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Abstract

Scaling ratios of simulations are essential to research the effect of tornadic winds on
buildings and structures, in both experimental and numerical studies. In order to determine
the proper scaling, access to wind fields of simulated and full-scale tornadoes is needed. For
the first time here Doppler radar tornado velocity fields are analyzed and compared to
experimental tornado-like vortices data in order to establish the scaling necessary to simulate

tornadoes in a physical laboratory setting.

A prototype three-dimensional wind testing chamber capable of simulating tornadoes, named
Model WindEEE Dome (MWD), was designed and built. Tornado-like vortices were
simulated and investigated for swirl ratios ranging from 0.12 to 1.29. Flow visualization
captured a laminar single-celled core at very low swirl ratios, a vortex breakdown bubble
formation and then the drowned vortex jJump at moderate swirl ratios, and a two-celled
turbulent vortex at high swirl ratios. The surface static pressure of simulated tornadoes was
measured and the mean velocity field of the tornado-like vortices was characterized using
Particle Image Velocimetry method. It was shown that for radial Reynolds numbers greater
than 6.7x10*, the core radius and the swirl ratio corresponding the transition from laminar to
turbulent are nearly independent of the radial Reynolds number. Local peaks in the axial
profile of the tangential velocities near the surface, together with the very large surface
pressure deficits, observed in the experimental data, are distinctive characteristics of tornado-

like vortices and may be responsible for structural damages in tornadic winds.

Nine volumes of single-Doppler radar data obtained from five tornado events were analyzed
using the Ground-Based Velocity Track Display method and a unique dataset of three-
dimensional axisymmetric tornado flow fields was created. This full-scale dataset contains
various vortex structures spanning from a weak single-celled vortex to a very strong two-
celled vortex and wind fields with the overall maximum tangential velocities ranging from
36.3 m/s to 62 m/s. The structure of the vortex was discussed in detail for each volume of
data. The swirl ratio of the full-scale data was calculated and related to the forensic EF-Scale
(Enhanced Fujita Scale) for each volume. It was observed that swirl ratio increases as the

tornado vortex intensifies which is consistent with laboratory results.



Lastly, experimentally simulated tornado-like vortices were compared to the field tornadoes.
The length and velocity scaling ratios of the simulation and the swirl ratio of the full-scale
tornadoes were identified. It is concluded that the MWD apparatus can generate tornado-like
vortices equivalent to EFO to low-end EF3 rated tornadoes in nature. Also, an average length
scale of 1550 is determined for simulating mid-range EF1 to low-end EF3 rated tornadoes

with fully turbulent flow characteristics.
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Tornado-like vortex, physical simulation, swirl ratio, Particle Image Velocimetry, full-scale
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Chapter 1

1 Introduction

1.1 General introduction

Tornadoes are rotating columns of rising air that create a low pressure area close to the
ground and draw air in radially. They are very complex flows due to their unsteady,
three-dimensional and turbulent nature. On average, tornadoes are 150 m wide and travel
on the ground for 8.0 km [1] with a translational speed of 9 m/s to 18 m/s [2].

The intensity of a tornado is measured by Fujita Scale (F-Scale) which was introduced by
Tetsuya Theodore Fujita in 1971. This is a forensic scale for which each damage level is
associated with a wind speed (V) calculated as V=6.3(F+2)*?[3]. This relationship has
been derived by smoothly connecting the Beaufort scale and the Mach number scale (see
Appendix A for detail). The Beaufort scale is an empirical measure that relates wind
speed to observed conditions at sea or on land and Mach number is the ratio of the speed
of an object moving through a fluid to the speed of sound. A damage survey is usually
performed after the tornado has passed a development. Then, using the damage markers
(see Appendix B), the severity of the event is scaled between 0 (weakest) and 5

(strongest).

In 2006, the National Weather Service of the United States introduced the Enhanced
Fujita Scale (EF-Scale) as an improved version of the original F-Scale. This new scale
became operational in US on February 2007, and was very recently adopted by
Environment Canada in April 2013. The EF-Scale employs a larger number of structures
as damage indicators than the F-scale, including residential housings, office towers and
trees, and therefore wind speeds are more accurately related to wind damage. The
estimated wind speeds (3 sec gusts) associated with each level of Fujita and Enhanced

Fujita scale are shown in Table 1-1.



Table 1-1: Estimated wind speed for each category of tornado intensity.

Fujita Scale Wind Speed (km/h), Enhanced Wind Speed (km/h),

3s gusts Fujita Scale 3s gusts

FO 64-116 EFO 105-137

F1 117-180 EF1 138-178

F2 181-253 EF2 179-218

F3 254-332 EF3 219-266

F4 333-418 EF4 267-322

F5 419-512 EF5 >322

1.2 Motivation and objectives

Tornadoes are a serious threat to vast regions of North America, Bangladesh, South
Africa, parts of Argentina, as well as portions of Europe (England mainly), Australia and
New Zealand, and far eastern Asia. Over the last 15 year, the United States have
experienced an average of more than 1200 tornadoes per year which resulted in 1378
fatalities and $24.5 billion damage. Although major tornadoes happen every year, the
return period of a disaster in tornado prone areas is 5000 years. This return period is well
beyond what buildings are designed for. As a result, the main focus in regions susceptible
to tornadoes has been on preserving human lives with safe rooms rather than designing
tornado-resistant residential dwellings. Also, the performance of essential buildings such
as hospitals during and after the event is of high importance from the recovery point of
view. The recent study performed by the National Institute of Standards and Technology
(NIST) on the impacts of the May 22, 2011 tornado that struck Joplin, MO has revealed



the inefficiency of essential buildings and safe rooms in tornado-prone regions. This 2-
year technical investigation showed that safe areas (tornado shelters and safe rooms) did
not adequately protect occupants, and essential buildings did not remain operational. The
conclusion of this study is strongly supported by another recent NIST report in which the
impacts of the May 20, 2013 tornado in the Newcastle-Moore area (Oklahoma) are
provided. These reports highlight the need for a better understanding of tornado flows
and the damage associated with them.

Tornado flow studies started in 1882 with simple one-dimensional analytical models
which represented the flow using only the tangential velocity component; the Rankine
Vortex model. This early work was followed by more thorough analytical models such as
the Burgers-Rott vortex [4, 5]. As the knowledge of tornado vortex dynamics broadened
and as the measurement techniques and technology advanced, experimental and
numerical simulations of tornado-like vortices widely increased. Experimental
simulations of tornado-like flows started by reproducing the observed features of tornado
vortices. These features include: 1) a columnar vortex that touches the ground, 2) updraft
at the center of the vortex with a surface pressure drop, 3) spiraling flow with radial
convergence to the vortex core, and 4) turbulent flow regime [2]. In laboratory
simulations, the effects of buoyancy are neglected and therefore the vortex is purely
momentum driven. In 1969, Ying and Chang [2] designed and built a tornado simulator
that fulfilled the above mentioned features. Later, the Ward-type Tornado Vortex
Chamber (TVC) was introduced [6] which was an improved version of the Ying and
Chang apparatus. Ward’s simulator provided more realistic boundary conditions for the
vortex. Hereafter, substantial effort has been made to better represent the tornado flow
structure and boundary conditions in the lab [7-11] and to better characterize the flow
characteristics [10, 12-18]. This was followed by numerical simulations of tornado-like
vortices [19-22]. Numerical simulations can be divided into two general categories:
thunderstorm scale simulations which are meteorological models and tornado scale
simulations which are essentially engineering models. Thunderstorm scale models
reproduce the supercell storm and can be used to study tornadogenesis. On the other

hand, the tornado scale models focus on the interaction between the tornado vortex and



the ground surface. So far, numerical simulations of tornadic flows with engineering
applications have been mainly limited to simulating laboratory models or simple

axisymmetric flows.

Collecting full-scale velocity data from tornadoes has been always challenging for
researchers. Technological developments of Doppler radars and the introduction of
Doppler on Wheels (DOW) in 1995 [23, 24] are important recent developments enabling
scientists to obtain full-scale data from a safe distance. However, these measurements
mainly focus on tornadogenesis. In addition, the Doppler radar data are mostly collected
from heights on the order of tens of meters above the surface [25-31], which is
significantly higher than the majority of buildings of interest. Obtaining surface pressure
data from real tornadoes is an even more difficult task and only on very rare events have

measurements been successfully collected [32].

Despite the significant number of analytical, experimental and numerical studies and
advances in measurement methods, investigation of the wind loading effects on structures
and buildings has been very limited. This is attributed to an unidentified relationship (i.e.
geometric and velocity scales) between simulated and real tornadoes. Once this
relationship is identified, modelling structures and buildings and testing them in tornado

simulators to measure the wind loading is possible.

Mishra et al. [33] placed a 1:3500 scaled cubical building model (edge length of 30 mm)
in the path of a simulated single-celled vortex and measured the surface static pressures.
They observed a clear difference between the pressure distribution over the building in
tornadic winds compared to atmospheric boundary layer flows. Mishra et al. estimated
the geometric scale of their simulation by comparing the core radius of the simulated
vortex with that of the May 1998 Manchester, SD tornado both obtained from surface
static pressure measurements. Although the 1:3500 geometric scale resulted in a good
agreement between the surface pressure profiles of the simulated and the full-scale

tornado, there is no evidence of a match between radial profiles of tangential velocities.



A single-story, gable roof building was modeled in the lowa State University (ISU)
tornado simulator and the tornado wind-induced loads were measured by Haan et al. [34].
Using the length scale of 1:100, the model building was 91 mmx91 mmx66 mm
(LxDxH). As explained in [11], the geometric scale was estimated based on the building
model scale with no clear relation between the simulated vortex and real tornado

characteristics.

In order to conclude that a simulated tornado-like vortex is a valid representation of a
tornado flow in nature, it is important that the geometric, kinematic and dynamic
similitudes are analyzed. The difficulty with the case of tornadic flows originates in the
definition of the main non-dimensional number governing tornado-like flows, i.e. the
swirl ratio (S). This important parameter is defined based on the geometry and boundaries
of a simulator and is location dependent. Therefore, it is nearly impossible (or very
subjective) to calculate the swirl ratio for a real tornado as there is no clear definition of
inlet/outlet boundary conditions in a field tornado. An alternative approach was suggested
by Hangan and Kim [35] in which they compared simulated velocity data at various swirl
ratios with that of a Doppler radar full-scale data from the F4 rated tornado of Spencer,
SD on May 30, 1998. Hangan and Kim [35] showed that a simulated tornado-like vortex
with S=2 best represents the Spencer tornado. Although their results were promising, this
approach has not yet been validated, mainly due to the shortage of full-scale velocity data

from tornadoes of various structures and intensities.

Establishing a relationship between simulated and real tornadoes is the main focus of this
study. In order to achieve this, a complete set of experimental and full-scale data from
tornadoes of various intensities and characteristics is required. A prototype three-
dimensional wind testing chamber capable of simulating tornadoes, called Model
WindEEE Dome (MWD), was designed and built. Tornado-like vortices of various
structures and intensities were simulated in MWD. Afterwards, flow visualization
methods, surface static pressure tests and Particle Image Velocimetry (PIV) method were
implemented to characterize the tornado-like vortex both qualitatively and quantitatively.

Subsequently, full-scale Doppler radar data from various tornado events, provided by the



Centre for Severe Weather Research (CSWR) in Boulder Colorado, were analyzed using
a mathematical method called the Ground-based Velocity Track Display (GBVTD). The
outcome of these analyses is identification of the three-dimensional axisymmetric flow
structure of each volume of real tornado data. Also, these analyses provide the
opportunity to examine the swirl ratio of the field data as well as to create a database of

full-scale tornado velocities which has been lacking for a long time.

Finally, results of the experimental simulations of tornado-like flows, performed in
MWD are compared with the GBVTD-retrieved full-scale data. Based on these
comparisons, geometric and velocity scale ratios of the simulated tornadoes and, the swirl
ratio of the full-scale tornadoes are identified. This finding provides the opportunity to
correctly simulate tornado-like vortices and study the wind load effects on properly

scaled buildings and structures.

1.3 Thesis layout

This thesis is written in the “integrated article” format as specified by the Faculty of

Graduate Studies at Western University.

Chapter One provides a general introduction to tornadoes and the motivation behind this
study. In the next chapter, the tornadogenesis is briefly discussed. The main focus of
Chapter Two is the parameters that govern the tornado flow and the dynamic structure of
the vortex. Various tornado simulators, including the recently developed Model
WIiIndEEE Dome at Western University, are also introduced in this chapter. Measurement
techniques implemented for the purpose of this work, as well as test plans are discussed
in detail in Chapter Three. Chapter Four is based on a technical article prepared for the
Journal of Fluids and Structures. In this work, the tornado-like vortices generated in the
Model WindEEE Dome are characterized using flow visualization methods, surface
pressure measurements and Particle Image Velocimetry (P1V) technique. In Chapter Five,
the process of creating a dataset of full-scale tornado velocity fields is explained. Single-
Doppler radar measurements from five tornado events are obtained and analyzed using
the Ground-Based Velocity Track Display (GBVTD) method. This chapter is also based



on a technical article which will be submitted to the Journal of Applied Meteorology and
Climatology. Chapter Six presents similarity analysis performed using the experimental
and full-scale data obtained in Chapters Four and Five, respectively. Chapter Six is a
technical article, currently under revision by the Journal of Wind Engineering and
Industrial Aerodynamics. The final chapter summarizes the findings and remarks from
previous chapters, presents the original contributions of this work to science and provides

recommendations for future works.
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Chapter 2

2  Tornado simulations

2.1 Tornado formation and structure

Most tornadoes develop within supercell thunderstorms. Supercells are intense weather
systems that mainly form where cold dry air meets warm moist tropical air. An
environment with significant variation of wind speed with height at the ground is a
necessity for supercell thunderstorms to initiate. Supercell thunderstorms rotate around a
vertical axis as a result of tilting. The vertical wind shear at the surface induces horizontal
vorticity which is tilted into a vertical vorticity by the warm air that is drawn into the
thunderstorm updraft. The rotating updraft is called mesocyclone (a small-scale cyclone)
and is part of the storm circulation. The energy that drives this type of thunderstorms, and
therefore the energy in tornadoes, comes primarily from the redistribution of energy
within the air masses that form the storm and the latent heat that is released when
condensation of water vapor takes place in the updrafts [1]. The total amount of energy of
an average thunderstorm is about 4x10® kg of water (10" J). Although the source of the
supercell rotation and the structure of the mesocyclone are well understood,
tornadogenesis within mesocyclones is debatable. Nevertheless, it is agreed by all
scientists that vortex stretching plays an important role in the tornadogenesis. The vertical
vorticity is usually intensified further by vortex stretching and, an area of low pressure is
generated at the axis which sucks the air inwards. If the rotating updraft is sustained, a
tornado vortex may form. Figure 2-1demonstrates five flow regions in a typical tornado
introduced by Lewellen [2]. These regions are as follows:

e OQuter flow (la): this region is above the boundary layer and extends at least 1km
outward from the vortex core. The spinning air in the outer region approaches the
axis while rising. The rotational speed of the flow increases as it gets closer to the
axis.

e Core (Ib): this region surrounds the axis of the vortex and becomes wider as

moving downstream (upward). The vortex core extends outward to the radius of
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maximum tangential velocity and varies, in size, from tens to hundreds of meters.
Upward or downward axial velocities are observed in the core region, depending
on the vortex structure.

e Corner flow (111): the transition from inflow to core flow occurs in this region.
The low pressure zone at the vortex center results in a radially converging flow
which is then tilted upwards in the corner flow region and translates axially.
Lewellen [2] has argued that maximum tangential velocities occur in the upper
part of the corner region.

e Inflow (I): this region is dominated by the boundary layer flow. The rotational
flow interaction with surface reduces the tangential velocity. On the other hand,
the pressure does not vary significantly across the boundary layer. Therefore, the
imbalance between the centrifugal force and the radial pressure force draws a
significant flow towards the axis in the boundary layer.

e Upper flow (1V): this region is embedded in the parent storm.

REGION Ir

REGION Ia

REGION I I REGION I

Figure 2-1: Schematic drawing of various zones in a tornado presented by Davies-
Jones et al. [3] - image adapted from Lewellen [2].

2.2 Analytical models

The combined Rankine vortex model represents the air flow around a tornado with only
the tangential velocity component (Vian). This model divides the vortex into two parts: the

inner part of the vortex which is in solid body rotation and the outer part of the vortex in
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which the tangential velocity is a decreasing function of radius. The combined Rankine
vortex model results in the definition of core radius (rc) which is the radius where the
maximum tangential velocity occurs. Eg. (2.1) shows the mathematical representation of

combined Rankine vortex model.

(2.1)

Vtan,max

r
Vign(r) = , rsn)

Cc

Vtan,max Te

Vtan(r) = , (r> rc)

where Vian max 1S the tangential velocity at rc and r is the radial coordinate with r=0
being at the center of the vortex core. The modified Rankine vortex is another

mathematical model in which the tangential velocity is defined as

Too (2.2)

Vean(r) = 2 + 17

where I, = 217, Vign max 1S the maximum vortex strength. The non-dimensional
tangential velocity for a combined and modified Rankine vortex as a function of non-
dimensional radius is demonstrated in Figure 2-2. As shown, the transition from the inner
core of the vortex to the outer core flow is better represented by the modified Rankine

vortex.
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Figure 2-2: Tangential velocity vs. radius for combined and modified Rankine
vortex models.
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The pressure field can be calculated by using the Bernoulli equation

—pl%, (2.3)

P(r) — P() Zm

where p is the fluid density and P(r) and P(xo) are static pressure at radius r and the
atmospheric static pressure, respectively.

The Burgers-Rott vortex model is obtained as an exact solution of the Navier-Stokes
equations with the following assumptions

e Axisymmetric geometry

e Constant density and viscosity

e Steady flow

e Radial and tangential velocity only a function of radius

e Axial velocity only a function of height

By assuming circulation strength of I' = rV,,,, for the vortex, a radial velocity of V,,; =
—ar and an axial velocity of V,, = 2az, where «a is a constant representing the strength

of the suction, the Navier-Stokes equations in the tangential direction can be written as

dr _ d (1dr 2.4)
—QTE—VTE ;W

where v is the kinematic viscosity of fluid. After solving for /" and using the relation

between circulation and the tangential velocity, the tangential velocity is determined:

r ar? (2.5)
Vign (1) = S 1—exp (‘ W)

The pressure distribution estimated by this model is as follows

.2 2 2.6
P(r,z):P(oo)+pf v?dr—p%(r2+4zz) 26)
0
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Unlike the Rankine vortex, the Burgers-Rott vortex has radial and axial velocity
components as well. Although there is partially a mechanism for making a Burgers-Rott
vortex in the atmosphere, this model has fundamental disadvantages; the axial velocity is
only a function of height and the vertical pressure gradient is increasing by height without

bound.

Recently, Xu and Hangan [4] have modeled the tornado-like vortex by using a free
narrow jet solution combined with a modified Rankine vortex. While the modified
Rankine vortex can describe the swirl motion of the tornado vortex, the upward free jet
can represent the two-dimensional, radial and axial, motions. Therefore this model

provides three velocity components for the tornado-like vortices

1 2r\y _r2 1 (2.7)
_ )
Viaa(r,z) = (; + Z_2> e 'z — "

2 r .

Vir(r,2) = —e~@" 29
Z

r 2.

Vtan(rf z) = Z(Vtan,o/zvrad,o)(rcz(z) +1) Tcz (z) + 72 ( 9)

where 0 denotes the inflow boundary.

2.3 Experimental models

2.3.1  Governing parameters

In order to accurately simulate a tornado-like vortex, it is important to define the
parameters that control the flow dynamics. Lewellen [5] introduced three important
tornado flow parameters: a geometric parameter, the aspect ratio; a kinematic parameter,

the swirl ratio; and a dynamic parameter, the radial Reynolds number.

Aspect ratio, a, is defined as the ratio between the inflow height (h) and the updraft radius

(ro) which is less than one for a real tornado [6]. Swirl ratio, S, is defined as
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roF (210)

> =20n

where I"is the circulation and Q is the volumetric flow rate per unit axial length. S is the
ratio between the angular momentum to the radial momentum of the flow. It is an
important controlling parameter which characterizes the vortex breakdown and the
transition to multiple vortices [7, 8]. The radial Reynolds number is defined as

Q (2.11)

2.3.2  Tornado simulators

2.3.2.1  Ward-type tornado vortex simulator

Ying and Chang [9] developed a simulator based on the basic structure of a tornado; a
vertical updraft and an inflow from a thin layer near the ground. Ward [10] improved the
simulator that was first designed and built by Ying and Chang and introduced the Ward-
type simulator, Tornado Vortex Chamber (TVC). He limited the inflow to a layer close to
the surface and used a fine-mesh flow straightener right before the exhaust to remove the
vertical vorticity from the rising flow. The TVC designed and built by Ward is shown in
Figure 2-3. He presented three regions in the simulator [6]: confluence, convergence and

convection zones.

The lowest part of the simulator includes the annular confluence region that surrounds the
central convergence zone. A rotating mesh wire surrounding the confluence region
provides the background angular momentum. At this point, the initial vorticity and then
circulation are supplied to the radial inflow. In the convergence region, the radial gradient
of the vertical velocity tilts the radial component of the inflow vorticity upward. The

axial velocity gradient in the vortex core stretches the vertical vorticity and therefore, a
column of swirling air forms at the center line and stretches toward the convection zone
[6]. The lid that separates the convergence region from the convective region represents
the stable layer of air which prevents any convection from outside the central updraft
region of the storm. The baffle that is used as the upper boundary condition of the
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convection region, removes any horizontal motion in the flow while leaving the axial
flow unaffected. The main disadvantage of TVCs is the limited access to the chamber.

The vortex chamber configuration does not allow for optical measurements as well as for

translating the vortex.

4‘}Exhous1

- Fan

Plenum
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. 3\'\ I Updraft Hole
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e DA Screen
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Figure 2-3: Schematic of the major components of the Ward-type TVC — image
from [6].

2.3.2.2  Purdue tornado simulator

The Purdue TVC design concept is based on Ward’s TVC (see Figure 2-4).Compared to
the Ward’s simulator, the Purdue simulator has the advantage of a more independent
control over the three flow parameters, i.e., aspect ratio, swirl ratio and radial Reynolds
number. The inflow depth and the updraft radius are adjustable in this apparatus which
allows for varying the aspect ratio [6]. The radial Reynolds number is determined through
flow rate measurements at the exhaust and the swirl ratio is calculated using the inflow
angle measured far from the axis (at the confluence region). Although the tornado-like

vortex generated in this simulator was very stable, which facilitated the measurement
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process, an unwanted circulating cell was observed in the upper chamber. Church et al.
[11] attributed this cell to the sharp edge of the updraft hole.

2.3.2.3 Texas Tech tornado simulator

A Ward-type simulator was assembled at Texas Tech University (TTU) in 2001 [12].
This simulator was later modified by Mishra et al. [13] with an intention to perform
experiments towards wind engineering, rather than the atmospheric science applications.
Figure 2-5 displays the TTU vortex simulator Il. In this simulator, updraft and circulation
were provided by means of a blower at the top of the convection chamber and 16 slotted
jets at the inflow, respectively. Mishra et al. used slotted jets instead of vanes/rotating
screens to enable independent control of the circulation. Also, this configuration provided
an easy access to the chamber for measurement purposes. The updraft radius is fixed at
0.19 m and the inflow height is variable between 0.06 m and 0.19 m. A vortex blower at
the base of the simulator is used to regulate the flow from each slotted jet and therefore,

adjust the swirl ratio.
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Figure 2-4: Schematic of the Purdue TVC - image from [6].
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Figure 2-5: Schematic drawing of the second generation vortex simulator at Texas
Tech University — image from [13].

2.3.2.4  lowa State University (ISU) tornado simulator

This simulator is designed and constructed to meet two important requirements: first, to
accommodate models of reasonable size for measuring loads on structures and buildings
and second, to be able to translate along the ground plane for a realistic simulation of a
natural tornado. The maximum translational speed of this simulator is 0.61 m/s.

