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Abstract
The next generation sequencing technology, RNA-sequencing (RNA-seq), has an increas-

ing popularity over traditional microarrays in transcriptome analyses. Statistical methods used
for gene expression analyses with these two technologies are different because the array-based
technology measures intensities using continuous distributions, whereas RNA-seq provides
absolute quantification of gene expression using counts of reads. There is a need for reliable
statistical methods to exploit the information from the rapidly evolving sequencing technolo-
gies and limited work has been done on expression analysis of time-course RNA-seq data.

Functional clustering is an important method for examining gene expression patterns and
thus discovering co-expressed genes to better understand the biological systems. Clustering-
based approaches to analyze repeated digital gene expression measures are in demand. In this
dissertation, we propose a model-based clustering method for identifying gene expression pat-
terns in time-course RNA-seq data. Our approach employs a longitudinal negative binomial
mixture model to postulate the over-dispersed time-course gene count data. The effectiveness
of the proposed clustering method is assessed using simulated data and is illustrated by real
data from time-course genomic experiments.

Due to the complexity and size of genomic data, the choice of good starting values is an
important issue to the proposed clustering algorithm. There is a need for a reliable initialization
strategy for cluster-wise regression specifically for time-course discrete count data. We modify
existing common initialization procedures to suit our model-based clustering algorithm and the
procedures are evaluated through a simulation study on artificial datasets and are applied to real
genomic examples to identify the optimal initialization method.

Another common issue in gene expression analysis is the presence of missing values in
the datasets. Various treatments to missing values in genomic datasets have been developed
but limited work has been done on RNA-seq data. In the current work, we examine the per-
formance of various imputation methods and their impact on the clustering of time-course
RNA-seq data. We develop a cluster-based imputation method which is specifically suitable
for dealing with missing values in RNA-seq datasets. Simulation studies are provided to assess
the performance of the proposed imputation approach.

Keywords: RNA-seq data, time-course, cluster analysis, missing values
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Chapter 1

Introduction and Background

1.1 Motivation

In order to have a better understanding of complex conditions such as heart disease and can-

cers, there is a need for advancements in identifying genes related to common chronic diseases.

This can be achieved by furthering our knowledge of gene functions through statistical models,

such as performing statistical analysis of gene expression profiles. Since the mid-1990s, DNA

microarrays have been the technology of choice for studying gene expression levels. However,

these methods have several limitations which restrict their uses in genome research.

Recently, next-generation sequencing technologies have increased sequencing capacity at

a fast rate such that ultra-high-throughput sequencing is emerging as the preferred approach

over hybridization-based microarrays for characterizing and quantifying entire genomes. As

the cost of sequencing continues to fall, the more powerful sequencing data is expected to re-

place microarrays for many applications. However, there is a need for reliable and accurate

statistical analysis methods to exploit the information carried by the rapidly evolving sequenc-

ing technologies.

1



Chapter 1. Introduction and Background 2

1.2 Background knowledge

1.2.1 Gene expression analysis

The production of proteins in a biological system is controlled by genes through transcription

and translation. This production process is referred to the central dogma of molecular biology

and it is illustrated in Figure 1.1. Transcription refers to the process of messenger ribonucleic

acid (mRNA) being copied and edited from the deoxyribonucleic acid (DNA) coding of the

gene and translation represents the assembly of amino acids from mRNA to form the protein

(Parmigiani et al, 2003). Cellular activity is controlled by the amount of mRNA being tran-

scribed or expressed by individual genes, and gene expression can be controlled at different

steps (see Figure 1.2). Gene regulation is necessary because cells can prevent resources be-

ing wasted by switching off genes that are not needed, and gene activity is controlled first and

foremost at the transcription stage. Since the main site of control for most cells is the reg-

ulation of transcription, exploring the RNA component of cells, known as the transcriptome,

can provide great insight into the biological system as a whole. Some of the techniques avail-

able for measuring gene expression levels include serial analysis of gene expression (SAGE),

complementary DNA (cDNA) subtraction, differential display, cDNA-sequencing, multiplex

quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarrays. The

most popular methods used in gene expression investigations are microarrays and cDNA li-

brary sequencing.

1.2.2 Microarrays

Gene expression microarray technology enables high-throughput profiling by simultaneously

monitoring the expression levels of thousands of genes in a single experiment through the

hybridization of RNA from tissues or cells onto high-density arrays of thousands of probes.

Each probe on the array chip contains many copies of the same sequence, which is a variant
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Figure 1.1: The central dogma: Transcription of DNA to RNA to protein

This dogma forms the backbone of molecular biology and is represented by four major stages. (1) The DNA
replicates its information in a process that involves many enzymes: replication. (2) The DNA codes for the
production of messenger RNA (mRNA) during transcription. (3) In eucaryotic cells, the mRNA is processed
(essentially by splicing) and migrates from the nucleus to the cytoplasm. (4) Messenger RNA carries coded
information to ribosomes. The ribosomes “read” this information and use it for protein synthesis. This process is
called translation. Proteins do not code for the production of protein, RNA or DNA. They are involved in almost
all biological activities, structural or enzymatic. (Public domain image from Access Excellence @ the National
Health Museum, http://www.accessexcellence.org/RC/VL/GG/images/central.gif)

of a specific DNA, RNA or cDNA. The target sequences labeled with fluorescence tags are

hybridized to the microarray chip and the hybridization between the probes and the target

transcripts in the sample are detected by fluorescence shown in each probe or other imaging

method. The luminescent intensity of each probe indicates the hybridization intensity, which

gives the relative quantity of the transcripts that are represented and indicates gene expression

levels (Allison et al., 2006; Matukumalli and Schroeder, 2009). Figure 1.3 illustrates the

workflow of a microarray experiment for two conditions of interest.
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Figure 1.2: Control of gene expression

Eukaryotic gene expression can be controlled at several different steps. Examples of regulation at each
of the steps are known, although for most genes the main site of control is step 1- transcription of a
DNA sequence into RNA. (Public domain image from Access Excellence @ the National Health Museum,
http://www.accessexcellence.org/RC/VL/GG/ecb/ecb images/08 03 gene expression.jpg)

1.2.3 Gene expression by sequencing

Another widely used method for exploring transcriptomes is by the advanced DNA-sequencing

technology. Microarray has been the technology of choice for gene expression investigations

since the mid-1990s, but the Sanger sequencing biochemistry (Sanger et al., 1977) quickly set

the stage for sequencing to become an attractive alternative technology for biological research.

In the early to mid-1990s, the DNA molecules being sequenced were viral, organelle or bac-

terial genomes. The most major step in the sequencing of genome of higher organisms began in

1990 with the Human Genome Project (HGP), which was an international scientific research

project between sequencing centers in the United States, Europe and Japan. In competition

with the publicly funded project, the privately owned Celera Genomics began to sequence the

human genome using a sequencing method called the whole genome random shotgun method.

The sequencing process by HGP and Celera both benefited from each other, since the Celera

assembly incorporated the HGP DNA sequence data and HGP adopted Celera’s paired-end se-

quencing method (details on methods and processes used during both projects are summarized

in Chial (2008)). The two projects were completed in 2000, and the draft human genome se-



Chapter 1. Introduction and Background 5

Figure 1.3: Microarray experiment workflow

(Public domain image from Genomic Research Laboratory, Geneva, http://www.genomic.ch/pict/workflow.png)

quences from both the publicly funded project and Celera were published in 2001 (Lander et

al., 2001; Venter et al., 2001).

With the success of HGP, very large-scale sequencing of genome is now the approach for

analyzing many problems concerning biology, disease and the environment. As an advance-

ment from the ’first generation’ Sanger method, next generation sequencing (NGS) methods

were developed to produce an enormous amount of data rapidly and cheaply. These NGS meth-

ods, including systems from 454 Life Sciences (Roche) (Margulies et al., 2005), Illumina GA

(formerly Solexa) (Bennett et al. 2005), and Applied Biosystems’ SOLiD

(www.appliedbiosystems.com), can generate billions of bases in a single run, allowing thou-

sands of megabases of DNA to be sequenced in a matter of days. The various NGS platforms

differ in sequencing biochemistry but the processing pipeline is generally the same and they

are based on parallelizing the sequencing process (Hutchison, 2007; Pettersson et al., 2009;

Shendure and Ji, 2008). These new methods have shorter read lengths and slower sequence
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extraction from each feature as compared to the Sanger method, but the parallelized nature of

the process provides much higher total throughput with lower cost by generating thousands of

bases per second. Also, by over sampling the single fragments during sequencing, these novel

methods may offer greater coverage and increased total accuracy when attempting to build the

original sequence (Pettersson et al., 2009).

The development of ultra-high-throughput sequencing technologies with decreased cost in

recent years allow for numerous applications in biological research (Shendure and Ji, 2008).

Gene expression analysis with whole-transcriptome sequencing (RNA-Seq) can be performed

to determine quantitative differences between samples and for annotation of splice junctions

and transcript boundaries. Other applications of sequencing technologies include detecting the

presence of an event such as the binding of a transcription factor, full-genome resequencing

for discovery of mutations or polymorphisms, mapping of copy number variation, analysis of

DNA methylation and genome-wide mapping of DNA-protein interactions (ChIP-Seq analy-

ses).

1.2.4 RNA-seq

In RNA-seq experiments, a sample of purified RNA is first sheared and converted into cDNA,

then sequenced on a high-throughput platform such as Illumina, SOLiD or Roche454. The

platforms differ in their biochemistry and processing steps, but they all generate millions of

short reads either taken from one end or from both ends of each cDNA fragment as results. An

overview of a general RNA-seq experiment is described in Figure 1.4a, and the data analysis

process illustrated in Figure 1.4b is general for gene expression analysis or discovery of novel

gene and alternative splicing.

The raw data resulted from a RNA-seq experiment consists of a list of short sequences,
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and the steps for detecting differences in gene expression levels between samples in RNA-seq

would then follow the processing pipeline outlined in Oshlack et al. (2010) and illustrated in

Figure 1.5. To measure gene expression (or transcript abundance), the sequencing reads ob-

tained are aligned to a known reference genome sequence, and the proportion of reads match-

ing a given transcript is used as quantification of its expression level and followed by statistical

testing of difference in quantification values between samples (Oshlack et al, 2010, Bloom et

al, 2009).

Figure 1.4: Overview of RNA-seq experiment and data analysis process (Wang et al., 2010)

The first step in a typical RNA-seq pipeline for differential expression (DE) analysis is

to map the short reads to the reference genome or transcriptome. This step aims to match

the short reads to the reference sequence, taking into consideration the sequencing errors and

structural variations. Ideally, there would be a unique location where a short read is identical

to the reference. However, in practice, the reference is often not a perfect representation of the

biological source of RNA being sequenced since it would have sample-specific attributes such
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Figure 1.5: Overview of RNA-seq analysis pipeline for detecting differential expression (Oshlack et al.,
2010)

as single-nucleotide polymorphisms (SNPs, variations occurring in individual nucleotides) and

insertions or deletions (indels). Also, the short reads can sometimes be aligned to multiple

locations on the reference and the presence of sequencing errors also needs to be accounted for

(Oshlack et al., 2010).

Depending on the aim of the experiment, the mapped reads should be aggregated over some

biologically meaningful units so the next step is to summarize the mapped reads for each sam-

ple into gene-, exon- or transcript-level summaries. The most common and simplest approach

is to count the number of reads overlapping the exons in a gene (Marioni et al., 2008; Mor-

tazavi et al., 2008), but this would exclude the proportion of reads mapped to genomic regions
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outside the annotated exons (Oshlack et al., 2010). There are other alternative approaches of

summarization such as including reads along the whole gene length to incorporate reads from

introns or including only reads that map to coding sequences (Trapnell et al., 2009). With these

various options of summarization methods, the count for each gene may change substantially

but little research has been done to determine the optimal method for DE analysis.

The follow step involves normalizing the summarized data, which has been shown to be

crucial in DE analysis with RNA-seq data (Anders and Huber, 2010; Bullard et al., 2010;

Robinson and Oshlack, 2010). Different normalization methods can be used in order for accu-

rate within- and between-sample comparisons of expression levels. To quantify the expression

levels of genes within the sample, a widely used approach is to use RPKM (reads per kilobase

of exon model per million mapped reads). It is known that longer transcripts are associated

with higher read counts at the same expression level, so normalization using RPKM would

take into account this gene length effect by dividing the summarized counts by the length of

the gene (Marioni et al., 2008; Mortazavi et al., 2008).

When testing for DE in genes between samples, there is no need to worry about technical

biases such as gene length and nucleotide composition as they will mainly be cancelled out

since the underlying sequence used for summarization is the same between samples (Oshlack

et al., 2010). A common method of between-sample normalization is to adjust by the total

number of reads in the library (Marioni et al., 2008; Robinson and Smyth, 2007), which ac-

counts for the fact that longer samples being sequenced would associate with more reads. On

the other hand, there are other biases that need to be taken into account, such as the composi-

tion effects (Bullard et al., 2010), or the issue that DE of genes with low expression levels are

more difficult to detect by sequencing than by arrays (Robinson et al., 2010). Some methods

that have been proposed to deal with these concerns include using scaling factors within the

statistical models that test for DE (Anders and Huber, 2010; Bullard et al., 2010; Robinson and
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Oshlack, 2010), performing quantile normalization or employing a method which usess match-

ing power law distributions (Balwierz et al., 2009). However, the latter two methods may not

be appropriate for testing DE since these non-linear transformations remove the count nature

of the data and that quantile normalization cannot improve DE detection to the same extent as

an appropriate scaling factor (Bullard et al., 2010).

The last step of a DE analysis often involves performing statistical testing between sam-

ples of interest using the table of summarized count data for each library after normalization.

In general, the Poisson distribution may be used to model the RNA-seq count data, but the

Poisson assumption does not account for biological variability in the data (Nagalakshmi et al.,

2008; Robinson and Smyth, 2007). Ignoring this issue on datasets with biological replicates

will result in false positive rates due to underestimation of sampling error (Anders and Huber,

2010). The negative binomial distribution, which requires an additional dispersion parameter

to be estimated, is often used to deal with the biological variability in the data. Variations of

negative-binomial-based DE analysis of count data have been proposed (Anders and Huber,

2010; Hardcastle and Kelly, 2010; Robinson and Smyth, 2008), along with models which ex-

tend the Poisson model by including over-dispersion (Srivastava and Chen, 2010). It is worth

noting that these current strategies target data from simple experimental designs. For analysis

of more complex designs such as paired samples or time-course experiments, further research

is required to develop such methods in the context of RNA-seq data.

1.2.5 Microarrays vs. RNA-seq

Microarrays and sequence-based methods are both often used in gene expression studies, with

an increasing popularity of the use of RNA-seq over microarrays in transcriptome analyses.

Statistical methods used for DE analysis with these two technologies are different because the

array-based technology measures intensities using continuous distributions, whereas RNA-seq
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gives discrete measurement of reads for each gene. Although the underlying methods for mea-

suring expression are different, studies have demonstrated that the estimated expression levels

have good agreement between the two technologies with correlations ranging from 0.62-0.75

and little variation within methods (Fu et al., 2009; Marioni et al., 2008; Mortazavi et al., 2008).

Transcriptome studies are switching to rely on sequencing-based methods rather than mi-

croarrays since RNA-seq has higher sensitivity and dynamic range, with lower technical vari-

ation and thus higher precision than microarrays (Bradford et al., 2010; ’t Hoen et al., 2008;

Oshlack et al., 2010). In comparison to analysis of array data at the same false discovery rate,

more differentially expressed genes could be identified by using sequenced data (Marioni et

al., 2008). Sequencing-based methods have another advantage of quantifying expression levels

in digital, rather than analog, measurements, as the absolute read counts they provide would

allow for highly reproducible comparison of transcripts among and within samples or technical

replicates (Matukumalli and Schroeder, 2009; Mortazavi et al., 2008).

Microarrays rely on nuclei-acid hybridization and this leads to several limitations, such as

cross-hybridization artifacts, dye-based detection issues and other design constraints (Matuku-

malli and Schroeder, 2009). The probe design of a microarray gene expression assay requires

all gene sequences to be known, but the bacterial cloning of the cDNA input for many non-

model organisms may not be available for successive designing of the probe (Oshlack et al.,

2010). Cross-hybridization of the microarray probes may differ considerably in their hybridiza-

tion properties, thus affects expression measures in a non-uniform way, and hybridization

results from a single sample may not be generalizable to expression of different transcripts

(Marioni et al., 2008; Oshlack et al., 2010). The binding affinity constraint also makes it dif-

ficult to design reliable probes targeted at specific sequences, causing part of the genome to

be inaccessible (Bradford et al., 2010). Hybridization processes are hard to standardize thus

interlaboratory comparability is low compared to sequenced data (’t Hoen et al., 2008). Also,
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hybridization techniques rely on specific signal-to-noise ratio threshold of the array fluores-

cence to be established in order to detect rare transcripts, and background hybridization levels

especially limit the precision of expression measurements for transcripts which are in low abun-

dance (Marioni et al., 2008; Matukumalli and Schroeder, 2009; Mortazavi et al., 2008).

In regards to the detection of previously unmapped genes and RNA splice events, dense

whole-genome tiling microarrays can be used but it is not an attractive method due to the

requirement of large amounts of input RNA and other limitations that affect direct splice de-

tection (Mortazavi et al., 2008). On the other hand, sequencing technology is superior over

microarrays due to its ability to provide details on novel transcribed regions, alternative splic-

ing and editing of RNA, and allele-specific expression. Microarray probes are only designed to

cover small portion of a gene so it is not possible to detect novel transcribed regions, whereas

RNA-seq does not rely on pre-determined probes and can be performed on any species lack-

ing both the genome sequence and gene content, allowing it to be used for detecting novel

transcription at previously uncharacterized loci (Bradford et al. 2010; Marioni et al., 2008;

Matukumalli and Schroeder, 2009; Mortazavi et al., 2008). Sequencing-based methods can not

only explore novel gene content, they can also characterize splicing events by capturing reads

that span exon-exon junctions, and examine splice variants and rare transcripts (Bradford et al.,

2010; Fu et al., 2009; Marioni et al., 2008; Matukumalli and Schroeder, 2009).

However, RNA-seq is not without its limitations and biases, and the main drawback is the

presence of gene-length bias. For sequencing-based methods, sequence reads density varies

along the length of a transcript and so they have higher statistical power to detect differential

expressions for longer transcripts than for shorter transcripts (Marioni et al., 2008; Mortazavi et

al., 2008). This association between DE and gene length is not present in microarray data and

need to be adjusted for in the RNA-seq analysis. Various sequencing protocols and sequencing

errors can introduce other different biases into the resulting reads, such as having a sequence in
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its mutated form matching to another existing sequence in the genome, leading to false-positive

results in RNA-seq (Mortazavi et al., 2008; Oshlack et al., 2010). Other weaknesses of RNA-

seq include ambiguous mapping for paralogous sequences and GC content bias (Bloom et al.,

2009; Bullard et al., 2010; Mortazavi et al., 2008). Paralogous genes (diverged genes after

a duplication event) often occur in large genomes and the process of mapping reads need to

take into account of the multiple matching sites in the genome. The sensitivity and accuracy

of sequencing-based methods rely on having significant read coverage over the genome with

enough detail for low abundance transcript, but less information is available for genes at a low

expression level thus the methods are often biased (Bloom et al., 2009; Bradford et al., 2010;

Mortazavi et al., 2008).

Technical constraints, cost, throughput and ease of data analyses are all aspects of genome

analyses which need to be well-balanced. For different transcript-profiling platforms, their sen-

sitivity, accuracy and coverage all need to be taken into consideration when trying to select the

optimal technology for the problem of interest. A major concern of RNA-seq has been the

costs of the experiments. However, the expenses of sequencing methods will continue to de-

crease as technology improves, with increasing number of reads being generated from a single

sequencing run and allowing for multiple samples to be processed simultaneously. RNA-seq

will continue to gain strength as a transcriptome profiling tool, for it is a cost-effective approach

which brings qualitative and quantitative improvements to gene expression analyses.

1.3 Example datasets

1.3.1 Fibroblast data

Dudley et al. (2002) studied the progressive development of human vertebrate limb through

measuring the gene expression of the response of fibroblasts to fetal bovine serum. Microar-
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ray experiments have been conducted and the data were analyzed to investigate growth control

and cell cycle progression throughout the limb development. The fibroblast responses were

measured over time after serum stimulation by using cDNA microarray to obtain gene expres-

sion levels. The sample consisted of 8,613 distinct human genes and 14 sampling time points

throughout 0 to 24 hours. After some data preprocessing, the final data analyzed consisted

of 6,153 genes with six selected sampling time points and data transformation was performed

to obtain discrete measures of the relative gene expression levels. Given the dataset from this

experiment, cluster analysis can be used to identify the underlying grouping of the gene expres-

sion and further describe the effects of fetal bovine serum stimulation on the human vertebrate

limb development.

1.3.2 Fruit flies data

The Lawrence Berkeley National Laboratory under the U.S. Department of Energy consists of

many different research departments in various divisions. The Genome Dynamics department

in the life sciences division uses a variety of technologies to examine the structure and function

of genes from numerous organisms. The Drosophila Transcriptome project (Graveley et al.,

2011) performed RNA-seq analysis in hope to obtain a comprehensive characterization of the

Drosophila melanogaster (fruit fly) transcriptome. In order to examine developmental stages

spanning the life cycle of fruit flies, RNA-seq analysis was performed on poly(A)+ RNA from

male and female adult fruit flies. Both single- and paired-end sequencing were used on the Illu-

mina GAII platform and Illumina processing pipeline, then the sequencing reads were aligned

to the genome sequence using either Tophat (Trapnell et al., 2009) or Bowtie (Langmead et al.,

2009). The sample consisted of 542 genes and each of the 12 sampling time point corresponds

to two hours. The SAMtools software package (Li et al., 2009) was used to find coverage for

each nucleotide position on the genome and then extracted coverage information for the rele-

vant genes based on some gene set information. To account for the different gene lengths (to
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avoid gene-length bias), RPKM (reads per kilobase of exon model per million mapped reads)

values were calculated and used as the gene expression measure for all genes. A RPKM value

for one gene was calculated as the number of mapped reads to the gene divided by the length of

transcript in kilobase (transcript length divided by 1000), then divided by the total number of

of reads in million. Functional clustering of the dataset with the RPKM values for these genes

can be used to identify gene expression patterns and lead to a better understanding of the life

cycle of fruit flies.

1.4 Existing methodology for gene expression analysis of RNA-

seq data

Gene expression analysis of RNA-seq data often focus on comparing read counts between

different biological conditions or genetic variants. The key point in testing for differential ex-

pression is to examine whether the observed difference in read count is significant in a given

gene. A significant difference is noted if it is greater than what would be expected if it is only

due to natural random variation (Anders and Huber, 2010).

The read counts would follow a multinomial distribution if they resulted from reads inde-

pendently sampled from a population with fixed fractions of genes, thus they can be readily

approximated by Poisson distributions. Several researchers have tested for differential expres-

sion using Poisson distributions (Bullard et al., 2010; Marioni et al., 2008; Wang et al., 2010).

The R package DEGseq (Wang et al., 2010) was developed based on the Poisson model, with

Fisher’s exact test and likelihood ratio test incorporated into the software. The model assumes

that the log-ratios of the different biological samples data have a normal distribution, con-

ditional on the log geometric mean of the data. The software also includes MA-plot-based

methods, where MA-plots are statistical tools which are widely used for detecting and visual-
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izing intensity-dependent ratio of microarray data. The proposed MA-plot-based methods can

be used to identify expression differences when applied to analyze read counts and technical

replicates in the data.

However, it has been noted that an over-dispersed model may be more suitable for model-

ing such gene count data. Nagalakshmi et al. (2008) and Robinson and Smyth (2007) pointed

out that the Poisson assumption of equivalent mean and variance ignores the extra variation

arises from the differences in replicate samples. Although it has been shown that RNA-seq ex-

periments have low technical background noise (Marioni et al., 2008), the difference between

biological replicates exceeds the noise level much more and thus need to be taken into account

by the statistical model (Nagalakshmi et al., 2008). When analyzing data with over-dispersion

from replicated samples, the tight assumption of equal mean and variance from the Poisson

model would result in an underestimation of variations, thus leading to uncontrolled probabil-

ity of false discoveries (Type I error).

Srivastava and Chen (2010) focus on the number of sequence reads starting from each po-

sition of a gene (position-level read counts) and showed that a Poisson model cannot properly

explain the non-uniform distribution of these read counts across the same gene. Their approach

involves using a two-parameter generalized Poisson model, with one parameter to represent the

transcript amount for a gene and another parameter to reflect bias arising from sample prepa-

ration and sequencing process. It was noted that the bias parameter is dependent on biological

samples but unrelated to library preparations, and the model reduces to a Poisson model when

this bias parameter is zero. Normalization of the data was done using a scaling factor which

is the ratio of total amount of RNAs between the two samples, and a likelihood ratio test was

developed to identify differentially expressed genes.

The Bioconductor software package edgeR (Robinson et al., 2010) has been developed to
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examine replicated gene count data using an over-dispersed Poisson model. edgeR performs

tests for differential expression for pairwise comparisons and may be applied to count data

from different sources other than RNA-seq experiments. With the aim to increase the power

to detect differential expression and decrease false discoveries, the statistical model borrows

information between probes and uses an empirical Bayes procedure to moderate the degree of

over-dispersion across genes (Robinson and Smyth, 2007). The negative binomial parameter-

ization, which essentially corresponds to an over-dispersed Poisson model, is able to separate

biological from technical variation. An exact test method has been derived to accommodate

over-dispersed data and is used in the software package to assess differential expression in each

gene (Robinson and Smyth, 2008).

Anders and Huber (2010) extended the over-dispersed model used in edgeR by modifying

the relationship between the mean and variance and developed the Bioconductor package DE-

Seq. Following the notion that data from different genes have similar variability patterns as

described by Robinson and Smyth (2007), the model used in DESeq also employs the idea of

borrowing information, such as distributional parameters, across genes. For edgeR, the model

assumes the mean and variance are related by a single proportionality constant which is the

same throughout the data, but the variance assumption in the model used by DESeq incorpo-

rates both the raw variance and a noise term. This allows DESeq to be more flexible when

encountered with changes in raw squared coefficient of variation (the ratio of the variance to

the mean squared) over the large dynamic range in RNA-seq.

The exact test proposed by Robinson and Smyth (2007, 2008) has also been extended by Di

et al. (2011) to a test that does not require the constant variation assumption across all genes.

Di et al. (2011) noted that the NBP parameterization of the negative binomial distribution al-

lows for a non-constant dispersion parameter within the modelling process, thus accounting for

the count variability between biological replicates in RNA-seq experiments. This NBP-based
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statistical test has been implemented into the R package NBPSeq for assessing differential gene

expression using RNA-seq data.

