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Abstract  

Direct human activities in the Uinta Mountains, Utah, U.S.A., are limited to free-range 

grazing and recreation, but the larger-scale perturbations of climate warming and 

atmospheric deposition could also affect these remote sites.  As few limnological 

measurements are available, it is difficult to discern whether changes in the high alpine 

lake ecosystems are occurring in this area.  This study uses a range of paleolimnological 

and limnological techniques to: (1) identify the timing, nature, and causes of changes in 

primary production in high elevation Uinta Mountain lakes; (2) pinpoint the relative 

contributions of different sources of nitrate to these aquatic ecosystems; and (3) use 

diatom community composition data to determine the nature of lake responses to these 

large-scale perturbations. The results illustrate that primary production was relatively 

stable until ~1950 AD when it began to increase.  Data from sedimentary 15
N, 

chlorophyll a, and C:N ratios, indicate that the post-1950 AD increase in primary 

production resulted from increased nitrate deposition from fertilizers and fossil fuel use.  

However, we suspect phosphate dust from nearby mining and agricultural activities may 

also be important.  The hypothesis of fertilizer-based enrichment is confirmed by a triple-

isotope approach (17
O, 18

O, and 15
N) to analyzing water and snow nitrates; the results 

indicate that the dominant source of nitrate inputs to these high elevation sites is 

atmospheric transport of nitrate- and ammonium-based fertilizers.  Atmospherically 

oxidized nitrate and soil nitrate sources are of secondary importance.  Nitrogen 

deposition is also the primary driver of changes in diatom community composition; these 

findings are based on synchronous changes in diatom assemblage turnover and 15
N 

values, and an increase in the nitrophilous diatom species Asterionella formosa.  Based 

on analysis of diatom stratigraphies, canonical correspondence analysis and ß-diversity, it 

is evident that Uinta Mountain lakes differ in their sensitivity to increased nitrogen 

deposition; this is corroborated by the changes in primary productivity and 15
N. Our 

findings are significant in not only understanding the implications of urban and 

agricultural activities to remote Uinta Mountain lakes, but in enhancing our general 

understanding of alpine nutrient cycling in the Anthropocene.  
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Chapter 1 

1 Introduction 

High alpine lakes are often considered to be pristine and removed from human 

disturbance.  However, the Anthropocene epoch (Crutzen and Stoermer, 2000) is 

characterized by global changes that affect even the most remote regions of the world.  

“Remote” has become an increasingly difficult label to use, as human presence continues 

to encroach upon natural areas.  Remote lakes can be defined as those in which catchment 

processes and environmental changes are dominated by atmospheric forcing (Catalan et 

al., 2013).  By this definition, alpine areas are among the most remote ecosystems on 

earth, as they are far removed from most forms of direct human impact relative to 

adjacent low-lying regions.  Even so, alpine environments can be affected by a variety of 

local, regional and global scale anthropogenic disturbances that are leading to 

environmental degradation (Beniston, 2003).  Potential disturbances to alpine 

environments include fish stocking, recreation, free-range grazing, metal contamination, 

nutrient deposition, acidification, and climate change.   

High elevation aquatic ecosystems may be particularly sensitive to increased 

nutrient inputs because they generally have a low nutrient content (i.e., they are 

ultraoligotrophic to oligotrophic).  Several additional factors contribute to their 

sensitivity, including increased precipitation and atmospheric deposition at high 

elevations (Lovett, 1994); snowmelt-dominated hydrology and associated spikes in 

surface water NO3
-
 and NH4

+
 concentrations (Campbell et al., 2000); limited uptake of 

nutrients by the terrestrial system (Campbell et al., 2000); and microbial nitrification 

within talus slopes (Williams et al., 1997) (see also section 1.5.3).   

In this thesis, I investigate trends in primary production and recent eutrophication 

in high elevation lakes in the Uinta Mountains, U.S.A.  Lake eutrophication is defined as 

enrichment in aquatic primary productivity. Eutrophication can occur naturally, for 

example when nutrients are released following a forest fire (Hall and Smol, 2001).  More 
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commonly, however, ‘cultural eutrophication’ results from anthropogenic increases in 

nutrient inputs to an aquatic system.   

In unpopulated alpine environments, nutrient inputs of anthropogenic origin are 

more likely to be dominated by atmospheric sources.  Direct inputs from sewage, 

industrial effluent, and agricultural runoff are unlikely to be present.  Nitrate and 

ammonium originating from fossil fuel combustion and agricultural intensification have 

been commonly identified as major contributors to increased bioavailable nitrogen in 

alpine environments (e.g., Baron et al., 2000; Wolfe et al., 2001; Saros et al., 2003).  

However, rather than focusing solely on the potential impacts of atmospheric nitrate and 

ammonium deposition, this study takes a holistic approach by studying all known factors 

that could lead to eutrophication in alpine environments (Figure 1.1).  These include 

atmospheric transport of phosphorus from mining and agricultural dust; local grazing 

activity; and fish stocking.  Climate warming, which is occurring more rapidly in the 

western U.S.A. than in other areas of the contiguous U.S.A. (Saunders et al., 2008), can 

also increase primary production indirectly by increasing the length of the growing 

season and stabilizing thermal conditions for phytoplankton growth.    
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Figure 1.1. Conceptual model of potential causes of eutrophication in high alpine environments.   

In alpine lake studies, emphasis is often placed on atmospheric deposition of N from fossil fuel burning and 

agriculture, with little attention given to other potential factors such as fish stocking, grazing, warming, and 

phosphorus from agricultural dust and mining.  Characteristics of alpine lakes that increase sensitivity to 

eutrophication are listed in the gray box.   

 

1.1  Research Goals  

Much of the research on eutrophication has been done in populated, low-elevation 

regions, where agricultural runoff, urban runoff and industrial effluent are major sources 

of nutrients.  In these regions, eutrophication can result in a number of undesirable traits, 

including algal blooms, excessive aquatic plant growth, shifts to nuisance and toxic algae, 

foul odors, oxygen depletion, fish kills, unpalatable drinking water, and loss of 

biodiversity (Bennett et al., 2001).  

There is little evidence of such dramatic consequences of eutrophication in alpine 

environments. However, alpine lakes are considered to be sensitive to relatively small 

increases in nutrient inputs (e.g., Burns, 2003) and several studies have demonstrated that 
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atmospheric nitrogen (Baron et al., 2000; Wolfe et al., 2001; Saros, Interlandi et al., 

2005) and phosphorus (Psenner, 1999; Sickman et al., 2003) inputs are responsible for 

recent changes in high elevation lakes.  Although no similar investigation has been 

undertaken in the Uinta Mountains, the mountain range is located downwind of the 

Wasatch Front, an area of rapidly expanding population and agricultural activity.  It is 

therefore critical to evaluate and improve our understanding of recent changes in primary 

production in high elevation lakes of the Uinta Mountains.  I used algal production 

measures and sedimentary 15
N and 13

C to address my first research goal:   

1. Investigate primary production and potential drivers of any changes in trophic 

status of the Uinta Mountains over the last two centuries.   

 

Several researchers in mountain environments of the Western U.S.A. (Baron et 

al., 2000; Wolfe et al., 2001; Saros et al., 2003; Holtgrieve et al., 2011) have indicated 

that recent changes in diatom community composition and decreasing sedimentary 15
N  

values result from increased nitrogen deposition associated with intensive agricultural 

activity and fossil fuel combustion.  However, many factors can influence 15
N values in 

lakes and lake sediments (Teranes and Bernasconi, 2000) and so this interpretation 

remains speculative.  I conducted stable isotope analysis of nitrates in modern water, 

inflow and snow samples to enhance our understanding of alpine nutrient budgets and aid 

in our interpretation of paleolimnological records in the Uinta Mountains.  My second 

research goal is to: 

2. Determine the proportional contributions of nitrates from different sources to the 

modern aquatic systems of the Uinta Mountain study lakes.  
 

How will climate warming and increased atmospheric nutrient inputs affect biota 

of alpine lakes?  Climate warming and nitrogen deposition are not mutually exclusive 

drivers of ecological change, and the interplay between warming and fertilization by 

atmospheric deposition is still being widely discussed (e.g., Catalan et al., 2013).  By 

investigating the influence of these factors on diatoms in Uinta Mountain lakes, we can 

begin to understand the environmental consequences of warming and nutrient deposition 

on these high elevation lakes.  There is also a gap in current understanding of how 
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ecological responses to warming and nutrient deposition vary between lakes in alpine 

environments.  Identifying differences in lake response to warming and nutrient 

deposition will increase our understanding of the resilience (or lack thereof) of alpine 

lake ecosystems.   I investigated changes in diatom community composition in order to 

address my third research goal:  

3. Determine whether changes in diatom community composition in the Uinta 

Mountains can be linked to warming and nitrogen deposition, and whether lakes 

differ in their sensitivity to these environmental changes.   

1.2 Thesis organization and research goals 

The goals of the thesis and a review of the relevant literature are included in 

Chapter 1.  This review includes a background on eutrophication in aquatic systems 

(section 1.3), rationale for the study of high elevation lakes (1.4) background on 

eutrophication in mountain environments in the western U.S.A. (1.5); and a brief 

description of the range of anthropogenic perturbations that potentially affect alpine 

productivity (1.6).  Finally, the rationale for investigating alpine eutrophication in the 

Uinta Mountains is included in section 1.7.   

Chapter 2 provides information on the Uinta Mountain study area based on a review of 

the literature and field and historical records.  It includes a brief description of Uinta 

Mountain geology and their formation (section 2.1), climate (2.2), biogeography (2.3), 

information on atmospheric deposition (2.4), and historical land use (2.5).  It concludes 

with descriptions of the six study lakes (2.6).  

The three thesis goals listed above are addressed in Chapters 3, 4, and 5, 

respectively. 

Research in Chapter 3 involved the study of short (~30 to 50 cm) sediment cores from 

six high elevation lakes that provide records covering the last ~200 years (
210

Pb dated) of 

human activity in the region plus several hundred years of natural variability beforehand. 

We use measures of primary production (percent organics, chlorophyll a, chlorophyll a 

flux) and of organic matter properties (C:N ratios) of the lake sediments to track changes 

in aquatic organic content over this time period. Results of sedimentary stable isotope 
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analyses of 15
N and 13

C are used to provide evidence for nutrient sources, the influence 

of diagenesis, and nutrient cycling.  By comparing the timing of these changes to the 

history of anthropogenic activity in the region, we identify the driving forces behind these 

changes.  

In Chapter 4, stable isotopes of nitrogen and oxygen from nitrates (15
N, 18

O, and 


17

O) were analyzed in water (inflows and lakes) and snow samples from six high 

elevation lakes and their catchments.  This approach allowed for determination of the 

origin and proportional contribution of atmospheric and terrestrial sources of nitrates to 

alpine aquatic ecosystems in the Uinta Mountains.  Results provide a modern context for 

paleoenvironmental studies that implicate atmospheric deposition of nutrients in recent 

ecological changes, such as those identified in Chapter 3.  The study also shows the 

capacity for triple isotope analysis of nitrates to both identify and quantify contributions 

of different nitrate sources and demonstrates the potential of this technique for addressing 

a variety of nutrient source questions.  