Figure 2-6 demonstrates the schematic diagram of the ISU simulator. The simulator
consists of a circular duct that is suspended from an overhead crane so that it allows
translation along a 10.36 m long ground plane [14]. The updraft is provided by means of
a fan located in the center of the duct. The flow from the updraft is directed downward
while rotated by means of vanes in an annular duct surrounding the inner region. This
technique is called rotating forced downdraft (see Figure 2-6). The transition from a
laminar core to a turbulent core that was clearly observed in Ward-type simulators, is not

observed in the ISU simulator which can be due to the instability of the vortex.
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Figure 2-6: Schematic illustration of the ISU tornado simulator — image from [14].

2.3.2.5 Model WIindEEE Dome

Western University initiated a project in 2008 to design, construct, and operate the Wind
Engineering, Energy and Environment (WindEEE) Dome. The WiIindEEE facility is
capable of simulating various wind systems such as tornadoes, downbursts and gust
fronts. The design process consisted of the conceptual design involving Computational
Fluid Dynamics (CFD) simulations for selected modes of operations and the design of a
1/11 scaled physical model (the Model WindEEE Dome). Extensive CFD simulations
were performed by Natarajan [15] in which he demonstrated the feasibility of five
operational scenarios for WindEEE (see Figure 2-7); uniform straight flows, shear flows,
boundary layer flows, downburst-like flows with translation and tornado-like flows with
translation. The Model WindEEE Dome (MWD) was designed and built to validate the
CFD results, to make improvements/modifications to the flow circuit and to implement
the control system for the dome and to investigate the performance of the facility before
finalizing the full-scale facility design. MWD is also a research tool to determine new

operational scenarios for WindEEE.
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Figure 2-7: Five operational scenarios for WindEEE Dome include a) uniform

straight flows, b) shear flows, c) boundary layer flows, d) tornado flows with
translation and e) downburst flows with translation.

The MWD is a closed loop, three-dimensional wind testing facility consisting of two

hexagonal chambers; one at the top with 18 fans and one at the bottom with 100 fans
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(Figure 2-8a and Figure 2-8b, respectively). Each fan can be controlled individually and

the upper fans are reversible. Figure 2-8c shows 7 cm high adjustable vanes that are
installed in front of all lower fans to produce the desired swirl. The lower chamber is

connected to the upper chamber through a bell-mouth which is 0.4 m wide (see Figure

2-8d). The updraft hole can be varied in diameter between 0.14 m and 0.4 m. Using a
single axis traverser system called guillotine, the bell-mouth and therefore the
tornado/downburst can be translated at a maximum speed of 0.25 m/s. A matrix of 4
rowsx15 fans (as shown in Figure 2-8e) at one of the peripheral walls along with two
porous curtains can form a versatile multi-fan wind tunnel. Horizontally or vertically
sheared flows can be produced by adjusting each fan on the wall of fans. Figure 2-8e
displays the heat exchangers used in the return circuit in order to control the air flow

temperature. A single air temperature sensor, located just upstream of the 60 fan wall,
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sends a signal to the heat exchangers pump as needed. Figure 2-8f shows the simulator
after completion. The chamber floor is 1.3 m above the ground to provide access to the
test chamber from underneath. The test chamber has a diagonal of 2.76 m long while the

return circuit is 3.52 m long in diagonal.

There are two possible configurations for generating tornado-like vortices inside the
dome: a) using top fans to provide updraft and periphery vanes at a given angle to
generate swirl and, b) running top fans and periphery fans as a source of suction and

inflow, respectively while using vanes to control the swirl.

The MWD construction was started in spring 2010. The engineering design was provided
by AIOLQOS and the construction was mainly done by the University Machine Shop
(UMS) and the University Electronics Shop (UES). During the construction of the model,
some modifications were suggested to AIOLOS which improved the design of MWD and
applied to the full-scale facility design. Some of these modifications are as follow

e Using rpm sensors to measure the rotation speed of each fan

e Replacing the wooden panels surrounding the model with transparent panels to

enable visual inspection of fans and water leakage from heat exchangers
e Changing heat exchanger tubes to withstand higher water temperature flow

e Using water trays to collect possible drain from heat exchangers

The commissioning started in Dec 2010 with a series of validation experiments. The test
program involved flow visualizations for tornado-like and downburst-like flows and
surface static pressure measurements with pitot and pitot-static tubes for horizontal flows.
Flow visualizations were performed by Refan [16] with a special attention to tornado-like
flows and the uniformity tests were carried out by AIOLOS engineers [17]. The
commissioning tests demonstrated the basic functionality of the MWD for all flow cases.
The fans were able to operate successfully and be controlled in various modes, the vanes
and the guillotine operated as designed and the cooling system was functional. The
tornado and downburst modes were successfully demonstrated using flow visualization

methods.
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Figure 2-8: Model WindEEE Dome components: a) upper plenum with 18 fans, b)
lower chamber with 100 fans, ¢) directional vanes at the periphery, d) bell-mouth, e)
wall of 60 fans with heat exchangers on the top, f) relatively large scale of the
simulator after completion.
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2.3.3  Vortex evolution

The swirl ratio effect on tornado-like vortices has been investigated widely using tornado
simulators. A summary of observational studies documenting the vortex evolution with
variations in swirl ratio is provided here. These flow visualizations are mainly performed
by Ward [10], Church et al. [6] and Snow [18, 19]. To better visualize the vertical
structure of tornado-like flows, idealized axial velocity profiles of the vortex at various
swirl ratios as proposed by Church et al. [6], Snow [18, 19] and Davies-Jones [20] are

also presented here.

For no-swirl setting (see Figure 2-9) a stagnation zone forms at the surface near the
central axis where the inflow separates from the surface. The flow is axisymmetric and
irrotational at this point. At very low swirls, 0<S<0.1, a stagnation zone at the surface
along the axis continues to be present and prevents any angular momentum reaching the
centerline. As such, a swirling flow forms in the convection region of the simulator at
mid-heights rather than on the surface. As the angular momentum increases, the core
travels down towards the surface and the inflow boundary layer is forced to reattach to
the surface (see Figure 2-10). As a result, a ring-shaped separation-reattachment region is

observed on the surface [21].

The evolution of the vortex structure in a moderate swirl range (0.1<S<0.5) can be
divided into two categories. At the lower end of this range, 0.1<S<0.2, the flow is mainly
characterized by a thin boundary layer that is growing towards the centerline. The
horizontal inflow turns into a vertical flow with a rotational core and a very slow increase
in the vortex core size with height is observed. As the swirl ratio increases, an abrupt
expansion of the vortex core is observed aloft which is due to the vortex breakdown
bubble formation. This phenomenon was first recorded in the Purdue University TVC
[22]. The term laminar is used in TVC’s to characterize the vortex state before the
breakdown. Once the vortex breaks down, the flow becomes highly turbulent. As
explained by Hall [23, 24], a key feature of quasi-cylindrical vortices is to develop an
adverse axial pressure gradient which is related to the radial expansion of the turbulent

core aloft. As a result, the updraft decelerates at the centerline and maximum vertical
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velocities relocate to an annular ring surrounding the vortex breakdown bubble. Figure
2-11a illustrates the vortex breakdown captured in a TVC simulator at S<0.3. An
important characteristic of the vortex breakdown is formation of a free stagnation point at
the border of the subcritical and the supercritical flow. This stagnation point is very

unstable and as a result, the breakdown point oscillates around a mean position [6].

The presence of vortex breakdowns in actual tornadoes has been confirmed by Paulry and
Snow [25] and Lugt [26]. A schematic drawing of the vortex with breakdown bubble is
presented in Figure 2-11b. As the axial velocity decelerates at the centerline, a free
stagnation point forms above the vortex breakdown bubble. Downstream of this
stagnation point, vertical velocities are very small. In some cases, even downflow is

observed (see Figure 2-11c).
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Figure 2-9: Schematic drawing of the flow in the convergence region for no swirl
presented by a) Church et al. [6] and b) Davies-Jones [20].
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Figure 2-10: a) laminar core of a simulated vortex [6] and schematic drawing of the
flow structure showing the separation-reattachment regions proposed by b) Snow
[18] and c) Davies-Jones [20].
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By further increasing the swirl ratio, the vortex breakdown bubble moves upstream
(towards the surface) while developing downward flow and eventually, it touches the
surface (at S~0.45 in TVCs). At this point, highest vertical accelerations and pressure
deficits are experienced in the surface layer [27] and the boundary layer inflow is
squeezed into a very thin layer at the touch-down region (see Figure 2-12). Maxworthy
[22] named this condition a drowned vortex jump which is associated with the strongest
tangential velocities near the ground.

Once the drowned vortex jump occurs, the vortex core expands radially while the
downdraft intensifies. At this point, the central downflow is surrounded by two
intertwining spiral vortices. Further increase in the swirl ratio, forces the two intertwining
vortices to separate and form two separate tornado-like vortices (see Figure 2-13a and
Figure 2-13b) that rotate around their own axis while spinning around the centerline [27].
This configuration is observed at S=1 in TVCs. For S>1, multiple vortices, with a
maximum of six sub-vortex, are formed in TVCs (see Figure 2-13c). This multi-celled

configuration is common in nature as shown by Fujita [28].
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Figure 2-11: a) smoke-traced flow with breakdown aloft [10] and drawing of a
vortex configuration at breakdown stage proposed by b) Snow [19] and c) Davies-
Jones [20].
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Figure 2-12: vertical structure of the vortex at the drowned vortex jump stage,
Davies-Jones [20].
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b) c)

Figure 2-13: a) Vertical structure of a two-celled vortex — image from [20] and a
family of b) two- and c) three-celled vortices simulated in TVCs — image from [10].

2.3.4 Real tornado versus simulated vortex

Typical characteristics of tornadoes in nature are compared with those of laboratory

simulated vortices and listed in Table 2-1.

The aspect ratio of real tornadoes is estimated to be less than unity which is achievable in
simulators. However, as seen in Table 2-1, the radial Reynolds number of a real tornado
is many orders of magnitude larger compared to the generated ones. Therefore, it can be
concluded that dynamic scaling requirements are not satisfied. However, Ward [10],
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Jischke and Parang [21], Davies-Jones [7] and Church et al. [6] found that for a given
geometry, if the radial Reynolds number is large enough to ensure turbulent flow, vortex
characteristics are independent of the radial Reynolds number (see Figure 2-14). They
concluded that the core radius and the transition from a single vortex to multiple vortices
are mainly controlled by the swirl ratio and therefore, the primary dynamic similarity

variable is the swirl ratio.

Table 2-1: Dimensionless groups and translation speed for a real tornado and
simulated tornado-like vortices.

Likel Purdue TTU

Y Tornado vortex
atmospheric imul imul ISU [14] MWD

range [6] Simulator simulator

[6] 11 [29]
a 0.2-1 0.2-3 0.31-1.0 0.25-1.68 0.35-1.0
S 0.05-2 0.01-27.5 0.15-1.54 0.08-1.14 0.1-1.3
4.1x10°- 4.3x10%- Not f

9_1n11

Rey 10°-10 1.2x10° 21x10°  Provided o4*10

Not Not
Viran (M/S) 10-18 applicable  applicable 0.61 0.25
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Figure 2-14: Critical (transition) swirl ratio as a function of radial Reynolds
number; L-T = laminar to turbulent, 1-2 - Single-celled to two-celled vortices, 2-3
-> two-celled vortices to three-celled vortices — image from [6].
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Chapter 3

3  Experimental techniques and procedure

The tornado-like vortex flow fields generated in Model WindEEE Dome were
investigated, at various swirl ratios, using flow visualizations, surface pressure
measurements and Particle Image Velocimetry (PIV). All experiments were performed
for a fixed aspect ratio of 0.35 and different vane angles (swirl ratios).

3.1 Flow visualization

The flow visualizations were performed for 8 different vane angles (6=5°, 10°, 15°, 20°,
25°,30°, 35° and 40°) and at Re,=6.7x10". Note that dependency of the flow
characteristics on the radial Reynolds number will be discussed in more details in
Chapter 4. Dry ice and helium bubbles were used to obtain qualitative information on the

tornado-like vortex.

As a first approach, a bucket of dry ice mixed with water was located at the center of the
simulator, under the surface level. As soon as the smoke entered the chamber, the
simulator was turned on and the flow was visualized with the smoke. Alternatively, a
helium bubble generator manufactured by Sage Action Inc. was used for visualization.
This generator produces neutrally buoyant, helium-filled bubbles of controlled size for
visualizing complex airflow patterns. These bubbles can be used to trace airflow patterns
at speeds ranging from 0 to 60 m/s. Since these bubbles follow the flow streamlines
exactly, they rarely collide with any objects in the air stream. The bubbles are also
extremely durable. Therefore, they best match the requirements for visualizing tornado-

like vortices in a test chamber like MWD.

Figure 3-1 shows the helium bubble console and different parts in the Mini Vortex Filter.
The Plug-In Head consists of a concentric arrangement of two stainless steel hypodermic
tubes, one inside the other, attached in a cantilever fashion to a cylindrical manifold base
or body. Within the Head, helium passes through the inner hypodermic tube and Bubble

Film Solution (BFS) through the annulus between the inner tube and the outer tube to
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form the helium-filled bubbles at the tip. A much larger, concentric jet of air blows the
bubbles continuously off the tip. The air and helium pressure settings of 40 psi and 20 psi
were used, respectively to generate bubbles of 3.175 mm in diameter. Two plastic tubes
were utilized to transfer the helium bubbles from the outlet tubes to the simulator. The
bubbles were fed into the chamber from one side far from the center of the simulator in

order to minimize any disturbance in the flow.
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a) b)

Figure 3-1: a) Helium bubble generator console and b) Mini vortex filter.

3.2 Surface pressure tests

The surface static pressure distribution of tornado-like vortices and its variation with the
swirl ratio provides useful insights into the vortex dynamics mostly in the near surface

region where the flow velocity measurements are difficult.

3.2.1  Experimental setup

A pressure measurement system, provided by the Boundary Layer Wind Tunnel
Laboratory (BLWTL), and a floor panel with several pressure taps were used to measure
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the surface static pressure deficit. Figure 3-2 shows the center floor panel of the simulator
with 413 static pressure taps distributed on concentric circles (with a maximum diameter
of 56 cm) around the simulator centerline. Each tap was connected to a pressure scanner
port using PVC tubing 1.34 mm in diameter (see Figure 3-3a). Thirty two pressure
scanners (ESP, model: 16TL, 16 ports/transducers each) were used to convert pressures

to proportional voltages measured by a custom system designed and built by BLWTL.

ccccc

56 cm

M
W

56 cm
a) b)

Figure 3-2: a) Center floor panel position in the chamber and b) pressure taps
distribution over the surface.

The BLWTL pressure system handles scanner control, A/D conversion and data
recording using a PC-based architecture integrated with hardware multiplexing,
counter/timer as well as high speed data acquisition boards/extensions. The pressure
system also includes two stand-alone high-accuracy transducers used to provide reference
measurements. These transducers are usually connected to pitot-static tubes mounted in
the center of the wind tunnel to determine the reference velocity. The pressure system
and the processing software were developed specifically for straight-flow wind tunnel
applications. As a result, the output of the processing software is based on pressure

coefficients (Cp) defined as
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Pi —Po _ Pi— Po (3.1)

C 1
Pqg — Po 7PV0<2;

pi =

where p; is the static pressure measured at i tap, pq is the reference static pressure or the
zero line, pq is the reference stagnation pressure and 1/2pV..” is the reference dynamic

pressure where V., is the wind tunnel free stream velocity.

3.2.2  Experimental procedure and data processing

Pressure measurements were taken for 8 different vane angles ranging from 5° to 40°,
with 5° increments and at a volumetric flow rate of 0.462 m*/s. Pressure signals were
sampled at a frequency of 400 Hz and were recorded for a period of 60 s. The completed
setup for pressure measurements, including various components involved, are illustrated
in Figure 3-3b.

Prior to the data recording, a bag test was performed to check for malfunctioning
pressure scanners, leaking or blocked connections/tubes. Figure 3-3c demonstrates the
setup for this test. While, the ground plate was completely sealed under a plastic bag,
high pressure air was exerted inside the bag on the pressure taps to produce a constant
pressure higher than ambient pressure. The feedback from each pressure tap was
investigated and, blocked/leaking connections and malfunctioning scanners were

identified and repaired.

As mentioned, the pressure data processing program developed at the BLWTL uses the
wind tunnel free stream velocity as a reference to calculate the pressure coefficient at
each tap. Since such a reference dynamic pressure does not exist in current experiments, a
pressure bottle (see Figure 3-3d) was used to determine an equivalent to the reference
velocity. The reference pressure (pq) was created based on the height of water trapped

inside its tube while the zero line (po) was kept at an atmospheric pressure.
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b) d)

Figure 3-3: Static pressure test setup: a) pressure tubes and scanners arrangement,
b) pressure bottle, c) pressure system, Barocel and simulator controllers an d) bag
test.

The calibration was performed by applying atmospheric pressure to the transducers while
the simulator was off. The logged voltage outputs determined the zero offset of the
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measurements. Afterwards, the reference pressure (pg) was sent to the transducers and to
a Barocel (a stand-alone pressure transducer). The resulting voltage outputs were
recorded and used to calculate the pressure coefficients using Eq. (3.1) and then the

pressure deficit (AP) as follows
AP = (p; — po) = Cp,; (Pq)Bamcel (32)

where AP is the pressure difference between the i tap and environment. In the post
processing of the data, the surface pressure deficit values were normalized by a dynamic
pressure calculated using the average axial velocity through the updraft.

The uncertainty analysis was performed for surface pressure measurements (see

Appendix C) and a maximum error of 1.17% was estimated.

3.3 Particle Image Velocimetry

Particle Image Velocimetry (PIV) is a non-intrusive method which measures the velocity
field in a plane. In this technique, the displacement of small tracer particles that are
carried by the fluid is determined in a short time interval (Az). The tracer particles are
chosen to be sufficiently small to follow the fluid motion accurately and to avoid any
alteration in the fluid properties or flow characteristics. The particles are illuminated by a
thin light sheet generated by a double-head pulsed laser system, and the light scattered by
particles is recorded onto two subsequent image frames by a digital imaging device. A
PIV system was implemented to measure the mean velocity field of the simulated

tornado-like vortices at various swirl ratios and at different heights above the surface.

3.3.1  PIV system

A pulsed Nd:YAG laser generator with a wavelength of 532 nm was used as a source of
illumination. The laser can be run at pulse repetition rates of up to 30 Hz with 120
mJ/pulse output energy. A CCD camera (VA-4M32, Vieworks) with a spatial resolution
of 2336 x 1752 pixels was used to capture images. Using a calibration board, the field of
view of the camera was set to 23.4 cm by 17.5 cm and pixel to meter conversion ratio

was determined. The light sheet with uniform thickness of 2 mm was created using only a
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cylindrical lens. Since this thickness is small enough to avoid the out of plane motion

errors, no spherical lens was used for these experiments.

The camera was connected to an image acquisition system (CORE-DVR, IO industries)
that acquires 8-bit images. A four-channel digital pulse/delay generator (555-4C,
Berkeley Nucleonics Corporation) was used to control the timing of the laser light pulses
and synchronize them with camera frames. For each experimental run, images were

acquired at a rate of 30 Hz resulting in 15 vector maps per second.

The LaVision Aerosol Generator was utilized to seed the tornado chamber with Di-Ethyl-
Hexyl-Sebacate (C26H5004) particles with an average diameter of 1 um. To examine the
ability of seeding particles to follow the fluid motion, their response time is compared
with the lowest possible time-scale for fluid motion known as Kolmogorov time scale.

The response time (t,) of a particle is defined as

v
t, tp (3.3
where
2(py, — pf) (3.9
L t,p 9 P gj 32

Vi,p IS the particle terminal velocity, g is the gravitational acceleration (9.81 m/s?), pp IS the
particle density, ps is the fluid density, x« is the dynamic viscosity and R is the particle
radius. The density of the Di-Ethyl-Hexyl-Sebacate is 912 kg/m?*. The working fluid is air
with dynamic viscosity of 1.98x10 kg/ms and density of 1.1839 kg/m® at 25°C. By
substituting these values in Eqs. (3.3) and (3.4), terminal velocity of 2.5x10° m/s with a
response time of 2.55x107 s is obtained for the seeding particles. The Kolmogorov scales
of the simulated flow can be estimated if the dissipation rate (€) is known. Since the size
of the largest eddies in the flow are limited by the updraft size, the dissipation rate can be
calculated using the updraft diameter and the axial velocity fluctuations at the updraft.
Based on this approach, Kolmogorov time scale is approximated between 3.06x10™s and

1.2x1072s, depending on the swirl ratio. Since the response time of the seeding particles
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is 2 to 4 orders of magnitude smaller than the Kolmogorov time scale of the simulated
tornado flow, it can be concluded that these particles are sufficiently small to follow the
fluid flow accurately [1, 2].

To perform statistical analysis of the flow properties, sample size of PIV recordings
needs to be determined. The sample size with 95% confidence interval, can be calculated

based on the equation given by Hamburg [3]

o (30x>2 (3.5)
e
where n is the sample size, o is the standard deviation and e is the maximum allowed
error (e= £0.08 m/s) with 99.7% probability. The azimuthally averaged velocity value at
a certain radial position (z/r,=0.35) in the outer region of the vortex flow for S=0.57 was
considered to calculate an appropriate sample size. The average of tangential velocity in
horizontal plane measurements was 8.74 m/s with the standard deviation of 0.82 m/s.
After substituting all the values in the equation, the sample size found to be n=946, i.e.
statistical analyses converge for measurement of 946 or higher vector maps. Herein, 4000

images were acquired for each experimental run, resulting in 2000 vector maps.

3.3.2  Experiment plan

The horizontal velocity field (radial and tangential components) measurements were
performed for two different speeds of the top fan (resulting in Re,=6.7x10* and 8.4x10%)
and for 8 different vane angles (6=5°, 10°, 15°, 20°, 25°, 30°, 35° and 40°). These
measurements were carried out at the center of the simulator and at 8 different heights
above the surface (z=3.5, 4, 4.5, 5, 7, 8, 13.5 and 15 cm). As mentioned before, the swirl
ratio in MWD can be set by varying the angle of vanes at the periphery while the flow
rate (and consequently the Radial Reynolds number) can be adjusted by changing the top

fans speed.

Since the tornado-like vortex was unsteady, capturing the vertical velocity field and

performing statistical analysis was not possible. In addition, due to the limited field of



44

view, it was not possible to cover the whole height of the vortex in one image. As a
result, the vertical velocity field was only measured at the updraft region to calculate the
flow rate. In a separate test, the rotational speed of the fans was monitored for various
swirl ratios and at a constant top fan speed. It was observed that, even for high swirls, the
fan performance was not affected by the vane angle and the flow rate was constant. As a
result, the vertical velocity field was only measured for the smallest swirl ratio (6=5°) to
determine the flow rate inside the simulator. The smallest S was chosen for this purpose
because the most uniform axial velocity profile at the updraft is expected for this swirl

ratio.

As shown in Figure 3-4, the laser unit was mounted on a tripod and located outside the
chamber. The laser beam was shot through one of the middle fan openings at the
periphery of the simulator and was converted to a horizontal (or vertical, depending on

the measurement plane) laser sheet using the cylindrical lens located inside the chamber.

Figure 3-5a displays the cylindrical lens with its mount on a base plate. This
configuration was used for lower heights. As the laser beam height increased, the optic
was also moved using a post with an adjustable height (see Figure 3-5b). The main
challenge of directing the laser beam towards the cylindrical lens was reflections from the
metallic surface of the vanes at lower elevations and the glass at higher elevations. To
prevent these reflections from entering the chamber, a thick black plastic sheet with a
very small hole at the center was installed right before the cylindrical lens.

For the case of horizontal plane measurements, the camera was mounted on a traverse
system and was positioned on the ground facing upwards (see Figure 3-6). It was ensured
that the camera is covering the center of the simulator for all cases. Figure 3-7 shows the

complete experiment setup for the horizontal plane measurements.

