
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-14-2014 12:00 AM 

Adaptive Real-Time Optimal Dispatch of Privately Owned Energy Adaptive Real-Time Optimal Dispatch of Privately Owned Energy 

Storage Systems Storage Systems 

Hadi Khani, The University of Western Ontario 

Supervisor: Dr. Mohammad Reza Dadash Zadeh, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Electrical and Computer Engineering 

© Hadi Khani 2014 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Power and Energy Commons 

Recommended Citation Recommended Citation 
Khani, Hadi, "Adaptive Real-Time Optimal Dispatch of Privately Owned Energy Storage Systems" (2014). 
Electronic Thesis and Dissertation Repository. 2050. 
https://ir.lib.uwo.ca/etd/2050 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2050&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ir.lib.uwo.ca%2Fetd%2F2050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2050?utm_source=ir.lib.uwo.ca%2Fetd%2F2050&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ADAPTIVE REAL-TIME OPTIMAL DISPATCH OF PRIVATELY OWNED ENERGY 

STORAGE SYSTEMS  

(Thesis format: Monograph) 

 

 

by 

 

 

Hadi Khani 

 

 

Graduate Program in Electrical and Computer Engineering 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of  

Master of Engineering Science  

 

 

The School of Graduate and Postdoctoral Studies 

The University of Western Ontario 

London, Ontario, Canada 

 

 

 

© Hadi Khani 2014  



 

ii 

 

Abstract 
 

Large-Scale Energy Storage Systems (ESSs) have recently become matters of significant 

interest for the purpose of shifting surplus energy generation from off-peak to on-peak 

periods. This especially allows a higher penetration of wind energy to electrical girds as the 

maximum wind generation usually occurs during the night in many geographical locations, a 

time period when the electricity load demand is low. This is the main concept of electric 

energy shifting which results in peak shaving as well. In order to take advantage of energy 

shifting, utility regulators and policy-makers are attempting to encourage private investors to 

build, own, and operate large-scale ESSs in the near future. In such a case, the main objective 

of the ESS from private owner’s perspective is to maximize financial benefits by exploiting 

arbitrage opportunities available due to inter-temporal variations of electricity prices in the 

day-ahead/week-ahead market. This is achieved mainly by optimally storing inexpensive 

energy during off-peak periods and releasing it when the electricity is expensive during on-

peak periods. A private ESS requires a new optimal dispatch algorithm to achieve maximum 

profit. To utilize an ESS for such a purpose, an optimal dispatch algorithm is required to 

determine appropriate charging/discharging power set-points. For utility procured ESSs, the 

main objective would be to achieve some technical objectives for the grid/microgrid. 

However, in this thesis, a real-time optimal dispatching (RTOD) algorithm is developed by 

formulating a mixed integer linear programming problem to determine charging and 

discharging power set-points of a privately owned ESS in a competitive electricity market 

based on real-time and day-ahead forecasted electricity prices. The objective of the 

optimization problem is to generate revenue by exploiting price volatility in the day-

ahead/week-ahead market. Moreover, this thesis aims to evaluate and improve the usefulness 

of publicly available electricity market prices for RTOD of a privately owned ESS in a 

competitive electricity market by developing a new adaptive technique as part of the 

optimization problem. The pre-dispatch prices, issued by the Ontario independent electricity 

system operator, and the corresponding ex-post hourly Ontario energy prices are employed as 

the forecasted and the actual prices. As an example of large-scale ESSs, a compressed air 

ESS is optimally sized and modeled for evaluations. First, the conventional RTOD algorithm 

is developed, and its sensitivity to price forecast inaccuracy is evaluated. It is demonstrated 

that the forecast inaccuracy of publicly available market prices significantly reduces the 



 

iii 

 

revenue resulted from the ESS operation. Then, a new adaptive algorithm is proposed and 

evaluated which adapts the objective function of the optimization problem online based on 

historical market prices available before real-time. The outcomes reveal that the proposed 

adaptive RTOD can significantly reduce the adverse impact of the price forecast inaccuracy 

on the ESS revenue by online calibration of the 24-h-ahead market prices using 24-h-behind 

market prices. Moreover, the concept of optimal weekly usage of cryogenic energy storage 

(CES) is introduced and compared with the common daily usage optimization. The results 

reveal significant benefits of weekly usage of the CES as compared to the daily usage. 

Keywords 

Adaptive real-time optimal dispatch, compressed air energy storage, cryogenic energy 

storage, energy shift, privately owned energy storage system, publicly available market 

prices 
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Chapter 1 

1 Introduction  

In this chapter, an introduction to the problem and the proposed solution is presented. The 

previous studies related to the research topic are reviewed. Then, contributions of this 

study are summarized. Finally, the organization of the thesis is explained.  

1.1 Power System 

Electric power system is a network consisting of different electric components used to 

generate, transmit, and distribute electric energy. Generally speaking, a power system is 

composed of four main components including generation system, transmission system, 

distribution system, and loads. The generation system supplies electric power; the 

transmission system carries electric power over long distances; the distribution system 

distributes power between loads; the loads consume the electricity. The majority of 

power systems are based on three-phase alternative current (AC) systems. 

1.1.1 Concept of Economic Dispatch in Power Systems 

Economic dispatch is a process which determines the optimal outputs of the generation 

units to meet the load requirements at the lowest possible cost still providing the electric 

power to the consumers in a robust and reliable fashion. Usually, the economical 

dispatching problem is formulated mathematically as an optimization problem and then 

solved by computer software while considering the constraints of the power system.  

1.1.2 Energy Storage Systems 

Energy storage is made by physical devices to store energy at the present moment and 

use it for more useful operations at later time. Several forms of energy storage systems 

can be used to realize an energy storage system. For example, a battery converts electric 

energy to chemical energy and then converts it back to the electric energy when needed. 

In this thesis, the focus is on large scale ESSs to convert electric energy into compressed 

air/liquefied air, store it, and convert it back to the electricity form when needed.  
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The large-scale ESSs used in this thesis are compressed air energy storage (CAES) and 

cryogenic energy storage (CES) systems which are described with details in Chapter 2. 

1.1.3 Storing Electricity by Grid-Scale Energy Storage Systems   

In the close future, it is expected that large-scale ESSs to be used to shift considerable 

amount of electric energy in power systems. In this case, the electric energy is stored 

when there is excess generation while it is released when there is a need of electricity. 

This way, the generation system needs not tolerate drastic changes to meet the load 

requirement and maintain system stability. This feature is essential as the penetration of 

the renewable energy resources into the electrical grid is increasing while fossil fuel-

based power plants are being closed across the world. In addition, energy storage systems 

(ESSs) are enabling technologies for new applications in the energy field such as power 

peak shaving [1]. 

Large-scale ESSs have recently become matters of significant interest for the purpose of 

shifting wind energy generation from off-peak to on-peak periods. This allows a higher 

penetration of wind energy to electrical girds as the maximum wind generation usually 

occurs during the night, a time period when it is not needed. In order to take advantage of 

energy shifting, utility regulators and policy makers are attempting to encourage private 

investors to build, own, and operate large-scale ESSs in the near future. In this case, the 

main objective of the ESS from private owner’s perspective is to maximize profit by 

exploiting arbitrage opportunities available due to energy price volatility in the day-ahead 

market. This is achieved mainly by optimally storing inexpensive electric energy during 

off-peak periods and releasing it when the electricity is expensive during on-peak 

periods. Several studies of utility procured ESSs have shown that the utility’s optimal 

power flow can determine the contribution of the ESS to achieve optimal grid or 

microgrid operation. In contrast, a private ESS requires a new optimal dispatching 

algorithm to generate profit in a competitive electricity market for the private owner of 

the ESS.  
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1.2 Literature Survey  

ESSs in a competitive electricity market, especially large-scale ESSs, are preferred to be 

managed by private investors. Additionally, due to the large price forecasting errors in 

real-world electricity markets, these optimal dispatching algorithms do not achieve 

maximum financial benefits; this is because the ESS charging and discharging power set-

points are determined based on the imperfectly forecasted prices, whereas the electricity 

is purchased and sold based on the actual values of energy price. As demonstrated in this 

thesis, since the price forecast error in real-world markets is large, the profit loss of the 

privately owned ESS is considerable.  

Several studies have investigated the idea of optimal energy shifting using different types 

of ESSs where energy is stored during lower price time periods mostly during night and 

discharged during peak time periods. Generally, the application of ESSs can be divided 

into the following main categories:  

1.2.1 ESS as Part of a Microgrid 

The ESS is employed in [2] to optimize the operation of a microgrid based on day-ahead 

power forecasting. A real-time control strategy based on load forecast and dynamic 

programming methods is presented in [3]. The proposed optimization model is solved by 

using a dynamic programming technique. The objective is peak shaving and prolonging 

the battery lifetime, and the constraints considered include battery state of charge (SOC), 

cycling times per day, converter capacity, and step power. 

In [4], authors present a method to evaluate the impact of ESS specific costs on the net 

present value, i.e., the difference between the present value of cash inflows and the 

present value of cash outflows of ESS installations in distribution substations. Optimal 

bid schedules for a hybrid ESS participating in both energy and regulation service 

markets is proposed in [5]. An economically optimal operating schedule for a distributed 

hydrogen-electric system is presented in [6]. 
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1.2.2 ESS Combined with Renewable Generation Sources 

Water storage is utilized to improve wind park operational economic gains [7]. In this 

investigation, an algorithm is proposed to identify the optimum daily operational strategy 

to be followed by the wind turbines and the hydro generation pumping equipment. 

Optimal allocation and economic analysis of the ESS in microgrids on the basis of net 

present value are presented in [8]. In [9], an approach for security constrained unit 

commitment with integration of an ESS and wind generation is presented. The proposed 

approach allows optimization of the energy and the ancillary services using 24-h 

optimization horizon. An approach for planning and operating an energy storage system 

for a wind farm in the electricity market is proposed using 24-h price forecast in [10]. In 

[11], a linear programming-based algorithm for creating 24-h dispatching schedules for 

customer-owned renewable energy systems coupled with energy storage has been 

developed. An algorithm has been developed in [12] for creating 24-h dispatching 

schedules for customer-owned renewable energy systems coupled with an ESS. A double 

battery energy storage system (BESS) is used in [13] where the generated wind power 

charges one BESS while the second BESS is employed to discharge power into the grid. 

Based on the forecasted charging wind power and the monitored SOC of the two BESSs, 

the discharge power level from the generating station is determined and scheduled a few 

hours ahead.  

1.2.3 ESS for Ancillary Services  

Some of the studies also use ESSs to provide ancillary services to the grid, such as 

frequency regulation. The work in [14] demonstrates the use of ESSs as a solution to 

reduce the frequency variations. A simple dispatching strategy is provided for operation 

of a wind farm coupled with a utility-scale battery. In [15], the technical characteristics, 

modeling approach, methodologies, and results for providing regulation services in the 

California independent system operator (CAISO) market are presented. 

As discussed above, the optimal dispatching algorithms proposed in most prior studies 

reported in the literature are not appropriate for privately owned ESSs since they do not 

consider the ESS as a single entity which can freely purchase/sell the electricity in the 
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competitive electricity market. In this case, a new approach of optimal dispatching 

algorithm should be developed for a privately owned ESS to achieve maximum profit.   

Moreover, in prior optimization algorithms, either deterministic or stochastic techniques 

are employed to formulate the optimization problem. The deterministic model uses the 

point forecasts of market prices in the optimization to find the bid schedule. However, it 

suffers from price forecast inaccuracy [16]. The stochastic programming approach is 

employed to deal with price forecast inaccuracy to some extent. However, stochastic 

models are computationally challenging due to the large number of scenarios that have to 

be considered. The model also requires knowledge of the probability distribution of 

uncertain variables, which may not be available [17]. 

Although various techniques have been reported in the literature to improve price forecast 

accuracy, short-term operation scheduling in a competitive electricity market is still a 

very challenging task due to the uncertainty associated with future electricity prices [18]. 

In [7], this concern has been addressed by assuming that accurate forecasting of 

electricity price is possible in the optimization algorithm. However, accurate price 

forecast is not possible in practice [18]. In recent years, several approaches have been 

applied to short-term electricity price forecasting, such as [19]–[21]. A summary of some 

price forecasting approaches is presented in [22]. By reviewing these techniques, one can 

realize that different levels of error in price forecasting have been reported for the studied 

markets. For instance, forecast errors ranging from about 5% to 20% were reported for 

the Spanish [23], PJM [24], and Ontario [25], [26] electricity markets. Such large 

differences in price forecasting errors depend on the characteristics of the market under 

study and volatility of market prices [26], [27].  