In Chapter 5, changes in diatom community composition and species turnover are 

determined from fossil diatoms preserved in the six study lake sediment cores.  These 

temporal changes are compared to changes in nitrogen deposition (sedimentary 15
N) 

over time and historical temperature records to determine the relative effects of these two 

main forcing mechanisms on diatom community structure.  Interpretation of the diatom 

data is improved by using canonical correspondence analysis (CCA) of a 46-lake 

calibration set to determine the modern relationships between diatom species and 

environmental variables.  Subsequently, the observed changes in the fossil diatom record 

can be evaluated in the context of this modern environmental variable/ diatom space.  

Characteristics of lakes and their catchments that lead to differences in lake sensitivity 

and response to environmental changes are identified.  The study demonstrates the range 

of lake sensitivity to large-scale disturbances, and provides insight into how diatom 

communities and species turnover have responded to these changes. 

 The combined significance of the three data chapters of this thesis and future 

directions for research are discussed in Chapter 6.   
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1.3 Eutrophication and aquatic systems 

1.3.1 Ecological effects of eutrophication 

Eutrophication can alter the physical, chemical, and biological characteristics of 

entire aquatic ecosystems, although much of what is known about the impacts of 

increased nutrient availability comes from studies of low elevation lakes where 

agricultural and urban runoff are dominant nutrient sources.  In these regions, increased 

algal growth causes decreases in species diversity, often favouring grazing resistant 

cyanobacteria over small edible algae (Hall and Smol, 2001).  Decreased light penetration 

associated with increased primary productivity can result in decreased macrophyte 

growth, which in turn alters the habitat and food available for other organisms. With 

increased algal growth, decomposition and respiration increase, thereby depleting oxygen 

in the hypolimnion and causing declines in fish habitat and changes in internal cycling 

and biogeochemical processes (Smol, 2008).  Increased algal productivity can enhance 

biodegradation of pollutants such as pesticides and petrochemicals, but can also increase 

biological cycling of contaminants like PCBs (Smith and Schindler, 2009).  Many of 

these issues lead to water taste and odor problems and increase water toxicity (Hall and 

Smol, 2006).  The consequences of eutrophication in high elevation lakes may be similar.  

However, the mechanisms leading to eutrophication are likely to be different in alpine 

lakes because of differences in limiting nutrients and the sensitivity of alpine lakes and 

their catchments to increased nutrient inputs (Figure 1.1). 

1.3.2 Nutrient limitation in freshwater lakes 

Eutrophication is intimately linked to the limiting nutrient of a lake because 

phytoplankton growth and thus lake primary productivity is dependent upon the 

availability of the limiting nutrient.  Nitrogen and phosphorus are the most common 

limiting nutrients of freshwater primary productivity, although the prevalence of nitrogen 

vs. phosphorus-limitation is a source of contention amongst limnologists.  Several 

researchers suggest that alpine lakes are ultimately N-limited (Williams et al., 1996b; 
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Lafrancois et al., 2003; D. W. Schindler, 2006) or co-limited
1
 by nitrogen and 

phosphorus (Baron et al., 2000).  At naturally nitrogen-limited sites, increases in 

atmospheric nitrogen deposition can induce phosphorus limitation (Bergstrom and 

Jansson, 2006; Elser et al., 2009; Bergstrom, 2010; Camarero and Catalan, 2012).  The 

phosphorus cycle has also been modified by human activities, and therefore increases in 

phosphorus must also be considered.  For example, in the Pyrenean lake district, 

Camarero and Catalan (2012) showed that dissolved inorganic nitrogen (DIN) decreased 

even as atmospheric deposition of nitrogen increased, which is in contrast to the results of 

the studies by Bergstrom (2010) and Elser et al. (2009).  Camarero and Catalan (2012) 

suggest that increased phosphorus deposition caused the lakes to revert to N-limitation.   

The limiting nutrient(s) are important for determining whether increased nitrogen 

and phosphorus are likely to cause increases in primary productivity.  In the next 

sections, I review the role that humans have played in increasing the availability of 

nitrogen and phosphorus to ecosystems.      

1.3.3 Humans and the nitrogen cycle 

Nitrogen is essential for life; it is an important component of many organic 

molecules including amino acids, nucleic acids, proteins, and in enzymes that mediate 

important biological reactions like photosynthesis and respiration (Schlesinger, 1991).  It 

is also the most abundant element in Earth’s atmosphere (80% by mass) (Galloway and 

Cowling, 2002).  Despite its natural abundance, the majority of atmospheric N is in the 

form N2 (dinitrogen gas), which is biologically unavailable to most organisms.  A few 

specialized organisms (e.g., some cyanobacteria species and a group of bacteria called 

Rhizobia that form symbiotic relationships with legumes) are capable of converting N2 

into a useable form (NH4
+
 or NO3

-
) by biological N fixation

2
.  Lightning is the only other 

                                                 

1
 Co-limitation can occur when neither nitrogen nor phosphorus is available in great excess of the 

metabolic requirements of phytoplankton.  Treating these lakes with a single nutrient would only result in 

brief enrichment until the other nutrient becomes limiting (Elser et al., 1990). 

2
 Biological N fixation is the energetically expensive process of breaking triple bonds of N2 to forms of 

nitrogen that are usable by organisms (NH4
+ 

and NO3
-
)  
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natural process that creates biologically available nitrogen from atmospheric N2. Thus, 

the amount of nitrogen cycling from the atmosphere into the biosphere is naturally 

limited by the activity of nitrogen-fixing organisms and lightning.  As a result, many 

species are adapted to environments with limited biologically available nitrogen 

(Vitousek et al., 1997).  

Within the last 150+ years, humans have drastically increased the amount of 

biologically available nitrogen to the extent that all temperate and tropical biomes receive 

more N deposition today than pre-industrially (Holland et al., 1999).  Alterations to the 

global nitrogen cycle are already dramatic and one of the most serious threats to the 

global environment (Rockstrom et al., 2009).  Increases in biologically available nitrogen 

are largely due to the Haber-Bosch process, which allowed the production of an unlimited 

supply of nitrogen fertilizer for growing food (Figure 1.2).  Biologically-available 

nitrogen is also produced as a byproduct of fossil fuel combustion, from intensification of 

animal husbandry, and increased cultivation of nitrogen-fixing legumes (Vitousek et al., 

1997; Holland et al., 1999).  The increased in bioavailable nitrogen has several 

ecologically harmful effects, including eutrophication, acidification, losses in 

biodiversity, and species invasions by N-loving organisms (Galloway and Cowling, 

2002). 
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Figure 1.2. Global population trends with key dates for the discovery of N as an element in the 

periodic table and its role in various biogeochemical processes.  

Also shown is an estimate of the annual production of reactive nitrogen by the Haber-Bosch process. 

Reprinted from Ambio, 31, Galloway and Cowling. Reactive nitrogen and the world: 200 years of change, 

64-71 © 2002, with permission from The Royal Swedish Academy of Sciences. 

Fossil fuel combustion releases NOx gas into the atmosphere, where it can be 

converted to NO3
-
.  Agricultural production leads to the release of NH3 gas (which can be 

converted to NH4+ in the atmosphere) and particulate NH4
+ 

(transported by wind with 

dust) (Schlesinger, 1991; Burns, 2003). As production of biologically available nitrogen 

increases, the atmospheric nitrogen concentration, long-range transport and deposition of 

nitrogen also increase (Holland et al, 2005).  Thus, even though nitrate deposition is 

highest where the air is most polluted with nitrogen oxides (Porter et al., 2001), remote 

locations like the Greenland ice sheet (Schlesinger, 1991) and some alpine environments 

(Baron et al., 2000; Wolfe et al., 2001; Saros et al., 2003) can still be influenced by 

increased biologically reactive nitrogen, although the spatial pattern is variable (Figure 

1.3).  
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Figure 1.3. Global atmospheric deposition of reactive nitrogen onto the oceans and continents of the 

Earth in 1993 (mg N m
-2

 yr
-1

). 

Reprinted from Ambio, 31, Galloway and Cowling. Reactive nitrogen and the world: 200 years of change, 

64-71 © 2002, with permission from The Royal Swedish Academy of Sciences. 

 

1.3.4 Humans and the phosphorus cycle 

Phosphorus is scarce in Earth’s crust (0.09 weight %) (Filippelli, 2008) and in the 

biosphere (Smil, 2000). It is an essential nutrient – phosphodiester bonds are components 

of DNA and RNA; phospholipids form cell membranes; adenosine triphosphate and 

adenosine diphosphate (ATP and ADP) power photosynthesis and other metabolic 

pathways; and phosphorus containing hydroxylapatite is a critical component of 

vertebrate skeletons (Smil, 2000).  The phosphorus cycle lacks a stable atmospheric gas 

phase, so ecosystems rely upon transfer of the nutrient in solution (Filippelli, 2008).  

Phosphorus is a common growth limiting nutrient in aquatic systems because of its 

essential role, scarcity, and slow natural cycle.   

As with nitrogen, increased food production is the main motivation for increasing 

the availability of phosphorus. Although the usefulness of mineral fertilizers in crop 

production was demonstrated in the mid- to late- 19
th

 century, it was not until the mid-
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20
th

 century that the use of mineral phosphorus grew exponentially (Ashley et al., 2011) 

(Figure 1.4).  Today, phosphorus in rock is mined, processed into fertilizers, and 

transported globally to increase crop yields.  Much of the phosphorus that is consumed 

from agricultural products is disposed of (rather than being returned to the agricultural 

system) and ultimately ends up in aquatic systems.  In addition to phosphorus deliberately 

added to the environment as fertilizer, humans also increase phosphorus inputs via: 

recycling of crop residues and manure; soil erosion; and discharge of urban and industrial 

wastes including phosphate detergents.  Phosphorus storage in terrestrial and freshwater 

ecosystems is estimated to be at least 75 % greater than preindustrial levels (Bennett et 

al., 2001).  

 

Figure 1.4. Historical sources of phosphorus fertilizers used in agriculture globally (1800-2010).  

Reprinted from Chemosphere, 84, Ashley et al., A brief history of phosphorus: From the philosopher’s 

stone to nutrient recovery and reuse, 737-746, © 2011, with permission from Elsevier. 

 

1.4 Rationale for investigating high elevation sites 

Williamson et al. (2008) describe lakes as sentinels of global change, as they 

respond to the combined effects of local and global environmental changes.  Remote 
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lakes in particular provide a unique opportunity to study regional scale perturbations.  

There are several reasons for investigating high elevation sites: 

 The anthropogenic effects on remote lakes are expected to be primarily 

transmitted atmospherically (Catalan et al., 2013).  Therefore, responses 

to atmospheric stressors can be investigated without the confounding 

influence of local activities that plague more populated areas, such as 

sewage input, urban heat island effect, urban run-off, industrial effluent, 

and agricultural run-off.   

 With few local stressors, investigations can focus on whether chronically 

low additions of nutrients affect lake ecology and function.   

 Alpine lakes are particularly sensitive to increases in nitrogen deposition 

(See section 1.5.3, Figure 1.1). 