Figure 3-8 shows the camera setup for the vertical velocity measurements. In this case,
the camera was inside the chamber with its axis parallel to the ground and was fixed at a

certain elevation and distance from the laser sheet.
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A calibration board with uniform grid spacing was used to focus the camera at the plane
of measurement, to set the field of view to 23.4 cm by 17.5 cm as well as to calculate the
pixel to meter conversion ratio (see Figure 3-9).

Figure 3-4: The laser setup.

Figure 3-5: The cylindrical lens configuration inside the chamber at a) lower and b)
higher elevations.



Figure 3-7: PIV setup for horizontal velocity field measurements in MWD.
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Figure 3-8: Camera setup for vertical plane measurements.

Figure 3-9: Image of the calibration plate used to set the field of view and lens focus
and, calculate pixel to meter conversion ratio.

The seed generator was placed outside of the simulator and the seeding particles were
guided into the chamber using a plastic tube (Figure 3-10a and Figure 3-10b). The tube
was connected to the seed generator outlet at one end and was taped to the simulator
ground plate, away from the center of the vortex, at the other end. Depending on the flow
speed inside the chamber, the flow rate of the seeding particles was adjusted.
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Figure 3-11: Frame grabber (top) and pulse/delay generator (bottom).

The time interval between the two laser pulses was selected based on the mean velocity
of the flow and was set using the pulse/delay generator shown in Figure 3-11. These time
intervals varied between 100 us and 550 ps depending on the swirl ratio and the height at
which measurements were performed. The adjustments were made to have a particle
displacement of 16 pixels or less [4] and peak to noise ratio of 1.5 or higher in all
experimental runs. Once all the adjustments and calibrations were performed, 4000

images were captured for each experimental run.
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3.3.3  Image processing and data post-processing

Figure 3-12 shows an image pair captured in a horizontal plane 3.5 cm above the ground
and for vanes angle of 10°. The bright strip in these images is due to the reflection inside
the chamber. The captured images were processed using the TSI software to extract
vector maps. Cross-correlations were performed between interrogation windows (64 by
64 pixels) in the first image and search regions (128 by 128 pixels) in the second image.
Using a 50% overlap of interrogation windows, the nominal resolution of the velocity
field is increased to 32 by 32 pixels. Spurious vectors were identified and removed using
global and local filtering and then replaced by local median vectors. The total number of
spurious vectors in each map did not exceed 1% of the total vectors. In the next step,
MATLAB (R2008b) was used to analyze the data. Pixel displacements were converted to
velocities (m/s) using the calibration ratio (m/pixel) and time interval values (us). Figure
3-13 displays instantaneous velocity field obtained from the horizontal plane
measurement 3.5 cm above the ground and for three vane angles. It is observed that as the
vane angle (and consequently the swirl ratio) increases, the vortex core expands. Also, a
two-celled vortex is observed at #=30° which implies that the drowned vortex jump has
occurred and the flow regime is fully turbulent. This conclusion is further investigated

and confirmed through flow visualizations and surface static pressure measurements [5].

a) b)

Figure 3-12: Sample of an image pair captured for #=10° and at z=3.5 cm.
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In order to compute the time and azimuthally averaged velocities, the center of the vortex
was located in each vector map. In these calculations, it was assumed that the vortex is
axisymmetric and therefore there is no velocity variation with azimuth. Assuming that the
vortex center is always at the geometric center of the simulator, radial and tangential

velocities were averaged over time and azimuth.
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Figure 3-13: Instantaneous horizontal velocity vector maps obtained from PIV
measurements at z=3.5 cm for a) #=10°, b) #=20° and c) 6=30".

Detecting the center of the vortex was one of the most challenging parts of the data
analysis. There are several methods for identifying the core of a vortex (line-based) as
well as the region of a vortex (region-based). In general, the region-based algorithms are
easier to apply and computationally less expensive when compared to the line-based
methods. In this work a novel approach, proposed by Jiang et al. [6] in 2002, was
implemented. This point-based algorithm is based on the concept from Sperner’s lemma
[7]. This method was selected for vortex detection due to its simplicity and efficiency
compared to other existing methods. The following steps explain the vortex detection
process applied to each vector maps:

1. Direction ranges: equally spaced direction ranges were defined for each vector.

Figure 3-14 displays three (A, B, C) and four (A, B, C and D) equally-spaced

direction ranges defined for two-dimensional cases.
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Figure 3-14: a) three and b) four equally-spaced direction ranges — image from [6].

2. Labeling: using the direction ranges, vectors were labeled based on the direction
they point at. This method states that if a fully labeled triangular cell (square cell
in case of using four direction ranges) exists, then the direction spanning property
is satisfied. The direction spanning property means each vector at the vertex of a
cell point is in a unique direction range. Therefore, a grid point which its
neighbors satisfy the direction-spanning property is within the core region [6].
Figure 3-15 shows vectors in a 2D grid labeled using three and four direction
ranges. It is seen that, for this sample of the vector map, the four direction ranges
perform more accurately in detecting the vortex core region. Considering the
complexity of the flow in the current work, labeling was done using four direction
ranges.

3. Checking grid points: Once labeling was complete, the immediate neighbors of
each grid point were checked for direction spanning property. If satisfied, that

grid point was identified as being within the core region.
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The accuracy of the algorithm was evaluated through visual investigations of vortex
center in several vector fields. Note that for two-celled vortex structures, the center of the

vortex with stronger circulation was selected as the center of the parent vortex.

j+1 - C j1 D

i—1 i i+1 i+2 i—1 i i+l i+2

a) b)

Figure 3-15: Core region detection for a 2D vortex using a) three and b) four
direction ranges — image from [6].

The guidelines provided by Cowen and Monismith [8] and Prasad [9] were followed to
determine the uncertainties in velocity measurements using PI1V. A maximum error of
7.2% is estimated for velocity measurements in horizontal planes. The uncertainty

analysis details can be found in Appendix D.
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Chapter 4

4 Qualitative and quantitative characterization of tornado-like
flow fields in a new model scale wind dome

4.1 Introduction

Tornadoes and downbursts are the main manifestations of non-synoptic, local high
intensity wind systems (or simply thunderstorm winds).These wind storms are
responsible for approx. 65% of the total wind damage to buildings and structures in
continental North America. Every year tornadoes Kill hundreds of people and leave
behind billions of dollars’ worth of damage. Characterizing the three-dimensional and
transient wind field of tornadoes and then, designing safer homes/structures to resist
tornado wind loads have been challenging. Full-scale measurements of tornadic flows
using Doppler radars are limited due to safety issues and uncertainties in forecasting.
Numerical simulations of tornado flow are performed in micro- and macro-scales. While
extremely useful, macro-scale simulations cannot resolve the flow-structure interactions
due to their limited spatial-temporal resolution. On the other hand, micro-scale
Computational Fluid Dynamics (CFD) methods are unable to implement realistic physics
and boundary conditions of the event and are mainly limited to modeling the flow within
simulators. Therefore, there is a clear need to conduct properly scaled laboratory
simulations which, similar to boundary layer wind tunnel experiments for the case of

synoptic winds, have the advantage of controllable conditions and repeatability.

The number of available full-scale measurements is gradually increasing owing to the
developing of mobile Doppler radar technology and the improving knowledge of weather
forecasting. Researchers have collected Doppler radar data from a significant number of
tornadoes in various field projects such as VORTEX1 (1994-1995), ROTATE (1996
2001; 2003-2008; 2012-2013) and VORTEX2 (2009-2010). From the wind engineering
point of view, the most restricting factor in full-scale measurements of tornadic flows is
that the radar beams can be blocked by obstacles. Therefore, radar data are limited to

elevations higher than few tens of meters above the ground while, the tornado structure
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near to the ground is of high interest as most residential, industrial and public buildings
have elevations of 50 m or less. Currently, a very limited number of full-scale data sets
from elevations less than 50 m are made available (e.g. Spencer, SD 1998, Stratford, TX
2003, Happy, TX 2007 and Goshen County (LaGrange), WY 2009).

Numerical simulations of tornado-like flows are increasingly available due to recent
advances in computational resources and reduced costs. Lewellen and Sheng [1]
evaluated the interaction between the surface and the tornado using Large Eddy
Simulations (LES) of turbulent transport for two swirl ratios and found that an increase in
the surface roughness reduces swirl flow-like behavior. Natarajan and Hangan [2]
extended the study of this interaction to a range of swirl ratios, surface roughness and
translation. They showed that increasing roughness has a similar effect as a reduction in
the swirl ratio and translation reduces the maximum mean tangential velocity for low
swirl whereas it causes a slight increase in the maximum mean tangential velocity for

higher swirl.

Wilson and Rotunno [3] studied the dynamics of a laminar columnar vortex using
axisymmetric numerical simulations. They demonstrated that viscous effects are limited
to a thin layer at the inflow along the surface and at the core along the axis. This outcome
allowed for analytical solutions of tornado-like vortices (e.g. Xu and Hangan [4]) with
reasonable agreement with experiments and numerical simulations. Lewellen et al. [5]
performed unsteady, three-dimensional simulations of tornado interaction with surface
and found the maximum inflow at lowest elevations. A similar conclusion was reached
by Kuai et al. [6] who performed CFD simulations of the flow in a model domain

representing a laboratory simulator.

Reynolds-averaged Navier-Stokes (RANS) simulations of tornado-like vortices were
performed by Hangan and Kim [7] to investigate the flow dynamics as a function of the
swirl ratio. An attempt was made to establish a relationship between the swirl ratio and
the extensively used Fujita scale. This led to a potential relationship between an F4
tornado and a swirl ratio S=2 tornado-like vortex.
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Tornado-like flows were first simulated experimentally in 1969 by Ying and Chang [8].
They designed and built a tornado-like vortex generator and then used the simulator to
investigate the velocity field [9, 10]. Later, Ward [11] improved the simulator designed
by Chang and introduced the Ward-type Tornado Vortex Chamber (TVC), which turned
into a prototype for further experimental investigation of tornadoes. The simple structure
of this cylindrical tornado chamber incorporated a rotating mesh screen at the periphery
to provide and control the circulation and, a fan at the top to provide the updraft. This
configuration resulted in an independent control over the flow rate and the circulation
component. Ward added a fine mesh honeycomb right before the exhaust to decouple
rotation from the axial flow and to prevent the effects of backflow from downstream.
This provided a realistic boundary condition for the simulated vortex.

Church et al. [12] used the TVC design concept to develop a tornado simulator at Purdue
University. The Purdue simulator had the advantage of independent control over the
aspect ratio, in addition to the swirl ratio and the radial Reynolds number, by adjusting
the inflow depth and the updraft radius separately. However, they reported that the main
flow was influenced by the sharp edge of the updraft hole and an unwanted circulating
cell was formed in the upper chamber. The TVC designed and built at Kyoto University
[13], consisted of four fans in an annular ring surrounding the inflow region as the source
of circulation. However, this configuration resulted in undesirable turbulent vortices.
Later, they replaced the fans with a relatively large number of vanes to reduce the

vibration due to a rotating device and increase the accuracy of the simulation.

Lund and Snow [14] investigated the velocity field of tornadoes simulated in the second
Purdue University TVC using Laser Doppler Velocimetry (LDV). They showed that
radial profiles of the measured tangential and radial velocities exhibit similar features to
the modified Rankine vortex flow combined with the boundary layer flow. In the second
generation of vortex chambers at Purdue University, the rotating wire mesh was replaced
with vanes to allow varying inflow angles and an adjustable flow straightener was used in

the convection zone.
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In 2001, a ward-type simulator was assembled at Texas Tech University (TTU) with an
updraft radius of 0.19 m and an inflow height varying between 0.064 m and 0.19 m [15].
This simulator was then modified by Mishra et al. [16] with an intention to perform
experiments towards wind engineering, rather than the atmospheric science applications.
In this simulator, updraft and circulation were provided by means of a blower at the top
of the convective chamber and, 16 slotted jets at the inflow, respectively. Mishra et al.
examined the three-dimensional flow field characteristics and the surface static pressure
distribution. They compared the results with full-scale measurement data from
Manchester, SD tornado of May 1998 [17] and Spencer, SD tornado of June 2003 [18].
Mishra et al. obtained a length scale of 1:3500 for the simulations and demonstrated that
the measured surface pressures were in a good agreement with the full-scale data.

Although all the simulators discussed previously are, to some extent, capable of
simulating tornadic winds in a laboratory, they all lack the translation feature of a real
tornado. In addition, considering the reduced size of the simulators and therefore, their
geometric scaling ratio, modeling buildings and structures and measuring the wind-

induced loads is not practical.

A more recent tornado simulator was developed at lowa State University (ISU) by Haan
et al. [19] to meet two important requirements: first, to accommodate models of
reasonable size for measuring loads on structures and buildings and second, to translate
along the ground plane for a realistic simulation of a natural tornado. This simulator
consisted of a circular duct (5.49 m in diameter) that is suspended from an overhead
crane which allows translation along a 10.36 m long ground plane. The updraft is
provided by means of a fan located in the center of the duct. The design concept was
based on the rotating forced downdraft technique in which the flow from the updraft is
directed downward while rotated by means of vanes in an annular duct surrounding the

inner region.

An important feature of a tornado-like vortex, namely transition from a laminar core to a

turbulent one, is not captured in this simulator. This can be due to the instability of the
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vortex. Besides, the tangential component and the total flow rate cannot be controlled

separately in this simulator [19].

Hashemi Tari et al. [20], for the first time, quantified the turbulent characteristics of a
tornado-like vortex. They performed Particle Image Velocimetry (PIV) measurements in
a modified version of the ISU simulator for various swirl ratios. Hashemi Tari et al.
found that by increasing the swirl ratio, mean radial and tangential velocity components
as well as normal and shear stresses increase. In addition, they illustrated that the
maximum turbulent Kinetic energy production corresponds to the vortex touch-down

case.

Herein, the design concept of the state-of-the-art wind facility, the Wind Engineering,
Energy and Environment (WindEEE) Dome, is described. WIndEEE is a three-
dimensional wind testing chamber capable of physically simulating 3D and time-
dependent high intensity wind systems such as tornadoes and downbursts. In this work,
we focus on tornado simulations in the 1/11 scaled model of the WindEEE Dome. The
simulated tornado flow field is characterized qualitatively and quantitatively using flow
visualization methods, surface pressure tests and PIV. Swirl ratio effects on the velocity
field of tornado-like vortices as well as radial Reynolds number dependency of the flow

are investigated.

4.2 Experimental Set-up

4.2.1  Wind Engineering, Energy and Environment (WindEEE) Dome
concept

WIndEEE is a unique large, three-dimensional and time dependent wind testing chamber,

or a “Wind Dome”, of 25 m inner diameter and 40 m outer diameter (including the return

circuit, see Figure 4-1). By using a system of 100 dynamic fans on the six peripheral

walls coupled with 6 larger fans at the ceiling level, WindEEE can produce any type of

wind systems including 4 m in diameter translating tornadoes (see Figure 4-2) and

downbursts as well as a variety of time dependent shear flows.
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Figure 4-2: Preliminary design concept of tornado flow simulation in WindEEE
Dome.

One of the 6 peripheral walls has a matrix of 4 rows x 15 columns fans which, if blowing
inside the dome in conjunction with two porous curtains can form a versatile multi-fan
wind tunnel. The flow can be varied to produce horizontal or vertical shear and the fans
can be actuated at 1 Hz to produce a variety of turbulent flow fields. Also, the fans can be
reversed blowing outside the dome on a platform used for full-scale testing of building

components, solar panels or wind turbines.

In addition to the 60 fan wall, there are 8 fans at the base of each of the other 5 peripheral
walls. Tornadoes are produced by positioning the vanes in front of each of the 6x8=40
lower level peripheral fans at various angles to produce various swirl ratios at the base.

At the ceiling level, a bell-mouth connected to the 6 larger fans at the top, creates a
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suction outlet. The coupling between the surface swirl and the ceiling suction can
produce various types of tornadoes. Using a guillotine system, the bell-mouth and
therefore the tornado can be translated at a maximum speed of 2 m/s over a distance of 5

m through the chamber.

The WindEEE dome, passed through conceptual and engineering design phases and
construction, has just finished. A 1/11 scaled physical model of the dome, Model
WIndEEE Dome, reproducing most of the characteristics of the WindEEE Dome was
operational since 2010 and has been instrumental to (i) validate the more than 75 CFD
preliminary design simulations, (ii) implement the controls for the main operation

scenarios and (ii) perform the present tornado simulations.

4.2.2 Model WindEEE Dome

The Model WindEEE Dome (MWD) was designed, constructed and commissioned in
2010 at Western University. It has the same number and distribution of the 100 fans on
the peripheral walls as the WindEEE Dome. Instead of using 6 larger fans at the top
chamber, the MWD uses an equivalent 6 x 3 = 18 number of fans of the same type as the
ones used on the peripheral walls (see Figure 4-3). This facility only replicates the
closed-loop modes of the WindEEE Dome while performing identically with the
WIindEEE Dome in terms of tornado or downburst generation, including their translation.
Each fan can be controlled individually and the upper fans are reversible. Adjustable

vanes that are installed in front of all lower fans can be used to produce the desired swirl.

While the inflow height is fixed at 0.07 m, the updraft radius is variable between 0.07 m
and 0.2 m, resulting in aspect ratios ranging from 0.35 to 1. Experimental investigations
of tornado-like vortices performed by Davies-Jones [21] and Church et al. [22] suggested
that two main flow characteristics, namely the core radius and the swirl ratio of transition,
are independent of the aspect ratio. Therefore, a fixed aspect ratio of 0.35 was selected

for all experiments performed here.

In the MWD, the flow enters the main lower chamber through the openings at the

periphery and exits the chamber at the top through the updraft hole and then recirculates
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through the return circuit. To prevent the effect of the fans at the top on the upstream
flow, a honeycomb is installed at the entrance of the updraft. This honeycomb also
removes any radial and tangential velocity components form the updraft flow to resemble

the appropriate downstream boundary condition.

There are two different configurations for generating tornado-like vortices in this
simulator: a) using top fans to provide updraft and periphery vanes at the lower chamber
to control the swirl; b) running periphery fans at the lower chamber to increase the inflow
with vanes to produce the swirl and top fans to provide suction. The preliminary flow
visualizations inside the simulator have shown that using any of these arrangements
generates tornadoes of different structures; the former configuration generates single-
celled and two-celled tornado-like vortices while the latter one results in multi-celled
vortex structures. In the current study, tornado-like flows were generated using the first

configuration.

W £E°0

b Updraft hole
r.=0.2m
h=0.07 m‘

Figure 4-3: Schematic drawing of the MWD.
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By starting the top fans, the flow is drawn into the chamber through the inlet at the
periphery. The air passes the vanes which input both radial and tangential velocity
components. At this moment, the flow contains only vertical vorticity which is carried

towards the center. The vertical vorticity is then stretched vertically as approaching the
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center of the simulator and initiates the rotating region. As the flow becomes steady-state,
the lower surface radial boundary layer develops. At this point, the surface boundary
layer provides the vorticity required to sustain the rotation in the core. The horizontal
vorticity in the boundary layer is then tilted into the vertical direction by the radial
gradient of the axial velocity close to the center and then stretched vertically by the axial
gradient of the updraft in the core [12]. This develops the rotational core which extends to

the updraft hole.

4.3 Flow parameters

The major dimensionless groups [11, 21-24] identified for TVC’s are; the geometric
aspect ratio (a), the kinematic swirl ratio (S) and the dynamic radial Reynolds number
(Rey). The aspect ratio is the ratio between the inflow height (h) and the updraft radius
(ro). The likely atmospheric range for the aspect ratio, as mentioned by Church et al. [22],
is from 0.2 to 1. The radial Reynolds number is defined as Re,=Q/2zv, where Q is the
volumetric flow rate per unit axial length and v is the kinematic viscosity of the fluid. The
radial Reynolds number of a real tornado is generally many orders of magnitude larger
than that of simulated tornado-like vortices. However, it was previously shown that for a
given geometry and for a smooth surface, above a certain critical value of Re,, the core
radius and the transition from a single vortex to multiple vortices are independent of Re,

and are strongly a function of swirl ratio [11, 21, 22, 25].

The swirl ratio represents the ratio between the rotational energy to the convective energy
in the vortex. It is defined as S= ro/720Qh, where I"is the circulation at the rotating screen
in TVCs. This non-dimensional parameter is an important controlling factor which
characterizes the vortex breakdown and the transition to a turbulent flow and to multiple
vortices [21, 26]. Although the swirl ratio remains the most important parameter for the
characterization of tornado-like vortices, its definition is based on the simulator
configuration and can vary from one simulator to another. As a result, calculating the
swirl ratio in a non-TVC tornado simulator using the given equations is not practical.
Variation in the swirl ratio definition introduces new challenges in characterizing

tornado-like vortices; the swirl ratio corresponding to the transition from a laminar to a
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turbulent flow and from one-celled to two-celled vortices varies from one simulation to
another. For instance, in calculating the swirl ratio for the ISU simulator the updraft
radius was replaced with the radius of maximum tangential velocity and circulation was
determined at the core radius [19]. Therefore, the swirl ratio needs to be defined for any
simulation and the exact values reported for critical swirl ratios by previous works cannot

be directly used for comparison purposes.

43.1 Swirl ratio

The swirl ratio in the MWD apparatus can be defined as the ratio between the tangential
to radial velocity at the inflow region, S = (1/2a)Viani/Vragi- Based on this definition,
VianifVrag,i €quals to tan(0), where 0 is the vane angle with respect to the radial direction.
The vane angle varies between 0° (completely open) and 90° (completely closed).
However, preliminary tests showed that beyond 40°, the flow structure was altered and
tornado-like vortex characteristics (i.e. Rankine vortex surface pressure distribution and
tangential velocity profile) were not observed. Varying the vane angle between 0° and
40°, while providing constant flow rate, results in swirl ratios ranging from 0.12 to 1.2.
Alternatively, the swirl ratio can be defined using the overall maximum circulation
(I'o=27remaxVianmax) at a given flow rate: S = ro/../2Qh. where, Vian max IS the overall
maximum tangential velocity and r¢ max is the radius corresponding Vian max. This approach
requires the availability of vector maps of the tangential velocity inside the chamber

which were obtained through PIV measurements (see Section 4.5 for PIV results).

Figure 4-4 compares swirl ratio values computed based on the vane angles and the
maximum circulation (using PIV results). It is observed that swirl ratios are fairly
matched, particularly for vane angles less than 25°. The swirl ratio equation suggests a
linear relationship between the swirl ratio and the maximum circulation providing that the
aspect ratio and the flow rate are constant. The swirl ratio variation with the maximum
circulation is also displayed in Figure 4-4. The linear trend observed here is in agreement
with the expected relation between swirl ratio and circulation for constant flow rate and

demonstrates an independent control over the radial Reynolds number and the swirl ratio.
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Figure 4-4: Swirl ratio variation with the vane angle as well as circulation as a
function of the swirl ratio.

4.3.2  Radial Reynolds number

Since it is not possible to satisfy the radial Reynolds number dynamic similarity between
the simulated and the real tornadoes, it is necessary to examine the dependence of the
flow characteristics on the radial Reynolds number. Therefore, variations of tangential
velocities with swirl ratio were studied for two different radial Reynolds numbers. The
flow rate was calculated using the average axial velocity, Vax, at the updraft. The axial
velocity was determined by performing PIV measurements on a vertical plane at the
updraft hole. The flow rate was also measured at the inlet of the simulator using a
rotating vane anemometer. The results were in close agreement with the flow rate
calculated based on PIV measurements. Note that this is a preliminary investigation of
the Reynolds number effects on the flow characteristics. A more detailed study will be

performed in the full-scale WindEEE Dome for a wide range of radial Reynolds number.