Increasing price forecast accuracy could always be considered as an approach to reduce 

the adverse impact of forecast error on the short-term optimal scheduling of an ESS in a 

competitive electricity market. Various techniques have been reported in the literature for 

improving the accuracy of electricity price forecasts. For instance, in [28], wavelet 

transforms were employed to improve the accuracy of an ARIMA model by about 2.7 

percentage points. However, in most of the studies in the literature, several practical 



6 

 

parameters affecting the forecast accuracy are not considered; in real-world applications, 

the amount of price forecasting errors are usually significantly higher than those 

mentioned in the literature, e.g., 20% or even 50% [18]. 

There are also some studies in the literature which deal with the economic impact of 

electricity price forecasting error on the operation scheduling. In [18], electricity market 

price forecasts with different levels of accuracy are used to optimally schedule the next-

day operation of two industrial loads as follows: a process industry owning on-site 

generation facilities, and a municipal water plant with load-shifting capabilities. The 

main contribution of this work is to analyze the economic impact of electricity price 

forecasting error on the short-term operation scheduling of two types of demand-side 

market participants.  

As reviewed, producing price forecasts with very low error levels is not always possible 

[18]. In this way, changing operating philosophy from preventive to corrective fashion is 

another approach to handle the problem. 

In this thesis, a new adaptive real-time optimal dispatching (RTOD) algorithm is 

proposed for privately owned ESSs to considerably reduce the adverse impact of price 

forecast inaccuracy on the ESS revenue by adapting the objective function of the 

optimization problem online based on electricity market prices available before real time.  

In the Ontario electricity market, several market participants employ publicly available 

pre-dispatch prices (PDPs) for short-term scheduling in the next several hours. However, 

their optimal operations suffer from forecast inaccuracy [29]. In order for an ESS to be 

operated in this market based on these public data, the proposed adaptive RTOD could be 

of great interest. 

1.3 Research Objectives 

 To develop an RTOD algorithm for privately owned ESSs by formulating a mixed 

integer linear programming (MILP) problem to determine ESS charging and 

discharging power set-points in a competitive electricity market based on real-

time and forecasted electricity price. The RTOD aims to generate revenue by 
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exploiting energy price arbitrage opportunities in the day-ahead/week-ahead 

electricity market.   

 To study the adverse impacts of publicly available market price forecast error on 

financial benefits achieved from ESS operation.  

 To propose a new approach to reduce the adverse impact of public-domain market 

price forecast error on the ESS operation; this way the financial benefits of ESS 

operation can be significantly increased.  

 To investigate the idea of weekly usage of cryogenic energy storage (CES) 

technology by comparing the economical benefits of two equally-expensive CES 

systems which are sized optimally for their charging and discharging patterns. 

1.4 Assumptions  

 Based on the charging and discharging opportunities in the electricity market, the 

ESS is sized first. After that, the RTOD aims to determine the optimal 

charging/discharging power set-points for the ESS to utilize energy price arbitrage 

opportunities available due to price volatility. For this reason, optimal sizing 

would be different from ESS optimal operations.  

 The type of ESS scheduling in this thesis will be short-term (i.e., daily or weekly), 

since the price forecast for longer-than-week periods would have considerable 

amount of error and, thus, it is not appropriate for ESS scheduling. Moreover, 

long-term scheduling of the ESS would not significantly increase the ESS 

revenue.   

 The term “optimal” used in this thesis and related studies in the literature refers to 

optimal solution of the economic dispatch problem. Depending on the dispatch 

problem definition and the accuracy of the inputs to the problem such as 

forecasted values, the optimal solution may change. However, this type of 

algorithm in literature is called “optimal dispatch” as it provides the most optimal 

solution to the problem given the definition and the inputs of the problem.  
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 Since the ESS is assumed to be operated in a competitive electricity market, it can 

freely purchase/sell energy to generate maximum possible profit.  

 The ESS is assumed to be a price-taker entity, which means it will not impact 

energy prices in the market. However, with a large number of ESS diffusion in the 

market, the ESS operation may impact market prices. In such a case, another 

parameter shall be included in the optimization process to account for price 

variations due to the ESS operation.    

1.5 Main Contributions of this Thesis 

 An RTOD is proposed in [30] for privately owned ESSs by formulating an MILP 

problem. The optimal charging/discharging power set-points are determined 

based on real-time actual and forecasted electricity prices in a competitive 

electricity market to generate profit. 

 The impact of publicly available market price forecast error on the conventional 

RTOD is investigated. It is demonstrated that the price forecast error can 

significantly reduce the financial benefit of ESS operation.  

 Based on publically available market prices, an adaptive mechanism is proposed 

to calibrate the price forecasts in order to reduce the adverse impact of price 

forecast error and increase the financial benefits of ESS operation. It is 

demonstrated that the proposed adaptive RTOD can significantly increase the 

financial benefits of ESS operation as compared to the conventional RTOD when 

publically available market prices are used for short-term scheduling of ESSs. 

 The idea of weekly usage optimization of CES is introduced. It is revealed that 

weekly usage optimization of these types of ESSs can significantly increase the 

financial benefit of ESS operation as compared to common daily usage 

optimization [30].   
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1.6 Organization of the Present Work 

In Chapter 2 of this thesis, two air-based large-scale ESSs (i.e., CAES and CES systems) 

are introduced and, then, they are optimally sized by using a simple method proposed in 

this thesis. By sizing of the CAES and CES, the ratings of charging, discharging, and 

storage tank plants are determined for them.  

In Chapter 3 of this thesis, an RTOD algorithm is developed by formulating an MILP 

problem to determine private ESS charging and discharging power set-points in a 

competitive electricity market based on real-time and forecasted electricity prices. The 

publically available market prices published by the Ontario independent electricity 

system operator (IESO) are used for evaluations. Moreover, the economic impact of 

electricity market price forecasting errors on the proposed RTOD algorithm is evaluated.  

In Chapter 4, a new adaptive algorithm is proposed and evaluated which adapts the 

objective function of the optimization problem online based on historical market prices 

available before real-time. The outcomes reveal that the proposed adaptive RTOD can 

significantly reduce the adverse impact of the price forecast inaccuracy on the ESS 

revenue by online calibration of the 24-h-ahead market prices using 24-h-behind market 

prices. 

In Chapter 5, the concept of weekly usage of CES to shift the electric energy from lower 

prices during off-peak periods to higher prices during on-peak periods as compared to 

common daily usage is introduced. Two equally-expensive CES systems are optimally 

sized for daily and weekly usages. The RTOD algorithm, formulated in Chapter 3 of this 

thesis, is used for optimal weekly and daily usages of the CES, sized in Chapter 2. The 

economic benefits of both CES weekly and daily usages are presented and compared for 

different price profiles and round-trip efficiencies of the ESS. 

Chapter 6 concludes this research. Achievements are listed and suggestions for future 

works are presented.  
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Chapter 2 

2 Large-Scale Energy Storage Systems 

In this chapter, two air-based large-scale ESSs are introduced and, then, they are sized by 

using a simple method proposed in this chapter [30]. 

2.1 Compressed Air Energy Storage (CAES) 

The CAES technology has been in use for 30 years [32]. A CAES plant stores electricity 

in the form of compressed air, then recovers it when needed to generate power. As shown 

in Figure  2-1, CAES plants can be divided into the following components:  

 Power system: turbine(s), generator and the recuperator. 

 Compression system. 

 Depleted gas reservoir.  

 Control equipment: switchgear, substation, cooling system, etc. 

 

Figure  2-1: Schematic for underground CAES 
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Basically, off-peak or inexpensive electricity is used for pre-compressing the air, which is 

then stored typically in an underground cavern. When the CAES plant works to 

regenerate power, the compressed air is released and heated by a recuperator; then, it is 

being mixed with fuel and expanded to make a turbine to turn to generate electricity.  

2.1.1 Daily Sizing of CAES 

A generic price profile is considered in this study for ESS sizing for the sake of 

simplicity. Since the ESS makes financial benefits only based on the arbitrage of 

electricity price, i.e., the difference between the high and low levels of price profile, a 

smooth price profile with different levels is a good tool even though more complex price 

profiles could be used. This generic electricity price profile is represented in Figure  2-2. 

One can see in this figure, that there are there different levels, i.e., low, medium, and high 

levels. The low level is in accordance with the hours in which the electricity price is low, 

i.e. mostly from midnight till early in the morning. The medium level is showing most of 

the hours when the price is medium. The high level is in accordance with the peak hours 

when the prices are high. This profile is adopted from electricity prices at distribution 

level in Ontario, and it is used in this thesis. By considering the above-mentioned price 

profile, the optimal dispatch of the ESS is willing to set the charging power set-points in 

the low (and medium level) and to set the discharging power set-points in the high level 

to generate the highest possible revenue. Considering typical operating parameters for the 

CASE unit, the charging hours is approximately 5 h (in the lowest level of price), and the 

discharging hours is 3 h (in the highest level of price). During weekends and holidays, 

since the prices are low in most of the hours, and there is not a big difference between the 

price levels, there is no charging/discharging, and the ESS will not operate.  

Since usually the electricity price is inexpensive during weekends, there is a potential to 

store the energy in weekends and release it during peak periods in weekdays when the 

electricity price is high. However, to make this possible, very large storage size and low 

energy dissipation rate are required. Only if the storage is based on aquifers, the "bubble" 

underground can be enlarged via extra compression energy to allow larger storage size 

for weekly usage [31]. This technique is only viable in specific geographical locations 

[31]. Thus, generally, weekly usage optimization of CAES is not economical.  
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The round-trip efficiency of the CAES unit can vary from 30% to about 65% depending 

on the size, use of thermal energy recovered during the compression cycle, and use of 

waste heat [32]. If minimum round-trip efficiency is used in sizing process, this results in 

smaller storage tank size not allowing to utilize CAES in case of higher efficiencies. 

Instead, maximum round-trip efficiency is used for sizing to provide enough storage tank 

size in case of high efficiencies.  

 In addition, in this study, the round-trip efficiency is assumed to be equally split between 

charging and discharging plants which is fair consumption. In practice, the charging and 

discharging efficiencies are dependent on the technology of the charging and discharging 

plants and is provided by the manufacturer.   

The ESS price per kWh will vary depending on several parameters. According to some 

typical projects reported in [32], $1000/kW is considered for the CAES cost in this study. 

Table  2-1 represents the parameters which are used to size the CAES.   

 

Figure  2-2: The generic electricity price profile used in this thesis 

Table  2-1: Parameters used for CAES sizing 

Charging Period in Weekend 0  Hours 

Discharging Period in Weekend 0  Hours 

Charging Period in Weekday 5  Hours per day 

Discharging Period in Weekday 3  Hours per day 

Max Charging Efficiency (ηChg) 80% 

Max Discharging Efficiency (ηDhg) 80% 

Capital Cost of CAES Discharging Plant $1000/kW 

The maximum discharging power for the CAES is assumed to be 100 MW. Based on the 

CAES maximum efficiency and desired hours of charging and discharging in daily usage, 

maximum charging power, i.e., compression plant rating and the storage tank size are 
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obtained. In this case, the total charging period is 5 h, while the discharging period is 3 h. 

Hence, based on the fact that the maximum discharging power is 100 MW, the total 

required charging energy and the rating of the compression plant can be calculated as 

below.  

 
 

Discharging energy 
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25% extra size in storage tank (Smax) is considered to first maintain minimum 10% charge 

in the tank and 15% to take benefit in cases where the electricity price suddenly increases 

or if the CAES is also utilized for ancillary services to the grid. As given by (2-4), in Smax 

calculation, the maximum capacity should be determined based on off-peak charging on a 

weekday; this is generally the maximum storable energy. The total capital cost of CAES 

will be $1000/kW ×100 (MW) = $100 Million. 

The compression and generation power ratings, storage tank capacity, and the capital cost 

of the CAES are as shown in Table  2-2.  

 

Table  2-2: Ratings of the CAES sized for daily usage 

Capital Cost 
CAES: Daily Usage 

ChgPmax
 DhgPmax

 
maxS  

$100 Million 94 (MW) 100 (MW) 470 (MWh) 

 

2.2 Cryogenic Energy Storage (CES) 

Figure  2-3 shows the block diagram of a CES unit. The CES compromises of three major 

components: liquefaction plant, liquefied and cold air storage units, and power recovery. 

