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Abstract 

Metal-loss corrosion is a major threat to the structural integrity and safe operation of 

underground oil and gas pipelines worldwide. The reliability-based corrosion 

management program has been increasingly used in the pipeline industry, which typically 

includes three tasks, namely periodic high-resolution inline inspections (ILIs) to detect 

and size corrosion defects on a given pipeline, engineering critical assessment of 

corrosion defects reported by the inspection tool and mitigation of defects.  This study 

addresses the engineering challenges involved in the reliability-based corrosion 

management program. 

First, the stochastic process is applied to characterize the growth of the depth (i.e. in 

the through pipe wall thickness direction) of metal-loss corrosion defects on energy 

pipelines based on the imperfect inline inspection (ILI) data.  Three stochastic processes, 

namely gamma process (GP) including both homogeneous and non-homogeneous gamma 

process (HGP and NHGP), inverse Gaussian process (IGP), and Geometric Brownian 

motion (GBM) are explored in this study.  The growth models are formulated in the 

hierarchical Bayesian framework and Markov Chain Monte Carlo (MCMC) simulation 

techniques are employed to carry out the Bayesian updating and numerically evaluate the 

posterior distributions of the uncertain parameters in the growth model using inspection 

data obtained from multiple ILI runs.  The application of the proposed models are 

illustrated using an example involving real ILI data for 62 external corrosion defects 

collected from an in-service natural gas pipeline in Alberta.  The ILI data obtained from 

the inspections prior to the field measurement are used to carry out the Bayesian updating 

and evaluate the model parameters.  The predictive quality of the growth models are 

validated by comparing the predicted defect depths at the time of field-measurement with 

the corresponding field-measured depths.  The analysis results suggest that each of the 

four models considered predicts the growth of the defect depth reasonably well.  The 

prediction is poor for the defects that are associated with large measurement errors. 

Second, a simulation-based methodology is presented to evaluate the time-dependent 

system reliability of pressurized energy pipelines containing multiple active metal-loss 
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corrosion defects, whereby the HGP-, NHGP-, IGP- and GBM-based models are used to 

characterize the growth of the depth of individual corrosion defect, and the Poisson 

square wave process (PSWP) is employed to model the internal pressure of the pipeline.  

The methodology further incorporates the inspection data in the reliability analysis by 

using the hierarchical Bayesian method and Markov Chain Monte Carlo (MCMC) 

simulation to update the growth model for the defect depth based on data collected from 

multiple ILIs.  The impact of the internal pressure model, the uncertainty and correlation 

of the model parameters, and the growth models on the probabilities of small leak, large 

leak and rupture are investigated through two examples. 

Finally, a probabilistic investigation is carried out to determine the optimal inspection 

interval for the newly-built onshore underground natural gas pipelines with respect to 

external metal-loss corrosion by considering the generation of corrosion defects over time 

and time-dependent growth of individual defects.  The non-homogeneous Poisson 

process is used to model the generation of new defects and the homogeneous gamma 

process is used to model the growth of individual defects.  A realistic maintenance 

strategy that is consistent with the industry practice and accounts for the probability of 

detection (PoD) and sizing errors of the inspection tool is incorporated in the 

methodology.  Both the direct and indirect costs of failure are considered.  A simulation-

based approach is used to numerically evaluate the expected cost rate at a given 

inspection interval.  The minimum expected cost rule is employed to determine the 

optimal inspection interval.  An example gas pipeline is used to illustrate the 

investigation.  The impact of the cost of failure, PoD, the excavation and repair criteria, 

the growth rate of the defect depth, the instantaneous generation rate of the generation 

model and defect generation model on the optimal inspection interval is investigated 

through parametric analyses.  The proposed algorithms will assist engineers in making 

the optimal maintenance decision for corroding natural gas pipelines and facilitate the 

reliability-based corrosion management. 

Key words: Pipeline, metal-loss corrosion, stochastic process, hierarchical Bayesian, 

measurement error, Markov Chain Monte Carlo simulation, system reliability, optimal 

inspection interval  
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Chapter 1 Introduction 

1.1 Background  

Pipeline systems are the most efficient and economic means to transport large 

quantities of hydrocarbons (e.g. crude oil and natural gas) over long distances.  Metal-

loss corrosion is a major threat to the structural integrity and safe operation of 

underground oil and gas pipelines worldwide (Cosham et al. 2007; Nessim et al. 2009).  

The reliability-based corrosion management program has been increasingly used in the 

pipeline industry because it provides a reasonable framework to account for the various 

uncertainties (e.g. measurement error, and randomness associated with the corrosion 

growth and material properties) that impact the development of suitable maintenance 

strategies.  The reliability-based pipeline corrosion management typically includes three 

tasks, namely periodic high-resolution inline inspections (ILIs) to detect and size 

corrosion defects on a given pipeline, engineering critical assessment of the corrosion 

defects reported by the inspection tool and mitigation of defects.   

The corrosion growth modeling plays an important role in the pipeline corrosion 

management in that it is critical to the determination of the re-inspection interval and 

development of a staged defect mitigation plan that meets the safety and resource 

constraints.  Overly conservative growth models will lead to unnecessary inspections and 

mitigations, which can translate into significant cost penalties for the pipeline operators.  

On the other hand, growth models that significantly underestimate the defect growth may 

lead to critical defects being missed by the mitigation actions and failure of the pipeline 

due to such defects.   

The corrosion growth process is inherently random, and includes both temporal and 

spatial variability.  The temporal variability means that the growth path of a given defect 

varies with time; the spatial variability means that the growth paths of different defects 

are different but may potentially be correlated, for example, if the defects are closely 

spaced.  The probabilistic corrosion growth models reported in the literature can be 

classified as random variable-based models and stochastic process-based models, e.g. 
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(Amirat et al. 2006; Little et al. 2004a, 2004b; Maes et al. 2009; Qin and Cui 2003; 

Teixeira et al. 2008; van Noortwijik et al. 2007).  Because the growth rate in the former 

models is time-independent random variable, they cannot capture the temporal variability 

of the corrosion growth process whereas the latter models can overcome this drawback.  

Two stochastic processes, namely the Markov chain and gamma process, have been 

widely employed in the literature to model the growth of corrosion defects on pipelines 

(Hong 1999a, 1999b; Timashev et al. 2008; Valor et al. 2007; Maes et al. 2009; Caleyo et 

al. 2009; Zhou et al. 2012).  The homogeneous and non-homogenous Markov chains 

were used (Hong 1999a, 1999b) to model the growth of pitting corrosion in the context of 

selecting the optimal inspection interval for pipelines.  The homogeneous gamma process 

was employed (Zhou et al. 2012) to characterize the growth of defect depth for the 

purpose of evaluating the time-dependent system reliability of pipeline containing 

multiple active corrosion defects.  The probabilistic characteristics of the parameters of 

the corrosion growth models can be evaluated or updated using the inspection data.  For 

example, Maes et al. (2009) and Zhang et al. (2012) used a hierarchical Bayesian 

approach to update the gamma process-based growth models for corrosion defects on 

pipelines based on the ILI data.   

Periodic inline inspections (ILI) using high-resolution tool, e.g. the magnetic flux 

leakage (MFL) tool, are routinely used to maintain the safe operation of pipeline systems 

with respect to metal-loss corrosion.  The ILI data obtained from multiple ILI runs 

provide valuable information about the growth of corrosion defects on the pipelines.  

Therefore, it is of high practical value to develop the probabilistic model for the growth 

of corrosion defects on the pipelines based on ILI data collected from multiple ILIs 

(Kariyawasam and Peterson 2010). 

Studies on the reliability of corroding pipelines have been extensively reported in the 

literature (e.g. Ahammed 1998; Pandey 1998; Hong 1999; Caleyo et al. 2002; Amirat et 

al. 2006; Teixeira et al. 2008; Zhou 2010; Zhou et al 2012; Valor et al. 2013).  The 

majority of these investigations employed random variable-based growth models for the 

depth (i.e. in the through pipe wall thickness direction) and/or length (i.e. in the 

longitudinal direction of the pipe) of the corrosion defect.  The Markov chain and gamma 
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process-based models have also been used to characterize the growth of corrosion defects 

for evaluating the time-dependent failure probabilities.  Furthermore, the internal pressure 

of the pipeline is typically assumed to be either a (time-independent) random variable or 

a deterministic quantity while in reality the internal pressure varies with time and should 

be characterized as a stochastic process.  A simple stochastic process, the Ferry-Borges 

process, was employed in (Zhou 2010) to model the internal pressure for evaluating the 

system reliability of corroding pipelines.  However, the Ferry-Borges process is 

somewhat simplistic in comparison to the reality; therefore, more realistic and 

sophisticated models for the internal pressure are desirable for the reliability analysis.  

Note that sophisticated stochastic process-based load models have been employed in the 

reliability analysis of building structures (Madsen 2006; Melchers 1999; El-Reedy 2009), 

e.g. the Poisson Square Wave Process (PSWP) for modelling the sustained live loads.  

The reliability analyses of corroding pipelines incorporating the Bayesian-based growth 

models and the PSWP-based internal pressure model, to the best knowledge of the 

author, has not been reported in the literature. 

The selection of optimal maintenance schedules for corroding pipelines has been 

investigated using the reliability- or cost-based criterion (e.g. Rodriguez and Provan 

1989; Morrison and Worthingham 1992; Hong 1999b; Gomes et al. 2013).  Provan and 

Rodriguez (1989) developed a Markov chain-based model for the growth of corrosion 

defects in the context of determining the optimal inspection time.  They considered the 

imperfection of inspection tools in detecting the defect, i.e. the probability of detection 

(PoD), but ignored the imperfection of inspection tools in sizing the defect, i.e. the 

measurement errors.  Morrison and Worthingham (1992) employed the same corrosion 

growth model to determine the optimal inspection time but ignored both PoD and 

measurement errors associated with the inspection tools.  Hong (1999b) investigated the 

optimal inspection and maintenance schedule for corroding pipelines based on the 

reliability constraint.  The Markov chain was employed to model the growth of corrosion 

defects; the PoD and measurement errors associated with the inspection tool were 

incorporated in the failure probability evaluation, and the Poisson process was used to 

model the generation of new defects.  Recently, Gomes et al. (2013) used a simulation-

based approach to investigate the optimal inspection interval for buried pressurized 
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pipelines subjected to external corrosion based on the minimum expected cost rule.  A 

single pipeline segment that contains at most one corrosion defect at a given time was 

considered in the analysis, which is somewhat unrealistic.  A time-independent power-

law model that incorporates uncertain power law parameters but a deterministic corrosion 

initiation time was assumed to characterize the growth of the defect depth.  Although 

PoD of the inspection tool was incorporated in the analysis, the measurement errors of 

the tool were ignored.  The generation of new corrosion defects was also ignored.  

Furthermore, determination of the optimal inspection interval for corroding piping system 

on nuclear power plant has been reported by Cheng and Pandey (2012), where the 

degradation of the system was modeled as a homogeneous gamma process and the 

optimal inspection internal was selected based on the minimum expected cost rule.  

Perfect inspection was implicitly assumed in their study.  Therefore, a realistic 

probabilistic model that incorporates all the potential uncertainties is desirable for the 

pipeline industry to properly evaluate the optimal maintenance interval. 

1.2 Objective and Research Significance 

The study reported in this thesis was carried out under a research project jointly 

funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada 

and TransCanada Ltd. through a Collaborative Research and Development (CRD) 

program.  It is also, in part, supported by the Alexander Graham Bell Canada Graduate 

Scholarships (CGS) provided by NSERC.  The objectives of this study include: 1) 

development of probabilistic models to characterize the growth of the depths of 

individual metal-loss corrosion defects on energy pipelines based on imperfect data 

collected from multiple ILIs; 2) development of methodologies to evaluate the time-

dependent system reliability of corroding pipelines by incorporating the corrosion growth 

models developed based on the ILI data, and 3) development of a methodology to 

determine the optimal maintenance interval for energy pipelines under the threat of 

corrosion considering different uncertainties.  It is anticipated that the research outcome 

will assist pipeline integrity engineers in developing optimal re-inspection intervals and 

defect mitigation plans that satisfy both the safety and resource constraints.  This is 

beneficial to not only the Canadian pipeline industry but also the communities near the 
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pipeline facilities throughout Canada.  Furthermore, the models and methodology 

developed in this study are also applicable to other infrastructure systems such as nuclear 

piping and pavement. 

1.3 Scope of the Study 

This study consists of five main topics that are presented in Chapters 2 through 6, 

respectively.  Chapters 2, 3 and 4 present three stochastic processes-based models, 

namely gamma process-, inverse Gaussian process- and geometric Brownian motion-

based models, to characterize the growth of the depths of corrosion defects on energy 

pipelines based on imperfect inspection data obtained from multiple ILIs.  Each of the 

three models is formulated in a hierarchical Bayesian framework to consider the 

uncertainties from difference sources, and employ the Markov Chain Monte Carlo 

(MCMC) simulation techniques to estimate the model parameters.  These models account 

for a general form of the measurement errors, including the bias and random scattering 

error, associated with the ILI tools as well as the potential correlation between the 

random scattering errors among different ILI tools.  The growth models are validated by 

a set of real ILI data collected from an in-service pipeline segment.  A simulation-based 

methodology to evaluate the time-dependent system reliability of corroding pipelines 

containing multiple active corrosion defects is presented in Chapter 5.  This methodology 

incorporates the developed growth models and a time-dependent internal pressure model, 

namely the Poisson Square Wave process-based model.  A comparative study of the time-

dependent reliabilities based on the growth models described in Chapters 2 through 4 is 

also included in Chapter 5.  Chapter 6 presents a probabilistic methodology to determine 

the optimal maintenance interval for newly-built onshore pipelines with respect to 

external metal-loss corrosion.  This methodology incorporates the stochastic process-

based models for the generation and growth of corrosion defects, and a realistic 

maintenance strategy representative of the industry practice.  The methodology 

incorporates the probability of detection (PoD) and measurement errors associated with 

the inspection tool, and considers both direct and indirect costs of failure.  The 

relationship of those topics described above is illustrated in Figure 1.1.   
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Figure 1.1 Overview of the research topics in the thesis 

1.4 Thesis Format 

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada.  A 

total of seven chapters are included in the thesis.  Chapter 1 presents a brief introduction 

of the background, objective and scope of this study.  Chapters 2 through 6 form the main 

body of the thesis, each of which addresses an individual topic and forms the core of the 

published papers and submitted manuscripts listed in my Curriculum Vitae.  The main 

conclusions and further recommendations for the research reported in this thesis are given 

in Chapter 7. 
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Chapter 2 Gamma Process-based Corrosion Growth Modeling 

Based on Imperfect Inspection Data 

2.1 Introduction 

A gamma process is a non-decreasing stochastic process that consists of a series of 

independent and gamma-distributed increments with the same scale parameter.  The 

gamma process has been widely employed to characterize the degradation of engineering 

structures, such as creep, fatigue, corrosion and crack growth (van Noortwijk 2009).  The 

advantages of using the gamma process to model the degradation of structures are 

twofold: the mathematical tractability and the monotonic increasing nature.  The gamma 

process can be further classified as the homogeneous (or stationary) or non-homogeneous 

(or non-stationary) gamma process (van Noortwijk 2009), as described in detail in 

Section 2.2. 

The use of the gamma process to characterize the deterioration of engineering 

structures (e.g. berm breakwaters, steel pressure vessels, dikes, pipelines, nuclear power 

plant facilities) in the context of optimal maintenance decision or time-dependent 

reliability analysis have been reported extensively in the literature (e.g. van Noortwijk 

and van Gelder 1996; Kallen and van Noortwijk 2005; van Noortwijik et al. 2007; Zhou 

et al. 2012; Yuan et al. 2008; Cheng and Pandey 2012; Cheng et al. 2012).  For example, 

van Noortwijk and van Gelder (1996) adopted the gamma process to characterize the 

rock displacement for the purpose of determining the optimal maintenance plan for berm 

breakwaters.  The gamma process was employed to model the deterioration of steel 

pressure vessels to determine the optimal maintenance intervals (Kallen and van 

Noortwijk 2005), and model the crest-level decline of dikes to evaluate the time-

dependent reliability of dikes subjected to sea waves (van Noortwijik et al. 2007).  The 

gamma process was also used to characterize the growth of the defect depth for 

evaluating the time-dependent system reliability of pipeline containing multiple active 

corrosion defects (Zhou et al. 2012), and to characterize the degradation of nuclear power 

plant facilities due to corrosion (Yuan et al. 2008; Cheng and Pandey 2012; Cheng et al. 

2012).  If inspection data are available, the Bayesian methodology can be used to update 
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the probabilistic characteristics of the parameters in the corrosion growth model.  For 

example, a hierarchical Bayesian approach (Maes et al. 2009; Zhang et al. 2012) was 

used to update the gamma process-based growth models for corrosion defects on 

pipelines based on the ILI data.   

This chapter describes a gamma process-based model to characterize the growth of 

depths of corrosion defects on energy pipelines.  The growth model included in this study 

differs from the gamma process-based growth models reported in the literature (Maes et 

al. 2009) on two aspects.  First, the model presented in this study considers the initiation 

time of the corrosion defect.  Second, a general form of measurement error including the 

biases, random scattering error associated with the ILI tools as well as the correlation 

between the random scattering errors associated with different ILI tools is considered in 

this model.  In contrast, only the random scattering error associated with the ILI data is 

considered in the model reported by Maes et al. (2009).  The hierarchical Bayesian 

method and Markov Chain Monte Carlo (MCMC) simulation are used to update the 

growth model for the defect depth based on data collected from multiple ILIs.   

The remainder of the chapter is organized as follows.  Sections 2.2 and 2.3 describe 

the gamma process and the uncertainties involved in the ILI data, respectively.  Section 

2.4 presents the formulation of the corrosion growth model.  Section 2.5 gives a 

description of the hierarchical Bayesian method for updating the model parameters.  An 

example to illustrate above-described methodologies is shown in Section 2.6 followed by 

the conclusions in Section 2.7.  Appendix A includes the derivations of the full 

conditional posterior distributions used in the MCMC simulation. 

2.2 Gamma Process 

Consider {X(t); t ≥ 0} as a gamma process (GP) over time t.  The probability density 

function (PDF) of X(t) is given by (van Noortwijik 2009; Yuan et al. 2008) 

                                                              (2.1) 
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where (t) denotes the time-dependent shape parameter and  is the so-called rate 

parameter or inverse of the scale parameter (Ang and Tang 1975; Jonhson 2000); Γ(s) is 

the gamma function and given by Γ(s) =           
 

 
 for s > 0, and I(0, ∞)(x(t)) is an 

indicator function, which equals unity if x(t) > 0 and zero otherwise. 

It follow from Eq. (2.1) that the mean, variance and coefficient of variation (COV) of 

X(t), denoted by E[X(t)], Var[X(t)] and COV[X(t)], respectively, are 

        
    

 
 (2.2a) 

          
    

   (2.2b) 

          
 

     
 (2.2c) 

The GP defined by Eq. (2.1) has the following properties (van Noortwijik 2009):  

(1) X(0) = 0 with probability one; 

(2) X() – X(t) follows a gamma distribution with a shape parameter of () – (t) and 

a scale parameter of  for all  > t ≥ 0, and 

(3) X(t) has independent gamma-distributed increments. 

Equation (2.2) indicates that the mean and variance of X(t) increase as time increases 

whereas the COV of X(t) decreases as time increases because (t) must be a 

monotonically increasing function of time t.  Note that Eq. (2.1) is a homogeneous 

gamma process if the shape parameter (t) is a linear function of t for any t ≥ 0, and a 

non-homogeneous gamma process otherwise (Wang 2008). 

2.3 ILI Data and Uncertainties  

The periodic ILI data provide valuable information for the corrosion growth modeling 

and structural integrity management for energy pipelines.  The ILI data are subjected to 

measurement errors as a result of the uncertainties associated with the ILI tool and sizing 
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algorithm (Kariyawasam and Peterson 2010).  It is commonly assumed in the literature 

that the measured defect depth follows a normal distribution with a mean value equal to 

the actual depth and a standard deviation characterizing the random scattering error 

(Maes et al. 2009; Yuan et al. 2009).  This assumption however ignores the potential bias 

in the ILI data.  A comparison of the ILI-reported and field-measured depths that are 

considered error-free (see Fig. 2.1) for a set of defects collected from an in-service 

pipelines indicates that the ILI data can deviate markedly from the field measurements, 

and involve both the biases and random scattering error (Al-Amin et al. 2012).  

Therefore, the measurement errors must be properly incorporated in the model updating.  

Furthermore, inspection tools with similar technologies and/or sizing algorithms are 

usually employed in different ILIs on a given pipeline; as a result, certain degree of 

correlation is likely to exist between the measurement errors associated with the data 

from multiple ILIs for the same pipeline.   

 

Figure 2.1 Illustration of the measurement errors associated with the ILI data 

Consider that m active corrosion defects on a given pipeline have been subjected to n 

inspections over a period of time.  The measured depth (i.e. in the through pipe wall 
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thickness direction) of the i
th

 defect at the j
th

 inspection, yij, (i = 1, 2, …, m; j = 1, 2, …, n) 

is related to the actual depth, xij, as follows (Fuller 1987; Jeach 1985):  

                 (2.3) 

where aj and bj denote the constant and non-constant biases associated with the ILI tool 

used in the j
th

 inspection, and ij denotes the random scattering error associated with the 

ILI-reported depth of the i
th

 defect at the j
th

 inspection, and is assumed to follow a zero-

mean normal distribution (Al-Amin et al. 2012).  It is further assumed that for a given 

inspection ij associated with different defects are independent, i.e. the random scattering 

errors are spatially independent, whereas for a given defect ij associated with different 

inspections are correlated (Al-Amin et al. 2012).  Let Ei = (Ei1, Ei2, …, Ein)′ denote the 

vector of random scattering errors associated with defect i for inspections j = 1, 2, …, n, 

with “′” representing transposition.  The PDF of Ei is then given by 

   
       

       
 

     
 
 

 

      
 

 
  

    

       (2.4) 

with |Ei| denoting the determinant of the variance matrix of Ei.  Ei is an n by n matrix 

with the element equal to jkjk (j = 1, 2, …, n; k = 1, 2, …, n), where jk denotes the 

correlation coefficient between the random scattering errors associated with the j
th

 and k
th

 

inspections, and j and k denote the standard deviations of the random scattering errors 

associated with the tools used at the j
th

 and k
th

 inspections, respectively.  A Bayesian 

method has been developed to evaluate aj, bj, j and jk (j = 1, 2, …, n; k = 1, 2, …, n) 

involved in Eqs. (2.3) and (2.4) based on the ILI-reported depths for a set of static defects 

(i.e. defects that have been repaired prior to the ILI and ceased growing), details of which 

can be found in Al-Amin et al. (2012).  In this study, aj, bj, j and jk were assumed to be 

known and deterministic quantities.  

2.4 Growth Modeling for Multiple Defects 

The depth of a given corrosion defect on a pipeline at time t (years) (t = 0 representing 

the time of installation of the pipeline), x(t), was assumed to be characterized by a gamma 
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process given by Eq. (2.1), where (t), in general, can be assumed to be a power-law 

function of time, i.e. (t) = t – t0)

 (t > t0) with t0 denoting the defect initiation time 

(i.e. time elapsed from the installation of the pipeline up to the point at which the defect 

starts growing), and  > 1,  < 1 and  = 1 implying that the mean growth is an 

accelerating, decelerating and linear trajectory over time, respectively.  It follows from 

Section 2.2 that Eq. (2.1) characterizes a homogeneous gamma process (HGP) if  = 1, 

and a non-homogeneous gamma process (NHGP) if  ≠ 1.  The value of / represents 

the mean of the growth rate of defect depth (i.e. the increment of depth within one year) 

for the HGP, and the mean of the growth of defect depth at the first unit increment of time 

since t0 for the NHGP.  In the present study,  and  were assumed to be common for all 

the corrosion defects on a given segment of pipeline whereas  and t0 were assumed to be 

defect specific.  Both the NHGP and HGP were considered in this study. 

It follows from the above that the growth of the depth of defect i (i = 1, 2, …, m) 

between the (j-1)
th

 and j
th

 inspections (j = 2, 3, …, n), xij, is gamma distributed with the 

PDF given by 

     
                 

        
                       (2.5) 

where i and ti0 are the defect-specific rate parameter and initiation time associated with 

defect i, respectively, and ij is the time-dependent shape parameter associated with xij 

and given by 

               
 
 (j = 1) (2.6a) 

               
 

              
 
 (j = 2, 3, …, n) (2.6b) 

with tij (j = 1, 2, …, n) denoting the time of the j
th

 inspection (e.g. time elapsed from the 

installation of pipeline up to the point when the j
th

 inspection was carried out) for the i
th

 

defect.  Note that Eq. (2.6) is simplified as ij = (tij - ti,j-1) (j = 1, 2, …, n) for the HGP-

based model (i.e.  = 1). 
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The actual depth of defect i at the time of the j
th

 inspection, xij, can be expressed as the 

sum of the depth at time ti,j-1 and the incremental depth between ti,j-1 and tij; that is 

                (2.7) 

It is assumed that the defect depth at t = t0 (i.e. xi0) equals zero. 

In this study, it is assumed that , , i and ti0 in Eqs. (2.5) and (2.6) are all uncertain 

parameters and employed the Bayesian updating to evaluate the probability distributions 

of these parameters based on data obtained from multiple ILIs, which is described in the 

following section.   

2.5 Bayesian Updating of Growth Model 

2.5.1 Overview of Bayesian Updating 

The Bayesian updating or inference is a method of evaluating the probability 

distributions of uncertain parameters of a given model by combining the previous 

knowledge of these parameters as reflected in the prior distribution with the new 

information contained in the observed data (Gelman 2004).  The mechanism for 

combining the information is Bayes’ theorem.  The new information in the observed data 

is incorporated in the Bayesian updating through the so-called likelihood function, and 

the probability distribution obtained from the updating is known as the posterior 

distribution.   

The prior distribution represents the preliminary belief on the parameters without 

considering the information implied in the data, and is typically specified based on 

information obtained from previous studies and/or experts’ opinions.  Various types of 

prior distributions, such as the informative and non-informative distributions, can be 

specified in the Bayesian inference.  The former reflects specific prior information about 

a variable, whereas the latter does not contain any specific prior information about the 

variable.  Note that the Bayesian inference is completely objective rather than subjective 

if a non-informative prior distribution is specified.  Both the informative and non-

informative prior distributions can be selected as conjugate prior distributions.  The 
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conjugate prior indicates a particular distribution that is conjugate to the likelihood 

function and leads to a posterior distribution belonging to the same family as the prior.  

Furthermore, the assignment of the conjugate prior distribution can improve the 

computational efficiency of the MCMC simulation.  The likelihood function 

characterizes how likely a particular set of parameter values are given the observed data.  

It is constructed using the marginal PDF of the observed data.   

The Markov Chain Monte Carlo (MCMC) simulation techniques were commonly used 

to numerically evaluate the joint posterior distribution of model parameters.  The MCMC 

simulation is a technique to sequentially generate random samples from a distribution 

(i.e. the target distribution) by constructing a Markov chain that converges to the target 

distribution.  At each step random samples are drawn from distributions that depend on 

the random samples drawn in the previous step.  After an initial sequence of iterations 

(i.e. the so-called burn-in period (Gelman 2004)), the random samples drawn from the 

subsequent iterations converge to the target distribution, which is the joint posterior 

distribution in the context of Bayesian updating.  If the number of iterations is large 

enough, the samples drawn after the burn-in period can then be used to evaluate the 

probabilistic characteristics (e.g. mean and standard deviation) of the posterior 

distribution.  Let  denote the model parameter of interest.  The aforementioned MCMC 

simulation-based numerical method to evaluate the posterior distribution of  based on an 

n sequences of Markov chain of  is illustrated in Figure 2.2, where (0)
 denotes the initial 

value of  specified in the MCMC simulation, (k)
 denotes the random sample of  

generated in the k
th

 iteration, and p() represents the posterior distribution of . 
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Figure 2.2 Schematic of the MCMC simulation method 

The commonly used sampling algorithms in the MCMC simulation include, but are 

not limited to, the Metropolis-Hasting (M-H) algorithm (Gelman 2004), Gibbs sampler 

(Gelman 2004) and slice sampling approach (Neal 2003).  The M-H algorithm is the most 

general Markov chain-based simulation technique and is suitable for any distribution 

types including multivariate distributions.  The M-H algorithm typically involves two 

distributions, namely the proposal (or jumping) distribution (Chib and Greenberg 1995) 

and the target distribution.  The former is employed to generate the random seeds of the 

candidate samples of model parameter of interest (denoted by ), whereas the latter 

represents the full conditional posterior distribution derived from the Bayesian theorem.  