The statistical approach used by the R package sSeq (Yu et al., 2013) is another method

which makes use of the negative binomial distribution for differential expression analysis. The

proposed method accounts for over-dispersion in RNA-seq data by incorporating aspects from

the different existing methods (edgeR, DESeq) into a simpler model with fewer assumptions.

It allows for the differentially expressed genes to have different variances across conditions

and estimates dispersions by a shrinkage approach. The advantages of the shrinkage estima-

tion method is that no extra modelling assumptions are required for the differential expression

test and it performs well in sensitivity and specificity when sample size is small. Wu et al.

(2013) also noted that the assumption of constant dispersion may not be true across all genes,

and proposed an empirical Bayes method to shrink the dispersion parameter to better estimate

gene-specific dispersion and thus improving the detection of differential genes.

To address the over-dispersion in RNA-seq data, the package BBSeq (Zhou et al., 2011) has

been developed for comparing expression levels across different samples using a beta-binomial

generalized linear model, which is an extension of a mean-variance modeling approach. For

this approach, the observed RNA-seq counts are assumed to be Bernoulli random variables

with intrinsic probabilities that are allowed to vary according to a beta distribution. The beta-

binomial model is expected to fit similarly as a negative binomial model when library size is

large, and it would provide direct interpretation of over-dispersion in the data by describing the

unexplained variation in the sequence read probabilities. In this model framework, the depen-

dence of expression on experimental factors or other covariates can be taken into account by

using a logistic regression with generic design matrices for flexibility. Length bias in RNA-seq

data is assumed to be a constant feature in model since BBseq focuses on comparing expres-

sion levels within genes, across experimental conditions.
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Since RNA-seq provides quantification of gene expression in read counts, the Poisson dis-

tribution and negative binomial models have been used to model the discrete count data and the

over-dispersion observed in RNA-seq datasets. However, Esnaola et al. (2013) noted that the

negative binomial model may not be adequate when the data consists of the zero-inflation or

heavy-tail properties and would lead to erroneous identification of differential genes. To over-

come this problem, an analysis approach has been proposed based on the Poisson-Tweedie fam-

ily of distributions, a more flexible family of count data distributions. The statistical tests based

on the Poisson-Tweedie family have been included in the Bioconductor package tweeDEseq as

another analysis method for researchers.

Most of the approaches described above have been limited to pairwise comparisons. Re-

cently, a DE analysis pipeline has been implemented as an addition to the Bioconductor edgeR

to allow for analyzing RNA-seq data from complex experiments with blocking variables and

multiple-treatment comparisons. McCarthy et al. (2012) developed a modelling framework

with generalized linear models which would account for the over-dispersion in read counts

from multifactor experiments and the algorithm employed an empirical Bayes approach for

allowing gene-specific variation to be modelled. Following the idea of sharing information

among genes, the statistical method acknowledges gene-specific variation even in situations

with only a small number of biological replicates.

In PoissonSeq proposed by Li and others (2012), it uses a log-linear model with a new nor-

malization method to analyze RNA-seq data. This model is equivalent to the ones proposed in

Bullard et al. (2010), Marioni et al. (2008) and Wang et al. (2010) when used for a two-class

outcome, but allows for the modelling of multiple-class comparisons when needed. The model

is first fitted assuming no association between genes and the outcome, and then an additional

term is added to the model to accommodate differential expression. A Poisson goodness-of-fit



Chapter 1. Introduction and Background 20

statistic is used to estimate the set of genes which are not differentially expressed and for up-

dating the iteration estimates of the model.

Hardcastle and Kelly (2010) developed an empirical Bayesian approach which allows for

analyzing data from more complex experimental designs. Their baySeq approach assumes a

negative binomial distribution for the read counts and uses empirical Bayes methods to examine

differential expression patterns within the data. With the goal of increasing the pattern predic-

tion accuracy, the method borrows information across the genes and defines a set of models

for patterns of differential expression based on similarity and difference between samples. The

prior distribution for each model can be empirically determined from the entire dataset with

different prior distributions being assumed for samples behaving differently, and then posterior

probabilities for the models are established.

Some evaluations of differential gene expression analysis methods for RNA-seq data have

recently been performed. Overall no single analysis algorithm has been found to be favourable

across the comparisons, but it was noted that the power of the statistical tests can be improved

by increasing the biological replicates (Rapaport et al., 2013; Robles et al., 2012). Robles et

al. (2012) evaluated the detection of differential expression using the three packages edgeR,

DESeq and NBPSeq through simulations with varying sequencing depth, experimental designs

and biological replications and found that DESeq performs more conservatively than the other

two algorithms. The statistical tests based on negative binomial distributions (DESeq, edgeR

and baySeq) had notably good control of false positive errors with comparable specificity and

sensitivity resulted from the tests (Rapaport et al., 2013).

In terms of time-series gene expression analysis using RNA-seq, Oh et al. (2013) have

examined and proposed some statistical algorithms to account for the time-dependence struc-

ture in the datasets. The two approaches commonly used in time-series data, autoregressive
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time-lagged regression models and hidden Markov models, have been suggested as ways for

analyzing differential expression in time-course RNA-seq data. When these two approaches are

incorporated with the Poisson and negative binomial distributions, they can be applied to iden-

tify and infer temporal dynamics from the time-series read counts in RNA-seq experiments.

Oh et al. (2013) also proposed the use of statistical evolutionary trajectory index to model

the relationship between expression profiles over time. The method consists of computing the

autocorrelations of expression profiles across time points and fitting a smooth spline regression

to reflect the temporal patterns of gene expressions. This research has been one of the few

which focus on temporal dynamics in RNA-seq data and more statistical methods need to be

developed to explicitly model temporal RNA-seq data.

1.5 Existing methodology for treatments of missing values

1.5.1 Imputation methods for missing values in gene expression data

Many imputation methods have been proposed for dealing with missing values in gene ex-

pression data and reviewed in literature (Aittokallio, 2009; Brock et al., 2008; Hourani and El

Emary, 2009; Sahu et al., 2011). The simplest strategy in dealing with missing observations

would be to replace missing values with zeros (ZEROimpute), such as in Alizadeh et al. (2000)

where missing log2 transformed gene expression ratios were replaced by zeros. Another simple

option would be to impute a missing value using the row average (the mean of intensity of a

gene across different experiments), but this approach (ROWimpute) assumes that expression

levels of a gene during different experiments (or at different time points in time-course exper-

iments) are constant, which may not be true. These methods ignore any correlation structure

present in the data and may reduce the variance of the variables, leading to biased estimates

(Schafer and Graham, 2002). Some classic approaches of imputation include hot deck (imput-

ing with a value from a gene with similar expression levels), cold deck (imputing with a value

from external data from similar studies), model-based (using a statistical model to predict the
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missing values using the non-missing data) and multiple imputation (obtain multiple estimates

for each missing value and apply downstream analyses separately for each complete dataset,

then combine these multiple inferences to produce the final result).

The KNN imputation (KNNimpute) method, which is an improved hot deck imputation

method, was first applied to gene expression data by Troyanskaya et al. (2001). KNNimpute

consists of first identifying a set of k predictor genes which have profiles similar to the gene

with missing values, with similarity measured using Pearson’s correlation or Euclidean dis-

tance. From this set of predictor genes, the final estimate of the missing value is obtained as

a distance-weighted average over the k genes. The estimation ability of KNNimpute depends

on the number of nearest neighbours in KNNimpute and it needs to be determined empirically

without any theoretical foundation. KNNimpute performs poorly when k is too large or too

small: the choice of a small k may overemphasize a few dominant genes in the estimation

process, while a large k may lead to the inclusion of prediction genes that are significantly

different from the genes with missing values and thus producing erroneous estimates (Sehgal

et al., 2005; Yoon et al., 2007).

The SVD imputation (SVDimpute) is also used in literature. Troyanskaya et al. (2001)

used SVD to identify mutually orthogonal expression patterns from the genomic data and lin-

early combined them to obtain approximate expression of all genes in the dataset. Since SVD

requires a complete matrix, missing values are originally imputed with zeros or the row aver-

ages. The SVD identified mutually orthogonal patterns are referred to as eigengenes and the k

most significant eigengenes are used to estimate the missing values in gene profiles. SVDim-

pute is not robust to the amount of missingess, as the performance of SVDimpute was found

to deteriorate quickly as proportion of missingness in the dataset increases (Troyanskaya et al.,

2001).
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The multiple imputation idea has been incorporated into some imputation methods for gene

expression datasets, for example, the two local approaches: the collateral missing value impu-

tation (CMVE) method and the Gaussian mixture clustering (GMCimpute) method. CMVE

generates multiple parallel estimations of missing values to obtain final estimates of missing

values (Sehgal et al., 2005). To avoid bias toward any one estimate from the multiple estima-

tion, the final prediction of the missing value is generated using equal weighting to the three

estimate matrices. The other method, GMCimpute proposed by Ouyang et al. (2004), assumes

microarray data is generated by a Gaussian mixture and uses model averaging to obtain the

estimates for missing values. For a specific missing entry, an estimate is made from each of

the mixture components, and then using a linear combination of the estimates with mixing pro-

portions (the probabilities that the gene belongs to the components) as the weights to obtain a

weighted-average to calculate the final prediction of the missing value. Although the goal of

imputation is not to improve clustering but to provide accurate estimates that would prevent

biased clustering results, it was shown that k-means clustering results can be enhanced by first

apply GMCimpute before the clustering procedure (Ouyang et al., 2004).

Two other methods also make use of data clustering technique. The CMI method developed

by Zhang et al. (2008) imputes a missing entry with plausible values from genes in the same

cluster. It makes use of the k-means clustering algorithm with kernel nonparametric regression

for filling in the missing values in each cluster. Instead of assuming that a gene belongs to only

one cluster at any time, the FCMimpute method (Luo et al., 2005) uses the fuzzy C-means

clustering, which is a soft clustering algorithm such that each gene has a weighting associated

with its chance of belonging into each cluster.

Most of the generic methods have been developed for static data, and although some have

been evaluated on time-series datasets, the methods might not be suitable for time-dependent

data. When dealing with gene expression data from time-course experiments, it is important
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for statistical models to account for the dependence among values for a gene at different time

points. Some imputation approaches have been proposed for missing values in time-series

microarray data, including the use of cubic splines (Bar-Joseph et al., 2003), dynamic time

warping (Tsiporkova and Boeva, 2007), impulse models (Chechik and Koller, 2009) and au-

toregressive models (Choong et al., 2009).

Impact of imputation on gene analysis

Most literature on missing data focused on comparing imputation methods using the accuracy

measure root mean squared errors (RMSE) between the original values and the imputed miss-

ing entries. However, researchers perform genomic studies with the interest on the results from

the downstream analyses. As Oh et al. (2011) pointed out, “there is no guarantee that perfor-

mance evaluations by RMSE measures are consistent with evaluations by biological impacts

in downstream analyses, which is the ultimate concern in microarray data analysis”, it would

be more interesting to know how imputation can affect the performance of the downstream

analyses such as identifying differential expressions or gene classification and clustering.

One type of downstream analysis of gene expression data that is commonly performed is

cluster analysis. The stability of gene clusters formed by hierarchical clustering can be af-

fected by different imputation methods and the magnitude of the gene misallocations may also

depend on the aggregation algorithm used in the hierarchical clustering procedure. The im-

pact of missing values on gene cluster stability is critical even when missing rate is low (de

Brevern et al., 2004). It was noted that missing entries should be imputed by some methods

since the effect on cluster stability when values are not imputed would be severe compared to

when imputed datasets are used. Based on cluster stability, the imputation method KNNimpute

is more efficient than the simple ZEROimpute method (de Brevern et al., 2004), but compared

to other sophisticated imputation approaches, KNNimpute seems to be less powerful (Celton

et al., 2010).
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These studies have examined the impact of missingness and imputation methods on down-

stream analyses with gene expression data. It is of interest to examine the missing value prob-

lem in RNA-seq, the newer type of technology that is widely used in genomic studies. To

our knowledge, there have not been any studies looking at the effect of missing values on the

clustering of RNA-seq data. As previously pointed out, imputation can have a major effect on

clustering ability and it would be of interest to examine how it can affect analyses on RNA-

seq data, especially in the time-course experimental setting. The results from an evaluation

of imputation methods on RNA-seq analyses would give insight to the optimal approach for

handling missing values in RNA-seq data.

1.6 Objectives and statement of problems

1.6.1 Functional clustering for time-course genomic data

Data clustering allows for the grouping of similar data points in order to discover and explain

relationships among the data. Functional clustering of genomic data can identify co-expressed

genes with similar functions and help explain the complexities of biological systems (Eisen et

al., 1998). Exploring the patterns shown in genomic data from time-course experiments can

provide us with important information on changes in expression levels over time. Some of

the major applications of time course genomic experiments include (Androulakis et al., 2007):

understanding the dynamics of biological systems such as cell cycles, examining the devel-

opment of processes such as cell differentiation for organisms, analyzing response dynamics

by monitoring how gene expression changes according to varying drug dosages, and studying

disease progression over time.

Clustering methods have been widely applied to time-course microarray data to discover
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co-expressed genes (Cooke et al., 2011; Grün et al., 2012; Ng et al., 2006; Schliep et al.,

2003; Yuan and He, 2008) and described in comprehensive reviews (Androulakis et al., 2007;

Bar-Joseph, 2004; Möller-Levet et al., 2003; Wang et al., 2008). However, existing clustering

methods used for microarray data are not appropriate for the discrete-type RNA-seq data. We

will give a more detailed review on existing clustering methods for microarray data in a later

section. Clustering methods for static data have been applied to RNA-seq datasets (Jäger et al.

2011; Pauli et al., 2012) but the approaches ignored the sequential property of time-course data.

To the best of our knowledge, statistical methods which thoroughly defines a statistical model

for analyzing RNA-seq count data with time-dependence nature and over-dispersion property

are very limited. There is a tremendous need for developing novel clustering methods that are

suitable for temporal RNA-seq data. In this dissertation, the first research topic involves de-

veloping an efficient data clustering method to identify patterns on gene expression data from

time-course RNA-seq experiments. The goal is to use a model-based clustering approach to

identify co-expressed genes and their expression patterns from gene expression levels mea-

sured by read counts over time.

1.6.2 Initialization procedures for finite mixture models

Finite mixture models are commonly used in cluster analyses of genomic data and the expectation-

maximization (EM) algorithm (Dempster et al., 1977) is often used as the method for maximum

likelihood (ML) estimation. The EM algorithm is the most suitable method for parameter es-

timations in situations with incomplete-data, such as missing data, truncated distributions and

censored or grouped observations (McLachlan and Krishnan, 2008). The incompleteness of

the data may not be natural or evident, and it would then depend on the statistician to formulate

the incompleteness in an appropriate manner to facilitate the application of the EM algorithm.

When finite mixture distributions are used to model heterogeneous data, it is a classic exam-

ple of a problem with incomplete data since the goal is to estimate the proportions in which
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the components of the mixture occur along with the component densities parameters. Another

application of the EM algorithm is when the likelihood is analytically intractable, then the

statistician may simplify the likelihood function by assuming the values of additional param-

eters as missing data. In this case, the incompleteness of the data is not natural but then it is

formulated such that the application of the EM algorithm is appropriate for the optimization of

the likelihood function.

The EM algorithm is an iterative procedure where each iteration consists of two steps:

the Expectation (E-step) and the Maximization step (M-step). During the E-step, the algo-

rithm finds the expected value of the complete-data log-likelihood with respect to the unknown

data, given the observed data and the current parameter estimates. The M-step then consists

of maximizing the expected log-likelihood obtained in the first step and update the parameter

estimates. Starting from some initial values, the E- and M-steps are repeated until some conver-

gence criterion is satisfied. Each iteration is guaranteed to increase the log-likelihood and thus

the algorithm nearly always converges to a local maximum of the ML function (McLachlan and

Krishnan, 2008). However, reliable global convergence is not certain and the performance of

the EM algorithm can be improved by using good starting values. Different initialization pro-

cedures for EM algorithm have been proposed and investigated for ML estimations in Gaussian

mixtures models (Biernacki et al., 2003) and also in mixtures of regression models with respect

to time-course microarray data in a model-based clustering setting (Scharl et al., 2010). It is

of interest to identify a reliable initialization strategy for clusterwise regression specifically for

time-course discrete count data from RNA-seq experiments. This leads to the second research

topic that will be addressed in this dissertation. It can be stated as the following: what is an

effective initialization procedure for model-based clustering of time-course RNA-seq data?
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1.6.3 Missing value imputation methods for clustering of time-course ge-

nomic data

High-throughput analyses such as microarrays and sequencing technologies combined with

statistical data analyses provide researchers with the ability to explore and understand complex

biological processes. However, technical limitations might lead to the presence of missing val-

ues in the data, such as from corrupted spots on microarray through damaged or suspicious

spots being filtered during the image analysis phase. Missing value imputation methods have

been reviewed and evaluated on their impact on gene expression profiles analyses (e.g. Liew

et al., 2010; Oh et al., 2011). Celton et al. (2010) performed an extensive comparison of the

effects of imputation methods on cluster analysis of microarray data and noted that data with

even a low missing rate would affect gene cluster stability. Noting the difference in data types

between microarray and RNA-seq data, there is a need to evaluate imputation methods for the

discrete count data, especially in the time-course experiments setting.

Therefore, the third research topic that will be investigated in this dissertation is the bio-

logical impact of missing value imputation on clustering analyses of genomic data from time-

course sequencing experiments. Limited research has been done on the impact of missingness

on sequenced data, thus it is desirable to further explore into this area and answer the following

questions:

1. Are genomic data produced from next generation sequencing technologies often pep-

pered with missing values?

2. What are the key issues that need to be addressed when dealing with missingness in

time-course sequenced data with respect to the time-dependence nature of the data?

3. How can clustering of temporal RNA-seq data be improved by imputation methods when

missingness is present?
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1.7 Organization of dissertation

The main research topics discussed in this dissertation include data clustering, performance

evaluation of initialization strategies, and impact of missing value imputation on time course

genomic data. Chapter 2 addresses the first research topic: clustering of time-course gene

expression profiles. A detailed review on existing clustering methods, for both static and time-

course genomic data, is given. A novel model-based clustering algorithm specific for longi-

tudinal discrete RNA-seq data is proposed and the performance of the algorithm is assessed

through simulation study. Results obtained by application of the proposed method are pre-

sented to demonstrate its utility in biological research.

The second research topic: initialization procedure for finite mixture models will be ad-

dressed in chapter 3. We review the existing initialization strategies suitable for mixture models

and investigate their performance with regards to the proposed model-based clustering of mix-

ture of regression models for longitudinal discrete genomic data. The procedures are applied

to both synthetic and real gene expression profiles to illustrate their performance. Chapter 4

focuses on the third research topic: missing value imputation methods for cluster analysis of

genomic data. Issues regarding missingness in genomic data from sequencing-based technolo-

gies are discussed and existing imputation methods for longitudinal data are reviewed. We

demonstrate the impact of the different imputation methods on gene clustering of time-course

RNA-seq data using simulated and real datasets. Chapter 5 summarizes the original contri-

butions of the dissertation research, discusses future research topics/problems, and provides

conclusions for the presented research work.
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Clustering of time-course RNA-seq data

2.1 Introduction

Genomic data from microarray and sequencing experiments such as RNA-seq can be used to

describe transcriptional dynamics of a biological system by measuring the levels of gene ex-

pression of thousands of genes simultaneously. The genomic experiments can be classified

into two types: static and time-series. Static experiments measure gene expression levels from

a number of samples at a single time point, for example, comparing gene expression levels

in tissue samples taken from individuals with and without a certain disease of interest. In

time-series (or temporal or time-course) experiments, gene expression levels from the sample

are measured at a number of time points to monitor the change in expression patterns over time.

With time-course expression data, specific biological systems can be monitored over time

to understand gene expression response over time (for example, drug dosing over time) and the

development of organisms by studying sequences of cell growth and differentiation. It also of-

fers the opportunity to investigate disease progression as gene expression over time may reveal

the evolution of pathological conditions. We can use clustering methods based on similarities

between the gene expressions to divide the set of genes being studied into smaller sets of genes

30
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with similar expression patterns. By doing this we can discover co-expressed genes and better

understand the complexities of organisms. Genes that are co-expressed are often co-regulated,

thus clustering assists researchers in identifying regulatory mechanisms of the cells.

Numerous clustering methods have been proposed for both static and time-series microar-

ray data. A majority of the microarray analysis have focused on static data, as described in

reviews (Belacel et al., 2006; Chipman et al., 2003; Gollub and Sherlock, 2006). More re-

cently, the detection and analysis of expression in time-course microarray experiments have

become more popular because researchers can discover a profoundly different type of informa-

tion by monitoring the changes in expression levels over time. Here we will give an overview

of clustering analysis approaches, then discuss and summarize existing methods developed for

clustering time-course microarray data. We propose a model-based clustering method which

will account for the time-dependence and over-dispersion properties of time-course RNA-seq

data.

2.1.1 Cluster analysis

Data clustering is the search for an optimized grouping of related observations in a dataset

based on similarity. Clustering algorithms can be classified in two broad categories: discrim-

inative (or distance/similarity-based) or generative (model-based) approaches. For each cate-

gory, the clustering methods include hierarchical clustering and partitional clustering (Zhong

and Ghosh, 2003). Hierarchical clustering methods start by assuming each data point con-

tributes to its own individual group. Then the method proceeds successively by either merging

smaller clusters which are similar or splitting larger clusters, and such algorithms differ from

each other in regards to the merging/splitting decision rules they employ. As a result, the hier-

archical algorithm will produce a dendrogram which is a tree of clusters illustrating the nested

clusters and the relationships of clusters (similarity levels at which groupings change).
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On the other hand, partitonal clustering methods partition the data points into a pre-specified

K groups according to some partitioning-optimization criterion defined either locally (on a sub-

set of the patterns) or globally (on all of the patterns). These partitional techniques have an

advantage over hierarchical techniques when the dataset is large and it would be computation-

ally intensive to construct a dendrogram. However, the choice of the number of desired output

clusters is a key design decision when using partitional clustering algorithms.

Discriminative approaches

In discriminative approaches, data are grouped together based on pairwise distance or simi-

larity measures between data points. The goal is to quantify the distance/similarity between

pairs of data and to cluster those with measures falling within a certain pre-specified thresh-

old (Androulakis et al., 2007). It is often difficult to define a good similarity measure for a

complex data type, as the measure would be very much data-dependent and sometimes require

background knowledge on the data. Another disadvantage of discriminative approaches is that

the algorithms are usually computationally inefficient since they require the calculation of sim-

ilarity measure for all pairs of data points (Zhong and Ghosh, 2003).

The function measuring similarity can be defined as pointwise, shape-based, or feature-

based similarity measures. The most commonly used straightforward pointwise similarity

functions include norm-based distances and correlation metrics such as the Pearson correlation

coefficient. These measures are simple to apply and understand, but they may not be appro-

priate for time-course data since they do not account for the dependency between time points.

Information is lost when the algorithm simply consider the pointwise distances at each time

point and ignores the temporal content of time-series data. Some clustering algorithms look at

the internal structure of time-series data by making use of a shape-based similarity function.
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For example, the relative change of gene expression measurement can be characterized by the

direction of the change of expression (up and down patterns) over time and it is possible to

quantify the similarity between two curves by comparing their slopes or the piecewise linear

functions between time points (Möller-Levet et al., 2003). However, the slopes are calculated

based on specific time interval of one so this approach does not account for variable time inter-

vals and the temporal order of the slopes.

Another type of similarity measure is based on general features extracted from the data.

The gene profiles are first transformed into feature vectors (sequences of events, nominal val-

ues or symbols) based on the important aspects of the expression profiles (such as different

states or trends) and then analyzed with respect to their similarities to each other. One example

of this type of measure is to replace the expression levels by -1,+1, or 0 with respect to three

states of gene expression: the gene is under-expressed, over-expressed, or not differentially ex-

pressed relative to its baseline measurement (Di Camillo et al., 2005). The advantages of using

feature-based measures are that qualitative features of expression profiles could be a more in-

formative proxy for the gene expression information, and that the transformation of expression

data into a sequence of symbols effectively reduces the dimension of the time-series data thus

making the analysis more robust to noise (Androulakis et al., 2007, Wang et al., 2008). How-

ever, discretization/categorization of expression data will inevitably lead to loss of information;

for example, some expression patterns might be lost if gene expressions are oversimplified.

Model-based approaches

Model-based clustering approaches assume that data are generated from a finite set of mod-

els with specified model types, such as Gaussian or hidden Markov models (HMMs). These

algorithms use the data to estimate model parameters of the underlying models by methods

like maximum likelihood estimations, and use model selection techniques to obtain the model
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structure, such as the number of states in a HMM. The likelihood or posterior probability de-

rived from the model is used in the optimization criterion or merging/splitting decision rule for

either partitional or hierarchical algorithms respectively. Often the model-based approaches

are preferred over the discriminative techniques because resulting model for each cluster from

model-based methods directly characterizes the cluster, thus resulting in better interpretability

of the data (Zhong and Ghosh, 2003). Similarities among genes in a give cluster can be easily

explained by examining the model corresponding to the cluster.

The model-based clustering approaches are usually based on variants of finite mixture mod-

els, where each component probability distribution corresponds to a cluster. The general idea

is that each data point can be viewed as arising from a finite number of populations with un-

known parameters to be determined by maximum likelihood estimation based on the available

data. The data is assumed to follow a set of pre-specified distributions (e.g. Gaussian models

for static data or autoregressive models for time-series data), and the emphasis on the speci-

fied underlying models make the model-based clustering approaches more robust to noisy data

compared to distance-based approaches (Androulakis et al., 2007).

The EM algorithm is the most popular method to be applied to model-based partitional clus-

tering problems. In partitional clustering algorithms, the cluster membership for data points can

be treated as missing data and the EM algorithm can estimate the model parameters by maxi-

mizing the incomplete-data likelihood. By applying the EM algorithm, the data points can be

iteratively partitioned into the different clusters to achieve maximized likelihood. The E-step

would consist of computing the cluster membership of each data point and then followed by

the estimation of model parameters in the M-step. The EM clustering algorithm can be for-

mulated with a fuzzy/soft clustering nature, which means that the method assigns probabilities

of membership in more than one cluster for each data point (i.e. membership of a data point

into any cluster may range from zero to one). This is different from hard clustering algorithms,
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which allocates each data point into one and only one cluster (i.e. membership of a data point

into any cluster can only be zero or one). Soft clustering is favourable for time-course genomic

data since gene clusters often overlap and soft clustering algorithms are more robust to noise

compared to hard clustering methods (Futschik and Carlisle, 2005).