In this technology, cryogen (liquid air) is produced using electrical energy in liquefaction 
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plant. The resultant cryogen which is around -190 C is stored at low pressure in 

liquefied air storage tank which is an insulated tank. Due to some natural heat gain from 

the ambient environment, a small fraction of liquid air boils and converts into gaseous 

phase commonly referred to as the “boil-off”. This causes an increase in the tank 

pressure. In order to maintain constant pressure inside the tank, this gaseous air has to be 

vented out. This process causes a continuous reduction in the amount of liquid air inside 

the tank with time. However, the tanks used to store cryogenics are typically vacuum 

insulated and hence the boil-off rate is usually very small (around 0.1-0.2% of the tank 

capacity per day). The boil-off air can be further used in storage plant for various 

purposes such as purging the liquefier heat exchanger and high grade cold storage and 

powering the valves. In power recovery, auxiliary heat, i.e. waste heat from any source or 

even from ambient conditions, is added to the cryogen converting liquid cryogen into 

superheated vapor (gaseous phase) at high pressure. This high-pressure gas then expands 

in a series of expansion turbines which drives synchronous generator (s) to generate 

electricity. In this technology, low-grade heat from industrial process plants can be 

effectively used to improve the system efficiency. While the production of cryogen has a 

relatively low efficiency, i.e. about 30%, but this is greatly increased to around 50% 

when used with a low-grade cold store. Using auxiliary waste heat could increase the 

round-trip efficiency level to 70% range. 

In this technology, storage tank is significantly inexpensive as compared to the 

Liquefaction and Power recovery parts and does not occupy large space as compared to 

the CEAS technology. This is especially important to allow economical weekly usage of 

CES as compared to daily usage. Further, it makes this technology superior to other ESS 

technology for long-term energy shift.  
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Figure  2-3: The block diagram of a CES unit [37] 

2.2.1 Weekly and Daily Sizing of the CES 

In this section, using the same price profile (shown in Figure  2-2), the CES is sized for 

weekly and daily usages. 

In order to fairly compare the economical benefits of weekly usage of CES over daily 

usage, two equally-expensive CES systems are sized in this section with a simple 

method. Several parameters are assumed in the sizing process. Since CES is a very new 

technology, no accurate parameters such as efficiency and cost have been found in 

literature. Some approximate parameters are provided by the manufacturer [37] for this 

study. Table  2-3 presents the parameters which are used to size CES.  The efficiency of 

the CES unit can vary from 30% up to 70% depending on the size, use of low-grade cold 
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storage tank, and use of waste heat. If minimum round-trip efficiency is used in sizing 

process, this results in smaller storage tank size not allowing to utilize CES in case of 

higher efficiencies. Since in this study, it is desired to evaluate and compare the 

performance of both CES systems for various efficiencies and electricity price profiles, 

maximum round-trip efficiency is used for sizing of both CES systems to allow 

performance comparison in case of high and low efficiencies. In addition, the round-trip 

efficiency is equally split between charging and discharging plants. As the main purpose 

of this study is to compare the weekly and daily usage, any insignificant error in the 

assumptions will not considerably impact the final objective of the comparison study. 

Table  2-3: Parameters Used for CES Sizing 

Charging Period in Weekend for Weekly Usage 48  Hours 

Charging Period in Weekend for Daily Usage 0  Hours 

Discharging Period in Weekend for Weekly and Daily Usages 0  Hours 

Charging Period in Weekday for Weekly and Daily Usages 5  Hours per day 

Discharging Period in Weekday for Weekly and Daily Usages 3  Hours per day 

Max Charging Efficiency (ηChg) 83 % 

Max Discharging Efficiency (ηDhg) 83 % 

Capital Cost of CES Charging Plant $1.68 Million/MW 

Capital Cost of CES Discharging Plant $0.56 Million/MW 

Capital Cost of CES Tank Plant $0.007 Million/MWh 

Either weekly or daily usage can be used as the base case. In this study, however, weekly 

usage is employed as the base for sizing two equally-expensive CES systems, i.e., CES1 

and CES2: weekly and daily, respectively. The maximum discharging power for CES1 is 

assumed 100 MW. Based on the CES maximum efficiency and desired hours of charging 

and discharging in weekly usage, maximum charging power, i.e., liquefaction plant rating 

and the storage tank size are obtained. Then, the total cost of CES1 is calculated. For 

CES2, the maximum discharging power is unknown; instead the total cost is known and is 

the one calculated for CES1. Based on the CES maximum efficiency and desired hours of 

charging and discharging in daily usage and total cost, three equations and three 

unknowns including maximum charging and discharging power ratings and storage tank 

size can be written and solved. 
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In weekly design, i.e. CES1, the total charging period is 73 h, (2 full weekends plus 5 

weekdays each day with 5 h of charging opportunity) = 2×24+5×5, while the discharging 

period is 15 h, (5 weekdays each with 3 h of discharging opportunity) = 5×3. Hence, 

based on the fact that the maximum discharging power is 100 MW in weekly usage, the 

total required charging energy and the rating of the liquefaction plant can be calculated as 

follows:  
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 Million     117$1575 0.007+100 0.56+ 30 1.68

 0.007+ 0.56+ 1.68 maxmaxmax



SP P DhgChg
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20% extra size in storage tank (Smax) is considered to first maintain minimum 10% charge 

in the tank and 10% to take benefit in cases where electricity price suddenly increases or 

if CES is also utilized to operate for ancillary services. As given by (2-8), in Smax 

calculation, the maximum capacity should be determined based on full charging on 

weekends (Saturday and Sunday) and off-peak charging on the following Monday; this is 

generally the maximum storable energy. Using the cost coefficients mentioned in Table 

 2-3, the total capital cost of CES1 can be calculated as (2-9). 

In daily design, i.e. CES2, the total charging period is 5-h while the discharging period is 

3-h. The maximum discharging power is unknown in this case. The total charging energy 

and the rating of the liquefaction plant can be calculated as given by (2-10) and (2-11). 

To maintain the same cost as weekly CES, three equations (2-10), (2-12), and (2-13) can 

be solved and three unknowns P
Chg

max, P
Dhg

max, and Smax can be found as shown in Table 

 2-4. This table presents the capital cost, charging, discharging and storage tank plant sizes 

for the CES1 and CES2.   
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Table  2-4:  Weekly and Daily Ratings of CES 

Capital Cost 
CES1: Weekly Usage CES2: Daily Usage 

ChgPmax 
DhgPmax

 
maxS 

ChgPmax 
DhgPmax

 
maxS 

$117 M 30  (MW) 100 (MW) 1575 (MWh) 50 (MW) 57 (MW) 247 (MWh) 
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2.3 Summery 

In this chapter, two large-scale ESSs, i.e. CAES and CES systems, are introduced; then, a 

simple method is proposed and used for determining the appropriate ratings of the ESSs, 

i.e., charging, storage tank, and discharging plants. 
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Chapter 3 

3 Real-Time Optimal Dispatch (RTOD) 

In this chapter, an RTOD algorithm is developed by formulating a mixed integer linear 

programming (MILP) problem to determine private energy storage system (ESS) 

charging and discharging power set-points in a competitive electricity market based on 

real-time and forecasted electricity prices. The CAES sized in Section  2.1.1 is used as an 

example to demonstrate and evaluate the performance of the proposed algorithm. The 

performance of the proposed RTOD is evaluated for different possible forecast errors 

using a generic price profile and also the real-world price data of the Ontario electricity 

market; then, the results are discussed. It is demonstrated that the considerable error of 

electricity price forecast significantly reduces the financial benefit of the ESS. 

3.1 Formulation of the RTOD for a Privately Owned ESS 

In this thesis, the ESS is considered as a single entity which freely purchases/sells 

electricity from/to the electricity market. An optimization problem is developed to 

determine the proper periods and dispatch quantities for the ESS charging and 

discharging to maximize the ESS revenue for the private investor in the ESS.  

To develop an RTOD algorithm for a privately owned ESS, an MILP optimization 

problem is formulated as explained in this section. Since optimal decisions are made for 

the present and future time steps (i.e., optimization horizon), the optimal dispatch 

problem is a multi-interval optimization problem. Decisions are also updated by re-

running the optimization calculations every time step to account for the time-varying 

nature of the electricity price in the market. In this chapter, 24-h optimization horizon 

with 1-h time step is considered to determine optimal dispatch quantities including 

charging and discharging power set-points. 1-h time step is selected since electricity 

market price is updated every hour in the case study of this study, i.e., the Ontario 

electricity market. In this case, the optimal dispatch problem will be a multi-interval 

optimization problem with T/ t = 24 h /1 h = 24 time steps, each of which represents one 

hour time interval. In this case, all of the main optimization variables will be arrays with 
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24 elements that are decided by the end of each hour of the dispatch time. The 

aforementioned method is commonly referred to as the rolling time horizon or model 

predictive control [33], [34]. 

Equations (3-1) to (3-5) express charging and discharging powers and the state of the 

charge (SOC) constraints of the ESS. In the following equations, Mt
Chg

 and Mt
Dhg

 are 

binary variables while Pt
Chg

, Pt
Dhg

, and St are positive real variables. 
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where τ is the set of time steps, i.e., {1, …, N} in which N=T/∆t is the length of the 

optimization horizon. The energy balance equation of the ESS is given by (3-6) defining 

the relation of ESS state of charge (SOC) at time steps t and t+1. This equation is based 

on the physics of the ESS showing that at the time step (t+1), the SOC is equal to the 

SOC at the time step t plus the net charged energy minus the net discharged energy and 

the net dissipated energy between time steps t and t+1. As it is given by this equation, the 

variable St 
is an array with one more element as compared to other optimization 

variables. 



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( 3-6) 

Equation (3-7) shows the objective function of the optimal dispatch problem which is to 

be maximized. The objective function, given in (3-7), includes the profit of selling 

electricity to the market, the ESS operating cost for charging and discharging, and the 

cost of purchasing electricity from the market within the optimization horizon, i.e., 24 h. 

In this equation, Et is the forecasted electricity price at the time step t. It should be noted 

that at the present time step, i.e., t=1, Et is equal to the actual electricity price. 
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A positive value of (3-7) means that the ESS is making profit; a zero objective value 

indicates that the ESS can only return operating cost; a negative value means that ESS is 

not even able to return the operating cost. 

The framework of the proposed model in the thesis which aims to employ an ESS as a 

single entity to utilize energy price arbitrage in the day-ahead/week-ahead electricity 

market has been depicted in Figure  3-1. The model will be described in details 

throughout the thesis.      

 

Figure  3-1: The framework of the proposed model in this thesis  

Figure  3-2 shows how the proposed RTOD is implemented in this study. The RTOD and 

ESS are simulated in Matlab. The optimization problem including variables, parameters, 

the objective function, and the constraints are defined in a file which is called hereafter 

problem file developed using GNU MathProg modeling language. The values for the 

problem parameters are generated at each time step by a Matlab code in another file 

which is called hereafter data/parameter file. The data file includes ESS parameters such 

as P
Chg

min and P
Chg

max, ESS SOC at the present time step, i.e., SInt, and the electricity price 

forecast for the optimization horizon, i.e., Et. If a more accurate price forecast is available 

for the first few hours (e.g., m hours), it could substitute the first few hours of the 24-h-

ahead forecast. For instance, in the Ontario market, 24-h-ahead and 3-h-ahead price 

forecasts are issued [35].  

Both files are inputted to the GNU linear programming kit (GLPK) [36]. Then, the 

optimization problem is solved by GLPK to find the objective values as well as the 
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values of optimization problem variables such as charging/discharging powers. The 

charging and discharging power set-points at the present time will provide the required 

commands to the ESS. In the next time step, the SOC of the ESS is calculated based on 

the latest power set-point commands. After that, the RTOD algorithm is executed to 

derive the new power set-point commands. This process continues till the end of the 

simulation. 

Data File 
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Package
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Storage 

Modeled in 
MATLAB

St

P1
Chg

P1
Dhg

Real-Time Optimal Dispatch Algorithm

Real-Time Actual & 

24-h-Ahead Forecasted 

Electricity Prices

 m-h-Ahead Forecasted 

Electricity Prices

Et

 

Figure  3-2: The flowchart for implementation of the proposed RTOD 

3.2 Performance Evaluation of the Conventional RTOD 

In this section, a CAES unit, an example of large-scale ESSs, is used as the case ESS. As 

mentioned in Chapter 2 of this thesis, CAES is basically composed of three main plants 

as follows: Charging plant, compressed air tank plant, and discharging plant (one can 

refer to Chapter 2 of this thesis for more information about CAES). Based on its 

application, CAES can have different ratings for each of these three plants. These ratings 

for the overall plant can be specified based on a feasibility study to meet the power 

available during off-peak time periods versus the power needed during on-peak time 

periods [32]. In this chapter, the CAES, sized in Chapter 2, is used for simulation studies.  