Given the value of , (i)
, at a given iteration i, the value of  in the next iteration, (i+1)

, 

equals either (*)
 or (i) with (*)

 denoting the random seed generated from the proposal 

distribution.  (*)
 is accepted as (i+1)

 based on the acceptance function given by   

      
                   

                   
 , where p() denotes the PDF of the target distribution (i.e. the 

full conditional posterior distribution), and J(|(i)) denotes the PDF of the proposal 

distribution conditional on the current value (i).  The above-mentioned updating of  

(i.e. from (i) to (i+1)
) can be achieved through the following four steps: 1) generate a 

candidate value of , (*)
, from J(|(i)); 2) calculate the acceptance rate ; 3) draw a 

random number u from the uniform distribution between 0 and 1, and 4) set (i+1)
 = *if 

(0) (1) (i) (n-1) (n)…… ……(k) ……(k+1)

ConvergenceBurn-in period



p
(

)

Posterior distribution

Iterations


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u ≤ , and (i+1)
 = (i) otherwise.  Note that the proposal function is typically selected as 

a uniform or normal distribution, and the efficiency of the M-H algorithm is very 

sensitive to the specification of the proposal function (Lynch 2007). 

The Gibbs sampler (Gelfand and Smith 1990; Gelman 2004) is a special case of the 

M-H algorithm and is applicable to the conjugate posterior distribution, i.e. the full 

conditional posterior distribution of a parameter has a closed form of a typical 

distribution, which can be used to generate the random samples directly.  Denote  = (1, 

…, j-1, j+1, …, n) as the n model parameters of interest and assume that j (j = 1, 2, …, 

n) have conjugate posterior distributions.  The full conditional posterior distribution of j 

can be written as p(j|(-j)) with (-j) = (1, …, j-1, j+1, …, n).  At a given iteration i, the 

sample of j
(i)

 (j = 1, 2, …, n) can be drawn directly from p(j|1
(i)

, 2
(i)
, …,j-1

(i)
, j+1

(i-1)
, 

…, n
(i-1)

).  The main advantage of the Gibbs sampler is its high computational efficiency 

in the convergence of the MCMC simulation in that the full conditional distribution is 

used as the proposal distribution and the candidate sample will always be accepted, i.e. 

the acceptance rate equals one (as opposed to the acceptance rate being less than one for 

the M-H algorithm). 

The slice sampling approach is a generic sampling approach and applicable to a wide 

variety of distributions including the univariate and multivariate distributions.  The 

simple form of univariate slice sampling is an alternative to the Gibbs sampler (Neal 

2003).  A key element involved in the slice sampling is that an adaptive uniform proposal 

distribution is used to replace the proposal function in the M-H algorithm and Gibbs 

sampler.  Suppose that the model parameter  has a target distribution p().  By 

introducing an auxiliary variable u with a conditional PDF denoted by f(u|), the joint 

PDF of  and u can be written as f(u, ) = f(u|)p(), which implies that f() = p() given 

that                                   (Neal 2003).  A usual choice for 

f(u|) is the uniform distribution between zero and p() to ensure the computational 

efficiency of the simulation.  Given above, the current value (i)
 can be updated to (i+1)

 

through the following three steps: 1) generate a random number u from the uniform 

distribution between zero and p((i)
) and define a horizontal slice: S = {: u ≤ p()}.  
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Note that (i)
 is always within S; 2) find an interval, I = [L, R], around(i)

 containing a 

substantial portion of the slice with L and R denoting the left and right bounds of I, and 3) 

draw a new point (i
 from the portion of the slice within this interval (i.e. S ∩ I); in 

other words, (i
 is generate from the truncated p() to satisfy the condition p((i+1)

) ≥ u.  

Details of the slice sampling can be found in the literature (e.g. Neal 2003; Jasa and 

Xiang 2009). 

Note that the full conditional posterior distributions of model parameters are not 

always conjugate.  Therefore, a hybrid of the above-described algorithms (e.g. the M-H 

algorithm and Gibbs sampler) is often employed in the MCMC simulation to carry out 

the Bayesian updating.  The likelihood functions, prior and posterior distributions as well 

as the MCMC simulation-based Bayesian updating procedures for the GP-based (i.e. the 

NHGP- and HGP-based) growth models are described in the following sections. 

2.5.2 Prior Distribution 

For m active corrosion defects, the NHGP-based corrosion growth model described in 

Section 2.4 includes 2m + 2 basic parameters, namely two common parameters (i.e.  

and ), m defect-specific rate parameters i and initiation times ti0 (i = 1, 2, …, m).  In 

this study, the gamma distribution was selected as the prior distributions of ,  and i, (i 

= 1, 2, …, m), which is mainly based on the consideration that the gamma distribution 

ensures ,  and i to be positive quantities and can be conveniently made as a non-

informative distribution.  Furthermore, the assignment of the gamma distribution as the 

prior distribution of i can lead to a conjugate posterior distribution of i conditional on 

,  and ti0, which improves the computational efficiency in the MCMC simulation 

(Gelman 2004).  The prior distribution of ti0 was chosen to be a uniform distribution with 

a lower bound of zero and an upper bound equal to the time interval between the 

installation of the pipeline and the first detection of defect i.  It was further assumed that 

i (ti0) (i = 1, 2, …, m) associated with different defects are mutually independent and 

have identical prior distributions (iid).  Note that the prior distributions of the model 

parameters involved in the HGP-based model are the same as those involved in the 

NHGP-based model except that  is deterministic and set equal to unity. 
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2.5.3 Likelihood Functions of the ILI Data 

Define yi = (yi1, yi2, …, yij, …, yin)′ and xi = (xi1, xi2, …, xij, …, xin)′.  Given xi, it 

follows from Eqs. (2.3) and (2.4) as well as the above-mentioned assumptions that yi is 

characterized by a multivariate normal distribution with a mean vector of a + bxi and a 

variance matrix of Ei, where a = (a1, a2, …, aj, …, an)′ and b is an n-by-n diagonal 

matrix with diagonal elements equal to bj (j = 1, 2, …, n).  The likelihood of the 

inspection data yi conditional on the latent parameters xij can then be written as 

               
 

     
 
 

 

      
 

 
            

 
    

 
  

              (2.8) 

with xi = (xi1, xi2,…, xij, … ,xin), and          
 
   .   

2.5.4 Likelihood Functions of Model Parameters 

It follows from Eq. (2.5) and the property of the Gamma distribution (i.e. xij and xik 

(j ≠ k) are mutually independent for a given defect i conditional on , , i and ti0) that 

the joint probability density function of xi is 

    
                    

              

 

   

 

    
        

                      
 
    (2.9) 

where xi = (xi1, xi2, …, xin)′. 

Further denote x = (x1, x2, …, xm),  = (1, 2, …,m) and t0 = (t10, t20, …, tm0).  

Assume that xij and xlj (i ≠ l) are mutually independent for given inspection j 

conditional on , , i and ti0; that is, the growths of different defects are spatially 

independent.  Given that i and ti0 are defect-specific and only depends on the growth of 

the i
th

 defect (i.e. xi) and that  and  are common for the growth of all defects (i.e. x), 

the likelihood function of xi conditional on , , i and ti0 (i = 1, 2, …, m), as well as the 
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likelihood functions of x conditional on , ,  and t0 are therefore obtained from Eqs. 

(2.10a) and (10b), respectively. 

                        
              

 

   

 

    
        

                      
 
    (2.10a) 

                      
              

 

   

 

   

 

     
        

                      
 
   

 
    (2.10b) 

2.5.5 Posterior Distribution 

Denote the uncertain parameters in the growth model by .  The joint prior distribution 

of , (), can be combined with the likelihood, L(D|), of the observed data D according 

to Bayes’ theorem to lead to the joint posterior distribution of , p(|D) (Gelman 2004): 

       
          

             
            (2.11) 

where “” represents proportionality.  In a hierarchical framework, i.e. the distribution 

parameters (denoted by of the prior distribution of  also considered to be uncertain, 

the joint posterior distribution of the parameters  and  denoted by p(, |D), is given 

by 

         
                

                       
                  (2.12) 

The derivation of the full conditional posterior distribution of the individual parameter 

in the growth model given by Eq. (2.1) is shown in Appendix A.  The MCMC simulation 

techniques implemented in the software OpenBUGS (Lunn et al. 2009) were employed to 

numerically evaluate the marginal posterior distributions of the parameters.   
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2.5.6 Hierarchical Representation of the Growth Model 

The aforementioned corrosion growth model can be represented by the directed 

acyclic graph (DAG) (Spiegelhalter 1998) as depicted in Fig. 2.3.  Ellipses and rectangles 

in Fig. 2.3 symbolize the stochastic and known deterministic parameters (or nodes), 

respectively, in the analysis.  Single- and double-edged arrows denote the stochastic links 

and deterministic functional links, respectively.  Three levels of parameters are involved 

in Fig. 2.3.  The first level includes the inspection data, i.e. the defect depths reported by 

inspections, which are associated with measurement errors characterized by a, b and Ei.  

The second level includes the latent variables that consist of the actual depths at the times 

of inspections and increments of the actual depths between two consecutive inspections 

as well as the scale parameters ij (i = 1, 2, …, m; j = 1, 2, …, n).  This level captures 

the stochastic characteristics and temporal variability of the defect growth path.  The third 

level includes the basic parameters of the gamma process model (i.e.  , i and ti0).  

The known quantities as shown in Fig. 2.3 include the parameters of the prior 

distributions of  , i and ti0 (i.e. p1, q1, p2, q2, p3, q3, p4 and q4), the background 

information, tij (j = 1, 2, .., n), as well as the measurement errors.  Note that p1 (q1), p2 

(q2) and p4 (q4) denote the shape (rate) parameters of the gamma distributions of   and 

i, respectively, and p3 and q3 denote the lower and upper bounds of the uniform 

distribution of ti0.  Furthermore, the parameter  = 1 in the DAG for the HGP-based 

model.   



24 

 

 

Figure 2.3 Hierarchical structure of the growth model 

2.5.7 MCMC Simulation-based Bayesian Updating Procedures 

It follows from the description in Section 2.5.1 and the full conditional posterior 

distributions in Appendix A that a hybrid of these algorithms (e.g. the M-H algorithm and 

Gibbs Sampler) was employed in this study to carry out the MCMC simulation (Gelman 

2004).  Without loss of generality, a step-by-step procedure based on a hybrid of the M-H 

algorithm and Gibbs sampler to sequentially generate the random samples of the 

parameters in the growth model is included in Appendix B. 

2.6 Model Validation  

2.6.1 General 

In this section, the growth models were developed for 62 external corrosion defects 

collected from a pipeline that was constructed in 1972 and is currently in service in 

Albert, Canada.  The 62 defects were inspected by high-resolution magnetic flux leakage 
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(MFL) tools in 2000, 2004, 2007 and 2009, and were excavated, field measured and 

recoated in 2010.  The field-measured depths were assumed to be free of measurement 

errors (Al-Amin et al. 2012), which implies that the actual depths of the 62 defects in 

2010 are known.  The general information of the data sets described above is depicted in 

Figure 2.4, including the apparent growth paths of these defects as indicated by the ILI-

reported data and field-measured depths shown in Figure 2.4(a) and the statistics (i.e. the 

minimum, mean and maximum values as well as the standard deviation) of the data sets 

shown in Figure 2.4(b).  The symbol wt denotes the pipe wall thickness, and the 

symbol %wt denotes the percentage of pipe wall thickness and is the unit of the defect 

depth reported by the MFL tools.  The number at the top of each bin shown in Figure 

2.4(b) denotes the value of the particular statistical property.  All the 62 defects are 

external metal-loss corrosion defects, and therefore considered to have similar underlying 

corrosion mechanisms.  The large scattering shown in Fig. 2.4 can be attributed to two 

factors: 1) the defects spread over a long section of the pipeline (approximately 82 km 

long) that has been in service for a long time, i.e. since 1972; therefore, the variability of 

the actual depths of these defects is expected to be high, and 2) the measurement 

uncertainties associated with the ILI tools further increase the variability of the ILI-

reported depths.  Furthermore, due to the measurement error associated with the ILI data, 

some growth paths shown in Fig. 2.4(a) decrease over time. 

 

(a) Apparent growth paths indicated by the ILI-reported and field-measured depths 
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(b) Statistics of the ILI-reported and field-measured data 

Figure 2.4 General information of the ILI-reported and field-measured data 

The measurement errors associated with these ILI tools as well as the correlation 

between the random scattering errors associated with different ILI tools were quantified 

using a Bayesian methodology described in Al-Amin et al. (2012).  The calibrated biases, 

the random scattering errors associated with individual ILI tools as well as the 

correlations between the random scattering errors of different ILI tools used in 2000, 

2004, 2007 and 2009 are as follows: a1 = a2 = 2.04 (%wt), a3 = -15.28 (%wt) and a4 = -

10.38 (%wt); b1 = b2 = 0.97, b3 = 1.4 and b4 = 1.13; 1 = 2 = 5.97 (%wt), 3 = 9.05 

(%wt) and 4 = 7.62 (%wt); 12 = 0.82, 13 = 23 = 0.7, 14 = 24 = 0.72 and 34 = 0.78 

(Al-Amin et al. 2012), where the subscripts ‘1’, ‘2’, ‘3’ and ‘4’ denote the parameters 

associated with the ILI data obtained in 2000, 2004, 2007 and 2009, respectively.  Note 

that the above-mentioned parameters were calibrated based on the ILI-reported depths for 

128 static defects that were repaired prior to 2000 and ceased growth (Al-Amin et al. 

2012).  Although these static defects are different from the 62 active defects used in this 

study, the calibrated measurement errors are applicable because both the static and active 

defects are located on the same pipeline and were sized by the same ILI tools. 
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The three sets of ILI data obtained in 2000, 2004 and 2007 were used to carry out the 

Bayesian updating and evaluate the probabilistic characteristics of the parameters of the 

growth models for each of the 62 defects.  The growth model was then validated by 

comparing the actual depths of the defects in 2010 with the corresponding depths 

predicted by the growth model.  The ILI data obtained in 2009 were intentionally 

excluded from the analysis so that the prediction from the growth model is over a 

reasonably long period (i.e. 3 years).  The application and validation of the NHGP- and 

HGP-based growth models are illustrated in the following sections. 

2.6.2 NHGP-based Growth Model 

The NHGP-based growth model was first applied to the 62 corrosion defects described 

in Section 2.6.1.  The parameters of the hyper prior distributions, i.e. the parameters at 

the top level of Fig. 2.3, were specified as follows: p1 = 1, q1 = 1, p2 = 1, q2 = 1, p3 = 0, q3 

= 28 (year), p4 = 1 and q4 = 1.  The values of p1, q1, p2, q2, p4 and q4 imply that the means 

and variances of   and i are all equal to unity.  It follows from Section 2.5.2 that q3 

denote the time elapsed since the installation time of the pipeline (i.e. year 1972) up to 

the time of the first inspection (i.e. year 2000) and therefore equals 28 years.  A total of 

20,000 MCMC simulation sequences were generated with the first 2000 sequences 

considered as the burn-in period (Gelman et al. 2004) and therefore discarded.  The 

samples in the rest of the sequences were used to evaluate the probabilistic characteristics 

of the parameters in the growth models.   

To predict the growth of the corrosion defects, two scenarios, denoted as Scenarios I 

and II were considered and employ the posterior mean and median values of model 

parameters, respectively.  A comparison between the predicted depths, xp, in 2010 with 

the corresponding field-measured depths, xa, for the 62 defects is shown in Fig. 2.5 for 

both scenarios.  The predicted depth for a given defect shown in Fig. 2.5 is the mean 

depth evaluated according to the NHGP with the model parameters (i.e. ,  i and ti0) 

assumed to be deterministic and set equal to the mean (median) values of the 

corresponding marginal posterior distributions obtained from the MCMC simulation for 

Scenario I (II).  Figure 2.5 suggests that the predictions given by the proposed model are 
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reasonably good in that about 90% of the predicted depths fall within the region bounded 

by the two lines representing actual depth  10%wt (these two bounding lines are 

commonly used in the pipeline industry as a confidence interval for the accuracy of the 

inspection tool and are adopted in this study as a metric for the predictive accuracy of the 

corrosion growth model).  The predicted depths show significant deviation (defined as the 

absolute difference between the predicted and actual depths being greater than 10 %wt) 

from the corresponding actual depths for only six defects, with the maximum absolute 

deviation being approximately 20 %wt for Scenario I and 19 %wt for Scenario II.   

 

Figure 2.5 Comparison of the predicted and field-measured depths 

The mean squared error of prediction (MSEP) (Harville & Jeske 1992), defined by 

     
 

 
          

  
   , was employed to quantitatively evaluate the predictive 
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suggest that the predictive accuracy corresponding to the median values of the model 

parameters is somewhat higher than that corresponding to the mean values for the 

NHGP-based model. 

Sensitivity analyses with respect to the prior distributions of ,  and i were carried 

out and are described in the following section.  A total of six sensitivity cases based on 

Scenarios I (II) described above were considered and are summarized in Table 2.1.  

Comparisons of the model-predicted and field-measured depths for the sensitivity cases 

are depicted in Fig. 2.6.  The MSEP values corresponding to the sensitivity cases are 

summarized in Table 2.1.  For all the sensitivity cases, the predictive accuracy 

corresponding to the median values of the model parameters is higher than that 

corresponding to the mean values.  Table 2.1 and Fig. 2.6 further indicate that the impact 

of prior distributions of  and  on the predictive accuracy of the growth model is small 

as long as the prior distribution of i is selected as a gamma distribution with a mean of 

unity and a coefficient of variation (COV) of 100% (i.e. p4 = q4 = 1).  Further 

investigation indicated that the growth model is highly sensitive to the prior distribution 

of i regardless of the prior distributions of  and ; convergence of the Markov chains of 

 and  in the MCMC simulation could not be achieved if the parameters (i.e. p4 and q4) 

of the prior distributions of i were not set to unity.  Of the six scenarios shown in Table 

2.1, Scenario II-3 has the highest predictive accuracy as the corresponding MSEP value is 

41, which is the smallest among the MSEP values associated with the 6 scenarios 

considered.  Given the prior distributions of  and i, the prior mean, standard deviation 

and COV of the growth of the depth over the first year since ti0 are approximately equal 

to E[]/E[i], E[
/E[i], and E[-

], respectively.  The prior distributions of  and i 

summarized in Table 2.1 implies that E[]/E[i] ranges from 1 to 10 %wt, E[
]/E[i] 

ranges from 1 to 3.2 %wt, and E[-
] ranges from 32% to 100%.  Those values suggest 

that each set of prior distributions of  and i summarized in Table 2.1 is informative.  

From this perspective, the predictions are influenced by both the prior distributions of  

and i and the information represented by the ILI data, and therefore have no marked 

difference as indicated by the MSEP values given in Table 2.1.  Furthermore, results 

shown in Table 2.1 suggest that  can be assigned a non-informative prior distribution 
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and inferred from the information implied in the ILI data, which is not unexpected 

because  characterizes the trend of the mean growth path. 

Table 2.1 Summary of sensitivity scenarios for the NHGP-based model 

Scenario 
  i Model 

parameter 
MSEP 

Percentage 

(%) p1 q1 p2 q2 p4 q4 

I (II) 1 1 

1 1 

1 1 
Mean 

(median) 

50 (43) 

90 (90) 

I (II)-1 10 1 50 (43) 

I (II)-2 0.001 0.001 48 (43) 

I (II)-3 
1 1 

10 1 46 (41) 

I (II)-4 0.001 0.001 51(45) 

I (II)-5 0.001 0.001 0.001 0.001 49(43) 
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(b) 

Figure 2.6 Comparison of the predicted and field-measured depths for different scenarios 

Figures 2.7(a) through 2.7(j) depict the mean, 10- and 90-percentile values, for ten 

selected defects, Defects #1, #2, #3, #7, #12, #13, #14, #15, #22 and #60, respectively.  

For a given defect, the mean, μi(t), and standard deviation, σi(t), of the defect depth at 

time t were calculated using Eqs. (2.2a) and (2.2b), i.e. μi(t) = (t-ti0)

/βi and σi(t) = ((t-

ti0)

/βi

2
)
0.5

, where , ti0 and βi were treated as deterministic quantities and set equal to 

their corresponding mean (or median) values of the marginal posterior distributions 

evaluated from the MCMC simulation.  The 10- and 90-percentile values of the predicted 

depth at time t were quantified according to the fact that the depth follows a gamma 

distribution with a shape parameter of (t-ti0)

, a rate parameter of βi and a cumulative 

distribution function (CDF) given by F(X(t) ≤ x(t)) = ((t-ti0)

, βix(t))/((t-ti0)


), where 

(w, z) is the so-called incomplete gamma function and given as (w, z) =           
 

 
 

(Ang and Tang 1975).  For comparison, the ILI-reported depth in 2000, 2004, 2007 and 

2009 are shown in the same figure as well.  Figure 2.7 indicates that the predictions 
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obtained from the model for Defects #1, #2, #3, #13, #14, #15 and #60 are reasonably 

good, but the predicted depths for Defects #7, #12 and #22 are markedly lower than the 

actual depths for all scenarios considered, for example, about 15, 18 and 18 %wt lower 

than the actual depths for Scenario II-3.  The poor prediction can be partially attributed to 

the relatively large measurement errors that are involved in the ILI data for the three 

defects.  This is also reflected in Figs. 2.7(c), 2.7(e) and 2.7(i), which show that the defect 

depths reported by the three ILI tools in 2000, 2004 and 2007 are similar but much lower 

than the actual depth in 2010. 

Note that the initiation time in the growth model plays an important role in 

characterizing the growth of defect.  If the ILI data for a particular defect indicate a fast 

growing trend for the defect, it is likely to be identified by the Bayesian inference as a 

relatively new defect with a large initiation time.  This observation is consistent with the 

experimental results reported in the literature (Provan and Rodriguez 1989; Aziz 1956) 

indicating that metal-loss corrosion tends to have a higher growth rate at the early stage 

of the corrosion process.  In the present study, for example, the ILI data for Defect #60 

suggest a higher growth rate than those for Defects #1 and #2; therefore, the mean of the 

initiation time obtained from MCMC simulation for Defect #60 is 15 years larger than 

that for Defect #1 and 16 years larger than that for Defect #2 for Scenario II-3. 
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(i) 

 

(j) 

Figure 2.7 Predicted growth paths of ten defects using NHGP-based models 
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Furthermore, Figure 2.7 also indicates that the prior distributions of ,  and i have a 

marked impact on the predicted growth paths, including the mean, 10- and 90- percentile 

values, at the early stage of forecasting period, especially in the first unit time interval 

since defect initiation; however, this impact becomes small and even negligible as time 

increases up to the time of field measurement.   

2.6.3 HGP-based Corrosion Growth Model 

In this section, the HGP-based model (i.e.  = 1) was applied to the same set of defects 

considered in Section 2.6.2.  For this model, four cases were considered with respect to 

the prior distributions of , i and ti0, which are summarized in Table 2.2.  Similar to the 

NHGP-based model presented in Section 2.6.2, the four cases allow investigation of the 

impact of both the posterior values (i.e. mean or median) and prior distributions of model 

parameters on the predictive accuracy of the HGP-based growth models.  The joint 

posterior distribution of the model parameters involved in the HGP-based growth model 

was evaluated using the same number of MCMC simulation sequences (i.e. 18,000) as 

described in Section 2.6.2. 

Table 2.2 Summary of sensitivity scenarios for the HGP-based model 

Scenario 
 i Model 

parameter 
MSEP ((%wt)

2
) 

Percentage 

(%) p1 q1 p4 q4 

I (II)-1 10 1 

1 1 Mean 

(median) 

44 (45) 89 (87) 

I (II)-2 1 1 47 (45) 89 (87) 

I (II)-3 0.001 0.001 48 (46) 89 (85) 

I (II)-4 10 1 10 1 31 (33) 94 (95) 

Figure 2.8 depicts the comparison of the predicted and field-measured depths for the 

62 defects corresponding to the cases summarized in Table 2.2.  The predicted depths 

shown in Figs. 2.8(a) and 2.8(b) were obtained in the same manner as those shown in 

Figure 2.6(a) and 2.6(b), respectively.  The observations obtained from Fig. 2.6 are 

equivalently applicable to Fig. 2.8. 



39 

 

 

(a) 

 

(b) 

Figure 2.8 Comparison of the predicted and field-measured depths for different scenarios 
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The MSEP values shown in Table 2.2 suggest that the predictive accuracies of the 

HGP-based models corresponding to the posterior mean values of the model parameters 

in general are higher than those corresponding to the posterior median values, which is 

contrary to the predictive accuracies associated with the NHGP-based models.  

Furthermore, the MSEP values indicate that the mean of prediction at year 2010 is 

slightly sensitive to the prior distribution of i, but not sensitive to the prior distribution 

of .  The impact of the prior distributions of  and i on the predicted growth paths is 

shown in Figure 2.9.   

Figure 2.9 shows the mean, 10- and 90-percentile values of the predicted growth paths 

based on the HGP-based models for the same defects as shown in Fig. 2.7.  In Fig. 2.9, 

the mean and standard deviation of the defect depth for a given defect i at time t equal 

(t-ti0)/βi and ((t-ti0)/βi
2
)
0.5

, respectively.  Figure 2.9 indicates that the percentile values 

of predicted growth paths are markedly sensitive to the prior distribution of βi, whereas 

the mean growth paths are slightly sensitive to the prior distributions of βi.  The predicted 

growth paths are insensitive to the prior distribution of .  Furthermore, it can be 

observed that the mean growth rate differs from defect to defect, which is expected in that 

t0 and  were assumed to be defect-specific.  For example, among the ten defects 

corresponding to Scenario I-1 shown in Fig. 2.9, Defect #60 has the highest growth rate 

equal to 2.2 %wt/year, followed by Defects #14, #3, #2, #15, #13, #1, #12, #7 and #22 in 

a descending order, which equal to 1.9, 1.7, 1.6, 1.6, 1.3, 1.2, 1.1, 0.9 and 0.6 %wt/year, 

respectively.  The comparison of the HGP- and NHGP-based models is described in 

detail in the next section. 
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(i) 

 

(j) 

Figure 2.9 Predicted growth paths of ten defects using HGP-based model 
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Note that the 80% confidence interval of the prediction (i.e. the difference between the 

10- and 90-percentile values) corresponding to Scenario I-4 is markedly narrower than 

those corresponding to Scenarios I-1 through I-3 for all defects shown in Figure 2.9.  This 

observation is mainly because the prior distribution of i in Scenarios I-1 through I-3 has 

a smaller mean (i.e. unity) compared with that in Scenario I-4 (i.e. ten) and leads to a 

smaller posterior mean of i.  It follows that smaller values of i result in larger standard 

deviations and 80% confidence intervals of the (gamma distributed) defect depth at a 

given time.  On the other hand, the prior distributions of  and i corresponding to the 

first three Scenarios in Table 2.2 suggest that E[]/E[i] and E[
]/E[i] (i.e. the 

approximate prior mean and standard deviation of the growth rate, respectively) range 

from 1 to 10 %wt and from 1 to 10 %wt, respectively, which are similar to those 

corresponding to the scenarios summarized in Table 2.1.  In contrast, the prior 

distributions of  and i specified in Scenario I-4 indicate that E[]/E[i] and 

E[
]/E[i] equal 1 %wt and 0.32 %wt, respectively, the latter of which is somewhat 

unrealistic.  From this standpoint, it is remarked that the prior distribution of i specified 

in Scenario I-4 is too restrictive; in other words, the predicted growth is significantly 

influenced by the prior distribution of i.  Based on the above observation, such overly-

restrictive prior distribution of i (e.g. the prior distribution in Scenario I-4) is not 

suggested in the analysis although the mean prediction is the best, as indicated by the 

MSEP values in Table 2.2. 

2.6.4 Comparison of the NHGP- and HGP-based Corrosion Growth Models 

The NHGP- and HGP-based models were compared in this section in terms of the 

predicted growth path and the probability density function (PDF) of the defect depth.  

The predicted growth paths of the ten defects show in Sections 2.6.2 and 2.6.3 based on 

the NHGP- and HGP-based models are shown in Figure 2.10, where Scenario II-3 (i.e. p1 

= 1, q1 = 1; p2 = 10, q2 = 1; p4 = 1 and q4 = 1) is considered for the NHGP-based models 

and Scenarios I-1 (i.e. p1 = 10, q1 = 1; p4 = 1 and q4 = 1) are considered for the HGP-

based models.  Figure 2.10 suggests that for a given defect the initiation times associated 

with the HGP- and NHGP-based models are marginally different.  The initiation times 
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associated with the NHGP-based model, in general, are about 2-5 years larger than those 

associated with the HGP-based model for the ten defects plotted.  The overall predicted 

growth paths between the times of defect initiation and excavation obtained from the 

HGP-based model markedly differ from those obtained from the NHGP-based model.  

This is expected in that the shape parameter was assumed a linear function of time in the 

former, and a power-law function of time in the latter.   
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Figure 2.10 Comparison of the growth paths of a given defect corresponding to NHGP- 

and HGP-based models 
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arbitrarily selected time, i.e. year 2009, are depicted in Fig. 2.12.  Figure 2.11 indicates 

that the mean and standard deviation of defect depth are increasing as time increases, 

which is expected because both of them are increasing function of time as reflected by 

Eqs. (2.2a) and (2.2b).  The means of the predicted depths from the NHGP-based models 
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Figure 2.11 Time-dependent PDF curves of defect depth of Defect #3 at years 2000-2009 

 

Figure 2.12 PDF curves of defect depths of Defects #1-10 at year 2009 
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with the mean and standard deviation of the predicted depth obtained from the HGP- and 

NHGP-based models shown in Fig. 2.12 are similar to those shown in Fig. 2.11. 