2.1.2 Clustering of time-course microarray data

There are many types of clustering analyses that can be performed in order to examine coherent

patterns seen in time-course gene expression data. The goal of clustering is to group similar

data points together to identify genes exhibiting similar responses to signals, that is, the subsets

of genes that behave similarly along time under the set of conditions. In this section, we focus

on existing clustering algorithms proposed for clustering gene expression monitored over time,

with emphasis on mixture-model-based clustering approaches.

In discriminative approaches, clustering algorithms require the use of a similarity-based

measure in order to group the similar time-series data together, which would indicate co-

expressed genes in gene expression data. However, there is not a clear definition of ”similar

expression pattern” in literature. Standard approaches using pairwise similarity measures are

not appropriate since they disregard temporal information by assuming observations for each

gene are independent and identically distributed (Cooke et al., 2011). Time-series similarity

measures should be able to account for three basic issues: scaling and shifting of expres-

sion levels, unevenly distributed sampling time points, and the shape or internal structure of

the time-series measurements which describes the relative change of expression levels over

time (Möller-Levet et al., 2003). Clustering algorithms such as k-means clustering and self-

organizing maps (SOM) are partitional clustering methods which use distance-based measures

to decide the partitions of data points. A major drawback of these clustering algorithms is that

by considering each profile as a vector of independent data points, they do not account for
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the sampling intervals and the temporal relationship among observations between time points

thus leading to skewed results (Bar-Joseph; 2004). Both hierarchical and partitional clustering

methods using similarity measures have been proposed and applied in the analysis of time-

course microarray data (Das et al., 2009; Eisen et al., 1998; Kim and Kim, 2007; Minas et al.,

2011; Tamayo et al., 1999; Tavazoie et al., 1999), and many other methods have been summa-

rized in comprehensive reviews (e.g. Androulakis et al., 2007; Bar-Joseph; 2004; Möller-Levet

et al., 2003; Wang et al., 2008).

For model-based clustering methods, the underlying assumption is that the time-course

data can be well characterized and represented by parametric models. Several models have

been commonly used in regards to time-series data: normal mixture, hidden Markov, autore-

gressive and splines models. In a normal mixture model-based approach, gene profiles are

assumed to arise from a mixture of multivariate normal distributions with different parame-

terizations. Densities of multivariate normal are computationally tractable and would ensure

invariant clustering with regards to shifts in location and scale (Ng et al., 2006). Such an ap-

proach have been applied to time-course microarray data (Ghosh and Chinnaiyan, 2002; Yeung

et al., 2001), but it is not an effective method for time-series expression measurements since

it completely disregards the temporal structure of the data. Another popular model used in

model-based clustering approaches is HMM which is a type of stochastic signal model and

probabilistic functions of Markov chains. For clustering algorithms of this type on microarray

expression data, each gene expression profile is assumed to be generated by a Markov chain

with certain probability (Schliep et al., 2003; Yuan and Kendziorski, 2006; Zeng and Garcia-

Frias, 2006). A general issue with using HMM for time-series data is that they ignore the length

of sampling time intervals thus reducing its effectiveness for data with non-uniform sampling

time intervals (Möller-Levet et al., 2003).

An autoregressive (AR) model is often applied for time-series data, as it attempts to find the
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relationship between successive data in order to model the change of a current data value from

its value from a previous period in time. This model applied to time-series data can capture the

ways in which expression measurements depend on one another. An example of a hierarchical

clustering approach with the AR model is the microarray data analysis performed by Ramoni

et al. (2002), where they applied an AR model of order one which is able to account for time

delays to the time-series data. The autoregressive model is limited by the assumption of sta-

tionary time-series data (i.e. the data is assumed to be generated by time invariant system).

Also, similar to HMMs, the AR model does not consider how samples are distributed in time

thus leading to the possibility of missing potentially significant patterns in the data (Möller-

Levet et al., 2003).

Mixtures of linear models or of linear mixed models with splines as covariates have also

been used to model time-course genomic data (Bar-Joseph et al., 2003; Celeux et al., 2005;

Luan and Li., 2003; Ma et al., 2006; Ng et al., 2006). B-splines, representing each point as

a linear combination of a set of basis polynomials, with splines coefficients coming from dif-

ferent distributions can be used to model gene expressions in different clusters. As opposed

to models used by Celeux et al. (2005) and Luan and Li (2003) which require the indepen-

dence assumption among all pairs of genes, Ng et al. (2006) employed a random-effects model

for clustering of correlated genes by accounting for correlations among gene profiles within

a cluster. The use of splines models with properly defined knots is appropriate for handling

the temporal structure of time-series data since the models can account for the shape of the

expression profiles and the sampling interval lengths (Möller-Levet et al., 2003). Also, the

relationship between dependent and independent variables do not need to be defined before

model fitting when linear additive models are used (Grün et al., 2012).

One downside of this type of clustering algorithm is that the application of spline repre-

sentations is questionable for short time-series data since spline models are more suitable for
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fitting data with large number of time points (Liu et al., 2005). Since most of the temporal

microarray datasets consist of fewer than ten time points (Ernst et al., 2005), splines models

might not be the optimal choice for analyzing time-course microarray data. Another issue with

using splines model is that the fitting of splines require the pre-specification of the number

and length of piecewise segments of the splines. Grün et al. (2012) attempted to solve this

problem by proposing a finite mixture of linear additive models with splines as covariates for

time-course microarray data. The linear additive model is fitted using regularized estimation as

the model coefficients are penalized until the model fit and curve smoothness are in agreement.

This model with regularized estimation allows for a data-driven way to estimate the flexibility

of the spline functions so a priori specification is not needed and ensures that a suitable model

is fitted.

Some other mixture-model-based clustering approaches have also been proposed for time-

series genomic data. When it is not desirable to make assumptions about the cluster distribu-

tions, a semi-parametric clustering method (Yuan and He, 2008) can be used, where the den-

sities of mixtures are modelled and estimated nonparametrically with unimodal distributions

as constraints. Kim et al. (2008) proposed a mathematical model by incorporating Fourier

series approximations into a mixture-model-based likelihood function for functional clustering

of time-course gene expression data. Cooke et al. (2011) used a mixture model with Gaus-

sian process regression in a Bayesian hierarchical clustering algorithm to analyze time-series

microarray data. With the agglomerative hierarchical clustering approach, the algorithm can

obtain the optimal number of clusters automatically. This method also explicitly models a

proportion of the data as outlier measurements to account for noisy genomic data.

2.1.3 Clustering of time-course RNA-seq data

Since RNA-seq has been widely adopted as an attractive alternative to microarrays for studying

gene expression, the development of clustering algorithms suitable for RNA-seq data becomes
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an important area of research since they allow for analysis of multiple groups rather than simple

two-group analyses. RNA-seq data uses counts of read to quantify gene expression levels and

the discrete nature of the data differs from the continuous expression measurements resulting

from microarray experiments. The difference in data types makes it problematic to directly

apply statistical tools developed for microarrays onto RNA-seq data.

One approach to overcome this issue is to use data transformations. Li et al. (2010) per-

formed log-transformation onto gene expressions from RNA-seq experiment and identified dif-

ferentially expressed genes using K-means clustering algorithm. Jäger et al. (2011) standard-

ized the RNA-seq count values from their experiment and performed hierarchical clustering on

the normalized data to obtain gene groups with similar expression. In another time-course ex-

periment focusing on the early zebrafish development, the RNA-seq data were also normalized

and clustered using K-means (Pauli et al., 2012). These heuristic approaches have the advan-

tage of easy implementation; however, they have not been evaluated for RNA-seq data analysis

and the employed clustering methods ignore the time-dependence among the time-series data.

There are also complications when analyzing transformed count data. Transformation of count

data cannot be well approximated by continuous distributions, and it is particularly problematic

for data with small sample sizes and lower count ranges (Oshlack et al., 2010). Data with very

small counts after transformation are far from normally distributed and count data usually con-

tain a mean-variance relationship that is not addressed by normal-based analyses (McCarthy et

al., 2012).

Genome analyses using count models can better distinguish biological from technical vari-

ability than analyzing transformed data with the use of continuous distributions (Robinson and

Smyth, 2008). Count models have also been shown to have higher power in detecting differ-

ential expression than approximate normal models (Robinson and Oshlack, 2010). Following

this notion, Si et al. (2014) proposed the use of model-based clustering algorithms with Pois-
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son or negative binomial distributions to analyze RNA-seq data and assessed the model-based

clustering methods compared to K-means and SOM. To our knowledge, this has been the first

statistical research to focus on clustering methodology for RNA-seq data. However, the analy-

sis for time-course RNA-seq has not been explored.

The clustering of time-course data can be viewed as identifying developmental trajectories

(or temporal pattern) within a dataset. The semi-parametric group-based trajectory modeling

approach (Nagin, 1999; Nagin, 2005) is an example of model-based clustering method for lon-

gitudinal data. The method models the data as a mixture of distinct groups/clusters defined

by their trajectories and by clustering data with similar trajectory, differences that may ex-

plain individual- (or sample-) level variability can be expressed in terms of cluster differences

(Nagin, 2005). For analyzing time-course genomic data, the group-based trajectory model

can: (1) determine the optimal number of distinct expression patterns and identify those pat-

terns/trajectories, (2) estimate the proportion of samples that is believed to have produced the

expression pattern of each group, (3) relate the cluster assignments to covariates of characteris-

tics of the genes, and (4) use the cluster membership probabilities for purposes such as creating

summaries of expression patterns of clustered genes.

The model was first applied by Nagin and Land (1993) as a mixed Poisson model to crim-

inal career data, then Roeder et al. (1999) followed the idea with a mixture of zero-inflated

Poissons to handle situations where the data contains more zero’s than expected from Poisson

distributions. The group-based estimation model has then been implemented as a SAS-based

procedure, Proc Traj, by Jones, Nagin and Roeder (2001). The procedure uses mixtures of zero-

inflated Poissons, censored normals, and Bernoulli models for longitudinal count data, scale

data and binary data respectively. Recently, KmL (Genolini and Falissard, 2011), a K-means

clustering algorithm for longitudinal data has been proposed and compared to Proc Traj on the

modeling of time-course data. While producing similar results as Proc Traj when applied to
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real dataset with count data, KmL suffers from the limitation that all clusters are assumed to

have the same variance, which would affect its ability to correctly identify cluster if the under-

lying subpopulations have different variances (Genolini and Falissard, 2011).

The objective of this research is to develop a clustering algorithm suitable for time-course

RNA-seq data. Since RNA-seq data suffers from the over-dispersion problem (Nagalakshmi

et al.,2008; Robinson and Smyth, 2007), a common approach is to model the count data us-

ing negative binomial distributions to accommodate over-dispersion. Here we develop an effi-

cient model-based clustering method with mixtures of negative binomials to cluster time-course

RNA-seq data using the semi-parametric group-based modeling approach proposed by Nagin

(1999). By identifying the clusters of genes with similar expression patterns, differences that

may explain individual-level variability can be expressed in terms of cluster differences. The

parameters of this model can be estimated by a direct maximization method, such as the gen-

eral Quasi-Newton procedure, but the use of this procedure is highly dependent on the starting

values (Roeder et al., 1999). To avoid this problem, we present an EM algorithm for maximum

likelihood estimation of the parameters in our group-based approach.

2.2 Model

2.2.1 Mixture models

We consider a population consists of g subgroups in some unknown proportions π1, ..., πg. We

are interested in some random feature Y which is heterogeneous across and homogeneous

within the subgroups. Following Frühwirth-Schnatter (2006), we say that Y arises from a finite

mixture distribution, with the probability density function f (y) taking the mixture density

f (y) = π1 f1(y) + ... + πg fg(y),
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where πi, (i = 1, ..., g) represents the mixing proportions (or component weights) with πi ≥

0, π1 + ... + πg = 1. Let Y1, ...,Yn be a random sample of size n, and y = (y1, ..., yn)T denote the

observed random sample where y j is the realization of the random variable Y j. Then a standard

g-component mixture model can be expressed in the form

f (y j;ψ) =

g∑
i=1

πi fi(y j; θi),

where fi(y j; θi) is the component density for component i, which is the conditional density

function of Y j given component membership of the ith component with component parameter

θi, and ψ = (π1, ..., πg, θ1, ..., θg) is the set of model parameters from the different mixture

components. The corresponding likelihood is given by

L(ψ) =

n∏
j=1

f (y j;ψ)

=

n∏
j=1

g∑
i=1

πi fi(y j; θi).

The mixing proportions π = (π1, ..., πg) and the component parameters θ = (θ1, ..., θg) are un-

known and need to be estimated from the data. We denote S = (S 1, ..., S n)T , S j ∈ {1, ..., g},

to indicate the component allocation of individual sample j. If we assume that component

allocation is observed, then we can estimate parameters ψ based on the complete data (y,S).

However, in the clustering context we do not observe the group allocation S. We define an

unobserved or missing data vector z = (zT
1 , ..., zT

n )T , where z j = (z1 j, ..., zg j)T is a vector of

indicator variables reflecting the component membership of individual sample j. We define

zi j = I(S j = i), indicating that zi j = 1 if sample j belongs to component i and zi j = 0 otherwise,

and we have
∑g

i=1 zi j = 1.
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The joint probability function of Y j and z j is

f (y j, z j) = f (y j|zi j) f (zi j).

We have Pr(Zi j = 1) = πi so the marginal probability function of Zi j is f (zi j) =
∏g

i=1 π
zi j

i with∑g
i=1 πi = 1,

∑g
i=1 zi j = 1, and the density

f (y j, z j) = f (y j|zi j) f (zi j)

=

g∏
i=1

fi(y j; θi)zi j

g∏
i=1

π
zi j

i

=

g∏
i=1

π
zi j

i fi(y j; θi)zi j .

The mixture likelihood is in the form

L(ψ) =

n∏
j=1

g∏
i=1

π
zi j

i fi(y j; θi)zi j

and the complete-data log-likelihood can be written as

log L(ψ) =

g∑
i=1

n∑
j=1

zi j log πi +

g∑
i=1

n∑
j=1

zi j log fi(y j; θi)

2.2.2 Mixture models: Discrete longitudinal count data

When working with time-course RNA-seq data, we denote Pr(Y j) as the probability of observ-

ing a specific time-series sequence of read counts on gene j over time. The goal is to obtain

a set of estimates for the parameters such that the likelihood is maximized. These parameters

define the shapes of the expression pattern curves for the clusters and the probability of cluster
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memberships. The shape of each expression pattern curve (or trajectory) is described by a sta-

tistical model, and a separate set of parameters is estimated for each group to allow the shapes

of curves to differ across groups.

Let y j = (y j1, ..., y jm) be the observed read counts at m time points for each gene j. Utilizing

the flexibility provided by polynomial functions, we assume a quadratic relationship between

time and read counts, such that x jt = (1, time jt, time2
jt)
′; and conditional on being in cluster i,

each gene has independent observations over time. The cluster parameter θi includes βi and si,

where βi = (βi
0, β

i
1, β

i
2) determines the shape of the trajectory and the parameter si describes the

dispersion of the genes in cluster i, and these parameters are allowed to differ across clusters.

We use a negative binomial model for the read counts and conditional on being in group i, a

gene j is assumed to have independent read counts over the m sampling time points, so we

have

fi(y j;β
i, si) =

m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

)

with mean

λ = exp(βix jt) = exp(βi
0 + βi

1time jt + βi
2time2

jt)

and si being the dispersion parameter for the group i and probability

pi =
si

si + λ
.

The mixture likelihood for the entire sample of n genes is

L(ψ) =

n∏
j=1

g∑
i=1

πi fi(y j;βi, si)

=

n∏
j=1

g∑
i=1

πi

m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

)
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and the corresponding log-likelihood is

l(ψ) =

n∑
j=1

log

 g∑
i=1

πi

m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

) . (2.1)

The maximum likelihood estimates, ψ̂ = (π̂1, ..., π̂g, β̂
1, ..., β̂g, ŝ1, ..., ŝg), can be obtained by

maximizing the above log-likelihood.

Defining the missing data vector z = (zT
1 , ..., zT

n )T with z j = (z1 j, ..., zg j)T reflecting the compo-

nent membership of gene j, the complete-data likelihood for a sample of n genes can be written

as

Lc(ψ) =

n∏
j=1

g∏
i=1

π
zi j

i fi(y j;βi, si)zi j

=

n∏
j=1

g∏
i=1

π
zi j

i

 m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

)zi j

,

and the corresponding complete-data log-likelihood is

lc(ψ) =

n∑
j=1

g∑
i=1

zi j log πi +

n∑
j=1

g∑
i=1

zi j log fi(y j;βi, si)

=

g∑
i=1

n∑
j=1

zi j log πi

+

g∑
i=1

n∑
j=1

zi j

 m∑
t=1

[
log(Γ(y jt + si)) − log(y jt!) − log(Γ(si)) + si log(pi) + y jt log(1 − pi)

] .
Since zi j is not observed, the above log-likelihood cannot be directly maximized. The EM al-

gorithm can be used to obtain maximum likelihood estimates, ψ̂, from the above complete-data

log-likelihood, by treating zi j as missing data.
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2.2.3 Estimation

The maximum likelihood estimates of the parameters in the mixture models can be found

iteratively by application of the EM algorithm. EM is the preferred approach in situations

with incomplete-data problems, such as missing data, truncated distributions and censored or

grouped observations (McLachlan and Krishnan, 2008). For mixture models where the like-

lihood is analytically intractable, the likelihood function can be simplified by assuming the

values for additional parameters as missing and the optimization can be achieved using the

EM algorithm. In the model-based clustering method, each observation is assumed to have

arisen from one of the mixture components and the indicator variable denoting the component

membership is taken to be missing. The complete-data log-likelihood is formed on the basis of

the sampling distribution of the complete data, regarded as a function of a combination of the

missing membership variables and the observed data.

Each iteration of the EM algorithm consists of two steps: the Expectation step (E-step) and

the Maximization step (M-step). During the E-step, the algorithm finds the expected value of

the complete-data log-likelihood with respect to the missing data, given the observed data and

the current parameter estimates. The M-step of the algorithm would then maximize the ex-

pected log-likelihood obtained from the E-step and update the parameter estimates. The E- and

M-steps are alternated repeatedly until some convergence criteria are satisfied. Each iteration

is guaranteed to increase the log-likelihood and thus the algorithm is guaranteed to converge to

a local maximum. The justification for this EM property is provided in Section 2.2.4.

For our model-based clustering approach, the EM algorithm is implemented by treating

the unknown component membership of the mixture population as missing data, so that the

data is augmented with indicators of component membership. In the EM framework, starting

from some initial value for ψ, say ψ̂
(k)

, the E-step involves the calculation of the expectation

of the complete-data log-likelihood, conditional on the observed data and the current estimate
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ψ̂
(k)

. Since y and ψ̂
(k)

are treated as known, the complete-data log-likelihood is linear in the

membership variables so the conditional expectation depends only on the expectation of Zi j.

The E-step in the (k + 1)th iteration involves the evaluation of

E(Zi j|y j;ψ
(k)) =

π(k)
i fi(y j;β

i(k), si)

f (y j;ψ
(k)
i )

=
π(k)

i fi(y j;β
i(k), si)∑g

i=1 π
(k)
i f (y j;β

i(k), si)

= ẑ(k)
i j . (2.2)

This step is simply replacing the missing membership variables by the current values of their

conditional expectations, i.e. the resulting estimate is the posterior probability that gene j

belongs to cluster i. On the M-step, the value of ψ that maximizes the complete-data log-

likelihood with each zi j replaced by the corresponding posterior probability is evaluated, and

the estimate of ψ is updated by

ψ(k+1) = arg max
ψ

E[log L(ψ|y;ψ(k))],

which is given by

π̂(k+1)
i =

1
n

n∑
j=1

ẑ(k)
i j

β̂
i(k+1)

, ŝ(k+1)
i = arg max

βi,si

n∑
j=1

ẑ(k)
i j

 m∑
t=1

[
log(Γ(y jt + si)) − log(y jt!) − log(Γ(si)) + si log(pi) + y jt log(1 − pi)

] .
(2.3)

Starting from the initial parameter value ψ̂
(0)

, the E- and M-steps are repeated until conver-

gence. There is no closed form solution to the evaluation of β and s in the M-step so numer-

ical maximization, such as optimization procedures including Newton-type methods, will be

needed. After EM convergence is reached, a probabilistic clustering of the genes into g clusters
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are obtained through the posterior probabilities of component membership by assigning gene

j to cluster k if ẑk j = max(ẑ1 j, ..., ẑg j).

There are some limitations to the application of EM algorithms. One major drawback is

that the covariance matrix of the estimated parameters are not produced as an end-product of

the algorithm. Although there are methods for obtaining approximate standard errors from EM

algorithms (Louis, 1982; McLachlan and Krishnan, 2008; Meng and Rubin, 1991), they may

require extensive derivation or numerical differentiation methods when working with complex

likelihood functions. Another issue with the application of EM algorithm is that the speed of

convergence can be very slow in some situations, for example, when the proportion of missing

data is high. Researchers have developed modified versions of the EM algorithm in attempt

to solve these problems. To speed up the estimation procedure, hybrid algorithms such as

combining the EM algorithm with Newton-type method have been proposed for application

to mixture models (Aitkin and Aitkin, 1996; Redner and Walker, 1984; Wang and Puterman,

1998). Such hybrid algorithm consists of first performing EM algorithm for parameter estima-

tion and then switching to the Newton-type method to speed up convergence. The combination

of EM and Newton-type algorithms take advantage of the guaranteed convergence of EM from

arbitrary starting values and the fast convergence property of Newton-type method by switch-

ing to such a method when it gets closer to the maximum likelihood solution. The approximate

standard error of the estimates can be obtained as a by-product of the Newton-type optimiza-

tion approach. This hybrid estimation approach overcomes the limitations of a) sensitivity to

starting values when using Newton-type method for direct maximization, b) slowness of EM

convergence, and c) the absence of standard error estimates from EM estimation.

The Quasi-Newton method is one of the Newton-type methods for numerically evaluating
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roots of complex functions. The Newton sequence is

θ(k+1) = θ(k) − H−1(θ(k))S (θ(k)),

where θ(k) is the ML estimate at the kth iteration, H−1(θ(k)) is the inverse of the Hessian matrix,

and S is the score function. The Hessian matrix H is the matrix of the second derivatives of the

log-likelihood, ∂2l
∂θ2 , and is the negative of the observed information matrix. The Quasi-Newton

method uses an approximation to the Hessian to update the linear iteration sequence so that the

calculation of the second order derivatives of the log-likelihood can be avoided by approximat-

ing the inverse of the Hessian matrix directly from the first derivative information at each step

of the iteration (Nash, 1990 pg 187). This greatly reduces the amount of computation needed to

obtain the Hessian matrix and its inverse because the second order derivatives do not need to be

calculated, and we can obtain the estimates of the standard errors of the MLE’s as a by-product

from this optimization process.

We propose a hybrid estimation algorithm for our model-based clustering approach. For

a fixed number of components g, we use a combination of the EM algorithm and the Quasi-

Newton algorithm to obtain MLE’s of parameters in our mixture model. Redner and Walker

(1984) noted from their study that 95% of the change in log-likelihood from initial evaluation

to the maximum value generally occurred within the first five EM iterations, thus we propose

an estimation procedure which starts with running five EM iterations to approach the near-

neighbourhood of the ML estimates, and then switches to the Quasi-Newton method for rapid

convergence. Following Aitkin and Aitkin (1996), the algorithm returns to the previous EM

estimates and run EM for another five iterations if the Hessian obtained after Quasi-Newton

estimation is not positive definite.
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Algorithm: (EMQN5)

Step 0: Select initial values ψ(0).

Step 1: (E-step) Compute ẑ j = ( ẑ1 j, ..., ẑg j), (1 ≤ j ≤ n), using 2.2.

Step 2: (M-step) Obtain values of β̂
i

and ŝi, i = 1, ..., g from 2.3, using the quasi-Newton

method.

Step 3: Return to step 1 until five iterations have been performed.

Step 4: Maximize the mixture log-likelihood function l(ψ) in 2.1 using the Quasi-Newton

algorithm with β̂
i
and ŝi, i = 1, ..., g, as initial values.

Step 5: Stop and obtain MLE’s ψ̂ if at least one of the following conditions is true; Otherwise,

return to step 1 for a further five iterations.

1. Hessian obtained from Quasi-Newton method is positive definite.

2. Estimation procedure has already switched back to EM five times.

2.2.4 The Property of the Proposed Method

Proposition: The proposed method is guaranteed to increase the log-likelihood of the data

and it will converge to a locally optimal solution.

The goal of the maximum likelihood estimation is to maximize the log-likelihood of data y

l(y;ψ) =

n∑
j=1

log f (y j;ψ).

In the context of our mixture model of the form, we have

f (y j;ψ) =

g∑
i=1

πi fi(y j; θi),
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where fi(y j; θi) is the component density for component i, and ψ = (π1, ..., πg, θ1, ..., θg) is the

set of model parameters from the different mixture components. We define an unobserved or

missing data vector z = (zT
1 , ..., zT

n )T , where z j = (z1 j, ..., zg j)T is a vector of indicator variables

reflecting the component membership of individual sample j. The parameter zi j = I(S j = i),

indicating that zi j = 1 if sample j belongs to component i and zi j = 0 otherwise, and
∑g

i=1 zi j =

1. The complete-data log-likelihood can be written as

log L(y, z;ψ) = l(y, z;ψ) =

g∑
i=1

n∑
j=1

zi j log(πi fi(y j; θi))

The E-step of the kth iteration of the EM algorithm evaluates the expected complete-data

log-likelihood

E[l(y, z;ψ)|y,ψ(k)] =

g∑
i=1

n∑
j=1

ẑ(k)
i j log(πi fi(y j; θi)).

This expectation is over the component memberships given the data y and the current parame-

ters ψ(k) of mixture distribution so that

E(Zi j|y j,ψ
(k)) =

π(k)
i fi(y j;ψ

(k)
i )

f (y j;ψ
(k)
i )

= P(Zi j = 1|y j,ψ
(k))

= ẑ(k)
i j ,

which is the posterior membership generated from current parameters ψ(k). Once we have the

posterior memberships, they do not change as a function of θ. This implies that we changed

from an incomplete data problem to a complete data problem, so the M-step of the algorithm

would maximize over the expected log-likelihood with respect to θ while keeping other param-

eters fixed.

Let q = {qi j} be any set of distributions over the underlying component memberships, not
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necessarily the posterior memberships ẑ(k)
i j , the auxiliary objective the EM algorithm uses is

l(y, q;ψ) =

g∑
i=1

n∑
j=1

qi j log(πi fi(y j; θi)) +

n∑
j=1

H(q j)

where H(q j) = −
∑g

i=1 qi j log qi j is the entropy of membership distribution q j.

