficacy of chemotherapy.

Discussion
Significant advances have been made with the discovery of
pharmacogenomic biomarkers to predict ACT risk. However,

inconsistent findings across studies and implementation in
clinical practice remain a substantial challenge. In particular,
the variability in the clinical diagnosis, classification and
grading of ACT introduces heterogeneity between studies,
which needs to be addressed. Differences in study design
and data analysis approaches may also contribute to discrep-
ant study results and make it difficult to compare and com-
bine studies. The heterogeneity in findings between studies
and the lack of independent replication may be related to
the variability in study populations (e.g. adult vs. paediatric
and different ethnic composition of cohorts), different types
of cancer or anthracyclines studied and different chemother-
apy protocols used in different studies. A number of other fac-
tors may be implicated as well, including the technology used
for assessing cardiac toxicity, duration of follow-up and com-
peting risk factors. Furthermore, many of the genetic associa-
tion studies for ACT carried out so far were performed in
relatively small cohorts with little or no independent replica-
tion and functional validation. It is thus essential to further
validate these genetic findings in independent patient co-
horts and assess their generalizability across different study
populations and different types of cancers and anthracyclines
and different treatment protocols. In addition, functional
validation (e.g., in vitro functional studies and in vivo pharma-
cokinetic studies) could significantly strengthen the evidence
for the role of specific genes or genetic variants in ACT as well
as provide insight into potential novel preventive or thera-
peutic strategies for ACT.

Variable follow-up time between studies investigating
ACT risk factors could also affect results and make study com-
parisons challenging as the relevance of specific genetic risk
factors might differ between acute, early and late
cardiotoxicity. ACT can occur at any time during or after
treatment and defining a feasible time course for cardiac
monitoring remains a key challenge. Currently, there is no
consensus on the optimal monitoring regimen in patients
receiving anthracycline therapy and studies evaluating
monitoring regimens are lacking [115, 116]. Knowledge on
the efficacy and cost-effectiveness of different monitoring
strategies in the context of clinical and genetic risk factors
would be beneficial to further tailor cardiac monitoring
and long-term follow-up towards the individual needs of
each patient.

Studies are needed to evaluate the association of RARG
rs2229774, SLC28A3 rs7853758 and UGT1A6*4 with ACT in
adult cancer patients. There is encouraging evidence about
the potential role of several other genetic variants for ACT
such as ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3,
RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3,
SLC22A7, SLC22A17, HFE and NOS3 [30–49]. Further studies
should be conducted to strengthen the evidence, and assess
their generalizability and clinical utility. Studies should also
be performed that aim to identify additional, novel genetic
factors for ACT to improve the sensitivity and specificity of
current predictionmodels. So far, all of the association studies
for ACT have been retrospective. To better assess the clinical
utility of genetic tests, prospective studies are needed that in-
vestigate the genetic risk factors in the context of different
management options. Similarly, evidence supporting man-
agement strategies to reduce ACT is limited and remains con-
flicting. Well-designed RCTs and other prospective studies
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with long-term follow-up, and standardized monitoring and
reporting of cardiac outcomes are needed to further evaluate
preventive strategies. New techniques for assessing subtle
changes in cardiac function may aid in assessing the impact
of these interventions. Until such studies are completed, rec-
ommendedmanagement options are restricted to those avail-
able within current standards of care.

Conclusions
Anthracycline-induced cardiotoxicity is a common, complex
and devastating adverse drug reaction (ADR), associated with
substantial morbidity and mortality and increased health,
psychological, social and economic burden for patients,
their families and the health care system. The burgeoning
evidence of the role of genetic factors is rapidly expanding
our knowledge and ability to predict and manage ACT.
However, the uptake of available genetic information in
treatment and follow-up decisions is very limited. Also, no
recommendations have been proposed for the incorpora-
tion of available genetic information into clinical therapeu-
tic decisions. We performed a systematic review and
developed a number of evidence-based recommendations
to provide a useful reference tool to guide physicians, clin-
ical pharmacologists and other healthcare professionals in
translating the best available evidence into clinical practice.
The hope is that these recommendations will provide the
evidence needed to enable prioritized access to genetic test-
ing for cancer patients prior to anthracycline-based
chemotherapy.
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