2.7 Conclusions 

This chapter describes a gamma process-based model to characterize the growth of 

metal-loss corrosion defects on oil and gas pipelines.  Two sets of models were 

considered in this study, namely the non-homogeneous process- (NHGP-) and 

homogeneous gamma process- (HGP-) based models.  The shape parameter of the 

gamma process is assumed to be a power-law function of time in the former, and a linear 

function of time in the latter, whereas the scale parameter of the gamma process was 

assumed to be time-independent and defect-specific for both the NHGP- and HGP-based 

models.  Furthermore, the corrosion initiation time for individual defect is accounted for 

in the growth models.  All the parameters involved in each of the models were assumed 

to be uncertain and evaluated using the hierarchical Bayesian methodology based on the 

inspection data obtained from multiple ILI runs.  The biases, measurement errors as well 

as the correlations between the random scattering errors associated with the ILI tools 

were also taken into account in the Bayesian inference.  The Markov Chain Monte Carlo 

(MCMC) simulation was employed to carry out the Bayesian updating and derive the 

posterior distributions of the parameters in the growth models. 

An example involving real ILI data for a gas pipeline was used to illustrate the 

proposed models.  The parameters of the growth models for 62 external corrosion defects 

that were field measured and recoated were evaluated based on the defect depths reported 

by multiple ILI runs prior to the field measurement.  The parameters were then used to 

predict the depths of the defects at the time of the field measurements.  The predicted 

defect depths were compared with the corresponding field-measured depths to validate 

the growth model.  The analysis results suggested that the model proposed in this study in 

general characterizes the growth of the defect depth reasonably well: the absolute 

differences between the predicted depths and the field-measured depths are less than or 

equal to 10 %wt for about 90% of the 62 defects.  The model predictions are relatively 

poor for some defects, for which large measurement errors are involved in the ILI data.   
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Sensitivity analyses indicated that the predictions given by the NHGP-based growth 

models are insensitive to the prior distribution of  and  given a particular prior 

distribution of i (i.e. p4 = q4 = 1) and highly sensitive to the prior distribution of i 

regardless of the prior distributions of  and .  Furthermore, the prior distributions of , 

 and i in the NHGP-based model have a marked impact on the mean, 10- and 90-

percentile values of predicted growth path at the early stage of forecasting period, and a 

negligibly small impact on the predictions at the time of field measurements.  On the 

other hand, sensitivity analyses indicated that the predictions given by the HGP-based 

growth model are sensitive to the prior distribution of i, but insensitive to that of .  The 

prior distributions of  and i have a marginal impact on the mean predicted growth 

paths; however, only the prior distribution of i has a marked impact on percentile values 

of the predicted growth paths.  Sensitivity analyses further suggested that, in general, 

using the mean (median) values of the marginal posterior distributions of model 

parameters leads to a better prediction for all scenarios considered for the HGP- (NHGP-) 

based models. 

Comparative analyses indicated that, for a given defect, the initiation time associated 

with the NHGP-based model is slightly larger than that associated with the HGP-based 

model.  Furthermore, the predicted growth paths over the period of time from defect 

initiation to excavation obtained from the HGP-based model are markedly different from 

those obtained from the NHGP-based model, which is expected because different time-

dependent functions were assumed for the shape parameters involved in the two growth 

models.  Furthermore, a comparison of the MSEP values of the best predictions 

corresponding to the two growth models (i.e. Scenario II-3 of the NHGP-based model 

and Scenario I-1 of the HGP-based model) indicated that the HGP-based model leads to 

better predictions than the NHGP-based model.   

The proposed model provides a powerful framework to deal with various uncertainties 

involved in the corrosion growth modeling based on the ILI data and will facilitate the 

corrosion management of oil and gas pipelines. 
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Chapter 3 Inverse Gaussian Process-based Corrosion Growth 

Modeling Based on Imperfect Inspection Data 

3.1 Introduction 

Two stochastic processes analogues to the gamma process, namely the inverse 

Gaussian process and Wiener process were recently reported in the literature (e.g. Wang 

and Xu 2010; Wang 2010) in the context of modeling the degradation process.  The 

inverse Gaussian process (IGP) consists of independent increments that follow the 

inverse Gaussian distribution, whereas the Wiener process consists of independent 

increments that follow the Gaussian distribution.  Wang and Xu (2010) employed the 

inverse Gaussian process to model the degradation of the laser devices based on observed 

data.  Wang (2010) used Wiener process to characterize the degradation of the strength of 

bridge beams based on field-measured data.  Both studies used the maximum likelihood 

method to estimate the model parameters and ignored the measurement error associated 

with the inspection data.  A notable drawback of using the Wiener process to model the 

corrosion growth is that it cannot rigorously characterize the monotonic nature of the 

growth, since the Gaussian distributed increments can be either positive or negative.  The 

IGP overcomes this drawback because it is positively defined.  The mathematical 

tractability of the IGP (Chikkara and Folks 1989; Wang and Xu 2010) also facilitates 

incorporating the IGP-based corrosion growth model in a Bayesian framework to 

evaluate and update the model parameters based on inspection data.  However, to the 

author’s best knowledge, studies of IGP-based corrosion growth models based on data 

obtained from imperfect inspections are unavailable in the literature.   

In this study, the objective is to develop an IGP-based growth model for the depths of 

corrosion defects on underground pipelines by incorporating the in-line inspection (ILI) 

data that are subjected to measurement uncertainties. The growth model is formulated in 

a hierarchical Bayesian framework.  The probabilistic characteristics of the model 

parameters are evaluated using the Markov Chain Monte Carlo (MCMC) simulation 

techniques.  An example involving a real in-service natural gas pipeline located in 
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Alberta, Canada is used to illustrate and validate the proposed growth model.  Parametric 

analysis and comparative study are also included in the example.   

The rest of this chapter is organized as follow.  Section 3.2 briefly describes the 

inverse Gaussian distribution and inverse Gaussian process.  Section 3.3 presents the 

formulation of the IGP-based growth models for multiple corrosion defects.  The 

formulations to evaluate the model parameters using the hierarchical Bayesian 

methodology are presented in Section 3.4.  An example for illustrating and validating the 

proposed growth model is given in Section 3.5, followed by the conclusions in Section 

3.6.  The derivations of posterior distributions of model parameters are given in 

Appendix C. 

3.2 Inverse Gaussian Process 

Consider X as an inverse Gaussian-distributed random variable with a mean of  ( > 

0) and a shape parameter  ( > 0).  The probability density function (PDF) of X is given 

by (Chikkara and Folks 1989) 

           
 

  
  

 

      
       

    
           (3.1) 

where I(0, ∞) is an indicator function and equal to unity for x > 0 and zero for x ≤ 0.  The 

variance of X equals 3
/.  The PDFs of X corresponding to different combinations of  

and  are illustrated in Fig. 3.1. 

Given  and , a realization of X, x, can be generated through three steps (Chikkara 

and Folks 1989; Kroses et al. 2011): 1) generate a random number u from the standard 

normal distribution and set z = u
2
; 2) set w =  + 2

z/(2) + /(2)(4z+2
z

2
)
0.5

, and 3) 

generate a random number u0 from a Bernoulli distribution with a probability of /(+w), 

and set x = w if u0 = 1 and x = 2
/w otherwise. 
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Figure 3.1 PDF function of the inverse Gaussian distribution 

Let {X(t); t ≥ 0} denote an IGP over time t.  Based on Wang and Xu (2010), X(t) is 

parameterized by its mean or expectation function, (t), (i.e. E[X(t)] = (t)), and shape 

parameter (t))
2
, where  is a scale parameter  It follows from Eq. (3.1) that the PDF 

of X(t) is given by 

                           
 

  
         

 

      
            

 

     
              (3.2) 

The variance and coefficient of variation (COV) of X(t), denoted by Var[X(t)] and 

COV[X(t)] respectively, are then  

          
    

 
 (3.2a) 

          
 

      
 (3.2b) 

The IGP defined by Eq. (3.2) has the following properties (Wang and Xu 2010):  

(1) X(0) = 0 with probability one; 
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(2) X() – X(t) follows an inverse Gaussian distribution with a PDF of fX()-X(t)(x() – 

x(t)|() – (t), (() – (t))
2
) for all  > t ≥ 0, and 

(3) X(t) has independent increments. 

Because the mean function, (t), must be a monotonically increasing function with 

time t, Equation (3.2b) indicates that the COV of X(t) decreases as time increases, which 

is similar to that of the Gamma process (GP) (van Noortwijik 2009) described in Chapter 

2.  In fact, both the GP and IGP belong to the same generalized inverse Gaussian process 

(Johnson et al. 1994) because the inverse Gaussian and gamma distributions are two 

special cases of a generalized inverse Gaussian distribution (Chikkara and Folks 1989).  

The scale parameter (i.e.  in an IGP influences its COV but not its mean, whereas the 

scale parameter in a GP influences its mean but not its COV as described in Chapter 2.   

3.3 Growth Modeling for Multiple Defects 

Consider that m active corrosion defects on a given pipeline have been subjected to n 

inspections over a period of time.  The measured depth (i.e. in the through pipe wall 

thickness direction) of the i
th

 defect at the j
th

 inspection, yij, (i = 1, 2, …, m; j = 1, 2, …, n) 

is related to the actual depth, xij, through Eq. (2.3), i.e. yij = aj + bjxij + ij, with aj and bj 

denoting the constant and non-constant biases associated with the ILI tool used in the j
th

 

inspection, and ij denoting the random scattering error associated with the ILI-reported 

depth of the i
th

 defect at the j
th

 inspection, and being assumed to follow a zero-mean 

normal distribution (Al-Amin et al. 2012). 

The actual defect depth was assumed to follow an inverse Gaussian process given by 

Eq. (2), where (t) can be assumed to be a power-law function of time, i.e. (t) = t – 

t0)

 with t0 denoting the defect initiation time, where  > 1,  < 1 and  = 1 imply that the 

mean growth is an accelerating, decelerating and linear trajectory over time, respectively.  

In this study, it is assumed that  equals unity, which implies that the mean growth path 

is a linear function of time.  Note that the IGP-based growth model with  ≠ 1 has been 

reported by Qin et al. (2013). 
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It follows from Eq. (3.2) that the growth of the i
th

 defect between the (j – 1)
th

 and j
th

 

inspections, Xij, is inverse Gaussian distributed and has a PDF given by fXij(xij|ij, 

ij)
2
).  The mean value of Xij, ij, is calculated by 

ij = itij – ti,j-1)   (j = 1, 2, …, n)  (3.3) 

where tij (j = 1, 2, …, n) denotes the time of the j
th

 inspection (e.g. the time elapsed since 

the installation of pipe up to the j
th

 inspection) for defect i; ti0 denotes the initiation time 

of the i
th

 defect, (i.e. the time interval between the installation of pipe and the time at 

which the defect initiates), and i denotes the average growth of the i
th

 defect over a unit 

time interval (i.e. t = 1 year).  The actual depth of the i
th

 defect at the time of the j
th

 

inspection, xij, is then obtained by xij = xi,j-1 + xij, where the defect depth at t = t0 (i.e. xi0) 

is assumed to equal zero with a probability of one. 

In the above-described model, the initiation time t0 and parameter  are assumed to be 

defect-specific and the scale parameter  is assumed to be common for all defects.  The 

formulations in the following sections are based on these assumptions.  Two alternative 

sets of assumptions were also considered in the analysis, namely defect-specific t0 and  

but common  for all defects, as well as defect-specific t0 but common  and  for all 

defects.  The impact of these assumptions on the predictive capability of the growth 

model was investigated through parametric analyses as described in Section 3.5.   

3.4 Bayesian Updating of the Growth Model 

3.4.1 Likelihood Function 

Denote yi = (yi1, yi2, …, yij, …, yin)′, xi = (xi1, xi2, …, xij, …, xin)′ and xi = (xi1, xi2, 

…, xin)′, with “′” representing transposition.  Let Ei = (Ei1, Ei2, …, Ein)′ denote the 

vector of random scattering errors associated with defect i for inspections j = 1, 2, …, n.  

Consider defect i, it follows from Eqs. (2.3) and (2.4) as well as the assumptions 

described in Section 2.3 of Chapter 2 (i.e. the random scattering errors were assumed to 

be spatially independent but temporally correlated) that the likelihood of the inspection 

data, yi, conditional on the growth, xi, is the same as Eq. (2.8) in Chapter 2, i.e. L(yi|xi) 
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= (2)
-n/2

|Ei|
-1/2

exp(-0.5(yi-(a+bxi))′(Ei)
-1

(yi-(a+bxi))) with          
 
   , except that 

xij is inverse Gaussian-distributed as opposed to being gamma-distributed, where a = 

(a1, a2, …, aj, …, an)′, b is an n-by-n diagonal matrix with diagonal elements equal to bj (j 

= 1, 2, …, n) and Ei denotes the variance matrix of Ei and is an n-by-n matrix with the 

element equal to jkjk (j = 1, 2, …, n; k = 1, 2, …, n).  jk denotes the correlation 

coefficient between the random scattering errors associated with the j
th

 and k
th

 

inspections, and j and k denote the standard deviations of the random scattering errors 

associated with the tools used at the j
th

 and k
th

 inspections, respectively.  A Bayesian 

methodology has been developed (Al-Amin et al. 2012) to evaluate aj, bj, j and jk (j = 1, 

2, …, n; k = 1, 2, …, n) based on the ILI-reported depths for a set of static defects (i.e. 

defects that have been repaired prior to the ILI and ceased growing).  In this study, aj, bj, 

j and jk were assumed to be known and deterministic quantities.  

It follows from the properties of the IGP described in Section 3.2 that the joint 

probability density function of xi is 

    
                 

 
      

                     
               

 

   

 

   
 

  
        

 
 

      
            

 

     
  

    (3.4) 

Further denote x = (x1, x2, …, xm),  = (1, 2, …,m) and t0 = (t10, t20, …, tm0).  

Assume that the growths of different defects are spatially independent; in other words, 

xij and xlj (i ≠ l) are mutually independent for given inspection j conditional on i,  

and ti0.  Given that i and ti0 are defect-specific and only depends on the growth of the i
th

 

defect (i.e. xi) and  is common for the growth of all defects (i.e. x), the likelihood 

function of xi conditional on i, ti0 and  (i = 1, 2, …, m), as well as the likelihood 

function of x conditional on ,  and t0 are therefore obtained from Eqs. (3.5a) and 

(3.5b), respectively. 
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    (3.5b) 

3.4.2 Prior and Posterior Distributions 

For m active corrosion defects, a total of 2m + 1 basic parameters are included in the 

growth model described in Section 3.3, namely m defect-specific parameters i and 

initiation times ti0 (i = 1, 2, …, m) and one common scale parameter (i.e. ).  In this study, 

the gamma distribution was selected as the prior distributions of i and  (i = 1, 2, …, m) 

considering that the gamma distribution ensures i and  to be positive quantities and can 

be conveniently made as a non-informative distribution.  Furthermore, the assignment of 

the gamma distribution as the prior distribution of  improves the computational 

efficiency in the MCMC simulation because it leads to a conjugate posterior distribution 

(Gelman et al. 2004) of  conditional on i and ti0.  The prior distribution of ti0 was 

chosen to be a uniform distribution with a lower bound of zero and an upper bound equal 

to the time interval between the installation of the pipeline and the first detection of 

defect i.  i (ti0) associated with different defects were further assumed to be mutually 

independent and have identical prior distributions (iid).  Given above, the prior 

distributions of i, ti0 and  are parameterized as follows: 

                (iid for i = 1, 2, …, m) (3.6a) 

                  (iid for i = 1, 2, …, m) (3.6b) 
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              (3.6c) 

where fG(∙) and fU(∙) denote the PDFs of the gamma and uniform distributions; p1 (q1) and 

p3 (q3) denote the shape (rate) parameter of the gamma distributions of i and , 

respectively, and p2 and q2 denote the lower and upper bounds of the uniform distribution 

of ti0. 

It follows from the Bayesian theorem (see Section 2.5.5 of Chapter 2) that the 

posterior distributions of model parameters can be derived and are given in Appendix C.  

The MCMC simulation techniques implemented in the software OpenBUGS (Lunn et al. 

2009) were employed in this study to numerically evaluate the marginal posterior 

distributions of the parameters.  Without loss of generality, the procedures based on a 

hybrid of the Metropolis-Hasting (M-H) algorithm and Gibbs sampler (Gelman et al. 

2004) to sequentially generate the random samples of the parameters in the growth model 

are depicted in a flowchart as shown in Fig. 3.2, where s denotes the counter for the 

simulation trial; Ns denotes the total number of sequence of samples generated in the 

MCMC simulation, and p(●) denotes the conditional posterior distribution of a given 

model parameter (see Appendix C).  The inverse Gaussian distribution was defined in 

OpenBUGS (Lunn et al. 2009) through the generic distribution option. 
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Figure 3.2 Flowchart of the MCMC simulation-based Bayesian updating procedures 

3.4.3 Hierarchical Representation of the Growth Model 

A visualization of the aforementioned corrosion growth model is given by the directed 

acyclic graph (DAG) (Spiegelhalter 1998) as depicted in Fig. 3.3, where ellipses and 

rectangles symbolize the stochastic and deterministic parameters, respectively; single-

edged arrows denote the stochastic links, whereas double-edged arrows denote the 

deterministic functional links.  Three levels of parameters are involved in Fig. 3.3.  The 

first level includes the ILI data that are associated with measurement errors characterized 

by a, b and Ei.  The second level includes the latent variables that consist of the actual 

depths at the times of inspections and increments of the actual depths between two 

consecutive inspections as well as the mean (ij) of xij (i = 1, 2, …, m; j = 1, 2, …, n).  

This level captures the stochastic characteristics and temporal variability of the defect 

growth path.  The third level includes the basic parameters of the inverse Gaussian 
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(0), (0) and (0)

For simulation trial s, 

generate  xij
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using the M-H algorithm
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using the Gibbs sampler
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(s)|Δxi
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(s-1), (s-1), p1, q1) using the M-H algorithm;

generate ti0
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(s), (s-1), p2, q2) using the M-H algorithm;
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process model (i.e. i ti0 and ).  The known quantities including the parameters of the 

distributions of the basic parameters (i.e. p1, q1, p2, q2, p3 and q3), the background 

information, tij (j = 1, 2, .., n), as well as the measurement errors are also shown in Fig. 

3.3. 

 

Figure 3.3 DAG of the growth model 

3.5 Example 

3.5.1 Illustration and Validation of Growth Model 

In this section, the growth models were applied to the 62 external corrosion defects 

described in Section 2.6.1 of Chapter 2.  The same sets of ILI data (i.e. the ILI-reported 

depth in 2000, 2004 and 2007) were used to carry out the Bayesian updating.  The 

parameters of the hyper prior distributions, i.e. the parameters at the top level of Fig. 3.3, 

were specified as follows: p1 = 1, q1 = 1, p2 = 0 (year), q2 = 28 (year), p3 = 1, q3 = 1.  A 

total of 20,000 MCMC simulation sequences were generated with the first 2000 

sequences considered as the burn-in period (Gelman et al. 2004) and therefore discarded.  
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The samples in the rest of the sequences were used to evaluate the probabilistic 

characteristics of the parameters in the growth models.  A comparison between the 

predicted depths, xp, in 2010 with the corresponding field-measured depths, xa, for the 62 

defects is shown in Fig. 3.4.   

 

Figure 3.4 Comparison of the predicted depths in 2010 with the corresponding field-

measured depths 

The predicted depth for a given defect shown in Fig. 3.4 is the mean depth predicted 

from the IGP-based model with the model parameters (i.e. i, ti0 and ) assumed to be 

deterministic and set equal to the median values of the corresponding marginal posterior 

distributions obtained from the MCMC simulation.  Figure 3.4 suggests that the proposed 

model can provide reasonably good predictions for majority of the defects considered, as 

the predicted depths for 90% of the 62 defects fall within the region bounded by the two 

lines representing actual depth 10 %wt.  Note that the two bounding lines are commonly 

used in the pipeline industry as a confidence interval for the accuracy of the inspection 

tool and are adopted in this study as a metric for the predictive accuracy of the corrosion 

growth model.  The predicted depths show significant deviation (defined as the absolute 
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difference between the predicted and actual depths being greater than 10 %wt) from the 

corresponding actual depths for only six defects, with the maximum absolute deviation 

being approximately 15 %wt.   

The mean, 10- and 90-percentile values of the growth paths for ten arbitrarily selected 

defects, i.e. Defects #1, #3, #7, #13, #15, #18, #19, #22, #50 and #60, are plotted in Figs. 

3.5(a) through 3.5(j), respectively.  For a given defect, the 10- and 90-percentile values 

were evaluated assuming the defect depth at a given time follows an inverse Gaussian 

distribution with a cumulative distribution function (CDF) of P(X(t) ≤ x(t)) = 1 – 

((/x(t))
0.5

((t) – x(t))) + exp(2(t))(-(/x(t))
0.5

((t) + x(t))) (Chikkara and Folks 

1989; Kroses et al. 2011; Wang and Xu 2010), where (●) denotes the CDF of the 

standard normal distribution.  The mean of the predicted growth path of the i
th

 defect (i.e. 

i(t)) was obtained from i(t) = it – ti0) with i and ti0 equal to their median values 

evaluated from the MCMC simulations and t varying from zero to 38 years (i.e. from 

years 1972 to 2010) with an increment of one year, where i(t) = 0 if t ≤ ti0.  For 

comparison, the corresponding ILI-reported depths in 2000, 2004, 2007 and 2009 as well 

as the field-measured depth in 2010 are also plotted in the same figure.  The results 

indicate that the predicted average growth rate differs from defect to defect; this is 

expected because the parameter , which represents the average growth rate, is assumed 

to be defect-specific.  For example, the average growth rate of Defects #19 is the highest 

among the ten defects plotted and equals to 1.9 %wt/yr, followed by Defects #60, #15, 

#3, #13, #18, #7, #1, #22 and #50 with average growth rates equal to 1.8, 1.7, 1.4, 1.3, 

1.2, 1.0, 0.9, 0.7 and 0.6 %wt/yr, respectively.   
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(i) 

 

(j) 

Figure 3.5 Predicted growth path of a given defect 

To illustrate the time-variant nature of the growth model, the PDF curves of defect 

depths corresponding to years 2000, 2002, 2004, 2006, 2008 and 2010 are depicted in 

Fig. 3.6(a) for Defect #18 and in Fig. 3.6(b) for Defect #19, respectively.  Figure 3.6 

indicates that the mean and variance of the predicted depth increase as time increases, 

which is expected. 
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(a) 

 

(b) 

Figure 3.6 Time-dependent PDF of the defect depth 
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Scenarios II, III and IV, were considered.  The parameters  and  were assumed to be 

either defect-specific or common in these scenarios.  For brevity, the baseline case used 

to evaluate the results shown in Figs. 3.4 through 3.6 is referred to as Scenario I, where  

is defect-specific and  is common for all defects (t0 was assumed to be defect-specific 

for all four scenarios).  Table 3.1 summarizes the characteristics of  and  in the four 

scenarios.  The prior distributions of  and  used in Scenarios II, III and IV are the same 

as those specified in Scenario I.  The analysis procedure used to evaluate the model 

parameters in Scenario I were repeated to evaluate the model parameters in Scenarios II 

through IV.  The comparisons of predictions corresponding to the four scenarios are 

described in the following. 

Table 3.1 Comparison of four scenarios for the growth model 

Scenario   t0 

Percentage of 

predictions within 

actual depth 

10 %wt 

MSEP 

((%wt)
2
) 

I 
defect-

specific 
common 

defect-

specific 

90 43 

II 
defect-

specific 

defect-

specific 
90 45 

III common common 76 68 

IV common 
defect-

specific 
82 60 

The predicted defect depths in 2010 corresponding to Scenarios I through IV are 

compared with the field-measured depths in Fig. 3.7.  The percentages of the predicted 

depths falling within the actual depths 10 %wt for the four scenarios are summarized in 

Table 3.1.  The figure suggests that the predicted depths corresponding to Scenarios III 

and IV show markedly more deviations from the actual depths compared with those 

corresponding to Scenario I, whereas the predictions corresponding to Scenario II are 

slightly different from those corresponding to Scenario I.  The mean squared error of 

prediction (MSEP) (Bunke and Droge 1984; Harville and Jeske 1992) as described in 

Chapter 2 was employed to quantitatively evaluate the predictive accuracy of each model 

considered.  The higher is the predictive accuracy of a give model, the lower is its 

corresponding MSEP.  The MSEPs associated with Scenarios I, II, III and IV are 
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summarized in Table 3.1.  These results suggest that the growth model corresponding to 

Scenario I has the highest predictive accuracy followed by II, IV and III in a descending 

order.  Furthermore, the growth models employing defect-specific  (i.e. Scenarios I and 

II) on average have a higher predictive accuracy than those employing common  (i.e. 

Scenarios III and IV), whereas whether  is defect specific or common for all defects has 

a small impact on the predictive accuracy of the growth model.  

 

Figure 3.7 Comparison of the mean predicted depth with the field-measured depths 

corresponding to Scenarios I, II, III and IV 

The mean predicted growth paths corresponding to the four scenarios for the same ten 

defects plotted in Fig. 3.5 are plotted in Figs. 3.8(a) through 3.8(j), respectively.  Also 

shown in the figures are the depths reported by the ILI tools as well as the actual depth 

obtained from the field measurement.  Consistent with the aforementioned observation, 

Figure 3.8 reveals that predictions corresponding to Scenarios I and II are more accurate 

than those corresponding to Scenarios III and IV for six (i.e. Defects #3, #13, #15, #19, 

#50 and #60) of the ten defects shown in the figure.  However, the predicted depths for 

Defects #1, #7 and #22 based on the assumption of defect-specific  deviate significantly 
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from the actual depths (about 10%, 12% and 15 %wt, respectively).  This can be 

attributed to the slow growth rate as indicated by the ILI data in 2000, 2004 and 2007, 

which are likely associated with large measurement errors such that the ILI data cannot 

reflect the actual growth of this particular defect.  The deviation of the predicted depth 

from the field-measured depth however becomes smaller (less than 10 %wt) for Defects 

#1, #7 and #22 if the parameter  is assumed to be common for all defects.  This implies 

that the assumption of common  allows the growth model to borrow information from 

the other defects and improves to certain extent the accuracy of the prediction for this 

particular defect. 
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(j) 

Figure 3.8 Comparison of the mean predicted growth paths corresponding to Scenarios I, 

II, III and IV 

To investigate the impact of the prior distributions of the model parameters on the 

predictive quality of the growth model, ten scenarios with respect to the prior 

distributions of  and  were considered, denoted by Scenarios I-1 through I-10, 

respectively.  The notation was used to emphasize that the ten scenarios are the same as 

Scenario I except that different values were specified for the distribution parameters (i.e. 

p1, q1, p3 and q3) of the prior distributions of  and .  Figure 3.9 depicts the comparison 

of the predictions corresponding to Scenarios I and I-1 through I-10.  The values of p1, q1, 

p3 and q3 associated with each individual scenario are shown in the figure as well with the 

two numbers in brackets denoting the MSEP value and percentage of predictions within 

actual depth 10 %wt (i.e. the two dashed bounding lines in Fig. 3.9) associated with this 

particular scenario, respectively.   

The results shown in Fig. 3.9 indicate that the prediction obtained from Scenario I is 

the best because its MSEP value is the lowest; it was also observed that the prior 

distributions specified in Scenario I leads to a good convergence of the MCMC 
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prior distribution of  but insensitive to that of .  This observation is expected because 

the mean predicted depth (i.e. (t) = t – t0)) is only dependent on  and t0.  Figure 

3.9(a) indicates that a high mean value (i.e. p1/q1) of the prior distribution of  tends to 

overestimate the corrosion growth (e.g. Scenarios I-2 and I-3), whereas a low mean value 

of the prior distribution of  tends to underestimate the corrosion growth (e.g. Scenarios 

I-4 and I-5).  This makes sense as the parameter  represents the mean of growth rate.  