Operating parameters of the CAES are shown in Table  3-1. In this table, the amount of 

expected revenue due to investment (CERev) is considered the same as the one considered 

for solar power plant projects; it is also in the range of some CAES projects analyzed by 

EPRI-DOE handbook [32]. This way, after the life of ESS (30 years [32]), the total 

revenue should be at least 250% of the total capital cost (150% of the capital cost plus 

initial capital cost). As a result, CERev per year is considered as 8.34% = (250/30)% of the 

capital cost. A typical value of return on assets (ROA) is expected to be above 8% of the 
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capital cost per year for a private entity investing in a risky asset. In this study, the ROA 

results in 250/30%=8.34% of the capital cost per year. Nevertheless, changing the 

expected revenue will not affect the results since the total revenue obtained from the ESS 

operation is calculated and evaluated throughout the study; it should be emphasized that 

the total revenue consists of the expected revenue plus the extra revenue (if there is any). 

Changing the expected revenue will change the extra revenue; the total revenue, however, 

will not be affected by changing the expected revenue.     

In large-scale ESSs including CAES technology, to maintain rated efficiency, it is 

required to operate the compression plant close to its rated value. Therefore, P
Chg

min is set 

to 80% of P
Chg

max. However, the generating turbine and its supplying pump can 

efficiently operate even at lower power set-points. Energy storage dissipation is assumed 

to be 1% per day thus 0.0416%=1%/24 per hour. The parameter values shown in Table 

 3-1 are typical values and can be changed according to different types of CAES units as 

well as different technologies. Nevertheless, the values of these parameters will not affect 

the ultimate outcomes of the present work.  

Table  3-1: The operating parameters of the CAES Unit Sized in this thesis 

PChg
min 80% × PChg

max CCap Total Capital Cost/(Life of ESS (=30) ×365×24) 

PDhg
min 3% × PDhg

max CMain 5% × CCap   

Smin 10% × Smax CChgO 60% × CMain / PChg
max 

SInt 10% × Smax CDhgO 40% × CMain / PDhg
max 

ηDsp 0.0416% ×St CERev 250% × Total Capital Cost/(30×365×24) 

3.2.1 Sensitivity Analyses of the RTOD to Price Forecast Error 

In this section, first, a generic price profile is used for sensitivity analysis of the proposed 

RTOD. Then, the real electricity price profiles from the Ontario market are used to verify 

the findings of this section. The generic electricity price profile is shown in Figure  2-2. 

Price levels A, B, and C are assumed to be 6, 15, and 24 Cents/kWh (typical values in the 

Ontario market [35]), respectively. Using the pre-defined price profile (see Figure  2-2) 

and round-trip efficiency of 60% (a typical value for a high-efficient unit [32]), the real-

time optimization is performed considering 24-h optimization horizon. To perform 

sensitivity analysis in case of price forecasting error, different levels of under-forecasting 

and over-forecasting (from 0 to 100% with 10% steps) are simulated and studied. In all 



24 

 

cases, the actual electricity prices are identical, while they are scaled differently to 

generate imperfectly forecasted ones. The under-forecasting and over-forecasting levels 

are applied uniformly to the 24-h electricity price. For the purpose of result comparison, 

this approach ensures that the ESS pays/obtains the same rate for purchasing/selling 

electricity from/to the market in all cases.  

Further, the real-time optimization is performed considering 24-h optimization horizon. 

The optimizer will consider the electricity price of the next 24 h to make dispatch 

decisions. Daily optimal dispatch is executed for 24 consecutive hours with resolution of 

one hour. Figure  3-3 shows the simulation results with the assumption that there is no 

price forecast error. In this case, the forecasted price is exactly equal to the actual one. 

Figure  3-3 (a) shows the actual and forecasted prices which are equal. Figure  3-3 (b) 

shows the power exchange between the CAES and the grid. Positive values of the 

exchange power mean that the CAES is charging and negative values mean that it is 

discharging. One can see that the CAES is charging during low energy prices and 

discharging the energy when the prices are high. This way it can make financial benefit. 

Figure  3-3 (c) shows the state of the charge (SOC) or the amount of energy stored in the 

CAES tank. Figure  3-3 (d) shows the values of extra revenue for each hour. As shown in 

Figure  3-3 (d), the extra revenue is negative when the CAES is charging since it is paying 

to buy the electricity from the grid; it is positive when the CAES is selling electricity to 

the grid. Since the selling prices are higher than buying prices, it will make financial 

benefit. It is also clear that the extra revenue has negative offset all the times. This offset 

is due to the constant parameters added to the objective function including expected 

revenue (CERev) and capital cost per hour (CCap) as define in Table  3-1. The total revenue 

per week that the CAES can make is the integral of the curve in Figure  3-3 (d) which is 

$202.91 k (thousand dollars).  
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Figure  3-3: (a): Actual and forecasted prices, (b): Power exchange, (c): SOC, (d): Extra 

income (revenue): all for exact forecast of price 

Figure  3-4 shows the simulation results for the case in which there is 30% price under-

forecast. This will cause 30% price forecast error. As shown in Figure  3-4, although there 

is significant amount of price forecast error, the simulation results are the same as the 

case in which there is no price forecast error (see Figure  3-3). According to observations 

in this thesis, the performance of the RTOD will not be affected by price forecast error 

until a certain level of error. In the next paragraphs, this will be evaluated with more 

details. In this case, the total revenue per week that the CAES can make is $201.3 k, 

which is approximately the same as the first case in which there is no price forecast error.  
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Figure  3-4: (a): Actual and forecasted prices, (b): Power exchange, (c): SOC, (d): Extra 

income (revenue): all for under-forecast of price 

Figure  3-5 shows the simulation results for the case in which there is 40% price under-

forecast. This will cause 40% price forecast error. As shown in Figure  3-5 , the curves are 

now significantly deviated from two cases above and the CAES is no longer working in 

the optimal fashion since the energy is being discharged in the medium level of price not 

in the peak level. In the next paragraphs, the reason of this will be evaluated with more 

details. The total revenue per week that the CAES can make is $69.5 k in this case, which 

is significantly smaller than the expected revenue (i.e., $159.8 k).Thus, the operation of 

the CAES is no longer acceptable since it is not working economically.  
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Figure  3-5: Actual and forecasted prices, (b): Power exchange, (c): SOC, (d): Extra 

income (revenue): all for too under-forecast of price 

Figure  3-6 shows the simulation results for the case in which there is 60% price over-

forecast. This will cause 60% price forecast error. As shown in Figure  3-6, although there 

is significant amount of price forecast error, the simulation results are approximately the 

same as the case in which there is no price forecast error (see Figure  3-3). The total 

revenue per week that the CAES can make is $201.1 k in this case, which is 

approximately the same as the first case in which there is no price forecast error.  
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Figure  3-6: Actual and forecasted prices, (b): Power exchange, (c): SOC, (d): Extra 

income (revenue): all for over-forecast of price 

Figure  3-7 shows the simulation results for the case in which there is 70% price over-

forecast. This will cause 70% price forecast error. As shown in Figure  3-7, the curves are 

now significantly changed compared to the above case in which there is 60% of price 

over-forecast error, and the CAES is no longer working. Only small charging and 

discharging occurs to compensate the energy dissipation. In the next paragraphs, the 

reason of this will be evaluated with more details. The total revenue per week that the 

CAES can make is -$10.9 k in this case, which is equal to $10.9 k of financial loss. Thus, 

the operation of the CAES is no longer acceptable since it is not working economically.  
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Figure  3-7: (a): Actual and forecasted prices, (b): Power exchange, (c): SOC, (d): Extra 

income (revenue): all for too over-forecast of price 

Further, three important cases, Cases 1 to 3, are selected to discuss the results of this 

investigation with details. In Case 1, the price forecast is identical to the actual forecast. 

In Case 2, the electricity price is 40% under-forecasted, while in Case 3, it is 70% over-

forecasted.   

Table  3-2 shows the values of obtained revenue in the first 24 h of ESS utilization, for 

Case 1 to Case 3 plus two other cases with 10% less under-forecasting and over-

forecasting, respectively. As shown in this table, a certain level of under-

forecasting/over-forecasting does not affect the profit of the ESS. This is because the ESS 

takes advantage of the electricity price arbitrage to make profit and, thus, the uniform 

forecast error does not affect the ESS profit until it reaches to a certain level which is 

40% in case of under-forecasting and 70% in case of over-forecasting.    
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Table  3-2: Comparison of the obtained revenue for the first 24-h of ESS utilization under 

different price forecasting conditions 

Forecasting Conditions Revenue (Thousand $) Acceptability  

Ideal Forecast 39 Acceptable  

30% Under-Forecast  39 Acceptable 

40% Under-Forecast  13.9 Unacceptable 

60% Over-Forecast  32.4 Acceptable 

70% Over-Forecast -39.8 Unacceptable 

The presumed actual and forecasted electricity price profiles within 24-h time period are 

shown in Figure  3-8 (a, d, and g) for Cases 1, 2, and 3, respectively. ESS power exchange 

for the three cases is shown in Figure  3-8 (b, e, and h), respectively. The positive power 

exchange indicates that the CAES is charging; whereas, the negative one indicates that 

the CAES is discharging. Figure  3-8 (c, f, and i) shows SOC values for the three studied 

cases. One can see the SOC increases when the ESS is charging; the SOC slowly drops 

with ESS dissipation rate when the power exchange is zero; finally, the SOC decreases 

when the ESS is discharging. As shown in the first column, ESS makes profit by 

charging at low electricity prices and discharging at high electricity prices in case of ideal 

forecasting. 
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Figure  3-8: (a), (d), and (g): Actual (bold line) and forecasted (dotted line) price profiles- 

(b), (e), and (h): Power exchange- (c), (f), and (i): SOC- (a), (b), and (c): Ideal 

forecasting- (d), (e), and (f): Under-forecasting- (g), (h), and (i): Over-forecasting. 

As shown in Figure  3-8 (d), at 40% or more under-forecasting levels, similar to the Case 

1, the RTOD first charges the ESS at time periods when the electricity price is low. 

However, as the peak of the forecasted price is lower than the medium level of the actual 

price, RTOD commands discharging at the medium level of the actual price which is 

equal to or higher than the expected peak of the forecasted price. Hence, RTOD decides 

to discharge the energy of the ESS sooner than the appropriate time, i.e., the peak of the 

actual price. This causes the ESS to lose significant amount of financial benefit. As 

shown in Table  3-2, the obtained revenue for 24-h operation of the ESS with 40% under-

forecasting is $13.9k which is significantly less than the one obtained by the ideal 

forecasting, i.e., $39k. In this case, the ESS operation is no longer economical since the 

obtained revenue is significantly less than the expected revenue due to investment, i.e., 
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$22.8k in total. In under-forecasting condition, the ESS considerably operates every 

weekday but loses significant financial benefit. As shown in Table  3-2, the revenue for 

30% price under-forecasting is the same as the revenue obtained by applying the ideal 

forecasting, i.e., $39k. Hence, until a certain level between 30% and 40% under-

forecasting levels, the ESS profit is not affected. 

In case of over-forecasting, as shown in Figure  3-8 (g), at 70% or more over-forecasting 

levels, similar to the Case 1, the RTOD first charges the ESS at time periods when the 

electricity price is low. Since RTOD expects to sell at time periods when the electricity 

price is very high, it charges the ESS even more than the Case 1 (see Figure  3-8 (c and 

i)). As the peak of the actual price is lower than the medium level of the forecasted price, 

RTOD incorrectly assumes that the price values will be higher in the future within the 

next 24 h. Hence, it waits for this opportunity. As the time elapses, the actual price never 

reaches to the expected forecasted one, thus the RTOD never issues a discharge 

command. This causes the ESS to lose significant amount of financial benefit. As shown 

in Table  3-2, in case of 70% over-forecasting, the revenue significantly decreases to -

$39.8k. This negative revenue is because of the fact that the ESS pays to buy electricity, 

but does not discharge in the first 24 h to make any profit. In this case, the ESS operation 

is obviously not acceptable. 

If the price is 70% or more over-forecasted in the following days, the RTOD is willing to 

keep the SOC to the maximum value in order to prepare the ESS to make maximum 

profit by selling expensive electricity in the future. However, since the ESS has been 

fully charged in the first 24 h, the RTOD cannot further charge the ESS in the following 

days unless the SOC drops considerably due to the natural dissipation. 