With ψ(k) as the current setting of the parameters and letting q(k) be the membership distri-

butions that are really the posteriors, i.e. q̂(k)
i j = ẑ(k)

i j , the EM is now:

• E-step: q(k) = argmaxq l(y, q;ψ(k−1))

• M-step: ψ(k) = argmaxψ l(y, q(k);ψ)

The E-step generates the posterior memberships, q̂(k)
i j = ẑ(k)

i j , and the M-step would maximize

l(y, q(k);ψ) =

g∑
i=1

n∑
j=1

ẑi j log(πi fi(y j; θi)) +

n∑
j=1

H(z(k)
j ).

This maximization is the same as before since the entropy term is fixed when we are optimizing

ψ. With each of these steps being a maximization step, l(y, q(k);ψ) has to increase monoton-

ically. We can show that the auxiliary objective equals the log-likelihood after any E-step,

i.e.

l(y, q(k);ψ(k)) = l(y;ψ(k)).
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l(y, q(k);ψ(k)) =

g∑
i=1

n∑
j=1

ẑ(k)
i j log(π(k)

i fi(y j; θi)) +

n∑
j=1

H(z(k)
j )

=

g∑
i=1

n∑
j=1

ẑ(k)
i j log(π(k)

i fi(y j; θi)) −
n∑

j=1

g∑
i=1

ẑ(k)
i j log ẑ(k)

i j

=

g∑
i=1

n∑
j=1

ẑ(k)
i j log

π(k)
i fi(y j; θi)

ẑ(k)
i j

=

g∑
i=1

n∑
j=1

P(Zi j|y j,ψ
(k)) log

π(k)
i fi(y j; θi)

P(Zi j|y j,ψ
(k))

=

g∑
i=1

n∑
j=1

P(Zi j|y j,ψ
(k)) log f (y j;ψ

(k))

=

n∑
j=1

log f (y j;ψ
(k))

= l(y;ψ(k))

We can now state that

l(y;ψ(k)) = l(y, q(k);ψ(k))
M-step
≤ l(y, q(k);ψ(k+1))

E-step
≤ l(y, q(k+1);ψ(k+1)) = l(y;ψ(k+1))

M-step
≤ · · ·

which shows that the EM algorithm increases the log-likelihood at each iteration and equality

of the above would hold only at convergence.

2.3 Simulation study

We conducted simulation studies to assess the performance of the model-based clustering ap-

proach with different estimation methods. The group-based semi-parametric model was pro-

posed for identifying trajectories using the EM algorithm to fit mixtures of negative binomial

distributions to time-course count data. We also proposed the use of a hybrid EM/quasi-Newton

method (EMQN5) to speed up the EM convergence. We performed simulation studies to in-

vestigate the properties of EM-based algorithms under a variety of parameter combinations in

mixtures with two and four components.
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2.3.1 Data generation

Simulations were designed to compare three estimation algorithms when the sample of genes

consists of two mixture components. The values of dispersion parameter and trajectory shape

parameters were varied to create different simulation settings, and 100 datasets were inde-

pendently simulated for each setting. We have considered the combinations of trajectories as

shown in Figure 2.1, with sampling time plotted against the read counts (measuring expression

levels) for genes. For each combination of trajectories, the corresponding parameter values for

the trajectories are displayed and we simulated data for each combination with the dispersion

parameters being 0.5, 2, 5, and 10 to obtain a total of 16 simulation settings. We generated

data involving five sampling time points (time j1 = 1, ..., time j5 = 5), and assumed that the gene

counts (y jt) were independent across time. For each dataset, we simulated 300 genes from a

mixture with mixing proportions π1 = 0.3 and π2 = 0.7 (leading to roughly 90 genes in cluster

one and 210 genes in cluster two).

2.3.2 Estimation algorithms

For the two-group model, we have the complete-data log-likelihood as:

lc(ψ) =

n∑
j=1

[
z j log π + (1 − z j) log(1 − π)

]
+

n∑
j=1

[
z j log f1(y j;β1, s1) + (1 − z j) log f2(y j;β2, s2)

]
= z log π + (1 − z) log(1 − π) + z log f1(y j;β1) + (1 − z) log f2(y j;β2)

with z j = z1 j and π = π1 (we can make this simplification since we have z1 j + z2 j = 1 and

π1 + π2 = 1).

We considered three different estimation algorithm for our model-based clustering ap-

proach:

1. EM: Given specific initial values, the estimation was performed using the EM algorithm
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Figure 2.1: Simulation cases: Combinations of trajectories.

with stopping criterion being when log-likelihood stops increasing (a difference in suc-

cessive values of log-likelihoods of 10−4) or if it reaches a specified maximum number

of 1000 iterations.

2. EMQN5: Given specific initial values, the algorithm will perform five EM iterations and

then switch to the quasi-Newton method implemented using nlminb function in R. It will

switch back to EM if the Hessian matrix obtained is not positive definite. (Described in

Section 2.5)

3. EMQN10: Given specific initial values, the algorithm will perform ten EM iterations

and then switch to the quasi-Newton method (similar to EMQN5 with ten EM iterations

instead of five). It will switch back to EM if the Hessian matrix obtained is not positive

definite.
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To analyze each case of the simulated data, the same set of initial values was used for the

different algorithms for a fair comparison and to assess their sensitivity to starting values. We

specified the starting values for β and π to reflect equal mixing of two very similar trajectories:

β1 = (2,−0.5, 0), β2 = (2,−0.48, 0), π1 = 0.5, and s1 = s2 = 0.1. Lower and upper bounds

were specified for the parameter estimates in the quasi-Newton estimation procedure (see Table

2.1).

Parameter Lower bound Upper bound
βi (-50,-50,-50) (50,50,50)
si 0.1 20
π 0 1

Table 2.1: Lower and upper bounds specified for quasi-Newton estimation.

2.3.3 Results

Two-component mixtures

In general, the problem of identifiability of mixture models affected all three estimation meth-

ods that we have investigated. In situations with non-identifiable models in some of the simu-

lation datasets, the three algorithms were unable to accurately estimate the trajectory models.

These situations were indicated by the undefined standard error estimates of the parameters

and we have excluded these datasets from our simulation results. For some of the datasets, the

estimated dispersion ŝ is close to or equal to the pre-specified upper bound of the parameter

estimation and we have also excluded those datasets (with ŝ above the threshold of 19.5) from

the results. Table 2.2 shows the number of datasets included in the analysis for each case and it

is noted that simulation cases with dispersion parameter equals to 10 have the largest number

of excluded datasets, especially in case 4 with only 48 datasets included in the results from

the EMQN10 algorithm. For result analysis, we have reported the mean parameter estimates

(averaged over the included datasets for the specified settings) and the relative bias of mean
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estimates is used as an accuracy measure for our parameter estimates, which is calculated by

relative bias =
|mean estimate - true value|

true value
x 100.

S Method Case 1 Case 2 Case 3 Case 4
10 EM 98 97 94 59

EMQN5 99 76 76 72
EMQN10 97 76 76 48

5 EM 100 100 100 74
EMQN5 100 100 100 100
EMQN10 100 100 100 100

2 EM 100 100 100 94
EMQN5 100 100 100 100
EMQN10 100 100 100 100

0.5 EM 100 100 100 72
EMQN5 100 100 100 100
EMQN10 100 100 100 80

Table 2.2: Number of datasets included in analysis.

Table 2.3 displays the relative bias of the mean estimated mixing proportions π̂ for the dif-

ferent estimation methods across the different simulation settings. There is no obvious trend

in the estimation precision in terms of change in dispersion parameter from s = 10 to s = 0.5.

The performances of algorithms seem to be the worst for the datasets with lowest dispersion

across all four cases of trajectory combinations. When we focus on the relative bias of esti-

mates for datasets with s = 0.5, EM algorithm produced the highest relative bias in three of the

cases compared to the other two hybrid algorithms. Comparing across the different cases of

trajectory combinations displayed in Figure 2.1, the clusters in case 1 are the easiest to classify

because of the very distinct trajectory curves and the trajectories in case 4 are the hardest to

distinguish. This means it would be the most difficult to correctly classify genes into the two

clusters in case 4, and as expected, the algorithms had the highest relative bias in estimating

the mixing proportions for the case 4 datasets compared to the other cases. The high relative

bias produced by EM algorithm with dispersion s = 0.5 in case 4 might be a concern since it
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is much larger than the two relative biases produced by the other algorithms in this situation.

Overall, the performances for all three estimating algorithms are comparable with no one al-

gorithms appeared to be superior over the others. The differences between mixing proportion

estimates produced by EMQN5 and EMQN10 are not striking, but EMQN5 resulted in lower

relative biases than EMQN10 in most of the simulation settings.

S Method Case 1 Case 2 Case 3 Case 4
10 EM 0.05 0.28 0.08 1.21

EMQN5 0.01 2.53 0.70 0.17
EMQN10 0.01 1.60 0.53 0.79

5 EM 0.02 0.48 0.09 0.86
EMQN5 0.13 2.47 0.03 2.46
EMQN10 0.13 2.94 0.43 3.10

2 EM 0.05 0.27 0.33 3.67
EMQN5 0.19 2.08 1.71 4.04
EMQN10 0.23 5.88 0.01 5.30

0.5 EM 1.78 5.49 0.45 9.66
EMQN5 0.44 1.31 2.16 3.85
EMQN10 1.77 3.02 2.21 1.18

Table 2.3: Relative bias of mean estimated mixing proportions.

Method β1 β2 s s1 s2

6.17 -5.78 0.99 -7.69 6.59 -1.10
EM 0.52 0.77 0.79 0.29 0.26 0.29 10 9.99 1.02
EMQN5 0.01 0.02 0.02 0.13 0.01 0.09 4.33 5.63
EMQN10 0.11 0.24 0.26 0.82 0.64 0.62 6.02 2.66
EM 0.49 0.53 0.49 0.61 0.48 0.46 5 5.91 2.84
EMQN5 0.20 0.51 0.54 3.23 2.94 3.20 11.00 0.87
EMQN10 0.13 0.04 0.03 0.12 0.03 0.02 7.69 2.04
EM 0.57 0.71 0.68 0.26 0.34 0.38 2 1.44 1.60
EMQN5 0.19 0.94 1.22 1.11 0.65 0.47 1.90 0.31
EMQN10 0.27 0.06 0.03 0.09 0.02 0.02 2.92 1.96
EM 1.07 0.72 0.38 1.39 1.77 1.83 0.5 8.94 3.87
EMQN5 3.96 2.46 2.26 1.99 1.17 1.36 1.81 1.73
EMQN10 0.23 0.03 0.08 0.68 0.59 0.59 2.26 2.07

Table 2.4: Relative bias of mean parameter estimates for Case 1.
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Method β1 β2 s s1 s2

6.17 -5.78 0.99 -2.24 -0.17 0.21
EM 0.82 0.77 0.71 1.59 3.95 0.09 10 5.61 5.62
EMQN5 1.41 0.94 0.93 3.84 34.80 3.97 2.80 12.46
EMQN10 1.22 0.66 0.67 2.89 31.84 3.93 5.01 13.91
EM 0.70 0.74 0.66 5.14 35.57 3.55 5 10.07 2.74
EMQN5 3.14 2.12 1.79 2.90 24.83 2.93 2.11 0.46
EMQN10 3.78 1.59 1.14 8.17 74.66 9.03 7.55 4.51
EM 0.36 0.19 0.07 4.94 38.27 4.09 2 6.04 1.58
EMQN5 0.48 0.66 0.91 6.80 57.72 6.49 8.19 8.28
EMQN10 2.33 2.36 2.07 1.87 13.97 1.27 17.35 9.18
EM 3.98 2.42 1.82 0.37 11.25 1.42 0.5 4.17 2.02
EMQN5 5.80 6.59 5.60 8.00 65.85 8.14 7.06 3.32
EMQN10 6.62 6.26 5.08 12.83 112.03 13.55 13.56 3.34

Table 2.5: Relative bias of mean parameter estimates for Case 2.

The mean relative bias of the parameter estimates for cases 1 to 4 are displayed in Tables

2.4 to 2.7 respectively. As a general trend, the EM algorithm produced lower relative biases

than those from the hybrid algorithms for the parameter estimates in most of the simulation

settings. Focusing on the algorithms’ performances for case 1 (Table 2.4), it is noticeable that

EMQN10 performed well for all the simulations with low relative bias for the β parameter esti-

mates. The other two methods had comparable estimation performances with some difficulties

in estimating the dispersion parameters correctly, with EM having high relative bias for s1 es-

timates when s = 10 and s = 0.5 and EMQN5 having the highest relative bias when estimating

s1 = 5. The trajectories in case 2 are more difficult to estimate than those simulated in the case

1 datasets since the trajectories have very similar shape from time points 2 to 5 (see Figure

2.1), thus as shown in Table 2.5, the resulting parameter estimates from case 2 simulations

have higher relative biases than those from case 1. The algorithms struggled to obtain good

estimates for the trajectory with an increasing trend (β2), and the linear coefficient β2
2 = −0.17

was the hardest to estimate as all three algorithms produced high relative bias for this particular

parameter estimation across the different dispersion parameter settings.
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Method β1 β2 s s1 s2

-7.69 6.59 -1.10 -2.24 -0.17 0.21
EM 0.36 0.23 0.20 0.30 6.92 0.97 10 12.23 5.54
EMQN5 0.86 0.81 0.77 6.37 37.98 3.56 5.60 6.00
EMQN10 3.12 2.54 2.57 7.04 46.94 4.74 28.52 16.56
EM 0.56 0.59 0.76 1.45 12.17 1.40 5 4.20 1.36
EMQN5 1.43 0.84 0.61 2.31 19.64 2.42 8.04 0.89
EMQN10 3.29 2.27 2.40 2.36 0.85 1.37 7.76 0.16
EM 1.37 1.15 1.17 2.89 22.02 2.39 2 3.41 1.62
EMQN5 4.71 3.91 3.93 2.30 5.14 0.07 15.14 3.86
EMQN10 4.71 3.91 3.93 2.30 5.14 0.07 15.14 3.86
EM 1.65 1.16 1.30 0.67 1.45 0.68 0.5 4.68 1.60
EMQN5 3.54 2.67 2.29 0.81 36.51 6.58 5.90 1.34
EMQN10 3.80 3.05 2.76 0.50 48.62 8.76 6.61 1.22

Table 2.6: Relative bias of mean parameter estimates for Case 3.

For simulations in both case 2 and case 3, the EM algorithm produced the lowest relative

biases for the parameter estimates compared to the two hybrid methods, and EMQN5 resulted

in lower relative biases than EMQN10 in most of the simulations. Table 2.6 shows the rel-

ative bias of parameter estimates in case 3 simulations and it is interesting to note that for

simulations with s = 2, the two hybrid estimation algorithms produced the exactly the same

results. This might have resulted from the EM estimation reaching a local maximum after 5

EM iterations and thus even after 10 EM iterations, it still remained in the same parameter

neighbourhood and so the quasi-Newton procedures in the two algorithms obtained the same

estimation results. Going beyond 10 EM iterations, the EM algorithm might have been able to

escape from the local maximum point and so the EM algorithm obtained different parameter

estimates compared to the two hybrid methods. However, since there is no guarantee for the

EM algorithm to reach the global maximum point, the parameter estimates did not necessarily

had lower relative bias than those produced by the hybrid methods.

Classification of genes and parameter estimations should be the most difficult in simula-

tion datasets with case 4 trajectory combination since the trajectories have very similar shapes.



Chapter 2. Clustering of time-course RNA-seq data 61

Method β1 β2 s s1 s2

-2.24 -0.50 0.21 -3.00 0.40 0.15
EM 0.60 2.84 1.34 1.06 5.33 1.90 10 27.73 5.45
EMQN5 7.69 21.73 3.26 17.96 74.86 26.04 8.40 3.92
EMQN10 10.80 18.40 5.16 8.95 28.61 7.88 2.39 7.31
EM 7.85 18.16 4.84 1.33 5.64 1.88 5 19.10 3.63
EMQN5 1.74 25.89 1.93 4.72 19.32 6.47 18.26 0.99
EMQN10 14.53 33.26 8.72 6.91 24.90 7.88 9.24 2.17
EM 8.21 15.45 2.17 0.65 2.97 1.23 2 36.95 3.91
EMQN5 0.45 24.31 2.40 22.75 97.52 33.72 21.45 5.10
EMQN10 26.82 58.47 6.07 4.49 11.83 1.68 21.30 8.11
EM 23.51 50.11 5.48 0.51 10.85 3.41 0.5 40.71 0.92
EMQN5 14.53 83.50 18.32 9.76 43.06 17.24 18.66 5.12
EMQN10 25.90 50.79 12.74 0.43 2.66 1.47 77.73 2.16

Table 2.7: Relative bias of mean parameter estimates for Case 4.

As shown in Table 2.7, the algorithms generally produced estimates with the highest relative

biases out of the four trajectory combination cases. Across the different dispersion parameter

settings, the EM algorithm performed well when estimating the β parameters but produced

higher relative biases than the two hybrid methods when estimating the dispersion parameter

s1. EMQN5 and EMQN10 had comparable performance, with EMQN5 having more difficulty

with estimating trajectory 2 (with β2) in some simulations and EMQN10 produced higher rel-

ative biases when estimating trajectory 1 (with β1) in some other simulations. Noting the high

relative biases produced for the parameter estimates in the case 4 simulation datasets, it might

be a concern as to how different the estimated trajectories are compared to the true trajecto-

ries. Figure 2.2 shows the true and estimated trajectories for case 4 with dispersion parameter

s = 2. This is one of the simulation settings where EMQN5 and EMQN10 produced high

relative bias for parameter estimates (such as 97.52 and 58.47). We can see from the plot that

even with such high relative biases, the resulting estimated trajectories are not far from the true

trajectories. This shows that all three of our estimation algorithms were able to identify the

underlying true trajectories or gene expression patterns in each of the simulation settings since

even estimations with such high relative biases would result in estimated trajectories very close
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to the true patterns.

Figure 2.2: True and estimated trajectories for Case 4 (s = 2).
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Four-component mixtures

In realistic problems, the data often involves more than two clusters and complexity of mixture

models increases as the number of components increases. To further examine our model-based

clustering approach, we have evaluated the proposed methods with data simulated from a more

complex mixture model with four components. The combination of the four trajectories is

shown in Figure 2.3, and 500 datasets were independently simulated with dispersion param-

eter being 2, 5, and 10. For each dataset, 500 genes were simulated with mixing proportions

π = (0.1, 0.2, 0.3, 0.4) (leading to the number of genes in each cluster being roughly 50, 100,

150 and 200 respectively). We considered three estimation algorithms: EM, EMQN5 and

EMQN10. The starting values for the parameters are: β1 = (2,−0.5, 0), β2 = (2,−0.48, 0),

β3 = (2,−0.46, 0), β2 = (2,−0.52, 0), π1 = · · · = π4 = 0.25, and s1 = · · · = s4 = 0.1. The same

lower and upper bounds have been specified for quasi-Newton estimation procedure within the

algorithms as in those shown in Table 2.1.

The four-component mixture model is more complex than the two-component model, thus

the evaluation for the clustering should not simply depend on the estimate of mixing propor-

tions π. In order to compare two partitions of objects, there are different measures that can

be used to quantify the comparison. Rand (1971) proposed the Rand index as a criteria for

evaluating clustering methods. Suppose that there are two different partitions of n objects,

U = u1, ..., ug and V = v1, ..., vk, where U is the set of true cluster memberships of the objects

and V is a clustering result. Let a represent the number of pairs of objects classified into the

same cluster in U and in the same cluster in V , b be the number of pairs of objects classified

into the same cluster in U but not in the same cluster in V , c be the number of pairs of objects

classified into different clusters in U but placed in the same cluster in V , and d represent the

number of pairs of objects which are classified into different clusters in both partitions U and

V . The Rand index is then calculated as a+d
a+b+c+d and lies between 0 and 1, with the index equals

to 1 when the two cluster partitions agree perfectly.



Chapter 2. Clustering of time-course RNA-seq data 64

One problem with the Rand index is that the expected value of the Rand index when com-

paring two random cluster partitions does not equal to a constant value (e.g. zero). The Ad-

justed Rand Index (ARI) (Hubert and Arabie, 1985) is a modification of the measure as it is

corrected for chance with respect to a reasonable null hypothesis, so ARI has an expected value

being zero and is bounded between ± 1. The ARI calculation assumes that the partitions U and

V are selected at random such that the number of objects in the clusters are fixed, which cor-

responds to the generalized hypergeometric distribution for the randomness. Let ni j represent

the number of objects classified into both clusters ui and v j and we can form the contingency

table of the two partitions as shown in Table 2.8.

Cluster v1 v2 . . . vk Sums
u1 n11 n12 . . . n1k n1.

u2 n21 n22 . . . n2k n2.
...

...
...

...
...

ug ng1 ng2 . . . ngk ng.

Sums n.1 n.2 . . . n.k n

Table 2.8: Contingency table for comparing two partitions U and V .

Under the generalized hypergeometric model of randomness, the ARI can be simplified to

(Hubert and Arabie, 1985):
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The ARI has been implemented in the function adjustedRandIndex from the R package

mclust. We have reported the ARI and the percent of genes being correctly classified into the

clusters for comparing the different estimation methods.

Our main focus is to assess the clustering ability of the algorithms so the parameter esti-
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Figure 2.3: Simulated trajectories for the four-component mixtures.

mates for the trajectories and dispersion (β and s) are not shown, but in general the algorithms

were able to obtain trajectories similar to the true curves. The estimated trajectories obtained

by the EM algorithm when dispersion parameter is equal to 10 are shown in Figure 2.4, and

similar trajectories have been obtained by both algorithms across all the situations with differ-

ent dispersion values.

To compare the clustering ability of the algorithms, Figures 2.5 and 2.6 show the boxplots

of ARI and the percent of genes being correctly classified into the clusters across the different

values of dispersion parameter from 2 to 10. In general, the algorithms have comparable per-

formances with similar ARI and percent of correctly classified genes. From both figures, it is

noted that as the dispersion value decreases, the clustering accuracy decreases and variability
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Figure 2.4: Four-component mixtures: Estimated trajectories by EM (dispersion=10).

increases. The increase in variability is more noticeable in the ARI values, but the large vari-

ability in percent of correctly classified genes by EMQN5 when dispersion equals to 0.5 may

be of concern (not shown here). EM appeared to be a better clustering approach in this situa-

tion both in terms of higher and less variable ARI and percent correctness in gene classification.

The results from the two- and four-component simulation cases show that the proposed

EM and hybrid algorithms are able to correctly estimate the trajectory shapes with acceptable

clustering ability. Our algorithms were able to obtain mean ARI values within the range of 0.6

to 0.8, which is similar to the ARI values obtained by Scharl et al. (2010) when they evaluated

the clustering of time-course gene expression data in low-noise setting. Since the parameter

estimations in our simulation study were performed with specific initial values, it would be

of interest to investigate whether initialization of the parameters in the estimation algorithms

would affect the results, in terms of parameter estimation and clustering correctness. This mo-

tivates our second research objective and the issue will be addressed in the following chapter.
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Figure 2.5: Four-component mixtures: Adjusted Rand Index (ARI) (with varying dispersion parameter
s).

Model selection

For model-based clustering methods, often the number of components or clusters in the fi-

nite mixture model is unknown. The problem of overfitting occurs when we fit too many

components to the data and would lead to the gene expression curves showing only random

variation. On the other hand, if too few clusters are included in the mixture model then it

would not be able to approximate the true underlying distribution. The method we use to de-

termine the appropriate number of clusters in the model is the Bayesian Information Criterion

(BIC) (Schwarz, 1978). It measures the goodness-of-fit based on the log-likelihood of the fitted

model while penalizing for the model complexity and the sample size. The BIC is defined as

BIC = log(L) − 0.5k log(n)
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Figure 2.6: Four-component mixtures: Percent of correctly classified genes (with varying dispersion
parameter s).

where k is the number of free parameters in the model and n is the sample size. The opti-

mal finite mixture model is then determined as the model with the maximum BIC value. For

our EM clustering approach, we choose a model which maximizes BIC among the different

component models. Here we show an example of how the BIC values are used to determine

the optimal number of clusters for the data, which also demonstrates how our model-based

clustering approach can correctly identify the correct number of clusters in the data.

Number of groups s = 10 s = 5 s = 2
2 -4123 -4185 -4158
3 -3844 -3933 -4040
4 -3734 -3837 -3989
5 -3796 -3906 -4047

Table 2.9: BIC values: EM estimation for four-component mixtures

Table 2.9 displays the mean BIC values obtained when model-based clustering was per-

formed on the data simulated from the four-component mixtures, with the parameter estimated

by the EM algorithm. We have tried clustering the data using mixture models with two- to
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five-components and the various BIC values were calculated respectively. It is noted that the

model-based clustering approach was able to identify the correct number of clusters in the sim-

ulated data across the varying dispersion parameter settings. From the results, we found that

when data are not as dispersed, i.e. when dispersion parameter equals to 10 and 5, the cluster-

ing approach was able to find the correct number of components from the data 84% and 86%

of the time respectively. However, the optimal number of components becomes more difficult

to identify when dispersion parameter equals to 2, as the clustering approach was only able to

identify the correct number of clusters 64% of the time. Some of the reasons contributing to the

bad performance in model selection may be due to the fact that model identification becomes a

more difficult issue when s = 2 and in some cases the five-component models were fitted with

one mixing proportion estimated as very close to zero, which indicates that four-component

models were actually fitted instead of five-component mixtures. In these cases, the four- and

five-component models fitted would actually lead to the same clustering of the data but the

BIC may lead to the wrong conclusion that the five-component models are more suitable. In

general, the proposed model-based clustering approach is able to identify the correct number

of components in the underlying mixture distribution of the data.

Model misspecification

One issue that we want to examine is the importance of modelling the over-dispersion in the

data. Given that RNA-seq data has extra variation arising from the differences in replicate

samples, it is more suitable to analyze the data using an over-dispersed model than using a

Poisson model with equal mean and variance assumed. However, it is of interest to see how

much would the model misspecification affect the proposed model-based clustering algorithm

when a Poisson model is used instead of negative binomial distribution. For this purpose, the

Poisson-based clustering method has been implemented with EM estimation to obtain parame-

ter estimates. We evaluated the Poisson-based clustering approach with data simulated from a

four-component mixture model. The simulated data followed the trajectories shown in Figure
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2.3, and 500 datasets were independently simulated based on the negative binomial distribution

with dispersion parameter s = 2,5 and 10. Since the Poisson-based clustering method would

ignore the over-dispersion in the data, the results from this evaluation with negative binomial-

based data would demonstrate the effects of model misspecification on the clustering ability.