On the other hand, a large variance (i.e. p1/q1
2
) of the prior distribution of  also leads to 

a poor prediction as reflected by a comparison of the predictions corresponding to 

Scenarios I and I-1 shown in Fig. 3.9(a).  For example, p1 = 0.1 and q1 = 0.1 in Scenario 

I-1 and p1 = 3 and q1 = 1 in Scenario I-3 imply that the mean and coefficient of variation 

(COV) of i (i.e. the average growth rate of the i
th

 defect) equal 1 %wt/yr and 316% for 

Scenario I-1, and 3 %wt/yr and 58% for Scenario I-3, respectively.  This prior knowledge 

about the growth rate in both scenarios might be too distant from the realistic scenario to 

lead to a good convergence of the MCMC simulation as well as good estimate of the 

posterior distributions.  The prior distribution of  in Scenario I (i.e. p1 = q1 = 1) implies 

that the mean and COV of the growth rate equal 1 %wt/yr and 100%, respectively, which 

are considered reasonably representative of the reality.  From this perspective, the prior 

distribution of  specified in Scenario I can be regarded, to certain extent, as an 

informative distribution.  Figure 3.9(b) indicates that the impact of the prior distribution 

of  on the prediction is in general negligible.  A non-informative distribution is therefore 

suggested as the prior distribution of  for the Bayesian inference.  The comparison 

highlights the importance of properly selecting the prior distributions for the Bayesian 

updating. 
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(a) Impact of the prior distribution of  on the predictive quality of the growth model 

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (

%
w

t)

Field measured depth (%wt)

Scenario I
p1 = 1; q1 = 1

p3 = 1; q3 = 1
(43, 90%)

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (
%

w
t)

Field measured depth (%wt)

Scenario I-1
p1 = 0.1; q1 = 0.1

p3 = 1; q3 = 1
(110, 73%)

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (
%

w
t)

Field measured depth (%wt)

Scenario I-2
p1 = 2; q1 = 1

p3 = 1; q3 = 1

(85, 71%)

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (
%

w
t)

Field measured depth (%wt)

Scenario I-4
p1 = 1; q1 = 2

p3 = 1; q3 = 1

(101, 71%)

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (
%

w
t)

Field measured depth (%wt)

Scenario I-3
p1 = 3; q1 = 1

p3 = 1; q3 = 1

(931, 2%)

0

20

40

60

80

0 20 40 60 80

P
re

d
ic

te
d

 d
ep

th
 (
%

w
t)

Field measured depth (%wt)

Scenario I-5
p1 = 1; q1 = 3

p3 = 1; q3 = 1

(229, 58%)



87 

 

 

(b) Impact of the prior distribution of  on the predictive quality of the growth model 

Figure 3.9 Impact of the prior distributions of  and  on the predictive quality of the 

growth model 
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3.5.3 Comparisons with the GP-based and Conventional Growth Models 

In this section, the IGP-based growth model (Scenario I only) was compared with the 

homogeneous gamma process- (HGP-) based and conventional growth models.  The 

HGP-based model II-1 described in Chapter 2 was used in this comparative study, i.e. the 

median values of the posterior distributions of the parameters in the HGP-based model 

were used to predict the defect depth in 2010.   

The conventional growth model employed in this study is a deterministic linear 

growth model with a growth rate that is constant in time and defect-specific, which has 

been widely adopted by the pipeline operators.  The growth rate of a given defect is 

usually evaluated from the depths reported by two recent ILIs (Nessim et al. 2008; Huyse 

and van Roodselaar 2010) and is then assumed to remain constant in the future.  In this 

study, the ILI-reported depths in 2004 and 2007 were used to evaluate the defect-specific 

growth rate.  It follows from Eq. (2.3) and the calibrated biases presented in Section 2.6.1 

that the growth rate for defect i, denoted by ri, can be estimated by ri = ((yi3 – a3)/b3 – (yi2 

– a2)/b2)/(t3 – t2).  Note that the measurement error in the ILI data may cause ri to be 

negative.  In this case, ri was set to zero because the actual defect depth cannot decrease; 

the corresponding predicted depth in 2010, xpi, is then obtained from xpi = (yi3 – a3)/b3 + 

rit, where t denotes the interval between the time of the last inspection (i.e. year 2007) 

up to the time of prediction (i.e. year 2010) and therefore equals three years.  The 

comparison of the predictions for the 62 defects given by the three growth models is 

depicted in Fig. 3.10.  The MSEP value and percentage of predictions within actual depth 

10 %wt associated with each of the three growth models are also shown in the same 

figure.  The results indicate that the difference between the predictions corresponding to 

the IGP- and HGP-based models is negligible, whereas the conventional growth model 

leads to markedly poorer predictions compared with the two Bayesian growth models. 
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Figure 3.10 Comparison of the predictions of the IGP-, GP-based and conventional 

models 

3.6 Conclusions 

An inverse Gaussian process-based model was proposed to characterize the growth of 

depths of metal-loss corrosion defects on underground energy pipelines.  The model 

includes a parameter  that defines the average growth rate over time, the corrosion 

initiation time t0, and a scale parameter .  All the parameters were assumed to be 

uncertain and evaluated using the hierarchical Bayesian methodology based on the 

inspection data obtained from multiple ILI runs.  The biases, random scattering errors as 

well as the correlations between the random scattering errors associated with the ILI tools 

were accounted for in the Bayesian inference.  Markov Chain Monte Carlo simulation 

techniques were employed to carry out the Bayesian updating and numerically evaluate 

the posterior distributions of the parameters in the growth model. 
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models were developed for 62 external corrosion defects that have been subjected to 

multiple ILI runs and were excavated, field measured in ditch and mitigated.  The ILI 

data obtained from the inspections prior to the field measurement were used to carry out 

the Bayesian updating and evaluate the model parameters in the growth models 

corresponding to the 62 corrosion defects considered.  The median values of the updated 

model parameters were then used to predict the depths of the defects at the time of the 

field measurements.  The predictive quality of the growth model was validated by 

comparing the predicted defect depths with the corresponding field-measured depths. 

While the corrosion initiation time t0 was assumed to be defect-specific, four scenarios 

in which the model parameters  and  were assumed to be either defect-specific or 

common for all defects were considered to investigate the impact of these assumptions on 

the predictive accuracy of the growth model.  Scenario I (i.e. the baseline case) assumes 

that  is defect-specific and  is common for all defects; Scenario II assumes that  and  

are both defect-specific; Scenario III assumes that  and  are both common for all 

defects, and Scenario IV assumes that  is common for all defects and  is defect-

specific.   

The analysis results suggest that the model corresponding to the baseline case predicts 

the growth of the defect depth reasonably well: the absolute deviations of the predicted 

depths from the field-measured depths are less than or equal to 10 %wt for 90% of the 62 

defects.  The assumption of defect-specific  generally leads to a better prediction than 

the assumption of common for all defects regardless of whether  is assumed to be 

defect-specific or common for all defects.  Of the four scenarios considered, the MSEP 

corresponding to Scenario I is the lowest, which indicates the highest predictive 

accuracy; the MSEP corresponding to Scenario II is only marginally higher than that of 

Scenario I.  On the other hand, the MSEPs corresponding to Scenarios III and IV (both 

assuming  common for all defects) are markedly higher than those of Scenarios I and II.  

Sensitivity analysis suggests that the prior distribution of  has a significant impact on 

the predictive accuracy of the growth model whereas the impact of the prior distribution 

of  on the predictive accuracy is negligible.  The proposed model provides a viable 
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alternative to predict the corrosion growth on energy pipelines based on imperfect 

inspection data and will facilitate the corrosion management of pipelines.   
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Chapter 4 Geometric Brownian Motion-based Corrosion 

Growth Modeling Based on Imperfect Inspection Data 

4.1 Introduction 

The use of the Markov chain, gamma process and inverse Gaussian process to model 

the metal-loss corrosion growth on pipelines has been reported in the literature (e.g. Hong 

1999; Valor et al. 2007; Timashev et al. 2008; Caleyo et al. 2009; Zhou et al. 2012; 

Zhang et al. 2013).  In particular, the Bayesian methodology has been employed to 

evaluate the parameters of the gamma and inverse Gaussian processes-based corrosion 

growth models using in-line inspection (ILI) data that are associated with measurement 

errors, which has been described in Chapters 2 and 3, respectively.   

The gamma and inverse Gaussian processes-based models respectively assume that 

the corrosion process consists of a series of independent gamma- and inverse Gaussian-

distributed increments, which are also independent of the state of corrosion (e.g. the 

overall defect depth and length at a given time) (Zhang et al. 2012; Zhang and Zhou 2013; 

Zhang et al. 2013).  Both models are therefore referred to as the state-independent model 

(Guida and Pulcini 2013).  The Markov chain- (MC-) based models reported by Hong 

(1999) and Caleyo et al. (2009) assume the corrosion process as a transition of a series of 

discrete damage states, governed by the so-called transition probability function.  These 

models imply that the corrosion increment depends on the current corrosion state 

(referred to as the state-dependent model).  The main limitations of the MC-based models 

include (1) the accuracy of the model is sensitive to the total number of discrete damage 

states (Hong 1999, Guida and Pulcini 2011), and (2) it is not straightforward to evaluate 

the transition probability function when the inspection data are imperfect.   

Recently, an inverse gamma process-based model, as an alternative to the MC-based 

model, was reported by Guida and Pulcini (2013) to characterize the state-dependent 

deterioration process.  The inverse gamma process-based model does not require 

discretization of the damage state or evaluation of the transition probability function 

(Guida and Pulcini 2013); however, this model is somewhat complex because a 
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complicated expression of the state-dependent conditional probability density function 

(PDF) of the increments is involved. 

The Brownian motion (or Wiener process) and geometric Brownian motion have been 

widely reported for modeling degradation (e.g. Whitemore and Schenkelberg 1997; Park 

and Padgett 2005; Gebraeel and Pan 2008; Wang 2010; Ye et al. 2012).  The geometric 

Brownian motion differs from the Brownian motion in that the former characterizes the 

logarithm of the degradation as a Brownian motion.  However, a notable drawback of 

using both the Brownian motion and geometric Brownian motion to model the corrosion 

growth is that they cannot rigorously characterize the monotonic nature of growth, since 

the Gaussian-distributed increments of a Brownian motion can be either positive or 

negative.   

To evaluate the reliability of bridge beams with degrading capacities, Elsayed and 

Liao (2004) employed the geometric Brownian motion to characterize the degradation 

rate; that is, the logarithm of the degradation rate of the bridge beam capacity was 

characterized by a Brownian motion.  This model ensures the degradation process to be 

monotonic, which is an improvement over the previously proposed Brownian motion-

based degradation models.  Furthermore, the current growth rate depends on the previous 

growth rate, which implicitly makes the growth rate dependent on the current state of the 

degradation; therefore, the model is state-dependent.  The maximum likelihood method 

was used to estimate the model parameters using the degradation data subjected to 

measurement error.  Note that the measurement error considered in the study is somewhat 

simplistic, represented by a Gaussian-distributed additive random term with a mean of 

zero and a standard deviation that is invariant among different inspections.  The potential 

bias in the inspection data as well as the correlation between the measurement errors 

associated with different inspections were not considered.   

It is observed that the state-dependent growth models for corrosion on underground 

steel pipelines reported in the literature are all based on Markov chains and therefore 

have notable drawbacks as discussed above.  Motivated by this observation, the 

geometric Brownian motion is explored in this study for characterizing the growth rate of 
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depths of corrosion defects on underground pipelines.  Compared with the work of 

Elsayed and Liao (2004), the present work is novel in the following four aspects.  First, 

the corrosion initiation time is incorporated in the growth model.  Second, the model is 

applicable to individual defects, i.e. defect-specific.  This is more advantageous than, for 

example, a segment-specific growth model in that the defect-specific model takes into 

account the heterogeneity of the corrosion data along the pipeline and facilitates the 

identification of the critical defects.  Third, a realistic characterization of the 

measurement error associated with the inspection data is incorporated in the model, 

which includes the bias, random scattering error and correlation between the random 

scattering errors associated with different inspections.  Finally, the model is formulated in 

a hierarchical Bayesian framework, and the Markov Chain Monte Carlo (MCMC) 

simulation techniques are used to evaluate the probabilistic characteristics of the model 

parameters by incorporating inspection data obtained from multiple ILI runs.   

The chapter is organized as follows.  Section 4.2 gives a brief description of the 

standard Brownian motion, the usual form of the Brownian motion-based degradation 

model as well as the geometric Brownian motion-based degradation rate model.  Sections 

4.3 and 4.4 present the Bayesian updating of the corrosion growth model and the 

methodology to predict the defect growth, respectively.  An example involving ILI data 

collected from a real in-service natural gas pipeline to illustrate and validate the proposed 

growth model is given in Section 4.5, followed by conclusions in Section 4.6.   

4.2 Brownian Motion-based Degradation Model 

4.2.1 Standard Brownian Motion 

A standard Brownian motion (or Wiener process) is a continuous-time stochastic 

process W = {W(t); t ≥ 0} with the following properties (Beichelt and Fatti 2002). 

(1) W has a continuous path with W(0) = 0 and W(t)  (-∞, +∞); 
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(2) W has stationary and independent increments.  In other words, for any t1 < t2 ≤ t3 < 

t4, W(t2) – W(t1) and W(t4) – W(t3) are independent normally distributed with zero mean 

and variances equal to t2 – t1 and t4 – t3, respectively, and  

(3) W is a Gaussian process: for all t > 0, W(t) is normally distributed with a mean of 

zero and a variance of t.  

4.2.2 Usual Form of Brownian Motion-based Degradation Model 

Consider a degradation process {X(t) > 0; t > 0}.  The well-adopted form of the 

Brownian motion-based model to characterize X(t) is (e.g. Whitmore and Schenkelberg 

1997; Wang 2010): 

                (4.1) 

where (t) is the drift term, a positive and non-decreasing deterministic function of time, 

e.g. (t) = t, with  ( > 0) denoting the deterministic drift parameter;  denotes the 

diffusion parameter, and W(t) is the standard Brownian motion defined in Section 4.2.1.  

Equation (4.1) indicates that X(t) is a Brownian motion with independent increments X(t) 

= X(t + t) – X(t), where X(t) is normally distributed and has a mean of (t) = (t + t) 

– (t) and a variance of 2
t.  Furthermore, Equation (4.1) implies that the mean of the 

degradation trajectory (i.e. (t)) is positive and monotonic increasing over time; however, 

a particular realization of the degradation trajectory given by Eq. (4.1) is not necessarily 

both positive and monotonically increasing, as shown in Figure 4.1, which illustrates five 

realizations of the Brownian motion characterized by Eq. (4.1) with  and 2
 equal to 0.5 

and 4, respectively, as well as the mean of the Brownian motion (i.e. (t)).  Therefore, 

this model cannot properly characterize the positive and monotonically increasing nature 

of corrosion growth.   
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Figure 4.1 Illustration of realizations of the Brownian motion 

Considering that the desirable model to characterize the degradation process must be 

positive, Park and Padgett (2005) proposed the geometric Brownian motion to model the 

degradation process.  In this model, the logarithm of X(t) is defined as a Brownian motion, 

that is 

                    (4.2) 

where ln(X(t)) has the same properties as those of X(t) indicated by Eq. (4.1).  It can be 

inferred that the model given by Eq. (4.2) still does not guarantee X(t) to be 

monotonically increasing although it ensures X(t) to be positively defined.  To overcome 

the underlying drawbacks of the degradation models given by Eqs. (4.1) and (4.2), the 

geometric Brownian motion-based growth rate model developed by Elsayed and Liao 

(2004) is used in this study and described in the following sections. 

4.2.3 Geometric Brownian Motion-based Growth Rate Model 

The geometric Brownian motion-based growth rate (GBMGR) model is different from 

Eqs. (4.1) and (4.2) in that the GBMGR model characterizes the growth rate of the defect 

depth as a geometric Brownian motion.   
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Elsayed and Liao (2004) proposed that the instantaneous degradation rate at time t, r(t), 

be given by 

                      (4.3a) 

i.e. 

                         (4.3b) 

where r0 denotes the initial degradation rate, and  and  denote the drift and diffusion 

parameters, respectively.  Implicit in Eq. (4.3b) is that ln(r(t2)) – ln(r(t1)) = t + W(t) 

with t = t2 – t1 and t2 > t1.  It follows that the logarithm of the instantaneous degradation 

rate at the present time t2, ln(r(t2)), can be related to that at the previous time t1, ln(r(t1)), 

through the Brownian motiongiven by Eq. (4.1); that is, ln(r(t2)) = ln(r(t1)) + t + 

W(t).  This implies that r(t2) is dependent on the current state of the degradation; 

therefore, the GBMGR model is a state-dependent model.   

If the ILI data are available from multiple inspections, characterization of the growth 

of the corrosion defect can be established from the perspective of modeling the 

instantaneous growth rate at times of the inspections based on the GBMGR model 

described above.  The GBMGR model adopted in this study to characterize the growth of 

corrosion defects on pipelines is described as follows. 

Suppose that m active corrosion defects on a given pipeline have been inspected n 

times.  Let xij denote the actual depth (i.e. in the through pipe wall thickness direction) of 

defect i at the time of the j
th

 inspection, tij.  In practice, the time interval between two 

consecutive inspections is not necessarily constant (see Figure 4.2).  Two key 

assumptions are involved in this model.  First, the instantaneous growth rate at time ti,j-1, 

denoted by ri,j-1, is greater than zero and remains constant between the time interval ti,j-1 

= tij – ti,j-1 (j = 1, 2, 3, …, n) with ti0 denoting the initiation time of defect i; that is, ri,j-1 

equals the average growth rate within ti,j-1 and ri,j-1 = (xij – xi,j-1)/ti,j-1.  This assumption 

implies that the actual growth path is approximated by a piecewise linear path defined 

based on the inspection intervals; the constant growth rate within a given inspection 
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interval is considered a reasonable practical choice, as long as the inspection interval is 

not too long (say, ≤ 5 years).  Second, the differences of the logarithms of rij and ri,j-1, 

denoted by ij (j = 1, 2, 3, …, n – 1), are independent and normally-distributed with a 

mean of ti,j-1 and a variance of 2
ti,j-1 ( and 2

 are constant but uncertain 

parameters), i.e. ij ~ N(ti,j-1, 
2
ti,j-1), with N() denoting the normal distribution 

function.  The notations are schematically illustrated in Figure 4.2.  For simplicity, ri0 and 

ij shown in Figure 4.2 are referred to as the initial average growth rate and the random 

noise of the average growth rate, respectively. 

 

Figure 4.2 Illustration of notations 

It follows from the above-mentioned assumptions and Eq. (4.3) that ln(rij), as 

indicated by Eq. (4.4), can be characterized by a Brownian motion: 

                                        (j = 1, 2, 3, …, n – 1) (4.4) 

where the drift parameter  defines the deterministic trend in the difference between the 

logarithms of average growth rates corresponding to two consecutive inspection intervals 

(i.e. ln(rij) and ln(ri,j-1)); the standard Brownian motion W(t) characterizes the random 

noise in the change from ln(ri,j-1) to ln(rij), and the diffusion parameter  is a scaling 

factor that quantifies the uncertainty in the random noise, i.e. 2
ti,j-1 being the variance 
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of the random noise.  Note that as per the definition of W(t) the variance of the random 

noise increases linearly with the length of the time interval between the current and 

previous inspections, which appears reasonable given that the growth rate is averaged 

over the time interval.   

Given a realization of ln(ri,j-1),  and , Equation (4.4) indicates that ln(rij) follows a 

normal distribution with a mean of ln(ri,j-1) + ti,j-1 and a variance of 
ti,j-1, i.e. ln(rij) ~ 

N(ln(ri,j-1) + ti,j-1, 
2
ti,j-1).  This normal distribution essentially defines the transition 

probability from ln(ri,j-1) to ln(rij).  It follows that rij is lognormally distributed with the 

mean and variance, denoted by E[rij] and V[rij] respectively, expressed as 

                    
 

 
            (4.5a) 

               
 
                                      (4.5b) 

The depth at the time of the j
th

 inspection, xij, can be calculated through 

                         (4.6) 

where the defect depth at t = ti0 (i.e. xi0) is assumed to equal zero with a probability of 

one. 

It must be emphasized that Eq. (4.4) should be interpreted as rij following a lognormal 

distribution, given  and , and a realization of ri,j-1.  Equation (4.5a) indicates that 

different combinations of the values of  and  can lead to E[rij] equal to, greater than or 

less than ri,j-1, which implies that the GBMGR model, as pointed out by Elsayed and Liao 

(2004), is able to characterize a linear, an accelerating, and a decelerating mean growth 

path; however, a specific assumption about the mean growth path is not required.  From 

this standpoint, this model is more flexible than the gamma process- and inverse 

Gaussian process-based models reported in the literature (Pandey et al. 2009; Zhang and 

Zhou 2013; Zhang et al. 2013) in that the latter models typically assume the mean growth 

path to be a linear or power-law function of time.  The GBMGR model is also more 

advantageous than the Markov chain models developed by Hong (1999) and Caleyo et al. 
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(2009) in that it does not require discretizing the damage state or evaluating the transition 

probability.  The GBMGR model proposed in this study is considered suitable for 

pipelines for which multiple (say, ≥ 3) sets of ILI data are available and the inspection 

interval is not too long (say, ≤ 5 years).  Such pipelines are not uncommon in practice.   

4.3 Bayesian Updating of the Growth Model 

4.3.1 Likelihood Function 

Denote yi = (yi1, yi2, …, yij, …, yin)′ and i = (i0, i1, …, i,n-1)′, with “′” representing 

transposition.  For defect i, it follows from the relationship between the measured and 

actual depths defined by Eq. (2.8) in Chapter 2 that the likelihood function of the 

inspection data, yi, conditional on ri0, i and ti0 can be expressed as: 

                      
 

     
  

 

      
 

 
            

 
    

 
  

                

 (4.7) 

where a = (a1, a2, …, an)′; b is an n-by-n diagonal matrix with the j
th

 element equal to bj, 

with aj and bj denoting the constant and non-constant biases associated with the ILI tool 

used in the j
th

 inspection; xi = (xi1, xi2, …, xij, …, xin)′ with the j
th

 element     

               
 
    

 
           and i0 = 0, and Ei = (Ei1, Ei2, …, Ein)′ denote the vector 

of random scattering errors associated with defect i for inspections j = 1, 2, …, n and is 

characterized by a multivariate normal distribution with a zero mean and a variance 

matrix, Ei, with the elements (Ei)kl equal to klkl (k, l = 1, 2, …, n), where k and l 

denote the standard deviation of the random scattering error associated with the tool used 

at the k
th

 and l
th

 inspections, and kl denotes the correlation coefficient between the 

random scattering errors associated with the k
th

 and l
th

 inspections (Al-Amin et al. 2012).   

Further denote  = (1, 2, …, m) and t0 = (t10, t20, …, tm0) and assume ij and lj (i ≠ 

l) are independent of each other for given inspection j conditional on , 2
, ti0 and tl0; that 

is, the exchangeability condition (Bernardo and Smith 2007) is applicable to ij (i = 1, 
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2, …, m) for a given inspection j.  Given that both  and 2
 were assumed to be common 

for all the defects over all the time intervals, the likelihood function of  conditional on 

, 2
 and t0 is given by 

                              

   

   

 

   

 

                                
   
   

 
    

    
     

 

   
  

              
 

       

   
   

 
      

 (4.8) 

where L(ij|, 2
, ti0) denotes the likelihood function of ij conditional on , 2

 and ti0, i.e. 

N(ti,j-1, 
2
ti,j-1).  It is noted that the potential spatial correlation between individual 

defects (given distribution parameters) was not considered in the above formulation due 

to a lack of suitable data (i.e. a set of closely spaced corrosion defects with known 

depths) to quantify the correlation.  

4.3.2 Prior and Posterior Distributions 

The aforementioned growth model includes a total of m(n + 1) basic parameters, 

namely m initial average growth rates (ri0) and initiation times ti0 (i = 1, 2, …, m) and m(n 

– 1) random noises of the average growth rate ij (i = 1, 2, …, m; j = 1, 2, …, n – 1), as 

well as another two hyper parameters (i.e.  and 2
).  The average growth rates over the 

other time intervals rij (i = 1, 2, …, m; j = 1, 2, …, n – 1) and the depths at the time of 

inspections xij (i = 1, 2, …, m; j = 1, 2, …, n) are latent parameters that facilitate the 

establishment of the likelihood of the inspection data conditional on the basic 

parameters .  In this study, the gamma distribution was selected as the prior distributions 

of ri0 (i = 1, 2, …, m) and 2
 considering that the gamma distribution ensures ri0 and 2

 to 

be positive quantities and can be conveniently made as a non-informative distribution 

(Gelman et al. 2004).  The PDF of a gamma distributed random variable Z is 

parameterized by fZ(z) = B
A
z

A-1
exp(-Bz)/(A) for z > 0, A > 0 and B > 0, with A denoting 

the shape parameter and B denoting the rate parameter (i.e. the inverse of the scale 
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parameter).  The normal distribution was assigned as the prior distribution of  because  

can be either positive or negative as described in Section 4.2.3.  The prior distribution of 

ti0 was chosen to be a uniform distribution with a lower bound of zero and an upper 

bound equal to the time interval between the installation of the pipeline and the first 

detection of defect i.  The ri0 (ti0) associated with different defects were further assumed 

to be mutually independent with the identical prior distribution (iid).  The hierarchical 

structure of the growth model represented by the directed acyclic graph (or DAG) 

(Spiegelhalter 1998) is shown in Figure 4.3, where the parameters defined at the top level 

(i.e. p1, q1, p2, q2, p3, q3, p4 and q4) indicate the distribution parameters of the prior 

distributions of the basic and hyper parameters.  More specifically, p1 and q1 denote the 

lower and upper bounds of the uniform prior distribution of ti0; p2 and q2 denote the mean 

and precision (or the inverse of variance) of the normal prior distribution of , and p3 (q3) 

and p4 (q4) denote the shape (rate) parameters of the gamma prior distributions of 2
 and 

ri0, respectively. 

 

Figure 4.3 DAG representation of the growth model 

Given the likelihood functions presented in Section 4.3.1 and the prior distributions 

described in Section 4.3.2, the full conditional posterior distributions of model parameters 
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were derived based on the Bayesian theorem given by Eq. (2.12) in Chapter 2 and are 

given in Appendix C. It is very difficult, if not impossible, to obtain the posterior 

marginal distributions of model parameters analytically, as implied by the full conditional 

posterior distributions of model parameters given in Appendix C.  Therefore, the MCMC 

simulation techniques implemented in the software OpenBUGS (Lunn et al. 2009) were 

employed to numerically evaluate the marginal distributions of the parameters.  A 

flowchart for illustrating the aforementioned methodology is shown in Figure 4.4, where 

the prediction is described in Section 4.4.  

 

Figure 4.4 Illustration of the Bayesian updating of the growth model 

4.4 Prediction 

This section presents the approaches to predict the growth of defect depth based on the 

parameters (i.e. xin, ri,n-1,  and 2
) evaluated from the MCMC simulation.  Without loss 

of generality, the time step for prediction is assumed to be a unit length, e.g. one year.  

Let ri(k) and xi(k) denote the average growth rate and depth corresponding to the k
th

-step 

(k = 1, 2, …) prediction (see Figure 4.2) since the most recent inspection considered in 

the Bayesian updating, respectively, i.e. the average growth rate within the time interval 

from tn + k – 1 to tn + k, and depth at time tn + k.  Three approaches, namely the predictive 
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analysis-based approach, mean value-based approach and extrapolation-based approach, 

were considered for the prediction of xi(k) and are described in the following sections.  

Note that the first approach incorporates the uncertainties associated with all the updated 

model parameters in the prediction of xi(k) and therefore is the so-called predictive 

analysis (Kruschke 2010), whereas the latter two approaches involve simplifying 

assumptions that make them more amenable to practical application than the predictive 

analysis-based approach.   

4.4.1 Predictive Analysis-based Approach 

Based on Eq. (4.4), the logarithm of the predicted growth rate corresponding to the k
th

 

step (i.e. ln(ri(k))) follows a Gaussian distribution given by 

           
                       

              

                                           

 
        

  (4.9) 

The predicted defect depth corresponding to the k
th

 step is then given by 

                
 
    (4.10) 

Note that xin, ri,n-1,  and 2
 in Eqs. (4.9) and (4.10) are uncertain.  To evaluate the 

probabilistic characteristics of ri(k) and xi(k), a sequence of sets of samples of ri,n-1,  and 

2
 generated from the MCMC simulation was used first to compute the means and 

variances of ri(k), which can then be used to generate samples of ri(k).  The samples of 

ri(k) were subsequently used to obtain samples of xi(k) from Eq. (4.10).  In this study, N0 

samples of ri(k) and N0 samples of xi(k) were used to evaluate their corresponding 

probabilistic characteristics, where N0 is the total number of sample sequences obtained 

from the MCMC simulation excluding those within the burn-in period.  Note that the 

number of samples of ri(k) and xi(k) (i.e. N0) is set the same as the number of sample sets 

generated in the MCMC simulations for the sole purpose of facilitating the 

implementation of the program in OpenBUGS.  Both the median and mean values of xi(k) 

can be used to predict the actual depth at the k
th

 step.   
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4.4.2 Mean Value-based Approach 

Let E[ri(k)] and V[ri(k)] denote the mean and variance of ri(k) (k = 1, 2, …), 

respectively.  It follows from Eq. (4.9) that E[ri(k)] and V[ri(k)] can be obtained as 

follows:  

          
             

 

 
                  

             
 

 
                    

  (4.11a) 

          
        

 
                                             

                                                                

  (4.11b) 

Further assume xin and ri(l) (l = 1, 2, …, k) to be mutually independent.  Then the 

mean and variance of xi(k), denoted by E[xi(k)] and V[xi(k)] respectively, can be evaluated 

by: 

                         
 
    (4.12a) 

                         
 
    (4.12b) 

The use of Eq. (4.12) to predict the defect depth was also considered in this study.  To 

this end, the median or mean values of ri,n-1,  and 2
 obtained from the MCMC 

simulation can be substituted into Eqs. (4.11a) and (4.11b) to evaluate E[ri(k)] and 

V[ri(k)].   