As shown in Table  3-2, the revenue obtained for 24-h operation of the ESS in case of 

60% price over-forecasting is close but less than the revenue obtained by applying the 

ideal forecasting, i.e., Case 1. The difference is caused because similar to 70% over-

forecasting, the ESS charges a little more as compared to the case of ideal forecasting to 

obtain more profit in the future. However, in contrast to 70% over-forecasting, the ESS 

will have the opportunity to discharge energy but not as equivalent as of the energy 
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absorbed during the last charging stage. Small part of the charged energy will be left 

which results in additional financial loss within the first 24 h as compared to the Case 1. 

In practice, the electricity price profile is not as smooth as the one shown in Figure  2-2. 

To evaluate the performance of the RTOD in case of real-world electricity price profiles 

and verify the prior findings, the ESS operation is investigated by using the actual and 

forecasted electricity price profiles selected from the Ontario electricity market. This 

market has been considered as the case study in some of the previous research studies 

such as [26], [27]. The combination of 3-h-ahead and 24-h-ahead pre-dispatch prices 

(PDPs) issued by the Ontario independent electricity system operator (IESO) [35] and the 

corresponding ex-post hourly Ontario energy prices (HOEPs) are used as the forecast and 

actual electricity prices in this research study.  

In this study, the RTOD is executed in a real-time simulation based on Ontario real-world 

price data within 2006 to 2011. In this period, the prices of a few months were not 

available. Using the available data, in one study, it is assumed that there is no price 

forecast error. This means that the forecasted price data are substituted with the actual 

price data. In the second study, the actual and the forecasted electricity price data issued 

by Ontario IESO are used. Table  3-3 shows the values of annual revenue obtained by the 

ESS sized in Section  2.1.1 for 2006, 2007, …, 2011, and total (2006 to 2011). The second 

column of Table  3-3 shows the values of annual revenue of the study in which there is no 

price forecast error. The third column shows the values of annual revenue obtained by 

applying price forecast issued by the IESO; the fourth column shows the percent of the 

annual revenue loss due to price forecast error. As it is shown, there is a significant 

difference between the revenue obtained by applying the ideal forecast and the revenue 

achieved using the real forecast of electricity price. For instance, in 2011, 64% of the 

revenue is lost due to the price forecast error. This study also verifies the considerable 

sensitivity of privately owned ESSs to the electricity price forecast error. 
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Table  3-3: Impact of price forecast error on the annual revenue for the Ontario market 
 

Year 

Revenue (Million $) 

Revenue Loss (%) Ideal  
Forecast 

  Regular  
Forecast 

2006 1.6615 0.6262 62.311 

2007 3.6580 1.4288 60.940 

2008 4.8472 1.6726 65.493 

2009 3.2926 1.2409 62.312 

2010 1.9407 0.2162 88.860 

2011 2.4201 0.8571 64.584 

Total 17.8201 6.0418 66.095 

3.2.2 Impact of Price Forecast Error on Charging/Discharging of 
the ESS   

In this section, the impact of price forecast error on charging/discharging hours of the 

CAES which is controlled by the conventional RTOD algorithm is investigated. The 

RTOD has been executed in real-time for the Ontario electricity market with two 

assumptions as follows.  

 There is no price forecast error (the forecasted price data are substituted with the 

actual price data); the simulation results for this case are shown in Figure  3-9. 

 The actual and the regular forecasted price data are used; the simulation results 

for this case are as shown in Figure  3-10.  

In these figures, (a) shows the actual and forecast of price for the year of 2011; (b) shows 

the mean absolute error (MAE) of price forecast; (c) shows the power exchange; (d) 

shows the SOC; (e) shows the revenue in terms of (k$).  
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Figure  3-9: (a): Actual and forecasted electricity prices of Ontario in 2011, (b): MAE, (c): 

Power exchange, (d): SOC, (e): Income (revenue): all for the ideal price forecast 
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Figure  3-10: (a): Actual and forecasted electricity prices of Ontario in 2011, (b): MAE, 

(c): Power exchange, (d): SOC, (e): Income (revenue): all for the regular price forecast 

 

In order to evaluate the situation with more details, the charging/discharging hours and 
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Table  3-4: Charging/discharging hours and charged/discharged energy for ideal/regular 

price forecast for Ontario market (in 2006, 2007, and 2008) 
 

2006 2007 2008 

Type of Forecast for each year 
Ideal 

Forecast 
Regular 
Forecast 

Ideal 
Forecast 

Regular 
Forecast 

Ideal 
Forecast 

Regular 
Forecast 

Total hours of operation 1732 1133 3393 2275 3250 2647 

Total hours of charging 1020 655 2004 1338 1869 1534 

Total charged Energy (MWh) 90309 53412 176437 111177 164512 121873 

Total hours of discharging 712 478 1389 937 1381 1113 

Total discharged Energy (MWh) 53843 31494 105162 65849 97759 71808 

Weekly hours of charging 40.11 25.76 42.51 28.38 40.01 32.84 

Weekly charged Energy (MWh) 3551 2100 3743 2358 3522 2609 

Weekly hours of discharging 28 18.80 29.46 19.87 29.56 23.82 

Weekly discharged Energy (MWh) 2117 1238 2231 1397 2092 1537 

 

Table  3-5: Charging/discharging hours and charged/discharged energy for ideal/regular 

price forecast for Ontario market (in 2009, 2010, and 2011) 

2009 2010 2011 

Type of Forecast for each year 
Ideal 

Forecast 
Regular 
Forecast 

Ideal 
Forecast 

Regular 
Forecast 

Ideal 
Forecast 

Regular 
Forecast 

Total hours of operation 3584 3082 2206 2044 1894 1889 

Total hours of charging 2030 1823 1253 1082 1082 1019 

Total charged Energy (MWh) 178750 146378 111641 81255 94823 76023 

Total hours of discharging 1554 1259 953 962 812 870 

Total discharged Energy (MWh) 105366 82125 66294 45857 56220 42559 

Weekly hours of charging 42.67 38.32 26.66 23.02 29.94 28.19 

Weekly charged Energy (MWh) 3757 3077 2375 1729 2624 2103 

Weekly hours of discharging 32.67 26.46 20.28 20.47 22.47 24.07 

Weekly discharged Energy (MWh) 2215 1726 1410 976 1555 1177 

 

Table  3-6: Charging/discharging hours and charged/discharged energy for ideal/regular 

price forecast for Ontario market ( in total 2006 to 2011) 

Total (2006-2011) 

Type of Forecast for total years 
Ideal 

Forecast 
Regular  
Forecast 

Total hours of operation 16059 13070 

Total hours of charging 9258 7451 

Total charged Energy (MWh) 816471 590117 

Total hours of discharging 6801 5619 

Total discharged Energy (MWh) 484644 339692 

Weekly hour of charging 36.98 29.42 

Weekly charged Energy (MWh) 3262 2329 

Weekly hour of discharging 27.07 22.25 

Weekly discharged Energy (MWh) 1937 1342 
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In in Table  3-4 to Table  3-6, for each year, the left column shows the parameters obtained 

by applying the actual and ideal forecast of price (the forecast error is zero) while the 

right column shows the parameters obtained by applying the actual and regular forecast 

of price. One can see that for all years, the charging/discharging hours and 

charged/discharged energy of the ESS are reduced when there is price forecast error. The 

forecast error will cause the ESS not to be 100% ready for charge/discharge opportunities 

and, thus, the ESS does not have sufficient space for appropriate charging of energy or 

sufficient energy for appropriate discharging at the required time.  

3.3 Summery 

In this chapter, an RTOD algorithm is developed by formulating an MILP problem to 

determine the optimal charging and discharging power set-points for a privately owned 

ESS in a competitive electricity market based on real-time and forecasted electricity 

prices. The performance of the RTOD is evaluated for different possible forecast errors 

using a generic price profile and also real-world price data of the Ontario electricity 

market. It is shown that the considerable error of electricity price forecast (e.g., 40% 

under forecasting and 70% over forecasting of the generic price profile) significantly 

reduces the financial benefits of the ESS. In the next chapter, the adaptive RTOD is 

proposed to calibrate the price forecast in order to decrease the adverse impact of price 

forecast error on the revenue resulted from ESS operation.  
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Chapter 4 

4 Adaptive RTOD of Privately Owned ESS 

In Chapter 3, it was shown that the price forecast error of public-domain market data (i.e., 

the Ontario market) can significantly reduce the financial benefits of the ESS operation. 

Since it is not possible to forecast the actual price without any error, it is impossible to 

achieve the revenue with ideal forecast. Therefore, it is important to investigate various 

methods to decrease the adverse impacts of price forecast error on the performance of the 

RTOD algorithm. This way, a portion of the financial loss can be saved even if the 

forecast error is still considerable. In this chapter, an adaptive RTOD algorithm is 

proposed to decrease the adverse impact of forecast error of publicly available price 

forecast on the ESS operation. In the proposed algorithm, the objective function of the 

RTOD algorithm is adapted online based on publicly available market prices available 

before real-time to reduce the financial loss of the ESS. The CAES sized in Section  2.1.1 

is used as an example to demonstrate and evaluate the performance of the proposed 

algorithm. The adaptive RTOD is presented, and the hourly electricity price of the 

Ontario market and its forecast is used as the real-world case-market to test its 

performance. The investigation results reveal that the proposed adaptive RTOD 

outperforms the conventional RTOD to gain more financial benefits for the ESS owner 

when public-domain market prices are used for optimal dispatching of the privately 

owned ESS. 

4.1 Formulation of the Proposed Adaptive RTOD 

As mentioned in Chapter 1, in real-world markets, the electricity price forecasting error 

(mean absolute percentage error) can even reach up to 40% [18]. As shown in the 

Chapter 3, this amount of forecast error can significantly reduce the financial benefits of 

a privately owned ESS operating in that market. Studying the actual and forecasted 

electricity prices issued by different markets especially the Ontario market, the author has 

realized that the average error of electricity price forecast does not change over several 

hours or days drastically in the market. For instance, if the price in a typical day is 
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under/over-forecasted, the next day price will also be under/over-forecasted with a high 

probability.  

As an illustration, actual and forecasted electricity prices publically available in the 

Ontario market (for two weeks in 2011) has been shown in Figure  4-1.  

 

Figure  4-1: (a): Actual and forecasted electricity prices publically available in the Ontario 

market (in 2011)  

It can be observed in Figure  4-1 that in most days the price has been under-forecasted for 

consecutive days. This will raise the idea of taking an advantage of historical market 

price forecast error in the day-behind, for instance, to calibrate the day-ahead price 

forecast to decrease the adverse impact of price forecast error on the ESS optimal 

operation. It is worth mentioning that the mean value of forecast error for the prices in 

2011 equals 2.44 Cents/kWh, which indicates that in most days of the year the price is 

under-forecasted. According to the observations, the same outcomes can be obtained for 

the electricity prices in other years (from 2006 to 2010). Therefore, the price forecast, 
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publically available in the Ontario market, has a negative offset in most days. Since the 

amount of offset is time-variant, it cannot be compensated using a constant value, but 

rather it might be dynamically predicted and compensated. As the ESS is more sensitive 

to the electricity price arbitrage than the absolute price value, it is proposed to adapt the 

objective of the RTOD as stated in (4-1) by linearly calibrating the electricity price 

forecast based on how much the market has been under-forecasted or over-forecasted in 

the past several hours or days. 

 

  t1: Obj. Adaptive
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( 4-1) 

where At and Bt are scaling and offset calibrating coefficients at time step t, respectively. 

Several historical data lengths such as 1, 2, 7, and 30 days have been considered to 

estimate the level of expected under-forecasting or over-forecasting for the next 24 h 

based on which At and Bt are determined. According to the investigation results 

performed in this study for the Ontario market, increasing the length of the historical data 

beyond 24 h does not improve the ESS profit for the studied years. Therefore, in this 

study, the results of different methods to estimate calibrating coefficients are only 

presented for one-day historical data length. However, changing the length of historical 

data to track the behavior of the electricity price forecast error can be considered as an 

option which may help to improve the results in the other electricity markets. 