 Remote areas like alpine ecosystems of the Western U.S.A. can serve as a 

report card or an early warning indicator of the impacts of nutrient 

pollution.  The sensitivity of alpine sites means they are likely to respond 

earlier than lowland sites at the same latitude.  For example, diatom 

assemblages showing shifts towards increased Cyclotella species with 

enhanced warming occur first in arctic lakes, then alpine lakes, and lastly 

in temperate lakes (Rühland et al., 2008).  

 If changes in primary productivity can be detected before the 

consequences of eutrophication are visibly apparent, we may be able to 

protect these regions.   

 

1.5 Eutrophication in alpine aquatic environments of the 
Western United States 

1.5.1 In terrestrial systems 

Increased nitrogen deposition can result in several changes in terrestrial 

ecosystems, including premature needle drop, reduced amphibian populations, declines in 

plant, soil bacterial, and fungal communities, and declines in tree health (Baron et al., 

2000; Campbell et al., 2000; Burns, 2003).  The impact of increased nutrient deposition 
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on terrestrial systems extends to aquatic ecosystems because catchment vegetation and 

processes are critical mediators between the delivery of nutrients to a catchment and 

eventual input to a lake. For example, in the Colorado Front Range, gradual increases in 

wet and dry nitrogen deposition have resulted in many high elevation sites shifting from 

nitrogen limitation to nitrogen saturation
3
 (Williams et al., 1996a).  Similarly, Campbell 

et al. (2000) recorded symptoms of nitrogen excess
4
 in the Colorado Front Range with as 

little nitrogen deposition as 3 kg ha
-1

year
-1 

although the region may receive greater than 7 

kg ha
-1

year
-1

 at the highest elevations (Burns, 2003)
5
.  After being exposed to increased 

nitrogen deposition over the long-term, terrestrial ecosystems can develop a reduced 

ability to retain additional nitrogen inputs (Meixner and Bales, 2003) as they shift from 

efficient nitrogen cycling to excess nitrogen leaching out of the system (Williams et al., 

1996a).   

1.5.2 In aquatic systems  

Several paleolimnological studies indicate that alpine lakes in the western U.S.A. 

are undergoing recent eutrophication (Baron et al., 2000; Wolfe et al., 2001; Saros et al., 

2003). Baron et al (2000) determined that inputs of nitrogen increased after 1950 based 

on decreasing lake sediment 15
N values from two lakes (Sky Pond and Lake Louise) in 

the Colorado Front Range.  The increased nitrogen inputs are related to increases in fossil 

fuel burning, which produces nitrous oxides with 15
N values ranging from −7 to +12 ‰ 

(Wolfe, Baron and Cornett, 2001).  Diatom community composition at these lakes also 

shifted ca. 1950 from an oligotrophic diatom assemblage to an increase in species 

associated with greater inorganic N availability (Wolfe et al., 2001).  One major change 

was a shift in dominance from Fragilaria species to Asterionella formosa (Wolfe et al., 

2001).  In alpine environments, A. formosa is known to respond to increases in nitrogen 

                                                 

3
 Under conditions of nitrogen saturation, nitrogen is no longer the limiting factor, and nitrogen is released 

from the system. 

4
 Nitrogen excess refers to the amount of nitrogen that exceeds the ability for organisms to assimilate it. 

5
 Background (pre-industrial) inorganic N deposition has been estimated between 0.4 and 0.7 kg ha

-1
yr

-1
 in 

the western United States (Holland et al., 1999). 
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(Saros et al., 2005; Michel et al., 2006).  The authors of these studies attribute increased 

nitrogen inputs to atmospheric deposition from fossil fuel burning and intensive 

agricultural activity (Baron et al., 2000; Wolfe et al., 2001).  The N isotopic ratios and the 

ecological rates of change since 1950 are also shown to be unprecedented throughout the 

14,000 year record (Baron et al., 2000). 

1.5.3 Sensitivity of Alpine Lakes to Nutrient Deposition 

Alpine lakes have been shown to be particularly sensitive to atmospherically 

deposited pollutants (Williams et al., 1996a; Campbell et al., 2000; Clow et al., 2002). 

This sensitivity makes alpine lakes excellent indicator lakes because they should respond 

rapidly and detectably to small environmental changes. The reasons high elevation lakes 

are sensitive to environmental change are varied: 

 Alpine lake ecosystems tend to be limited by nitrogen (Saros, Michel et al., 2005; 

McMaster and Schindler, 2005; Lewis and Wurtsbaugh, 2008; Arnett et al., 

2012).  

 Like arctic lakes, alpine lakes may be particularly sensitive to climate warming, 

particularly related to ice-duration and lake stratification.  

 Alpine environments are subject to greater atmospheric deposition than low-lying 

areas at similar latitudes because of orographic precipitation, higher wind speeds, 

and increased cloud presence (Lovett, 1994).   

 The hydrology of alpine sites is often snow-melt dominated, which leads to 

seasonal spikes in surface water nitrate (NO3
-
) and ammonium (NH4

+
) 

concentrations (Campbell et al., 2000).  These spikes come in early spring when 

the terrestrial vegetation has a limited capacity for taking up nutrients. In the 

Colorado Front Range, years with greater precipitation tend to have higher nitrate 

deposition (Williams et al., 1996a).   

 Periods of less surface water flow coincide with peak growing season, when the 

plants have a greater capacity for taking up nutrients (Williams et al., 1996a). 

 Short growing seasons and minimal vegetation combined with steep slopes limit 

N retention in high elevation terrestrial environments (Campbell et al., 2000).  
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Catchments with greater vegetation cover tend to contribute more phosphorus and 

organic carbon to the lakes, and less nitrogen (Lafrancois et al., 2003). 

 Talus slopes are potential sites of microbial nitrification and can therefore 

increase the amount of biologically active N that enters water bodies (Williams et 

al., 1997). 

1.6 Other anthropogenic influences on alpine systems 

Although the primary focus of this research is increased nutrient deposition in 

alpine environments, primary production in alpine lakes can also be influenced by 

climate warming, fish stocking, free-range grazing, and atmospheric pollution of other 

elements (e.g., metal contamination).  An understanding of the range of human influences 

on alpine lakes is necessary in order to attribute changes in the paleolimnological record 

to the appropriate stressor(s).   

1.6.1 Climate Change 

Temperature changes can affect primary productivity and species composition 

within a lake.  Like high latitude lakes, high altitude lakes are expected to be sensitive to 

the length of the growing season and to the duration of ice-free periods, plus the duration 

and stability of lake stratification (Smol, 1988; Smol et al., 1991; Catalan et al., 2002; 

Smol and Douglas, 2007b; Catalan et al., 2013).  Changes in duration of ice cover can 

cause shifts in diatom community composition, such as increased planktonic diatoms 

(Rühland et al., 2008), or an increase in small-sized diatoms (Catalan et al., 2013). 

Increased stability of thermal stratification with warming temperatures favours faster 

growing planktonic algae that can exploit stable epilimnetic conditions (Ruhland et al., 

2003). Based on lake sediment diatom stratigraphies from North American and European 

lakes, (Rühland et al., 2008) found that recent climate warming first affects lake ecology 

in arctic lakes, then alpine lakes, and lastly, temperate lakes.  This implies that alpine 

lakes respond relatively early (compared to low-lying lakes) to climate warming.   
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1.6.2 Fish Stocking 

Historically, 95% of all western North American mountain lakes were fishless, 

but many of these lakes (60%) have been stocked for recreational fishing (Bahls, 1992; 

D. E. Schindler et al., 2001).  Commonly the introduction of fish results in changes in 

herbivory (changes in food web dynamics) and to nutrient regeneration, both of which 

can cause increases in primary productivity of a lake.  For example, benthic fish activity 

introduces nutrients that would otherwise be unavailable to pelagic photosynthesizers (D. 

E. Schindler et al., 2001).   

1.6.3 Grazing 

In alpine lakes with few direct impacts, grazing within catchments could influence 

nutrient budgets and lake primary productivity. The establishment of high altitude 

pastures in Europe has lead to shifts in treeline (Lotter and Birks, 2003), changes in fire 

regimes (Catalan 2013), increased erosion rates (Camarero et al., 1998), and enhanced 

nutrient loading to lakes resulting in increased anoxia and decreased chironomid 

abundance (Heiri and Lotter, 2003). Grazing can also alter terrestrial species 

composition, disrupt nutrient cycling, reduce litter cover, compact soils, reduce 

infiltration, and increase runoff (Meehan and Platts, 1978; Fleischner, 1994; Belsky and 

Blumenthal, 1997).   

1.6.4 Combined effects 

The combined effects of these perturbations are difficult to predict, but as lake 

sediments incorporate material from the lake, the catchment, and the atmosphere, 

paleolimnogy is a powerful tool to enhance our understanding of interacting forcings.  

Catalan et al. (2013) have noted that climate change and atmospheric deposition of 

biologically available nitrogen are not mutually exclusive drivers of change.  For 

example, Hobbs et al. (2010) analyzed a diatom stratigraphy from Emerald Lake 

(Wyoming, U.S.A.), which appeared to exhibit an initial species composition shift that is 

consistent with warming, followed by a later (~1950) shift related to increased nitrogen 

deposition.  Many other “double forcings” have been described from paleolimnological 
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records across Europe, such as the reduction of acidification with increased warming in 

some areas of the European Alps (Catalan et al., 2013). 

1.7  Rationale for studying the Uinta Mountains 

The Uinta Mountains are a remote environment in northeastern Utah, U.S.A., in 

which direct human activities are limited to ranching of free-range grazers (cattle and 

sheep), fish stocking, and recreational activities like hiking and fishing.  A large area 

(184,882 hectares) of the Uinta Mountains is designated as a wilderness area to protect 

the natural character of the area (http://www.wilderness.net/NWPS/wildView?WID=246; 

Figure 2.1B).  However, the Uinta Mountains are located 150 km downwind of the 

Wasatch Front, a region with rapidly expanding urban, agricultural, and industrial 

activities.  Therefore, I expect that the Uinta Mountains may receive elevated nutrient 

deposition, putting high elevation lakes at risk of eutrophication.  Furthermore, the 

western U.S.A. is also warming rapidly (Saunders et al., 2008), which can also lead to 

increased primary production in some environments.  There is currently little evidence 

that grazing, fish stocking, warming and nutrient deposition are having any influence on 

aquatic primary productivity in the Uinta Mountains, although preliminary analysis of 

diatoms from surface sediments
6
 from 57 lakes indicate that nitrophilous

7
 diatom species 

are abundant in some high elevation lakes.   

To determine if current activities are negatively impacting this wilderness area, 

and to protect this ecosystem in the future, it is necessary to investigate if and how 

primary productivity has changed in the last 200 years. However, the Uinta Mountains 

lack sufficient monitoring data to determine whether primary productivity or atmospheric 

nutrient deposition has increased and whether aquatic ecosystems have been altered as a 

result.  Therefore, I use a combination of paleolimnological and limnological records in 

order to investigate nutrient inputs in this alpine environment.   