4.4.3 Extrapolation-based Approach 

If the temporal variability of the growth path over the forecasting period is ignored, 

the predicted depths can also be approximately obtained by extrapolating the current 

growth rate (i.e. ri,n-1) into the future, i.e. xi(k) = xin + k∙ri,n-1, where xin and ri,n-1 can be set 

to the corresponding median or mean values evaluated from the MCMC simulation.  A 

comparison of the predictive quality corresponding to the above-mentioned approaches is 

given in Section 4.5. 
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4.5 Example 

4.5.1 Model Validation 

In this section, the growth models were developed for the 62 external corrosion 

defects described in Section 2.6.1 of Chapter 2.  The same sets of ILI data (i.e. the ILI-

reported depth in 2000, 2004 and 2007) were used to carry out the Bayesian updating.  

The parameters of the prior distributions, i.e. the parameters at the top level of Figure 4.3, 

were specified as follows: p1 = 0 (year), q1 = 28 (year), p2 = 0 (year
-1

), q2 = 10000 (year
2
), 

p3 = 10, q3 = 10 (year), p4 = 1 and q4 = 1 (year/%wt).  It follows from Section 4.3.3 that q1 

denotes the time elapsed since the installation time of the pipeline (i.e. 1972) up to the 

time of the first inspection (i.e. 2000) and therefore equals 28 years.  The values of p2 and 

q2 imply that the normal prior distribution of  has a mean of zero and a standard 

deviation of 0.01 (year
-1

), which is an informative prior distribution considering that the 

deterministic change between the average growth rates corresponding to two consecutive 

inspection intervals is likely to be small because the inspection intervals are not long (≤ 4 

years).  The values of p3 and q3 (p4 and q4) imply that the mean and variance of the prior 

distribution of 2
 (ri0) equal 1 (year

-1
) and 0.1 (year

-2
) (1 (%wt/year) and 1 (%wt/year)

2
), 

respectively.  A total of 20,000 MCMC simulation sequences were generated with the 

first 2000 sequences considered as the burn-in period (Gelman et al. 2004) and therefore 

discarded.  The samples in the rest of the sequences were used to evaluate the 

probabilistic characteristics of the parameters in the growth models.  Six scenarios were 

considered and summarized in Table 4.1 in terms of predicting the defect depths in 2010.  

It should be emphasized that the predicted defect depths in 2010 in Scenarios I and II are 

respectively the median and mean values of the 18,000 samples (i.e. equal to the total 

number of MCMC sequences excluding the number of sequences in the burn-in period) 

of the defect depth in 2010 per the predictive analysis-based approach, as described in 

Section 4.4.1.  On the other hand, the predictions corresponding to Scenarios III through 

VI are based on the median or mean values of the model parameters per mean value- and 

extrapolation-based approaches as described in Sections 4.4.2 and 4.4.3, respectively.  A 

comparison between the predicted depths, xp, in 2010 based on Scenario I and the 

corresponding field-measured depths, xa, for the 62 defects is shown in Figure 4.5.   
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Table 4.1 Summary of the six scenarios for model prediction 

Scenario Approach of prediction 
Values of prediction and parameters 

employed in prediction 

I (Baseline) 
Predictive analysis-based

*
 

Median 

II Mean 

III 
Mean value-based

+
 

Median 

IV Mean 

V 
Extrapolation-based

+
 

Median 

VI Mean 

*: Predictions are the median or mean values of the predicted depths. 

+: The median or mean values of the model parameters are used to evaluate the predicted 

depths.  

 

Figure 4.5 Comparison of the predicted and field-measured depths in 2010 for Scenario I 

Figure 4.5 suggests that the proposed model can predict the corrosion growth 

reasonably well for a majority of the defects considered, as the predicted depths for 89% 
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of the 62 defects fall within the region bounded by the two dashed lines, with the top and 

bottom lines representing xp = xa ± 10 %wt, respectively.  Note that the two bounding 

lines are commonly used in the pipeline industry as a confidence interval for the accuracy 

of the inspection tool and were adopted in this study as a metric for the predictive 

accuracy of the corrosion growth model.  To illustrate the deviation of the predicted 

depths from the actual depths, one solid line representing xp = xa is also plotted along 

with the two bounding lines in the same figure.  The predicted depths show significant 

deviation (defined as the absolute difference between the predicted and actual depths 

being greater than 10%wt) from the corresponding actual depths for seven defects, with 

the maximum absolute deviation being approximately 21%wt (Defect #49).   

The median, 10- and 90-percentile values of the growth paths for ten arbitrarily 

selected defects, i.e. Defects #2, #4, #5, #7, #15, #18, #19, #49, #60 and #61, are plotted 

in Figures 4.6(a) through 4.6(j), respectively.  The median, 10- and 90-percentile values 

were evaluated using the samples of xi(k) generated based on each sequence of model 

parameters obtained from MCMC simulations.  For comparison, the corresponding ILI-

reported depths in 2000, 2004, 2007 and 2009 as well as the field-measured depth in 

2010 are also plotted in the same figure.  Figure 4.6 shows that the predicted growth 

paths are, as expected, piecewise linear.  The results indicate that the predicted growth 

path differs from defect to defect; this is expected because the parameter ti0 and ri0 are 

assumed to be defect-specific.  The use of Eqs. (4.9) and (4.10) to predict the growth of 

the defect depth implies that the predicted depth is largely influenced by the predicted 

average growth rate over the time interval between the last two inspections, i.e. ri,n-1.  The 

investigation further indicates that the statistics of ri,n-1 are markedly impacted by the last 

two sets of ILI data used in the Bayesian updating.  Therefore, if the inspection data in 

the last two inspections are subjected to large measurement errors, the predicted average 

growth rate is expected to deviate markedly from the actual average growth rate and 

therefore leads to a poor prediction for the defect depth.  For example, the ILI-reported 

depth in 2007 for Defect #49 shown in Figure 4.6(h) involves relatively large 

measurement errors, as inferred from a comparison with the ILI data reported in 2000, 
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2004 and 2009, and field-measured data.  This is considered the main reason for a poor 

prediction for Defect #49.   
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(i) 

 

(j) 

Figure 4.6 Predicted growth paths for Defects #2, #4, #5, #7, #15, #18, #19, #49, #60 and 

#61 

To investigate the differences of the predictions corresponding to the six scenarios 

described in Table 4.1, the comparison of the predicted depths in 2010 with the field-

measured depths corresponding to Scenarios II through VI are plotted in Figures 4.7(a) 
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through 4.7(e), respectively.  The overall comparison of the predictions associated with 

the six scenarios considered is depicted in Figure 4.7(f).  The corresponding MSEP (i.e. 

mean squared error of prediction) (Bunke and Droge 1984; Harville and Jeske 1992) 

values as stated in Chapter 2 as well as the percentage of total number of defects falling 

within the bounded region associated with each of the six scenarios are also shown in 

Figure 4.7(f). Figure 4.7(f) indicates that MSEP values associated with Scenarios II 

through V are slightly larger than those associated with Scenarios I and VI.  It also 

indicates that the predictive accuracy of Scenario VI, i.e. the approximate method based 

on the mean values of xi,n and ri,n-1, is statistically the same as that of Scenario I given that 

the predictions corresponding to both scenarios have the same MSEP values.  This 

suggests that the approximate method corresponding to Scenario VI is adequate to predict 

the growth of corrosion defect, although it ignores the temporal variability of the growth 

over the forecasting period.   
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(c)                                                                        (d) 

  
(e)                                                                         (f) 

Figure 4.7 Comparison of the predictions corresponding to Scenarios I through VI 

The posterior distributions of  and 
 evaluated using the MCMC samples are plotted 

in Figure 4.8(a) and 4.8(b), respectively, where the symbols M and SD denote the mean 

and standard deviation, respectively.  For comparison, the prior distributions of  and 
 

specified in the Bayesian updating are plotted in the same figure as well.  The marked 

difference between the probability density functions of the prior and posterior 

distributions shown in Figure 4.8 illustrates the contribution of the information implied in 

the ILI data that the Bayesian approach used to update the prior knowledge of model 

parameters. 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
re

d
ic

te
d

 d
ep

th
, 
x p

(%
w

t)

Field measured depth, xa (%wt)

Scenario IV

xp = xa + 10%wt

xp = xa

xp = xa - 10%wt

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
re

d
ic

te
d

 d
ep

th
, 
x p

(%
w

t)

Field measured depth, xa (%wt)

Scenario V

xp = xa + 10%wt

xp = xa

xp = xa - 10%wt

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
re

d
ic

te
d

 d
ep

th
, x

p
(%

w
t)

Field measured depth, xa (%wt)

Scenario VI

xp = xa + 10%wt

xp = xa

xp = xa - 10%wt

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

P
re

d
ic

te
d

 d
ep

th
, x

p
(%

w
t)

Field measured depth, xa (%wt)

I

II

III

IV

V

VI

Scenario    MSEP     %

49

58

58

55

53

49

89

89

87

89

89

89

xp = xa + 10%wt

xp = xa

xp = xa - 10%wt



117 

 

 

(a) 

 

(b) 

Figure 4.8 The prior and posterior distributions  of 


4.5.2 Comparison with Other Growth Models 
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models stated in Chapters 2 and 3, respectively, as well as the conventional linear growth 

model stated in Section 3.5.3 of Chapter 3.  Scenario II-1 of the HGP-based model and 

Scenario I of the IGP-based model (i.e. the posterior median values of the model 

parameters were used to predict the depth for both models) were considered in the 

comparison.  The predictions corresponding to the GBM-based model were obtained 

from the approximate approach (i.e. the results corresponding to Model 1-3 shown in 

Figure 4.5).  The comparison of the predictions for the 62 defects given by the four 

growth models is shown in Figure 4.9.  The MSEP value and percentage of predictions 

within the two bounding lines associated with each of the four models are also shown in 

the same figure.  The results indicate that the predictions corresponding to the proposed 

model is similar to the HGP- and IGP-based models, whereas the conventional linear 

growth model leads to significantly poorer predictions compared with the three Bayesian 

growth models.  

 

Figure 4.9 Comparison with the HGP- and IGP-based and conventional growth models 
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4.6 Conclusions 

The geometric Brownian motion-based growth rate (GBMGR) model is formulated in 

a hierarchical Bayesian framework to characterize the growth of depths of individual 

metal-loss corrosion defects on underground steel pipelines based on imperfect ILI data.  

The model approximates the actual growth path of a corrosion defect with a piecewise 

linear path, and characterizes the average growth rate between two consecutive 

inspections as a geometric Brownian motion.  The model is a state-dependent growth 

model in that the growth rate is implicitly dependent on the current state of corrosion, and 

is more advantageous than the Markov chain-based state-dependent models because it 

does not require discretizing the damage state or evaluating the transition probability.  

Compared with the gamma process- and inverse Gaussian process-based growth models 

reported in the literature, which consist of independent increments and are state-

independent, the proposed model does not involve specific assumptions about the mean 

growth path (e.g. linear or power-law function of time) and therefore is more flexible.  

The model is suitable for pipelines whereby multiple sets of ILI data (say, ≥ 3) are 

available and the inspection interval is not too long (say, ≤ 5 years).   

The Markov Chain Monte Carlo simulation techniques were employed to carry out the 

Bayesian updating and numerically evaluate the posterior marginal distributions of the 

parameters in the growth model based on the ILI data.  A general form of the 

measurement error in the ILI data was considered, which includes the biases, random 

scattering error as well as correlations between the random scattering errors associated 

with different ILI tools.  An example involving real ILI data collected from a natural gas 

pipeline that is currently in service in Alberta, Canada was used to illustrate and validate 

the proposed model.  The growth models were developed for 62 external corrosion 

defects that have been subjected to multiple ILI runs and were excavated, field measured 

in ditch and recoated.  The ILI data obtained from the inspections prior to the field 

measurement were used to carry out the Bayesian updating and evaluate the model 

parameters in the growth models corresponding to the 62 corrosion defects considered.  

The predictive quality of the growth model was demonstrated by comparing the predicted 

defect depths with the corresponding field-measured depths. 
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The analysis results indicate that the predicted defect depths obtained from the 

predictive analysis (i.e. the uncertainties in all of the updated model parameters included) 

agree reasonably well with the corresponding field-measured depths: the absolute 

deviations between the two depths are less than or equal to 10%wt for 89% of the 62 

defects.  The approximate approach for prediction, which extrapolates the current growth 

rate based on the posterior mean values of the model parameters, can also give a 

reasonably good prediction.  The prediction is sensitive to the predicted average growth 

rate over the time interval between the last two inspections, the statistics of which are 

significantly influenced by the last two sets of ILI data included in the Bayesian updating.  

Results of a comparative study suggest that the predictive capability of the proposed 

model is similar to that of the homogeneous gamma process- and inverse Gaussian 

process-based Bayesian growth model, but is markedly better than that of the 

conventional linear growth model commonly used in the pipeline industry.  

The proposed model offers a viable alternative to predicting the corrosion growth on 

oil and natural gas pipelines based on imperfect inspection data and will facilitate the 

corrosion management of underground pipelines. 
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Chapter 5 System Reliability of Corroding Pipelines 

Considering Stochastic Process-based Models for Defect 

Growth and Internal Pressure 

5.1 Introduction 

Metal-loss corrosion threatens the structural integrity and safe operation of oil and gas 

pipelines worldwide (Cosham et al. 2007; Nessim et al. 2009).  The reliability-based 

corrosion management program is being increasingly used in the pipeline industry 

because it provides a reasonable framework to account for the various uncertainties (e.g. 

measurement error, and randomness associated with the corrosion growth and material 

properties) that impact the development of suitable maintenance strategies.  The 

reliability-based pipeline corrosion management typically includes three tasks, namely 

periodic high-resolution inline inspections (ILIs) to detect and size corrosion defects on a 

given pipeline, failure probability evaluation of the pipeline based on the inspection 

results and mitigation of defects.  

The majority of reliability analyses of corroding pipelines reported in the literature 

(e.g. Ahammed 1998; Pandey 1998; Caleyo et al. 2002; Amirat et al. 2006; Teixeira et al. 

2008; Zhou 2010; Zhou et al 2012 ) employed random variable-based growth models for 

the depth (i.e. in the through pipe wall thickness direction) and length (i.e. in the 

longitudinal direction of the pipe) of the corrosion defect.  Furthermore, the internal 

pressure of the pipeline is typically assumed to be either a (time-independent) random 

variable or a deterministic quantity while in reality the internal pressure varies with time 

and should be characterized as a stochastic process.  A simple stochastic process, the 

Ferry-Borges process, was employed in (Zhou 2010) to model the internal pressure for 

evaluating the system reliability of corroding pipelines.  However, the Ferry-Borges 

process, which characterizes the internal pressures over individual years as independent 

random variables, is somewhat simplistic; therefore, more realistic and sophisticated 

models for the internal pressure are desirable for the reliability analysis.  Note that 

sophisticated stochastic process-based load models have been employed in the reliability 
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analysis of building structures (Madsen 2006; Melchers 1999; El-Reedy 2009), e.g. the 

Poisson Square Wave Process (PSWP) for modelling the sustained live loads.  

This chapter presents a methodology to evaluate the system reliability of onshore 

natural gas pipelines containing multiple active metal-loss corrosion defects subjected to 

internal pressure.  The methodology employs the growth models described in Chapters 2 

though 4 to characterize the growth of depths of corrosion defects and PSWP to model 

the internal pressure of the pipeline.  The simple Monte Carlo simulation is used to 

evaluate the system reliability of the pipeline in terms of three distinctive failure modes, 

namely small leak, large leak and rupture (Zhou 2010).  The methodology can be 

incorporated in a reliability-based pipeline integrity management program to assist 

engineers in selecting suitable strategies for corrosion maintenance. 

The remainder of the chapter is organized as follows.  Section 5.2 briefly summarizes 

the growth models and describes the approach of generating the growth path in a 

simulation trial based on a given growth model; Section 5.3 presents the internal pressure 

model; the limit state functions associated with different failure modes and methodology 

for evaluating the time-dependent system reliability of corroding pipelines containing 

multiple active corrosion defects are presented in Section 5.4; an example to illustrate 

above-described methodologies and investigate the impact of the growth models on the 

time-dependent failure probabilities is shown in Section 5.5, followed by the conclusions 

in Section 5.6.   

5.2 Time-dependent Corrosion Growth Models 

Four growth models, namely the non-homogeneous gamma process- (NHGP-), 

homogeneous gamma process- (HGP-), inverse Gaussian process- (IGP-) and geometric 

Brownian motion- (GBM-) based growth models, as described in Chapters 2 through 4, 

were considered in this chapter to carry out the time-dependent reliability analysis of 

corroding pipelines containing multiple active corrosion defects.  Without loss of 

generality, suppose m corrosion defects, each of which has n sets of ILI data obtained 

from different ILI runs, were used to carry out the Bayesian updating.  It follows from 

Chapters 2 through 4 that t denotes the time elapsed since the installation of pipeline; ti0 (i 
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= 1, 2, …, m) denotes the initiation time of the i
th

 defect (e.g. time elapsed since the 

installation of pipeline up to the time at which the defect start to growth), and tij denotes 

the time of the j
th

 inspection for the ith defects.  Let T (years) denote the forecasting 

period of time-dependent reliability analysis starting from the most recent inspection that 

was carried out tin years after the installation of the pipeline, and di(tin + ) ( = 1, 2, …, 

T) denote the actual depth of the i
th

 defect at the forecasting year  since the last 

inspection considered in the Bayesian updating.  The model-specific procedure to 

generate the depth of the i
th

 defect at year tin +  (i.e. forecasting year ), di(tin + ), is 

described as follows. 

5.2.1 Gamma Process-based Model 

It follow from Equation (2.1) in Chapter 2 that the growth of the depth of the i
th

 defect 

within the t
th

 year (t = 1, 2, …, tin + ), denoted by dit(1), follows a gamma distribution 

with a probability density function (PDF) given by 

                      
                                              (5.1) 

where it and i denote the shape and rate parameters associated with the growth of 

defect i within the t
th

 year, respectively; (∙) is the gamma function, and I(0, ∞)(t) is the 

indication function and equals unity if both dit(1) > 0 and t > ti0, and zero otherwise.  It 

follows form Eq. (2.6) that Ait = , (t ≥ ti0 + 1), for the homogeneous gamma process 

(HGP) and Ait = (t-ti0)

 - (t-1-ti0)


, (t ≥ ti0 + 1), for the non-homogeneous gamma 

process (NHGP).  Given a simulation trial, di(tin + ) can be generated as follows: 

(1) generate dit(1) (t = 1, 2, …, tin + ) from the gamma distribution given by Eq. 

(5.1) with , i,  and ti0 equal to their corresponding posterior mean or median values 

evaluated from the MCMC simulation; 

(2) calculate                
     
      , ( = 1, 2, …, T). 
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5.2.2 Inverse Gaussian Process-based Model 

The inverse Gaussian process-based growth model, as described in Chapter 3, implies 

that dit(1) follows an inverse Gaussian distribution characterized by a PDF given by 

                    
    

 

  
            

 

      
             

 

        
           (5.2) 

where i,  and (i)
2
 denote the mean, scale and shape parameters associated with 

dit(1), respectively, and I(0, ∞)(t) denotes the indication function and is the same as that in 

Eq. (5.1).  Based on the same procedure as described in Section 5.2.1, di(tin + ) can be 

generated from Eq. (5.2) with i,  and ti0 equal to their corresponding posterior mean or 

median values evaluated from the MCMC simulation. 

5.2.3 Geometric Brownian Motion-based Model   

Given a realization of xin, ri,n-1,  and 
 generated from the MCMC simulation, it 

follows from Eqs. (4.9) and (4.10) in Chapter 4 that the samples of di(tin + ) ( = 1, 2, …, 

T) can be obtained through Eq. (5.3) given by  

                         
    (5.3a) 

               
                       

                     

                                              

 
        

  (5.3b) 

where ri(tin + ) denotes the average growth of defect depth within the th
 year of 

forecasting of defect i.  

5.3 Time-dependent Internal Pressure Model  

The internal pressure at a given location, P(t), was modeled by the Poisson Square 

Wave Process (PSWP) (Madsen 2006; Straub and Faber 2007) in this study.  A PSWP 

consists of a series of pulses, each of which has uncertain magnitude and duration (see 

Fig. 5.1).  The number of pulses, Z, within a given period of time T follows a Poisson 
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distribution with a probability mass function of P(Z = z|) = (T)
z
exp(-T)/z!, where  

denotes the mean occurrence rate per unit time (or Poisson rate).  This implies that the 

durations of individual pulses are independent exponentially distributed random variables 

with a mean duration equal to 1/ (Ang and Tang 1975; Cinlar 1975).  The magnitudes of 

different pulses, P, are independent and identically distributed random variables 

characterized by a PDF of fP(p).  In this study, It is assumed in accordance with CSA 

(CSA 2007) that the magnitude of the internal pressure at a given time follows a Gumbel 

distribution with distribution parameters p and p, i.e. fP(p|p, p) = pexp(-p(p - 

p))exp(-exp(-p(p - p))).  Given the generation rate  and the Gumbel-distributed 

magnitude of the internal pressure, the procedure for generating a realization of the 

Poisson square wave process over a time interval T is given as follows. 

1) set T0 = 0 and i = 1; 

2) generate a random number u between zero and one; set ti = -1/∙lnu and T0 = T0 + 

ti; 

3) generate a random sample of the internal pressure pi from the Gumbel distribution 

and assign pi to the interval ti, and 

4) if T0 ≥ T, stop; otherwise, set i = i + 1 and go to step 2).  
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Figure 5.1 Poisson square wave process model 

Figure 5.2 shows three simulated time-dependent internal pressure curves over 15 

years corresponding to  = 0.5,  = 1.0 and  = 2.0 (year
-1

) following the above-described 

procedure, where the mean and coefficient of variation (COV) of the Gumbel-distributed 

magnitude of the internal pressure were assumed to be 5.9 MPa and 2%, respectively.  

 

Figure 5.2 Simulated time-dependent internal pressure based on PSWP model 

5.4 Time-dependent Reliability Evaluation of Pipeline Segment with 

Multiple Defects 

5.4.1 Limit state Functions for a Single Corrosion Defect 

A corroding natural gas pipeline can fail by three different failure modes, i.e. small 

leak, large leak and rupture, at a given corrosion defect under the internal pressure (Zhou 

2010).  The limit state function for defect penetrates the pipe wall, is defined as 

           (5.4) 

where wt denotes the pipe wall thickness.  The use of 0.8wt as opposed to wt in Eq. (5.4) 

is consistent with the typical industry practice (Kariyawasam 2012) and literature (Caleyo 

et al. 2002), as the remaining ligament of the pipe wall is prone to developing cracks that 

can lead to a leak once the defect depth reaches 0.8wt.  
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The limit state function for plastic collapse due to internal pressure at the defect is 

given by  

        (5.5) 

where rb represents the burst pressure of a pipe containing a part-through wall corrosion 

defect, and can be evaluated using various mechanical models such as the ASME B31G, 

B31G Modified, CSA and PCORRC models. 

The limit state function for unstable defect extension in the axial direction given burst 

is defined as 

         (5.6) 

where rrp is the rupture pressure, i.e. the pressure resistance of a pipe containing a 

through-wall flaw that results from the burst of the pipe at the corrosion defect.  The 

through-wall flaw resulting from burst will undergo unstable extension in the longitudinal 

direction of the pipe and lead to a rupture if g3 ≤ 0 (Nessim et al. 2009); otherwise, it will 

lead to a large leak.  Note that details of rp and rrp are described in Section 5.5.1. 

Utilizing g1, g2 and g3, one can define a small leak as (g1 ≤ 0)  (g2 > 0), a burst as (g1 > 

0)  (g2 ≤ 0), a large leak as (g1 > 0)  (g2 ≤ 0)  (g3 > 0), and a rupture as (g1 > 0)  (g2 

≤ 0)  (g3 ≤ 0), where  represents a joint event.  It follows that the probability of burst 

equals the sum of the probabilities of large leak and rupture.  It should be emphasized 

that the limit state functions, g1, g2 and g3, are all time-dependent because a) the defect 

grows over time and causes deterioration of the pipe resistance, and b) the internal 

pressure also vary with time.   

5.4.2 Methodology for System Reliability Analysis 

The reliability analysis procedure was developed for pipe segments that have been 

subjected to at least one ILI.  The analysis treats a pipe segment containing multiple 

active corrosion defects as a series system because failure at any corrosion defect within 

the segment implies failure of the system.  It follows from Eq. (5.4) that the probability of 
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small leak of the pipe segment depends on the probability distribution of the maximum 

depth of the multiple defects in the segment.  Extensive studies have been reported in the 

literature (e.g. Chaves and Melchers 2011; Melchers 2005) to derive the distribution of 

the maximum depth of multiple corrosion defects.  However, it is inadequate to only 

derive the distribution of the maximum depth in this study because the failure 

probabilities corresponding to the other failure modes, i.e. large leak and rupture, depend 

on the defect length as well as the defect depth.  Furthermore, the maximum length and 

maximum depth are not necessarily associated with the same defect.  Given this, the 

simple Monte-Carlo simulation technique, which can be easily implemented to 

differentiate the three failure modes, was adopted to carry out the reliability analysis.   

The growth of the depth of individual defect was characterized by the growth models 

as described in Section 5.2, whereas the defect length, consistent with the typical 

practice, was assumed to be static over the forecasting period, with the nominal value of 

the length obtained from the most recent inspection.  For simplicity, the spatial variability 

of the material properties and internal pressure is ignored.  The probabilities of small 

leak, large leak and rupture of the pipe segment after s years (s = 1, 2, …, T) have elapsed 

since the last inspection, Psl(s), Pll(s) and Prp(s) respectively, are evaluated according to 

the simulation method.  A step-by-step procedure to check if the system has failed and to 

identify the corresponding failure mode within the forecasting period in a simulation trial 

is described in the following. 

1) Generate samples for the pipe wall thickness (wt), diameter (D), ultimate tensile 

strength (u), and defect length (Li) (i = 1, 2,…., nd), where nd denotes the total number of 

defects on the pipe segment considered and Li denotes the length of the i
th

 defect.  

2) Set the counters for small leak, large leak and rupture, SL(), LL() and RP() ( = 

1, 2, …, T) respectively, to zero.  Start from  = 1 and carry out the following: 

2.1) determine the internal pressure corresponding to forecasting year , p, based 

on a realization of the Poisson square wave process over the forecasting period generated 

according to the procedure described in Section 5.3; 
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2.2) generate the depth of the i
th

 defect at year tin +  (i.e. forecasting year ), di(tin + 

) based on the procedure described in Section 5.2. 

2.3) calculate                         ;  

2.4) calculate                       , where rbi(tin + ) denotes the burst 

pressure of pipe at the i
th

 defect at year tin + ; and is obtained by substituting wt, D, u, Li 

and di(tin + ) into the burst pressure model considered; if di(tin + ) > 0.8wt, set di(tin + ) 

= 0.8wt; 

2.5) if g1 > 0 and g2 > 0, set  =  + 1;  

2.6) if  ≤ T go to Step 2.2), and 

2.7) if g1 ≤ 0 and g2 > 0, set SL() = SL() + 1; calculate g3 = rrpm - p, where rrpm is 

the rupture pressure at the defect that has the lowest burst pressure at year tin + ; if g2 ≤ 0 

and g3 > 0 set LL() = LL() + 1; if g2 ≤ 0 and g3 ≤ 0 set RP() = RP() + 1 (it is 

conservatively assumed that either a large leak or a rupture will occur if g2 ≤ 0 regardless 

of whether g1 ≤ 0 or g1 > 0). 

By repeating the above calculation steps for N simulation trials, Psl(s), Pll(s) and Prp(s) 

can be estimated as follows: 

       
 

 
       

    (5.7a) 

       
 

 
       

    (5.7b) 

       
 

 
       

    (5.7c) 
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5.5 Example  

5.5.1 General 

In this section, an example is used to illustrate the above-described methodology for 

the system reliability analysis.  The example involves an underground natural gas 

pipeline that is the same as that described in Chapter 2.  Two pipe segments, namely 

Segments 1 and 2, were selected from this pipeline to carry out the reliability analysis.  

Segment 1, consisting of a single pipe joint with a length of about 13.2 m, was used to 

illustrate the application of the proposed methodology, whereas Segment 2, consisting of 

many pipe joints and having a length of about 560 m, was used to investigate the impact 

of the growth model on the time-dependent failure probabilities.  Both pipe segments 

have a nominal outsider diameter of 508 mm (20 inches), an operating pressure of 5.66 

MPa, and a nominal wall thickness of 5.56 mm, and were made from API 5L X52 steel 

with a specified minimum yield strength (SMYS) of 359 MPa and a specified minimum 

tensile strength (SMTS) of 456 MPa.   