Generally, in real-time price forecasting, the forecasting algorithm operates at each time 

step. Hence, the next T-h price is forecasted at every time step. Thus, for each time step, 

N values of forecasted price is available. Additionally, since the calibration variable 

length is M, the forecasted data for the past M time steps should be stored in an M × N 

data buffer. Figure  4-2 shows how the proposed adaptive RTOD is implemented. As 

shown in this figure, the next N forecasted electricity prices are inputted to the data buffer 

as well as the data file generation. In this research, the 2-D data buffer is represented with 

E
h

i,t where i is the time index and t points to future time steps within the prediction 

horizon. Time index i is equal to the present time in 24-h time notation divided by ∆t. For 
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instance, at 3pm, i=15/1=15 if ∆t is considered 1h. Therefore, E
h

15,t represents historical 

electricity price forecast for the last 3 pm.  
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Figure  4-2: (a): The flowchart for implementation of the proposed adaptive RTOD 

The scaling and offset calibrating coefficients, i.e., At and Bt are calculated using 

historical actual and forecasted prices as discussed later in this section. Once calibrating 

coefficients are calculated, a limiter is applied to each coefficient to avoid undesired 

calibration in case of spurious market behavior. In general, the lower and upper limits can 

be different. The outputs of the limiters are further adjusted by forcing A1=0 and B1=0 to 

avoid calibration for the present time step, where actual electricity price is available. The 

values of At and Bt for t=2 to m can be forced to zero if more accurate price forecast is 

available up to the first few hours (e.g., m hours). For instance, in Ontario, 3-h electricity 

price forecast is issued hourly. Hence, the calibration can be performed on the remaining 

hours. Then, the coefficients At and Bt are used in the objective function of the proposed 

adaptive RTOD as per (4-1) to calibrate the forecasted electricity price. Four different 

definitions for error calculations are presented in the next paragraph which are assigned 

to At and Bt for price calibrations. Other steps of the proposed adaptive RTOD are the 

same as the conventional RTOD in Chapter 3.  

In general, two different categories of definitions can be considered for measuring price 

forecast error. The first one presents the price forecast error in terms of Cents/kWh, and 

the other one presents it in terms of the percentage of the actual price. Each of these 

categories of definitions can be formulated either as a 1-D array of error at every time 

instance or as a single value which is the average of the error vector. The definitions for 

price forecast error, proposed in this work, are given by (4-2) to (4-5) for every time 

index i. In HFME (Historical Forecast Mean Error) and HFEt (Historical Forecast Error) 
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definitions, the forecast error is in terms of Cents/kWh. In HFMPE (Historical Forecast 

Mean Percentage Error) and HFPEt (Historical Forecast Percentage Error) definitions, the 

error is in terms of the percentage of the actual price. Equations (4-3) and (4-5) result in 

1-D arrays with the length of prediction horizon, while (4-2) and (4-4) result in single 

numbers which are the average of (4-3) and (4-5), respectively. 
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where E
h

f(t),1 is an array which represents historical actual price in the calibration horizon 

stored in the first row of the data buffer (see Figure  4-2) in which f(t) is an array with M 

elements as given by (4-6). i is the time index as defined earlier. 

  ciiMitf  1,...,1&,...,)( ( 4-6) 

In the following, four calibration methods are proposed based on the four above-

mentioned definitions for historical price forecast error. In Method 1, HFME is calculated 

based on the definition presented in (4-2). Then, the calculated HFME, which is in 

Cents/kWh is assigned to Bt for the entire prediction horizon, while At is assumed to be 

zero. As shown in Figure  4-2, Bt can be limited to a certain value such as ±1 Cents/kWh 

or ±2 Cents/kWh; depending on the average electricity market price. 

The second calibration method is the same as Method 1, but rather than using the average 

of forecast error, the forecast error of historical price data based on the definition 

presented in (4-2) is calculated. In this method, the length of calibration horizon shall be 

selected the same as the prediction horizon, i.e., M=N. The calculated HFEt is assigned to 

Bt for every t, while At is assumed to be zero. In this case, the forecasted price at each t is 

calibrated by using the forecast error at the t of the day before. For example, the price 



44 

 

forecast at 1:00pm in the next day is calibrated using the forecast error at 1:00pm of the 

day before and so on for the other time steps. 

In Method 3, HFMPE is calculated based on the definition presented in (4-3). The 

calculated HFMPE is assigned to At for the entire prediction horizon, while Bt is assumed 

to be zero. Similar to prior methods, the value of At can be limited to a certain value such 

±30% or ±50%. 

The fourth calibration method is the same as Method 3, but rather than using the average 

of forecast error, the forecast error of historical price data based on the definition 

presented in (4-4) is calculated. Similar to Method 2, the length of the calibration horizon 

shall be selected the same as the prediction horizon. Then, the calculated HFPEt is 

assigned to At for every t, while Bt is assumed to be zero.   

4.2 Performance Analysis of the Proposed Adaptive RTOD 

In this section, the performance of the proposed Adaptive RTOD algorithm is evaluated 

for the CAES sized in Section  2.1.1 using the public-domain actual and forecasted 

electricity price data provided by the Ontario electricity market. The Ontario independent 

electricity system operator (IESO) publishes two sets of price forecasts: day-ahead and 3-

h-ahead pre-dispatch prices (PDPs). The first set of data is the forecast of the next day 

(starting from 1am) which is published at 3:30pm eastern time every day, while the 

second set of data is the forecast of next 3 h which is published every hour. The challenge 

of using the IESO forecast is that the complete next 24-h forecast is not available for each 

time step within 1am to 3pm of each day. For instance, at 10am, only the next 15 h, i.e., 

10 am to 12 midnight is available. To mitigate this problem, as it is given by (4-7) and (4-

8), it is proposed to duplicate the forecasted prices at the same hours of the last day. Since 

the price forecast accuracy is not inherently high, this duplication will not considerably 

increase the forecast error. 

When the day-ahead pre-dispatch prices are issued from 1am to the next 24 h, it is stored 

in a 1-D temporary data buffer represented by Et
Tmp

. If the time index i is equal to 1, the 

issued forecast in Et
Tmp

 is used for the next 24 h without change; if i is within 2 to 15, the 



45 

 

issued forecast in Et
Tmp

 is circulated to generate forecast for missing hours (see (4-7)). 

When i reaches to 16, the pre-dispatch prices are issued for the next day. In this case, the 

forecasted price for the next 24 h is created by using historical price data for the period of 

i to 24 and newly issued prices saved in Et
Tmp

 for the rest of hours (see (4-7)).  

In every time index i, after creating the next 24 h price forecast, the first 3h of that is 

updated by using the second type of issued prices, i.e., Ontario 3-h price forecast. 
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where g(t) is defined as follow. 
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The error of the 3-h-ahead price forecast is considerably smaller as compared to day-

ahead forecast. Thus, there is no need of RTOD calibration for this span of time. This can 

be simply implemented by considering m=3 in the flowchart depicted in Figure  4-2. As 

mentioned earlier, the lower and upper limits can be different, but they are considered 

identical for the sake of simplicity in this study.  

The ESS sized in Section  2.1.1 and the proposed adaptive RTOD are simulated in 

Matlab. The simulation is executed at time steps of 1 h. The optimal dispatch problem is 

formulated and solved by combined Matlab and GLPK package. Then, the values of ESS 

revenue are computed using both RTOD and adaptive RTOD for Ontario electricity 

market from 2006 to 2011. According to the analysis performed on the historical price 

data for Ontario, the HFME is calculated as 2 (Cents/kWh) for the time period between 

2006 and 2011, while HFMPE is calculated as 50% for the same time period. Based on 

this fact, 112 cases have been selected and studied including different time periods: 

{2006, 2007, …, 2011 and total (2006 to 2011)}, different calibration methods: {Method 

1, …, Method 4} and different calibration coefficient limits: {±30%, …, ±70%, ±∞%} 
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for At and {±1 Cents/kWh, ±3 Cents/kWh, …, ±∞ Cents/kWh} for Bt. ±∞ indicates here 

that there is not any limitation on the values of At and Bt.  

To better analyze and compare the results of adaptive RTOD and RTOD for the 112 case 

studies, the percentage of the annual revenue increase using adaptive RTOD as compared 

to the annual revenue obtained by RTOD is reported in Table  4-1 to Table  4-4. 

Table  4-1: Annual revenue increase (%) by using price calibration method 1 

Year 
Calibration limit 

±1 ¢ ±2 ¢ ±3 ¢ ±∞ ¢  

2006 20.92 26.94 27.77 27.19 

2007 25.01 33.87 31.47 31.12 

2008 41.76 62.11 71.11 67.43 

2009 23.31 36.34 54.83 49.09 

2010 190.79 274.10 249.77 211.89 

2011 42.41 48.64 42.39 43.98 

Total 37.28 52.17 56.22 52.76 

 

Table  4-2: Annual revenue increase (%) by using price calibration method 2 

Year 
Calibration limit 

±1 ¢ ±2 ¢ ±3 ¢ ±∞ ¢  

2006 17.10 28.14 30.88 25.10 

2007 20.10 28.03 32.23 30.06 

2008 34.98 56.81 71.24 65.59 

2009 20.41 27.20 42.79 40.65 

2010 146.44 221.46 245.93 259.90 

2011 25.88 41.11 42.78 40.82 

Total 29.40 44.62 54.20 51.31 

 

Table  4-3: Annual revenue increase (%) by using price calibration method 3 

Year 
Calibration limit 

±30% ±50% ±70% ±∞% 

2006 17.47 18.16 18.48 18.46 

2007 19.93 25.83 25.80 26.14 

2008 36.70 49.66 52.40 52.96 

2009 7.86 8.30 8.67 16.52 

2010 151.62 178.21 161.61 145.33 

2011 25.31 23.31 17.49 10.84 

Total 27.31 33.13 32.57 32.89 
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Table  4-4: Annual revenue increase (%) by using price calibration method 4 

Year 
Calibration limit 

±30% ±50% ±70% ±∞% 

2006 17.41 24.42 21.65 21.80 

2007 16.80 21.32 19.85 23.90 

2008 31.19 43.97 52.35 58.25 

2009 7.38 8.16 9.03 10.36 

2010 116.23 131.87 122.66 126.73 

2011 15.41 18.48 20.49 16.54 

Total 22.27 28.76 30.58 33.05 

As shown in Table  4-1 to Table  4-4, in all years, the annual revenue is increased 

considerably by using the proposed adaptive RTOD as compared to the conventional 

RTOD. However, for different calibration methods, the level of the improvement in 

gaining financial benefits is different. As shown in this table, for the Ontario electricity 

market, the largest values of annual revenue for each method can be obtained by using 

specific values of calibration limit. These values of calibration limit are shown in the 

following for each method. 

 Method 1 with ±3Cents/kWh calibration limit. 

 Method 2 with ±3Cents/kWh calibration limit. 

 Method 3 with ±50% calibration limit. 

 Method 4 with ±∞% calibration limit. 

Figure  4-3 shows the plotted values of annual revenue increase (in terms of %) for the 

methods with the above-mentioned calibration limits. According to Figure  4-3, Methods 

1 and 2 are more or less the same; it is also shown that Methods 3 and 4 are 

approximately the same. Moreover, it is clear that Methods 1 and 2 return significantly 

more revenue than Methods 3 and 4. 
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Figure  4-3: Annual revenue increase (%) at the most optimal value of calibration limit for 

each calibration method (Method 1 and 2 with ±3Cents/kWh limit; Method 3 with ±50% 

limit; Method 4 with ±∞ limit) 

As shown in Figure  4-3, the annual revenue increase of the year of 2010 is larger than 

that of the other years. This is because the price forecast error of the year 2010 is 

significantly more than that of other years. Thus, the proposed methods for price 

calibration in the year of 2010 are significantly more effective than the other years. 

Other values of calibration limit have been tried for the studied market. It was observed 

that these values do not help to increase the amount of revenue in this study. However, 

for the other electricity markets, the values of calibration limit used in this thesis may not 

be the best ones and should be determined by analyses of the price data in that market. 