                                                 

6
 Surface sediments (top 1 cm) are taken from the centre of the lake and represent a spatially integrated 

sample; the sediments and the fossilized organisms within them (in this case diatoms) likely represent the 

last ~5 years.   

7
 Nitrophilous species thrive in a nitrogen rich environment. 

http://www.wilderness.net/NWPS/wildView?WID=246
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Chapter 2 

2 Study Area: The Uinta Mountains 

 The Uinta Mountains are an east-west trending mountain range stretching  nearly 

200 km across northeastern Utah (40˚ to 41˚ N, 109˚ to 111˚ W) (Figure 2.1A).  The 

mountain range has summits reaching over 4000 m, contains hundreds of lakes and has 

experienced little direct human impact.  The Wasatch Front, an area characterized by 

rapid urban and agricultural expansion is located less than 150 km to the west and 

upwind.   

 

 
 

Figure 2.1.(A) The location of the Uinta Mountains in North Eastern Utah, U.S.A, and (B) 

topographic map of the Uinta Mountains showing the locations of the 57 study lakes.   

The High Uinta Wilderness area is outlined with the dotted line. 
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Six high elevation (> 3000 m.a.s.l.), oligotrophic lakes were selected for intensive 

study.  The reasons for selecting these lakes are discussed in section 2.6.  The main study 

lakes, with the lake codes used in this study in bold and with Utah Department of 

Wildlife Resources codes in parentheses, are: Denise UN07 (WR-9), Taylor UN08 (WR-

8), Upper Carrol UN55 (X-18), East Carrol UN56 (X-21), No Name UN57 (X-26), and 

Bluebell Pass UN58 (X-25). Denise, No Name, and Bluebell Pass are unofficial lake 

names, but will be used for the remainder of this thesis.  These lakes are part of a larger 

calibration set (consisting of surface sediments and lake water chemistry data) of fifty-

seven Uinta Mountain lakes, assembled by K.A. Moser.    

2.1 Geology and formation 

 The Uinta Mountains were produced by a Laramide
8
 uplift event of 

metasedimentary rocks, which consist primarily of quartzite, slate, and shale.  There are 

currently no glaciers in the Uinta Mountains, but the landscape has been modified during 

numerous glacial periods leading to the formation of cirques, high basins, and u-shaped 

valleys (Munroe, 2007; Munroe and Laabs, 2009).  Uinta Mountain glaciers began to 

retreat ca. 22-20 ka (in the northern and eastern valleys) and ca. 18-16.5 ka (in the 

southern and western valleys) (Laabs et al., 2009). The steeper mountain slopes are now 

characterized by extensive talus
9
 slopes and rock glacier deposits with Smith’s Fork 

glacial till on the valley floors (Munroe and Laabs, 2009).  

2.2 Climate 

Precipitation in the Uinta Mountains increases with elevation due to orographic 

effects (Nanus et al., 2003; MacDonald and Tingstad, 2007), and high elevation sites are 

generally snow covered from late October to late May (see USDA National Water and 

                                                 

8
 The Laramide orogeny was a period of mountain building which occurred from 80 to 35 million years 

ago.   

9
 Talus is unconsolidated, poorly sorted deposits of angular boulders that have become detached from 

bedrock by freeze thaw cycles, heavy rain, and avalanches (Munroe and Laabs, 2009) 
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Climate Center, http://www.wcc.nrcs.usda.gov/snotel/Utah/utah.html). The climate of the 

Uinta Mountains is characterized by two different precipitation regimes.  A summer dry/ 

winter wet regime dominates in the western Uinta Mountains, in which the jet stream 

moves south in winter bringing Pacific storms eastwards.  The summer wet/ winter dry 

regime dominates the eastern Uinta Mountains, as monsoonal circulation brings moisture 

from the Gulf of California and the Gulf of Mexico during the summer months (Munroe, 

2003). The two regimes are illustrated by the climagraphs of Vernal (eastern Uinta 

Mountains, higher precipitation during summer) and Heber (western Uinta Mountains, 

higher precipitation during winter) (Figure 2.2) (MacDonald and Tingstad, 2007).  Taylor 

and Denise lakes are in the summer wet/ winter dry regime, and East Carrol, Upper 

Carrol, No Name, and Bluebell Pass lakes are on the boundary between the two regimes 

(i.e., summer and winter precipitation are nearly equal) (Munroe, 2003). 
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Figure 2.2. Vernal (eastern Uinta Mountains) and Heber (western Uinta Mountains) climagraphs 

based on the common period for 1928-2005.   

Reprinted from Arctic Antarctic and Alpine Research, 39, MacDonald and Tingstad, Recent and 

multicentennial precipitation variability and drought occurrence in the Uinta Mountains Region, Utah. © 

2007, with permission from Arctic, Antarctic, and Alpine Research.   

 

2.3 Biogeography 

The Uinta Mountains host a range of vegetation as they occupy an ecotone between 

the Northern and Southern Rocky Mountain vegetation types (Shaw and Long, 2007).  

From low (~1500-2000 m a.s.l.) to high (3500-4000 m a.s.l.) elevation, the main 

vegetation zones are sagebrush (Artemisia) steppe, Juniper (Juniperus spp.) woodland, 

pinyon-juniper woodland (Pinus edulis- Juniperus spp.), ponderosa pine (Pinus 

ponderosa), Douglas fir (Pseudotsuga menziesii), aspen (Populus tremuloides), lodgepole 
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pine (Pinus contorta), spruce fir (Picea engelmannii- Abies lasiocarpa), Engelmann 

spruce (Picea engelmanii), and alpine tundra (Shaw and Long, 2007). 

2.4 Atmospheric Deposition in the Uinta Mountains 

Based on the National Atmospheric Deposition Program/ National Trends Network 

(NADP/NTN) national scale deposition records, the Uinta Mountains appear to have 

relatively low atmospheric deposition of nitrate and ammonium (Figure 2.3). However, 

there are no NADP/NTN monitoring sites in or even near the Uinta Mountains, and 

relatively few (9 out of 242) high elevation (>3000 m) NADP/NTN monitoring sites in 

the entire U.S.A.  Therefore, trends such as increased deposition related to orographic 

increases in precipitation cannot be directly determined.  In fact, high resolution 

modeling that combines NADP/NTN records with USGS annual snowpack surveys and 

precipitation models reveals that remote, high elevation sites have some of the highest 

levels of atmospheric nitrate deposition in the western U.S.A. (Nanus et al., 2003).  

According to these models, nitrate deposition in the Uinta Mountains ranges from 1 to 2.5 

kg ha
-1

yr
-1 

(Nanus et al., 2003), which exceeds estimates of preindustrial N (combined 

NH4
+
 and NO3

-
) deposition in temperate forests in the northern hemisphere (1.02 kg N ha

-

1
) (Holland et al., 1999)

 
 but is still dwarfed by the 12 – 20 kg ha

-1
yr

-1 
of nitrate ion 

deposition in the Northeast/ Great Lakes regions of the U.S.A. (Figure 2.3a). 

(a)                                                                                   (b) 

 

Figure 2.3. (a) Nitrate and (b) Ammonium ion wet deposition, 2011 (NADP/NTN, 

http://nadp.sws.uiuc/edu/NTN).   

The location of the Uinta Mountains is shown with a star. 

  

http://nadp.sws.uiuc/edu/ntn
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Nutrients can also be delivered to high alpine sites via atmospheric transport of 

dust.  Atmospherically transported dust is an important component of lake sediments in 

Marshall Lake and Hidden Lake, in the Uinta Mountains (Reynolds et al., 2010).  In these 

two lakes, phosphorus is enriched in the post-1950 sediments.  Phosphorus in Marshall 

Lake sediments is elevated relative to Hidden Lake because Marshall Lake is located in 

the western Uinta Mountains, closer to the Wasatch Front (Reynolds et al., 2010).  Dust 

samples collected in the Uinta Mountains provide further evidence that the likely sources 

of increased phosphorus in dust are from agricultural fertilizer and phosphate mining 

(Squire, 2012).  

2.5 Historical land use and potential nutrient sources for 
Uinta Mountains lakes 

As illustrated in Figure 1.1, several factors can influence nutrient concentrations 

in remote lakes. Therefore, it is important to have an understanding of past human 

activities in the Uinta Mountains and surrounding regions, especially those activities 

which can influence nutrient sources. 

2.5.1 Settling and development of the Wasatch Front 

The Wasatch Front is an urban area located east of the Uinta Mountains that 

stretches from Santaquin in the south to Brigham City in the north, and includes the 

major cities of Salt Lake City, Provo, and Ogden (Pope et al., 1999).  The Wasatch Front 

is approximately 15-25 km wide and 130 km long, and is now home to approximately 

80% of Utah’s residents (Figure 2.4).   
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Figure 2.4. Population density in Utah by census tract.  

The Wasatch Front is clearly shown as the high density (red and orange) population areas in North-central 

Utah. Source: U.S. Census Bureau Census 2000 Summary File 1.   

 

The first non-native settlers to the Wasatch Front arrived in 1847
10

.  At that time, 

the Ute Indians were the only inhabitants, and they primarily lived in eastern Utah (May, 

1987).  Shortly thereafter, agricultural operations were developed (Sillitoe, 1996; 

Mordecai, 2008). The first mines were developed in the area as early as 1863 (McPhee, 

1977) and Kennecott Utah Copper’s Bingham Canyon mine opened in 1865.  Bingham 

Canyon Mine continued to expand and grew to produce more copper than any other mine 

globally since its inception (Kennecott Utah Copper, 2012).  

 

                                                 

10
 Other than small numbers of trappers, the first non-native settlers in the Wasatch Front were several 

thousand followers of the Mormon leader, Joseph Smith.   
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Agriculture remains an important industry in the Wasatch Front today, although 

rapid urbanization in the 1940s resulted in the conversion of large areas of farmland into 

residential and industrial areas (Silletoe, 1996).  The population of the Wasatch Front has 

increased from just over 800,000 in 1970 to 2,200,000 in 2010, an increase of 170 % (US 

Census Bureau).  The population of the Wasatch Front is expected to increase further to 

2.7 million residents in 2020 (Envision Utah, 2000), which will be accompanied by 

increases in automobile use and industrial activity.   

2.5.2 Grazing in the Uinta Mountains 

Although records are intermittent, sheep grazing was common practice in the 

Uinta Mountains by 1890.  The Uinta Mountains became protected land with the 

establishment of the Wasatch National Forest in 1906 and the Ashley National Forest in 

1908 (USDA Forest Service, http://www.fs.usda.gov/main/ashley/about-forest).  Grazing 

in both the Dry Gulch and Whiterocks River allotments (which together encompass all 

six study lakes) is likely to have peaked in the 1920s or 1930s (United States Forest 

Service, 1947).  During the post-WWII period, free-range grazing of sheep and cattle 

became increasingly better managed in the vicinity of the six study lakes, although many 

areas are still grazed by sheep and cattle.  By the early 1990s the Whiterocks and Chepeta 

grazing allotments (near Denise and Taylor Lake) were closed to livestock grazing 

(United States Forest Service, 1947).  