Twenty-five active corrosion defects on Segment 1 were detected and sized by high-

resolution magnetic flux leakage (MFL) tools in 2000, 2004, 2007, 2009 and 2011.  It 

follows from Section 2.3 in Chapter 2 that the ILI data are subjected to measurement 

errors characterized by aj, bj, j and jk, with aj (bj) and j (j = 1, 2, …, 5 in this study) 

denoting the constant (non-constant) bias and the standard deviation of the random 

scattering error associated with the ILI tool used in the jth inspection respectively, and jk 

(j = 1, 2, …, 5; k = 1, 2, …, 5) denoting the correlation coefficient between the random 

scattering errors associated with the ILI tools used in the jth and kth inspections.  The 

above-described measurement errors associated with these ILI tools were quantified by 

comparing the ILI-reported and field-measured depths of 128 static defects (i.e. defects 

that have been recoated and ceased growing) (Al-Amin et al. 2012) as described in 

Section 2.6.1 of Chapter 2 and are as follows: a1 = a2 = 2.04 (%wt), a3 = -15.28 (%wt), a4 

= -10.38 (%wt) and a5 = 4.84 (%wt); b1 = b2 = 0.97, b3 = 1.4, b4 = 1.13 and b5 = 0.84; 1 

= 2 = 5.97 (%wt), 3 = 9.05 (%wt), 4 = 7.62 (%wt) and 5 = 5.94 (%wt); 12 = 0.82, 13 

= 23 = 0.7, 14 = 24 = 0.72, 15 = 25 = 0.82, 34 = 0.78, 35 = 0.71 and 45 = 0.74 (Al-
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Amin et al. 2012), where the subscripts ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’ denote the parameters 

associated with the ILI data obtained in 2000, 2004, 2007, 2009 and 2011, respectively.  

Segment 2 contains 10 defects selected from the 62 defects described in Chapter 2.  The 

rationale for selecting the 10 defects is described in Section 5.5.3.   

The PCORRC model (Leis and Stephens 1997) was adopted in this study to calculate 

the burst pressure of the pipe at a given corrosion defect, i.e. rb in Eq. (5.5).  The burst 

pressure is calculated as follows: 

     
     

 
   

 

  
       

       

        

 

    (5.8) 

where u is the ultimate tensile strength of the pipe steel; D is the pipe diameter; L is the 

defect length, and b is a multiplicative model error term.  Equation (5.8) is applicable for 

d/wt ≤ 0.8 and L ≤ 2D (Fu et al. 2001; Kiefner et al. 1973). 

The model developed by Kiefner et al. (Kiefner et al. 1973) for pressurized pipes 

containing through-wall defect was used to calculate the rupture pressure, rrp, as follows: 
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  (5.9b) 

where M is the Folias factor, and f is the flow stress and defined as 0.9u (Kiefner et al. 

1973).  The model error associated with Eq. (5.9a) was ignored due to a lack of relevant 

information in the literature. 

5.5.2 Time-dependent Reliability Analysis Using the HGP-based Growth Model 

In this section, the time-dependent system reliability of Segment 1 was evaluated 

considering the 25 active corrosion defects identified by ILI.  The growth models for the 
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depths of the defects were first developed using the ILI-reported depths in 2000, 2004, 

2007, 2009 and 2011.  The apparent growth paths of the defects as indicted by the ILI 

data are shown in Fig. 5.3.  Similar to Fig. 2.4(a), the decrease in the ILI-reported depths 

over time for some defects shown in Fig. 5.3 is attributed to the measurement error.  The 

ILI-reported lengths in 2011 for the 25 defects, which were indicated as the numbers at 

top of the bins in Fig. 5.4, were adopted as the nominal defect lengths in the reliability 

analysis.  The measurement errors (i.e. the COV value) associated with the ILI-reported 

lengths were assumed based on the common tool specifications that indicate a confidence 

interval of the actual length ±10 mm with a probability of 80% for the measured length.  

The homogeneous gamma process- (HGP-) based model was adopted in this section with 

the parameters of the prior distributions of the model parameters identical with those 

specified for Scenario I-1 of the HGP-based model described in Chapter 2, i.e. p1 = 10, q1 

= 1 (year), p3 = 0 (year), q4 = 28 (year), p4 = 1, q2 = 1 (%wt). 

 

Figure 5.3 Apparent growth paths indicated by the ILI-reported depths 

0

5

10

15

20

25

30

35

40

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

D
ef

ec
t 
d
ep

th
 (

%
w

t)

Year

ILI-reported depth



136 

 

 

Figure 5.4 Defect lengths of 25 defects reported by the ILI in 2011  

A total of 110,000 MCMC simulation sequences were generated in OpenBUGS; the 

first 10,000 sequences were considered the burn-in period and therefore discarded.  A 

thinning interval (Gelman et al. 2004) of 10 was applied to the remaining sequences to 

generate 10,000 sets of MCMC samples of the growth parameters (i.e. , i and ti0) for 

the defect depth, which were used to make inference of the probabilistic characteristics 

(e.g. mean, standard deviation and probabilistic distribution) of the growth parameters.  

The thinning interval reduces the autocorrelation between the samples from different 

MCMC sequences and therefore allows these samples to be considered approximately 

independent and equivalent to the samples generated from the simple Monte Carlo 

simulation.   

The failure probabilities of the pipe joint were evaluated through 10
6
 Monte Carlo 

simulation trials.  To investigate the impact of the uncertainties in the growth parameters 

as well as the correlations between those parameters on the failure probability, three 

different scenarios were considered in the reliability analysis.  The first scenario (denoted 

by Scenario I) considers the uncertainties in the growth parameters as well as their 

correlations by directly employing the MCMC samples of the growth parameters in the 

reliability analysis.  To this end, a total of 2,000 sets of samples were randomly selected 

from the 10,000 sets of MCMC samples first.  Each selected set of MCMC samples of the 

growth parameters were further used to generate 500 random samples of the growth path 
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for a given defect in the reliability analysis, which leads to a total of 10
6
 simulation trials 

for the reliability analysis.  The second scenario (denoted by Scenario II) considers the 

uncertainties in the growth parameters but ignores their correlations.  In this scenario, a 

total of 10
6
 simulation trials were generated in the same manner as that described in 

Scenario I except that the 2000 sets of samples of the growth parameters (i.e. , i and ti0) 

were instead generated from their corresponding marginal distributions, therefore 

ignoring correlations between the growth parameters.  The marginal distribution of each 

growth parameter was developed using the distribution fitting technique based on the 

10,000 MCMC samples.  The third scenario (denoted by scenario III) assumes that the 

growth parameters are deterministic and equal to their corresponding mean values 

evaluated from the MCMC simulation (i.e. the growth path was generated using the 

procedures described in Section 5.2.1); therefore, the uncertainties in the growth 

parameters and their correlations are ignored in this scenario.  

The probabilistic characteristics of the random variables involved in calculating rb and 

rrp are summarized in Table 5.1.  All the random variables in Table 5.1 were assumed to 

be mutually independent.  The model errors associated with individual defects were 

assumed to be fully correlated. 

Due to a lack of the time history for the internal pressure, the generation rate (i.e. ) of 

the Poisson square wave process could not be quantified.  Parametric analyses were 

therefore carried out by assuming three different values of , namely 0.5, 1.0 and 2.0 

(year
-1

).  The probability distribution of the magnitude of the internal pressure is 

summarized in Table 5.1.  For comparison, the reliability analysis was also carried out 

assuming the internal pressure to be a random variable or a deterministic quantity.  For 

the former case, the probability distribution of the internal pressure was assumed to the 

same as that summarized in Table 5.1.  For the latter case, the internal pressure was set to 

equal the mean value of the distribution of the internal pressure in Table 5.1.  
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Table 5.1 Probabilistic characteristic of the random variables 

Random 

variable 

Nominal 

value 
Unit Mean/Nominal COV (%) 

Distribution 

type 
Source 

L1-L25 
Given by 

Fig. 5.4 

mm 

1.0 7.8/mean Normal 

Leis and 

Stephens 

1997 

D 508 1.0 0.06 Normal CSA 2007 

wt 5.56 1.0 0.25/mean Normal 
Jiao et al. 

1995 

u 455 

MPa 

1.08 3 Normal 
Jiao et al. 

1995 

P 5.66 1.05 2 Gumbel 
Zhou 2010; 

CSA 2007 

b 1.0 N/A 1.079 26.4 Gumbel 
Zhou and 

Huang 2012 

The probabilities of small leak and large leak corresponding to the three assumptions 

for the internal pressure (i.e. PSWP, random variable and deterministic value) and three 

scenarios for the growth model (i.e. Scenarios I, II and III), over a 10-year forecasting 

period, are shown in Fig. 5.5.  The probability of rupture of this segment is too small to 

be evaluated based on the 10
6
 simulation trials.  For brevity, the random variable-based 

internal pressure model is denoted by “RV-based” in the figure.  Figure 5.5(a) suggests 

that the pressure model has a negligible impact on the probability of small leak for a 

given scenario for the defect growth model; this is expected because the internal pressure 

only impacts burst.  Figure 5.5(a) further indicates that the scenario for the growth model 

has a marked impact on the probability of small leak.  For example, the probabilities of 

small leak corresponding to Scenario II (i.e. considering the uncertainties in the 

parameters of the growth model but ignoring their correlations) are four to ten times as 

high as those corresponding to Scenario I (i.e. considering the uncertainties in the model 

parameters and their correlations); this is mostly due to the fact that the posterior 

distributions of  and i of the growth model are positively correlated whereas the 

posterior distributions of i and ti0 of the growth model are negatively correlated.  The 

probabilities of small leak corresponding to Scenario I are approximately four orders of 

magnitude higher than those corresponding to Scenario III (i.e. assuming parameters of 

the growth model to be deterministic) from forecasting years 7 through 10.  
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(c) 

 

(d) 

Figure 5.5 Comparison of probabilities of small leak (large leak) associated with 

different internal pressure models 

Figures 5.5(b) through 5.5(d) indicate that, for a given scenario for the growth model, 

the probabilities of large leak evaluated based on the PSWP model increase marginally as 

 increases from 0.5 to 2.0, and are slightly higher than those corresponding to the 

random variable-based internal pressure.  The probabilities of large leak corresponding to 
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the assumption of uncertain internal pressure (characterized by either PSWP or a random 

variable) are about twice as high as those corresponding to the deterministic internal 

pressure; this indicates the importance of accounting for the uncertainty in the internal 

pressure in the reliability analysis, even if the uncertainty in the pressure is relatively low 

(the COV of the pressure magnitude being 2% in this example).   

The probabilities of large leak evaluated based on Scenarios I, II and III are compared 

in Figs. 5.6; the internal pressure corresponding to Figs. 5.6(a), 5.6(b) and 5.6(c) is 

modeled by a PSWP with equal to 2.0, a random variable and a deterministic quantity, 

respectively.  Figure 5.6 indicates that the uncertainties in the growth parameters and 

correlations among these parameters have a marked impact on the probability of large 

leak.  For example, the probabilities of large leak corresponding to Scenario II (Scenario I) 

are about twice as high as those corresponding Scenario I (Scenario III) for a given 

pressure model.  On the other hand, the impact of the uncertainties in the parameters of 

the growth model on the probability of large leak is significantly less than that on the 

probability of small leak.  This is mainly attributed to that the probability of small leak is 

governed by the uncertainties in only two random variables (i.e. wt and d) as shown in the 

limit state function g1, and is therefore highly sensitive to the uncertainty in d. 
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(b) 

 

(c) 

Figure 5.6 Comparison of probabilities of large leak associated with three scenarios 

for growth model 

5.5.3 Impact of Growth Models on the Time-dependent Reliability 

The time-dependent system reliability of Segment 2 with respect to corrosion was 
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of the growth models on the computed reliability.  The 10 defects located in this segment 

were selected from the 62 defects for which the NHGP-, HGP-, IGP- and GBM-based 

growth models have been developed from the Bayesian analysis based on three sets of 

ILI data (i.e. ILI data in 2000, 2004 and 2007) and described in Chapters 2 through 4.  

Details of the growth models are summarized in Table 5.2.  Although the 10 defects have 

been mitigated in 2010, it is assumed the defects are still active after 2010 by ignoring the 

mitigation.  The failure probabilities of Segment 2 over a ten-year forecasting period 

since the most recent inspection included in the Bayesian updating (i.e. from years 2008 

to 2017) were then evaluated using the simulation-based approach for each of the growth 

models considered.  The growth path of a given defect in a given simulation trial was 

generated based on the procedure described in Section 5.2, with the model parameters 

equal to the posterior mean/median values evaluated from the Bayesian updating.   

Table 5.2 Summary of the growth models 

Model 

Values of 

model 

parameters 

ILI Data sets 

used in 

Bayesian 

updating 

Defect population 

used in the 

Bayesian 

updating 

Model details 
MSEP 

((%wt)
2
) 

NHGP median 

2000, 2004 

and 2007 
62 

See Scenario II 

in Chapter 2 
43 

HGP mean 
See Scenario I-1 

in Chapter 2 
44 

IGP median 
See Scenario 1 

in Chapter 3 
43 

GBM Median 
See Scenario I in 

Chapter 4 
49 

The selection of the 10 defects for the reliability analysis is based on the consideration 

that the absolute values of deviations between the predicted and field-measured depths 

for the 10 defects in 2010 are reasonably small (e.g. < 5 %wt) for the four growth models 

considered, as reflected by Fig. 5.7.  This indicates that the four growth models lead to 

similar predicted depths for the 10 defects, which allows the comparison of the failure 

probabilities corresponding to different growth models to be founded on a common basis.   
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Figure 5.7 Comparison of the predicted and actual depths in 2010 for the 10 defects on 

Segment 2 

(the four grey-shaded bins for a given defect represent, from left to right, NHGP-, HGP-, 

IGP and GBMP-based growth models, respectively) 

The probabilistic characteristics of D, wt, u, P and b are the same as those defined in 

Table 5.1.  Furthermore, the internal pressure was assumed to be a random variable with 

a probability distribution the same as that summarized in Table 5.1.  Due to a lack of the 

ILI-reported lengths of the 10 defects in the ILI of 2007, the lengths of the 10 defects, 

denoted by Li (i = 1, 2, …, 10), were assumed to be independent and follow an identical 

lognormal distribution with a mean of 30 mm and a coefficient of variation (COV) of 50% 

based on the information summarized in Annex O of CSA Z662 (CSA 2007).   

The probabilities of small leak, large leak and rupture, over a ten-year forecasting 

period, corresponding to the four growth models are depicted in Figs. 5.8(a) through 

5.8(c), respectively.  The failure probabilities were evaluated based on 10
6
 simulation 

trials.   
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(c) 

Figure 5.8 Time-dependent failure probabilities based on different growth models 

Results shown in Figure 5.8(a) indicate that the probabilities evaluated using the IGP- 

and GBM-based models are significantly higher than those evaluated using the GP-based 

(i.e. HGP- and NHGP-based) models over the entire forecasting period, for example, the 

probabilities of small leak corresponding to the IGP-based model are about four orders of 

magnitude higher than those corresponding to the NHGP-based model over the entire 

forecasting period.  On the other hand, the probabilities of small leak corresponding to 

the IGP-based model are higher than those corresponding to the GBM-based model if the 

forecasting period  is less than 3 years.  The latter are higher than the former for  ≥ 3 
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the probability of small leak at the end of the forecasting period is more than two orders 

of magnitude higher than that at the beginning of the forecasting period.  It can be 

observed that the probabilities of small leak corresponding to the NHGP-based model 

differ significantly from those corresponding to the HGP-based model especially for  ≤ 

8 years.  Figure 5.8(a) implies that the probability of small leak is very sensitive to the 

growth model employed to characterize the defect depth.  This is expected because only 
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two random variables (i.e. d and wt) are included in the limit state function given by Eq. 

(5.4).   

Results shown in Figs. 5.8(b) and 5.8(c) illustrate that the IGP- (GBM-) based model 

leads to the most conservative estimate of the failure probability for  ≤ 4 ( > 4) years, 

which is similar as that observed from Fig. 5.8(a).  Furthermore, the difference between 

the probabilities of large leak/rupture corresponding to the NHGP- and HGP-based 

models is small.  The probabilities of large leak (rupture) corresponding to the IGP-based 

model are about two (three) times those corresponding to the GP-based models.  Figure 

5.8(a) and 5.8(b) suggest that the impact of the growth model on the probabilities of large 

leak and rupture is less pronounced than that on the probability of small leak as reflected 

by Fig. 5.8(a).  This observation is mainly attributed to the fact that the limit state 

functions for large leak and rupture as given by Eqs. (5.5) and (5.6) include a total of 

eight random variables (as opposed to a total of two random variables involved in the 

limit state function for small leak). The uncertainties in parameters (e.g. the internal 

pressure and model error for the burst capacity model) other than the defect depth can 

have a large impact on the failure probabilities.  

5.6 Conclusions 

This chapter presents a methodology to evaluate the time-dependent system reliability 

of natural gas pipelines containing multiple active metal-loss corrosion defects.  The 

methodology employs the homogeneous gamma process- (HGP-), non-homogeneous 

gamma process- (NHGP-), inverse Gaussian process- (IGP-) or geometric Brownian 

motion- (GBM-) based model to characterize the growth of the depth of individual 

corrosion defect and the Poisson square wave process (PSWP) to model the internal 

pressure of the pipeline. The methodology further incorporates the inspection data in the 

reliability analysis by using the hierarchical Bayesian method and Markov Chain Monte 

Carlo (MCMC) simulation to update the growth model for the defect depth.  The 

measurement uncertainties associated with the ILI data are taken into account in the 

Bayesian updating.  The simple Monte Carlo simulation is used to evaluate the failure 
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probability of the pipeline in terms of three distinctive failure modes, namely small leak, 

large leak and rupture.   

An example involving two pipe segments (denoted as Segments 1 and 2) selected from 

a natural gas pipeline that is currently in service in Alberta, Canada was used to illustrate 

the proposed methodology and the impact of the internal pressure and corrosion growth 

models on the time-dependent failure probabilities of the pipe segment.   

The time-dependent system reliability analysis was first carried out for Segment 1 that 

contains 25 active defects identified by multiple ILIs by incorporating the HGP-based 

corrosion growth model and PSWP-based internal pressure model.  The defect length was 

assumed to be static, with the nominal length equal to the length reported by the most 

recent inspection.  Three different scenarios for the growth model in terms of the 

uncertainties in the model parameters and their correlations were considered in the 

reliability analysis, namely considering the uncertainties in the model parameters and 

their correlations (Scenario I), considering the uncertainties in the model parameters but 

ignoring their correlations (Scenario II), and assuming deterministic model parameters 

(Scenario III).  Furthermore, three assumptions for the internal pressure (i.e. Poisson 

square wave process (PSWP), random variable and deterministic quantity) were 

considered.   

The analysis results suggest that the internal pressure model has a negligible impact on 

the probability of small leak.  The probabilities of large leak corresponding to the 

uncertain internal pressure (characterized by either PSWP or a random variable) are 

approximately twice as high as those corresponding to the deterministic internal pressure.  

This indicates the importance of accounting for the uncertainty in the internal pressure in 

the reliability analysis.  The analysis results also reveal that different scenarios for the 

growth model have a marked impact on the probabilities of small leak and large leak.  

For example, the probabilities of small leak corresponding to Scenario II are four to ten 

times as high as those corresponding to Scenario I because the posterior distributions of 

the shape and rate parameters in the gamma process are positively correlated, whereas the 

rate parameter and the initiation time in the gamma process are negatively correlated; the 
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probabilities of small leak corresponding to Scenario I are approximately four orders of 

magnitude as high as those corresponding to Scenario III.  The analysis results highlight 

the importance of appropriately accounting for the uncertainties in the growth parameters 

as well as their correlations in the reliability analysis based on the proposed Bayesian 

growth model.   

The time-dependent system reliability analysis was then carried out for Segment 2 that 

contains 10 active defects for which the predicted depths obtained from the four growth 

models agree well with the actual depths (e.g. the absolute deviations between the 

predicted and actual depths are less than 5 %wt).  The internal pressure was characterized 

by a random variable.  Analysis results suggest that the growth models have a significant 

impact on the probability of small leak, but a smaller impact on the probabilities of large 

leak and rupture.  For example, over the entire forecasting period, the probabilities of 

small leak corresponding to the IGP-based model are about four orders of magnitude 

higher than those corresponding to the NHGP-based model, whereas the probabilities of 

large leak (rupture) corresponding to the former model are about two (three) times those 

corresponding to the latter model.  The methodology developed in this chapter will 

facilitate the development of the reliability-based management of corroding pipelines. 
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Chapter 6 Cost-based Optimal Inspection Interval for 

Corroding Natural Gas Pipelines Based on Stochastic 

Degradation Models 

6.1 Introduction  

Metal-loss corrosion is a major threat to the structural integrity of underground oil and 

gas pipelines world-wide (Cosham et al. 2007).  Periodic inspection and maintenance, as 

a key component of the pipeline corrosion management program (Kariyawasam and 

Peterson 2010), is an effective means to reduce the probability of failure and maintain 

safe operation of the pipeline system.  Determination of the optimal 

inspection/maintenance interval is of great importance for the pipeline operators: a too 

short inspection interval will result in unnecessary inspections and mitigation actions, 

which can be costly, whereas a too long inspection interval could lead to critical defects 

not mitigated in a timely manner and failures due to such defects, which can have serious 

safety and economic implications.  

It is a challenging task to determine the optimal inspection interval in that various 

uncertainties are involved in the decision-making.  First, the inline inspection (ILI) tools, 

e.g. the magnetic flux leakage (MFL) tool, are associated with certain measurement 

errors.  Second, the deterioration or degradation of the pipe resistance due to corrosion is 

also uncertain and time-varying because the growth of individual corrosion defect as well 

as the total number of defects are uncertain and vary with time.  Third, the pipe geometry, 

material properties and internal pressure are also uncertain in reality.  Finally, the 

capacity model for the corroded pipeline is imperfect and therefore involves model 

uncertainty.  The above-mentioned uncertainties need to be incorporated in the 

determination of the optimal inspection interval. 

The selection of optimal maintenance schedules for corroding pipelines has been 

investigated using the reliability-based criteria (Rodriguez and Provan 1989; Morrison 

and Worthingham 1992; Hong 1999).  Provan and Rodriguez (1989) developed a Markov 

process-based model for the growth of corrosion defects in the context of determining the 
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optimal inspection time.  They considered the imperfection of inspection tools in 

detecting the defect, i.e. the probability of detection (PoD), but ignored the imperfection 

of inspection tools in sizing the defect, i.e. the measurement errors.  Morrison and 

Worthingham (1992) employed the same corrosion growth model to determine the 

optimal inspection time but ignored both PoD and measurement errors associated with 

the inspection tools.  Hong (1999) investigated the optimal inspection and maintenance 

schedule for corroding pipelines based on the reliability constraint.  The Markov process 

was employed to model the growth of corrosion defects; the PoD and measurement errors 

associated with the inspection tool were incorporated in the failure probability evaluation, 

and the Poisson process was used to model the generation of new defects.  

The investigations of condition-based maintenance optimization for degrading piping 

systems using the cost-based criterion have been reported in a few recent studies (e.g. 

Cheng and Pandey 2012; Gomes et al. 2013).  Cheng and Pandey (2012) investigated the 

optimal inspection interval for a single-component degrading system using analytical 

methodologies, where the degradation of the system was modeled as a homogeneous 

gamma process and the optimal inspection internal was selected based on the minimum 

expected cost rule.  Perfect inspection was implicitly assumed in their study.  Gomes et al. 

(2013) used a simulation-based approach to investigate the optimal inspection interval for 

buried pressurized pipelines subjected to external corrosion based on the minimum 

expected cost rule.  A single pipeline joint that contains at most one corrosion defect at a 

given time was considered in the analysis, which is somewhat unrealistic.  A time-

independent power-law model that incorporates uncertain power law parameters but a 

deterministic corrosion initiation time was assumed to characterize the growth of the 

defect depth.  Although PoD of the inspection tool was incorporated in the analysis, the 

measurement errors of the tool were ignored.  The generation of new corrosion defects 

was also ignored.   

In this chapter, the Monte Carlo simulation is employed to investigate the optimal 

maintenance decision for newly-built onshore underground natural gas pipelines with 

respect to external metal-loss corrosion by considering the generation of corrosion 

defects over time and time-dependent growth of individual defects.  To this end, the non-
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homogeneous Poisson process is used to model the generation of new defects, and the 

homogeneous gamma process is used to model the growth of the defects.  The minimum 

expected cost rule is used to select the optimal inspection interval.  Both the PoD and 

measurement errors of the inspection tool are considered in the optimization.  The 

investigation considers a realistic maintenance strategy and realistic costs of maintenance 

and failure that are consistent with the industry practice but have not been well accounted 

for in the literature.  In particular, the excavation and repair actions are pipe joint-based 

as opposed to defect-based; that is, all the defects on an excavated pipe joint are mitigated 

by the repair actions.  The failure event is defined as burst of the corroded pipeline under 

internal pressure, and the time-dependent probability of failure is evaluated by employing 

the limit state function for burst as opposed to the hazard function associated with the 

time-to-failure (Cox and Oakes 1984).  The cost of failure includes both the direct and 

indirect costs, the latter of which is incorporated through the parametric analysis.   

The remainder of the chapter is organized as follows.  Section 6.2 presents the 

degradation models including the generation of new defect and the growth of the defect 

depth; Section 6.3 describes the uncertainties associated with ILI tools; the limit state 

function for burst, mitigation criteria, maintenance policy and the procedures to evaluate 

the expected cost rate are presented in Section 6.4; Section 6.5 presents a numerical 

example and parametric analysis results followed by the conclusions in Section 6.6. 

6.2 Degradation Models 

6.2.1 Generation of New Defect 

Consider a reference joint of a newly-built pipeline (a typical pipe joint is 

approximately 12 m long).  The non-homogeneous Poisson process (NHPP) was adopted 

to model the generation of new defects on the reference joint based on the consideration 

that the corrosion defects are not necessarily generated uniformly in time with a constant 

rate (Kuniewski et al. 2009).  The total number of defects, N(t), generated within a time 

interval [0, t] (e.g. t = 0 denotes the time of installation of the pipeline) over the pipe joint 

follows a Poisson distribution with a probability mass function, fP(N(t)|(t)), defined as 

(Kulkarni 2010): 
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 (t > 0) (6.1) 

where (t) denotes the expected number of defects generated over the time interval [0, t], 

and             
 

 
.  () is the assumed intensity function (or the instantaneous 

generation rate) corresponding to the reference pipe joint.  For example, it can be 

assumed that () = 
b
, where 0 and b are positive quantities that can be determined 

based on the inspection data and/or expert judgement.  Note that Eq. (6.1) is simplified to 

a homogeneous Poisson process (HPP) if b is equal to zero, i.e. the intensity function is 

constant and independent of time.  Three NHPP examples corresponding to  = 1, 2 and 

4 are illustrated in Fig. 6.1, where the exponent b is assumed to equal one, i.e. () = 


2
/2.  Results associated with each of the examples include the expected value, 2.5- and 

97.5-percentile values as well as one realization of the NHPP. 

 

Figure 6.1 Illustration of the NHPP 

Consider that n defects have been generated on the reference pipe joint up to time T.  

The initiation times of the n defects are denoted by T1, T2, …, and Tn (T1 ≤ T2 ≤ … ≤ Tn ≤ 

T), respectively.  The joint probability density function (PDF) of (T1, T2, …, Tn) 

conditional on N(T) = n can be expressed as (Kulkarni 2010; Beichelt and Fatti 2002): 
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  (0 < t1 < t2 < … < tn ≤ T) (6.2) 

For the homogeneous Poisson process (i.e. b =  in the intensity function), Eq. (6.2) 

becomes n!/t
n
 (Kulkarni 2010).  This indicates that the joint PDF of the initiation times 

for HPP conditional on N(T) = n is the same as the joint PDF of the order statistics of 

samples of (U1, U2, …, Un), where U1, U2, …, Un are n independent and identically 

distributed (iid) random variables that are uniformly distributed over [0, T].  This 

conclusion for HPP can be generalized to NHPP; that is, Ui (i = 1, 2, …, n) are 

independent and identically distributed random variables with the distribution (Kulkarni 

2010; Parzon 1962) 

        
    

    
  (0 ≤ t ≤ T) (6.3) 

6.2.2 Growth of Defect 

In this study, the growth of defect depth (i.e. in the through pipe wall thickness 

direction) was modeled by the homogeneous gamma process.  The distribution of the 

depth of the i
th

 defect at time t, di(t), follows a gamma distribution with the PDF, 

fG(di(t)|i(t-ti0), i), given by  

                       

  
         

     
                                               (6.4) 

where it - ti0) (t > ti0) and i denote the shape parameter and rate parameter (i.e. inverse 

of the scale parameter) (Ang and Tang 1975; Johnson 2000) associated with defect i, 

respectively, with ti0 denoting the initiation time of the i
th

 defect (i.e. the time elapsed 

since the installation of pipe up to the time at which the defect initiates), and I(0,∞)(di(t)) 

denotes an indication function and equals unity if di(t) > 0 and t > ti0, and zero otherwise.  

Implicit in Eq. (6.4) is that the growth of the defect within one year or growth rate, 

denoted by d(1), is a gamma distributed random variable, characterized by a PDF of 

fG(d(1)|i, i) with a mean of ii and a variance of ii
2
.  Conversely, given the mean 

and variance of d(1), the values of i and i can be obtained.    
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The defect length (i.e. in the pipe longitudinal direction) is expected to have a non-

zero value at the initiation and equal the length of the damaged coating (Nessim and 

Zhou 2005); in other words, each individual defect appears on the pipe as a patch with a 

length and width.  Consistent with the industry practice, it is assumed that the length 

does not grow over time and the lengths of different defects follow a predefined 

probability distribution.   