4.3 Impact of Price Forecast Calibration on Charging/ 
Discharging of the ESS 

In the following, the impact of price forecast calibration on the charging/discharging of 

the ESS will be investigated. Figure  4-4 represents the simulation results of the CAES 

when the forecasted price of the Ontario market in 2011 is applied to the RTOD 

algorithm after calibration by Method 1 with 3 (Cents/kWh) of calibration limit.  
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Figure  4-4: (a): Actual and forecasted electricity prices of Ontario in 2011, (b): MAE, (c): 

Power exchange, (d): SOC, (d): Income (revenue): all for calibrated price forecast by 

Method 1 with 3 Cents/kWh of calibration limit  

In order to evaluate the situation with more details, the charging/discharging hours and 

charged/discharged energy of the ESS for the Ontario price from 2006 to 2011 are 

calculated and shown in Table  4-5 to Table  4-7. In this table, the results of regular 

(uncalibrated) price are compared with the results of the case in which the price is 

calibrated using Method 1 with 3 (Cents/kWh) calibration limit.  
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Table  4-5: Charging/discharging hours and charged/discharged energy for the 

regular/calibrated price forecast by Method 1 with 3 Cents/kWh of calibration limit for 

the Ontario market (in 2006, 2007, and 2008) 
 

2006 2007 2008 

Type of Forecast for each 
year 

Regular 
Forecast 

Calibrated by 
Method 1 

Regular 
Forecast 

Calibrated by 
Method 1 

Regular 
Forecast 

Calibrated by 
Method 1 

Total hours of operation 1133 1223 2275 2491 2647 2698 

Total hours of charging 655 711 1338 1449 1534 1581 

Total charged energy 53412 62506 111177 124593 121873 137078 

Total hours of discharging 478 512 937 1042 1113 1117 

Total discharged energy 31494 36933 65849 73565 71808 80696 

Weekly hours of charging 25.76 27.96 28.38 30.74 32.84 33.84 

Weekly charged energy 2100 2458 2358 2642 2609 2934 

Weekly hours of discharging 18.80 20.13 19.87 22.10 23.82 23.91 

Weekly discharged energy 1238 1452.42 1397 1560.49 1537 1727.44 
 

 

 

 

Table  4-6: Charging/discharging hours and charged/discharged energy for the 

regular/calibrated price forecast by Method 1 with 3 Cents/kWh of calibration limit for 

the Ontario market (in 2009, 2010, and 2011) 
 

2009 2010 2011 

Type of Forecast for each 
year 

Regular 
Forecast 

Calibrated by 
Method 1 

Regular 
Forecast 

Calibrated by 
Method 1 

Regular 
Forecast 

Calibrated by 
Method 1 

Total hours of operation 3082 2927 2044 2218 1889 2095 

Total hours of charging 1823 1754 1082 1238 1019 1184 

Total charged energy 146378 147079 81255 107885 76023 103013 

Total hours of discharging 1259 1173 962 980 870 911 

Total discharged energy 82125 82464 45857 63341 42559 60293 

Weekly hours of charging 38.32 36.87 23.02 26.34 28.19 32.76 

Weekly charged energy 3077 3091 1729 2295 2103 2850 

Weekly hours of discharging 26.46 24.65 20.47 20.85 24.07 25.20 

Weekly discharged energy 1726 1733 976 1347 1177 1668 
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Table  4-7: Charging/discharging hours and charged/discharged energy for the 

regular/calibrated price forecast by Method 1 with 3 Cents/kWh of calibration limit for 

the Ontario market (in total 2006 to 2011) 
 

Total (2006-2011) 

Type of Forecast for total 
years 

Regular 
Forecast 

Calibrated by 
Method 1 

Total hours of operation 13070 13652 

Total hours of charging 7451 7917 

Total charged energy 590117 682160 

Total hours of discharging 5619 5735 

Total discharged energy 339692 397290 

Weekly hours of charging 29.42 31.42 

Weekly charged energy 2329 2712 

Weekly hours of discharging 22.251 22.811 

Weekly discharged energy 1342 1581.6 

 

In Table  4-5 to Table  4-7, for each year, the left column shows the parameters obtained 

by applying the regular forecast of price while the right column shows the parameters 

obtained by applying the calibrated forecast of price by Method 1. One can observe that 

the charging/discharging hours and charged/discharged energy of the CAES are increased 

for each year and for the total years when the proposed adaptive RTOD is applied. This is 

why the CAES can make more financial benefits when there is price calibration in 

comparison with the case in which the uncalibrated price forecast is used.  

4.4 Summery 

In this chapter, an adaptive RTOD algorithm was developed by formulating an MILP 

problem. The problem was modeled and solved using MATLAB and GLPK to determine 

optimal ESS charging and discharging power set-points in a competitive electricity 

market based on real-time and forecasted electricity prices. As a case study, the CAES 

sized in Section  2.1.1 is used. Using a smooth price profile, it is shown that the price 

forecast error will not impact the ESS revenue until it reaches a certain level. This is 

because the ESS revenue is more sensitive to the price arbitrage that the absolute values 

of price. This fact is used to linearly calibrate the public-domain market prices. Then, 

based on historical market price information, a new mechanism was proposed and 

implemented to calibrate the price forecast making the proposed RTOD adaptive to the 
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forecast error. The performance of the proposed adaptive RTOD was evaluated through 

comparing economic benefits of the ESS operation for four proposed calibration 

methods, and the results were discussed. The simulation results revealed that the 

proposed adaptive RTOD significantly increases the financial benefits of the ESS as 

compared to the conventional RTOD in which the forecasted price is not calibrated.   
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Chapter 5 

5 Optimal Weekly and Daily Usages of the Cryogenic 
Energy Storage (CES) 

In this chapter, the concept of weekly usage of CES to shift the electrical energy from 

lower prices during off-peak periods to higher prices during peak periods as compared to 

common daily usage is introduced. Two equally-expensive CES systems are optimally 

sized for daily and weekly usages. The RTOD algorithm, formulated in Chapter 3 of this 

thesis, is used for optimal weekly and daily usages of the CES. The economic benefits of 

both CES weekly and daily usages are presented and compared for different price profiles 

and round-trip efficiencies of the storage. The results show significant benefits of weekly 

usage of the CES as compared to daily usage [30].  

5.1 Comparison of CES with Other Types of ESS 

Since electricity price is inexpensive during weekends, there is a potential to store the 

energy in weekends and release it during on-peak periods in weekdays when the 

electricity price is high. However, to make this possible, very large storage size and low 

energy dissipation rate are required. Batteries and CAES systems are the common 

technologies for long-term energy storage. However, the cost of battery energy storage 

system (BESS) approximately increases linearly with the storage size [38]. Therefore, it 

would be costly to store the energy during weekends and release during weekday peak 

periods. Furthermore, some battery technologies do not provide low dissipation rate 

which make them unsuitable for weekly usage. In case of CAES, only if the ESS is based 

on aquifers, the "bubble" underground can be enlarged via extra compression energy to 

allow larger storage size for weekly usage [31]. This technique is only viable in specific 

geographical locations [31]. 

As explained in Chapter 2 of this thesis, in CES technology, storage tank is significantly 

inexpensive as compared to liquefaction and power recovery parts and does not occupy 

large space as compared to CEAS technology. This is especially important to allow 

economical weekly usage of CES as compared to daily usage. Therefore, it is 
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significantly inexpensive to increase the storage capacity as compared to other storage 

technologies. This is especially important to allow economical weekly usage of CES as 

compared to daily usage. Further, it makes this technology comparable or superior to 

other ESS technologies for long-term energy shift. 

5.2 Performance Evaluation 

In this section, the CES is considered as a single entity which freely buys/sells electricity 

from/to the electricity market. The optimization problem, developed in Chapter 3 of this 

thesis, is used here to determine the proper periods and dispatch quantities for storage 

charging and discharging to maximize the economic benefit for a private investor. Even 

though CES can be employed to provide additional financial and operational benefits 

through peak shaving, congestion relief, frequency regulation, and deferred transmission 

and distribution (T&D) investments, in this chapter, only the financial benefit due to 

energy shift of electricity with different prices is considered. The storage sizing method 

and formulation of optimal dispatch algorithm are explained in Chapter 2 and Chapter 3, 

respectively.   

The performance of the two CES systems, CES1 and CES2 sized for weekly and daily 

usage regimes in Chapter 2 is evaluated. Operating parameters are shown in Table  5-1. In 

this table, the amount of expected revenue due to investment (CERev) is considered the 

same as the one considered for some ESS projects. This way, after the life of storage (=30 

years), total revenue should be at least 250% of the total capital cost. As a result, CEInc is 

considered as 8% = 250%/30 of the capital cost per year. In CES technology, to maintain 

rated efficiently, it is required to operate the liquefaction plant close to its rate value. 

Therefore, P
Chg

min is set to 80% of P
Chg

max. However, the cryogenic turbine and its 

supplying pump can efficiently operate even at lower power set-points. Energy storage 

dissipation per hour is assumed 0.15% per day thus 0.0063%=0.15%/24 per hour. Other 

parameters are calculated according to the assumptions made in Table  2-4. Using the 

parameters defined in Table  5-1, optimization problem is solved by GLPK package and 

results are obtained for two types of daily and weekly usages. Three different price 

profiles are used for evaluation purposes. General shape of the electricity price profile is 

shown in Figure  2-2, while price levels (A, B, and C) are defined in Table  5-2. 
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Table  5-1: Operating Parameters of the CES 

PChg
min 80% × PChg

max CCap Total Capital Cost/(Life of ESS (=30) ×365×24) 

PDhg
min 3% × PDhg

max CMain 5% × CCap   

Smin 10% × Smax CChgO 60% × CMain / PChg
max 

SInt 20% × Smax CDhgO 40% × CMain / PDhg
max 

ηDsp 0.0063% × St CERev 250% × Total Capital Cost/(30×365×24) 

Table  5-2: Different Levels of Price Profiles Shown in Figure  2-2  

Price Levels (Cents/kWh) 
Weekday Weekend 

A B C A B C 

Profile 1 6 9 12 

5 6 7 Profile 2 6 12 18 

Profile 3 6 15 24 

5.2.1 Concept of Daily Usage Optimization  

In this section, by using price Profile 1 and round-trip efficiency of 60%, the optimization 

is performed considering 24-h optimization horizon. In this case, the optimizer will 

consider the energy price of a day ahead to make dispatch decisions. Daily optimal 

dispatch is performed for seven days individually including two weekends and five 

weekdays. Since the CES has a sustainability constraint, the state of the charge (SOC) at 

the end of a day will be the same as the initial value. Therefore, the result of all seven 

days can be combined to obtain the CES performance for a week in case of daily usage. 

Figure ‎5-1 (a, b, and c) shows the evaluation results for a complete week. In this figure, 

the positive power exchanges indicate that the CES is charging while the negative ones 

indicate that CES is discharging. By looking at the charging power and the SOC, one can 

realize that at each weekday the storage is charging at low energy prices and discharging 

at high energy prices. At the end of the day, the storage capacity comes back to the initial 

value (10%) and the same pattern repeats for the next weekdays. As it was expected, CES 

is mostly off in weekends and does not store energy for future use in weekdays. In 

weekends, CES operates only to compensate the energy dissipation so that SOC remains 

equal or above the Smin.  
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5.2.2 Concept of Weekly Usage Optimization  

In this section, using the same conditions as Section  5.2.1, the optimal dispatch is 

performed considering optimization horizon as one week. In this case, the optimal 

dispatch considers energy price of a week ahead to determine optimal dispatch quantities. 

Figure ‎5-1 (d, e, and f) shows the results for this case. One can realize during the 

weekends and low energy price hours of weekdays, CES is charging with full capacity 

while it is discharging in high price periods of the weekdays.  

 

Figure  5-1: (a) & (d): Price profile 1, (b) & (e): ESS power exchange, and (c) & (f): SOC- 

(a), (b), and (c): Daily & (d), (e), and (f): Weekly usage optimization 

5.2.3 Comparison of Weekly and Daily Usage Optimization 

In this section, the economic benefits of ESS operation for both weekly and daily usages 

are investigated and compared first for the generic price profile (see Figure  2-2) and then 

for the real price data of Ontario electricity market.   
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5.2.3.1 Using the Generic Price Profile 

In this section, a comparison is made between daily and weekly usages by employing 

three different price profiles defined in Table  5-2 and different efficiencies between 30% 

and 70%. As defined in Chapter 3, the revenue is the objective value which is the total 

benefit of ESS operation. If the expected revenue (CERev) which is a time invariant 

parameter is subtracted from the objective function, the objective value is the extra 

revenue which is the benefit excess from the normal expected revenue, i.e. totally 250 

percent of the capital cost. Extra revenue values are plotted in million dollars per year for 

three price profiles versus different round-trip storage efficiencies in Figure  5-2.  

 

Figure  5-2: The extra income (revenue) vs. efficiency; (a): Profile 1, (b): Profile 2, (c): 

Profile 3 

Table  5-3: Extra Revenue for the Third Profile, Shown in Figure  5-2 (c) 

Round-Trip 
Efficiency 

CES1: Weekly Usage at: CES2: Daily Usage at: 

one year life of storage one year life of storage 

60.5% 0 (M$) 0 (M$) -4.1 (M$) -123 (M$) 

68.7% 2 (M$) 60 (M$) -3 (M$) -90 (M$) 
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The following outcomes can be obtained from Figure  5-2 and Table  5-3:  

 As shown in Figure ‎5-2 (c), for price Profile 3, two numerical examples are given 

in Table  5-3 to reveal how to use the curves and to quantitatively compare the 

extra revenue of CES weekly and daily usages. Table  5-3 shows that for the 

efficiency of 60.5%, the extra revenue is $0 for the weekly usage while for daily 

usage it is -$4.1M×30=-$123M at the entire life of storage. This negative extra 

revenue means a significant financial loss for CES daily usage. Moreover, for the 

efficiency of 68.7%, the extra revenue is $2M×30=$60M for weekly usage while 

for daily usage it is -$3M×30=-$90M at the entire life of storage. Consequently, 

there is huge amount of financial loss in daily usage as compared to weekly usage 

optimization.          