2.5.3 Fish stocking in the Uinta Mountains 

The six Uinta Mountain study lakes have all been stocked with either cutthroat 

trout (Oncorhynchus clarkii) or brook trout (Salvelinus fontinalis) multiple times since 

1979 (Utah Division of Wildlife Resources, 2012, http://www.utahfishinginfo.com/dwr/) 

(Figure 2.5).  No Name and Bluebell Pass Lakes were stocked as long ago as 1958 (Rabe, 

1968), and it is likely that the others were as well. In fact, Taylor Lake was reportedly 

named after the first person to stock the lake with fish (VanCott, 1990).  Before 1956, 

lakes were stocked by horseback (Hallows, 2009), making it less likely that these remote 

lakes were stocked (Utah Division of Wildlife Resources, 2012).  It is unlikely that the 

six lakes had natural fish populations (Bahls, 1992), which is corroborated by fish 

http://www.fs.usda.gov/main/ashley/about-forest
http://www.utahfishinginfo.com/dwr/
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sampling surveys from 1978 at East Carrol, Upper Carrol, No Name, and Bluebell Pass 

lakes.  These reports indicate that there were no natural fish populations and that stocked 

fish were not reproducing
11

 (D.W.R. stocking reports, unpubl.).   

Figure 2.5. Numbers of fish stocked at the six study lakes.   

Stocked fish types include brook trout, cutthroat trout and rainbow trout.  Bars with question marks indicate 

that stocking took place at that lake but that the quantity of fish added during that year is unknown.  

Records are more difficult to obtain before 1980, and so years without data do not necessarily mean that no 

fish were stocked in the early parts of the record.   

 

2.5.4 Climate Change in the Uinta Mountains 

In October 2013, the Intergovernmental Panel on Climate change (IPCC) declared 

that “Warming of the climate system is unequivocal, and since the 1950s, many of the 

observed changes are unprecedented over decades to millennia” (IPCC, 2013, p. 2).  The 

increase in radiative forcing is largely caused by increased CO2 concentrations and “It is 

extremely likely that human influence has been the dominant cause of the observed 

warming since the mid-20
th

 century” (IPCC, 2013, p. 13). The western U.S.A. 

                                                 

11
 All captured fish in these reports had stunted growth and cohorts matched known stocking years. 
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experienced statistically significant warming during the 20
th

 century (IPCC, 2007), and 

Utah is warming faster than the national and world average (Saunders et al., 2008). 

Climate stations from the Eastern and Western foothills (Vernal and Heber, 

respectively, Figure 2.1) provide the closest approximation of general climate trends over 

time in the Uinta Mountains.  There are some high elevation climate stations in closer 

proximity to the study lakes; however these records are at maximum 60 years long and 

are missing up to 47% of the daily temperature readings, largely due to the difficult of 

maintaining and reaching sites in the winter.  The temperature trends and average 

temperatures at Heber and Vernal are similar, but the Vernal record has many missing 

values (Figure 2.6). At the Heber climate station, temperatures fluctuated until around the 

1980s when the mean annual temperature begins to increase steadily. This is typical 

timing for recent climate warming when compared to the regional trend in Utah (Figure 

2.7) and the western U.S.A. (Saunders et al., 2008).   

 

Figure 2.6. Comparison of temperature records from Heber and Vernal, Utah  

The dotted red and blue lines mark the 1900-2000 average temperatures for Heber and Vernal, respectively. 

Years at the Vernal climate station with at least one month missing are shown as black diamonds along the 

x axis (Western Regional Climate Center, 2009).   
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Figure 2.7.  Temperature anomalies (relative to 1900 - 1949 mean) for Heber and Utah  

(Western Regional Climate Center, 2009). 

 

2.6 Site selection and lake characteristics 

 The six lakes selected for coring (Figure 2.1B, Table 2.1) were chosen from a 57-

lake calibration set within the Uinta Mountains (Figure 2.1B).  High elevation (>3000 

m.a.s.l.) lakes were selected for coring to ensure that climatic differences associated with 

altitude (e.g., increased precipitation and associated wet deposition) were minimal. Lakes 

were also selected to capture variation in catchment characteristics (e.g., lake depth, 

catchment size, percent vegetation cover, through-flow, etc.) to allow for investigation of 

differences in lake response.     
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Table 2.1. Summary characteristics of the six Uinta Mountain study lakes.   

AL = lake area, AC = catchment area. 

Lake 
Name 

Site 
Code 

Lati- 
tude 
(°N) 

Longi-
tude 
(°W) 

Elevation 
(m.a.s.l) 

Lake 
Depth 

(m) 

Secchi 
Depth 

(m) 

AL 
(ha) 

AC 
(ha) 

Sediment 
Core 

Length 
(cm) 

Denise UN-07 40.77 110.09 3399 2.4 >2.4 1.1 391.9 52 

Taylor UN-08 40.79 110.09 3414 9.7 5.4 9.0 349.9 32 

Upper 
Carrol 

UN-55 40.72 110.35 3395 13.8 3.9 11.6 316.1 31 

East 
Carrol 

UN-56 40.72 110.35 3423 5.3 3.5 3.4 35.1 31 

No Name UN-57 40.71 110.38 3355 5.2 >5.2 2.6 83.6 42 
Bluebell 

Pass 
UN-58 40.70 110.39 3342 7.7 2.0 3.3 174.5 26 

 

All six lakes are oligotrophic or oligotrophic-mesotrophic (low to medium-low 

nutrient richness) (Table 2.1) and vary in depth from 2.4 m at Denise Lake to 13.8 m at 

Upper Carrol Lake.  The three deepest lakes (Taylor, Upper Carrol, and Bluebell Pass 

Lakes) thermally stratify and have reduced oxygen in the hypolimnion (Figure 2.8).   The 

three shallow lakes (Denise Lake, East Carrol Lake, and No Name Lake were not 

thermally stratified (Figure 2.8).  
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Figure 2.8. Lake water profiles of temperature and dissolved oxygen at the six main study lakes.  

Profiles were taken at maximum depth (which is reached at the gray box).  Measurements obtained in July 

2008. 

 

The land surface cover in all six lake catchments are dominated by talus slopes, 

exposed bedrock and snow (56 to 81 %) (Figure 2.9).  Vegetation types within the 

catchments are varied, but are grouped in two main categories: alpine tundra + meadow, 

and forest + shrubland (Figure 2.9). 
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Figure 2.9. Percentage landcover in the six study lakes.   

The area of each pie is proportional to the catchment area.   

 Taylor Lake (Figure 2.10A) and Denise Lake (Figure 2.10C) are located less than 

0.5 km apart (Figure 2.10E).  Both are headwater lakes in the West Fork of the White 

Rocks River drainage basin.  Several inflows run from snow and through the talus slopes 

interspersed with meadow and shrub vegetation to Taylor Lake.  Denise Lake is slightly 

lower in elevation than Taylor Lake, and the catchment of Denise Lake includes that of 

Taylor Lake, which explains the similarity in landcover percentage between the two sites 

(see Figure 2.9). 
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Figure 2.10. Taylor and Denise Lakes. (A) Taylor Lake. (B) The 32 cm sediment core from Taylor 

Lake. (C) Denise Lake. (D) The 52 cm sediment core from Denise Lake. (E) The locations of Taylor 

and Denise Lake from Google Earth version 7.1.2.2041.  

The camera icon shows the vantage point for photos (A) and (C). 

 

 Upper Carrol Lake (Figure 2.11A) and East Carrol Lake (Figure 2.11C) are 

located roughly 0.5 km apart (Figure 2.11E).  Both are headwater lakes of the Swift 

Creek drainage basin (above the Timothy Lakes).  Upper Carrol Lake is the largest of the 

six study lakes in terms of both area and depth and has permanent inflows through 

meadow and shrub-like vegetation.  East Carrol Lake has a small, talus-dominated 

catchment (Figure 2.9) with an intermittent inflow and an outflow. 
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Figure 2.11. Upper Carrol and East Carrol Lakes. (A) Upper Carrol Lake. (B) The 31 cm lake 

sediment core from Upper Carrol Lake. (C) East Carrol Lake. (D) The 31 cm sediment core from 

East Carrol Lake. (E) The locations of Upper Carrol and East Carrol Lake from Google Earth 

version 7.1.2.2041.  

The camera icons show the vantage points for photos (A) and (C). 

 

 Bluebell Pass Lake (Figure 2.12A) and No Name Lakes (Figure 2.12C) are 

located less than 0.5 km apart (Figure 2.12E). Both are headwaters in the west branch of 

the Swift Creek drainage basin (above Farmer’s Lake). Bluebell Pass Lake is fed from 

steep talus slopes on its west and north sides and surrounded by forest and shrub 

vegetation on its south, east, and northeast sides.  No Name Lake is a small, closed basin 

lake.  A lighter band at ca. 5 cm in the No Name lake sediment core (visible in Figure 

2.12D) is thought to correspond with a landslide event. 
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Figure 2.12. Bluebell Pass and No Name Lakes. (A) Bluebell Pass Lake (lower right). (B) The 26 cm 

lake sediment core from Bluebell Pass Lake. (C) No Name Lake. (D) The 42 cm sediment core from 

No Name Lake. Note the light band at ~ 5 cm, most likely from a rock slide event. (E) The locations 

of Bluebell Pass Lake and No Name Lake from Google Earth version 7.1.2.2041.  

The camera icons show the vantage points for photos (A) and (C).   
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Chapter 3  

3 Recent changes in primary production in oligotrophic 
Uinta Mountain lakes, Utah, U.S.A., identified using 
paleolimnology 

3.1 Introduction 

In this study, we investigate the potential drivers of changing primary production 

since the 19
th

 century in alpine lakes in the Uinta Mountains, Utah, U.S.A. (Figure 3.1).  

Because phosphorus (P) and nitrogen (N) are the elements that most often limit 

freshwater production, changes in inputs of N or P can alter ecosystem processes, reduce 

biodiversity, and lead to surface water eutrophication (Vitousek et al., 1997; Schindler, 

2006).  Although few symptoms of eutrophication have been reported for Uinta Mountain 

lakes, the rapid industrial, agricultural and urban expansion occurring upwind of the 

Uinta Mountains along the Wasatch Front may place Uinta Mountain lakes at risk of 

enhanced deposition of fixed nitrogen species (NO3
-
 and NH4

+
) and phosphorus. 
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Figure 3.1. Map of Northeastern Utah showing (A) the location of the Uinta Mountains in Utah and 

U.S.A., and (B) the topography of the Uinta Mountains with the locations of the six study lakes, and 

Hidden and Marshall Lakes. 

In the last century, humans have drastically increased the amount of biologically 

available N (NO3
-
 and NH4

+
) on a global scale, largely via synthetic fertilizer use, fossil 

fuel burning, intensive animal husbandry, and the cultivation of leguminous crops 

(Vitousek et al., 1997).  Records maintained by the National Atmospheric Deposition 

Program National Trends Network (NADP/NTN) (http://nadp.sws.uiuc.edu/ntn/) for the 

U.S.A. show that on a national scale, areas with the greatest wet deposition of NO3
-
 and 

http://nadp.sws.uiuc.edu/ntn/
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NH4
+
 generally coincide with areas of high population density and intensive agriculture.  