The clustering ability of the algorithm is assessed by the ARI measure and the ARI val-

ues resulted from the Poisson-based clustering method are shown in the boxplot in Figure 2.7.

As shown in the plot, the Poisson-based method obtained ARI values that are more variable

than the ARI values resulted from correct model specification when datasets were generated

under the same conditions (see Figure 2.5). When dispersion parameter in the negative bi-

nomial distribution increases, the data becomes more like Poisson. This explains why when

the Poisson-based method was used, the clustering ability was higher in data with dispersion

s = 10 than when s = 2. As shown in Figure 2.7, the ARI values generated from the Poisson-

based clustering approach for data generated with dispersion s = 2 ranged between 0.4 to 0.75

and this indicated that the algorithm was not able to cluster the data well. When data sim-

ulated under the same conditions was clustered using the proposed negative binomial-based

approach, the ARI values resulted are shown in Figure 2.5 and we note that the ARI values

ranged from approximately 0.65 to 0.9. This simulation demonstrated that the over-dispersion

in the data should not be ignored and needs to be accounted for in the algorithm when per-

forming model-based clustering analysis. If the mean and variance are falsely assumed to be

equal, the clustering accuracy of the proposed method would decrease and greatly affect the

implications of the results.
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Figure 2.7: Four-component mixtures: Adjusted Rand Index (ARI) when model is misspecified and
data generated from negative binomial distributions with varying dispersion parameter

2.4 Real data analysis

2.4.1 Fibroblast data

The proposed clustering approach was applied to the fibroblast data (described in Chapter 1)

from the experiments on the progressive development of human vertebrate limb (Dudley et

al., 2002). The analysis aims to identify gene expression patterns shown by fibroblast mea-

surements in response to serum stimulation over time. We estimated several trajectory models

based on the sample and each model used a quadratic term in sampling time to describe the

relationship between time after serum stimulation and gene expression levels. We applied the

EM, EMQN5 and EMQN10 algorithms to fit two-, three-, four-, five- and six-component mod-

els to see the clustering effects. We used BIC for model selection to obtain the optimal model

(maximum BIC value) for each algorithm, where BIC is defined as

BIC = log(L) − 0.5k log(n)
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with k being the number of free parameters in the model and n as the sample size. Initial values

of the parameters were set to reflect constant trajectories (β1 and β2 set to be zero) with equal

cluster proportions (for example, πi = 0.25 for the four-component models).

EM EMQN5 EMQN10
2 groups -2315 -2315 -2315
3 groups -764 -764 -764
4 groups -642 -706 -648
5 groups -761 -765 -762
6 groups -687 -2402 -2406

Table 2.10: Fibroblast data: BIC values for models.

The results from different models fitted using the EM algorithm are displayed in Figures

2.8 to 2.12. The BIC values, shown in Table 2.10, indicate that the four-component model was

the best fitting model chosen when using all three algorithms for the model-based clustering.

EMQN5 and EMQN10 produced almost equivalent cluster proportions and parameter esti-

mates for all the different component models. The two- and three-component models produced

by all three algorithms were essentially analogous, with the same expression patterns and very

similar cluster proportions. The four-, five- and six-component models showed expression pat-

terns that can be grouped into three main general patterns as shown in the three-component

models. For example, in the six-component models shown in Figure 2.12, if we combine clus-

ters 1 and 2, also clusters 3 to 5, and cluster 6; these three main expression patterns reflect the

clusters shown in the three-component models (Figure 2.9) as clusters 1, 2 and 3 respectively.

The cluster proportions vary between the three combined main groups in the six-component

models and the clusters in the three-component models, but still reflected that the main pro-

portion of the genes had a gradually increasing gene expression level pattern. Cluster 1 in the

three-component model consisted of 87% of genes, which is similar to the 84% of the gene

included in clusters 1 and 2 of the six-component model produced by the EM algorithm. How-

ever, the six-component models produced by EMQN5 and EMQN10 showed that a proportion
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of those genes belonged to the other cluster with a relatively low-level expression pattern (clus-

ter 3 with 25%) and the gradually increasing patterns consisted of only 65% of the genes. The

cluster proportion of cluster 5 in each of the six-component models is 0% (with actual mixing

proportions being 10−5 or less), which shows that the algorithms tried to separate the low-level

expression pattern (clusters 3 to 5) into three clusters without success.

The optimal model chosen when using the EM algorithm was the four-component model

showed in Figure 2.10 and it showed that a majority of the genes (over 84%) followed a grad-

ually increasing expression pattern overtime. The models fitted by the EMQN5 and EMQN10

algorithms showed that the majority of the genes (over 76%) had a lower expression pattern

overtime compared to the one showed in the model fitted by the EM algorithm. The model

fitted by EM showed that clusters 2 and 3 had very similar expression patterns, but the models

fitted by the two hybrid algorithms showed almost equivalent patterns for clusters 1 and 3. The

large clusters indicate that majority of the genes have common roles in gene regulations and

the smaller clusters represent smaller proportions of genes with different characteristics in the

regulation process.
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Figure 2.8: Fibroblast data: two-component models.
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Figure 2.9: Fibroblast data: three-component models.
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Figure 2.10: Fibroblast data: four-component models.
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Figure 2.11: Fibroblast data: five-component models.
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Figure 2.12: Fibroblast data: six-component models.
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2.4.2 Fruit flies data

Another application of the proposed clustering algorithm consists of estimating trajectory mod-

els using the fruit flies data described in Chapter 1. The goal is to identify gene expression

patterns shown by the data from the Drosophila transcriptome project (Graveley et al., 2011).

We applied the clusering algorithms to fit two- to six-component models to see the clustering

effects and used BIC to select the optimal model. The BIC values obtained from the different

models fitted are shown in Table 2.11 and the maximum BIC values for the different algorithms

are in boldface. The BIC values from the EMQN5 and EMQN10 algorithms suggested that

more components might be fitted to the data, however, approximate standard error estimates

were not obtained from EMQN5 on the five- and six- group model and from EMQN10 on the

six-group model due to non-identifiable models. This suggests that we may focus on the two-

to four-component models as the higher component models may have been non-identifiable

mixture models being fitted to the data and resulted in unreliable estimates of parameters.

EM EMQN5 EMQN10
2 groups -2356 -2321 -2321
3 groups -2135 -2065 -2065
4 groups -2015 -1977 -1941
5 groups -2016 -1873 -1909
6 groups -2146 -1828 -1882

Table 2.11: Fruit flies data: BIC values for models.

The two- to six-component models estimated by the EM, EMQN5 and EMQN10 algo-

rithms are displayed in Figures 2.13 to 2.17. For the two-component models, all three algo-

rithms estimated almost exactly the same cluster trajectories and proportions. The genes were

divided into two large groups at approximately 57% and 43% with two expression patterns

estimated which showed decreasing expression levels over time. The three-component models

showed similar results for all three algorithms as well, with almost equivalent estimates for

the trajectories and the proportions. Almost half of the genes (46%) were classified into one
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cluster while the remaining genes were divided into two equal-sized clusters. All three clusters

of genes still showed decreasing expression patterns over time. However, the algorithms did

not obtain the same models for the four-component models. EM and EMQN10 both estimated

very similar trajectories and cluster proportions, with three main groups of genes with decreas-

ing expression patterns and one small group (7.6%) of genes having an almost bell-shaped

expression pattern over time. The small cluster of genes showed an increasing expression level

and then decreased back down to the initial starting level. On the other hand, EMQN5 esti-

mated four groups at different cluster proportions with decreasing expression patterns. This

might be due to the EMQN5 algorithm being trapped at a local maximum point during the ML

estimation while EM and EMQN10 were able to find the global maximum point with more EM

iterations performed than EMQN5.

The five-component models estimated by the three algorithms showed more distinctively

different results than the previous models. Besides the four decreasing trajectories shown in the

four-component model, the five-group model estimated by EMQN5 contained a small group

(7.36%) of genes having the bell-shaped expression pattern just like the one in the four-group

models estimated by EM and EMQN10. The five-component model estimated by EM showed

three groups with distinctively decreasing patterns, one group (16.36%) with a slightly de-

creasing pattern and a small group (6.34%) of genes having a slightly curved pattern instead

of the bell-shaped pattern in the four-component model. EMQN10 estimated some different

trajectories: two distinctively decreasing patterns, one group (19.01%) with a slightly decreas-

ing pattern, one small group (4.08%) with a slightly curved pattern and another small group

(5.87%) of genes with an almost bell-shaped pattern.

In terms of the six-component models, EM and EMQN5 estimated similar expression pat-

terns and cluster proportions. EM obtained a model with trajectories similar to those in the

five-component model and an additional cluster of genes with a bell-shaped pattern. EMQN5
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also obtained the same trajectory shapes at similar cluster proportions (for example, 31.19%

in first cluster estimated by EM and 29.23% in first cluster estimated by EMQN5 while both

clusters have the same expression pattern). The clusters in the model estimated by EMQN10

showed different expression patterns and while the EM and EMQN5 estimated models each

had two cluster proportions being under 8%, the EMQN10 model had three such small clus-

ters (at 3.56% to 5.39%). Also, in the model estimated by EMQN10 there is no cluster with a

bell-shaped pattern, but instead there is a cluster (5.39%) of genes which initially had moderate

expression level then peaked at around the middle of the sampling time frame before decreas-

ing to a level lower than the initial moderate measurement.

Since the approximate standard error estimates were unable to be obtained by EMQN5

and EMQN10 in the five-component and six-component models and that BIC values of the

EM models identified the four-component as the optimal model, we would focus on the four-

component model. If we compare the BIC values in Table 2.11 across the three different

algorithms for the four-group model, we see that the EMQN10 model had the maximum BIC

value. The expression patterns and cluster proportions estimated by the EMQN10 were the

same as those obtained by the EM algorithm. There are three large groups of genes which

showed decreasing expression levels over the sampling time frame, while one small group of

genes expressed in bell-shaped pattern. We see that the majority of genes being studied have

similar roles in developmental stages of fruit flies while a small number of genes may have

distinctively different responsibility in the regulation process.
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Figure 2.13: Fruit flies data: two-component models.
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Figure 2.14: Fruit flies data: three-component models.
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Figure 2.15: Fruit flies data: four-component models.
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Figure 2.16: Fruit flies data: five-component models.
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Figure 2.17: Fruit flies data: six-component models.
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2.5 Summary

Statistical models for analyzing RNA-seq data has recently become a popular research area in

the literature of statistical genetics. To our knowledge, no model framework has been devel-

oped for cluster analysis of RNA-seq data focusing on the time-course experiment setting. We

propose a clustering algorithm for discovering gene expression patterns in time-series RNA-seq

data. The algorithm is based on negative binomial models in the time-course setting and can

be applied to RNA-seq data, as well as over types of count data with over-dispersion. We pro-

pose an EM clustering method and two EM/quasi-Newton hybrid algorithms to improve on the

speed of the EM clustering. We demonstrate through both simulation studies and real data anal-

ysis that our proposed algorithms perform well on cluster analysis of time-course count data

with over-dispersion. Applications to RNA-seq data illustrate that our model-based clustering

approach produces meaningful clustering results that can enhance researchers’ understanding

about gene expression patterns over time.



Chapter 3

Initialization procedures for EM

estimation of finite mixture models

3.1 Introduction

Finite mixture models are often used in model-based clustering approaches, and we have pro-

posed a finite mixture model-based clustering method for analyzing time-course RNA-seq data.

The EM algorithm is the main choice of estimation method when working with finite mixture

models to perform clustering as it is a very powerful algorithm for learning probabilistic models

from data with missing aspects (such as the unobserved labels of cluster components). Starting

by guessing initial parameters of the model, the EM algorithm then iterates through two basic

steps and finds a maximum likelihood (ML) solution when it reaches convergence. The choice

of good starting values becomes an important issue as the type of data gets more complex. It

is necessary to investigate the performance of EM for model-based clustering approaches with

different initialization procedures.

88
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3.1.1 Starting values for cluster analysis

The choice of starting values are important to iterative algorithms as it can influence the speed

of convergence and the ability to find the global maximum in ML estimation. For mixture

models with nonparametric ML estimates, Laird (1978) noted that several starting values may

be required to avoid being trapped in local maxima and to locate the global maximum. It was

suggested that a good set of initial values may be found from performing a grid search on

the equally spaced grid between the possible values of the final solution. In cluster analysis,

where there is no a priori knowledge about the underlying population in the data, sometimes

visualization of the data can provide valuable information. McLachlan (1988) suggested the

use of principal component analysis on the two-dimensional scatter plots upon appropriate data

transformation to find initial clustering of the data. Such exploratory search relies on two- or

three-dimensional scatter plots to exhibit any clustering and may not be appropriate when deal-

ing with more complex data.

Research on initialization strategy with mixture models have mainly focused on or demon-

strated through normal or Poisson mixtures of two components. Hosmer (1973) and Hasselblad

(1969) examined the importance of starting values in ML estimation of normal mixtures. They

indicated that starting values are not that influential to ML estimation, while Fowlkes (1979)

concluded otherwise and demonstrated the sensitivity to starting values through simulation

results. The contradicting results have been re-examined by Woodward et al. (1984) by re-

peating the simulation analyses performed by Fowlkes and their results showed that the reason

for the susceptibility to starting values which Fowlkes observed was mainly due to the direct

maximization procedure that was used for the ML estimation. ML estimation using the EM

algorithm is better than direct maximization becaus the EM approach did not exhibit such sen-

sitivity for the choice of starting values.

Woodward et al. (1984) further proposed a similar ad hoc quasi-clustering approach for
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dealing with two-component normal mixtures. The initial values would be chosen by select-

ing the set of values which maximizes a criterion that is based on the mixing proportion of

the clusters and the sample medians of the clusters formed from the entire sample data. This

initialization strategy has a downside because when the two normal mixtures are overlapped,

the right tail in the first population may be truncated as data might be wrongly assigned to the

second population and leading to ML estimates from the first cluster being underestimated.

Finch et al. (1989) also studied two-component normal mixtures and used a quasi-Newton

algorithm as the optimization procedure. They concluded that the crucial parameter in the ML

estimation is the mixing proportion since they observed that once the proportion is fixed, the

optimal estimates of the normal means and variances can be easily approximated. The arith-

metic means and weighted average of the variances calculated from the samples split by the

mixing proportion can be used as the choice of parameter estimates.

Another issue related to initialization is large size of the data. Model-based clustering ap-

proaches often require a substantial amount of storage and computing time, in proportional to

multiples of the dimension of the data (Wehrens et al., 2004). Genomic data are often massive

datasets and this imposes limitations on the algorithmic complexity when focusing on clus-

tering gene expression data. One approach of dealing with these limiting factors is to initiate

clustering algorithms with a sample or subset of data. The simplest method would be to first

cluster a small random sample drawn from the data, then using the estimated model resulting

from this sample to initiate clustering on the entire dataset. Banfield and Raftery (1993) em-

ployed this approach to analyze medical images by clustering a sample from the image voxels

and using the resulting clusters to classify the remaining voxels. They performed discriminant

analysis in the model-based clustering framework by simply using a single expectation step in

the EM iteration (Fraley and Raftery, 2002).

Unfortunately, the sample may not necessarily be a good representation of all the clusters
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since data in small clusters may have a low prior probability of occurrence in the sample. This

simple approach based on clustering a sample can be modified in several ways to give improved

results, such as by tentatively selecting several models based on multiple samples rather than

just one, or by performing several EM steps on the entire dataset rather than one single E step

(Wehrens et al., 2004). Bradley and Fayyad (1998) and Fayyad et al. (1998) have also proposed

clustering several subsamples of the data as initialization procedures for k-means and EM clus-

tering approaches. The initializing values for the clustering algorithm would be chosen from

the cluster centers determined by each subsample clustering. For clustering massive datasets in

software metrics and tomography, Maitra (2001) suggested a multistage clustering algorithm

which starts by clustering a sample of data, identify from the whole dataset observations which

belong to these identified clusters, then iterates the sampling and clustering on the remaining

dataset until entire set of observations have been classified. Fraley et al. (2005) extended the

sampling method into an incremental model-based clustering process by incrementally adding

new clusters which are initialized with poorly fit observations from previous model.

A common strategy for starting EM algorithms has been to select random initial positions

and to run the algorithm several times and select the solution which maximizes the likelihood

among those several runs. Biernacki et al. (2003) compared random initialization, short runs

of EM, and two modified EM algorithms and evaluated their performances on selection of sen-

sible initial parameters for estimation in mixtures of multivariate normals. Karlis and Xekalaki

(2003) also compared using random starting values to a number of other initialization methods

and found that the performance is poor if the algorithm is started from random points. They

advised using a mixed strategy of starting from multiple initial values and running a small num-

ber of iterations, then using the point with the largest likelihood after these initial iterations to

continue running EM as initial values until final convergence.
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3.2 Method: Initialization strategies

We propose initial strategies on modifying the initialization procedures by adding in sam-

pling component and selecting the optimal initial set of parameters from multiple samples. We

note that our clustering model may be maximized using a direct maximization step such as a

maximization using the Quasi-Newton method. This direct maximization is a much faster es-

timation process than the EM approach, however, the use of such direct maximizing procedure

may lead to some convergence problems, and therefore the EM was proposed as the solution

to the problems. We may take advantage of the speed of the direct maximization and use it

as an initialization procedure, hoping that the solution from the maximization would be in the

neighbourhood of the global maximum so that we can use the solution as good starting values

for our EM clustering method.

Various initialization strategies have been proposed and investigated for model-based clus-

tering approaches with mixtures of multivariate Gaussian distributions. Scharl et al. (2010)

performed an evaluation of initialization strategies for time-course data from mixtures of re-

gression models with random effects. Their simulation study focused on using smoothing

splines and B-splines to fit mixtures of regression models to time-course microarray data.

The purpose of our current research is to obtain a practical initialization procedure for the

model-based clustering approach proposed for time-course RNA-seq data described in Chap-

ter 2. The semi-parametric group-based trajectory model we proposed is a mixture of negative

binomial distributions for describing discrete counts overtime, thus we would expect the initial-

ization strategies to have different effects on this proposed model as compared to their effects

on the mixtures of multivariate normals and mixed-effects models.

We would compare strategies in two main groups: 1) initializing parameters as equal clus-

ter mixing proportions and with true component parameters, and 2) initializing parameters as
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equal cluster mixing proportions and with random component parameters. The first case is used

in order to investigate the behaviour of the EM algorithm when starting with partially optimal

solution, while the second case would more closely reflect the situation when dealing with

real data, i.e. no prior knowledge on parameters. The main issue is how should we select the

random component parameters (namely the dispersion and β parameters for the model-based

clustering approach)? We focus on the following strategies and compare their performances.

• Random initialization: run EM t times with random starting values and select the solution

with the maximum likelihood among the t runs.

• Short runs: run EM, hybrid-EM (EMQN5 and EMQN10) or direct maximization t times

with random starting values and a lose convergence criterion, followed by a regular run

of EM starting from the solution maximizing the likelihood among the t runs.

• Sampling: select a sample and perform EM, hybrid-EM or direct maximization with

random starting values, then using the solution as starting values for the EM clustering

of the entire dataset.

• Sampling (multiple): select a sample and perform EM, hybrid-EM or direct maximiza-

tion, repeat this for k times and use the solution with the largest likelihood among the k

runs as starting values for the EM clustering of the entire dataset.

3.3 Simulation study

Simulation studies are designed to evaluate the performance of selected initialization strate-

gies on the four component mixture model used in Chapter 2. Artificial datasets are designed

to resemble time-course gene expression patterns in a total of 500 genes in four clusters over

five time points, with the clusters consisting of 50, 100, 150, and 200 genes respectively. We

simulated 500 datasets independently for the evaluation of each initialization method. We
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considered datasets simulated with different dispersion parameter values (s = 2, 5 and 10) and

different sample sizes for the procedures with sampling component (sample size as 50, 150 and

250). The simulation studies focus on testing the initialization of the component parameters,

so we set the initial mixing proportions to be equal for all four clusters (π1 = . . . = π4 = 0.25).

The different initialization methods being evaluated are described below.

1. True trajectory shapes (True): use the true values of the β and s parameters as start-

ing values for EM run to investigate the performance of EM when starting at optimal

solution.

2. Random initialization (Random): run EM 5 times with random β0 and s parameters each

time and select the solution with the maximum likelihood among the 5 runs.

3. Short runs of EM (sEM): run EM 5 times with random β0 and s parameters and a loose

convergence criterion, select the solution with maximum likelihood among those 5 runs

and use as initial values to start a regular EM run.

4. Sampling with EM (samEM): select a sample of 50 genes and perform EM with random

β0 and s parameters, then use the solution as initial values for starting a regular EM run.

5. Short runs of direct maximization (sDirect): perform direct maximization 5 times with

random β0 and s parameters and a small number of maximum iterations, select the so-

lution with maximum likelihood among those 5 runs and use as initial values to start a

regular EM run.

6. Sampling with direct maximization (samDirect): select a sample of 50 genes and perform

direct maximization with random β0 and s parameters, then use the solution as initial

values for starting a regular EM run.

7. Sampling with direct maximization multiple times (samDirectmult): perform direct max-

imization with random β0 and s parameters on 5 sets of samples of 50 genes, select the
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solution with maximum likelihood among the 5 runs and use as initial values to start a

regular EM run.

8. Short runs of EMQN5 (sEMQN5): run EMQN5 5 times with random β0 and s parameters

and a lose convergence criterion, select the solution with maximum likelihood among

those 5 runs and use as initial values to start a regular EM run.

9. Sampling with EMQN5 (samEMQN5): select a sample of 50 genes and perform EMQN5

with random β0 and s parameters, then use the solution as initial values for starting a reg-

ular EM run.

10. Sampling with EMQN5 multiple times (samEMQN5mult): perform EMQN5 with ran-

dom β0 and s parameters on 5 sets of samples of 50 genes, select the solution with

maximum likelihood among the 5 runs and use as initial values to start a regular EM run.

11. Short runs of EMQN10 (sEMQN10): run EMQN10 5 times with random β0 and s pa-

rameters and a lose convergence criterion, select the solution with maximum likelihood

among those 5 runs and use as initial values to start a regular EM run.

12. Sampling with EMQN10 (samEMQN10): select a sample of 50 genes and perform

EMQN10 with random β0 and s parameters, then use the solution as initial values for

starting a regular EM run.

13. Sampling with EMQN10 multiple times (samEMQN10mult): perform EMQN10 with

random β0 and s parameters on 5 sets of samples of 50 genes, select the solution with

maximum likelihood among the 5 runs and use as initial values to start a regular EM run.

The simulations were carried out using parallel computing with 128 cores, programmed

in R using the Rmpi package (Yu, 2002). For performance comparisons among the various

initialization procedures, the measures for evaluation taken into consideration are: percentage

of correctly classified genes, adjusted Rand index (ARI), number of EM iterations and total
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run-time required. It is desired to identify an initialization procedure which will lead to the

optimal classification ability when used with the model-based clustering algorithm.

3.3.1 Results

Varying dispersion parameter

Table 3.1 shows the run-time required for the various starting methods across the three disper-

sion parameter settings. If we use the run-time of the initialization method ‘True’ as reference,

there seems to be no specific pattern for run-time required as the dispersion decreased. The

other initialization methods also showed similar results, with some requiring more time when

dispersion is large while some other required more time when dispersion is small. Figure 3.1

shows the mean ARI resulted from the different initialization methods when dispersion parame-

ter varied from s = 10 to 2. It is noticeable that the method starting with random starting values

(‘Random’) performed worst, with the lowest mean and most variable ARI obtained. Relative

to the results obtained from the ‘True’ method (using the true parameters as starting values),

our clustering method performed best when using starting values from the ‘sEM’ method. The

other initialization methods all had similar performance, with similar mean ARI achieved but

much more variable than the ‘True’ and ‘sEM’ methods. Overall, all initialization methods had

the highest mean ARI when dispersion parameter s = 10 and had worse clustering accuracy as

the dispersion parameter decreased (ARI from around 0.9 for s = 10 went down to ARI around

0.8 for s = 2).

Mixture models are often non-identifiable and the estimation methods would not converge

when such models are obtained. The parameters in these models would not have reliable

estimates and may have unreasonable estimates of standard errors, so the datasets with non-

identifiable models were excluded from the analysis. Figure 3.2 displays the mean ARI from

the various starting methods while only including datasets with identifiable models (the number
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of datasets included in these boxplots are listed in Tables 3.3, 3.5 and 3.7 in later subsections).

We can see from the boxplots that removing the non-identifiable models resulted in a lot of the

datasets with low ARI (ARI lower than 0.6) being excluded. There are also smaller amounts of

outliers for all different initialization methods. Again, the methods ‘True’ and ‘sEM’ produced

ARI values with smallest variation in all three dispersion parameter settings, and the method

‘samEMQN10m’ also had better results than the other initialization methods. By looking at the

differences between including and excluding the datasets with non-identifiable models, there is

reason to believe that the non-identifiable models result in poor clustering/classification ability

and we would like to find an initialization method with a good balance between clustering ac-

curacy and chance of obtaining non-identifiable model.

Methods Run-time (hours)
s = 10 s = 5 s = 2

True 14.15 16.78 13.67
Random 70.98 65.99 60.72
sEM 24.51 28.67 29.28
samEM 22.87 21.30 25.92
sDirect 40.84 32.77 22.73
samDirect 19.05 24.16 20.54
samDirectmult 57.92 29.62 17.21
sEMQN5 40.27 36.90 29.76
samEMQN5 14.96 26.43 24.48
samEMQN5mult 20.80 27.55 22.48
sEMQN10 37.78 34.62 28.56
samEMQN10 26.82 21.65 19.82
samEMQN10mult 27.78 29.19 19.06

Table 3.1: Run-time required for the different initialization strategies.
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Figure 3.1: Mean ARI of the different initialization strategies across the three dispersion parameter
settings.

Dispersion parameter s = 10

Table 3.2 shows the mean ARI and mean percent correctness of the different initialization

methods for dispersion parameter s = 10 when all datasets (total of 500) are included. The

estimation using the true trajectory shapes as starting values (‘True’) had the best performance

as expected, with the highest ARI and percent correctness for the classifications. The initializa-

tion strategy ‘sEM’ also achieved good results with the next highest ARI of 0.94 and 97.07% of

genes correctly classified into the clusters. The results showed that all the other proposed ini-

tialization strategies performed better than the traditional random initialization, as the method

’Random’ had the lowest ARI and percent correctness recorded.
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Figure 3.2: Mean ARI of the different initialization strategies across the three dispersion parameter
settings (excluding datasets with non-identifiable models).