6.2.3 Simulation Procedures for Generating New Defects  

Let T denote the service life of the pipeline,  ( = 1, 2, …, T) denote a given year 

within T, and nT denote the total number of defects generated on the reference pipe joint 

over a period of T.  Based on the defect generation and growth models described in 

Sections 6.2.1 and 6.2.2, respectively, the simulation procedure for generating the 

number of defects on the joint at year  is given as follows: 

(1) Calculate the expected total number of defects generated over the service life, 

            
 

 
, and set the counter for the number of new defects on the joint at year 

 ( = 1, 2, …, T), n(), to zero;  

(2) Generate the total number of defects, nT, on the joint from the Poisson distribution, 

nT~ fP(N(T)|(T)), and 

(3) Generate the initiation times of the nT defects from Eq. (6.3) as follows: 

3.1) set i = 1; 

3.2) generate a candidate initiation time, , between zero and T, and generate a 

random number, u, between zero and one; 

3.3) if u ≤ ()/(T), set ti0 = , and i = i + 1; otherwise, return to 3.2), and 

3.4) if i < nT, return to 3.2). 

Given the values of ti0 (i = 1, 2, …, nT) generated in step 3.3) and the values of i and 

i (determined from the mean and variance of d(1), for example), the time-dependent 
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growth path of each of the nT defects over a time interval from ti0 to t (t ≥ ti0) can be 

generated from Eq. (6.4).  Finally the defect lengths associated with the nT defects can be 

generated from a given distribution.     

6.3 Uncertainties Associated with the ILI Tool 

6.3.1 Probability of Detection 

The probability of detection (PoD) represents the ability of a high-resolution ILI tool 

to detect a true corrosion defect.  It is usually a function of the defect size and 

parameters that characterize the inherent tool accuracy.  A PoD function commonly 

assumed in the literature is an exponential function function (Rodriguez and Provan 

1989; Stephens and Nessim 2006) of the defect depth, d, defined as 

              (6.5) 

where q is a constant that defines the inherent tool detection capability and can be 

quantified from vendor-supplied tool specifications, e.g. 90% probability of detecting a 

defect with a depth of 10 percent of the pipe wall thickness (i.e. 10%wt).  It follows 

from Eq. (6.5) that 1/q represents the average depth of detectable defects.   

6.3.2 Measurement Error 

The uncertainties in sizing a detected defect are generally characterized by the biases 

and random scattering errors associated with the ILI tool.  The depth and length of a 

corrosion defect measured by the ILI tool, d
M

 and L
M

 respectively, in general are related 

to the actual depth, d, and length, L, through the following equations (Fuller 1987; Jaech 

1985): 

               (6.6a) 

               (6.6b) 
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where c1d (c1l) and c2d (c2l) denote the constant and non-constant biases (i.e. if c1d = c1l = 

0 and c2d = c2l = 1, the tool is unbiased) associated with the defect depth (length), 

respectively, and are assumed to be deterministic quantities, and d and l are random 

scattering errors associated with the measured depth and length, respectively, and are 

typically characterized by normal distributions with zero mean and known standard 

deviations quantified from tool specifications (Stephens and Nessim 2006).  In this 

study, the random scattering errors associated with different defects for a given ILI tool 

were assumed to be mutually independent; that is, the spatial correlation of the random 

scattering errors was ignored.  This is considered acceptable as long as defects are not 

too closely spaced.  The random scattering errors associated with different ILI tools for 

a given defect were also assumed to be mutually independent.  A recent study (Al-Amin 

et al. 2012) has shown that the random scattering errors associated with ILI data 

reported by different tools for the same defect tend to be correlated.  However, such 

correlation was considered to have a negligible impact on the outcome of a given 

maintenance and therefore ignored for simplicity, based on the consideration that a pipe 

joint will be excavated if any given defect on the joint reaches the critical condition as 

explained in Section 6.4.2.   

6.4 Optimal Condition-based Maintenance Decisions 

6.4.1 Limit State Function for Failure Due to Corrosion 

A corroding natural gas pipeline typically fails by either small leak or burst due to the 

internal pressure (CSA 2007).  A small leak occurs if the corrosion defect penetrates the 

pipe wall prior to the plastic collapse of the remaining ligament at the defect due to the 

internal pressure, whereas a burst occurs if the remaining ligament undergoes plastic 

collapse before the defect penetrates the pipe wall.  In this study, only burst was 

considered because the cost of a small leak is typically insignificant compared with that 

of a burst.  Although a burst can be further classified as a large leak or a rupture based on 

whether or not the through-wall flaw resulting from the burst extends unstably in the 

longitudinal direction (CSA 2007), such a classification was not considered in this study 

because this study is focused on gas pipelines located in low-population-density areas (i.e. 



162 

 

the so-called Class 1 pipelines (CSA 2007), which are representative of the vast majority 

of transmission pipelines in Canada.  This implies that the cost of injury and property 

damage due to a burst is negligible (Zhou and Nessim 2011); as a result, it is unnecessary 

to further classify a burst into a large leak or a rupture from the failure cost standpoint.   

The limit state function, g, for burst due to a given corrosion defect is given by 

       (6.7) 

where rb is the burst pressure of the pipe at the defect; p denotes the internal pressure, and 

g ≤ 0 indicates burst at the defect.  The B31G Modified model (Kiefner and Vieth 1989), 

which is widely used in the fitness-for-service assessment of oil and gas pipelines, was 

adopted to calculate rb as follows:  

     
             

 
 

  
     

  

  
     

   

  (6.8a) 

  

 
 

          
  

   
          

  

   
 

 

         
   

         
  

   
         

  (6.8b) 

where b denotes the model error associated with the B31G Modified model; wt and D 

are the wall thickness and outside diameter of the pipe, respectively, and y is the pipe 

yield strength.  

Note that Eq. (6.8) tends to give non-conservative predictions of rb for defects with d > 

0.8wt, and is therefore limited to defects with d ≤ 0.8wt only (Kiefner and Vieth 1989).  

Furthermore, the probabilistic characteristics of b were developed based on the data set 

of defects with d ≤ 0.8wt.  To evaluate rb for defects with 0.8wt < d ≤ wt in the 

optimization analysis, it is assumed in this study that the burst pressure decreases linearly 

from that calculated using Eq. (6.8a) at d = 0.8wt to zero at d = wt.  This assumption, 

which is illustrated in Fig. 6.2, is considered a simple and practical extension of the B31G 

Modified model.   
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Figure 6.2 Illustration of the extension of the B31G Modified model for defects more 

than 80% through wall thickness 

6.4.2 Maintenance and Replacement Policy 

It is assumed that failure (i.e. burst) at a given defect is confined to the pipe joint in 

which the defect is located and does not impact the adjacent joints.  A burst pipe joint 

will be excavated and replaced immediately after failure.  The maintenance actions 

considered in this study are consistent with typical industry practice, and involve periodic 

inspections using high-resolution ILI tools and subsequent excavation and repair of 

corroded pipe joints based on the inspection results.  A pipe joint will be excavated and 

repaired immediately after inspection, if any defect on the joint meets one of the 

following two criteria: 

         (6.9a) 

  
       (6.9b) 

where wtn and pn denote the nominal pipe wall thickness and design pressure or 

maximum operating pressure (MOP), respectively; ( < 1) and E (E > 1) are 

predefined safety factors associated with the two criteria, and   
  denotes the estimated 

wt d0.8wt

rb

0

Eq. (8)

Extension of  Eq. (8)
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(as opposed to the actual) burst pressure at the defect.  That is,   
  is evaluated from Eq. 

(6.8), but with wt and D replaced by wtn and Dn (Dn is the nominal pipe outside diameter), 

respectively, d and L replaced by d
M

 and L
M

 respectively, y replaced by the specified 

minimum yield strength (SMYS), and b set to unity.   

The repair actions on an excavated pipe joint first involve completely removing the 

existing coating of the joint.  Depending on the severity of the corrosion on the joint, 

recoating or recoating plus sleeving (hereafter referred to as the sleeving repair for 

brevity) of the joint will then be applied.  The selection of recoating or sleeving can be 

determined based on the actual defect sizes as opposed to the ILI-reported defect sizes, 

because the defects on the excavated joint are always measured in the ditch and field 

measurements can be assumed to be error free (Al-Amin et al. 2012).  A simple recoating 

of the joint will be carried out if every defect on the joint satisfies d < Rwt (the actual 

wall thickness of the pipe joint is also measured during the excavation) and rb
′
 > Rpn, 

where rb
′
 is evaluated using Eq. (6.8), but with y replaced by SMYS and b set to unity; 

the sleeving repair will be applied if d ≥ Rwt and/or rb
′
 ≤ Rpn for at least one defect 

(referred to as the critical defect).  The sleeving will cover the portion of the joint 

containing the critical defect(s).  The parameters R and R are the safety factors 

associated with the two repair criteria.  Note that a repaired pipe joint, regardless of the 

specific repair action applied, is assumed to be fully restored to the pristine condition.  

This is considered a reasonable assumption given that the recoating will arrest the growth 

of all the existing defects on the pipe joint, and the sleeved joint will have at least the 

same burst capacity as that of a new pipe joint, if not higher.  Based on discussions with 

industry experts, the likelihood of a repair of being of poor quality is considered very low 

and therefore ignored in this study.  Furthermore, it is assumed that no inspection is 

carried out if the inspection is scheduled upon a failure of the pipe joint or at the end of 

the service life of the pipeline, and no repair is applied, if required, at the end of the 

service life of the pipeline. 

6.4.3 Evaluation of the Expected Cost Rate 

Consider that a reference pipe joint is subjected to periodic inspections and 
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maintenances with a fixed time interval, TI.  Given the service life (T), the unit costs of 

inspection (CIN), excavation (CEV), recoating (CRC), sleeving (CRS) and failure (CF) as well 

as the periodic inspection interval (TI), it follows from the assumptions in Section 6.4.2 

that the total cost per unit service time or cost rate, CR(TI), can be expressed as 

       
 

 
              

               
      

   
             

  
     (6.10) 

where  denotes the discount rate; nIN is the total number of inspections, nEV denotes the 

total number of excavations; tEVi denotes the time of the i
th

 excavation; CRi is the cost of 

repair associated with the i
th

 excavation, i.e. CRi equal to either CRC or CRS; nF denotes the 

total number of failures, and tFi denotes the time of the i
th

 failure.  Input from industry 

experts (Kariyawasam 2012) suggests that the cost of failure, CF, should include not only 

the direct cost of replacing the failed pipe joint but also the indirect cost such as the cost 

of carrying out a system-wide integrity assessment demanded by the regulatory agency as 

a result of the failure and potential loss of business due to the failure event.  The indirect 

failure cost can be orders of magnitude higher than the direct failure cost, but is very 

difficult to quantify.  In this study, a parametric study was carried out to investigate the 

impact of the indirect cost on the optimal inspection interval as illustrated in the 

numerical example described in Section 6.5.   

Due to uncertainties in the corrosion growth process, pipe geometric and material 

properties and burst capacity model, nEV, nF, tEVi and tFi are all uncertain.  Because it is 

very difficult to obtain analytical equations of CR(TI) as well as its expectation, E(CR(TI)), 

the simulation technique was adopted in this study to numerically evaluate E(CR(TI)).  

Let C(TI) denote the total cost corresponding to an inspection interval of TI.  Given the 

values of T, TI, , CIN, CEV, CRC, CRS, CF, E, E, R and R, a step-by-step procedure to 

evaluate C(TI) is described as follows: 

1) Generate the total number of defects (denoted by n0) on the reference joint over the 

period from zero to T, i.e. n0~ fP(N(T)|(T)) as well as their corresponding initiation times 

and growth paths following the procedures described in Section 6.2.3; generate the defect 

length and the model error associated with each of the n0 defects; generate the wall 
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thickness (wt), yield strength (y), and diameter (D), assumed to be invariant within a 

given joint; 

2) Let i denote the inspection number, and nRC, nRS and nRF denote the number of 

defects mitigated/eliminated by recoating, sleeving and failure replacement, respectively.  

Set i = 1, C(TI) = 0, nRC = 0, nRS = 0 and nRF = 0; set t = TI/K, where K is a selected 

integer; 

3) Set ti = i×TI and k = 1; 

4) Calculate the number of remaining defects up to time k = (i–1)×TI + k×t on the 

joint,    
             

; 

5) Calculate the depth of the s
th

 defect at k, ds(k), and identify the corresponding 

defect length, Ls (s = 1, 2, …, Njk) obtained from 2); 

6) Calculate rbs,k by substituting the values of ds(k), wt, y, D, Ls and  into Eq. (6.8); 

6.1) if g = mins{rbs,k} – p > 0, set k = k + 1; if k ≤ K return to 4); otherwise go to 7), 

and 

6.2) if g = mins{rbs,k} – p ≤ 0, calculate C(TI) = C(TI) + CFexp(–(i–1)TI + kt), set 

nRF = nRF + n0, re-generate the total number of defects on the joint (denoted by n1) over 

the period from k to T, i.e. n1 ~ fP(N(T)|
′
(T)) with 

′
(T) evaluated from zero to T - k, as 

well as their corresponding initiation times and growth paths following the procedures 

described in Section 6.2.3 with T replaced by T - k, and ti0 =  + k; set n0 = n1; if k = ti, 

set i = i + 1 and return to 3), and if k < ti, go to 7); 

7) Calculate the number of remaining defects up to time ti,                
; and 

calculate the corresponding growths of depth associated with each of the Ni defects; 

8) Generate the measurement errors associated with the defect depth and length of the 

s
th

 defect (s = 1, 2, …, Ni), denoted by ds and ls, respectively; calculate the measured 

depth   
                   , and length   

               , at time ti, where 
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    and   

   , and calculate C(TI) = C(TI) + CINexp(–ti).  Set s = 1 and carry out 

the following: 

8.1) generate a random number u from a uniform distribution between zero and one, 

and calculate the PoD value associated with defect s, denoted by PoDs, using Eq. 

(6.5), i.e. PoDs = 1 – exp(–qds); 

8.2) if u ≤ PoDs, calculate   
  and    

 ; if   
        or    

      , calculate C(TI) 

= C(TI) + CEVexp(–ti), and re-generate the total number of defects (denoted by n2) 

over the period from ti to T, i.e. n2 ~ fP(N(T)|
′
(T)) with 

′
(T) evaluated from zero to 

T - ti, as well as their corresponding initiation times and growth paths following the 

procedures described in Section 6.2.3 with T replaced by T - ti, and ti0 =  + ti; set n0 

= n2, and 

8.2.1) if ds ≥ Rwtn and/or rbs
′
 ≤ Rpn, calculate C(TI) = C(TI) + CRSexp(–ti), set 

nRS = nRS + n1, i = i + 1 and return to 3), and 

8.2.2) if ds < Rwtn and rbs
′
 > Rpn, calculate C(TI) = C(TI) + CRCexp(–ti), set nRC 

= nRC + n1, i = i + 1 and return to 3); 

8.3) if u > PoDs, set s = s + 1; if s ≤ Ni, return to 8.1); otherwise (i.e. s > Ni), set i = i 

+ 1 and return to 3); 

9) If (i-1)×TI + k×t ( k ≤ K ) is less than T, repeat Steps 3) to 8).  

The value of E(CR(TI)) can be evaluated from the samples of CR(TI) generated from a 

total of Ns simulation cycles based on the above-described procedure.  The above analysis 

can be repeated by varying the periodic inspection interval TI from 0 to T.  According to 

the minimum expected cost rule, the optimal inspection interval is the value of TI that 

results in the minimum value of E(CR(TI)) and is denoted by TIO.  Furthermore, the 

average annual failure probability of the pipe joint corresponding to a given inspection 

interval TI, denoted by Paf(TI) (TI = 1, 2, ..., T), which is relevant to the selection of the 

optimal inspection interval subjected to the reliability constraint, can be evaluated from 
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the simulation results as Paf(TI) =         
  
        , with Nif(TI) denoting the total 

number of failures of the pipe joint over T years in the i
th

 simulation trial corresponding 

to inspection internal TI. 

In practice, the defect information obtained from the first ILI can be used to update the 

various parameters employed in the above-described analysis, e.g. PoD, the defect 

generation and growth models as well as the measurement errors associated with the ILI 

tool.  The updated parameters can then be used to re-evaluate the optimal inspection 

interval in the subsequent years.  The updating aspect of the analysis is not addressed in 

this study and will be dealt with in the future.  

6.5 Example 

6.5.1 General 

An onshore underground natural gas pipeline is employed to illustrate the application 

of the above-described methodology in this section.  The pipeline has a nominal outside 

diameter of 762 mm (30 inches), and a maximum operating pressure of 10.34 MPa (1500 

psi), and is made from API 5L Grade X80 steel with an SMYS of 550 MPa and a 

specified minimum tensile strength (SMTS) of 625 MPa.  The selected joint has a 

nominal wall thickness of 8.96 mm and a length of 12.5m.  The service life of this 

pipeline (i.e. T in Eq. (6.10)) is assumed to be 50 years. 

The pipeline at the time of installation was assumed to be defect-free.  The number of 

defects on the pipe joint is characterized by Eq. (6.1), where 0 and b were assumed to be 

0.0128 and unity, respectively, i.e. (t) = 0.0064t
2
.  The values of 0 and b imply that the 

expected number of defects over a period of 50 years is 16.  The growth of each defect 

was modeled by Eq. (6.4), and the growth rates of the depths (i.e. d(1)) of all the defects 

were assumed to be independent and identically gamma-distributed with a mean of 0.2 

mm/yr and a coefficient of variation (COV) of 50%.  The defect length was assumed to 

be static and follow a lognormal distribution with a mean of 105 mm and a COV of 130% 

(CSA 2007).  The defect lengths associated with different defects on the entire joint were 

assumed to be mutually independent.  The model errors associated with the short and 
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long defects were distinguished in terms of the transition normalized defect length based 

on a recent study reported by Zhou and Huang (2012).  Finally, the internal pressure (p), 

model error (), wall thickness (wt) and yield strength (y) were assumed to be invariant 

within the joint.  The probabilistic characteristics of the parameters are summarized in 

Table 6.1.   

Table 6.1 Probabilistic characteristic of the random variables 

Random 

variable 

Nominal 

value 
Unit Mean/Nominal COV 

Distribution 

type 
Source 

L N/A 

mm 

105
(a)

 130% Lognormal CSA 2007 

D 762 1.0 0 Deterministic CSA 2007 

wt 8.96 1.0 1.5% Normal Jiao et al. 1995 

y 550 
MPa 

1.08 3% Normal Jiao et al. 1995 

P 10.34 1.05 2% Gumbel CSA 2007; Zhou 2010 

b 1.0 N/A 
1.062 12.7% Weibull

(b)
 

Zhou and Huang 2012 
1.442 23.6% Frechet

(b)
 

a
 The mean value of defect length is 105 mm; 

b
 The Weibull and Frechet distributions are applicable for defects with L/(Dwt)

0.5
 ≤ 1.5 (i.e. short 

defects) and defects with L/(Dwt)
0.5

 > 1.5 (i.e. long defects), respectively. 

The defect depth and length reported by the ILI tool were assumed to be unbiased (i.e. 

c1d = c1l = 0 and c2d = c2l = 1 in Eqs. (6.6a) and (6.6b)), and the standard deviations of the 

random scattering errors of the defect depth and length were evaluated to be 7.8%wt and 

7.8 mm, respectively, based on the common tool specifications that indicate a confidence 

interval of the actual depth ±10%wt with a probability of 80% for the measured depth, 

and a confidence interval of the actual length ±10 mm with a probability of 80% for the 

measured length.  The PoD curve associated with the ILI tool was characterized by Eq. 

(6.5), with the PoD value equal to 90% for the defect depth of 10 %wt, i.e. q = 2.57 mm
-1

.  

Furthermore, the sizing accuracies of the ILI tools employed in different inspections were 

assumed to be identical.  Finally, the safety factors for excavation were assumed the same 

as those for repair, namely  = R = 0.75 and E = R = 1.25; these values are consistent 

with the typical industry practice (Kariyawasam et al. 2012). 
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The absolute and relative unit costs of inspection, excavation, repair and failure 

replacement representative of the typical industry practice in Canada are summarized in 

Table 6.2.  Note that the relative costs were employed in all the analyses in this study.  As 

discussed in Section 6.4.3, the indirect component of the failure cost can be much higher 

than the direct failure cost.  Due to the difficulty in quantifying the indirect cost, 

parametric analyses were conducted by assuming three different values of the relative 

failure cost, namely CF = 30, 60 and 200, respectively.  Additional parametric analysis 

scenarios were developed to investigate the impact of PoD, the safety factors in the 

excavation and repair criteria (i.e. , R, E and R), the growth rate of defect depth, the 

instantaneous generation rate of the generation model and defect generation model on the 

optimal inspection interval.  These scenarios are summarized in Table 6.3, where the 

shaded elements indicate that the value of this parameter is the same as that in the 

baseline case.  It should be pointed out that CF = 30 was used to investigate the impact of 

an overly optimistic estimate of the failure cost on the optimal inspection interval. 

Table 6.2 Summary of unit costs  

Cost item 
Absolute Cost 

(CAD$/joint) 

Relative cost 

(/Joint) 

Inline inspection, CIN 70 0.0035 

Corrosion defect excavation, CEV 70,000 3.5 

Recoating, CRC 20,000 1 

Sleeving, CRS 35,000 1.75 

Failure cost 

CF 

Tangible cost (i.e. 

excavation and 

replacement) 

130,000 
>56.5 

Intangible cost > one million 
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Table 6.3 Details of the parametric analysis 

Scenario CF  and R E and R               
PoD at d = 

10%wt 
0 

Generation 

model 

Baseline 60 0.75 1.25 0.2 90% 0.0128 NHPP 

I 
30       

200       

II 
 0.5 1.5     

 0.9 1.1     

III 
   0.1    

   0.3    

IV 
    50%   

    10%   

V 
     0.0064  

     0.04  

VI      -- HPP 

6.5.2 Results of Parametric Analysis 

The above-described model was first applied to evaluate E[CR(TI)] corresponding to 

the baseline case specified in Table 6.3.  To investigate the contribution of cost associated 

with each individual maintenance actions to E[CR(TI)], a breakdown of E[CR(TI)] was 

obtained in terms of the expected costs of inspection, excavation, maintenance repair 

(including both recoating and sleeving) and failure replacement, denoted by E[CR_IN(TI)], 

E[CR_EV(TI)], E[CR_MR(TI)] and E[CR_FR(TI)], respectively.  The expected cost rate 

E[CR(TI)] along with the cost components as a function of the inspection interval varying 

from one to 50 years with an increment of one year is depicted in Fig. 6.3(a) for  = 0, 

and Fig. 6.3(b) for  = 5%.  The results shown in Fig. 6.3 indicate that E[CR_FR(TI)] has 

the highest contribution to E[CR(TI)] as long as TI is, say, greater than or equal to 8 years, 

followed by E[CR_EV(TI)] and E[CR_MR(TI)].  The expected cost of inspection is negligible 

compared with those of the other maintenance actions. 
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(a) 

 

(b) 

Figure 6.3 Comparison of the expected cost rates associated with different maintenance 

actions based on the baseline case 

The expected cost rates corresponding to different parameters are depicted in Figs. 6.4 

through 6.9, where the solid curve shown in each of the figures corresponds to the 

baseline case specified in Table 6.3.  A notable characteristic of the curves in these 
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figures is the existence of multiple peaks and valleys.  This is explained later in the 

section based on the annual failure probability curves shown in Fig. 6.10.  Figure 6.4 

depicts E[CR(TI)] versus TI (TI = 1, 2, …, 50 years), where three values of CF were 

considered, i.e. CF = 30, 60 and 200, respectively.  Figure 6.4(a), where the discount rate 

 equals zero, indicates that E[CR(TI)] increases as the failure cost increases, which is 

expected.  It also shows that the optimal inspection interval (TIO) decreases as the failure 

cost increases, for example, TIO equals 10, 2 and 1 years for CF = 30, 60 and 200, 

respectively.  Note that TIO was determined from Figure 6.4(a) based on the minimum 

expected cost rule as stated in Section 6.4.3, namely TI corresponding to the minimum 

value of E[CR(TI)].  The values of TIO in Figs. 6.4(b) through 6.9 were determined in the 

same way.  If  equals 5%, as shown in Fig. 6.4(b), the corresponding TIO are 10, 5 and 3 

years for CF = 30, 60 and 200, respectively.  The results shown in Fig. 6.4 suggest that an 

overly optimistic estimate of the failure cost (e.g. CF = 30 as opposed to 60), as expected, 

leads to a longer optimal inspection interval. 
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(b) 

Figure 6.4 Expected cost rate vs the inspection interval TI in term of CF = 30, 60 and 200 

The value of E[CR(TI)] as a function of the inspection interval and PoD (90%, 50% or 

10% for the defect depth of 10%wt) is plotted in Figure 6.5(a) for  = 0, and Figure 6.5(b) 

for  = 5%.  Figure 6.5 reveals that E[CR(TI)] at a given inspection interval in general 

increases as PoD decreases.  This is mainly attributed to that a higher PoD leads to a 

higher likelihood to excavate and repair a given defect, and therefore lower probability of 

failure and expected failure cost, as indicated by Fig. 6.5(c), the latter in general having 

the highest contribution to E[CR(TI)].  The relatively small difference between the values 

of E[CR(TI)] corresponding to PoD = 90% and 50% at d = 10%wt is attributed to the 

small difference between the two PoD curves as shown in Fig. 6.5(d).  Furthermore, if TI 

= 50 years, it follows from the maintenance policy stated in Section 6.4.2 that no 

inspection is carried out and therefore the accuracy of ILI tool has no impact on E[CR(TI)], 

as shown Figs. 6.5(a) and 6.5(b).  Results shown in Figs. 6.5(a) and 6.5(b) suggest that 

the optimal inspection interval decreases as the accuracy of the ILI tool decrease, which 

is expected.  For example, TIO = 3, 4 and 5 years for PoD = 10%, 50% and 90% at d = 

10%wt, respectively, if  = 5%.   
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(c) 
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(d) 

Figure 6.5 Expected cost rate vs the inspection interval TI in term of PoD 

The values of E[CR(TI)] corresponding to  = R = 0.9 and E = R = 1.1,  = R = 

0.75 and E = R = 1.25 as well as  = R = 0.5 and E = R = 1.5, are depicted in Fig. 

6.6(a) for  = 0, and in Fig. 6.6(b) for  = 5%.  Figure 6.6 suggests that the values of the 

safety factors have a large impact on E[CR(TI)].  Of the three sets of safety factors 

considered, the most stringent set (i.e. 0.5 and 1.5) results in the highest value of 

E[CR(TI)], if TI ≤ 7 years and  = 0.  This observation makes sense because the more 

stringent safety factors are employed, the fewer failures but more excavations and repairs 

arise for a given inspection interval.  Furthermore, investigation of the cost breakdown 

(see Fig. 6.6(c)) indicates that, if TI ≤ 7 years, the total expected maintenance cost, 

denoted by E[CR_M(TI)], (i.e. the total expected cost excludes the expected failure cost) 

accounts for over 95% of E[CR(TI)] for  = R = 0.5 and E = R = 1.5, and is about 2 

times (4 times) as high as that corresponding to  = R = 0.75 and E = R = 1.25 ( = 

R = 0.9 and E = R = 1.1).  In such case, E[CR_FR(TI)] is less than E[CR_M(TI)] even 

though the less stringent set of safety factors lead to the higher Paf and E[CR_FR(TI)] (see 

Fig. 6.6(c)).  If TI > 7 years, the least stringent set of safety factors (i.e. 0.9 and 1.1) lead 

to the highest value of E[CR(TI)] in that most of the critical defects are likely to be missed 

by the mitigation actions, which will lead to high failure probabilities and expected 
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failure cost.  Compared with the baseline case (i.e. 0.75 and 1.25), the more stringent 

safety factors (i.e. 0.5 and 1.5) increases TIO, whereas the less stringent safety factors (i.e. 