In order to examine the effect of the vane angle on the upper fan performance, the

rotational speed of the fans was monitored for various vane angles. It was observed that,
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even for high swirls, the fan performance was not affected by the vane angle and the flow
rate was constant. As a result, the flow rate and the swirl component can be controlled
independently in the MWD simulator similar to previous TVC experiments [12, 15]. This
allows for validation and direct comparison of various tornado-like vortex characteristics
between the present MWD and former TVC’s.

Figure 4-5 displays time and azimuthally averaged tangential velocities (herein after
called tangential velocities) 5 cm above the ground as a function of radius. Results are
presented for various swirl ratios and for two different radial Reynolds numbers. The
tangential velocity and the radius were normalized by the average axial velocity at the
updraft and the updraft radius, respectively. It is observed that by increasing the flow rate
in the simulator, the maximum tangential velocity increases slightly. However, the core
radius is not affected by the change in the radial Reynolds number. This observation is
supported by the experimental findings of Ward [11] and numerical simulations of
Rotunno [26, 27]. Moreover, as suggested by Ward [11] and Davies-Jones [21] and
observed in this study, the core radius size is mainly a function of the swirl ratio.

Normalized tangential velocities at S=0.35 and z=5 cm are compared in Figure 4-6 for
the two radial Reynolds numbers. The maximum tangential velocity and the correspond
radius were used to normalize tangential velocities and radial distance from the center,
respectively. This figure shows again that the flow characteristics are insensitive to the
radial Reynolds number as the tangential velocities match very well and show similar
trend over the radial distance. Since the core size showed no dependence on the radial
Reynolds number and normalized tangential velocities followed a closely similar trend
for both radial Reynolds number, it can be concluded that for Re,=6.7x10*and higher the
flow has passed a certain critical turbulent state and therefore, the radial Reynolds
number non-similarity would not significantly alter the experimental results. Similar

results were observed for other heights and swirl ratios (not shown here).
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Figure 4-5: Radial profiles of the tangential velocity normalized with the axial
velocity for various swirl ratios at z= 5 cm: a) Re,=6.7x10" and b) Re,=8.4x10".

4.3.3  Self-similarity

Tangential velocity profiles obtained from horizontal plane measurements 5 cm above the
ground are plotted in Figure 4-7 for a wide range of swirl ratios and for two radial
Reynolds numbers. For a given swirl ratio, results were normalized using the maximum
tangential velocity and the corresponding radius (r¢). Except for S=0.12, the results tend
to collapse on one graph. At S=0.12, the flow is laminar, unstable and its characteristics
are mainly dominated by the wandering effects. This normalization leads towards the
collapse of the rest of the radial profiles of the tangential velocity on one curve
independent of swirl ratio and radial Reynolds number. This result indicates self-
similarity and therefore, the scalability of the flow which is of crucial importance for
simulating tornado vortices of various scales. It also suggests the potential of defining

simple and robust models for tornado-like vortices.
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Figure 4-6: Comparison between normalized tangential velocities vs. radius for two
radial Reynolds number. Data obtained for S=0.35 and at z=5 cm.
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Figure 4-7: Normalized tangential velocities vs. radius for various swirl ratios at z=
5 cm: a) Re,=6.7x10* and b) Re,=8.4x10".

4.4 Measurement techniques

The tornado-like vortex flow field has been interrogated using flow visualization
techniques, surface pressure measurements and Particle Image Velocimetry (PIV). Dry

ice and helium bubbles were used for flow visualizations. The surface pressure
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measurements employed several pressure taps at the surface and PIV measurements were
performed at 8 horizontal planes above the surface and for two different flow rates. All
experiments were carried out at 8 different vane angles ranging from 5° to 40°, with 5°

increments.

44.1 Flow visualizations

Flow visualizations were performed using dry ice and helium bubbles to obtain
qualitative information on the structure of tornado-like vortices. These experiments were
performed at a constant flow rate and variable vane angles to control the circulation. In
order to fill the chamber with smoke, dry ice cubes were mixed with water and the
resulting smoke was guided into the chamber through a hole on the ground plate at the
center of the simulator. Alternatively, helium bubbles were used for visualization. The
helium bubble generator produces neutrally buoyant, helium-filled bubbles of controlled
size for visualizing complex airflow patterns. These bubbles are extremely durable and
can be used to trace airflow patterns at speeds from 0 to 60 m/s. Two plastic tubes were
used to transfer the helium bubbles from the generator to the simulator. The bubbles were
fed into the chamber from one side far from the center of the simulator in order to

minimize any disturbance in the flow structure.

Figure 4-8 displays images of the flow in MWD, visualized using dry ice (in column (i))
and helium bubbles (in column (ii)), at different swirl ratios and at Re,=6.7x10*. The
present visualizations are compared with previously simulated vortices in TVCs [11, 22]
shown in column (iii). It is observed that the general flow pattern in MWD is in a very

good agreement with the ones from TVCs.

For a low swirl ratio (5=0.12), the vortex core is laminar and extends upward from the
ground panel to the updraft hole (Figure 4-8a). The core size variation with height is very
small and the maximum updraft is observed at the central axis of the vortex. This is the
so-called single-celled vortex. By increasing the swirl ratio, the flow structure changes
(Figure 4-8Db); the core abruptly broadens at higher elevations and becomes turbulent.

This sudden increase in the rate of radial spread with height is known to be due to the
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vortex breakdown which is the general characteristic of a quasi-cylindrical vortex core
[28]. It is known that at this point [28], the vortex core develops an adverse axial pressure
gradient which reduces the axial velocity at the centerline and shifts the location of the

maximum axial velocity from the centerline to an annular ring surrounding the centerline.

Figure 4-8, illustrates the vortex breakdown as it occurs in MWD for swirl ratios ranging
from 0.35 to 0.57. The breakdown bubble is further downstream in Figure 4-8b (ii). As
the swirl ratio increases, the breakdown bubble moves toward the surface, as shown in
Figure 4-8b (i), while radial spread of the core increases with height. The development of
the free stagnation point towards the surface continues until it touches the ground at
around S~0.57 and the flow becomes fully turbulent. At this point, down-flow penetrates
to the surface and two intertwined helical vortices and then a two-celled vortex (5>0.96)
forms (see Figure 4-8c and Figure 4-8d).

Figure 4-9 demonstrates the converging surface flow visualized using dry ice for a) a
single-celled and b) a two-celled tornado-like vortex. The images were taken looking
upwards through the chamber floor glass window. Smoke traces showed that these two
vortices rotate around their own axis as well as the axis of the parent cell. Besides, the
radial outward flow observed near the centerline is in good agreement with previous
observations of Ward [11].

(i) (i) (iii)
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b)

d)

Figure 4-8: Tornado-like vortex produced in MWD and compared with previous
works in TVCs: a) laminar core, S=0.12, b) vortex breakdown and touch-down,
S$=0.35-0.57, ¢) intertwined helical vortices, S=0.57-0.96 and d) two-celled vortex,
S$=0.96-1.29. (i) dry ice, MWD, (ii) helium bubbles, MWD and (iii) smoke, TVCs.
Figures a(iii) [22] b(iii) [11] c(iii) [22] d(iii) [11] ©American Meteorological
Society. Used with permission.
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a) b)

Figure 4-9: Converging flow close to the surface visualized using dry ice; a) single-
celled and b) two-celled tornado-like vortex.

4.4.2  Surface pressure

The pressure deficit is an important factor that distinguishes tornadoes from straight,
boundary layer wind impacts on structures. The surface static pressure deficit of the
simulated tornado-like vortex and its variation with the swirl ratio was investigated.
Figure 4-10 presents radial profiles of the time and azimuthally averaged pressure deficits
(4P) normalized with 1/2p V2, for various swirl ratios at Re,=6.7x10*. Note that the
radial Reynolds number of the pressure tests is less than the one chosen for PIV
measurements. However, as discussed before, it is expected that for Re>6.7x10" the flow
behaves independent of the radial Reynolds number.

For small swirls, the radius at which the minimum surface pressure occurs is not at the
geometric center of the simulator. This offset is the result of the wandering characteristics
of the vortex. By increasing the swirl ratio, the wandering effect decreases as a result of
the transition from a laminar to a turbulent flow and the minimum pressure deficit

location moves toward the center (r=0) at S=0.57.

The higher variation in the central pressure deficit at lower swirl ratios is attributed to the
one-celled characteristics of the flow. A one-celled vortex is characterized by an axial
upflow in the centerline region and increasing the swirl ratio, increases the axial velocity

significantly. Therefore, central pressure deficit values increase.
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Experimental results are compared with the surface pressure deficit suggested by the
modified Rankine vortex model which is defined as [P(r)-P(o0)] =-pI .2/ 27 (r2+1).
where p is the fluid density, r is the radial distance from the center of the vortex, r is the
core radius of the vortex and P(r) and P(0) are static pressures at radius r and the
atmospheric static pressure, respectively. The parameters in the modified Rankine
equation were determined using P1V results. The overall maximum tangential velocity
and the corresponding radius over all heights at a given swirl ratio were selected for this
calculation. As shown in Figure 4-10, a better match is achieved at radial locations away
from the center. Also, the analytical model estimation improves as the swirl ratio
increases with the exception of S=0.96 which may be due to the transition of the flow

from a single- to two-celled vortex at this swirl ratio.
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Figure 4-10: Surface static pressure deficits, averaged over time and azimuth for
various swirl ratios at Re,=6.7x10*
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Figure 4-11 displays instantaneous maximum surface pressure deficits (square symbols)
as well as time-averaged surface pressure deficits (circle symbols) at the radius
corresponding the instantaneous maximum deficit. Results are normalized by 1/2pVa?
and are presented as a function of swirl ratio. There is a significant difference between
the time-dependent and the time-averaged values. When compared to the pressure
coefficients measured in the straight flows, the peak pressure deficits are larger by at least
an order of magnitude. However, direct comparison should be avoided as it is known that
increasing the surface roughness reduces the surface pressures substantially [29]. The
trend observed in Figure 4-11 for the instantaneous pressure deficit variation with swirl
ratio is very similar to the one reported by Pauley et al. [30] and recently by Natarajan
and Hangan [2]. For S<0.73, constant increase in the pressure deficit is observed which is
due to the intensification of the one-celled vortex as the swirl ratio increases. The largest
pressure deficit is achieved at S=0.73 in the current experiments which, as explained by
Snow et al. [31] and Pauley et al. [30], corresponds to the vortex breakdown penetration
to the surface. For 0.73 <S< 0.96, the turbulent vortex core expands rapidly and as a
result, a reduction in the pressure deficit is observed. Flow visualizations suggested that
at S=0.96 or higher, the transition from a single turbulent vortex to a pair of vortices
occurs. This transition is represented in Figure 4-11 as an increase in the surface pressure
deficit which is consistent with the previous findings of Pauley et al. [30] and Natarajan
and Hangan [2]. At this point, the minimum pressure is mainly associated with
subvortices and is not located at the geometric center of the simulator (or, in other words,

at the center of the parent vortex).

To further investigate the surface flow and confirm the existence of subvortices,
instantaneous pressure deficits at various swirl ratios are plotted in Figure 4-12. The
entire vortex evolution from a laminar single-celled structure with the maximum pressure
deficit at the center to a two-celled set-up with localized peak pressure deficits at the
centers of the subvortices is clearly observed in Figure 4-12. As the swirl ratio increases
from 0.35 to 0.57, the vortex core broadens and the flow demonstrates axisymmetric
characteristics. At this point, the minimum pressure is achieved at the central region of

the flow. By further increasing the swirl ratio to 0.73, the flow develops asymmetric



characteristics and the minimum pressures move away from the center. Two local
maximum pressure deficits confirm the presence of two sub-vortex in the flow. As the
swirl increases to 1.29, the subvortices separate further and the core widens. Note that
these subvortices are very unstable and constantly change size and relocate on the
surface. Further investigations are required to identify any pattern in the structure and

movement of the subvortices.

0 L T I 1 T I T L I T L I T L I T L I T L
| [5 |
S e . ]

w0 ' e- -~ ~ e N -1
- \ o N o« - o |
- \ .
| \ i

20 - \ -

I \ i

*D_ = \ m a
< 30f b- 8 I\ N
i \ . y \ |

| N / \\ |

| \ / E

L ] -

40 i 0 / N ]
B N / N |
| \ / o |
B ) Ny i

50 -— O - instantaneous .
I — —e— - mean E]/ E
NI BN RN Rt SNSRI RSN R
0 0.2 0.4 0.6_ 0_.8 1 1.2 14

Swirl ratio

Figure 4-11: Time-dependent (square symbols) and time-averaged maximum
surface pressure deficits as a function of swirl ratio for Re,=6.7x10".

OFT —— T — T — g OFT — T — T — E
1F ! E = \ E

F | 3 F | 3

2F I = 2F I =

F | » 7 E | E
SE - | v 7 SE T | ~ 7

F Sel s E F e o E

AE N I . E 4F > I / E

g \ ! . 1 E A ! / 1

13 \ | » E SE . \ e E
S * ! ? E o sfF | R E
S 6; \ I e d E < 6; be | ‘¢ E
TE e 1T E 7k LN / E

g Al ] E o . E

-8 F m.‘h - Kl = \’\% : V/\/ =

- 7 - . 7

oF ~ 3 ofF ! E

- | 7 - | 7

-10 | - -10 | =
a1f : $=0.35 4 uf : $=057 4
1o Bl 1 1 M 1 I Bl 1 1 1 1 M BRI |
1235 1 0.5 0 0.5 1 1.5 1235 1 0.5 0 0.5 1 1.5

rlr r/r

75



76

OrT T T T T T E| OFT T T T T T E|
1F ! E 1F ! E
F | E = | E
2F I E 2F I E
F | 3 F | 3
13N | » SE -— o | - E
F o T\ o« J 3
4 F I , E 4F \ I - E
E \ ] F » ]
F I 4 E = ~ I Vi E
S5F » | v E 5F N | E
. F \ | ; E . = Y | ¢ ]
L 6fF . E o GF \ / E
< F . | /‘ E < = 2 ! J
F . E E
TE N ) E TE \ ! s E
o . | ] E « b4 ]
M e/ ] °F e et ]
of NS, 3 of AN £
F | ., ] g | Y f
-10 | - -10 | -
a1 f : $=0.73 4 auf : $=1.29 4
EL L1 1 I I I e b1
-12 -12
15 -1 0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15
riry riry
c) d)

Figure 4-12: Instantaneous pressure deficits over the surface as a function of radius
for a) S=0.35, b) S=0.57, ¢) S=0.73 and d) S=1.29.

4.4.3  Particle Image Velocimetry (PIV)

A 120 mJ/pulse Nd:YAG laser along with a CCD camera with a spatial resolution of
2336 x 1752 pixels were used to perform PIV measurements. The camera was connected
to a frame grabber that acquires 8-bit images. Using a calibration board, the field of view
of the camera was set to 23.4 cm by 17.5 cm and pixel to meter conversion ratio was
determined. A four-channel digital delay generator was used to control the timing of the
laser light pulses. For each experimental run, 4000 images were acquired at a rate of 30
Hz resulting in 15 vector maps per second. A cylindrical lens was used to obtain a light
sheet with a uniform thickness of 2 mm. The tornado chamber was seeded with Di-Ethyl-
Hexyl-Sebacate (C26H5004) particles, with an average diameter of 1 um. These
particles have a response time of 2.55x10® s which is 2 to 4 orders of magnitude smaller
than Kolmogorov time scale of the simulated tornado (Kolmogorov time scale varies
between 3.06x10™s and 1.2x1072s, depending on the swirl ratio). Therefore, these
particles are sufficiently small to follow the fluid motion accurately and not alter the fluid

properties or flow characteristics. The horizontal velocity field (radial and tangential
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components) was measured at the center of the simulator and at 8 different swirl ratios
and heights. The vertical velocity field (axial-radial) was only investigated at the updraft
region to calculate the flow rate. The time interval between the two laser pulses was
selected based on the mean velocity of the flow. These time intervals varied between 100
us and 550 us depending on the swirl ratio and the height at which measurements were
performed. The adjustments were made to have a peak to noise ratio of 1.5 or higher in

all experimental runs.

The captured images were processed using TSI software to extract vector maps. This
software performs cross-correlations between interrogation windows in the first image
and search windows in the second image. The interrogation windows were set to 64 by
64 pixels with 50% overlap, while the search regions were double in size. The same
software was used for post-processing of the data. Spurious vectors were identified and
removed using global and local filtering and then replaced by interpolated vectors. The
total number of spurious vectors in each map did not exceed 1% of the total vectors. The
velocity measurement errors were calculated for horizontal velocity fields and the

maximum error was estimated to be 7.2%.

The spatial resolution of PIV measurements is determined by the interrogation window
and is 3.2 mm. This resolution is 1 to 2 orders of magnitude larger than the Kolmogorov
length scale which is ranging from 4.35x10™" mm to 6.93x10"> mm, depending on the
swirl ratio. As a result, no attempt was presently made to resolve the smallest scales of

the tornado-like flow.

4.5 Flow field

4.5.1  Tangential velocity profiles

Figure 4-13 displays radial profiles of tangential velocities for different swirl ratios at
eight heights above the surface. Tangential velocities were averaged over azimuth and
time. For a given swirl ratio, tangential velocities and radii were normalized by the
maximum tangential velocity and the core radius corresponding to each height,

respectively. As the swirl ratio increases, a smaller portion of the outer core region is
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captured by the PIV measurements. This is due to the expanded core radius and the

limited field of view of the camera.

Results are compared to the modified Rankine vortex model which is defined as
Vin=rT/(r+r*)m. For a given swirl ratio, the overall maximum tangential velocity and
the corresponding radius were used to calculate the tangential velocity estimated by the
modified Rankine vortex. For S=0.12 and 0.22, before the vortex touch-down, most of
the experimental results and the analytical model match fairly well with the exception of
the data for S=0.22 and at z/r,=0.4. This is probably due to an aloft vortex break-down
around that level. For S>0.35 a clear dependency of the experimental values with height
is observed initially in the outer, irrotational region and after touch-down in the core
region as well. Also, most probably due to the increased surface friction at and after
touch-down, the Rankine model shows agreement with only the upper level
measurements. As explained by Snow [32], idealized profiles such as Rankine vortex
model are most applicable above the surface layer, where radial velocities are relatively

weak.

4.5.2  Radial velocity profiles

The azimuthally and time averaged radial velocities are shown in Figure 4-14 as a
function of height for four swirl ratios and at four radial locations. The first radial
location, r/rp=0.048, resides inside the core region of the tornado-like vortex and the rest,
r/ro=0.125, r/ry=0.6 and r/ry=0.7, reside outside the core flow. Radial velocities are
normalized by the average axial velocity, Vay, at the updraft hole and a negative value of

radial velocity represents a converging inflow.

The radial velocity values decrease as the flow approaches the centerline with the
minimum velocity observed close to the center of the vortex. This trend is an immediate
result of the radial velocity turning into the axial velocity in the core region and is in
good agreement with previous observations by Hangan and Kim [7], Hashemi Tari et al.
[20] and Zhang and Sarkar [33]. In addition, the radial velocity values close to the surface

rise with increasing the swirl. This is attributed to the intensified tangential velocities



close to the ground. Except for S=0.12, the maximum radial velocity is observed at

heights very close to the ground. For very low swirls, a laminar core develops at mid-

heights above a ring-like separation zone around the center which prevents the radial
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converging flow reaching the centerline. Therefore, radial velocities are higher far from

the surface. With an increase in the swirl ratio, the radial boundary layer thickness

reduces and the height corresponding to the maximum radial velocity moves towards the

surface. The variation of the radial velocity with height is more pronounced for flows

with high swirl ratios which can be explained by the flow regime being fully turbulent for

S~0.57 or higher. Hashemi Tari et al. [20] reported discrepancies in the trend of radial

velocity profiles obtained through the vertical and the horizontal planes. They concluded

that the difference is due to the out of the horizontal plane motion close to the surface

where axial velocities are dominant. The present trend of radial velocity profiles matches

the ones resulting from the vertical plane measurements reported by Hashemi Tari et al.
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Figure 4-13: Radial profiles of the normalized tangential velocity at various heights
and for a) S=0.12, b) S=0.22, c) S=0.35, d) S=0.57, e) S=0.73, f) S=0.96, g) S=1.14 and
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Figure 4-14: Vertical profile of the normalized radial velocity at four radial
locations and for a) S=0.12, b) S=0.35, ¢) S=0.73 and d) S=1.14.

4.5.3  Vertical structure of the core region

The core radius was determined at each horizontal plane and its dependence on the swirl
ratio is examined in Figure 4-15. As the swirl ratio increases, the core region of the
tornado-like vortex grows. For a very small swirl ratio, the size of the core is only
growing very slowly with height. By increasing the swirl ratio, the variation of the core
radius with height is noticeable. For S=0.22, the core has a conical shape further aloft
which corresponds to a vortex breakdown. In addition, a local maximum in the core size
is detected at low elevations. After the vortex breaks down, it moves upstream and
appears as a bulge in the flow as seen for 0.35<S<0.57. The bulge develops at mid-
heights and grows as the swirl ratio increases. This bulge reaches its maximum size at
S$=0.57 and the local maximum moves upstream until the touch-down occurs. For swirl

ratios higher than 0.57, a broad core region is observed.



83

1 T T T T T T T T T T T T T T T T T T
F ——a—— S$=0.12 4

il

o
N
N
1

09 F

w
o

0.8

NP
PRPOOOO
N oNO
OrOWN

07F

i

0.6

o

S o05F -
N o ]
04F ¢ 3

03F 3

02F =

0.1F =

Y U N FUN SRR NN FUNEN FUNE DS P p-
0 01 02 03 O. 05 06 O 08 09 1
rdr,

Figure 4-15: Vertical profile of the core radius for various swirl ratios.

Figure 4-16 presents maximum tangential velocities at each height for eight different
swirl ratios. With the exception of low swirl (before the touch-down) the maximum
tangential velocity is observed at heights very close to the ground. The position of the
maximum tangential velocity close to the surface (ground) for tornadic flows is very
different from a monotonic boundary layer profile and therefore it may be one of the
differential factors between synoptic and non-synoptic wind systems with implications in
structural damages. As the flow becomes fully turbulent and the transition from one- to
two-celled vortex happens, there is less variation in the maximum tangential velocities

with swirl ratio (see S>0.96 in Figure 4-16).

The PIV measurements of horizontal velocities close to the ground were limited to z=3.5
cm due to accessibility issues. However, Ying and Chang [8], using laboratory
simulations, demonstrated that the vertical profile of the tangential velocity very close to
the surface is similar to the boundary layer profile of a uniform flow over a flat plate.
Moreover, Baker and Church [34] have illustrated that maximum velocities drop rapidly

for heights lower than the one corresponding to the maximum velocity.
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Figure 4-16: Maximum tangential velocitiy vs. height for 0.12 < S < 1.29.

Overall, the vertical structure of the core is in agreement with previous experimental and
numerical studies’ findings [2, 34, 35]. For instance, the vertical profile of the maximum
tangential velocity and the associated core radius at S=0.96 are well comparable with the
ones reported by Baker and Church [34] for a turbulent vortex with Re,=4.82x10" at
S=0.97.

454 Vortex structure

A reconstruction of the three-dimensional structure of the tornado-like vortex was
attempted using data obtained from horizontal PIV planes. Figure 4-17 presents
streamlines superimposed on instantaneous vertical vorticity contour maps. Results are
demonstrated for S=0.22, 0.57 and 0.96 and, at three different heights above surface:
z=3.5, 7 and 15 cm.