Including a sampling component into the initialization methods seems to have improved

the performance for using direct maximization and EMQN10 to obtain starting values, as the

‘samEMQN10’ and ‘samEMQN10mult’ methods were able to obtain higher ARI and per-

cent correctness than using the ‘EMQN10’ method, and same for ‘sDirect’, ‘samDirect’ and

‘samDirectmult’ respectively. Performing the sampling multiple times improved the results

for using EMQN5 to find starting values, since the method ‘samEMQN5mult’ had a higher

ARI of 0.87 and 84.69% correctness compared to the lower ARI and percent correctness of the



Chapter 3. Initialization procedures for EM estimation of finite mixture models 100

Methods Datasets included ARI Percent correctness EM iterations
True 500 0.95 (0.02) 97.99 (0.66) 90.65
Random 500 0.71 (0.29) 69.22 (29.75) 247.66
sEM 500 0.94 (0.08) 97.07 (6.93) 42.52
samEM 500 0.84 (0.18) 84.32 (23.66) 145.18
sDirect 500 0.85 (0.16) 83.36 (23.72) 197.52
samDirect 500 0.86 (0.16) 83.61 (24.25) 199.39
samDirectmult 500 0.86 (0.15) 83.87 (25.09) 146.31
sEMQN5 500 0.84 (0.17) 79.83 (24.94) 192.65
samEMQN5 500 0.84 (0.18) 80.11 (26.93) 187.17
samEMQN5mult 500 0.87 (0.15) 84.69 (24.94) 164.73
sEMQN10 500 0.83 (0.20) 82.13 (25.63) 162.11
samEMQN10 500 0.86 (0.16) 83.74 (24.73) 205.89
samEMQN10mult 500 0.86 (0.15) 83.31 (26.08) 156.89

Table 3.2: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (including all 500 datasets) when s = 10.

‘sEMQN5’ and ‘samEMQN5’ methods.

The EM iterations required for the EM long run following the different initialization strate-

gies are also shown in Table 3.2. The goal is to find a strategy which can reduce the number

of iterations required to find the MLE’s for the parameters. It is clear from the results that

the ‘sEM’ method performed the best in this case with the lowest number of EM iterations

required for the estimations. Besides the random initialization method ‘Random’ requiring the

highest number of EM iterations, all the other strategies required similar amount of iterations

to complete the estimation process.

The run-times required for the different initialization methods are shown in Table 3.1. The

method of starting with the true trajectory shapes (the method ‘True’) should require the least

amount of time and the run-time results did support that assumption. For s = 10, initialization

strategy with random selection (‘Random’) required approximately five times the run-time of

the ‘True’ method, which makes it not a desirable method considering its long run-time along
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with its poor estimation performance (lowest ARI and percent correctness). Using a sampling

component should reduce the run-time of the estimation since we try to obtain starting values

using a smaller group of genes rather than the entire set of genes. Obtaining starting values us-

ing EM with sampling (‘samEM’) required less time than ‘sEM’, but the small time difference

of 2 hours did not justify for using the ‘samEM’ method compared to the great performance of

‘sEM’, which had a higher ARI and higher percent of genes correctly classified.

Methods Datasets included ARI (sd) Percent correctness (sd) EM iterations
True 500 0.95 (0.02) 97.99 (0.66) 90.65
Random 220 0.94 (0.05) 96.03 (11.12) 204.53
sEM 491 0.95 (0.02) 97.98 (0.64) 40.90
samEM 342 0.94 (0.03) 96.99 (8.12) 90.62
sDirect 342 0.94 (0.03) 96.68 (8.62) 141.54
samDirect 350 0.94 (0.03) 97.19 (6.79) 152.59
samDirectmult 351 0.94 (0.04) 96.92 (8.78) 105.34
sEMQN5 329 0.94 (0.04) 96.48 (11.98) 144.31
samEMQN5 320 0.94 (0.04) 95.89 (11.15) 130.49
samEMQN5mult 362 0.94 (0.03) 97.53 (4.66) 124.66
sEMQN10 338 0.94 (0.04) 97.30 (5.65) 118.61
samEMQN10 350 0.94 (0.04) 96.45 (9.81) 143.26
samEMQN10mult 345 0.95 (0.02) 97.63 (4.42) 107.96

Table 3.3: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (excluding datasets with non-identifiable models) when s = 10.

Table 3.3 shows the number of datasets (out of a total of 500) included in the perfor-

mance comparison across the different initialization strategies if we only consider the datasets

with identifiable models. The ‘sEM’ strategy had the fewest number of datasets with non-

identifiable models aside from the simulations which used the true trajectory shapes as starting

values (‘True’). All the other proposed initialization strategies had similar numbers of datasets

being excluded, but including the sampling component seems to slightly reduce the number of

datasets with non-identifiable models (for simulations with direct maximization, EMQN5 and

EMQN10, but not for obtaining starting values with EM method).
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Table 3.3 also shows the mean ARI and percent correctness of the different initialization

strategies when considering only the datasets with identifiable models, and estimations with the

different strategies all obtained similar results. The ‘True’, ‘sEM’ and ‘samEMQN10mult’ pro-

duced the three highest estimates of mean ARI and percent correctness with the smallest stan-

dard deviations out of all the initialization methods. Compared with the ‘samEMQN10mult’

method, the ‘sEM’ method is preferred since there were fewer datasets with non-identifiable

models when estimating using the ‘sEM’ methods (only 9 datasets excluded from the analy-

sis). The method with random initialization (‘Random’) still appeared to have the worst per-

formance, with the lowest percent of correctly clustered genes and highest standard deviations

for the estimates.

Dispersion parameter s = 5

Table 3.4 shows the clustering results obtained using different initialization strategies when

dispersion parameter s = 5. Similar to the results from the case when s = 10, it is clear that the

methods ‘True’ and ‘sEM’ also obtained the best results when dispersion parameter is reduced.

These two initialization methods produced the highest ARI and percent correctness with the

smallest standard deviations among all the methods, and ‘sEM’ also required the least number

of EM iterations for the EM estimation. The ‘Random’ method would be a poor choice of

initialization strategy since it resulted in the lowest ARI and lowest percent of genes classified

correctly. The ‘Random’ method required more than double of the amount of iterations needed

for ‘True’, five times of the amount needed for ‘sEM’ and about two-thirds more iterations than

needed for the other proposed methods. With its low accuracy in clustering and long runtime

requirement, initializing our clustering approach with random starting values seem to be ap-

propriate only if the other methods are not available. Methods implemented with the sampling

component seem to have performed better than those without sampling, since they tend to have
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produced slightly higher ARI with less EM iterations required.

When we only consider the datasets with identifiable models (Table 3.5), the results showed

a similar pattern. The numbers of datasets included for the initialization methods varied a lot,

with the methods ‘True’ and ‘sEM’ had the highest number of datasets with identifiable models

and the best clustering results in terms of ARI and percent of genes being classified correctly.

The method ‘sEM’ also required the least number of EM iterations, while the method ‘Ran-

dom’ required the largest number of iterations and produced the worst clustering results with

highest amount of variation. Methods which sample datasets multiple times produced higher

number of datasets with identifiable models, better clustering ability and required lower amount

of EM iterations than the methods without sampling components. When we look at the dif-

ference between including and excluding the datasets with non-identifiable models (Tables 3.4

and 3.5), it is noticeable that all measures improved when the non-identifiable models are not

considered, with higher and less varied ARI and percent correctness achieved under smaller

amounts of EM iterations.

Dispersion parameter s = 2

The mean ARI and mean percent correctness among the various initialization procedures

for s = 2 when all 500 datasets are included are shown in Table 3.6. The mean ARI achieved

by all initialization methods ranged between 0.68 to 0.78, which is a lower range than the re-

sults obtained when dispersion parameters were 5 or 10. The percents of genes being clustered

correctly also showed the same pattern, although the amounts of decrease from s = 5 to s = 2

are smaller than those observed for the mean ARI measures. The clustering ability comparison

across the different initialization methods showed the same pattern as the other two dispersion

parameter settings, with ‘True’ and ‘sEM’ methods having the highest mean ARI and per-

cent correctness while requiring low numbers of EM iterations. The methods ‘Random’ and
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Methods Datasets included ARI Percent correctness EM iterations
True 500 0.91 (0.02) 96.49 (0.88) 108.31
Random 500 0.72 (0.27) 70.96 (30.08) 241.41
sEM 500 0.90 (0.03) 96.20 (3.73) 47.63
samEM 500 0.83 (0.14) 85.81 (21.57) 136.51
sDirect 500 0.84 (0.13) 84.77 (22.89) 157.72
samDirect 500 0.85 (0.12) 86.22 (22.29) 180.60
samDirectmult 500 0.84 (0.12) 83.34 (25.81) 151.36
sEMQN5 500 0.83 (0.14) 83.94 (24.44) 168.07
samEMQN5 500 0.85 (0.11) 86.88 (21.66) 155.28
samEMQN5mult 500 0.86 (0.11) 86.59 (22.32) 136.88
sEMQN10 500 0.83 (0.15) 85.11 (23.20) 155.97
samEMQN10 500 0.84 (0.13) 84.27 (23.98) 160.86
samEMQN10mult 500 0.86 (0.10) 86.62 (22.36) 138.55

Table 3.4: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (including all 500 datasets) when s = 5.

‘sEMQN10’ obtained the lowest mean ARI and percent correctness with large standard devia-

tions, but variation among percent correctness achieved by the other initialization methods (for

example, standard deviation of 23.06 from ‘samEMQN10mult’) were also much larger than

those shown in ‘True’ and ‘sEM’ results (standard deviations of 0.03).

Table 3.7 shows the results obtained by the various initialization strategies when the datasets

with non-identifiable models were excluded from the analysis. We can see that the numbers of

datasets included for all initialization methods were high compared with when dispersion pa-

rameters were set to 10 or 5. This may be due to the fact that as dispersion parameter decreases

the data tends to be more like the negative binomial distribution than Poisson, which is what we

assume for our model-based clustering approach. The results obtained when non-identifiable

models were disregarded are much less variable since they excluded a lot of the outliers and

we have higher mean ARI values and percentages of genes being clustered correctly. It is rea-

sonable to believe that the EM estimation may be trapped in local points for a large number of

iterations when non-identifiable models obtained, and this is supported by the lower average
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Methods Datasets included ARI (sd) Percent correctness (sd) EM iterations
True 500 0.91 (0.02) 96.49 (0.88) 108.31
Random 254 0.91 (0.03) 96.03 (5.87) 188.26
sEM 497 0.90 (0.02) 96.45 (0.82) 44.37
samEM 373 0.90 (0.03) 96.13 (5.32) 84.55
sDirect 377 0.90 (0.02) 96.30 (3.91) 112.58
samDirect 393 0.90 (0.03) 95.91 (6.17) 134.83
samDirectmult 373 0.91 (0.03) 96.15 (5.52) 117.99
sEMQN5 377 0.90 (0.03) 96.12 (4.79) 128.11
samEMQN5 396 0.91 (0.03) 96.49 (1.55) 122.47
samEMQN5mult 402 0.90 (0.04) 95.98 (5.91) 104.60
sEMQN10 383 0.90 (0.03) 95.91 (6.82) 130.97
samEMQN10 377 0.90 (0.03) 95.97 (5.24) 107.19
samEMQN10mult 398 0.91 (0.02) 96.55 (0.83) 87.46

Table 3.5: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (excluding datasets with non-identifiable models) when s = 5.

EM iterations required when we only consider the datasets with identifiable models.

Varying percent of sampling

Since we evaluated the performance of our clustering approach with some initialization strate-

gies having a sampling component, it is also of interest as to how the percent of sampling would

affect the clustering ability. We have simulated 500 datasets independently with each dataset

consists of 500 genes from four clusters over five time-points (π1 = 0.1, π2 = 0.2, π3 = 0.3 and

π4 = 0.4) and dispersion parameter s = 10. We assessed the performance of the sampling ini-

tialization strategies when the sample consists of 50, 150, and 250 genes (10%, 30% and 50%

of the entire dataset) respectively. While keeping other parameters constant, we hypothesize

that the larger sample size (higher percent of sampling) would lead to more accurate clustering

results but may require additional run-time.

The initialization strategies that are evaluated in this subsection are the methods: ‘samDi-
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Methods Datasets included ARI Percent correctness EM iterations
True 500 0.78 (0.03) 90.92 (7.45) 81.73
Random 500 0.68 (0.19) 72.88 (29.68) 171.92
sEM 500 0.78 (0.03) 90.61 (8.50) 54.33
samEM 500 0.75 (0.09) 85.80 (17.45) 124.22
sDirect 500 0.76 (0.07) 85.14 (20.46) 122.33
samDirect 500 0.76 (0.08) 85.30 (19.95) 124.67
samDirectmult 500 0.74 (0.10) 82.02 (23.71) 121.59
sEMQN5 500 0.75 (0.11) 83.74 (22.17) 140.83
samEMQN5 500 0.76 (0.08) 84.63 (20.69) 134.24
samEMQN5mult 500 0.75 (0.09) 84.12 (21.47) 108.77
sEMQN10 500 0.73 (0.14) 81.46 (23.64) 130.17
samEMQN10 500 0.76 (0.08) 85.00 (20.61) 135.08
samEMQN10mult 500 0.75 (0.08) 83.38 (23.06) 109.72

Table 3.6: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (including all 500 datasets) when s = 2.

rect’, ‘samDirectmult’, ‘samEM’, ‘samEMQN5’, ‘samEMQN5mult’, ‘samEMQN10’ and

‘samEMQN10mult’. Table 3.8 shows the run-time required for the different starting methods

across the three settings of sampling percentage. While we hypothesized that the higher per-

cent of sampling would lead to longer run-time being required, this theory was supported by

results from the ‘samEM’ and most of the hybrid-EM methods (except for ‘samEMQN10’) but

not all methods. Focusing on the methods with direct maximization as the starting procedures

(‘samDirect’ and ‘samDirectmult’), they required the longest time for the clustering to finish

when they used 10% of the genes in the sample to search for starting values. The method

‘samEMQN10’ required more time when using 30% of the genes as the sample than when

using 50% of the entire dataset. The run-time required for the clustering approach depends

on the time required for the initialization part as well as the regular EM run which follows

after selecting the starting values. It is true that initialization procedure performed on a larger

sample should require a longer time, however, it may decrease the amount of time needed for

the EM estimation if the large sample provided good starting values. This may be the reason

why we did not observe in results from all initialization methods the hypothesized additional
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Methods Datasets included ARI (sd) Percent correctness (sd) EM iterations
True 500 0.78 (0.03) 90.92 (7.45) 81.73
Random 340 0.78 (0.03) 91.22 (6.49) 170.03
sEM 499 0.78 (0.03) 90.71 (8.19) 52.43
samEM 437 0.78 (0.03) 91.46 (4.06) 103.75
sDirect 454 0.78 (0.03) 90.84 (7.64) 107.87
samDirect 448 0.78 (0.03) 91.17 (6.11) 110.82
samDirectmult 421 0.78 (0.03) 90.77 (7.98) 111.68
sEMQN5 438 0.78 (0.03) 90.82 (7.75) 120.42
samEMQN5 441 0.78 (0.03) 91.20 (6.32) 117.71
samEMQN5mult 441 0.78 (0.04) 90.70 (7.83) 99.83
sEMQN10 410 0.78 (0.03) 91.34 (5.13) 112.08
samEMQN10 446 0.78 (0.03) 91.03 (6.82) 114.18
samEMQN10mult 430 0.78 (0.03) 91.56 (4.09) 97.80

Table 3.7: Number of datasets included, mean Adjusted Rand Index (standard deviation), mean per-
cent correctness (standard deviation), and mean EM iterations required for the different initialization
strategies (excluding datasets with non-identifiable models) when s = 2.

run-time being required as the percent of sampling increased.

Table 3.9 shows the mean ARI and percent correctness obtained, as well as the mean EM

iterations required, by the various initialization strategies across the three settings of percent of

sampling. In terms of ARI, the method ‘samEMQN5mult’ seems to have performed the best

with the highest mean ARI compared to the other methods. The initialization strategies did not

show much improvement in clustering accuracy as the percent of sampling changed from 10%

to 50%. Most strategies obtained the highest ARI when 30% of the genes were used in the

initial sample. The same pattern was shown in the percent of genes being correctly classified

by the methods. Also, most methods required the least number of EM iterations when only

30% of genes were used to obtain initial values.

If we only consider the datasets with identifiable models, the corresponding results are

shown in Table 3.10. Sampling 30% of the genes gave us the highest number of datasets

with identifiable models for most initialization strategies (except for ‘samDirectmult’). There
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doesn’t seem to be any specific patterns in terms of ARI and percent correctness obtained as

the sampling percentage changed. Excluding the datasets with non-identifiable models allowed

us to disregards results with bad clustering performance, hence the mean ARI and percent

correctness are both higher (with much less variation) when we only consider the datasets

with identifiable models. The EM iterations required are also much lower when we exclude

the datasets with non-identifiable models. The methods ‘samEM’ and ‘samEMQN10mult’

required the smallest number of EM iterations for the regular EM run compared to the other

initialization strategies. Some methods required the least number of EM iterations with percent

of sampling being 30%, while some other methods required least with 50% genes in initial

sample.

Methods Percent of sampling
10 % 30 % 50 %

samDirect 57.92 26.39 33.59
samDirectmult 40.84 27.64 28.62
samEM 22.87 28.28 28.29
samEMQN5 14.96 29.62 39.19
samEMQN5mult 20.80 52.63 66.35
samEMQN10 27.78 38.17 31.54
samEMQN10mult 26.82 41.54 77.34

Table 3.8: Run-time required for the various initialization procedures with sampling components (10%,
30% and 50% of sampling).
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3.4 Real data analysis

3.4.1 Fibroblast data

The initialization strategies evaluated in the simulation studies are applied to the real dataset

from Dudley et al. (2002). The dataset measured gene expression of the response to fibroblasts

to fetal bovine serum in order to investigate the development of human vertebrate limb. The

dataset has been described in detail in Chapter 1. For the comparison of initialization strategies,

all methods were started using the four-group model since that was the optimal model chosen

for this dataset when model selection was performed in section 2.4.1.

Table 3.11 shows the EM iterations used, logliklihood and BIC obtained by the various

initialization methods. The goal of the comparison is to find out which initialization method

yields the best likelihood or model in terms of BIC. The method ‘sEM’ gave the best BIC

when compared to the other methods with the lowest number of EM iterations required. The

methods ’samDirect’ and ’samDirectmult’ also resulted in good BIC values but required more

EM iterations to complete clustering the dataset. When the model-based clustering approach

was started with the methods ’sDirect’ and ’samEMQN5’, the EM algorithm was not able to

converge within 1000 iterations and resulted in likelihoods which were far away from the like-

lihoods obtained by the other methods upon convergence. It should be noted that the method

‘Random’ required almost five times as much run-time as needed by the other methods because

it performed the clustering approach five times with random starting values to find the best so-

lution. This becomes problematic when we are presented with large datasets such as this one,

with a sample size of 6,153, it required days to obtain the clustering results. In this sense, the

other initialization methods had obvious benefits over the ‘Random’ methods by being able to

achieve reasonable result under much less run-time.
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EM iterations log-likelihood BIC
Random 440 -1438.35 -1521.24
sEM 50 -1416.60 -1499.49
sEMQN5 628 -1794.61 -1877.50
sEMQN10 291 -1438.60 -1521.48
sDirect 1000 -3861.38 -3944.26
samEM 362 -1438.35 -1521.23
samEMQN5 1000 -3684.85 -3767.73
samEMQN10 229 -1438.03 -1520.91
samDirect 336 -1438.11 -1520.99
samEMQN5mult 246 -1438.36 -1521.24
samEMQN10mult 376 -1438.34 -1521.22
samDirectmult 191 -1437.72 -1520.60

Table 3.11: Results of initialization strategies used on the fibroblasts data using mixtures of negative
binomials with four components.

3.4.2 Fruit flies data

The initialization strategies were also applied to the RNA-seq dataset described in Chapter 1.

The D. melanogaster dataset (Graveley et al., 2011) measured gene expression for studying

developmental stages spanning the life cycle of fruit flies. The RNA-seq dataset was clustered

using our model-based clustering approach with the various initialization methods using mix-

tures of four components, which was the best component-model discovered for this dataset in

section 2.4.2.

The results from the various initialization methods are shown in Table 3.12. Same as the

other dataset, we notice that the method ‘sEM’ produced the model with the largest BIC value

with a small number of EM iterations required. Some of the other methods also obtained

solutions very similar to the one resulted from ’sEM’ but required more EM iterations. The

method ’samDirect’ only required 14 EM iterations for the algorithm to converge thus needing

the smallest amount of time to finish clustering of the dataset, but the likelihood resulted was

not close to the maximum likelihood obtained by ‘sEM’. The ‘samEMQN10’ method seems to

be the second best initialization method in terms of time requirement and likelihood obtained,
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since it required a comparatively low amount of run-time to produce a solution very close to the

one resulted from ’sEM’. The ‘Random’ method required a small amount of run-time because

two out of the five runs resulted in non-identifiable models quickly, so only three runs were

used to select the best solution.

EM iterations Time (hr) log-likelihood BIC
Random 70 7.33 -1955.01 -2014.82
sEM 60 11.72 -1955.01 -2014.82
sEMQN5 121 7.39 -1955.10 -2014.91
sEMQN10 110 6.24 -1955.03 -2014.84
sDirect 114 5.85 -1955.07 -2014.88
samEM 137 6.24 -1955.11 -2014.92
samEMQN5 69 2.71 -2024.83 -2084.64
samEMQN10 97 4.09 -1955.11 -2014.92
samDirect 14 0.68 -2024.17 -2083.98
samEMQN5mult 139 5.96 -2039.73 -2099.54
samEMQN10mult 97 5.27 -1955.11 -2014.92
samDirectmult 114 3.73 -1955.06 -2014.87

Table 3.12: Results of initialization strategies used on the fruit flies data using mixtures of negative
binomials with four components.

3.5 Summary

In this chapter, we have proposed and evaluated some initialization strategies suitable for

model-based clustering of time-course RNA-seq data. Initialization methods based on short

runs of estimation and sampling components were compared against the commonly used ap-

proach of multiple random starting points. Simulation results showed that random initializa-

tion had poor performance in terms of inaccurate clustering and long run-time. Our results

reflected that running short runs of EM and using their best solution as starting values provide

good clustering performance with identifiable models, and the tradeoff between the quality of

clustering performance and run-time is good. All initialization strategies had similar clustering
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ability when regarding only the identifiable models. Sampling 30% of the genes into an initial

sample and using hybrid-EM methods to obtain starting values seem to be a good alternative

initialization strategy.



Chapter 4

Missing Data in high-dimensional datasets

4.1 Introduction

Recently biological research studies often involve the use of high-throughput technologies such

as gene expression microarrays, mass-spectrometry-based proteomic assays, and quantitative

protein and genetic interaction screens. The high-dimensional datasets produced from these

biotechnologies often suffer from missing values due to various reasons, and how to deal with

such missing information becomes a key issue in the data analysis. In this chapter, we evaluate

the performance of several imputation methods on time-course genomic datasets and propose

a new cluster-based imputation method which is suitable for RNA-seq data. We first give an

overview of the problem of missingness in large-scale datasets, the imputation methods that

have been proposed to deal with the missing values, and the impact of these imputations on

downstream analyses such as cluster analysis.

In proteomic research, researchers can use liquid chromatography-mass spectrometry-based

assays to study the profiling of complex peptide mixtures in large samples. High-throughput

mass spectrometry can provide identification and quantification of thousands of peptides, but

the problem of missing peptide identifications and abundance values often occur, especially in

115
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large-scale clinical proteomic studies (Aittokallio, 2009; Karpievitch et al., 2012). Missing val-

ues may arise when a peptide is not identified in all samples in the experiment, as an abundance

value would be declared missing if a peptide is not present, or if it is present in the sample but

at a concentration below a certain threshold that cannot be detected by the instrument.

In spotted cDNA microarrays, each spot on the array is often assigned to a unique gene, so

if a spotting problem corresponds to a missing value then it would lead to the loss of informa-

tion for that particular gene (Brás and Menezes, 2007). Imperfections in the spots may be due

to different mechanisms. Smudges and scratches on the slides or deposition of dust may corrupt

signals at the spots during the microarray experiment and the spots will be noted as missing

when the array image is digitized. Hybridization failures or bleed-over from neighbouring

spots can also affect the spot intensity and cause an increase in the background intensity at

those spots when the array image is scanned, producing negative expression levels being mea-

sured, which would then be treated as missing (Hourani and El Emary, 2009; Jörnsten et al.,

2005). In some large-scale studies, the problem of missing values may be severe as more than

85% of the genes may be affected with at least one missing value (de Brevern et al., 2004;

Ouyang et al., 2004). Since many downstream analyses in genomic studies require complete

data matrices, the problem of missingness have been an important area of research and litera-

ture mainly focus on missing values in microarray data.

4.1.1 Missing mechanism and treatments of missing values

Missing data can arise due to different reasons and the missing mechanism can be categorized

into three types (Little and Rubin, 1987): missing completely at random (MCAR), missing at

random (MAR) and missing not at random (MNAR). The missingness is MCAR if the prob-

ability that a value is missing is unrelated to the observed or missing values, that is, if miss-

ingness on response Y is unrelated to the observed values of Y . Missing data is classified as
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MAR if missingness on Y is only related to the observed values of Y , so that the missing data

may depend on the observed variables but not on the missing variable itself. MCAR and MAR

are sometimes referred to as ‘ignorable’ missingness and valid statistical methods have been

developed to analyze data with such missing mechanisms. The case of MNAR is the most

difficult to deal with because the probability that a value is missing depends on the missing

value itself. Missingness with MNAR is often termed ‘non-ignorable’ and statistical analysis

on this type of missing data is complicated because it relies on the ability to model the process

which generates the missing data. When working with microarray data, one may expect the

missingness arises from a random distribution due to hybridization failures, dusts on the slides,

etc., at random spots on the array. However, when the signal intensity at a spot is too low to be

distinguished from the background it may be declared as a missing value. This represents the

situation where the missing pattern actually depends on the spot intensity itself, thus leading to

a case of a mixture of MAR and MNAR in the dataset (Brás and Menezes, 2007).

Many downstream analyses require complete gene expression matrices, such as classifi-

cation methods (e.g. support vector machines), multivariate statistical analysis methods (e.g.

principal component analysis, singular value decomposition), and some model-based or hierar-

chical clustering methods. Thus, in order to carry on proper analyses, there is a need to obtain

complete datasets. There are different ways to deal with datasets with missingness. For some

studies, it may be possible to repeat the experiments and try to obtain a new set of results with

no missingness. However, this is often not feasible for microarray experiments involved in

large-scale studies due to economic reasons or biological sample availability.