In these areas, runoff from fields and urban areas, sewage, and industrial effluent tend to 

be much greater sources of N to aquatic systems than atmospheric deposition.  In 

contrast, at remote alpine sites, atmospherically derived N makes up a larger proportion 

of anthropogenic N inputs, as many of the other sources are absent (Lepori and Keck, 

2012).  High resolution modeling of N deposition that combines NADP/NTN records 

with USGS annual snowpack surveys and precipitation models reveals that remote, high 

elevation sites have some of the highest levels of atmospheric nitrate deposition in the 

Western U.S.A. (Nanus et al., 2003). Elevated atmospheric nitrogen deposition resulting 

from N volatilized from farmers’ fields and feedlots, or from fossil fuel combustion has 

been linked to subtle ecological changes in alpine lakes in the Colorado Front Range 

(Baron et al., 2000; Wolfe et al., 2001) and in the Beartooth Range of Wyoming (Saros et 

al., 2003).  On a wider scale, Holtgrieve et al. (2011) suggest that low δ
15

N values in lake 

sediments from many remote alpine, arctic, boreal, and temperate sites in the Northern 

Hemisphere indicate elevated N-deposition resulting from anthropogenic activities.   

Although it is evident that δ
15

N values of lake sediments are decreasing in a 

variety of remote aquatic systems (Holtgrieve et al., 2011), there are still uncertainties 

regarding the influence of factors other than enhanced atmospheric N deposition on 

primary production in dilute alpine systems (Figure 1.1).  For example, P has been given 

relatively little attention in these environments, even though atmospheric deposition can 

contribute substantial amounts to an alpine lake (Psenner, 1999). Recent increases in P 

loading to Emerald Lake, Sierra Nevada Mountains, California, have been attributed to 

organophosphate pesticide deposition or aeolian transport of dust from the San Joaquin 

Valley (Sickman et al., 2003).  Climate warming, local grazing, and fish stocking, can 

influence primary production and result in changes in δ
15

N; diagenesis of organic matter 

can also mimic some of the geochemical changes expected with increasing primary 

production.   

Alpine environments have several characteristics that make them sensitive to 

changes in nutrient inputs (Figure 1.1).  First, some alpine environments are subject to 

greater atmospheric deposition than low lying areas at similar latitudes because of 
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orographic precipitation, higher wind speeds, and increased cloud presence (Lovett, 

1994).  Second, snowmelt-dominated hydrology, combined with low biological N 

demand in spring, leads to seasonal spikes in surface water NO3
-
 and NH4

+
 concentrations 

(Campbell et al., 2000).  Third, short growing seasons, minimal vegetation, and steep 

slopes limit N retention in the terrestrial environment (Campbell et al., 2000).  Finally, 

talus slopes are potential sites of microbial nitrification and can therefore increase the 

amount of biologically active N that enters water bodies (Williams et al., 1997).  

The Uinta Mountains have no NADP/NTN sites, limited lake water monitoring 

records, and only short-term snow water chemistry records (< 5 years).  Therefore, we 

collected and analyzed lake sediment cores from six high elevation Uinta lakes.  These 

cores contain several proxies that were used to explore and evaluate potential causes of 

recent primary production changes in these alpine environments.  The percentage of 

organic matter (determined by loss-on-ignition) along with chlorophyll a, a 

photosynthetic pigment produced by all plants and algae, can be useful indicators of 

primary production.  Stable isotopic ratios of organic matter nitrogen (
15

N/ 
14

N) provide 

evidence for changing N sources and cycling, and are useful for comparison with 

previous research. Stable isotopic ratios of organic matter carbon (
13

C/ 
12

C) can 

contribute to our understanding of changes in primary production.  Carbon: nitrogen 

ratios (C:N) are used to evaluate the relative proportions of algal versus terrestrial organic 

matter contributions to the lake (Meyers and Ishiwatari, 1993).  Diatoms are expected to 

be among the first organisms to respond to greater N availability due to their sensitivity 

to changing nutrients (Wolfe et al., 2001).  Asterionella formosa in particular responds to 

enhanced N in alpine environments (Saros et al., 2005). 

This research will show that Uinta Mountain lakes have experienced recent 

increases in aquatic primary production, as indicated by increases in the percentage of 

organic matter and chlorophyll a concentrations, combined with decreasing C:N ratios.  

The timing of these changes coincides with agricultural intensification and industrial 

expansion in the region of the Wasatch Front around 1950 A.D.   
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3.2 Study Area 

The Uinta Mountains are an east-west trending mountain range that reaches 

elevations over 4000 m, and stretches 200 km across the northeastern part of Utah (40˚ to 

41˚ N, 109˚ to 111˚ W) in to northwestern Colorado (Figure 3.1).  The mountain range 

contains hundreds of lakes and has experienced little direct human impact, making it 

ideal for investigating nutrient inputs and lake response.  The geology is primarily 

quartzite, sandstone, and shale.  Model results combining NADP/NTN and snow 

chemistry data indicate that the highest elevations of the Uinta Mountains received 2-3 kg 

ha
-1

 inorganic N annually, and exceed critical loads of N deposition by 1-3 kg N ha
-1

 

annually (Nanus et al., 2012).  Inorganic N deposition in the Uinta Mountains is higher 

than most low-lying areas of the western U.S.A., but similar to other high elevation 

regions such as the Colorado Front Range, which receives 2-4 kg ha
-1

 inorganic N 

annually (Nanus et al., 2012).  

Six high elevation (> 3000 m.a.s.l.) lakes were selected for this study in order to 

detect variability in lake responses and control for altitudinal-related variables such as 

differences in temperature and precipitation.  The lakes, with Utah Department of 

Wildlife Resources codes in parentheses, are: Denise (WR-9), Taylor (WR-8), Upper 

Carrol (X-18), East Carrol (X-21), No Name (X-26), and Bluebell Pass (X-25) (Table 

3.1).  

Table 3.1. Summary characteristics of the six study lakes. 

Secchi depths are averages of single measurements taken in 2007 and 2008. Trophic status was determined 

by comparison of Secchi depth, TP, TN, and chlorophyll a concentrations to those listed in Table 13-18 of 

Wetzel (2001). 

Lake Name 

Latitude 

(˚N) 

Longitude 

(˚W) 

Elevation 

(m.a.s.l) 

Lake Depth 

(m) 
Stratifies 

Secchi 

Depth 

(m) 

Trophic Status 

Denise 40.77 110.09 3399 2.4 No >2.4 Oligo 

Taylor 40.79 110.09 3414 9.7 Yes 3.4 Oligo/ meso 

Upper Carrol 40.72 110.35 3395 13.8 Yes 4.7 Oligo/ meso 

East Carrol 40.72 110.35 3423 5.5 No 3.3 Oligo/ meso 

No Name 40.71 110.38 3355 5.4 No >5.4 Oligo 

Bluebell Pass 40.70 110.39 3342 7.7 Yes 2.1 Oligo/ meso 
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3.3 Methods 

3.3.1 Water Chemistry 

 Water samples were obtained from each lake in late July and early August of 

2007 – 2010.  Water samples were collected in pre-cleaned polyethylene Nalgene® 

bottles from the deepest part of the lake, 0.5 m below the surface and were kept cool in 

the field (~1-3 days) until they were returned to the Forest Service in Vernal, Utah.  The 

water samples were used for chemical analysis (nitrite + nitrate, nitrites, ammonium, 

phosphate, total phosphorus, and total nitrogen) and filtered for chlorophyll a.  The 

samples were frozen immediately after filtering and sent to Chesapeake Biological 

Laboratory in Maryland, U.S.A. for analyses.  The Chesapeake Biological Laboratory 

protocols are available from http://nasl.cbl.umces.edu/.  

3.3.2 Temperature record selection 

There are high elevation climate stations in close proximity to the study lakes. 

However, these records are at maximum 60 years long and are missing up to 47% of the 

daily temperature readings, largely because of the difficulty of reaching the sites in 

winter.  Vernal, Utah, is the closest record (up to 74 km from the six lakes) of at least a 

century in duration, but is missing 20% of the daily data.  Heber, Utah (Figure 3.1) is 

located up to 117 km from the six lakes, has a near complete (99.5%) 117-year record, 

has similar trends to Vernal (Western Regional Climate Center, 

http://www.wrcc.dri.edu/), and thus was selected for comparison to the lake sediment 

profiles.  

3.3.3 Sediment Coring  

Lake sediment cores between 25 and 50 cm in length with an undisturbed 

sediment-water interface were obtained from the deepest part of each lake during the 

summers of 2006 (Taylor and Denise lakes) and 2007 (East Carrol, Upper Carrol, No 

Name, and Bluebell Pass lakes).  The cores were obtained from an inflatable boat using a 

Kajak-Brinkman gravity corer fitted with a plastic coring tube of 6.5 cm diameter.  Lake 

sediments were extruded on site using a specially designed extruder (Glew et al., 2001) 

http://nasl.cbl.umces.edu/
http://www.wrcc.dri.edu/
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and were sub-sampled at 0.5 cm contiguous intervals, except at greater than 20 cm depth 

in Taylor and Denise lakes, which were sub-sampled at one cm intervals.  The sub-

samples were stored in Whirlpak bags in dark conditions at 4˚C at the Lakes and 

Reservoir Systems Research Facility at the University of Western Ontario, London, 

Ontario, Canada.  

3.3.4 Chronology 

 Lake sediments were dated using 
210

Pb (half-life = 22.26 years) techniques 

(Appleby, 2001) on 15 dried and ground samples per lake from between 0 and 22 cm 

core depth.  Samples were initially analyzed using -spectrometric measurements of 

210
Po, a decay product of 

210
Pb, at MyCore Scientific Inc. in Deep River, Canada (Cornett 

et al., 1984).  The 
210

Pb ages were calculated using the constant rate of supply (CRS) 

model, in which lake sediments are assumed to be receiving a constant input of 

unsupported 
210

Pb from the atmosphere (Appleby, 2001). The background (supported 

210
Pb) was determined as the average of the constant 

210
Pb concentrations in the three to 

five deepest sections of the core.  The errors on the dates in the oldest sediments were 

large (27 to 418 years; Figure 3.2), so to verify these dates, γ-spectrometry was used for 

two lakes (Taylor and East Carrol).  This method allows for a more accurate 

determination of background 
210

Pb in this type of lake (Appleby, 2001), and for 

simultaneous analysis of 
137

Cs, an artificial radioisotope produced by nuclear weapons 

testing, which peaked in 1963.  The γ-spectrometry measurements were made at the 

Paleoecological Environmental Assessment and Research Laboratory (PEARL) at 

Queen’s University, Canada.  Dates were calculated following procedures described in 

Binford (1990) using the “Binford” package (Jeziorski and Thienpont, 2010) for the R 

software environment (R Development Core Team, 2011). 

3.3.5 Production Measures 

 Loss-on-ignition (LOI) was performed on each of the six lake sediment cores 

following the methods in Dean (1974).  Briefly, 1 cm
3
 of sample was dried, weighed, and 

then heated in a Lindberg/ Blue M Box Furnace for one hour at 550˚C to combust organic 
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matter.  For each sample, the difference in dry weight before and after combustion was 

used to calculate the percentage of organic matter.   