Before touch-down, for S=0.22 (Figure 4-17a), the core size variation with height is
almost negligible . The maximum vorticity is observed at the center of the vortex and the
flow shows axisymmetric characteristics. Close to touch-down at S=0.57, a one-celled
axisymmetric vortex with the core radius of 6 cm is observed at elevations very close to

the surface (see Figure 4-17b). The maximum vertical vorticity is located in the core
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region and the rest of the flow is nearly free of vorticity. By moving downstream (or
upwards), the downflow intensifies and as a result the core region expands while
developing asymmetric characteristics. This trend continues until the vortex structure
breaks into a two-celled vortex for z>7 cm. The direction of the rotation is similar for the
two cells as illustrated in Figure 4-17. At z=8 cm (not shown here), the two vortex cells
are very close to each other. However, by moving downstream the cells separate further
and their core region enlarges. The overall maximum vorticity is observed at z=15 cm
with two local peaks associated with each cell. For S=0.96, the flow shows the most
asymmetric characteristics when compared with S=0.22 and S=0.57 (see Figure 4-17c).
The vortex breakdown has already propagated to the surface and as a result, a two-celled
vortex is formed at the lowest elevations. The maximum vorticity magnitude is captured

at the center of each individual vortex and the parent vortex core size has intensified.
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Figure 4-17: Streamlines superimposed on the instantaneous vertical vorticity
contour maps at z=0.035, 0.07 and 0.15 m for a) S=0.22, b) S=0.57 and c) S=0.96.

4.6 Concluding remarks

Experimental investigations of tornado-like vortices were carried out in 1/11 scaled
model of the WIndEEE testing chamber at Western University. It has been shown that the
aspect ratio, the flow rate and the rotational component can be varied independently in
this simulator. The radial Reynolds number dependence of the flow was assessed. It was
concluded that for Re;>6.7x10%, the core radius is nearly insensitive to the radial

Reynolds number.

The evolution of the tornado-like vortex with variations in the swirl was documented
using visualization techniques. This yielded a laminar single-celled vortex at S=0.12, a
vortex breakdown bubble formation at S=0.35, a touch-down at S=0.57 and a fully
turbulent two-celled vortex at S=0.96 or higher. Surface static pressure measurements

showed a maximum pressure at the center of the vortex for single-celled cases and at the
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center of each sub-vortex for two-celled set-ups. The instantaneous maximum pressure
deficit variation with swirl ratio was investigated. Results showed good agreement with
previous measurements and numerical simulations. A constant increase in the central
pressure deficit with the swirl ratio was apparent for S<0.73. Significantly large surface
static pressure deficits were recorded for simulated vortices with the overall maximum
being at S=0.73.

The mean velocity field of the tornado-like vortex was measured using Particle Image
Velocimetry. The radial profiles of the normalized tangential velocities were in close
agreement with that of the modified Rankine vortex model in the main body of the flow
not-influenced directly by boundaries. The near-surface flow showed intensified radial
velocities and local maxima in the tangential velocities. These local maxima, along with
the pressure deficit characteristics, differentiate tornadic winds from the atmospheric
boundary layer flows and are believed to be responsible for the damage to structures and

buildings in tornadic winds.

Although the results presented here are in good agreement with the modified Rankine
vortex model and the previous experimental and numerical studies of tornado-like
vortices, the relationship between the simulated tornadoes in MWD and natural tornadoes
is yet to be determined. In an accompanying paper, scaling issues associated with
tornado-like flow simulations are discussed in detail. A method is proposed which
identifies the scaling ratio of the simulated tornadoes and the swirl ratio of the full-scale

tornadoes.
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Chapter 5

S  Three-dimensional axisymmetric wind field structure of five
tornado events

5.1 Introduction

The high tornado count of 1,690 made 2011 the second most active year since the modern
record began in 1950 [1]. The damage from tornado-related outbreaks in 2011 exceeded
$10 billion, representing the highest property damage from severe weather in a single
year since the property loss record keeping began in 1980. The annual total number of
fatalities from tornadoes was 553, the most in the 62-year period of record. Damages
from the May 22, 2011 EF5 Joplin, MO tornado alone exceeded $2.5 billion, the most on
record for a single tornado in U.S. history. Fujita Scale (F-Scale) [2] or Enhanced Fujita
Scale (EF-Scale) [3] is a forensic scale used to rate the intensity of a tornado by
examining the damage caused by the tornado after it has passed over a structure. The
strongest tornado of the 2013 season struck Moore, OK in May 20", resulted in 25 dead
and hundreds injured. Peak velocities of 330 km/hr were estimated by the National
Weather Service (NWS) for this tornado after a damage survey was performed. This was
the third time in the past 15 years that the city of Moore was hit by a strong tornado and it

was perhaps the worst tornado disaster since the Joplin, MO tornado in May, 2011.

Designing structures and buildings for tornado-resistance requires a detailed knowledge
of the nature of the wind threat including duration, speed, directional variability and
debris loading. Characterizing the complex structure of tornadoes has challenged
researchers for years, with the major barrier being the shortage of full-scale velocity field
data from this phenomenon [4]. It is only recently that new techniques have emerged at
the level of full-scale characterizations (portable Doppler radars), mathematical modeling
(Ground-Based Velocity Track Display) as well as physical simulation (novel tornado-
simulators). These advancements allow for an important break-through in investigating
the effects of tornadoes on buildings and structures. Herein we show, for the first time,
how these new techniques can be combined to characterize the flow structure of various

tornado events. Single-Doppler radar data along with the Ground-Based Velocity Track
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Display (GBVTD) method are used to extract the three-dimensional flow structure of five
tornado events. These tornado structures are then related to previous physical
experiments and to fluid mechanics parameters, such as swirl ratio, which can then be
used to build a relationship between full-scale tornadoes and physically or numerically
simulated tornado-like vortices. In addition, the data provided here will serve as the
beginning of what will eventually be a database of full-scale tornado wind fields. This
database is aimed for researchers focusing on experimental and numerical simulations of
tornadic flows with the ultimate goal of studying wind loading effects on scaled models.
Therefore, special attention is given to the dynamic structure of the natural tornado rather

than the tornadogenesis.

5.2 Background

Physical [5-9] and numerical [10-13] simulations of tornado-like flows demonstrated the
variation in the vortex intensity, structure and wind field which is mainly governed by the
non-dimensional parameter known as the swirl ratio (S). The swirl ratio can be defined as
the ratio between the tangential velocity (Vian) at the edge of the updraft hole to the mean
axial velocity (Vax) through the updraft opening: S=(1/2a)Vian/Vax. Where a, namely the
aspect ratio, is the ratio between the inflow depth (h) and the updraft radius (ro). As
shown in Figure 5-1, variation of the swirl ratio results in various developments of the
tornado-like vortices [14] among which are the vortex breakdown and the transition to
turbulence. For very weak swirls, S<0.2, the flow in the boundary layer separates (Figure
5-1a). By increasing the angular momentum, a thin laminar swirling flow forms aloft
while the separated flow is forced to reattach to the surface (Figure 5-1b). For moderate
swirls, 0.2<S<0.4, a turbulent vortex breakdown bubble forms aloft and moves towards
the surface as the swirl ratio increases (Figure 5-1c). At this stage, the vortical flow
consists of a thin laminar core close to the ground and a turbulent two-celled flow aloft.
By further increasing the swirl ratio, a downdraft develops along the centerline and
eventually the breakdown bubble touches the surface at S~0.45 (Figure 5-1d). For
0.8<S<1.4, a two-celled vortex with a central downdraft impinging on the ground is
observed (Figure 5-1e). The tornado vortex can split into 2 or more cells if the swirl
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increases further (Figure 5-1f). Note that the swirl ratio values and ranges provided above

correspond to measurements performed in a ward-type tornado simulator [15].
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Figure 5-1: Swirl ratio effect on the structure of tornado vortices; a) very weak
swirl, b) laminar core, c) breakdown bubble formation, d) drowned vortex jump, e)
two-celled turbulent vortex and f) a family of three vortices - image from [14].
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The Doppler on Wheels (DOWSs) mobile radars were designed and constructed in 1995
[16, 17] to obtain data from small-scale, rapidly-evolving atmospheric events. Although a
portable Doppler radar allows for investigators to measure tornado winds from close
proximity (typically ~5-20 km), there are still measurement limitations/challenges. Since
radar waves do not follow the earth’s curvature and objects on the ground can block
them, most data still are tens of meters above the ground level (AGL). In order to obtain
data from regions very close to the ground (<10 m), Doppler radars need to be deployed
very close (<5 km) to the tornado. Only on rare occasions [18, 19] researchers have been

able to collect data from less than 10 m AGL.

To date, single- and dual-Doppler radar data from approximately 200 individual
tornadoes have been collected during field projects such as VORTEX1 (1994-1995),
ROTATE (1996-2001; 2003-08; 2012-13), VORTEX2 (2009-2010). The first three-
dimensional maps of the tornado vortex inner and outer core flow with fine temporal and
spatial resolution were obtained using the prototype DOW mobile radar in VORTEX1
[20]. These tornado wind maps allowed for recording the horizontal and vertical structure
of the vortex and its evolution [21, 22]. ROTATE [23, 24] collected single- and dual-
Doppler radar data from more than 140 different tornadic events which enabled scientist
to study tornadogenesis [25-27], tornado structure [28-32] and the relationship between

tornadic winds, debris, and damage [18, 33, 34].

The main objectives of the VORTEX2 [35] project were to collect wind, precipitation,
and thermodynamic data, simultaneously in order to better understand the processes
underlying tornado formation and to improve prediction of supercell thunderstorms and
tornadoes. The data obtained during this project has been partially analyzed and
published by various scientists [36-39] and are still being currently investigated.
ROTATE (2012-13) is the most recent field study of tornadoes focused on the low-level
winds and therefore of great interest for the wind engineering community. Using data
collected during this field project, Kosiba and Wurman [19], for the first time,
documented the fine-scale three-dimensional structure of the boundary layer in a tornado.
They revealed that the inflow in this tornado is confined to 10-14 m AGL or less, which

is much shallower than what is reported in previous works. Overall, the aforementioned
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field projects increased the tornado warning lead-times, improved the quality of severe
weather warnings, broadened our knowledge about tornadogenesis and extended the

database of full-scale tornado wind fields.

Lee et al. [40] developed the GBVTD technique to retrieve the structure of a cyclone
using single-Doppler radar data. Lee and Wurman [30] first applied the GBVTD
technique to tornadoes to investigate the three-dimensional structure of the Mulhall, OK
tornado (hereafter Ml tornado) on 3 May 1999. They focused on axisymmetric aspects of
the flow and presented the tangential and radial winds at various radii and heights. Lee
and Wurman reported peak axisymmetric tangential velocities of 84 m/s at 50 m altitude

with the core region size ranging from 500 m to 1000 m for this multi-celled tornado.

Kosiba et al. [31] presented three-dimensional axisymmetric structure of the 12 May
2004 Harper, KS tornado retrieved from Doppler radar using an axisymmetric model.
They concluded that an essential characteristic of the outer core region (r>r.) is the
significant spatial and temporal variability. GBVTD analyses were performed by Kosiba
and Wurman [32] on data collected from the F4 rated Spencer, SD 1998 tornado using
DOWs. The analysis revealed a two-celled vortex structure with significant downflow
throughout the 8-minute observation period and significant inflow very close to the

surface.

The June 9, 2009 long-lasting EF2-rated tornado of Goshen County (LaGrange), WY
(hereafter GC tornado) was intercepted by DOWSs during the VORTEX2 project [39, 41-
43]. Single-Doppler radar data was obtained throughout the full lifetime of this tornado,
with dual-Doppler measurement from before genesis through maturity. Photogrammetric
and radar analysis of the GC tornado were conducted by Wakimoto et al. [36] and Atkins
et al. [44]. They reported that damaging winds in the region few hundred meters above
the ground extended radially beyond the funnel cloud. Later, Wakimoto et al. [37]
published GBVTD analysis of the same tornado (GC tornado) combined with pictures of
the funnel cloud. They focused mainly on identifying the relationship between velocity
components, pressure gradients and the visual features of the tornado. Also, Wakimoto et

al. examined the validity of GBVTD assumptions using dual-Doppler radar data. They
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observed that the retrieved secondary circulation (axial and radial velocity components)
near and within the core region is not accurate for small tornadoes with weak low-level
inflow. Recently, Wurman et al. [45] combined in situ video and wind data obtained from
the instrumented and armored Tornado Intercept Vehicle (T1V) with fine-scale DOW
data for the GC tornado. In addition to characterizing the flow structure near the ground,
this work revealed that horizontal velocity’s variation from the lowest radar observed

levels (~30 m AGL) to the in situ measurement level (3.5 m AGL) was negligible.

Lately, Nolan [46] performed a thorough review on the accuracy of the GBVTD method
in retrieving velocity fields from single-Doppler radar data. He concluded that secondary
circulations obtained through this mathematical method are biased, especially in weak
tornadoes. This is due to the effect of centrifuging of debris and hydrometeors at low-
levels which is shown to be more pronounced for tornadoes rated F2 or less.
Nevertheless, retrieving the three-dimensional wind field of tornadoes is an ongoing
research and improvements in the GBVTD method and in the correction for centrifuging

effects are expected in the near future.

5.3 Data analysis

Single-Doppler radar data of five tornado events were analyzed in this study using the
GBVTD method. The Spencer, SD 1998 (F4), Stockton, KS 2005 (F1), Clairemont, TX
2005 (F0), Happy, TX 2007 (EF0) and Goshen County, WY 2009 (EF2) tornadoes were

selected for this purpose as these cover a wide range of vortex structures and intensities.

Data acquired through one complete radar scan of a tornado from regions very close to
the ground to hundreds of meters aloft is termed as “volume”. Nine volumes of radar data
were investigated using the GBVTD method to retrieve axisymmetric three-dimensional
structure of the parent vortex. Volumes were selected to cover wind speeds associated
with EFO to EF3 rated tornadoes. Note that the intensity ranking mentioned above for
each tornado event is provided by the Storm Events Database [47] and is based on
damage surveys. These ratings are influenced by accessibility, damage markers in the
region and quality of structures and as a result, they are not a true representative of the
tornado intensity. For instance, eye witnesses and DOW measured data suggest that the
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Happy, TX 2007 tornado (hereafter Hp tornado) was stronger than EFOQ. Yet it travelled

through open country terrain and as a result it is most likely under-rated.

The number of sweeps in a volume varied between 4 and 14 with the finest and coarsest
elevation angles of 0.3° and 6°, respectively. The minimum height scanned by the radar
was affected by the terrain condition and the distance of the radar to the center of
rotation. Volumes of radar data were first filtered subjectively using the SOLO Il
software [48], provided by National Center for Atmospheric Research (NCAR), to
remove noise and any spurious data resulted from ground clutter and signal blockage near
the surface. Then, the data were objectively analyzed using a bilinear interpolation
scheme [49] to create a Cartesian grid (Ax, Ay, Az). Next, the vortex center coordinates
were identified. In theory, the vortex center can be defined using minimum pressure,
circulation or reflectivity. Herein, the circulation center was considered as the vortex
center. The Doppler velocity pattern of tropical cyclones was investigated by Wood and
Brown [50]. They suggested that, given an axisymmetric flow field, center of the tropical
cyclone is located on a circle that passes through the radar and Doppler velocity maxima.
Therefore, the circulation centers were identified manually for every volume and at each
elevation angle of the radar in accordance with Wood and Brown approach while taking
into account the asymmetry inherited in the flow field of tornado vortices. The tornado
circulation center at each elevation was then shifted to vertically align the centers in order

to allow for a more accurate retrieval of the wind field.

The GBVTD analysis is applied to a ring with the circulation center of the vortex located
at the center of this ring. The Doppler velocity (Vp) is expressed as a function of
tangential (Vian), radial (Vyag), translational (Virans) and axial (Vax) velocities of the
atmospheric vortex as well as the terminal velocity of hydrometeors and debris (vy):

Vb = Virans cos(Y-0\) cos@ - Vian siny cosg + Viagcosy cosgp + (Vax-w) sing

where, ¢ is the elevation angle of the radar beam, 6y is the direction of the mean wind
flow and, y and Y"are mathematical angles as shown in Figure 1 of the work by Lee et al.
[40] (see Appendix E). Contributions from V4, and v; are first neglected to simplify the

analysis. The horizontal velocities (tangential and radial components of the velocity)
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consist of axisymmetric and asymmetric components. This results in a complex wave
form for the Doppler velocity which can be decomposed into Fourier terms. In the
GBVTD analysis, it is assumed that the flow field is dominated by strong axisymmetric
tangential velocities. After simplifying equations and implementing the complex
geometrical relationship between an atmospheric vortex and a ground-based Doppler
radar, a system of equations relating Doppler velocities to the tangential and radial
velocities are solved to retrieve the three-dimensional vortex structure. Azimuthally
averaged tangential and radial velocities can be extracted using this mathematical
method. The axial velocity at each grid point is then determined through upward
integration of the continuity equation with a no slip boundary condition at the ground.
Mathematical representation of this method and full assumptions are explained in detail
by Lee et al. [40].

Figure 5-2 shows a contour map of Doppler velocities for the Hp tornado at 0203:20
UTC. The wind field of this tornado was reconstructed for a volume from 0203:20 UTC
t0 0204:17 UTC (hereafter v2). This volume consisted of 13 radar sweeps with elevation

angle increments ranging from 0.3° to 3°.

| DOW3

Figure 5-2: Doppler velocity (m/s) contour map of the Happy, TX 2007 tornado at
0203:20 UTC (Hp v2) and at 0.3° radar beam angle showing the tornado vortex
location relative to the Doppler radar.
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Figure 5-3a demonstrates vertical velocity (radial and axial components) vectors
superimposed on the contour map of tangential velocities for Hp v2 tornado extracted
using the GBVTD method. It is observed that the tangential velocity approaches its
maximum of 37.9 m/s at regions very close to the ground with corresponding core radius
(rc) of 160 m. The central downdraft aloft is weakening as reaching the ground and the
overall vertical flow pattern suggests that the vortex breakdown bubble formed aloft has

just touched the ground and the flow has become fully turbulent.

As previously addressed [46, 51], radial and consequently axial velocities obtained from
the GBVTD analysis can be significantly biased by the centrifuging of hydrometeors and
debris. Using a linear analytical model for a translating tropical cyclone, Kepert [52]
showed that in a rotating boundary layer there must exist a radial inflow at and around the
radius of overall maximum tangential velocity. However, the net pressure force that
accelerates the flow inward is weak compared to the centrifugal force that moves dense
particles outward relative to the air and, as a result, the expected low-level inflow is not
observed in retrieved data. To account for the centrifuging effect of hydrometeors and
debris, the radial velocity components were modified (Vragmod) USING an equation

proposed by Nolan [46]:
Vradmod=Vrad - Vrad,bias=Vrad = Cmax [ (Vtan2/ r) / max {VtanZ/ r}l.

where, Vg pias IS the positive bias in the radial velocity values due to the centrifuging of
particles and Cpax IS the terminal fall speed of dominant particles in the flow (e.g.
raindrops, hailstones, debris) as provided by Dowell et al. [51]. In order to modify the
radial velocities (and consequently the axial velocities), information about the size and
type of scatterers is needed. This information can be provided by the observers at the site
of a tornado or can be estimated based on the topography of the site and whether the
tornado has passed through structures or not. For the tornadoes that are analyzed here,
such information is partially available for the Spencer, SD 1998 (hereafter Sp tornado)
and GC tornadoes as they have been extensively investigated before ([29, 32, 34, 51] and
[36-39], respectively). Since observational information is not available for the rest of
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tornado events studied here, the radial wind field of these events is only corrected for

small raindrops (0.5 mm in diameter).

Figure 5-3b displays the flow field of the Hp v2 corrected for centrifuging influence of
small raindrops. When compared to Figure 5-3a, it is seen that the divergence at lower
elevations has decreased while the updraft has slightly intensified. Note that the research
on the debris centrifuging effect is at its early stages and is not yet mature. For instance,
currently most algorithms, including the one employed in this work, assume that the
centrifuging effect is evenly distributed over the whole flow field. However, an important
consideration is that large debris will be confined to lower parts of the tornado.
Therefore, when correcting for the centrifuging effects of large scatterers, it is important

to have an estimate of the affected depth of the flow.
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Figure 5-3: GBVTD retrieved structure of the Hp v2 at 0203:20 UTC, vertical
velocity vector maps superimposed on tangential velocity contours, a) without and
b) with correction for centrifuging.

A summary of the main information regarding each volume of data analyzed here as well
as the parameters used in and extracted from the GBVTD analysis are provided in Table
5-1. In this table, volumes are grouped by the tornado events and the F- and EF-Scale for

each tornado event was determined using the Storm Events Database [47]. The time
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interval and the radar beam angle associated with each volume, the analysis grid size (Ax,
Ay, Az) and the minimum height (zmin) Scanned by the radar are also presented in Table
6-1. The maximum values of grid spacing are dictated by the radar resolution near the
center of the tornado. Ax and Ay should be smaller than about 1/3-1/2 of the largest radar
resolution (Ar and A0) at the tornado center. Choosing a larger value for the grid size,
results in missing some of the information in the analysis while selecting a much smaller
value adds noise to the calculation [53, 54]. The translational speed of the tornado was
approximated based on the distance that the tornado had traveled over a certain period of
time. The overall maximum tangential velocity (Vianmax) Obtained for each volume from
the GBVTD analysis and the corresponding radius (rcmax) and height (znax) are also
provided in Table 5-1

Sensitivity of the GBVTD analysis to the vortex center location as well as the grid
spacing was examined. Errors smaller than 20% of the radius of the maximum tangential
velocity (r;) in the center location identification and changes in the grid size by £8% of
the largest radar resolution at the tornado center, resulted in negligible changes in the

tangential velocity profiles and the flow structure.



Table 5-1. Summary of GBVTD analysis results for various volumes of radar data.
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Clairemont,
volumel
(ClIrv1)

Happy,
volumel

(Hpv1)

Happy,
volume2
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Goshen Co,
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(GCv1)

Goshen Co,
volume2
(GCv2)

Goshen Co,
volume3
(GC v3)

Stockton,
volumel
(Stc vl)

Spencer,
Volumel
(Spvi)

Spencer,
Volume2
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EF
Time interval
(UTC)
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(degree)
Ax=Ay (m)
Az (m)
Zmin (M)
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Vianmax (M/S)
Femax (M)

Zmax (M)

FO

EFO

EFO

EF2

EF2

EF2

F1

F4
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5.4 Results and discussion

Figure 5-4 to Figure 5-12 display the GBVTD-extracted axisymmetric structure of each
volume with and without corrections for the centrifuging effects. In these figures, the
vertical velocity vector map is superimposed on the contour map of the tangential
velocity. Results are corrected for relevant hydrometeor and debris size to examine the
effect of correcting for centrifuging of particles on the flow structure. The vertical wind
field of each volume is qualitatively compared with Figure 5-1 to determine the vortex
structure which is important when simulating tornado vortices experimentally or

numerically.

The very weak tornado of the Clairemont, TX (hereafter Clr tornado) was formed at 2305
UTC on June 12, 2005. This tornado was scanned by DOW3 using four elevation angles
ranging from 0.3° to 2.4°, resulting in measurement data at as low as 25 m AGL. The
secondary flow vector map of this tornado at 2328:32 UTC (v1), shown in Figure 5-4a,
suggests a downdraft that is weakening as it approaches the surface. Also, the maximum
tangential velocity is observed at higher elevations. This configuration matches Figure
5-1c very well which corresponds to a stage of tornado vortex evolution just before the
touch-down. The flow field corrected for centrifuging of small raindrops (see Figure

5-4b) shows a slight increase in the inflow and updraft.

A weak tornado was intercepted by DOW3 in the evening of April 21, 2007 near the
town of Happy, TX (Hp tornado). This tornado was scanned from 0158:16 UTC to
0207:22 UTC and for various elevation angles ranging from 0.3° to 13.1°. Figure 5-5a
illustrates a single-celled structure with an updraft close to the center of the vortex at
0159:53 UTC (v1). A very weak outflow is detected at 400 m AGL and higher
elevations. Applying the correction for centrifuging of small rain drops (Cnax=2 m/s)
increases the maximum inflow by 34% and intensifies the updraft at the centerline.
Approximately 3.5 min later, at 0203:20 UTC (v2), a downdraft of 12 m/s is observed at
very high elevations (~900 m AGL) while the updraft is shifted away from the centerline

(Figure 5-6b). Also, the overall maximum tangential velocities are now moved towards
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the surface. Whether this configuration represents right before or after the touch-down of
the breakdown bubble is debatable as the core region is not fully resolved. Without
considering the contributions from the centrifuging of raindrops, the flow in the core
region and at the radius of the maximum tangential velocity is purely outward (see Figure
5-6a).