When working with datasets with missingness, researchers can choose between: eliminat-

ing the data objects with missing values, estimating the missing values or ignore the missing

values during the data analysis. When a spot on the microarray corresponds to a specific gene,

it might lead to severe loss of information if we simply throw away a gene when its expression
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is not measured in some of the experiments. If the downstream analysis method require com-

plete data matrices, then it would not be possible to simply ignore the missing values. In such

situations, researchers would wish to estimate the missing values using imputation methods or

use analysis methods which can accommodate missingness (for example, Schliep and others

(2003) have developed a hidden Markov models approach which can handle gene expression

data with missing values). However, analysis methods may not be robust to the presence of

missing values, and may have reduced efficiency even if it can accommodate missingness in

the dataset.

The similar problem of missing values also occur when RNA-seq is used to measure gene

expression, thus it is of interest to investigate the impact of missing values in RNA-seq data.

Due to the difference between data types in microarray and RNA-seq data, methods suitable

for microarray data cannot be directly applied to data from RNA-seq experiments. Efficient

imputation and analysis methods for missingness in the discrete count reads from RNA-seq

data need to be developed and evaluated.

4.2 Methods

4.2.1 Imputation methods

To evaluate the performances of various imputation procedures on time-course RNA-seq data,

we included seven commonly used imputation methods that are readily available for researchers.

We have included simple methods (imputing with zeros and row or column averages), straight-

forward methods tailored for observations over time (imputing with observed values from the

previous or the next time point), and imputation methods which account for correlation struc-

tures in the datasets (KNNimpute and SVDimpute).

• ZEROimpute: replacing missing values with zeros



Chapter 4. Missing Data in high-dimensional datasets 119

• ROWimpute: replacing missing values with the row averages (i.e., mean of observed

values from the same gene over time)

• COLimpute: replacing missing values with the column averages (i.e., mean of observed

values from different genes at the same time point)

• LOCF (Last observation carried forward): replacing a missing entry with the observed

value from the previous time point of the same gene. If the missing value is at the first

time point then the method will replace the missing entry with the next observed value

from the same gene.

• NOCB (Next observation carried backward): replacing a missing entry with the observed

value in the next time point of the same gene. If the missing value is at the last time point

then the method will replace the missing entry with the previously observed value from

the same gene.

• KNNimpute: replacing missing values with the KNNimpute method (Troyanskaya et al.,

2001) using the function kNNImpute in the R package imputation (Wong, 2013).

• SVDimpute: replacing missing values with the SVDimpute method (Troyanskaya et al.,

2001) using the function SVDImpute in the R package imputation (Wong, 2013).

4.2.2 Datasets and missing data

We used two types of datasets in our evaluation of imputation methods. The first type con-

sists of simulated datasets with discrete counts as outcomes that are similar to the type of

data resulting from the RNA-seq technology. The second is a real RNA-seq dataset from D.

melanogaster (Graveley et al., 2011) that measured gene expression during the life cycle of

fruit flies (described in Chapter 1). The first type, the artificial datasets, are designed to resem-

ble time-course gene expression patterns in a total of 500 genes in four clusters over five time

points, with the clusters consisting of 50, 100, 150, and 200 genes respectively. We considered
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datasets simulated with dispersion parameter s = 2 and the expression patterns follow those

shown in Figure 2.4 in Chapter 2 of this dissertation.

Since both types of datasets have complete observations, missing entries were artificially

introduced to the complete matrices by discarding values. We have considered both the MCAR

and MAR scenarios, varying the overall missing probabilities from 5% to 25%. Given that

missing entries may be introduced at random (note that read counts of zeros are not missing

values), such that we can mimic the situation by randomly removing the specified percentage

of entries from a complete data matrix to generate MCAR missingness. However, in some

cases, the missing values may not be randomly introduced but may be dependent on the genes.

We follow the procedure used by Brás and Menezes (2007) to generate these MAR scenarios:

first randomly sample some rows (genes) of the complete matrix, then assign missing values

to some entries of the selected rows such that expression values at different time points of the

selected genes have a chance of being missing.

For each dataset with the various percentages of missingness, the imputation methods were

applied and the accuracy of the methods were evaluated and compared using the normalized

root mean squared error (RMSE). Let ŷ jt be the estimated expression value and y jt be the

original value for gene j at time point t, the accuracy of an imputation method is measured by

the RMSE over the entire matrix:

RMSE =
root mean squared difference between(y jt, ŷ jt)

root mean squared(y jt)

This evaluation measure proposed by Ouyang et al. (2004) have been used by other authors

for measuring imputation accuracy (Jörnsten et al., 2005; Sehgal et al., 2005). A particular

feature of this metric is that the RMSE for ZEROimpute always equals to one so it is easy to

compare imputation accuracy and difficulty across datasets. For comparison, the simulation
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study included repeating the missing value generation and imputation procedure 500 times for

each dataset and each imputation method. Figure 4.1 shows the schematic illustration of the

simulation study.

Figure 4.1: Schematic illustration of the simulation study: evaluation by RMSE comparing accuracy of
imputation methods.

4.2.3 Results

MCAR simulated data

Each simulated dataset is a 500 x 5 matrix, representing expression patterns of 500 genes over

five time points. For KNNimpute and SVDimpute, different numbers were used as the param-

eter k (number of neighbours in KNNimpute and number of eigenvectors in SVDimpute) to

examine the effect of the parameter selection. Figure 4.2 shows the RMSE values obtained

when using KNNimpute with k ranging from 5 to 30 across the missing probabilities from 5%

to 25%. It is clear that as the missing probability increases the accuracy of KNNimpute de-

creases, and that more neighbouring genes in the candidate set seems to improve the accuracy

of imputation shown by the lower RMSE values. Figure 4.3 displays the effect of k on the

imputation accuracy across different missing probabilities. It shows that the performance of

KNNimpute would improve as k increases and then become stabilized after k reaches a certain

value, such as threshold of k = 35 when missing probability was 5% and k = 60 for the cases

with higher missing probabilities.

Similar evaluation procedures were performed on SVDimpute to examine the effect of k
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Figure 4.2: MCAR simulated data: RMSE obtained by KNNimpute with various k parameter across
different missing probabilities.

on the imputation accuracy. The RMSE obtained from SVDimpute with different numbers of

eigenvectors across the datasets with 5% to 25% of values missing are shown in Figure 4.4,

and it is clear that SVDimpute with k = 1 is not appropriate. The missing percentage does

not seem to have an effect on the imputation accuracy for SVDimpute when k ranged from

two to five. Figure 4.5 shows that the RMSE values from SVDimpute with k = 2 is clearly

the lowest compared to other values of k across all five setting of missing probabilities. In

general, SVDimpute is more robust to missing probabilities than KNNimpute but KNNimpute

was more accurate when only 5% or 10% of entries were missing.

Table 4.1 displays the RMSE values from all the evaluated imputation procedures (with

KNNimpute and SVDimpute using the optimal k parameters) across the different missing prob-

abilities. It shows that the simple imputation methods of ROWimpute and NOCB performed

worse than just simply replacing missing values with zeros, since they produced RMSE values

higher than ZEROimpute (which always give RMSE of one). COLimpute performed surpris-
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Figure 4.3: MCAR simulated data: RMSE obtained by KNNimpute when k ranges from 5 to 100.

Missing probabilities
Methods 5% 10% 15% 20% 25%
ROWimpute 1.09 (0.07) 1.09 (0.05) 1.10 (0.05) 1.11 (0.06) 1.12 (0.05)
COLimpute 0.83 (0.05) 0.83 (0.03) 0.83 (0.03) 0.83 (0.02) 0.83 (0.02)
LOCF 0.99 (0.08) 0.99 (0.06) 0.99 (0.05) 1.01 (0.05) 1.02 (0.05)
NOCB 1.30 (0.22) 1.30 (0.17) 1.29 (0.14) 1.30 (0.13) 1.31 (0.11)
KNNimpute 0.75 (0.07) 0.76 (0.04) 0.78 (0.03) 0.79 (0.03) 0.81 (0.03)
SVDimpute 0.82 (0.08) 0.81 (0.05) 0.82 (0.04) 0.82 (0.03) 0.82 (0.03)

Table 4.1: MCAR simulated data: Comparison of RMSE of the imputation methods (means and stan-
dard deviations of 500 simulation runs).

ingly well with RMSE values similar to those obtained by the more sophisticated KNNimpute

(k = 75) and SVDimpute (k = 2). The RMSE values produced by ROWimpute, LOCF and

KNNimpute had obvious increases as the missing probabilities increased. Out of all the impu-

tation methods, NOCB produced the highest and most variable RMSE values, indicating that

it is not a suitable method for this type of datasets.
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Figure 4.4: MCAR simulated data: RMSE obtained by SVDimpute with various k parameter across
different missing probabilities.

MAR simulated data

The MAR simulated data were generated by first randomly selected genes from the 500 genes

in the complete matrices, then removed some of the entries from the selected genes to ob-

tain missing probabilities ranging from 5% to 25% in the 500 x 5 matrices. Figure 4.6 shows

that the RMSE values decreased from approximately 0.92 to 0.84 as the k parameter for KN-

Nimpute increased from 5 to 30, and the accuracy of KNNimpute decreases slightly when the

datasets contained more missing values. KNNimpute appeared to be less sensitive to changes

in missing probabilities in the MAR datasets compared to the MCAR datatsets. Similar to the

case of MCAR missingness, Figure 4.7 shows that in datasets with MAR missingness, RMSE

values decreased when k increases but stabilized after a certain threshold, and the effect of

missing rate on imputation accuracy was not obvious when k gets larger than 50. When k is 75

or larger, the RMSE values converged and it reflects that the missing probabilities seemed to

have essentially no effects on the performance of KNNimpute.
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Figure 4.5: MCAR simulated data: RMSE obtained by SVDimpute when k ranges from 1 to 5.

When SVDimpute with various k values were performed on the MAR simulated data, we

obtained similar patterns of RMSE values as in the MCAR simulated data. From Figure 4.8

and Figure 4.9, it can be seen that SVDimpute with k = 2 produced the most accurate impu-

tation values but the differences between k = 2, 3, 4 or 5 were not obvious. SVDimpute with

k = 1 had the worst performance with mean RMSE of approximately 0.885 across the various

missing probabilities settings, while the other parameter settings produced RMSE values be-

tween 0.82 to 0.84. SVDimpute outperformed KNNimpute in the case of MAR missingness

since KNNimpute was only able to achieve similar accuracy as SVDimpute when KNNimpute

was performed with k set to 35 or larger.

Table 4.2 compares the performances of the different imputation methods and it shows that

same as for the MCAR datasets, the NOCB method produced the least accurate imputation

values for the MAR simulated datasets out of all the methods. The table contained the RMSE

values obtained from KNNimpute with k = 60 and SVDimpute with k = 2, which were the

optimal k values for the two methods respectively for these datasets. The simple methods
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Figure 4.6: MAR simulated data: RMSE obtained by KNNimpute with various k parameter across
different missing probabilities.

ROWimpute, LOCF and NOCB all had mean RMSE values above one with large standard

deviations, showing that they were less accurate than ZEROimpute. Similar to the MCAR sit-

uation, COLimpute estimated missing entries with good accuracy, outperforming other simple

imputation methods and had comparable performance as the more sophisticated SVDimpute

and KNNimpute. Overall, RMSE values from the imputation methods were higher in the MAR

situation compared to the MCAR missingness, showing that the MAR missingness is more dif-

ficult to handle than completely random missingness.

MCAR fruit flies data

The fruit flies dataset consists of expression values from 542 genes over six time points, and

missing entries were randomly selected from the complete matrix to create MCAR missing-

ness. KNNimpute with different k values were performed for missing probabilities ranging

from 5% to 25% and the RMSE values obtained are shown in Figure 4.10. From the graph,
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Figure 4.7: MAR simulated data: RMSE obtained by KNNimpute when k ranges from 5 to 100.

Missing probabilities
Methods 5% 10% 15% 20% 25%
ROWimpute 1.20 (0.20) 1.20 (0.16) 1.19 (0.11) 1.20 (0.12) 1.20 (0.11)
COLimpute 0.83 (0.05) 0.83 (0.04) 0.83 (0.03) 0.83 (0.02) 0.83 (0.02)
LOCF 1.11 (0.19) 1.12 (0.15) 1.11 (0.11) 1.12 (0.12) 1.12 (0.10)
NOCB 1.34 (0.28) 1.34 (0.21) 1.33 (0.17) 1.34 (0.16) 1.33 (0.14)
KNNimpute 0.82 (0.07) 0.82 (0.04) 0.82 (0.03) 0.82 (0.03) 0.82 (0.03)
SVDimpute 0.83 (0.06) 0.82 (0.04) 0.82 (0.03) 0.83 (0.03) 0.82 (0.02)

Table 4.2: MAR simulated data: Comparison of RMSE of the imputation methods (means and standard
deviations of 500 simulation runs).

it is clear that KNNimpute had decreasing accuracy as the missing probability increased. It is

also noted that KNNimpute with five nearest neighbours in the candidate set (k = 5) produced

higher RMSE values than KNNimpute with other k parameters as the missing probability in-

creased. The performances of KNNimpute with k varying from 10 to 30 were very similar,

and this is also indicated by Figure 4.11 which showed the changes in RMSE values as the

parameter k changes from 5 to 100 across the different missing probability settings. Overall,

it appears that k = 15 can be seen as the optimal number of nearest neighbours to be included

in the candidate set when performing KNNimpute on the MCAR fruit flies dataset. Disre-
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Figure 4.8: MAR simulated data: RMSE obtained by SVDimpute with various k parameter across
different missing probabilities.

gard the missing probability, RMSE values obtained by KNNimpute increased as k increased

from 20 to 100, indicating that larger candidate sets may not lead to more accurate imputations.

The performances of SVDimpute on the MCAR fruit flies dataset across different missing

probability settings and various number of eigenvectors (k) are shown in Figure 4.12 and Figure

4.13. From both graphs, it is clear that k = 2 was the optimal parameter setting for SVDimpute

across the various missing probabilities. Figure 4.12 shows that SVDimpute with k = 6 had the

worst accuracy as missing probabilities changed. SVDimpute with k = 1 and k = 6 produced

constant RMSE values regardless the increase in missing probabilities, whereas with the other

four parameter settings (k = 2 to k = 5) SVDimpute obtained higher RMSE values with higher

amount of missingness in the dataset. KNNimpute outperformed SVDimpute for this dataset

since RMSE values from KNNimpute ranged from 0.25 to 0.35, whereas SVDimpute produced

values between 0.3 to 0.6.
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Figure 4.9: MAR simulated data: RMSE obtained by SVDimpute when k ranges from 1 to 5.

Table 4.3 shows the RMSE values obtained by the various imputation methods when miss-

ing probabilities ranged from 5% to 25%. The two more sophisticated imputation methods,

KNNimpute and SVDimpute, appeared to be more accurate than the other imputation methods,

with KNNimpute (k=15) performing slightly better than SVDimpute (k=2) across all cases.

The imputation method LOCF made the worst predictions of the missing values with the largest

and most variable RMSE values. All imputation methods obtained RMSE values below one,

meaning that any of these methods would be an improvement over imputing missing values

with zeros.

MAR fruit flies data

The MAR fruit flies data were generated from the same procedure as the MAR simulated data

to produce datasets with missing probabilities ranging from 5% to 25% in the dataset. Fig-

ure 4.14 shows the performance of KNNimpute when the number of nearest neighbours in the

candidate set and the missing probabilities varied. Overall, the imputation method performed
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Figure 4.10: MCAR fruit flies data: RMSE obtained by KNNimpute with various k parameter across
different missing probabilities.

worse as the missing probabilities increased from 5% to 25%. Across all the different missing

probabilities, the RMSE values obtained by KNNimpute decreased as the k parameter ranged

from 5 to 30, with very similar results obtained when k is 20 or larger. However, Figure 4.15

shows that a larger candidate set does not always lead to better predictions of the missing val-

ues. It appears that k = 20 is the optimal parameter value when performances were averaged

across the five different missing probabilities. The accuracy of KNNimpute increased sharply

when k increased from 5 to 20, then the method’s performance worsened as k increased.

The performances of SVDimpute with different number of eigenvectors (parameter k) are

displayed in Figure 4.16 and Figure 4.17. It is clear that the accuracy of SVDimpute stayed

rather constant disregard to changes in missing probabilities. SVDimpute with one or two

eigenvectors had similar results, with k = 2 having the lowest RMSE values obtained. As k

increased from three to six, the accuracy of SVDimpute decreased linearly as larger RMSE

values were achieved. Similar to the case of MCAR missingness, SVDimpute produced larger
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Figure 4.11: MCAR fruit flies data: RMSE obtained by KNNimpute when k ranges from 5 to 100.

Missing probabilities
Methods 5% 10% 15% 20% 25%
ROWimpute 0.51 (0.03) 0.52 (0.02) 0.52 (0.02) 0.52 (0.02) 0.53 (0.01)
COLimpute 0.60 (0.03) 0.60 (0.02) 0.60 (0.02) 0.60 (0.01) 0.60 (0.01)
LOCF 0.73 (0.04) 0.72 (0.03) 0.71 (0.03) 0.71 (0.02) 0.70 (0.02)
NOCB 0.63 (0.04) 0.63 (0.03) 0.62 (0.02) 0.62 (0.02) 0.62 (0.02)
KNNimpute 0.26 (0.03) 0.27 (0.02) 0.28 (0.02) 0.30 (0.02) 0.31 (0.01)
SVDimpute 0.30 (0.03) 0.31 (0.03) 0.31 (0.02) 0.32 (0.02) 0.33 (0.02)

Table 4.3: MCAR fruit flies data: Comparison of RMSE of the imputation methods (means and standard
deviations of 500 simulation runs).

RMSE values than those obtained by KNNimpute. This indicates that KNNimpute might be

more suitable than SVDimpute for the fruit flies dataset.

Table 4.4 compares the performances of the different imputation methods when dataset

consisted of various percentages of missingness. The RMSE values obtained by the imputation

methods under the case of MAR (Table 4.4) were generally larger and more variable than those

obtained in the case of MCAR (Table 4.3). The more sophisticated methods again performed

better than the simpler methods, with KNNimpute achieving the most accurate predictions of
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Figure 4.12: MCAR fruit flies data: RMSE obtained by SVDimpute with various k parameter across
different missing probabilities.

the missing values. The method LOCF produced the largest and most variable RMSE values

across all missing probabilities. When focusing on the effects of MAR and MCAR types of

missingness on imputation accuracy, it appears that simple methods had similar performances

under both missing mechanisms but KNNimpute and SVDimpute both had notably worse per-

formance in MAR datasets than in the MCAR datasets. Among all the methods, LOCF was

the only one which performed better in the MAR dataset than in the MCAR dataset.

Missing probabilities
Methods 5% 10% 15% 20% 25%
ROWimpute 0.57 (0.06) 0.56 (0.03) 0.57 (0.03) 0.57 (0.02) 0.57 (0.02)
COLimpute 0.61 (0.05) 0.60 (0.03) 0.60 (0.02) 0.60 (0.02) 0.60 (0.02)
LOCF 0.68 (0.06) 0.68 (0.04) 0.68 (0.04) 0.68 (0.03) 0.68 (0.03)
NOCB 0.62 (0.06) 0.62 (0.04) 0.62 (0.03) 0.62 (0.03) 0.62 (0.02)
KNNimpute 0.32 (0.05) 0.31 (0.03) 0.32 (0.03) 0.33 (0.02) 0.33 (0.02)
SVDimpute 0.38 (0.05) 0.38 (0.04) 0.38 (0.03) 0.38 (0.02) 0.38 (0.02)

Table 4.4: MAR fruit flies data: Comparison of RMSE of the imputation methods (means and standard
deviations of 500 simulation runs).
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Figure 4.13: MCAR fruit flies data: RMSE obtained by SVDimpute when k ranges from 1 to 6.

4.2.4 Discussion

By imputing the modified simulated and fruit flies datasets with different imputation methods,

we note that there are some differences among the performances of imputation approaches on

the two types of datasets. On the simulated datasets with artificially created missingness, the

imputation methods resulted in higher and more variable RMSE values than those obtained

from imputing the fruit flies datasets. Some of the imputation methods even produced RMSE

values larger than one from imputing the simulated datasets, indicating that it would be easier

and more accurate if one imputed the missing values with zeros. From these results, it shows

that it was more difficult to impute the simulated datasets than the real RNA-seq fruit flies

datasets with created missing values.

Overall, the results obtained from this section showed the difficulty in selecting the opti-

mal imputation method for any given dataset. The KNNimpute performed well for the fruit

flies data while SVDimpute produced better results for the simulated datasets. Also, when



Chapter 4. Missing Data in high-dimensional datasets 134

Figure 4.14: MAR fruit flies data: RMSE obtained by KNNimpute with various k parameter across
different missing probabilities.

using KNNimpute and SVDimpute for estimating the missing values, the choice of optimal

k parameter for either methods poses another issue in the analysis procedure. The best k pa-

rameter values for the two methods depend on the characteristics of the datasets and further

investigation would be needed to determine the best k parameter for RNA-seq datasets.
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Figure 4.15: MAR fruit flies data: RMSE obtained by KNNimpute when k ranges from 5 to 100.

Figure 4.16: MAR fruit flies data: RMSE obtained by SVDimpute with various k parameter across
different missing probabilities.
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Figure 4.17: MAR fruit flies data: RMSE obtained by SVDimpute when k ranges from 1 to 5.
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4.3 Impact on clustering

When we encounter gene expression data with missing values, we can either delete all the genes

with missing entries, obtain estimates of missing entries by some imputation methods, or use

downstream analysis approaches which can accommodate missing values. As researchers try

to preserve all the obtained information from the experiment, imputation is often performed as

a pre-processing step prior to cluster analysis. However, imputation as a pre-processing step

has its limitations, since the imputed values would remain constant along with the observed

values during the analysis process and badly imputed values may bias cluster results (Kim et

al., 2007). This problem becomes worse as the missing probabilities increases or if the missing

values are mainly localized in one part of the data matrix (Yun et al., 2007). Also, sophisti-

cated imputation approaches are often computationally intensive and may require almost the

same amount of computation as the clustering method itself. In such situations, it might be

appropriate to use clustering methods which can handle missing values automatically or ones

that incorporate the task of imputation into the clustering algorithm, or carefully evaluate the

impact of imputation methods on downstream analysis processes if imputation is preferred.

The focus of this section is to investigate not the imputation efficiency of various imputa-

tion methods, but their impact on the clustering of simulated genomic data. Artificial datasets

are simulated to resemble time-course RNA-seq data with discrete read counts. In each dataset,

expression patterns of 500 genes over five time points were generated to reflect genes from four

distinct clusters, with 50, 100, 150 and 200 genes in each cluster respectively. These simulated

datasets were generated in the same procedure as the ones used in the comparison in Section

4.2.2. Since the simulated datasets were complete matrices, missing entries were generated ac-

cording to MCAR and MAR missing mechanisms with 1%, 5% and 10% of entries as missing

values. The imputation methods being considered include ZEROimpute, ROWimpute, COL-

impute, LOCF, NOCB, KNNimpute and SVDimpute (described in Section 4.2.1). Since the

results from the Section 4.2.3 showed that KNNimpute with k = 60 (number of genes to be in-
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cluded in the candidate set) was the optimal setting for KNNimpute and that SVDimpute with

k = 2 had the best performance for the MAR simulated datasets, these two settings were used

in the evaluation in this section. We simulated 100 datasets independently for the evaluation of

each imputation method under different missingness settings and the model-based clustering

approach proposed in Chapter 2 was used to cluster the datasets. The impact of missingness

and imputation methods on clustering ability is measured by the percentage of correctly classi-

fied genes, adjusted Rand index (ARI) and number of EM iterations required for the parameter

estimations. The clustering results from the various imputation methods would be compared

to the clustering results obtained if the datasets have no missing values.

4.3.1 Results from clustering

Datasets with MCAR missingness

We have simulated datasets with 1%, 5% and 10% of entries missing completely at random.

These percentages were shown to be commonly encountered missing probabilities in real ge-

nomic (microarray) datasets (Brás and Menezes, 2007), and here we examine the impact on

clustering when values in simulated RNA-seq data are missing at similar rates. Focusing on

the clustering ability, ARI values can reflect how well the clustering algorithm performed and

Figure 4.18 contains the boxplots comparing the ARI values obtained across the different miss-

ing probabilities. For each case, we independently simulated 100 datasets but in some datasets

the clustering resulted in non-identifiable models and so we made note of the actual number

of datasets included in the analyses for each case (in Tables 4.5 to 4.7. Only the identifiable

models are included in the boxplots. The boxplots with label “no miss” correspond to the

clustering results obtained when the datasets were complete matrices and they are included for

easy comparison to the results obtained when missingness is present and entries imputed by

different methods.

Clustering ability did not change significantly when 1% missing values were introduced
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into the complete datasets. Overall, the boxplots show that the missing probabilities have an

effect on the clustering ability since the ARI values obtained from clustering the differently

imputed datasets decreased as the missing probabilities increased from 1% to 10%. When

10% of entries are missing, the mean ARI value dropped from approximately 0.8 (clustering of

complete datasets) to mean ARI values ranging from 0.45 to 0.7. It appears that ROWimpute

had the worst effect on clustering while the other imputation methods all had similar impact

on the clustering accuracy. The methods LOCF and KNNimpute performed well under all

three missing probabilities but still lowered the clustering ability from the situation where

the datasets have no missing entries. Tables 4.5, 4.6 and 4.7 show the results from using

different imputation methods to impute the missing values before performing the model-based

clustering. The issue of non-identifiable models is a main concern when datasets have 10% of

entries as missing values, as shown in Table 4.7 that the NOCB-imputed datasets resulted in

more than 50% of the models being non-identifiable.

When only the identifiable models are considered, the increase in missing probabilities

from 1% to 10% resulted in lower clustering accuracy (decrease in ARI and percent of genes

being correctly classified) and required higher number of EM iterations to perform clustering.