0.9 and 1.1) decreases TIO.  For example, TIO equals 28 years for  = R = 0.5 and E = 

R = 1.5, and 1 year for  = R = 0.9 and E = R = 1.1 if  = 0; whereas TIO becomes 34 

years for the former and remains to be 1 year for the latter if  = 5%.  Furthermore, it is 

worth remarking that the safety factors 0.75 and 1.25, which are widely adopted in the 

pipeline industry, lead to the lowest expected cost for a range of inspection intervals that 

are commonly used in the industry (say, between 2 to 15).  This suggests that the current 

industry practice in terms of the safety factors for excavation and repair is quite cost-

effective.  
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(b) 

 

(c) 

Figure 6.6 Expected cost rate vs the inspection interval TI in term of the safety factors 
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The results shown in Fig. 6.7 illustrate the impact of the mean of the growth rate of the 

defect depth (denoted by              ) on E[CR(TI)] and TIO.  Three cases of               were 

considered, namely               = 0.1, 0.2 and 0.3 mm/yr, respectively.  The COV of d(1) 

was fixed at 50% for the three cases.  As expected, E[CR(TI)] increases with               at a 

given inspection interval.  The increase in E[CR(TI)] is particularly significant as               

increases from 0.2 to 0.3 mm/yr, for TI ≥ 15 years.  Furthermore, TIO decreases as               

increases: TIO equals 25, 2 and 1 year for               = 0.1, 0.2 and 0.3 mm/yr, respectively, 

for  = 0, and 50, 5 and 2 years, respectively, for  = 5%. 
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(b) 

Figure 6.7 Expected cost rate vs the inspection interval TI in term of mean of growth rate 

The impact of the instantaneous generation rate in Eq. (6.1) on E[CR(TI)] and TIO is 

illustrated in Fig. 6.8(a) for  = 0, and Fig. 6.8(b) for  = 5%, respectively, where the 

proportional constant (i.e. 0) in the instantaneous rate was assumed to equal 0.0064, 

0.0128 or 0.04.  Results shown in Fig. 6.8 indicate that a larger value of 0, as expected, 

leads to a higher value of E[CR(TI)] and TIO = 5 (10), 2 (5) and 5 (5) years for 0 = 0.0064, 

0.0128 and 0.04, respectively, if  = 0 (5%).  TIO corresponding to 0 = 0.04 (i.e. 5 years) 

is longer than that corresponding to 0 = 0.0064 and 0.0128 (.e. 5 and 2 years, 

respectively), which is attributed to the following three aspects.  First, E[CR_M(TI)] 

governs E[CR(TI)], for a range of inspection intervals (say, 1 ≤ TI ≤ 10 years) for the three 

cases shown in Fig. 6.8.  Second, the total expected number of defects corresponding to 

0 = 0.04 is higher than those corresponding to 0 = 0.0064 and 0.0128; the former will 

trigger more excavation and repair than the latter given the same PoD,  (R) and E (R) 

and an inspection interval.  Lastly, a longer inspection interval leads to a lower 

E[CR_M(TI)] especially for the case with a larger number of defects.   
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(a) 

 

(b) 

Figure 6.8 Expected cost rate vs the inspection interval TI in term of 0 

To investigate the impact of the defect generation model on the optimal inspection 

interval, the homogeneous Poisson process was further considered.  To this end, an 

equivalent generation rate (denoted by ) for HPP was considered and evaluated by = 
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()/T.  It follows from T = 50 years and (t) corresponding to the baseline case 

presented in Section 6.5.1 that  = 0.32.  The corresponding results are given in Fig. 6.9. 

Figure 6.9 indicates that the HPP model leads to a higher value of E[CR(TI)] than the 

NHPP model.  This is mainly because the failure probabilities corresponding to the HPP 

model are higher than those corresponding to the NHPP model as indicated by Fig. 6.10, 

resulting in a higher expected cost of failure for the former model; on the other hand, the 

total maintenance cost (i.e. E[CR_M(TI)]) corresponding to the former is higher than that 

corresponding to the latter for a wide range of inspection intervals (say, 1 ≤ TI ≤ 36 years).  

Note that the results shown in Fig. 6.10 are further addressed in the following section.  

The optimal inspection interval corresponding to the HPP model (i.e. TIO = 5 (10) years) 

is longer than that corresponding to the NHPP model (i.e. TIO = 2 (5) years) for  = 0 

(5%).  This observation makes sense and can be explained by the same reason as stated 

for Fig. 6.8 because the total expected number of defects corresponding to the HPP model 

is always higher than that corresponding to the NHPP model (see Fig. 6.11) at a given 

inspection interval. 
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(b) 

Figure 6.9 Expected cost rate vs the inspection interval TI in term of the defect generation 

model 

The annual failure probabilities (i.e. Paf) corresponding to different scenarios of the 

parametric analysis are shown as a function of the inspection interval in Figs. 6.10(a) 

though 6.10(e).  Figure 6.10 can be used to select TIO by incorporating the reliability 

constraint.  For example, if the allowable annual failure probability for a pipe joint is set 

equal to 5.5 × 10
-4

, the reliability constraint-based TIO equals 2 years for the baseline case 

as shown in Fig. 6.10.  That multiple peaks and valleys exist on the annual failure 

probability curves suggests that the similar trend shown in Figs. 6.4 through 6.9 can be 

explained from Fig. 6.10.  Without loss of generality, consider the curve for the baseline 

case (i.e. the solid line).  Given a simulation trial, the total number of failures conditional 

on TI = 50 years is in general more than that conditional on TI = 25 years.  This is shown 

in the annual failure probability given in Fig. 6.10; that is, the annual failure probability 

corresponding to TI = 25 years is lower than that corresponding to TI = 50 years.  

Furthermore, the local minima appearing on the curve of E[CR(TI)] (e.g. at TI = 36 years) 

are mainly because the inspection and repair carried out in the 36
th

 year mitigate some of 

the critical defects that will likely cause failure of the pipe joint over the remaining 14 

years of its service life.  This implies that an inspection interval of 36 years is more 
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effective than an interval of 25 years for this particular case.  Finally, the annual failure 

probabilities associated with the HPP model are higher than those associated with the 

NHPP model, as reflected in Fig. 6.10.  This is attributed to the fact that the expected 

total number of defects generated within time [0, t], denoted by E[N(t)] (i.e. (t) in Eq. 

(6.1)), corresponding to the HPP model is always greater than that corresponding to the 

NHPP model except for t = 50 years, as shown in Fig. 6.11; therefore, the failure 

probability of the pipe joint corresponding to the former is higher than that corresponding 

to the latter. 
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(d) 

 

(e) 

Figure 6.10 Annual failure probability vs the inspection interval TI  

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 8 15 22 29 36 43 50

A
n

n
u

al
 f

ai
lu

re
 p

ro
b

ab
il

it
y

Inspection interval TI (year)

0.04

0.0128

0.0064

0 = 0.04

0 = 0.0128

0 = 0.0064 

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 8 15 22 29 36 43 50

A
n

n
u

al
 f

ai
lu

re
 p

ro
b

ab
il

it
y

Inspection interval TI (year)

HPP

NHPP



188 

 

 

Figure 6.11 Comparison of the expectation of the HPP and NHPP 

6.6 Conclusions 

This chapter describes a probabilistic investigation aimed at determining the optimal 

inspection interval for onshore underground natural gas pipelines subjected to metal-loss 

corrosion considering the uncertainties in the number of corrosion defects on the pipeline 

and the sizes of the defects as well as the uncertainties associated with the ILI tools.  The 

investigation is applicable to determining the optimal time to carry out the first inspection 

for newly-built pipelines.  The non-homogenous Poisson process is used to characterize 

the generation of new defects over time.  The homogeneous gamma process is used to 

model the growth of individual defects in the through pipe wall thickness direction (i.e. 

defect depth).  The uncertainties associated with the ILI tools incorporated in the 

methodology include the probability of detection (PoD) and a general form of the 

measurement error (i.e. bias and random scattering error).  For a given inspection 

interval, the total costs of corrosion inspection and repair over the service life of the 

pipeline for a reference pipe joint are formulated considering that the entire joint, as 

opposed to specific defects, is repaired by the maintenance action, which is consistent 

with the industry practice.  The cost of failure corresponds to the burst of the corroded 

pipeline due to internal pressure, and includes both the direct and indirect costs.  The 
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Monte Carlo simulation technique is adopted to evaluate the expected cost rate, i.e. the 

expected total costs of inspection, repair and failure per one year of the service life.  The 

minimum expected cost rule is then employed to determine the optimal inspection 

interval.   

The impact of model parameters on the optimal inspection interval is investigated 

through parametric analyses of an example pipeline.  The following observations are 

obtained from the analysis results.  First, the optimal inspection interval decreases as the 

failure cost and/or depth growth rate increases.  Second, the instantaneous generation rate 

of the defect generation model and the PoD value have a marked impact on the expected 

cost rate and the optimal inspection interval.  Third, the optimal inspection interval 

increases as the criteria for excavating and repairing corrosion defects become more 

stringent; the excavation and repair criteria commonly adopted by the industry is cost-

effective for inspection intervals that range from 2 to 15 years.  Finally, the homogeneous 

Poisson process-based defect generation model leads to a higher expected cost rate than 

the non-homogeneous Poisson process-based defect generation model, if the mean value 

of the total number of defects generated over the entire service life is the same for both 

models.  The former model leads to a longer optimal inspection interval than the latter 

model if the discount rate equals zero and 5%.  The algorithms for determining the 

optimal inspection interval considering uncertainties from different sources developed in 

this study will facilitate the reliability-based pipeline corrosion management.  
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Chapter 7 Summary, Conclusions and Recommendations for 

Future Study 

7.1 General 

The work reported in this thesis is focused on the reliability-based corrosion 

management of energy pipelines, including development of the probabilistic models for 

the growth of metal-loss corrosion defects on energy pipelines, and applications of these 

models in the context of time-dependent reliability assessment and optimal maintenance 

decision on the corroding pipelines.  Conclusions obtained from the research and 

recommendations for future study are summarized as follows. 

7.2 Development of Probabilistic Models for the Growth of Metal-loss 

Corrosion 

Four stochastic process-based models were developed to characterize the growth of 

depth of metal-loss corrosion defects on energy pipelines, namely the homogeneous and 

non-homogeneous gamma processes- (HGP- and NHGP-), inverse Gaussian process- 

(IGP-) and geometric Brownian motion- (GBM-) based models, which are described in 

Chapters 2, 3 and 4, respectively.   

All these growth models were formulated in a hierarchical Bayesian framework, 

which allows consideration of the uncertainties from different sources, e.g. the 

uncertainties associated with the model parameters and ILI tools.  The model parameters 

involved in each of the four models were assumed to be uncertain.  The statistical 

inference of these model parameters were evaluated using the Markov Chain Monte 

Carlo (MCMC) simulation techniques based on the ILI data obtained from multiple ILI 

runs.  A general form of the measurement error, including the biases and random 

scattering error as well as the correlation between the random scattering errors associated 

with different ILI tools were incorporated in the Bayesian updating.   

The HGP-, NHGP- and IGP-based models are state-independent whereas the GBM-

based model is state-dependent.  The GBM-based model approximate the growth path as 
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a piecewise linear growth, and is more flexible than the GP- and IGP-based models 

because the latter two models involve a specific assumption about the mean growth path 

(e.g. linear or power-law function of time).  Furthermore, these models are defect-specific 

as opposed to segment-specific models, which are favored by pipeline engineers in that 

they allow for identification of the critical defect.  These models are suitable for pipelines 

for which multiple sets of ILI data have been collected from different ILIs with not long 

intervals.  Finally, the spatial correlation of individual defects was ignored in the four 

growth models developed in this study. 

The growth models were applied to a total of 62 external corrosion defects, for which 

the field-measured depths (i.e. actual depths) are known from excavation and multiple 

sets of ILI-reported depths were collected from the ILI runs carried out prior to 

excavation.  The ILI data were used to carry out the Bayesian updating and make 

inference of the model parameters.  Then the growth models were validated by a 

comparison of the predicted depths at the time of excavation with the corresponding field 

measurements. 

The comparison suggests that the growth models can predict the actual depth of the 

defect reasonable well; for example, approximately 90% of the predicted depths fall 

within the bounds of actual depth ± 10%wt.  The predictions suggest that the models by 

and large lead to a poor prediction if the ILI data incorporated in the Bayesian updating 

involves larger measurement errors.  The mean squared error of prediction (MESP) was 

employed to evaluate and compare the predictive qualities of a given model with different 

assumptions of predictive methods, and the predictive qualities of different models with a 

given predictive method.  The MSEP values suggested that the predictive accuracies of 

the NHGP-, HGP- and IGP-based models are similar.  Furthermore, the four Bayesian 

growth models are significantly better than the conventional linear growth model 

commonly used by the pipeline industry. 

The proposed growth model will facilitate the application of defect-based pipeline 

corrosion management program by maintaining the structural integrity of the pipelines 

while achieving optimal allocation of the limited resources for maintenance. 
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7.3 Time-dependent System Reliability Analysis of a Corroding Pipeline 

A simulation-based methodology was developed in Chapter 5 to evaluate the time-

dependent failure probability of a pipe segment containing multiple active corrosion 

defects.  This model incorporates the developed corrosion growth models and the Poisson 

square wave process-based internal pressure model.  The time-dependent failure 

probability of the pipe segment was evaluated in terms of three distinctive failure modes, 

namely small leak, large leak and rupture.  The proposed methodology was applied to 

two pipe segments, denoted as segments 1 and 2, respectively, selected from an in-service 

underground natural gas pipeline.   

The time-dependent reliability of segment 1 containing 25 active external corrosion 

defects was evaluated using the HGP-based growth model.  The internal pressure was 

assumed to be a PSWP, random variable or deterministic value.  Three assumptions for 

the parameters involved in the HGP-based growth model were considered, namely 

uncertain and correlated, uncertain but independent, and deterministic.  Sensitivity 

analysis results suggest that the internal pressure model has a negligible impact on the 

probability of small leak and a marked impact on the probability of large leak; on the 

other hand, the uncertainties and correlations of the model parameters have a marked 

impact on the probabilities of small leak and large leak.  These observations highlight the 

importance of properly considering the uncertainty in the internal pressure in the 

reliability analysis as well as the importance of appropriately accounting for the 

uncertainties in the growth parameters as well as their correlations in the reliability 

analysis based on the HGP-based growth model.   

The HGP-, NHGP-, IGP- and GBM-based growth models were employed to evaluate 

the time-dependent system reliability of Segment 2 to investigate the impact of the 

growth models on the time-dependent reliability of corroding pipeline.  Segment 2 

contains 10 active defects for which the predicted depths obtained from the four models 

agree well with the actual depths (e.g. the absolute deviations between the predicted and 

actual depths are less than 5 %wt).  The small deviation allows comparing the failure 

probabilities corresponding to different growth models to be founded on a common basis.  
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The internal pressure was characterized by a random variable.  Results of the comparative 

study suggest that the growth models have a significant impact on the probability of small 

leak, but insignificant impact on the probabilities of large leak and rupture. 

7.4 Optimal Maintenance Decisions on Corroding Energy Pipelines 

A probabilistic investigation was carried out to determine the optimal inspection 

interval for onshore underground natural gas pipelines subjected to metal-loss corrosion.  

This investigation accounts for the uncertainties in the number of corrosion defects on the 

pipeline and the sizes of the defects as well as the uncertainties associated with the ILI 

tools.  The non-homogenous Poisson process (NHPP) was used to characterize the 

generation of new defects over time.  The homogeneous gamma process (HGP) was used 

to model the growth of defect depth (i.e.in the through pipe wall thickness direction) of 

individual defects.  The uncertainties associated with the ILI tools incorporated in the 

methodology include the probability of detection (PoD) and a general form of the 

measurement error (i.e. the biases and random scattering error).  For a given inspection 

interval, the total costs of corrosion inspection and repair over the service life of the 

pipeline for a reference pipe joint were formulated considering that the entire joint, as 

opposed to specific defects, is repaired by the maintenance action, which is consistent 

with the industry practice.  The Monte Carlo simulation technique was adopted to 

evaluate the expected cost rate, i.e. the expected total costs of inspection, repair and 

failure per one year of the service life.  The minimum expected cost rule was then 

employed to determine the optimal inspection interval.   

The investigation is illustrated by an example pipeline.  The impact of model 

parameters (e.g. the cost of failure, the excavation and repair criteria, the mean of growth 

rate, PoD, the growth rate of the defect depth and defect generation model) on the 

optimal inspection interval was investigated through parametric analyses.  The following 

observations are obtained from the analysis results.  First, the optimal inspection interval 

decreases as the failure cost and/or depth growth rate increases.  Second, PoD and PoF 

have a marked impact on the expected cost rate, but no impact on the optimal inspection 

interval.  Third, the optimal inspection interval increases as the criteria for excavating and 
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repairing corrosion defects become more stringent.  Finally, the HPP-based defect 

generation model leads to a higher expected cost rate than the NHPP-based defect 

generation model, if the mean value of the total number of defects generated over the 

entire service life is the same for both models.  The former model leads to a shorter 

optimal inspection interval than the latter model if the discount rate equals zero; however, 

the two models lead to the same optimal inspection interval if the discount rate equals 

5%.  The proposed algorithms provides a framework for determining the optimal 

inspection interval for corroding pipelines considering uncertainties from different 

sources and will facilitate the reliability-based pipeline integrity management.  

7.5 Recommendations for Future Study 

The recommended future investigations are described as follows. 

First, the spatial correlation among the growth of different defects is a worthy topic.  

The spatial correlation can be quantified based on the inspection data and incorporated 

into the development of the defect growth model.   

Second, the spatial variability of pipeline and environmental conditions surrounding 

the pipelines was implicitly considered in the developed models.  Such local covariates as 

the pipe steel, coating and soil types, if available, can be explicitly taken into account in 

the growth model to further improve or refine the model.  

Third, the defect population included in the multiple ILI data sets used in the Bayesian 

updating is fixed in the present study.  The new defects generated between the different 

inspections should be incorporated in the updating of the growth models. 

Fourth, the generation of new corrosion defects needs to be quantified based on the ILI 

data, and incorporated in the system reliability analysis and determination of the optimal 

re-inspection interval for corroding pipelines.  Furthermore, the risk attitude models, e.g. 

the stochastic dominance rule and cumulative prospect theory, can be incorporated in the 

decision-making to properly consider the risk attitudes of the decision makers. 
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Finally, the multi-objective optimization approach can be used to develop optimal 

maintenance strategies for corroding pipelines because it is desirable for the decision 

makers to determine a maintenance plan that minimizes the maintenance cost and 

maximizes the reliability of the pipeline.   
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Appendix A Full Conditional Posterior Distributions of Model 

Parameters (GP-based Model) 

1. The posterior distribution of xij (i =1, 2, …, m; j = 1, 2, …, n) 

 Gamma prior distribution given by Eq. (2.5); 

 Likelihood function given by Eq. (2.8); 

The posterior distribution of xij is 

                                                

       
 

 
            

 
    

 
  

                   
      

              (A.1a) 

or 

                           

  
 

 
            

 
    

 
  

                                     (A.1b) 

2. The posterior distribution of 

 Gamma prior distribution (|p1, q1); 

 Likelihood function given by Eq. (2.10b); 

                                      

 

   

 

   

           

        
          

      
         

 
   

 
                   (A.2a) 

or 

                         

                                            
 
   

 
                  (A.2b) 

3. The posterior distribution of 

 Gamma prior distribution (|p2, q2); 

 Likelihood function given by Eq. (2.10b); 
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                   (A.3a) 

or 

                         

                                            
 
   

 
                 (A.3b) 

4. The posterior distribution of ti0 

 Uniform prior distribution (ti0|p3, q3); 

 Likelihood function given by Eq. (2.10a);  

                                         

 

   

             

       
          

      
         

 
    (A.4a) 

or 

                             

                                           
 
    (A.4b) 

5. The posterior distribution of i 

 Gamma prior distribution (|p4, q4); 

 Likelihood function given by Eq. (2.10a);  

                                         

 

   

            

     
     

 
                    

 

   

        

     
                            

 
           (A.5a) 

                          
 
        (A.5b) 
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Appendix B Procedure of the MCMC Simulation 

Denote yi = (yi1, yi2, …, yij, …, yin)′, xi = (xi1, xi2,…, xij, … ,xin), x = (x1, x2, 

…, xm),  = (1, 2, …,m) and t0 = (t10, t20, …, tm0).  A step-by-step procedure based on 

a hybrid of the M-H algorithm and Gibbs sampler to sequentially generate the random 

samples of the parameters in the growth model is described in the following. 

1) Let s denote the counter of simulation trial, and set initial values: x
(0)

, (0)
, (0)

, t0
(0)

 

and (0)
; start from s = 1 and carry out the following: 

2) Based on Eq. (A.1), for given i, start from j = 1,  

2.1) Generate     
   

 from the proposal function;  

2.2) Calculate 

 

 
      

   
     

   
          

   
     

                 
     

     
     

     
                

     
   

     
 

      
   

     
   

          
   

     
     

        
     

     
     

                     
     

   
     

 
 

2.3) Generate a uniform random draw u from 0 to 1. 

2.4) Set     
   

     
   

  if u ≤ min(, 1), and     
   

     
     

 otherwise; 

2.5) Repeat 2.1) through 2.4) for mn times and obtain      ; 

3) Based on Eq. (A.2) 

3.1) Generate (*)
 from the proposal function; 

3.2) Calculate 

  
                          

     
              

                        
     

              
 

3.3) Generate a uniform random draw u from 0 to 1. 

3.4) Set (s)
 = (*)

 if u ≤ min(, 1), and (s)
 = (s-1)

 otherwise; 

4) Based on Eq. (A.3) 

4.1) Generate (*)
 from the proposal function; 

4.2) Calculate 
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4.3) Generate a uniform random draw u from 0 to 1. 

4.4) Set (s)
 = (*)

 if u ≤ min(, 1), and (s)
 = (s-1)

 otherwise; 

5) Based on Eq.(A.4), start from i = 1: 

5.1) Generate    
   

 from the proposal function; 

5.2) Calculate 

  
     

   
     

   
             

     
       

     
   

     
   

             
     

       
 

5.3) Generate a uniform random draw u from 0 to 1. 

5.4) Set    
   

    
   

, if u ≤ min(, 1), and    
   

    
     

 otherwise; 

5.5) Repeat Steps 5.1) through 5.4) for m times, then   
   

 is obtained; 

6) Based on Eq.(A.5b), sample   
   

 from          
   

              
   

        using 

Gibbs sampler sequentially for i = 1, 2, …, m, and obtain (s)
; 

7) Repeat Steps 2) through 6) for N cycles until each of the chains of all parameters 

converge to a stationary process.
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Appendix C Full Conditional Posterior Distributions of Model 

Parameters (IGP-based Model) 

Scenario I: defect-specific  and t0 and common  

1. The posterior distribution of xij (i =1, 2, …, m; j = 1, 2, …, n) 

 Inverse Gaussian prior distribution given by (xij|ij, ij)
2
) with ij 

given by Eq. (3.3); 

 Likelihood function given by Eq. (2.8); 

The posterior distribution of xij is 

                                                  
 
  

 

      
 

 
            

 
    

 
  

                   
    

     
            

 

     
   

 (C.I.1a) 

or 

                          

  
 

 
            

 
    

 
  

             
 

 
         

            
 

     
 (C.I.1b) 

2. The posterior distribution of i

 Gamma prior distribution (i|p1, q1); 

 Likelihood function given by Eq. (3.5a); 

The posterior distribution of i is 

                                            

            
            

 

     
   

     
                (C.I.2a) 

or 
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                    (C.I.2b) 

3. The posterior distribution of ti0 

 Uniform prior distribution (ti0|p2, q2); 

 Likelihood function given by Eq. (3.5a); 

The posterior distribution of ti0 is 

                                             

           
            

 

     
  

    (C.I.3a) 

or 

                                     
            

 

     
  

    (C.I.3b) 

4. The posterior distribution of  

 Gamma prior distribution (|p3, q3); 

 Likelihood function given by Eq. (3.5b); 

The posterior distribution of  is 

                                       

           
           

 

     
    

 
   

 
      

  

 
     

 (C.I.4a) 

     
  

 
       

           
 

     
    

 
   

 
     (C.I.4b) 

Scenario II: defect-specific , t0 and  

1. The posterior distribution of xij (i =1, 2, …, m; j = 1, 2, …, n) 

 Inverse Gaussian prior distribution given by (xij|ij, iij)
2
), with ij 

given by Eq. (3.3); 
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 Likelihood function given by Eq. (2.8);  

The posterior distribution of xij is 

                                                    
 
  

 

      
 

 
            

 
    

 
  

                   
    

     
             

 

     
   

 (C.II.1a) 

or 

                           

  
 

 
            

 
    

 
  

             
 

 
         

             
 

     
 (C.II.1b) 

2. The posterior distribution of i

 Gamma prior distribution (i|p1, q1); 

 Likelihood function given by Eq. (3.5a) with  being replaced by i; 

The posterior distribution of i is 

                                             

            
             

 

     
   

     
                (C.II.2a) 

or 

                           

            
             

 

     
  

                    (C.II.2b) 

3. The posterior distribution of ti0 

 Uniform prior distribution (ti0|p2, q2); 

 Likelihood function given by Eq. (3.5a) with  being replaced by i; 

The posterior distribution of ti0 is 
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    (C.II.3a) 

or 

                                      
             

 

     
  

    (C.II.3b) 

4. The posterior distribution of i 

 Gamma prior distribution (i|p3, q3); 

 Likelihood function       
                   

 
  

   ; 

The posterior distribution of i is 

                                            

          
           

 

     
    

 
      

 

 
     

 (C.II.4a) 

      
 

 
      

           
 

     
    

 
     (C.II.4b) 

Scenario III: defect-specific t0 and common  and  

1. The posterior distribution of xij (i =1, 2, …, m; j = 1, 2, …, n) 

 Inverse Gaussian prior distribution given by (xij|ij, ij)
2
), with i in 

Eq. (3.3) being replaced by ; 

 Likelihood function given by Eq. (2.8);  

The posterior distribution of xij is 
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 (C.III.1a) 

or 

                          

  
 

 
            

 
    

 
  

             
 

 
         

            
 

     
 (C.III.1b) 

2. The posterior distribution of 

 Gamma prior distribution (|p1, q1); 

 Likelihood function      
                 

 
  

   ; 

The posterior distribution of  is 

                             

 

   

           

             
            

 

     
   

   
 
                   (C.III.2a) 

or 

                        

             
            

 

     
  

   
 
                  (C.III.2b) 

3. The posterior distribution of ti0 

 Uniform prior distribution (ti0|p2, q2); 

 Likelihood function given by Eq. (3.5a) with i being replaced by ; 

The posterior distribution of ti0 is 

                                            

            
            

 

     
   

    (C.III.3a) 

or 
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    (C.III.3b) 

4. The posterior distribution of  

 Gamma prior distribution (|p3, q3); 

 Likelihood function given by Eq. (3.5b) with i being replaced by ; 

The posterior distribution of  is 

                                      

           
           

 

     
    

 
   

 
      

  

 
     

 (C.III.4a) 

     
  

 
       

           
 

     
    

 
   

 
     (C.III.4b) 

Scenario IV: defect-specific t0 and  and common  

1. The posterior distribution of xij (i =1, 2, …, m; j = 1, 2, …, n) 

 Inverse Gaussian prior distribution given by (xij|ij, iij)
2
), with i in 

Eq. (3.3) being replaced by ; 

 Likelihood function given by Eq. (2.8);  

The posterior distribution of xij is 

                                                    
 
  

 

      
 

 
            

 
    

 
  

                   
    

     
             

 

     
   

 (C.IV.1a) 

or 

                           

  
 

 
            

 
    

 
  

             
 

 
         

             
 

     
 (C.IV.1b) 
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2. The posterior distribution of 

 Gamma prior distribution (|p1, q1); 

 Likelihood function      
                  

 
  

   ; 

The posterior distribution of  is 

                              

 

   

            

             
             

 

     
   

   
 
                   (C.IV.2a) 

or 

                         

             
             

 

     
  

   
 
                  (C.IV.2b) 

3. The posterior distribution of ti0 

 Uniform prior distribution (ti0|p2, q2); 

 Likelihood function given by Eq. (3.5a) with  being replaced by i; 

The posterior distribution of ti0 is 

                                             

           
             

 

     
  

    (C.IV.3a) 

or 

                                     
             

 

     
  

    (C.IV.3b) 

4. The posterior distribution of i 

 Gamma prior distribution (i|p3, q3); 

 Likelihood function       
                   

 
  

   ; 

The posterior distribution of i is 
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 (C.IV.4a) 

      
 

 
      

           
 

     
    

 
     (C.IV.4b) 
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Appendix D Full Conditional Posterior Distributions of Model 

Parameters (GBM-based Model) 

1. The posterior distribution of ti0 (i = 1, 2, …, m) 

 Uniform prior distribution, (ti0|p1, q1);  

 Likelihood function given by Eq. (4.7);  

                                                     

      
 

 
            

 
    

 
  

              (D.1a) 

Or 

                            
 

 
            

 
    

 
  

             (D.1b) 

2. The posterior distribution of  

 Gaussian prior distribution, (|p2, q2), with p2 and q2 denoting the mean and 

precision (i.e. the inverse of variance) of , respectively; 

 Likelihood function given by Eq. (4.8);  

                                     

   

   

 

   

           

         
               

 

          
    

   
 
    

         

 
  (D.2a) 

Or 

                            
               

 

          
    

   
 
    

         

 
 (D.2b) 

3. The posterior distribution of 2 

 Gamma prior distribution, (2
|p3, q3); 

 Likelihood function given by Eq. (4.8);  
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          (D.3a) 

Or 

                        

    
      

 
                

               
 

          
    

   
 
         (D.3b) 

4. The posterior distribution of ri0 (i = 1, 2, …, m) 

 Gamma prior distribution,(ri|p4, q4); 

 Likelihood function given by Eq. (4.7); 

                                                     

      
 

 
            

 
    

 
  

                         
     (D.4a) 

Or  

                           

  
 

 
            

 
    

 
  

                                 (D.4b) 

5. The posterior distribution of ij (i = 1, 2, …, m; j = 1, …, n-1) 

 Gaussian prior distribution, (ij|ti,j-1, 
2
ti,j-1) with ti,j-1 and 2

ti,j-1 

denoting the mean and variance of ij, respectively; 

 Likelihood function given by Eq. (4.7); 

                                                        
          

      
 

 
            

 
    

 
  

             
               

 

          
  (D.5a) 
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Or  

                            

  
 

 
            

 
    

 
  

             
               

 

          
 (D.5b) 
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