The GC tornado event has been thoroughly investigated over its life time through
photogrammetric analysis combined with single- and dual-Doppler radar analysis. This
long lasting tornado started at 2152 UTC and ended at 2231 UTC [47]. In the most recent
work by Wakimoto et al. [37], the three-dimensional structure of this tornado was
extracted using the GBVTD method for two different volumes; 2216:08-2216:45 UTC
(v1) and 2218:07-2218:42 UTC (v2). Three volumes of the GC tornado, including the
two that have been previously analyzed by Wakimoto et al. [37], were selected for
analysis in the current study. This provides the opportunity to examine the accuracy of

the retrieval analysis.

The flow field approximated for GC v1 is shown in Figure 5-7a. The lowest height
scanned by the radar is relatively high (97 m AGL) and therefore, reduces the accuracy of
the vertical wind retrieval process. The core region of the flow, which is about 300 m
wide, and the surrounding area are dominated by a downdraft. A very week updraft is
observed away from the core at r=350 m. The overall reconstructed flow field is in very
good agreement with the one reported by Wakimoto et al. [37]. Since the flow field is
dominated by a downdraft, it is difficult to characterize the vertical structure of the flow.
However, axial downdrafts exceeding 17 m/s very close to the centerline together with
weak updrafts that are located at the periphery of the funnel as shown by Wakimoto et al.
[37], suggest a two-celled vortex pattern. After 2 min (see Figure 5-8a), the velocity field
is still dominated by downdrafts and outflows while a local peak in the value of the
overall maximum tangential velocity is apparent at 160 m AGL. The lowest radar data
available for this volume is at 75 m AGL which means, the inflow layer is not resolved in
this case. The retrieved flow field of the GC v2 is well matched with the one presented by

Wakimoto et al. [37]. When compared to GC v1, the downdraft has weakened slightly



106

while there is no evidence of updraft at the periphery of the funnel. These observations
combined with the fact that the overall maximum tangential velocity is captured at
relatively high elevations suggest that the tornado vortex is at the transition stage. Figure
5-9a depicts the GBVTD-extracted velocity field of the third volume of the GC tornado
(2218:50 UTC). The core area shrinks by 30% when compared with GC v1 and GC v2
and the overall maximum tangential velocity shifts back towards the ground. Relatively
strong downdrafts confined to the core along with updrafts right outside of the vortex
core are consistent with the vertical structure of a two-celled vortex shown in Figure 5-1.
A persistent downdraft in all three volumes of the GC tornado confirms that the tornado
is at the dissipation stage. Further investigations of the axial profile of the tangential
velocity for GC v1-v3, presented later in this study, may provide more insights towards

the vertical field of the vortex.

Using high-definition video footage as well as observations from personnel in the region,
Wakimoto et al. [37] concluded that the centrifuging of hydrometeors, dirt and gravel has
biased the estimate of the radial velocity field. However, to estimate the effect of
centrifuging, they used a different approach proposed by Dowell et al. [51]. Following
this method, they simulated the motion of particles and estimated the positive bias to the
radial velocities. Afterwards, they subtracted the particles velocity field from the
GBVTD-derived wind field and presented the modified vertical wind field. Based on the
results provided by Wakimoto et al., centrifuging of particles has introduced a maximum
bias of 9 m/s to the radial velocities in regions very close to the ground. This positive bias
decreases as moving upwards and reaches 2 m/s at ~750 m AGL. As mentioned before,
the correction approach used in the current study is only suitable for small particles and
hydrometeors. Therefore, the velocity fields of GC volumes are only corrected for the
centrifuging effect of small raindrops with a mean diameter of 0.5 mm. Figure 5-7b,
Figure 5-8b and Figure 5-9b depict that this correction slightly decreases the divergence

in the flow.

DOWa3 intercepted a tornado near Stockton, KS on June 9, 2005 (hereafter Stc tornado) at
2157 UTC. Although this tornado was rated F1, wind speeds as high as 50 m/s were
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measured by DOWS3 in this event. The Stc tornado was briefly (from 2239:11 UTC to
2240:38 UTC) scanned by DOW3 and the GBVTD-retrieved velocity field of one
volume (v1) of data is presented in Figure 5-10. The vortex core is approximately 440 m
wide with the lowest height scanned by the radar being 43 m AGL. The flow is
dominated by inflows and consequently updrafts of approximately 21 m/s in the core
region and the single-celled structure of the vortex remains unchanged after removing the
bias in the radial velocity due to the centrifuging of small raindrops.

On May 31, 1998 an F4 rated tornado hit the city of Spencer, SD killed 6 people and left
behind $17 million worth of property damage. DOWS3 collected data from this tornado at
0100 UTC for approximately 45 min. Herein, two volumes of Sp tornado data, at 0135:20
UTC (v1) and 0140:02 UTC (v2) were investigated. The Sp tornado vortex core reached
the city at 0138:08 UTC and exited at 0139:30 UTC. In a case study, Dowell et al. [51]
investigated the effect of scatterer size and type on the Doppler radar observations of this
tornado. They reported a horizontal inflow over the tornado core, at the lowest elevations,
before it hit the city. Then after it entered the city, a significant change was observed in
the Doppler velocity signature. Dowell et al. related this abrupt change to the change in
the debris size as the tornado hit the city. Based on the mean horizontal divergence
distribution (in the core and at the low-levels) over time, they concluded that the scatterer
type has changed from small raindrops (Crmax=2 m/s) at or before 0138 UTC to plywood
sheets (Cnax=20 m/s) at 0139:18 UTC. However, 1.5 min after the tornado exited the city
Dowell et al. still noticed low-level divergence in the core. Whether this divergence is
due to the existence of smaller debris in the flow or due to an error in resolving the
surface layer (tornado was moving away from the radar at this point) is not clear. As a
result, Sp v1 was corrected for small raindrops and since the discussion on the scatterer
size and type for Sp v2 is not conclusive, Cnax=2 m/s was used to correct the bias in the

radial flow in this volume.

The vertical structure of the flow in Figure 5-11a for Sp v1 indicates two-celled vortex
characteristics with a very strong downdraft of 62 m/s close to the center at 720 m AGL.

As noted by Fiedler and Rotunno [55] such a strong downdraft is a characteristic of two-
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celled tornadoes. The overall maximum tangential velocity of 58.2 m/s is obtained at 40
m AGL and at a radius of 192 m. Radar measurements are available for this volume at 51
m AGL or higher. Figure 5-11a illustrates a local peak in the tangential velocity values at
higher elevations (~350 m AGL). As discussed by Kosiba and Wurman [32], this could
be a retrieval analysis error due to the temporal resolution of the radar. In other words,
the tornado intensification between successive scans is represented as a local peak in the
tangential velocities aloft.

The axisymmetric structure of the Sp v2 is displayed in Figure 5-12. Similar to the Sp v1,
a wide rotation is accompanied by a strong downdraft close to the centerline. The vertical
wind map is in very good agreement with Figure 5-1e which suggests a two-celled vortex
flow. Maximum tangential velocities are observed close to the surface and the updraft is
shifted away from the centerline. The overall maximum tangential velocity of 62 m/s at a
radius of 208 m is estimated for this volume. As expected, modifying the radial
component of the velocity in such a strong tornado to account for the centrifuging effect

of small raindrops has minimal influence on the flow structure.
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Figure 5-4: Vertical velocity vectors superimposed on tangential velocity contours
for Clr v1 at 2328:32 UTC with a) Cha=0 m/s and b) Cax=2 m/s.
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Figure 5-5: Vertical structure of the vortex along with the tangential velocity
contours for Hp v1 at 0159:53 UTC with a) Cnax=0 m/s and b) Crax=2 m/s.
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Figure 5-6: Vertical structure of the vortex along with the tangential velocity
contours for Hp v2 at 0203:20 UTC with a) Cnax=0 m/s and b) Crax=2 m/s.
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Figure 5-7: Vertical velocity vector maps superimposed on tangential velocity
contours for GC vl at 2216:08 UTC with a) Cax=0 m/s and b) Cpax=2 m/s.

Figure 5-8: Vertical velocity vector maps superimposed on tangential velocity
contours for GC v2 at 2218:07 UTC with a) Cyax=0 m/s and b) Cpax=2 m/s.
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Figure 5-9: Vertical velocity vector maps superimposed on tangential velocity
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The velocity profiles of the tornadoes investigated in here can be used as a benchmark for
experimental and numerical simulations of tornado-like vortices. It was shown that the
radial and, consequently, the axial velocities are very sensitive to the correction for
centrifuging effects. In addition, detailed information about scatterers’ size and type were
not available for most of the tornado events studied here. As a result, only tangential
velocity profiles are trusted and presented. The tangential velocity variation with radius is
plotted in Figure 5-13 for all volumes of data and at various heights. Velocities and radii
are normalized using the maximum tangential velocity and the core radius corresponding
to each height, respectively. Results are compared with the modified Rankine vortex
model in which the tangential velocity is estimated using Vin=rI/(r>+r’)z. where, I, is
the maximum circulation defined as /"..=27r¢ maxVianmax- 1he overall maximum tangential
velocity (Vianmax) Of €ach volume and the corresponding radius (rmax) Were used to
calculate the tangential velocity of the Rankine model. Overall, the Rankine vortex is in
good agreement with the field measurements. Discrepancies are spotted at lower heights
and at the outer core region of the vortex. As explained by Snow [56], idealized profiles
such as Rankine vortex are most applicable above the surface layer, where radial
velocities are relatively weak. The Clr v1 and Hp v1 are exceptions as the best
agreements are achieved at lower elevations. This can be explained by their laminar core
at lower elevations, which means less surface interactions. In addition, the discrepancies
between the tangential velocities of Sp v1 and Sp v2 and, the Rankine model estimation
at radial distances far from the vortex core may be due to the presence of subvortices in

the full-scale data.
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Figure 5-13: Radial profiles of the tangential velocity at different heights compared
with Modified Rankine vortex model for a) Clr v1, b) Hp v1, c) Hp, v2, d) GC v1, e)

GCv2,f) GCv3, g) Stcvl, h) Spvlandi) Sp v2.

Experimental [57] and numerical [58] simulations of tornado-like vortices have shown

that the axial profile of the tangential velocity is characterized by a local peak very close

to the surface (“nose” structure). This local maximum distinguishes tornadic flows from

straight boundary layer flows and is thought to be responsible for the severe damage to

structures. As a result, the axial profiles of the maximum tangential velocity are extracted

and presented in Figure 5-14 for all volumes of data. Except for the Clr v1, Hp v1 and
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GC v2, the maximum tangential velocity increases as moving towards the ground.
However, there is no evidence of a local maximum of tangential velocities close to the
surface. In a recent study performed by Kosiba and Wurman [19], the near surface flow
of the EF2 rated Russell, KS tornado of May 2012 was retrieved and the maximum
tangential velocities were located at the lowest heights (z<10 m AGL). Therefore, it can
be inferred that the nose (maximum) in the current data is at elevations that are not
resolved by the radar measurements, particularly for weaker tornadoes. On the other
hand, Figure 5-14 demonstrates minimal variations in the tangential velocities at the
lowest data points. Similar trend was reported by Kosiba and Wurman [19]. They
observed a gradual decrease of about 10% in the Doppler velocities from 10 m to 40 m
AGL. Therefore, one can conclude that the axial profiles of the tangential velocity
reported here correspond to the regions right above the inflow or the boundary layer of

the tornado vortex.

Although measurement data is not available for regions below the height corresponding
to the maximum tangential velocities, previous experimental and numerical investigations
of tornado-like vortices [59, 60] have shown that the axial profile of the tangential
velocity very close to the surface is similar to a boundary layer profile, i.e. peak velocities

drop rapidly towards the ground.

Clr v1, Hp vl and GC v2 are an exception to all previous discussions as the peak
tangential velocity is captured at high elevations (z>160 m AGL) for these volumes. This
is attributed to the vortex structure and dynamics. For a single-celled vortex with a
breakdown bubble aloft, the vortex core is laminar close to the surface. As the vortex
breaks down aloft, the flow develops an adverse pressure gradient at the centerline which
is a well-known characteristic of quasi-cylindrical vortices [61, 62]. along this point, the
flow becomes turbulent and maximum velocities shift away from the centerline while
surrounding the breakdown bubble [58, 63]. Capturing the overall maximum tangential
velocity for Clr v1, Hp v1 and GC v2 cases implies that the vortex is at transition, from
laminar to turbulent, which is consistent with the retrieved vertical structure of Clr v1 and
Hp v1.
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Figure 5-14: Variation of the maximum tangential velocity with height for various
volumes of radar data.

As discussed before, experimentally and numerically simulated tornado vortices are
governed by the swirl ratio. However, determining the swirl ratio of a field tornado is
very challenging as this parameter is dependent on location and in physical simulations it
was defined based on the boundaries of simulators. Calculating the swirl ratio has been
attempted by Lee and Wurman [30] and Kosiba and Wurman [32] for the Ml and the Sp
tornadoes, respectively. They estimated swirl ratios of 2 to 6 and 1 to 7 for the Ml and the
Sp tornadoes, respectively. In both studies, it is stated that this range of swirl ratios is
consistent with the multiple vortex radar signatures observed in these events. However,
Kosiba and Wurman acknowledged that due to the underrepresentation of the radial
inflow in radar measurements, the swirl ratio values might have been overestimated. The
swirl ratio in both aforementioned studies is calculated using the Vi, and Va at the
updraft radius. Alternatively, the swirl ratio can be expressed using the maximum
circulation and the volumetric flow rate (Q ) through the updraft: S=ro/",/2Q". In this
equation, I is calculated using the overall maximum tangential velocity and the
corresponding radius. Computing the swirl ratio of the field data using the circulation
may result in more accurate values as it reduces the error associated with subjectively

choosing the representative values. Herein, the swirl ratio associated with each volume
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was determined by calculating the average flow rate through the updraft and the
maximum circulation. The estimated swirl ratios and the values chosen for calculating S
are reported in Table 5-2. Since the flow was dominated by downdraft for the GC
volumes, it was not possible to estimate the updraft region and therefore, swirl ratio is not
reported for these volumes. It is seen that swirl ratio values vary between 1 and 5 for the
volumes studied here. It was expected to obtain the maximum swirl ratios for Sp v1 and
Sp v2 as they showed a two-celled vortex structure with large tangential velocities. Yet,
the maximum swirl ratios were computed for Clr v1 and Stc v1. Further assessments
showed that the last radar scan in aforementioned volumes was limited to 200 m and 320
m AGL, respectively. This results in an underestimation of the flow rate aloft and
therefore, high values of the swirl ratio.

Table 5-2: Estimated swirl ratio and its the subjectively chosen parameters for each
volume.

volume  Femax (M) Vignmax (M/S)  ro(m)  Q’(m*s) S
Clrvl 96 36.3 608 1472813 45
Hp vl 160 39 600 11267893 1.04
Hp v2 160 37.9 720 13501478 1.01
Stcvl 220 50.2 600 4091612 5.08
Spvl 192 58.2 512 8261078 2.17
Sp v2 208 62 608 8238670 2.98

To further study the relation between full-scale and simulated tornadoes, the calculated
swirl ratio values are presented in Figure 5-15 as a function of EF-Scale. Note that the

overall maximum tangential velocity of each volume (Vianmax) 1S used to identify the EF-
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Scale as a damage-based ranking is limited to the availability if damage indicators and as
can be very subjective. Taking Clr v1 and Stc v1 out of the discussion, one can infer that
the swirl ratio increases as the tornado vortex intensifies which is consistent with
laboratory observations. More full scale data and further investigations are needed in
order to confirm this trend. Overall, discrepancies between the swirl ratios calculated
using the full-scale data and the laboratory measurements are highly expected due to the
uncertainties in identifying the updraft region and in the retrieved axial velocities.
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Figure 5-15: Variation of the estimated swirl ratio with the EF-Scale for each
volume.

5.5 Conclusions

As a first attempt to create a database of full-scale tornado wind fields, nine volumes of
single-Doppler radar data were analyzed. These volumes were selected to cover a wide
range of wind speeds and vortex structures. The well-established mathematical analysis,
Ground-Based Velocity Track Display (GBVTD) was implemented to reconstruct the
axisymmetric three-dimensional velocity field of these tornado volumes. Identification of
the vortex structures in tornadoes, i.e. single-celled vortex, vortex breakdown bubble

aloft, touch-down and two-celled vortex, is of particular interest in laboratory and
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numerical simulations of tornado-like vortices. Therefore, tangential velocity contour
maps combined with the vertical velocity vectors, all retrieved by the GBVTD, were used
to determine the vortex structure. The radial velocities were modified to remove the
centrifuging effect of hydrometeors and debris. The corrections need to be performed
with special caution as they can alter the flow pattern. Among the nine volumes of data
studied herein, Hp v1 and Stc v1 showed single-celled characteristics, vortex breakdown
bubble was evident in Clr v1 and, GC v1, GC v3, Sp v1 and Sp v2 showed two-celled
vortex characteristics. Maximum velocities deduced from the full-scale data ranged
between 36.3 m/s and 62 m/s. The radial profiles of the tangential velocity were
compared with the modified Rankine vortex model and a good agreement was found
between the full-scale measurements and the analytical model, particularly at higher
altitudes. In addition, it was observed that the maximum tangential velocities increase as
approaching the surface which is very different than the atmospheric boundary layer
characteristics. For the first time, the swirl ratio of full-scale data was computed using the
flow rate through the updraft and the maximum circulation in the flow and was related to
the forensic EF-Scale. This resulted in a good agreement between the calculated swirl
ratios and the vortex intensity and size. This dataset along with the calculated swirl ratios
provide an insight into the flow field of tornadoes for a limited but good variety of vortex
structures and intensities. Following the approach developed herein, the dataset can be
extended and can be used to properly scale and simulate tornado-like vortices both

physically and numerically.
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Chapter 6

6  Reproducing tornadoes in laboratory using proper scaling

6.1 Introduction

The National Oceanic and Atmospheric Administration (NOAA) reported that in 2011
tornadoes killed 553 people in the United States with approximately $10 billion in
damage. These recent catastrophes have led researchers to investigate the characteristics
of this phenomenon in more depth.

Limited full-scale and significant numerical and experimental research has been carried
out on tornado-like vortices. While extremely useful, full-scale measurements of tornado
flows using Doppler radar are limited due to the dangerous environment and
unpredictable path of tornadoes. Macro-scale simulations have the advantage of taking
into consideration the correct physics and boundary conditions of weather events but their
spatial-temporal resolution is limited mostly for the case of local storm systems such as
tornadoes. On the other hand, micro-scale Computational Fluid Dynamics (CFD)
methods are not capable of simulating a large domain to accommodate a tornado vortex
with proper boundary conditions while resolving in detail the flow-structure interactions
problems. As for the case of non-synoptic winds, properly scaled and well conducted

laboratory simulations have the advantage of controllable conditions and repeatability.

The first step in simulating tornadoes is to satisfy the proper geometric, kinematic and
dynamic similarities between the real flow and the simulated one. Velocity, length and
time scales determined through similarity analysis will then be used to properly recreate
tornado-like vortices through physical laboratory simulations and apply their flow field to
models of buildings and structures to study tornado-related loading and damage. The
main non-dimensional parameters [1-3] encountered in Tornado Vortex Chambers
(TVC’s) are the geometric ratio between the inflow height and the updraft radius (a=
h/rp), the velocity ratio between the far-field tangential and radial velocities termed as

swirl ratio, S= (1/2a) Vian/Vrad, and the ratio between momentum and friction forces in the
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flow characterized as the radial Reynolds number (Rey). As in many laboratory
simulations of wind flows, it is generally accepted that above a certain critical value the
influence of the Reynolds number on the flow is reduced.

The flow characteristics of various tornadoes vary not only in terms of maximum wind
speed but also in terms of the overall flow structure. In laboratory the flow structure of
tornado-like vortices is governed by the swirl ratio which remains the main non-
dimensional parameter of tornado-like vortices. Real tornadoes are characterized by
Fujita Scale (F-Scale) or Enhanced Fujita Scale (EF-Scale), which are forensic
parameters related to damage and associated to wind speed ranges, while simulated ones
are mainly characterized by the swirl ratio. It is difficult to calculate the swirl ratio for
real tornadoes as this non-dimensional parameter is location dependent and in full-scale
there is no clear definition of the location of the inlet/outlet boundary conditions as in a
TVC. As aresult, to simulate tornado-like vortices either numerically or experimentally
and study the damage associated with them, it is important to search and establish a
relationship between the laboratory swirl ratio and the full-scale Fujita- or Enhanced
Fujita-Scale. This way, scaling parameters may be identified for each simulation and can

be used for modeling different types of tornadic winds.

Baker and Church [4] measured the average maximum core velocity (Vy,) and the mean
updraft velocity (Vax) for various swirl ratios in Purdue University vortex simulator which
was 1.5 m in diameter and 0.6 m in height at the convergence zone. Since the ratio
between these two velocities remained constant through a wide range of swirl ratios, they
suggested that Vin/Vax can be used as a scaling parameter. Recent full-scale investigations
by Nolan [5] showed that radial/axial velocities deducted from single-Doppler radar data
using the Ground-Based Velocity Track Display (GBVTD) method are not accurate for
tornadoes rated F2 or less. As a result, using Vin/Vax as a scaling parameter is not a

practical approach for the most occurring tornadoes.

Mishra et al. [6] determined the length scale of their simulation using the core radius of
the vortex near the ground. They calculated the core radius of a single-celled tornado-like

vortex simulated in Texas Tech University simulator using surface pressure data and
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compared the results with that of the May 1998 Manchester, SD tornado obtained through
cyclostrophic momentum balance. Mishra et al. showed that using this length scale, the
surface pressure profiles of the simulated and Manchester tornadoes are well matched and
therefore, this particular simulation can be used for studying wind loading on scaled
models. However, it is important that the radial profile of tangential velocity at various
heights also be compared and matched in order to conclude that the simulated tornado is
a valid representation of a single-celled tornado in nature. It should also be noted that
obtaining pressure data from a real tornado is rare and more challenging than capturing

velocity fields using radar.

Haan et al. [7] validated the lowa State University (ISU) simulator through quantitative
and qualitative comparisons between full-scale and simulator flow fields. They
qualitatively compared the non-dimensional contour plots of simulated tornado corner
flow structures at two different swirl ratios with that of Spencer [8] and Mulhall [9]
tornadoes and inferred that the overall structure matches well. Also, they compared the
azimuthally averaged tangential velocity profiles (hereinafter referred to as tangential
velocity profile) of their simulated tornado at different swirl ratios with that of Spencer
and Mulhall tornadoes at various heights and showed that the graphs match very well and
collapse on each other. However, it should be noted that there are at least two geometric
parameters of importance in a tornado-like vortex: the core radius at which the maximum
tangential velocity happens and the height above the surface corresponding this
maximum. By using non-dimensionalized graphs based on only the maximum tangential
velocity and core radius, the radial profiles of tangential velocity are forced to collapse on
one single graph but the height information is missing. Also, it seems that the geometric
scaling of the ISU simulator is primarily determined based on the scale of the building
model being used [7] and not on the scaling of the flow fields between real and simulated

tornadoes.

Kuai et al. [10] numerically simulated the flow field of the ISU tornado simulator using
Doppler radar data and laboratory velocity field measurements as boundary conditions.

They evaluated the performance of a CFD model in capturing near ground flow field
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characteristics of a full-scale and experimentally simulated tornado and compared the
results of specific cases of numerical simulations with the tangential velocity field of the
F4 rated tornado from Spencer, SD in 1998. In this comparison, the geometric and
velocity length scales of the simulation were selected based on the inflow radius and
maximum tangential velocity, respectively. However, there is no discussion about the

similarity of the flow structure between the simulated tornado and the radar data.