Sedimentary chlorophyll a concentrations were inferred using visible reflectance 

spectroscopy (VRS) at PEARL.  This technique takes advantage of the spectral signal of 

preserved chlorophyll a and its diagenetic products in lake sediments as detailed in 

Michelutti et al. (2005) and Wolfe et al. (2006).  Briefly, sediments were freeze-dried and 

sieved to only retain material <125 µm, thus preventing water content and grain size from 

affecting the spectral signal.  Sediment reflectance spectra were measured between 400 

and 1100 nm at 2 nm intervals using a Model 6500 series Rapid Content Analyzer (FOSS 

NIRSystems Inc.), which provides the output of percent absorbance as an average of 32 

scans.  Chlorophyll a has a distinct absorption peak between 650 and 700 nm wavelength.  

The area under this curve is strongly linearly correlated with the concentration of 

chlorophyll a plus its isomers and its major derivatives, pheophytin a and pheophorbide a 

(Michelutti et al., 2005). Hereafter, chlorophyll a refers to this group of pigments plus its 

derivatives.  Chlorophyll a flux rates were calculated on the dated portions of the cores to 

take into account the influence of sedimentation rate on chlorophyll a concentrations.   

3.3.6 Sediment geochemistry 

Prior to isotopic analysis, powder X-ray Diffraction (pXRD) was used to test for 

the presence of carbonate in the samples.  No carbonates were present in the sediment 

samples, thus ensuring that only organic carbon contributed to the measured 
13

C/
12

C ratio.  

Stable isotope results are reported using δ
 
notation,  

 

 where R is the 
15

N/
14

N or 
13

C/
12

C ratio of the sample (P) and standard (std), respectively, 

for δ
15

N and δ
13

C.  Measured δ
13

C values dated from 1700 AD and after were corrected 

P 
(RP Rstd)

Rstd
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for the Suess effect
12

, following the polynomial correction factor described by Verburg 

(2007).  Samples were freeze-dried and homogenized with a mortar and pestle to a 

consistent (<125 µm) grain size.  The stable isotopic compositions of nitrogen and carbon 

were analyzed using a Costech Elemental Combustion System connected to a Thermo 

Finnigan Delta
PLUS 

XL mass spectrometer.  Sample δ
13

C and δ
15

N values were calibrated 

to VPDB and AIR, respectively, using USGS40 (accepted values: δ
13

C = –26.39 ‰, δ
15

N 

= –4.52 ‰) and USGS41 (accepted values: δ
13

C = +37.63 ‰, δ
15

N = +47.6 ‰).  In 

addition, internal (keratin) and international (IAEA-N-2) standard reference materials 

were analyzed to monitor analytical precision and accuracy.  A δ
13

C value of –23.99 ± 

0.08 ‰ was obtained for 10 analyses of the internal keratin standard, which compares 

well with its average value of –24.04 ‰.  Sample reproducibility was ± 0.09 ‰ for δ
13

C 

(SD,  n=5).  A δ
15

N value of 6.29 ± 0.13 ‰ (SD, n=11) was obtained for an internal 

keratin standard, which compares well with its average value of +6.36 ‰.  A δ
15

N value 

of +20.44 ± 0.01 ‰ (n=2) was obtained IAEA-N-2, which compared well with its 

accepted value of +20.3 ‰.  Sample reproducibility was ± 0.04 ‰ for δ
15

N (SD, n=5).   

Organic carbon and total nitrogen contents were determined using a Fisons 1108 

elemental analyzer.  These results were used to calculate atomic C:N ratios.  Sample 

reproducibility was ± 0.33 for % C (SD, n=9) and ± 0.02 for % N (SD, n=9).  The pXRD, 

δ
 13

C, δ
 15

N, % C, and % N analyses were carried out at the Laboratory for Stable Isotope 

Science at The University of Western Ontario, Canada.  

3.3.7 Diatoms 

Samples were prepared for diatom analysis using the method described by Battarbee 

et al. (2001).  Approximately one cm
3
 subsamples were treated with 10 % hydrochloric 

acid to eliminate any calcium carbonate, followed by a 50:50 molar weight solution of 

nitric and sulfuric acid to digest organic matter.  After 24 hours the samples were heated 

to 80˚C for two hours.  Treated subsamples were rinsed a minimum of 10 times (at least 

                                                 

12
 The Suess effect is the decrease in atmospheric δ

13
C resulting from the release of CO2 with low 

13
C 

content by fossil fuel burning and deforestation (Keeling, 1979). 
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24 hours between washes) with distilled water until neutrality was reached, and then 

mounted onto slides using Naphrax® or Z-rax®.  For each sample a minimum of 500 

diatom valves were identified and counted using a Leica E-600 light microscope outfitted 

with differential interference contrast optics and 100× magnification. A Retiga® 2000 

Fast 1394 digital camera was used to facilitate identification.  

3.4 Results 

3.4.1 Water chemistry  

 The six study lakes are oligotrophic or on the cusp between oligotrophic and 

mesotrophic (Table 3.1), as determined by TP, TN, chlorophyll a, and Secchi depth 

values.  The limiting nutrient for each lake is difficult to discern regardless of method 

used (Table 3.2).  Downing and McCauley (1992) suggest that N-limitation is more 

common in lakes with TN:TP <14 (mass ratio), whereas lakes with TN:TP >17 (mass 

ratio) tend to be P-limited (Sakamoto, 1966).  Using water chemistry data from lakes and 

oceans, Guildford and Hecky (2000) found that N-deficiency is likely at TN:TP < 20 

(molar) and P-deficiency at TN:TP > 50 (molar).  Because TN can contain a large 

proportion of biologically unavailable N (e.g., 34-97% at the six study lakes), Bergstrom 

(2010) suggests that the TN:TP ratio may not be a realistic indicator of limiting nutrients, 

and that the DIN:TP ratio is a better predictor of limiting nutrient conditions in 

oligotrophic lakes.  DIN:TP < 1.5 is likely to be N-limited whereas and DIN:TP > 3.4 is 

likely to be P-limited (Bergstrom, 2010).  Based on our data, some lakes are N-limited 

and some are P-limited; others lie between the thresholds for N- and P-limitation (Table 

3.2).  These results also show that there is likely temporal variation in nutrient limitation.  

For example, the DIN:TP ratio indicates that Taylor Lake is P-limited in summer 2011, 

uncertain or shifting between N- and P-limitation in fall 2011, and N-limited in spring 

2012 (Table 3.2). 
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Table 3.2. Summary of nutrient measurements of study lake water samples and N:P relationships. 

The shading represents three separate characterizations of limiting nutrients. Black shading represents N 

limitation, dark gray shading represents shifting or uncertain limitation, and light gray represents 

phosphorus limitation.  Limitation thresholds are taken from *Bergstrom (Bergstrom, 2010), and 

**Downing and McCauley (1992) and Sakamoto (1966), and ***Guildford and Hecky (2000). 

Lake 
Month/ 

year 

DIN 

(µg/L) 

 

TN 

(µg/L) 

 

TP 

(µg/L) 

DIN/TP 

mass ratio* 

TN/TP 

mass 

ratio** 

TN/TP 

atomic 

ratio*** 

Chl a  

Denise 

07/11 - 230 9.5 - 24.2 53.5 - 

06/12 10.8 150 13.2 0.8 11.4 25.1 4.4 

09/12 12.7 470 29.3 0.4 16 35.5 3.8 

Taylor 

 

07/11 139.0 240 15.4 9.0 15.6 34.5 1.0 

09/11 28.0 210 11.0 2.5 19.1 42.2 3.1 

06/12 17.0 190 18.5 0.9 10.3 22.7 7.0 

09/12 9.7 220 10.8 0.9 20.4 45.0 1.5 

Upper 

Carrol 
05/12 28.3 270 16.4 1.7 16.5 36.4 3.8 

East 

Carrol 
05/12 28.0 130 6.7 4.2 19.4 42.9 1.1 

No Name 05/12 18.3 180 9.1 2.0 19.8 43.7 2.4 

Bluebell 

Pass 
05/12 12.0 180 8.0 1.5 22.5 49.8 2.9 

 

3.4.2 Chronology 

The total 
210

Pb activity of the six lakes decreases predictably with depth, allowing 

for the development of robust CRS chronologies (Figure 3.2).  Background 
210

Pb was 

reached within 9-12 cm in each of the six lakes, indicating average sedimentation rates of 

0.5 to 1 mm yr
-1

.  The dating models developed using  and γ spectrometry for East 

Carrol Lake are strikingly similar (Figure 3.2).  Cesium-137 peaks at 1961 ± 1.3 years, 

which coincides with the peak of nuclear bomb testing in 1963. The peak 
137

Cs in Taylor 

Lake occurs at 1976 ± 3.25 years.  However, samples were measured for 
137

Cs only at 

every other half-centimeter in this section of the Taylor Lake core.  At this resolution, 

peak 
137

Cs could be off by a decade in either direction.  Despite the larger errors for dates 

determined from deeper intervals using -spectrometry, there is no statistical difference 

between dates attained by  and  spectrometry, given the measurement errors.  For 

consistency among lakes, all dates presented hereafter are based on the CRS depth-age 

curves using the dates obtained by -spectrometry.  In the absence of terrestrial organic 
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material suitable for 
14

C dating, the 
210

Pb dating models were extended using linear 

regression  (R
2 

> 0.95 for all six lakes), and give basal dates ranging from AD 1187 at No 

Name Lake (at 42.5 cm depth) to AD 1671 at Bluebell Pass Lake (at 25.75 cm depth).  

These extrapolations provide historical context for the observed post ~1850 trends, 

although the pre-1850 dates are considered with caution, as basal 
210

Pb sedimentation 

rates tend to be systematically overestimated compared to models that include 
14

C dates 

(Cooke et al., 2010). 
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Figure 3.2. 

210
Pb activities and core chronologies for the six study lakes.   

(A) 
210

Pb activities from the six study lakes using -spectrometry performed at MyCore Scientific Inc. 

(open circles) and -spectrometry performed at PEARL (crosses).  Cesium-137, measured (note continues) 
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Figure 3.2 (Continued). using -spectrometry at PEARL, is represented by the gray line.  (B) Core 

chronology based on the constant rate-of-supply model from -spectrometry at MyCore (black line) and -

spectrometry performed at PEARL (dashed line).  Error bars represent one standard deviation above and 

below the date. 

 

3.4.3 Lake Production Indicators 

In three of the six lakes (East Carrol, No Name, and Taylor Lakes) the chlorophyll 

a and percentage of organic matter are relatively constant from the beginning of the 

record until 1940-1960 when production increases, reaching magnitudes that exceed 

levels at any other time in the record (Figure 3.3).  The highest values also occur in the 

top sediments at Denise and Upper Carrol Lakes, but unlike the other sites, Denise Lake 

exhibits a peak in chlorophyll a and percentage organic matter centered at ~AD 1580.  By 

comparison, Upper Carrol Lake exhibits a gradual upward increase in chlorophyll a and 

percentage organic matter throughout the record.  Primary production measures from 

Bluebell Pass Lake are relatively stable throughout the record with only a minor increase 

in chlorophyll a near the top of the core.  The chlorophyll a flux (calculated as a rate) 

illustrates the primary production trend without the influence of sediment accumulation 

rate on concentration, and reveals that all but Upper Carrol Lake experienced increased 

production in the surface sediments (Figure 3.3).  
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Figure 3.3.  Key biological and biogeochemical data for Denise, Taylor, Upper Carrol, East Carrol, 

No Name, and Bluebell Pass Lake sediment cores.  