The method ROWimpute, although easy to implement, would not be recommended because

it had the worst impact on clustering accuracy which can be seen by the low ARI values and

percent correctness obtained when datasets have 5% and 10% MCAR missingness. Also, the

clustering of ROW-imputed datasets required a larger number of EM iterations for the clus-

tering when compared to other methods in the cases of 1% and 5% MCAR missingness. The

method ZEROimpute had a similar effect on clustering as compared to other more sophis-

ticated methods, but this method might be biased towards datasets with small counts. The

performances of KNNimpute across all three different missing probability settings seem to be

relatively well, resulting with very low number of non-identifiable models, high ARI and per-

cent correctness and required low number of EM iterations for the clustering procedure.
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Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 100 0.77 (0.03) 89.85 (9.83) 48.44
ROWimpute 99 0.77 (0.04) 89.72 (10.44) 68.71
COLimpute 99 0.77 (0.03) 91.23 (1.35) 42.29
LOCF 98 0.77 (0.03) 90.98 (6.07) 57.26
NOCB 95 0.77 (0.03) 91.37 (1.33) 58.06
KNNimpute 100 0.77 (0.03) 91.46 (1.23) 43.18
SVDimpute 100 0.77 (0.03) 91.29 (1.27) 50.87

Table 4.5: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MCAR at 1%.

Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 100 0.71 (0.04) 83.77 (16.69) 67.37
ROWimpute 70 0.63 (0.06) 48.94 (29.52) 138.66
COLimpute 99 0.71 (0.04) 86.47 (11.21) 61.16
LOCF 99 0.73 (0.03) 88.09 (9.55) 70.18
NOCB 83 0.71 (0.04) 88.17 (5.90) 106.57
KNNimpute 99 0.73 (0.03) 88.67 (7.90) 48.76
SVDimpute 96 0.71 (0.04) 86.94 (10.94) 62.88

Table 4.6: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MCAR at 5%.

Datasets with MAR missingness

Simulated datasets with MAR missingness at 1%, 5% and 10% were also generated and im-

puted by the various imputation methods, and the results obtained from clustering those im-

puted datasets are displayed in Figure 4.19 and Tables 4.8, 4.9 and 4.10. In general, the clus-

tering results from the MAR datasets showed the same pattern as the MCAR datasets, with

decreasing ARI values resulted when missing probabilities increased from 1% to 10%. When

only 1% of entries were missing from the datasets, the missingness and the different imputa-

tion methods did not have much impact on the clustering ability. However, as the probability

of missingness increased, clustering accuracy resulted from clustering the imputed datasets

became notably lower than those from the datasets with complete matrices. Same as the re-

sults obtained from the MCAR datasets, the method ROWimpute had the largest impact on
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Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 96 0.62 (0.05) 67.54 (24.64) 92.90
ROWimpute 80 0.48 (0.04) 16.40 (15.35) 83.90
COLimpute 84 0.64 (0.04) 83.58 (11.68) 97.57
LOCF 95 0.66 (0.04) 83.26 (12.91) 119.43
NOCB 43 0.65 (0.04) 82.55 (11.30) 102.23
KNNimpute 99 0.68 (0.04) 83.33 (14.53) 53.61
SVDimpute 90 0.64 (0.05) 77.96 (19.26) 94.99

Table 4.7: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MCAR at 10%.

the clustering accuracy while the other imputation methods had smaller effects and resulted in

similar ARI values. Clustering of datasets imputed by ZEROimpute, LOCF and SVDimpute

performed slightly better than those imputed by COLimpute, NOCB and KNNimpute in the

cases of 5% and 10% missingness.

The results regarding the number of datasets included in the analyses, variability of ARI

and percent of genes being correctly classified, and EM iterations required during the clustering

process are displayed in Tables 4.8, 4.9 and 4.10 for datasets with MAR at 1%, 5% and 10%

respectively. In the case of 1% missingness, most of the datasets resulted in identifiable models

and were included in the analyses, but more and more non-identifiable models were obtained

from the clustering of imputed datasets with originally 5% and 10% missing entries. The more

sophisticated methods KNNimpute and SVDimpute had the least impact on this issue, while

the methods NOCB, ROWimpute and COLimpute resulted in large numbers of non-identifiable

models when missing probabilities increased. The percent of genes being correctly classified

when datasets imputed by different methods were clustered showed a very large variability re-

gardless of the missing probabilities. The method COLimpute performed surprisingly well in

this sense as clustering of those COL-imputed datasets had high percent of correctness with

very low variability. The methods LOCF and SVDimpute also had relatively higher percent of

correctness with lower standard deviations when compared to the other imputation methods.
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Focusing on the number of EM iterations required in the clustering process across the three

missing probabilities settings, ROW-imputed datasets required the most number of iterations

while COL-imputed datasets could be clustered within the smallest number of EM iterations.

Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 100 0.77 (0.04) 88.60 (12.54) 52.10
ROWimpute 96 0.76 (0.03) 89.05 (10.04) 52.30
COLimpute 100 0.77 (0.03) 91.30 (1.36) 51.92
LOCF 98 0.77 (0.03) 90.87 (5.77) 69.22
NOCB 96 0.76 (0.03) 90.68 (3.18) 59.92
KNNimpute 100 0.77 (0.04) 89.61 (9.71) 58.41
SVDimpute 99 0.77 (0.04) 90.29 (8.17) 41.77

Table 4.8: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MAR at 1%.

Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 98 0.71 (0.04) 82.76 (18.13) 58.99
ROWimpute 65 0.66 (0.04) 65.02 (29.26) 101.29
COLimpute 97 0.70 (0.03) 88.61 (1.39) 46.80
LOCF 78 0.71 (0.03) 85.15 (14.09) 74.67
NOCB 66 0.69 (0.04) 84.62 (14.24) 48.33
KNNimpute 99 0.70 (0.04) 75.67 (23.55) 55.59
SVDimpute 95 0.71 (0.03) 88.97 (1.40) 60.01

Table 4.9: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MAR at 5%.

4.3.2 Discussion

In this section, we examined the impact of different imputation methods on the clustering re-

sults of genomic data under various amounts of MAR and MCAR. Overall, the impact of

imputing datasets seem to be the same for the two types of missing mechanisms since ARI

values resulting from the clustering were within similar ranges regardless of MAR or MCAR

missingness. The missing mechanism was also irrelevant to the time required for the clustering
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Methods Datasets included ARI Percent correctness EM iterations
ZEROimpute 87 0.63 (0.04) 58.72 (26.30) 78.23
ROWimpute 75 0.56 (0.04) 38.62 (28.28) 122.39
COLimpute 61 0.62 (0.03) 84.69 (5.40) 67.25
LOCF 71 0.63 (0.04) 77.66 (18.92) 89.23
NOCB 42 0.60 (0.04) 67.32 (25.31) 75.95
KNNimpute 91 0.63 (0.04) 57.02 (26.61) 98.97
SVDimpute 87 0.63 (0.05) 81.62 (14.03) 87.06

Table 4.10: Number of datasets included, mean ARI (standard deviation), mean percent correctness
(standard deviation), and mean EM iterations required for the clustering with various imputation meth-
ods for datasets with MAR at 10%.

process with both types of datasets requiring similar numbers of EM iterations to complete the

model-based clustering. Across the various imputation methods, imputing the datasets with

row averages (ROWimpute) had the worst impact on clustering accuracy. The simple impu-

tation methods ZEROimpute and COLimpute produced complete matrices which did not im-

pact clustering results significantly, but ZEROimpute may bias towards datasets with entries of

small counts. The more sophisticated methods did not have significantly superior performance

over the more simple methods in terms of preserving the dataset characteristics for efficient

clustering.



Chapter 4. Missing Data in high-dimensional datasets 144

Fi
gu

re
4.

18
:

M
C

A
R

si
m

ul
at

ed
da

ta
:

m
ea

n
A

R
I

re
su

lte
d

fr
om

cl
us

te
ri

ng
da

ta
se

ts
w

ith
1%

,5
%

an
d

10
%

m
is

si
ng

en
tr

ie
s

(e
xc

lu
di

ng
da

ta
se

ts
w

ith
no

n-
id

en
tifi

ab
le

m
od

el
s)

.



Chapter 4. Missing Data in high-dimensional datasets 145

Fi
gu

re
4.

19
:

M
A

R
si

m
ul

at
ed

da
ta

:
m

ea
n

A
R

I
re

su
lte

d
fr

om
cl

us
te

ri
ng

da
ta

se
ts

w
ith

1%
,

5%
an

d
10

%
m

is
si

ng
en

tr
ie

s
(e

xc
lu

di
ng

da
ta

se
ts

w
ith

no
n-

id
en

tifi
ab

le
m

od
el

s)
.



Chapter 4. Missing Data in high-dimensional datasets 146

4.4 Cluster-based imputation method

Rather than using distance-based or correlation-based methods to identify candidate genes to

obtain estimations for missing values, an alternate approach is to use data clustering results

for imputation. As mentioned in Chapter 1, several clustering-based imputation methods have

been proposed and evaluated on genomic data, such as GMCimpute (Ouyang et al., 2004), CMI

method (Zhang et al., 2008) and FCMimpute (Luo et al., 2005). The GMCimpute method

uses a model-based clustering approach which assumes the microarray data to be generated

by a Gaussian mixture, whereas the CMI and FCMimpute methods uses distance/similarity-

based k-means and fuzzy C-means clustering techniques respectively. One limitation to the k-

means, non-parametric algorithms is that all the clusters are assumed to have the same variance

(Genolini and Falissard, 2011). In the case of a group of data where this assumption does not

hold, the clustering algorithm might fail to identify the correct clusters. When dealing with

RNA-seq data where the count values are over-dispersed, the amount of over-dispersion may

not simply be assumed to be the same for all genes so a non-parametric clustering approach

may not be appropriate. The use of a model-based method can overcome this problem by

separately estimating the characteristics, including variability, for each cluster and so using

model-based clustering results to impute the missing values in a RNA-seq dataset would be an

efficient imputation algorithm.

4.4.1 Model

We propose an imputation method which is based on mixtures of negative binomial models

in the model-based clustering context. The time-course RNA-seq data are assumed to be gen-

erated from a finite mixture model and exhibit over-dispersion which can be modelled by the

negative binomial distribution. We consider the negative binomial mixture clustering of time-

course RNA-seq data from Chapter 2 of this dissertation, now applying the method to missing

values imputation. For a missing entry in the dataset, an estimate is made from a linear combi-
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nation of the component-wise averages of the values at that time point as the imputation value.

From Chapter 2, we have the following formulation for the model-based mixture clustering

of time-course RNA-seq data. In the mixture model, each component is modelled by a negative

binomial distribution which takes into account the over-time, repeated measurements. The

component density function for component i is

fi(y j;β
i, si) =

m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

)

with mean

λ = exp(βix jt) = exp(βi
0 + βi

1time jt + βi
2time2

jt)

and si being the dispersion parameter for the component i and probability

pi =
si

si + λ
.

Assuming that there are g number of components in the mixture, the mixture likelihood for the

entire sample of n genes would be

L(ψ) =

n∏
j=1

g∑
i=1

πi fi(y j;βi, si)

=

n∏
j=1

g∑
i=1

πi

m∏
t=1

(
Γ(y jt + si)
y jt!Γ(si)

psi
i (1 − pi)y jt

)

with the mixing proportions πi ≥ 0, π1 + ... + πg = 1. The EM algorithm can be used to obtain

maximum likelihood estimates, ψ̂, from the complete-data log-likelihood.

The first step in the cluster-based imputation approach is to initially impute the missing

entries using the simple method (COLimpute) to obtain complete matrices. The missing en-

tries would be permanently highlighted so that the algorithm can update the estimates in the
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later step. The second step in the cluster-based imputation approach is to perform the model-

based clustering to obtain the distinct clusters, where g, the number of clusters, is empirically

determined. Finally, with the cluster information we would impute the originally missing en-

tries with the cluster-wise averages at the corresponding time points to obtain the final imputed

dataset. Each missing entry is imputed with the weighted average of the cluster-wise averages

with the mixing proportions as the weights.

4.4.2 Data and evaluation

Two types of datasets were used to evaluate the effectiveness of the cluster-based imputation

approach. One type of datasets consisted of simulated values to reflect discrete read counts

obtained from a time-course RNA-seq experiment, while the other refers to a dataset obtained

from a real RNA-seq experiment of D. melanogaster (Graveley et al., 2011). To analyze the

impact of different mechanisms of missingness on the imputation accuracy, missing entries

were generated to reflect 1%, 5%, and 10% of MCAR and MAR missing mechanisms. The

procedures for generating the artificial datasets and the various cases of missingness have been

provided in Section 4.2.2. The cluster-based imputation method is evaluated and compared

against the simple imputation methods ZEROimpute, COLimpute, ROWimpute, LOCF and

NOCB, as well as the more sophisticated methods KNNimpute and SVDimpute. The normal-

ized root mean squared error (RMSE) values obtained from the imputed datasets are used for

performance assessment of the different imputation methods. The RMSE from ZEROimpute is

always equal to one, so it can be used as a standard to assess the difficulty of imputation across

different datasets and methods.

4.4.3 Results

The results obtained from the various imputation methods in the different cases of missingness

have been summarized in Tables 4.11 to 4.14. The results labelled as ‘CLUSTimpute’ refer to

the proposed cluster-based imputation method, and they are compared to the results obtained
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by the other imputation methods.

Figure 4.11 shows the mean RMSE values and the standard deviations obtained by using

different imputation methods when there were 1%, 5% and 10% of MCAR missingness in the

simulated datasets. First, very notably, the NOCB method performed the worst while COL-

impute had surprisingly good performance in terms of accuracy of imputed estimates. The

proposed cluster-based imputation method had similar performance as the SVDimpute, and it

outperformed the KNNimpute method. The RMSE values obtained by NOCB had the high-

est variability, and the variability decreased as missing probabilities changed from 1% to 10%

for all imputation methods. Overall, the cluster-based imputation approach produced the most

accurate estimates of the missing entries whereas KNNimpute had disappointing performance

compared to the more simple methods.

Missing probabilities
Methods 1% 5% 10%
CLUSTimpute 0.89 (0.28) 0.83 (0.04) 0.82 (0.03)
KNNimpute 1.14 (0.37) 1.04 (0.06) 1.03 (0.03)
SVDimpute 0.91 (0.30) 0.83 (0.05) 0.83 (0.03)
ZEROimpute 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ROWimpute 1.19 (0.34) 1.08 (0.07) 1.09 (0.06)
COLimpute 0.91 (0.30) 0.83 (0.05) 0.83 (0.03)
LOCF 1.02 (0.31) 0.98 (0.08) 0.99 (0.05)
NOCB 1.51 (0.84) 1.30 (0.23) 1.31 (0.18)

Table 4.11: MCAR simulated data: mean RMSE (and standard deviations) obtained by cluster-based
imputation and other imputation methods across different missing probabilities.

The results obtained when simulated datasets with MAR missingness are imputed are

shown in Table 4.12 and all the methods produced RMSE values in the same range as in the case

of MCAR datesets, with all the mean RMSE values between 0.8 and 1.6. The change in miss-

ing probabilities from 5% to 10% had no impact of the performances of the different methods,

but the methods produced higher RMSE values when missing probabilities changed from 1%

to 5%. The simple method COLimpute again had surprisingly well performance, with similar
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results as those obtained by CLUSTimpute and SVDimpute and outperforming the KNNim-

pute method. When focusing on the proposed cluster-based method, it obtained similar results

as SVDimpute, with lower and less variability in RMSE values when the datasets had 1% of

entries as missing. Comparing to the results obtained when datasets had MCAR missingness,

the simple methods ROWimpute, LOCF and NOCB had worse performances when applied to

the MAR datasets. The performances of the other methods were not affected by the mechanism

of missingness, which is a good property since missing data problems in real life are often not

the simple MCAR.

Missing probabilities
Methods 1% 5% 10%
CLUSTimpute 0.89 (0.24) 0.83 (0.04) 0.83 (0.03)
KNNimpute 1.10 (0.36) 1.00 (0.03) 1.00 (0.01)
SVDimpute 0.91 (0.35) 0.83 (0.05) 0.83 (0.03)
ZEROimpute 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ROWimpute 1.41 (0.84) 1.21 (0.24) 1.21 (0.17)
COLimpute 0.91 (0.35) 0.83 (0.05) 0.83 (0.03)
LOCF 1.26 (0.82) 1.12 (0.24) 1.12 (0.16)
NOCB 1.59 (1.07) 1.36 (0.34) 1.35 (0.21)

Table 4.12: MAR simulated data: mean RMSE (and standard deviations) obtained by cluster-based
imputation and other imputation methods across different missing probabilities.

To assess the performance of the cluster-based imputation approach on RNA-seq data, we

compared its performance on the real dataset obtained from the fruit flies data (Graveley et

al., 2001) to the performances of other imputation methods. The fruit flies dataset has first

been modified to contain MCAR missingness in 1%, 5% and 10% of the entries and the results

of the imputation methods are shown in Table 4.13. It shows that the imputation process has

been improved by including the clustering component, with RMSE values as approximately

0.6 obtained by COLimpute compared to approximately 0.37 obtained by CLUSTimpute. All

imputation methods had better performances than simply imputing the missing entries with ze-

ros, which also shows that the imputation difficulty of this type of datasets was lower than the

simulated datasets. In this type of RNA-seq datasets with MCAR missingness, CLUSTimpute
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had a noticeably better performance over the other imputation methods, with the most accurate

estimates of the missing entries shown by the lowest mean RMSE values achieved. SVDim-

pute is the next best option for this type of datasets, while KNNimpute performed worse than

the other simple imputation methods.

When we focus on the fruit flies data with simulated MAR missingness in the entries, the

results obtained are displayed in Table 4.14. The performances of CLUSTimpute, KNNim-

pute and SVDimpute in the MAR datasets were worse than their performances in the MCAR

datasets. However, CLUSTimpute and SVDimpute were still the preferred imputation methods

for this type of datasets since the RMSE values obtained were still lower than those produced

by the other methods.

Missing probabilities
Methods 1% 5% 10%
CLUSTimpute 0.38 (0.09) 0.37 (0.04) 0.36 (0.02)
KNNimpute 0.86 (0.08) 0.86 (0.03) 0.86 (0.02)
SVDimpute 0.45 (0.07) 0.46 (0.03) 0.48 (0.02)
ZEROimpute 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ROWimpute 0.51 (0.07) 0.52 (0.03) 0.52 (0.02)
COLimpute 0.61 (0.07) 0.60 (0.03) 0.60 (0.02)
LOCF 0.74 (0.10) 0.73 (0.05) 0.72 (0.03)
NOCB 0.63 (0.09) 0.63 (0.04) 0.63 (0.03)

Table 4.13: MCAR fruit flies data: mean RMSE (and standard deviations) obtained by cluster-based
imputation and other imputation methods across different missing probabilities.

4.4.4 Discussion

In general, the results obtained from our simulation and evaluation showed that the proposed

CLUSTimpute is a appropriate imputation method for imputing missing entries present in time-

course RNA-seq experiments. The simple method ZEROimpute is easy to implement, but may

be biased towards datasets with small counts or many zero entries. The two methods ROWim-
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Missing probabilities
Methods 1% 5% 10%
CLUSTimpute 0.55 (0.16) 0.51 (0.05) 0.50 (0.04)
KNNimpute 0.89 (0.11) 0.96 (0.03) 0.99 (0.01)
SVDimpute 0.55 (0.11) 0.54 (0.04) 0.54 (0.03)
ZEROimpute 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ROWimpute 0.58 (0.13) 0.57 (0.05) 0.56 (0.04)
COLimpute 0.62 (0.12) 0.60 (0.04) 0.60 (0.02)
LOCF 0.71 (0.17) 0.69 (0.07) 0.68 (0.04)
NOCB 0.64 (0.14) 0.62 (0.06) 0.62 (0.04)

Table 4.14: MAR fruit flies data: mean RMSE (and standard deviations) obtained by cluster-based
imputation and other imputation methods across different missing probabilities.

pute and COLimpute make use of averages either from the same gene across time or from the

measurements of different genes at the same time point. On the other hand, NOCB and LOCF

both make use of information only from the individual gene, disregarding the information that

may be obtained from the other genes in the dataset. All these mentioned methods are common

imputation approaches that may be used for measurements over time, and we have compared

these simple methods with the more sophisticated KNNimpute and SVDimpute.

KNNimpute uses local information in imputation, with only a subset of genes (the set of

candidate genes) involved when imputing a missing entry. This method requires the datasets

to have enough complete data patterns to produce estimates of the missing entries, which may

be difficult if datasets have many missing data. SVDimpute makes use of mutually orthogonal

expression patterns in the dataset to approximate the data and this allows the imputation ap-

proach to work well on time-course data with low level of noise. The proposed CLUSTimpute

is based on model-based clustering and weighted averages across the mixture model. This ap-

proach uses information from the entire dataset and the cluster structures identified from the

data, and the final estimate of each missing entry is calculated from a linear combination of

the cluster-wise averages weighted by the probabilities of the individual gene belonging to the

clusters.
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The KNNimpute, SVDimpute and CLUSTimpute all require a parameter to be determined

empirically. Both KNNimpute and SVDimpute require a parameter k to be pre-specified, with

k being the number of genes in the candidate gene set in KNNimpute and k being the number of

eigenvectors used in the SVD procedure of SVDimpute. There is no known theoretical way of

determining the k parameter for these two approaches. For CLUSTimpute, the data is assumed

to arise from a mixture model and the number of mixture components/clusters is empirically

determined. This parameter can be determined by sub-sampling or model selection criteria

such as BIC for the finite mixture models.

The imputation method GMCimpute (Ouyang et al., 2004) based on Gaussian mixture clus-

tering have been proposed for estimating missing entries in microarray data. We incorporated

the model-based clustering method with negative binomial models and presented an imputa-

tion method suitable for time-course RNA-seq data with discrete read counts. Results from our

evaluation showed that CLUSTimpute has good performance when used to impute RNA-seq

data with time-dependence nature, outperforming the more commonly used methods such as

KNNimpute and SVDimpute.



Chapter 5

Conclusions and future work

The RNA sequencing (RNA-seq) technology has recently replaced microarrays as the approach

being used for gene expression analyses. RNA-seq is more reliable than microarrays since

RNA-seq has higher sensitivity and dynamic range, with lower technical variation and thus

higher precision than microarrays. Statistical methods for analyzing microarray data have been

well developed but they are not suitable for RNA-seq data since microarrays measure gene ex-

pression in continuous intensities, whereas RNA-seq provides absolute quantification of gene

expression using discrete counts of reads. In current literature, limited work has been done

on statistical methods has been done on expression analysis of time-course RNA-seq data to

account for the time-dependence nature of the count data with over-dispersion property. In this

thesis, we propose some statistical approaches for examining longitudinal RNA-seq data.

Functional clustering is an important method for examining gene expression patterns and

thus discovering co-expressed genes to better understand the biological systems. To our knowl-

edge, no model framework has been developed for cluster analysis of RNA-seq data focusing

on the time-course experiment setting. We propose a model-based clustering method to identify

important information on changes in expression levels over time from longitudinal RNA-seq

data. The clustering method is based on finite mixture modelling of negative binomial distribu-
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tions to accommodate over-dispersion in the data. An EM algorithm for maximum likelihood

estimation is incorporated to obtain parameter estimates in our clustering approach. The EM

clustering method and two EM/quasi-Newton hybrid algorithms are proposed and evaluated

through simulation studies and the results indicate the excellent clustering ability of our ap-

proach. Through an application to real RNA-seq dataset, we are able to produce meaningful

clustering results that can provide insights on changes in gene expression patterns over time.

The clustering algorithm developed for time-course RNA-seq data makes use of the mix-

tures of negative binomial models without specifying covariates. Further development of the

clustering algorithm may include the covariates information into the model, such as including

other characteristics of the genes in addition to the gene expression levels. This may help fur-

ther stabilize the mixture model and lead to more accurate clustering of the genes. Another

way to extend the clustering approach may be to include correlation structure into the mixture

model. The current model assumes that given the cluster, genes are independent over time.

A correlation structure can be introduced to model the dependence between gene expressions

over time points. These extensions to the clustering approach can improve the modelling of the

relationship between genes over time for a better characterization of the biological system of

interest.

It was noted that for mixture modelling, model identification can be difficult. The esti-

mation methods used in this research did not always converge and sometimes produced non-

identifiable models, which are models without reliable parameter estimates. Cases like these

result in singular Fisher information matrices and so the standard errors of the estimates cannot

be computed for the parameter estimates. Non-identifiable models with unreliable standard

errors may also appear when the clustered gene expression patterns are over-parameterized.

There is a need for further research on how to efficiently work with the problem of model iden-

tifiability in the mixture-based clustering methods being proposed.
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The EM algorithm used in our clustering approach is an iterative process which requires

the specification of starting values of the parameters for the estimation to begin. Poor choice

of initial values of the parameters may affect the estimation process and lead to convergence

problems. In order to improve the performance of the clustering algorithm on time-course

RNA-seq data, we propose some methods and assess their performances in selecting the initial

values to start the parameter estimation. In this work, the different initiation procedures are

evaluated for mixtures of negative binomial models through simulation studies and the results

show that a good option would be to initiate the clustering approach with values resulted from

short runs of the EM algorithm.

For mixture models, there is not one commonly accepted statistical procedure for choosing

the optimal number of mixture components in the models. Many different instruments, such

as AIC or BIC, can be used to determine the most favourable mixture model and the problem

of model selection continues to be an important research area in cluster analysis. Future work

can include identifying the ideal model selection statistical tool for the proposed model-based

clustering method on RNA-seq data. The clustering approach may also be improved by using a

different convergence criterion. Our iterative estimation methods were implemented such that

a small difference between two successive log-likelihood values would indicate convergence

of the estimation. An extensive evaluation of different convergence criteria will be beneficial

for future developments of mixture modelling with EM algorithm.

Another topic which is investigated in this dissertation is the problem of missing values in

gene expression analysis. It is of interest to examine the performance of different imputation

methods on time-course RNA-seq data, as well as the impact of imputation on the cluster-

ing of such datasets. We develop a cluster-based imputation method specifically designed to

better deal with the missing values problem in RNA-seq, and the proposed method shows supe-
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rior performance over the widely used KNN and SVD imputation methods through simulation

studies. This research would be beneficial to future researchers as a new treatment method for

missing values in gene expression data. Further studies can be conducted to assess the impact

of the cluster-based imputation method on other downstream analyses of genomic data besides

functional clustering. Future work can also include extending the imputation approach to in-

corporate some stochastic characteristcs such that there would be randomness in the estimated

imputation values or modify the approach to be a multiple imputation process, which may im-

prove the downstream gene expression analyses.

We note that imputation as a pre-processing step has its limitations, since the imputed val-

ues would remain constant along with the observed values during the analysis process and

badly imputed values may bias cluster results (Kim et al., 2007). This problem becomes worse

as the missing probabilities increases or if the missing values are mainly localized in one part of

the data matrix (Yun et al., 2007). Also, sophisticated imputation approaches are often compu-

tationally intensive and may require almost the same amount of computation as the downstream

analysis method itself. It is of interest to develop efficient RNA-seq analysis methods which

can accommodate missing values so that imputation pre-processing is not a necessary step.
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