Zhang and Sarkar [11] resolved the near ground structure of a simulated tornado vortex
using Particle Image Velocimetry (PIV) and compared the tangential velocity profile of
the simulated tornado with that of an actual tornado. In this work, Zhang and Sarkar

acknowledged inherent uncertainties in the comparison approach and suggested that an
extensive field database of tornadoes of various intensities and structures can overcome

the existing problem in tornado simulations.

An attempt to determine a flow field relationship between simulated and full-scale
tornado was made in 2008 by Hangan and Kim [12]. They proposed that by determining
the overall maximum tangential velocity for a given swirl ratio and matching it with full-
scale Doppler radar data, a velocity scaling could be approximated and a relationship
between swirl ratio and Fujita-Scale may be obtained. Hangan and Kim compared radial
profiles of the tangential velocity for numerically simulated vortices with various swirl
ratios to that of the Doppler radar full-scale data from the F4 tornado, in Spencer, SD on
May 30, 1998 [8]. They have considered the scaling of both the core radius and the height
at which the maximum tangential velocity occurs. Hangan and Kim observed that the best
fit between their tangential velocities at various heights and the full-scale data was found
for a swirl ratio of approx. S=2. For the same swirl ratio (S=2), the length scales one
based on the core radius and the other one based on the height corresponding the
maximum tangential velocity overlapped. This matching could therefore be used to infer
the existence of a relationship between a fluid mechanics parameter (swirl ratio) and a
forensic tornado parameter (Fujita Scale) suggesting the possibility to scale laboratory
simulations with real tornadoes. Nevertheless, this matching was only performed for one

full-scale tornado.
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Detailed literature review performed on tornado-like vortex simulations reveals the lack
of a comprehensive and conclusive study of scaling which is mainly due to the shortage
of full-scale data. In this study, a dataset of three-dimensional axisymmetric velocity
fields of tornadoes obtained through a preliminary GBVTD analysis is presented.
Afterwards, results of the very recent experimental simulations of tornado-like flows
performed by Refan and Hangan [13] are matched with the full-scale data. Based on the
matching process, the scaling ratios of simulated tornadoes and a first relationship

between modeled and full-scale tornadoes are inferred.

6.2 Full-scale data

In recent years, advances with portable Doppler radars and development of mathematical
models, such as the Ground-Based Velocity Track Display (GBVTD) technique [14],
have enabled scientists to investigate three-dimensional velocity fields of tornadoes in
nature. Although a portable Doppler radar allows for investigators to monitor
unpredictable tornadoes from a safe distance, it introduces new limits for measurement.
Radar waves do not follow the earth’s curvature and objects on the ground can block
them. Therefore, Doppler radar cannot measure regions immediately above the ground
but are best suited for elevations of tens of meters above the ground.

Field projects such as VORTEX1 (1994-1995), ROTATE (1996-2001, 2003-2008 and
2012-2013), VORTEX2 (2009-2010) and ROTATE2012 (2012), allowed researchers to
capture single- and dual-Doppler radar data from quite a significant number of tornadoes
of various patterns and intensities. Scientists, for the first time, investigated the entire
evolution of a tornado in VORTEX1. ROTATE collected single- and dual-Doppler radar
data from more than 140 different tornadic events. To date, VORTEX2 remains the most
ambitious filed study of tornadoes with more than 100 scientists involved. ROTATE2012
is the most recent field study of tornadoes focused on the low-level winds and therefore
of great interest for the wind engineering community. The most important outcomes of
these field projects are improved severe weather warnings and the collection of

considerable full-scale data from tornadoes of various flow types and intensities.
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The GBVTD technique was developed by Lee et al. [14] to retrieve the structure of a
tropical cyclone using single-Doppler radar data and later, this method was used to
examine the three-dimensional structure of the Mulhall tornado [9].

The GBVTD analysis is performed on a ring with the circulation center located at the
center of the ring. In this method, the Doppler velocity (Vp) is expressed as a function of
tangential (Vian), radial (Vyaq), translational (Virans), axial (Vax) and terminal (v;) velocities
of the atmospheric vortex.: Vp = Virans cos(Y-6ans) coso - Vit siny cosg + Vg cosy cosp +
(Vax-w) sing. where, ¢ is the elevation angle of the radar beam, 6y, is the direction of the
mean wind flow and y and Y are mathematical angles as shown in Figure 1 of the work
by Lee et al. [14]. To simplify the problem, contributions from the terminal velocity and
the axial velocity are neglected. The tangential and radial velocities consist of
axisymmetric and asymmetric components and as a result, the Doppler velocity has a
complex waveform that can be decomposed into Fourier terms. The GBVTD method is
based on the assumption that strong axisymmetric tangential velocities dominate the flow
field. After simplifying equations and implementing the complex geometrical relationship
between an atmospheric vortex and a ground-based Doppler radar, a system of equations
relating observed Doppler velocities to the tangential and radial velocities will be solved
to construct the three-dimensional structure of a tropical cyclone. Azimuthally averaged
tangential and radial velocities can be extracted using this mathematical method after
identifying the center location of the vortex. Mathematical representation of this method

and full assumptions are explained by Lee et al. [14].

Kosiba and Wurman [15] performed GBVTD analysis on data collected from Spencer,
South Dakota, 1998 tornado using Doppler on Wheels (DOWSs) mobile radar. Their
analysis revealed a two-cell vortex structure with significant downward flow throughout

the 8-min observation period and significant inflow very close to the surface.

In 2009, DOWs intercepted a long-lasting EF2 rated tornado in LaGrange, WY and
obtained single-Doppler radar data throughout the whole lifetime of this tornado.
Wakimoto et al. [16] presented photogrammetric and radar analysis of this tornado and

showed that the damaging wind in the region few hundred meters above the ground
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extended beyond the funnel cloud. Afterwards, Wakimoto et al. [17] published GBVTD
analysis of June 5™, 2009 LaGrange, WY tornado combined with pictures of the funnel
cloud in order to identify the relationship between the three velocity components,
pressure gradients and the visual features of the tornado. They also evaluated the validity
of GBVTD assumptions using dual-Doppler radar data. Wakimoto et al. concluded that
for tornadoes with weak low-level inflow and small core radius, the retrieved
radial/vertical velocity profiles near and within the core region are not accurate. Recently,
Nolan [5] performed a detailed literature review on the use of GBVTD. This study
confirmed that radial and vertical velocities obtained through this method are biased
(especially in weak tornadoes) due to the effect of centrifuging of debris at low-levels.
Nevertheless, Doppler radar and GBVTD are the most promising means to retrieve the

3D velocity field in tornadoes to date and improvements are expected.

So far, the primary goal of full-scale measurements using Doppler radar in VORTEX1
and VORTEX2 projects has been to increase the understanding of the tornado formation
for future forecast applications. However, this same valuable Doppler radar data can also
be used to fill the current gap in the experimental/numerical investigations of tornado
flow field for wind engineering: the relationship between the simulated and field

tornadoes.

Now that full-scale Doppler radar data are increasingly available, there is a good
opportunity to create a database of real tornadoes velocity fields retrieved by GBVTD,
and employ data to determine velocity and length scale ratios of experimental and

numerical simulations.

6.3 GBVTD analysis and results

Herein, single-Doppler radar data of the Spencer, SD 1998 (F4), Stockton, KS 2005 (F1),
Clairemont, TX 2005 (F0), Happy, TX 2007 (EF0) and Goshen County (LaGrange), WY
2009 (EF2) tornadoes were investigated using the GBVTD method in order to create a

dataset of full-scale tornado velocity fields. These preliminary analyses are accompanied

by a detailed study [18] which focuses on the GBVTD analysis of these five tornado
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events with necessary corrections and examines the flow pattern for each case in more
depth.

Each tornado was studied at various instants of its life cycle. In total, nine volumes of
data were analyzed with the GBVTD method [14] to extract axisymmetric three-
dimensional structure of the parent vortex, mainly tangential velocity profiles at various
heights. The term “volume” refers to one complete radar scan of the tornado from regions
very close to the ground (~20m) to hundreds of meters aloft. The number of sweeps
(quasi-horizontal planes) in a volume varied between 4 and 14 with the finest elevation
angle of 0.3°. Doppler data were first interpolated to a Cartesian grid and then the vortex
center coordinates were identified. The vortex center can be defined using minimum
pressure, circulation or reflectivity. Herein, the circulation center was considered as the
vortex center. Wood and Brown [19] studied the Doppler velocity pattern of tropical
cyclones and suggested that for an axisymmetric flow field, the center of the tropical
cyclone is located on a circle which passes through Doppler velocity maxima and the
radar. Following this approach, the circulation centers were identified manually for every
volume and at each elevation angle of the radar. The tornado circulation center at each
elevation was then shifted to align centers vertically to simplify the analysis (see Figure
6-1).

Figure 6-2 shows the contour map of Doppler velocities for Happy, TX 2007 (EF0)
tornado at 0203:20 UTC with the approximate location of the vortex center marked with
“X”. The wind field of this tornado was reconstructed by the GBVTD technique for a
volume from 0203:20 UTC to 0204:17 UTC (volume 2). This volume consisted of 13
radar sweeps with elevation angle increments ranging from 0.3° to 2°. Figure 6-3
demonstrates vertical velocity vectors superimposed on the contour map of tangential
velocities for volume 2 in Happy, TX 2007 tornado extracted by the GBVTD method. It
is observed that the tangential velocity approaches its maximum of 37.9 m/s at regions
very close to the ground with corresponding core radius of 160 m. The strong central
downdraft aloft is weakening as reaching the ground and the overall vertical flow pattern
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suggests that the vortex break-down bubble formed aloft has just touched the ground and

the flow has become fully turbulent.

Figure 6-1. The process of identifying the tornado circulation center at each
elevation and then shifting the centers to align them vertically.

P“m“‘

Figure 6-2: Doppler velocity contours for volume 2 in Happy, TX 2007 tornado with
a) radar location indicated and b) circulation center marked.



137

1000 B tan (m/s)

[ <

800

z (m)

400 =~

200

N RO

Reference Vector
—_—

10

| LS I I
200 400 600 800 1000

Figure 6-3: Vertical velocity vectors superimposed on tangential velocity contours
for volume 2 in Happy, TX 2007 tornado.

The full-scale database created herein, consists of GBVTD-retrieved velocity profiles at
various heights above the ground for 9 volumes of Doppler-radar data. Table 6-1
summarizes the GBVTD analysis results for each volume and provides damage- and
velocity-based F/EF-Scales for each event. In this table, the radar data volumes are sorted
in an increasing overall maximum tangential velocity value order. The Storm Events
Database [20] was used to determine the F/EF ratings for each tornado based on the
damage. However, assessing the intensity level of a tornado based on damage surveys is
subjective, with various parameters, such as damage markers in the region and quality of
structures, contributing to the complexity of the process. As a result, in this work only the
velocity range associated with each category of the Enhanced Fujita Scale was used to
categorize each volume of data. For instance, Goshen County (LaGrange), WY 2009
tornado was rated EF2 based on the damage survey while, volume 1 in this event was
rated EF1 based on the maximum tangential velocity retrieved for that volume. Herein
the rating of the tornado event was done based on maximum tangential velocity and has
been kept consistent through the analysis. Radar volumes categorized as EF0-EF3, based
on the maximum tangential velocity extracted by GBVTD, are presented in an increasing

EF order in Table 6-1. The translational speed of each tornado as well as the flow
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structure of each volume is also presented in this table. Translational speed was

determined by estimating the distance that tornado center had traveled over a certain

period of time. Hereafter, the abbreviations provided in Table 6-1 are used to refer to

each volume of data. In order to identify the structure of the tornado, vertical velocity

profiles for each volume extracted by GBVTD were compared with experimental

observations of the flow field reported by Davies-Jones et al. [21].

Table 6-1: Summary of GBVTD analysis results for various volumes of radar data.

Event Intensity Abbreviation  Vinmax  Vians  INtensity Structure
(damage) (m/s) (m/s)  (velocity)
Clairemont, Vortex Break-
volume 1 N el i = SR down bubble aloft
Happy, EFO Hp v2 379 194 EFO Touch-down
volume 2
TEEI, EFO Hp v1 39 194 EF1 Single-celled
volume 1
Goshen
County, EF2 GCvl 41.6 9.49 EF1 Two-celled
volume 1
Goshen
Vortex Break-
County, EF2 GCv2 42 9.49 EF1 S [Tl el
volume 2
Goshen
County, EF2 GCv3 42.9 9.49 EF1 Two-celled
volume 3
Sl F1 Stc v1 502  10.95 EF2 Single-celled
volume 1
Spencer, F4 Sp vl 58.2 15 EF3 Two-celled
volume 1
PR F4 Spv2 62 15 EF3 Two-celled

volume 2
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6.4 Experimental simulations data

Comprehensive experimental data provided by Refan and Hangan [13] were employed
for the scaling practice. They performed experimental investigations of tornado-like
vortices using the Model WindEEE Dome (MWD) apparatus at Western University.
MWD, the 1/11 scaled model of the WindEEE Dome, was designed, constructed and
commissioned in 2010. It is a closed-loop three-dimensional “wind dome” made out of
one hexagonal testing chamber (TC on Figure 6-4) with 100 fans distributed on the
periphery, surrounded by a hexagonal return circuit (RC). Above the TC, a 3" hexagonal
ceiling chamber (CC) has another set of fans on the periphery (3x6 = 18). Each fan can be
controlled individually and the upper fans are reversible. Adjustable vanes that are
installed in front of all lower fans can be used to produce the desired swirl. The tornado-
like vortices are generated in this simulator using top fans to provide updraft and
periphery vanes at the lower chamber to control the swirl. The flow visualizations inside
the simulator have shown that this configuration results in single-celled and two-celled

tornado-like vortices.

cc i
e H
& =D g
3 RC TC RC a7
h=0.07 m‘ -

Figure 6-4: Schematic drawing of the MWD demonstrating TC, RC and CC zones.
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In order to characterize the flow field in MWD, Refan and Hangan [13] carried out PIV
measurements at eight horizontal planes over the height of the vortex. All experiments
were performed at a constant flow rate and inflow depth. The updraft radius was set to 20
cm, which corresponds to a=0.35. Refan and Hangan measured swirl ratio, mean
velocities and the tornado vortex core radius. They showed that tornado-like vortices
with swirl ratios ranging from 0.12 to 1.29 can be generated in MWD. In addition, they
captured a laminar single-celled vortex at S=0.12, a vortex breakdown bubble formation
at S=0.35, a touch-down at S=0.57 and a fully turbulent two-celled vortex at S=0.96 or
higher. Details on the MWD design and PIV experiments performed in this simulator are

presented in [13].

6.5 Similarity analysis
6.5.1  Length and velocity scale ratios

In order to properly reproduce a tornado and then model a structure in a tornado
simulator, a measureable geometric length scale (4;) should be determined. There are
various geometric lengths in a tornado simulator such as updraft radius, inflow depth,
core radius, inner chamber height as well as the core radius and the height corresponding
the maximum tangential wind speed (r. and Znax, respectively). Among these lengths,
only two are measureable in a real tornado; the core radius and the height corresponding
the maximum tangential velocity. Therefore two length scale ratios are defined as the
ratios between full-scale Doppler radar (index D) and Simulation (index S) data: rcp/rcs

and Zmax,D/Zmax,S-

As the radial Reynolds number of a real tornado is many orders of magnitude larger
compared to those of generated ones, it can be concluded that dynamic scaling
requirements are not satisfied. However, Ward [1], Davies-Jones [22], Jischke and
Parang [2] and Church et al. [3] showed that for a given geometry and for a smooth
surface, if the radial Reynolds number is large enough to ensure turbulent flow, the core
radius and the transition from a single vortex to multiple vortices are independent of the

radial Reynolds number and are strongly a function of swirl ratio. Since the dynamic
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similarity is not satisfied in tornado simulations, the velocity scale (/,) needs to be
determined independent of the radial Reynolds number condition. Tangential, axial and
radial velocity components of an actual tornado can be deducted using the GBVTD
technique. However, as previously addressed, radial and axial components calculated by
this method are questionable, especially for weaker tornadoes. As a result, the ratio
between the overall maximum tangential velocity of a real tornado and that of a simulated
one (Vianmax,0/Vianmaxs) are used here to determine the velocity length scales for each

simulated tornado.

6.5.2  Matching process

The single-Doppler radar data were analyzed using the GBVTD method and the resulting
velocity fields were then matched with that of the physical simulations at Western to
establish a relationship between simulated and real tornadoes. The matching process was
performed on experimental simulations data from MWD for swirl ratios ranging from
0.12 to 1.29.

The overall maximum tangential velocity of the simulated tornado over various heights
for a given swirl ratio, Vian max = Vian(Femax: Zmax), Was determined and then compared with
that of the full-scale measurements. This way, the velocity scaling could be
approximated. Afterwards, the core radius and the height corresponding the overall
maximum tangential velocity for the simulated vortex (r¢maxsand zmaxs, respectively) at
each swirl ratios were compared to their counterparts in the natural tornado (r¢maxp and
Zmax,D, respectively) which resulted in two length scale ratios. Since in fluid mechanics
simulations the length scale must be a single value, it is expected that the two length scale
ratios converge towards one value at a certain swirl ratio. This is a key condition that, if
satisfied, may then be used to relate swirl to Fujita Scale and therefore modeled tornado-

like vortices (experimental or numerical) to full-scale tornadoes.

Figure 6-5 shows the length scale ratios as a function of the swirl ratio for nine tornadic
events. As the swirl ratio increases, the two length scales show a clear converging

behaviour for Hp v2, GC v1, GC v3 and higher EF ranking events. However, a different
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trend is observed for Clr v1, Hp v1 and GC v2 events: the two length scales intersect at a
certain swirl ratio. The swirl ratio at which the convergence or intersection occurs is
considered to represent the swirl ratio of the real tornado. The following matching
procedure is applied: (i) if there is a range of swirl ratios (rather than a single value) over
which convergence/intersection occurs, the chosen swirl ratio is based on the vital
structure of the tornado (i.e. single-celled, two-celled tornado, etc.), (ii) if there is a range
of convergence that is consistent with the structure of the real vortex, the experimental
results are scaled up using length scales corresponding to that range of swirl ratios and
the radial profiles of the tangential velocities at various heights are compared to the ones
extracted from the full-scale data. The length scale resulted in the most accurate
estimation of the maximum tangential velocity and the corresponding core radius is then
selected to represent the geometric scaling of the simulation. This point by point
procedure has been applied to all the tornado volumes, and (iii) if the difference between
the two length scale ratios at the convergence is significant, the priority is given to the
length scale determined using r¢maxo/fcmaxs. This is due to the negligible variation of the
maximum tangential velocity with height within several tens of meters close to the
ground in real tornadoes. Also, the core radius is responsible for the wind shear

experienced by a structure that is passed by the inner region of a tornado.

6.6 Results and discussion

6.6.1  Length scale

Figure 6-5a displays that the length scales intersect for 0.12<5<0.22 for Clr v1. The full-
scale data of ClIr v1 showed a single-celled vortex with break-down bubble aloft. This
structure corresponds to a simulated vortex in MWD with 0.22<S<0.57. Therefore, it can
be inferred that S=0.22 is a better match for Clr v1. Also, the difference between the two
length scale ratios is significant at S=0.22. Based on the matching criteria, the priority
was given to the length scale determined using r¢ max p/fcmaxs and the length scale ratio of

3711 was selected for the Clr v1 event.
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Figure 6-5c suggests that the swirl ratio of Hp v1 is 0.22 which is consistent with the one-
celled structure of the full-scale vortex. The two length scales converge on swirl ratios
ranging from 0.57 to 1.29 for Hp v2 and GC v1 events (see Figure 6-5b and Figure 6-5d).
Based on the GBVTD-retrieved velocity fields, the Hp v2 is at the touch-down stage
while the GC v1 is a two-celled vortex with a clear downdraft at the centerline. As a
result, the length scales associated with S=0.57 and S=0.73 were chosen for Hp v2 and
GC vl events, respectively. However, further investigations are required to support the
swirl ratio value selected for the GC v1 as two-celled vortices have been captured in
MWD for swirl ratios higher than 0.57. Figure 6-5e demonstrates that the two scaling
ratios match well at S=0.35 for GC v2. This swirl ratio is consistent with the vertical flow
pattern of GC v2 which is estimated to be right before the penetration of the turbulent
breakdown bubble. Based on the GBVTD analysis, the GC v3 has two-celled vortex
characteristics with slightly higher velocities when compared to GC v1. The convergence
swirl ratio of 0.96 for GC v3, as seen in Figure 6-5f, is supported by the structure of the

flow.

A convergence trend in the length scale values of the Stc v1 is detected for S>0.57. The
Stc v1 is a single-celled vortex with strong and broad rotation and with the overall
maximum tangential velocity close to the surface. This pattern is consistent with a vortex
after the transition from laminar to turbulent in which the vortex core broadens and
velocities intensify. For Sp v1 and Sp v2 volumes, the two length scales almost converge
at S=1.14-1.29. These volumes have shown two-celled structures which is consistent
with the range of convergence. Therefore, the length scales for Stc v1, Sp v1 and Sp v2
will be selected (as stipulated in the matching criteria) based on the best match achieved

between the simulation and the full-scale tangential velocity profiles.
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Figure 6-5: Geometric scaling ratio as a function of swirl ratio for various volumes
of full-scale data; a) Clr v1, b) Hp v2, ¢) Hp v1, d) GC v1, e) GC v2, f) GC v3, g) Stc
vl, h) Spvlandi) Sp v2.

Figure 6-6 shows variations of the length scale with the swirl ratio for 9 volumes of radar
scan. It is observed that as the swirl ratio increases, the length scale decreases. Also for
the Clr v1, Hp v1 and GC v2 events that have swirl ratios less than 0.57, the length scale
varies significantly from one event to another. However for volumes with swirl ratios
higher than 0.57, the length scale does not greatly change. This trend can be explained by
variations of the vortex structure with the swirl ratio in MWD and in real tornadoes. This
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starts with a thin laminar core for very small swirls followed by a turbulent vortex break-
down aloft for small swirls. By further increasing the swirl ratio, the vortex break-down
bubble touches the ground, the flow becomes turbulent and maximum velocities move
towards the ground. In MWD the vortex touch-down occurs at S~0.57. Before the touch-
down, the flow is highly unstable as it consists of three distinct dynamic regions:
turbulent sub-critical region aloft followed by the break-down bubble in the middle and
the narrow super-critical core close to the ground. As a result of the instabilities
associated with the vortex break-down bubble and the transition from laminar to turbulent
flow, one can expect considerable variations in the vortex characteristics and structure for

swirl ratios less than 0.57.

Evaluation of the GBVTD-retrieved velocity fields along with the determined swirl ratios
reveals that in Clr v1, Hp v1 and GC v2 events, the tornado vortex break-down bubble
has not yet touched the ground. These events demonstrate single-celled structure with the
vortex break-down bubble aloft. The maximum tangential velocity of Clr v1, Hp v1 and
GC v2 events that is observed at higher elevations, when compared with other events,
also confirms the existence of a laminar core with break-down bubble aloft. As a result,
the length scale varies significantly, between 2600 and 6200, from one event to another.
On the other hand, the tornado vortex in the GC v1, GC v3, Stc v1, Sp v1 and Sp v2
volumes is fully turbulent with a two-celled vortex pattern in some cases and therefore,

the length scale variation is limited to 1100-2900 range.

Considering instabilities and transitions happening in the flow for swirl ratios less than
0.57 as well as the trend observed in Figure 6-6, one can divide the flow, for simulation
purposes, into two categories; before and after the touch-down. While before touch-down
there is a clear variability in the length scale, after touch-down the length scale may be
considered quasi constant. Therefore, the average length scale of 1550 can be used for
simulating mid-range EF1 to low-end EF3 rated tornadoes in MWD with fully turbulent

flow characteristics.
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Figure 6-6: Length scales of the simulation as a function of swirl ratio.