 As shown in Figure ‎5-2, for all efficiencies, the extra revenue of weekly 

optimization is higher than the daily one. This is because in weekly optimization, 

optimal dispatch algorithm considers a week a head electricity price and stores 

considerable amount of energy in weekends and weekday nights when electricity 

is cheaper and sells it during peak periods of weekdays. In addition, as CES 

efficiency increases the financial benefit of weekly usage as compared to daily 

usage increases linearly. 

 As shown in Figure ‎5-2 (a and b), the left side of the break point is approximately 

flat for both daily and weekly usages; the flat part shows that by changing the 

round-trip efficiency, there is no significant changes in the amount of extra 

revenue. This occurs because CES operation is not economical and, therefore, the 

ESS stops working in the market. The break point, shown in Figure ‎5-2 (a and b), 

is therefore defined as the minimum efficiency in which the ESS can work in the 

market economically. As Figure ‎5-2 shows, there is different break points for 

Figure ‎5-2 (a and b), and there is no such a point for Figure ‎5-2 (c).    

 As shown in Figure ‎5-2 (a), the weekly usage curve at the left side of the break 

point seems more flat than the daily usage one. For efficiencies less than the break 

point efficiency, the negative extra revenue, e.g. financial loss, is approximately 

https://www.google.ca/search?hl=en&client=firefox-a&hs=Cg8&rls=org.mozilla:en-US:official&spell=1&q=quantitatively&sa=X&ei=P2SlUKu5MOSMygGkgoGQBA&ved=0CB8QvwUoAA
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constant in weekly usage while the case is worse in daily usage as the negative 

extra revenue increases with decreasing the efficiency. The reason of this 

phenomenon is explained as follows. Although the flat part of the curves shows 

that the ESS is not seriously working due to very low efficiencies, it must always 

work to compensate the energy dissipation to maintain the SOC above or equal to 

the minimum allowed stored energy. In order to do so,  the ESS must charge at 

least for one time interval, i.e., one hour and with the minimum charging power, 

i.e., 40 MW in daily usage; the stored energy is therefore 40 MWh times charging 

efficiency. This energy is significantly more than what is needed for the 

compensation of the dissipation in one day; the extra energy should be discharged 

somewhere during the day to make profit; based on the fact that the output 

efficiency is very low, a lot of energy is lost during discharging; this process is 

going to be repeated in each day of the week causing considerable financial losses 

at the end of the week due to extra charging and discharging in uneconomical 

conditions. Consequently, although the ESS is not working in the market for 

operating points at the left side of the break point, due to its extra charging and 

discharging to compensate the dissipation, the objective function becomes 

dependent to the efficiency and the curve is not completely flat in daily usage. In 

weekly usage on the other hand, the ESS charges in one time interval during the 

weekend when the energy price is low, but does not have to discharge the extra 

energy at the end of that day as the optimization horizon is one week. Instead, it 

will keep the energy to compensate the dissipation in the entire week; this way, 

only a very small portion of energy is discharged in the high level of energy price 

during a weekday. This way, uneconomical charging and discharging in low 

efficiencies is less in ESS weekly usage as compared to daily usage causing to 

limit financial losses in low efficiencies. Consequently, for the operating points at 

the left side of the break point, charging and discharging is very small and the 

dependency of the objective function to the efficiency is minimal; thus, the curve 

of weekly usage is more flat than that of the daily usage as clearly illustrated in 

Figure ‎5-2 (a).  
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 The more efficiency the ESS has, the more extra revenues are obtained by both 

daily and weekly usages. This is because by increasing efficiency, the amount of 

energy lost in ESS system decreases.  As the technology grows, the efficiencies of 

these types of ESSs will increase and, thus, utilizing such ESSs becomes more 

economical.   

 As the curves show, for most of the cases, the extra revenue is negative; negative 

extra revenue in one operating point means that using the ESS is no longer 

economical in that operating point. Since these ESSs have a lot of benefit not only 

through the environmental point of view, but also due to their significant 

contribution in supporting the utility, these ESSs should receive governmental 

support in order for the ESSs to be able to work in the liberalized energy market. 

The government is recommended to provide this support for the investor to 

encourage them to invest on these technologies; the amount of this support should 

be so that the extra revenue will at least reach to zero; the zero value of the extra 

revenue is the border between economical and uneconomical situations.  

 By comparing the effect of price difference between peak hours and off-peak 

hours (see Figure ‎5-2 (a, b, and c), it can be realized that the larger the difference 

exists between the higher and lower levels, i.e. arbitrage, of the energy price, the 

more extra revenue is obtained for both cases of daily and weekly usages. By 

increasing the arbitrage in Profile 2 compared to Profile 1 and Profile 3 compared 

to Profile 2, the revenue obtained by purchasing and selling the electricity from/to 

the market increases. 

 As mentioned in Chapter 2, the expected revenue (CERev) offsets and the life of 

storage approximately offsets the objective of the optimization problem, i.e., the 

Extra Revenue vertically. If CERev increases, i.e., for more expected revenue, the 

Extra Revenue will decrease. Considering CERev as a percentage of CCap, for 1% 

increase of CERev, the curves shown in Figure ‎5-2 should be shifted in negative 

direction by 0.01 × (total capital cost/life of storage) = 0.01 × ($117M/30) = 

$0.039M. On the other hand, if the life of storage is considered lower, CEInc and 
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CCap should be returned in less time and thus the Extra Revenue decreases. In 

general, if the life of storage is changed from 30 to x years, the curves shown in 

Fig. 4 will be shifted approximately by CERev × total capital cost × (1/30-

1/x)=$292.5 × (1/30-1/x) M.   

5.2.3.2 Using the Real Data of the Ontario Electricity Market 

In this section, the economic benefit of ESS operation, i.e., extra revenue is calculated for 

weekly and daily usage optimization of CES by applying the electricity price profiles of 

Ontario market. In this study, the forecast error is considered zero as the objective is only 

comparing of weekly and daily usages of CES (the forecasted prices are substituted with 

the actual ones). Table  5-4 shows the extra revenue obtained by applying prices of 

Ontario market to RTOD for weekly and daily usages. The ESS round-trip efficiency is 

considered 60% in this study.    

Table  5-4: Extra revenue of ESS operation for the Ontario electricity market 

Year Weekly Optimization Daily Optimization 

2006 -3.2988 -3.7200 

2007 -5.7053 -6.7006 

2008 -4.8151 -6.0024 

2009 -6.4558 -6.9781 

2010 -7.1493 -7.5942 

2011 -5.0016 -5.3043 

Total -32.4259 -36.2996 

As shown in Table  5-4, the extra revenue for all years are negative; this means that the 

ESS is not able to return the expected revenue. However, the values of extra revenue are 

less negative for weekly usage optimization, e.g., 10%. This reveals the advantage of 

weekly usage optimization as compared to common common daily usage optimization 

for CES.  

5.3 Summery 

In this chapter, the concept of weekly usage of CES to shift the electric energy from 

lower prices during off-peak periods to higher prices during on-peak periods as compared 

to common daily usage was introduced. Two equally-expensive CES systems optimally 
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sized in Chapter 2 for daily and weekly usages were used in this chapter. The RTOD 

algorithm, formulated in Chapter 3 of this thesis, was used for optimal weekly and daily 

usages of the CES. The economic benefits of both CES weekly and daily usages were 

presented and compared for different price profiles and round-trip efficiencies of the 

ESS. The results revealed significant benefits of weekly usage of the CES as compared to 

daily usage. 
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Chapter 6 

6 Conclusions and Suggestions  

This chapter concludes the results of the present thesis and provides some suggestions for 

future works in the relevant area.  

6.1 Summary of this Thesis   

 In Chapter 1 of this thesis, the concept of privately ESSs was presented. The 

previous research studies related to this area were reviewed; then, the 

contributions of the present work were summarized. Finally, the organization of 

the thesis was explained.  

 In Chapter 2 of this thesis, two air-based large-scale ESSs, i.e., the CAES and the 

CES systems were introduced and, then, they were sized by using a method 

proposed in this thesis. By sizing of the ESSs, the ratings of charging, 

discharging, and storage tank plants were determined for each ESS.  

 In Chapter 3, an RTOD algorithm was proposed by formulating an MILP problem 

to determine ESS charging and discharging power set-points in a competitive 

electricity market based on real-time and forecasted electricity prices. Moreover, 

the economic impact of electricity market price forecasting errors using a generic 

price profile and public-domain market prices on the proposed RTOD algorithm 

was evaluated. It was demonstrated that the considerable price forecast error can 

significantly decrease the revenue resulted from the ESS operation. 

 In Chapter 4, based on the historical market price information using public-

domain prices in the Ontario market, a new approach was proposed and 

implemented to calibrate the price forecast making the RTOD adaptive to price 

forecast error. The performance of the proposed adaptive RTOD was evaluated 

through comparing economic benefits of the ESS operation for different possible 

calibration methods, and the results were discussed. The investigation results 

revealed that the proposed adaptive RTOD outperforms the conventional RTOD, 
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presented in Chapter 3, by increasing the ESS financial benefits when the public-

domain market prices are used for short-term scheduling of the ESSs. 

 In Chapter 5, the concept of weekly usage of CES to shift the electric energy from 

lower prices during off-peak periods to higher prices during on-peak periods as 

compared to common daily usage was introduced. Two equally-expensive CES 

systems were optimally sized for daily and weekly usages. The RTOD algorithm, 

formulated in Chapter 3 of this thesis, is used for optimal weekly and daily usages 

of the CES, sized in Chapter 2. The economic benefits of both CES weekly and 

daily usages were presented and compared for different price profiles and round-

trip efficiencies of the CES. The results revealed significant benefits of weekly 

usage of the CES as compared to common daily usage. The Ontario market was 

used as a real-world case study to validate the findings. It was demanstrated that 

for the wholesale market prices in the Ontario market, the weekly usage 

significantly outperforms the conventional daily usage of CESs.  

6.2 Achievements of the Thesis  

In this work, the concept of privately owned large-scale ESS was introduced. An RTOD 

algorithm was proposed to determine ESS charging and discharging power set-points in a 

competitive electricity market based on real-time and forecasted electricity prices. 

Sensitivity analysis was performed to evaluate the impact of energy price forecasting 

error on the performance of the proposed RTOD using a generic and actual electricity 

price profiles selected from the Ontario electricity market. 

To mitigate the adverse impact of the price forecast error on the proposed RTOD, an 

adaptive RTOD was proposed and evaluated through comparing economic benefits of the 

ESS operation for different cases. The investigation results revealed that the proposed 

adaptive RTOD algorithm outperforms the RTOD by achieving higher financial benefits 

for the ESS private owner.  

The CES technology was introduced. Due to the significant lower price of storage tank 

compared to other components of the CES, it was proposed to increase the storage tank 
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size to enable weekly energy shift. Two equally-expensive CES systems were optimally 

sized for daily and weekly usages. The proposed RTOD was employed to determine CES 

dispatch quantities including time periods and amounts of charging and discharging 

power set-points. The daily and weekly usages were compared using three pre-defined 

price profiles and different round-trip efficiencies between 30% and 70%. The 

performance evaluation results showed that weekly usage is significantly more 

economical and effective than the daily usage for this energy storage technology. 

6.3 Suggestions for Future Works 

 In the present work, a simple method was used for ESS sizing since the main 

objective was not the ESS sizing. However, more complex methods for ESS 

sizing, introduced in the literature, can also be tried.   

 The Ontario electricity market was used as the real-world case-market for 

simulation purposes. Although the concepts introduced in the present work are 

expected to be consistent for different electricity markets, several other electricity 

markets around the world can be used to evaluate the performance of the 

proposed methods in this thesis.  

 In this thesis, the proposed adaptive RTOD is only used for energy shifting, but 

the ESS can be employed to provide additional financial and operational benefits 

by contribution to ancillary services, such as peak-shaving, frequency regulation, 

and deferred transmission and distribution investments. These benefits can be 

considered in development of the adaptive RTOD in the future studies. 

Additionally, the appropriate policies to determine the amount of financial 

compensation which the ESS owners should receive for their contribution in 

ancillary services can be investigated.   
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