6.6.2  Velocity scale

The experimentally measured tangential velocities reported by Refan and Hangan [13]
are averaged over azimuth and time. The averaging time of the PIV measurements equals
to the number of vector maps (2000) times the duration of acquiring one vector map
(2/30Hz) which equals to approximately 132 sec. The length scale of simulating mid-
range EF1 to low-end EF3 rated tornadoes in MWD was estimated to be Aj=1/1550.
Providing that the typical velocity scale of tornado simulations, based on F2 tornado wind
speeds, is equal to A,=1/7.7 [7], the time scale of simulation is equal to 2;=0.005.
Therefore, an averaging time of 132 sec of PIV velocity measurements scales up to an
averaging time of 26,400 s (7.2 hrs) of full-scale velocity data. This scaled up averaging
time is far from reality as tornadoes usually last less than 30 min. Moreover, full-scale
velocity data are instantaneous measurements even though it takes approximately 3 sec
for a Doppler radar to scan the flow at a given beam angle. Therefore, direct comparison
of current PIV measurements with full-scale velocity data is not possible. Two factors
contribute to this issue: first, the low sampling rate of the PIV system and second, the

small length scale of simulations.
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In order to compare the PIV results with the full-scale data, it is necessary to account for
the effect of averaging time on velocity values. The Durst curve [23] serves this purpose.
This curve relates wind velocities averaged over t second to wind velocities, from the
same storm, averaged over 3600 s (one hour). The velocity ratio between one second to
3600 s averaging time determined from the Durst curve (V1/V300=1.57) can be used to
adjust instantaneous wind velocities of full-scale data to equivalent wind velocities
averaged over one hour. Note that Durst curve was developed for atmospheric boundary
layer flows and there is a need to develop a similar curve for non-synoptic winds. In the
meantime, the Durst curve provides an opportunity to compare velocity data from a 30
Hz P1V system to Doppler radar measured wind velocities as the velocity adjustment
ratio is 1 for an averaging time of one hour or higher. Future work in the WindEEE Dome
facility will benefit from larger simulation scale as well as time resolved PIV

measurements. This will alleviate the velocity scaling issues raised herein.

Following the matching criteria, the length and velocity scale ratios corresponding to the
convergence swirl ratios were determined and further implemented to scale up the
experimental simulations of tornadoes. Figure 6-7 illustrates radial profiles of the
tangential velocity as a function of height for simulated tornadoes (lines) compared with
that of the full-scale (symbols). Overall, the laboratory simulated vortex well matches the
full-scale one. This agreement is observed for the core radius and the corresponding
tangential velocity at different heights.

The poorer match for the outer vortex core region, which is observed in some cases, is
attributed to the effect of the boundary conditions. Experimental simulations use generic
conditions and are limited in domain while the full-scale events have complex boundary
conditions and are not limited in size. In addition, there are fluctuations in the tangential
velocity values in the outer core region of the vortices with S=0.73-1.29. This is the result
of the relatively large vortex core and the limited field of view in the experimental

measurements.

The swirl ratio associated with each event is also noted in Figure 6-7. The accuracy of the

length scale of the simulation and the corresponding swirl ratio for cases with a range of
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convergence was further evaluated. Results are reported here for the Hp v2 event as the
convergence was observed over a relatively wide range of swirl ratios (0.57<S<1.29) for
this volume. The radial profiles of the tangential velocity obtained from the experiments
were scaled up using the length scales associated with S=0.57-1.29. These experimental
velocity profiles are compared with the full-scale data at z=100 m and are depicted in
Figure 6-8. It is evident that the overall match between the physical simulations and the
full-scale data is deteriorating as the swirl ratio increases. Therefore, the Hp v2 event can
be reproduced in MWD with a tornado-like vortex with S=0.57. Following this approach,
the swirl ratio associated with Stc v1, Sp v1 and Sp v2 were determined as 0.73, 1.14 and

1.29, respectively.

The velocity scale variation with swirl ratio is illustrated in Figure 6-9 for different
volumes of full-scale data. It is seen that, with the exception of the two-celled vortices,
i.e. Sp v1 and Sp v2, variation of the velocity scale with the swirl ratio can be considerd
quasi-constant which has positive implications for the practical aspects of tornado

simulations.

In order to identify a relationship between the simulated and full-scale tornadoes, the
variation of the velocity-based EF-Scale with swirl ratio is presented in Figure 6-10 for
nine volumes. This figure shows that the full-scale tornado vortex intensifies as the swirl
ratio increases. Similar to the length scale trend, there is an apparent variability in the
intensity of the vortices before touch-down. As expected, after the touch-down there is a
linear relationship between the swirl ratio and the EF-Scale which validates the overall

matching process.

The relationship between the swirl ratio and the EF-Scale observed in Figure 6-10 along
with the length scale variation with the swirl ratio showed in Figure 6-6 enables
reproducing tornado-like vortices in MWD using proper scaling. It is concluded that, the
tornado-like vortices simulated in MWD with 0.12<S<0.57 are representatives of EFO to
low-end EF1 rated tornadoes in nature and the ones simulated in MWD with 0.57<S<1.29

correspond to full-scale tornadoes with mid-range EF1 to low-end EF3 intensity rating.
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Figure 6-7: Comparison between simulated (lines) and full-scale (symbols)
tangential velocity profiles at various heights for nine radar volumes after applying
the velocity and length scales; a) Clr v1: S=0.22, b) Hp v2: S=0.57, ¢) Hp v1: S=0.22,

d) GC v1: S=0.73, ) GC v2: S=0.35, f) GC v3: S=0.96, g) Stc v1: S=0.73, h) Sp v1:
S=1.14 and i) Sp v2: S=1.29.
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6.7 Conclusions

For the first time, a dataset of velocity fields of real tornadoes was analyzed to investigate

the relationship between laboratory simulations of tornado-like vortices and real
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tornadoes. This full-scale dataset consists of single-Doppler radar data of tornadoes with
intensities varied between EFO and EF3 based on the maximum tangential velocity. Data
were collected by DOWSs during VORTEX and ROTATE projects and analyzed by the
GBVTD method to reconstruct the three-dimensional axisymmetric wind field structure

of the tornadoes.

In an attempt to determine the velocity and length scale ratios of the simulations, the full-
scale data were compared with experimental results of tornado-like vortices. These
simulations were conducted in a 1/11 scaled replica of the WindEEE Dome at Western
University and the results were provided by Refan and Hangan [13]. It was observed that
for a given volume of full-scale data, the two length scales, one based on the core radius
(rc) and the other one based on the height corresponding the maximum tangential velocity
(zmax), generally converge towards one value at a certain swirl ratio. Based on this, the
geometric scaling of the experiments was determined and the swirl ratio of the real
tornado was identified. Further investigations confirmed that the swirl ratio suggested by
the convergence point also matches the flow pattern of the real tornado.

Based on the comparison of tangential velocity profiles at various heights presented here,
the tornado-like vortices simulated in MWD with swirl ratios ranging from 0.12 to 1.29
appear to be representatives of EFO to EF3 rated tornadoes in nature. In addition, it was
concluded that the average length scale of the simulation in MWD for mid-range EF1 to
low-end EF3 rated tornadoes with fully turbulent flow characteristics is 1550. This
conclusion can be extended to higher intensity tornadoes once the GBVTD analysis

results for high-end EF3 to EF5 tornadoes are available.
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Chapter 7

7 Concluding remarks

A recently designed and built three-dimensional wind testing facility, the Model
WindEEE Dome (MWD) at Western University was introduced. A comprehensive
experimental investigation was conducted in this facility to determine its capability to
simulate tornado vortices. Flow visualizations methods, surface static pressure
measurements and a PIV system were utilized to study the vortex flow field qualitatively

and quantitatively.

The flow visualization demonstrated the capability of MWD to produce tornado like
vortices exhibiting the main features of every type of vortex as a function of swirl ratio.
A laminar single-celled core at very low swirl ratios, a vortex breakdown bubble and a
drowned vortex jump at moderate swirl ratios, and a two-celled turbulent vortex at high
swirl ratios were captured in this simulator. The static pressure distribution on the floor
surface of the chamber has shown close similarity to the analytical modified Rankin
vortex model for single-celled vortex flows. Also, instantaneous pressure deficits

provided evidence to the presence of subvortices in the flow.

The two-dimensional velocity field, tangential and radial velocity components, was
measured using Planar PIV technique at eight horizontal planes above the surface, for
eight swirl ratios and at three radial Reynolds number. The velocity field has been
analyzed and it showed flow characteristics for each type of vortex as a function of swirl

ratio, confirming the flow visualization and the surface pressure investigations.

Afterwards, the three-dimensional axisymmetric wind fields for nine volumes of single-
Doppler radar data were reconstructed using the state-of-the-art GBVTD method. The
radial profiles of the tangential velocity obtained from the simulated tornado vortices
were compared with that of the full-scale to determine the scaling ratios of the

simulation. Based on the scaling analysis it was shown that a relation can be derived
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between the swirl ratio, a tornado-like vortex simulation parameter, and the Fujita Scale,

the real tornado forensic parameter.

7.1 Discussion summary and conclusions

The qualitative and quantitative study of tornado-like vortices in MWD demonstrated the
ability of this simulator in producing a wide range of tornado-like vortices. The aspect
ratio, the flow rate and the swirl ratio can be controlled independently in this simulator.
The effect of the radial Reynolds number on the core size and on the swirl ratio of the
transition was investigated and it was concluded that for Re;>6.7x10%, the flow

characteristics are nearly independent of the radial Reynolds number.

Changing the angle of vanes at the inflow resulted in producing tornado-like vortices
with swirl ratios ranging from 0.12 to 1.29. The swirl ratio effect on the simulated vortex
structure was visually assessed using helium bubbles and dry ice. The flow visualizations
confirmed a laminar single-celled vortex at S=0.12, a vortex breakdown bubble formation
at S=0.35, a touch down at S=0.57 and a fully turbulent two-celled vortex at S=0.96 or
higher. In addition, the vertical structure of the vortex well matched with that of

previously simulated vortices in Tornado Vortex Chambers (TVCs).

The surface static pressure measurements showed a minimum pressure at the central
region of the vortex. Due to the wandering of the vortex at low swirl ratios, the minimum
pressure deficit was captured at radial distances away from the geometric centre of the
simulator. As the swirl ratio increased and the flow became turbulent at S=0.57, the
vortex wandering over the surface decreased and the minimum pressures relocated to the
center of the simulator. A comparison was made between the surface pressure deficit
estimated by the modified Rankine vortex model and measured in MWD. It was noted
that the performance of this analytical model improved as the swirl ratio and the radial
distance from the center of the vortex increased. The variation of the time-dependent
maximum pressure deficit with swirl ratio was in good agreement with previous

experimental and numerical studies of tornado-like flows. The most striking observation



160

in the pressure tests, which distinguishes this flow from the straight atmospheric
boundary layer flows, was the very large values of peak surface static pressure deficits.
The largest pressure deficit value was captured at S=0.73 which is associated with the
transitions in the flow from laminar to turbulent characteristics. The instantaneous
pressure deficit fields confirmed that the flow consists of two sub-vortices for S>0.57

which is consistent with the flow visualization results.

The mean velocity field of the tornado-like vortex was measured using PIV. The radial
profiles of the normalized tangential velocities (averaged over time and azimuth) were
investigated over eight heights and for various swirl ratios. As the swirl increased, the
tangential velocity dependency on height which was first observed in the outer core
region, penetrated to the inner rotational core of the vortex. The modified Rankine vortex
model estimation of radial profiles of tangential velocities matched the experimental data
well, except for the heights close to the surface. This observation emphasizes the fact that

idealized profiles such as Rankine vortex model are not applicable in the surface layer.

The near surface radial velocity (averaged over time and azimuth) values increased as the
rotation in the flow intensified. In addition, the maximum radial velocity was located
very close to the surface. As the flow reached the centerline, the radial velocity decreased

as it turned into the axial velocity in the core region.

In the axial investigation of the flow, intensified radial velocities as well as local maxima
in the tangential velocities were detected in the near-surface flow. These local maxima,
along with the significantly large localized static pressure deficits, are unique
characteristics of tornado-like vortices that are believed to be accountable for the damage

to structures and buildings.

Nine volumes of radar data collected during five tornado events were analyzed using the
GBVTD method to determine the wind field of the full-scale tornado events as well as
the vertical structure of the vortex, i.e. one-celled, two-celled, etc. When analyzed, the

full-scale dataset consisted of wind fields with the overall maximum tangential velocities
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ranging from 36.3 m/s to 62 m/s and various vortex structures spanning from a weak
single-celled vortex to a very strong two-celled vortex. Full-scale tangential velocity
profiles were found to be less dependent on the height when compared with MWD
experimental data, particularly in the core region. On the other hand, similar to the trend
observed for the MWD experimental data, the tangential velocity profiles of the full-scale
data were most accurately estimated by the modified Rankine vortex at higher elevations.
The axial distribution of the maximum tangential velocities for each volume showed that
for vortices that were estimated to be at or before the transition from a laminar to a
turbulent flow, the peak tangential velocity was located at higher elevations. This trend
was also observed at very low swirl ratios in the experimental data obtained from PIV
measurements in MWD. For the first time, the swirl ratio of field data was related to the
forensic EF-Scale which resulted in an agreement between the estimated swirl ratios and

the vortex intensity and structure.

The experimental results of tornado-like vortices were compared with the full-scale data
to determine velocity and length scale ratios of the simulations. Two measurable
characteristic lengths in real tornadoes namely, the radius (rc) and the height (Zmax)
corresponding to the overall maximum tangential velocity were used to define two length
scales ratios. For a given volume of full-scale data, these two length scales were
calculated using experimental data at various swirl ratios and it was observed that the two
length scales mostly converge towards one value at a certain swirl ratio. The vertical
structure of the simulated vortex at the swirl ratio of convergence was compared with that
of the full-scale data which resulted in a good agreement. Therefore, it was assumed that
the convergence point provides the geometric scaling of the simulation as well as the
swirl ratio of the full-scale data. The tangential velocity profiles of the simulated tornado-
like vortex were then scaled up using the length and velocity scales determined for each
case and were compared with the full-scale measurements to further investigate the
accuracy of the proposed method in identifying the scaling ratios. This exercise resulted
in a good match between the simulated and real tornado data. Therefore, it was concluded

that tornado-like vortices simulated in MWD with swirl ratios ranging from 0.12 to 1.29
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are representative of EFO to EF3 rated tornadoes in nature. The length scale distribution
over the swirl ratios suggested two regions in the flow for simulation purposes; before
touch-down in which there is a clear variability in the length scale with swirl and after the
touch-down of the breakdown bubble in which the length scale may be considered quasi
constant. As results, an average length scale of 1550 was approximated for simulating
mid-range EF1 to low-end EF3 rated tornadoes with fully turbulent flow characteristics in
MWD.

7.2 Contributions

The original contributions from this study to the scientific knowledge are as follows

e Commissioning a new wind facility, the Model WindEEE Dome, and
characterizing the tornado-like flows in this simulator. This simulator can be used
in the future to characterize the turbulent velocity field of tornado vortices as well

as to investigate the effect of roughness and translation on the flow field.

e Detailed experimental data of tornado-like vortices for a wide range of swirl ratios
and at various heights. This extended experimental data will serve as a benchmark

for numerical simulations of tornado-like vortices.

e Detailed information on the wind field of nine volumes of full-scale tornado data.
For the first time, a large dataset of full-scale tangential velocity profiles along
with a thorough description of each vortex structure are provided. This dataset

will serve as a benchmark for laboratory simulations of tornado-like vortices.

e For the first time, the length and velocity scales of simulations were determined
and the swirl ratio of full-scale tornadoes was estimated. This provides the
opportunity to properly model different structures and buildings in tornadic winds

and measure the wind loads.
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7.3 Future recommendations

The following recommendations can be made to complement and extend the current
study

e Tornado-like vortices are complex and three-dimensional. Volumetric
measurements of the flow can provide helpful insight towards the three-
dimensional structure of the flow.

e Atime-resolved PIV measurement is highly recommended in order to first
characterize the turbulent wind field of tornado-like vortices and second, to allow
for more realistic comparison between the simulation and full-scale data.

e The effect of roughness on the velocity field as well as the wind field of a
translating tornado needs to be investigated.

e The length scale of simulations in MWD for higher intensity tornadoes needs to
be determined once experimental data for higher swirl ratios and GBVTD

analysis results for high-end EF3 to EF5 tornadoes are available.
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Appendix B: Damage Indicators and Degree of Damage
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The following tables present the Damage Indicators (DI) used to assess the severity of a

tornado and the Degree of Damage (DOD) for one- and two-family residence.

Damage Indicators for EF Scale

DI No. Damage indicator (DI)
1 Small Barns or Farm Outbuildings (SBO)
2 One- or Two-Family Residences (FR12)
3 Manufactured Home — Single Wide (MHSW)
4 Manufactured Home — Double Wide (MHDW)
5 Apartments, Condos, Townhouses [3 stories or less] (ACT)
6 Motel (M)
7 Masonry Apartment or Motel Building (MAM)
8 Small Retail Building [Fast Food Restaurants] (SRB)
9 Small Professional Building [Doctor’s Office, Branch Banks] (SPB)
10 Strip Mall (SM)
11 Large Shopping Mall (LSM)
12 Large. Isolated Retail Building [K-Mart, Wal-Mart] (LIRB)
13 Automobile Showroom (ASR)
14 Automobile Service Building (ASB)
15 Elementary School [Single Story: Interior or Exterior Hallways] (ES)
16 Junior or Senior High School (JHSH)
17 Low-Rise Building [1-4 Stories] (LRB)
18 Mid-Rise Building [5-20 Stories] (MRB)
19 High-Rise Building [More than 20 Stories] (HRB)
20 Institutional Building [Hospital. Government or University Building] (IB)
21 Metal Building System (MBS)
22 Service Station Canopy (SSC)
23 Warehouse Building [Tilt-up Walls or Heavy-Timber Construction](WHB)
24 Transmission Line Towers (TLT)
25 Free-Standing Towers (FST)
26 Free-Standing Light Poles. Luminary Poles, Flag Poles (FSP)
27 Trees: Hardwood (TH)
28 Trees: Softwood (TS)




166

DOD* | Damage description EXP LB UB

1 Threshold of visible damage 65 53 80
2 Loss of roof covering material (<20%), gutters and/or

awning; loss of vinyl or metal siding 79 63 97
3 Broken glass in doors and windows 96 79 114
4 Uplift of roof deck and loss of significant roof covering

material (>20%); collapse of chimney: garage doors

collapse inward or outward; failure of porch or carport 97 81 116
5 Entire house shifts off foundation 121 103 141
6 Large sections of roof structure removed; most walls

remain standing 122 104 142
7 Top floor exterior walls collapsed 132 113 153
8 Most interior walls of top story collapsed 148 128 173
9 Most walls collapsed in bottom floor, except small

interior rooms 152 127 178
10 Total destruction of entire building 170 142 198

e EXP: expected wind speed in mph

e LB: lower bound wind speed in mph

e ECP: higher bound wind speed in mph

Source [2]
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Appendix C: Pressure test error calculation

Table 1 presents the thermal stability and the accuracy of pressure scanners used in
experiments. The surface pressures measured in the current experiments are smaller than
35kPa. As a result, the total thermal shift for one degree F temperature change can be

calculated as

B, = /(0.252 + 0.042) = 0.253%

However, the temperature change during experiments was less than 1F. Knowing that the
accuracy of pressure scanners is S;=0.2%, the total error (Egss) in measurements

associated with the pressure sensors can be determined

Eoss = ++/(BZ + tos52) = 0.473%

Where tgs is the 95" percentile point for two-tailed Student’s distribution and is equal to 2

for current tests.

The error related to the data acquisition system can be calculated using Table 2. The
maximum voltage output for the reference pressure was 2.912V. Therefore, the error of

the pressure system is approximated as

Ey = +4/(0.473% + 0.082) = +0.48%

The error associated with the tubing system response was corrected and was estimated to
be E,=1%. Also, the repeatability error of 0.39% was calculated for measurements using

Table 3. At the end, the overall uncertainty in pressure measurements can be estimated as

Er = \/ESZ +EZ, +E? =117%



168

Table 1: Accuracy and thermal stability of pressure scanners (worst case scenarios).

Scanner | Accuracy | Thermal zero shift Thermal span
range (£ %F.S) (= %F.S /F) shift (£ %F.S /F)

<35kPa 0.2 0.25 0.04

>35kPa 0.15 0.05 0.02

Table 2: DAP 4400a resolution and accuracy specifications.

Voltage range | -5to 5 volts

Resolution 2.4mV

Accuracy +2.4mV

Table 3: multiple readings of reference pressure

Reference

pressure 2.8835 | 2.8925 | 2.8933 | 2.8883 | 2.9027 | 2.9114 | 2.9121
readings (V)
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Appendix D: PIV error calculation

The total error of PIV is the sum of errors originating from seeding particles diameter and
density, out of plane motion of the particles, velocity gradient, dynamic range, peak
locking and Adaptive Gaussian Window interpolation [3]. Graphs provided by Cowen
and Monismith [3] are used to obtain the mean and RMS errors of various sources of
error and then calculate the total error. Cowen and Monismith define the RMS error,
which is caused by random noise during imaging process, as the random uncertainty in

locating both the correlation peak and particle image.

The error due to particle size is provided in Fig. 5a in [3]. Di-Ethyl-Hexyl-Sebacate
(C26H5004) particles with an average diameter of 1 um were used as seeding particles. 1
pum diameter is equivalent to 0.00998 pixels. The smallest particle diameter in Fig. 5a is 1
pixel. Therefore, the total error due to particle diameter calculated based on 1 pixel

diameter as follows
€p=(-0.03)+0.095=0.065 pixels

To better estimate the error associated with a 0.00998 pixel diameter particle, Fig. 13 in
Prasad et al. [4] was used. This figure shows the bias and peak locking errors of a particle
with 0.00998 pixels diameter is 43% larger when compared to the error associated with a
1 pixel diameter particle. In the study of Prasad et al. [2], the center of mass cross-
correlation procedure is susceptible to peak locking. However, three-point Gaussian
estimation which has a reduced peak locking error was used for current work. As a result,

additional error in particle diameter was estimated to be 30% which means
€p=0.065%1.3=0.0845 pixels

The mean and RMS errors due to velocity gradients were estimated using Fig. 5e in [3].
The average tangential and radial velocity gradients (0Vian/0r and 0V,a4/0r, respectively)
for each experimental run were calculated. The maximum tangential velocity gradient of

49.1565 and the maximum radial velocity gradient of 20.776 s™ were obtained at $=1.29
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and S=0.96, respectively. The error corresponding to velocity gradients can be

approximated as follows
&g,vtan=(-0.005)+0.02=0.015 pixels
gg,vrad=(-0.002)+0.015=0.013 pixels

Fig. 5f in [3] was used to calculate the error associated with Adaptive Gaussian Window
(AGW) interpolation. This figure shows AGW averaging error as a function of dynamic
range. For 8-bit CCD cameras, the dynamic range varies between 100 and 150 counts.

Therefore, the AGW averaging error is approximated to be
eacw=0.08 pixels

The error related to the out of plane motion of particles can be estimated using the in
plane largest particle displacement. The PIV measurements were performed on horizontal
planes and therefore, the out of plane particle velocity is expected to be smaller than the
maximum in plane velocities. The maximum instantaneous velocity of 9.93 m/s or 9.91
pixels was captured at a horizontal plane 4 cm above the surface and at S=1.29. Since the
laser sheet thickness was approximately 2 mm (equivalent to 19.96 pixels), the out of

plane motion error is negligible in this work.

The total error for each velocity component is calculated by adding the previously

calculated errors:
€T vian=0.179 pixels
€T, Vrad:0.177 pixels

Therefore, the total error of measurement for the tangential velocity measurement is 0.18

m/s or 1.8% and for the radial velocity is 0.162 m/s or 7.2%.
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Appendix E: The Ground-Based Velocity Track Display (GBVTD) Geometry and
Symbols

The following figure shows the geometrical relationship between an atmospheric vortex

and a ground-based Doppler radar. See Lee et al. [5] for the definition of each symbol.
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Source [5]
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