Filled circles represent data constrained by the 
210

Pb dated section of the cores, whereas open circles 

represent data for which the chronology was established by fitting a linear regression to the dates and 

extending below the 
210

Pb dated section.  Chlorophyll a flux and sediment accumulation rate (SAR) are 

both calculated as rates, and are limited to the 
210

Pb-dated section of each core.  Measured 13
C values are 

shown in grey, whereas Suess-corrected  
13

C values (applied only to years after 1700) are shown in black.  

On each plot, the upper horizontal grey line indicates the main change in chlorophyll a (determined by 

visual inspection), which occurred ~1950, and the lower horizontal grey line indicates when 15
N became 

significantly different than mean pre-settlement (pre-1850) values. 
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The C:N ratios at Denise Lake decrease over the duration of the record from ~14 

to ~9.  In the other lakes, C:N ratios are relatively constant at ~10 to 14 (depending on the 

lake) until ~1950, at which time they decrease to <10, except at Upper Carrol Lake in 

which C:N remains at pre-1955 values.  

3.4.4 Nitrogen and carbon isotope compositions of organic matter 

 The nitrogen isotopic compositions in all but Denise Lake remain constant in the 

earlier parts of the records.  Beginning around the mid 1850s, δ
15

N begins to decrease in 

all of the lakes except No Name.  A sharper decrease follows in the last ~60-70 years 

(decreases of up to 3 ‰), including at No Name, which did not exhibit an earlier decrease 

(Figure 3.3).  Upper Carrol Lake is the exception to this trend, as the decrease in δ
15

N 

values remains relatively gradual after 1940 for a total shift of only ~1 ‰.  Organic 

matter from Denise Lake also exhibits decreasing δ
15

N toward the top of the core, but this 

record is unique among these lakes because similarly low δ
15

N values are also present at 

the bottom of the core.  

The Suess-corrected δ
13

C values range between –31 and –21 ‰, which is within 

the typical range for lake sediment containing organic matter dominated by aquatic 

primary producers (Finlay and Kendall, 2007).  The δ
13

C values recorded for Upper 

Carrol Lake (–31 ‰) are low compared to the other sites (–26 to –21 ‰).  In Denise, 

Taylor, and No Name lakes, δ
13

C gradually increases by 1 or 2 ‰ over the entire record, 

whereas for Upper Carrol, East Carrol, and Bluebell Lake, the δ
13

C values are fairly 

constant throughout the cores.  

3.4.5 Diatoms 

In Taylor, East Carrol, and Bluebell Pass Lakes, A. formosa begins to increase in the 

early to mid-1800s, prior to the increase in chlorophyll a. In Taylor and Bluebell Pass 

Lakes, A. formosa increases more rapidly after ~1950, mirroring the pattern observed in 

δ
15

N.  In Denise Lake, A. formosa is only found in low abundances and increases only 

after ~1950.  Although the increase in A. formosa at Denise Lake appears small, the 

increase is ecologically important because A. formosa would not typically prefer a lake as 

shallow as Denise (2.4 m) and because it was near-absent prior to ~1950.  In Upper 
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Carrol Lake, A. formosa is a dominant species throughout, whereas in No Name Lake it is 

absent.  

3.5 Discussion 

We show that high alpine Uinta Mountain lakes experienced a recent increase in 

production in five of the six study lakes as documented by the increases in chlorophyll a 

and percentage of organic matter beginning between 1940 and 1960.  Low C:N ratios 

indicate that the increase in organic matter is likely algal, as C:N ratios <10 are observed 

post-1950 in five of six lakes. C:N ratios from 10 to 20 (as is seen before 1950 at these 

sites) indicate either a mixed source of algae, aquatic macrophytes, and terrestrial 

material (Meyers and Ishiwatari, 1993) or algal growth under N-limiting conditions 

(Hecky et al., 1993).  The increasing chlorophyll a flux in all but Upper Carrol Lake 

demonstrates that the rise in primary production is independent of sedimentation rate.  

Although the most prominent decreases in δ
15

N recorded in four of the six lakes coincide 

with these changes in primary production, initial decreases in δ
15

N began in the mid-

1800s in three of these lakes.  An increase in primary production generally results in 

progressively higher δ
13

C values, given that algae preferentially utilize 
12

C and 

subsequently draw the lighter isotope out of the photic zone (Hollander and Mckenzie, 

1991).  Trends in the Suess-corrected δ
13

C values vary between lakes from slightly 

decreasing to slightly increasing, and therefore do not suggest a strong influence of 

productivity on carbon isotope composition.  The changes in δ
13

C values at these sites are 

more subtle than would be expected given an increase in productivity, but it is possible 

the effects of increasing primary production on δ
13

C values are being offset by other 

ecological changes. For example, Wang et al. (2013) suggested that decreasing δ
13

C 

values despite increasing production at a maar lake in China were linked to shifts from 

benthic to planktonic diatoms.   

The changes in percentage of organics, chlorophyll a concentration, and C:N ratios all 

point to increasing primary productivity.  Although diagenesis of organic matter can also 

produce such patterns, this explanation is unlikely.  First, while C:N ratios would be 

expected to increase down core during diagenesis due to selective degradation of N-rich 

organic compounds, the opposite diagenetic effect has also been demonstrated for 
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oligotrophic lakes (Meyers and Lallier-Verges, 1999).  Second, diagenesis is expected to 

result in downcore decreases in chlorophyll a and percentage organics (Meyers and 

Lallier-Verges, 1999). However, the sedimentary chlorophyll a measurements used in 

this research include the spectral signal for chlorophyll a and its diagenetic products, 

pheophytin a and pheophorbide a (Michelutti et al., 2005), and therefore track both 

primary and degraded chlorophyll a products.  Third, the Uinta Mountain lake sediment 

cores exhibit decreasing δ
15

N values toward the core tops (Figure 3.3), which are 

opposite to the downward depletion of 
15

N expected within a typical diagenetic profile 

(Galman et al., 2009).  Fourth, diagenetic effects are expected to result in increased δ
13

C 

values downcore in the most recent 5-10 years of sediment (Galman et al., 2009), 

whereas the trends in the Uinta sediment δ
13

C values are inconsistently expressed in the 

upper portion of the cores.  Therefore, we conclude that the interpreted increase in 

primary production is real.   

What is causing this change in the primary productivity of these remote lakes?  

Recent climate warming has been linked to enhanced primary production in arctic 

environments (Michelutti et al., 2005) and to altered community compositions of diatoms 

in alpine, arctic and temperate sites in North America (Rühland et al., 2008).  The 

mechanisms by which warming could result in enhanced production in oligotrophic 

ecosystems include lengthening the ice-free season, increasing nutrients in the catchment, 

and increasing residence time (Rühland et al., 2008).  Alpine habitats are more sensitive 

to warming relative to low-elevation regions at similar latitudes (Beniston, 2003), and the 

western U.S.A. is warming at a faster rate than the world average (Saunders et al., 2008).  

Mean annual temperature at Heber, Utah, steadily increases beginning in the mid-1980s, 

which is typical timing when compared to the regional trend for the mid-western U.S.A. 

(Saunders et al., 2008).  However, this warming trend post-dates the changes observed in 

chlorophyll a (Figure 3.4), indicating that warming was not the trigger for enhanced 

lacustrine primary production at these sites.  Our findings do not rule out climate as a 

contributing factor, particularly since the 1980s and even more importantly in the future 

when further warming is anticipated (Solomon et al., 2007). 
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Figure 3.4. Comparison of Chlorophyll a + derivatives for Uinta Mountain study lakes (A) and mean 

annual temperature for Heber, Utah, and for the Southwest Region of the U.S.A. (B).   

The thick lines are 9-year running means and the dashed lines are mean temperatures for the entire record.  

The beginning of increased primary production is marked by the gray dotted line, and the beginning of 

modern climate warming in the southwestern U.S.A. and at Heber is marked by the gray band.  

Temperature data have been obtained from the Western Regional Climate Centre, http://www.wrcc.dri.edu/ 

(Heber) and National Climatic Data Center, National Oceanic and Atmospheric Administration 

http://www.ncdc.noaa.gov/cag/time-series/us (Southwest Region of the U.S.A.).   

 

Increased lake production can be caused by human disturbance within the 

catchment, which results in increased transfer of nutrients from the catchment to the 

aquatic system (Hall and Smol, 2001).  In the Uinta Mountains, humans have had 

relatively little effect on the landscape, with the exception of changes resulting from 

grazing.  Grazing can alter species composition, disrupt nutrient cycling, reduce litter 

cover, compact soils, reduce infiltration, increase runoff, and increase soil erosion 

(Fleischner, 1994), and through these mechanisms increase production in aquatic 

http://www.wrcc.dri.edu/
http://www.ncdc.noaa.gov/cag/time-series/us
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systems.  Although records are intermittent, sheep grazing was common practice in the 

Uinta Mountains by 1890, and many areas are still grazed by sheep and cattle.  Grazing in 

both the Dry Gulch and Whiterocks River allotments (which together encompass all six 

study lakes) is likely to have peaked in the 1920s or 1930s (United States Forest Service, 

1947).  Trampling and grazing-related vegetation changes can reduce soil stability and 

enhance soil erosion (Fleischner, 1994).  This should result in increased inorganic 

sedimentation rates coincident with the 1920-1930s peak in grazing, which then subside 

as grazing became less intense and the catchments recovered.  However, the inorganic 

flux does not exhibit any trends consistent with such a history (Figure 3.3).  If grazing 

resulted in increased transport of nutrients to the lake from manure, production should 

have been greatest in the 1930s and δ
15

N values should have increased moderately, as 

livestock manure typically has δ
15

N of ~ +9 ‰ (Szpak et al., 2012).  In contrast, the δ
15

N 

values decrease and primary production is low during peak grazing, indicating that local 

free-range grazing is not directly responsible for changes in primary production at these 

lakes.  

Fish stocking is another anthropogenic perturbation that could lead to increased 

lake production.  This can result in increased primary production by changing patterns of 

herbivory and by re-introduction of benthic nutrient sources to pelagic communities (D. 

E. Schindler et al., 2001).  The six Uinta Mountain study sites have all been stocked with 

either cutthroat trout (Oncorhynchus clarkii) or brook trout (Salvelinus fontinalis) 

multiple times since 1979 (Utah Division of Wildlife Resources, 2012, 

http://www.utahfishinginfo.com/dwr/).  No Name, Bluebell Pass, East Carrol, and Upper 

Carrol Lakes were stocked as early as 1958 (Rabe, 1968), and it is likely that Denise and 

Taylor Lakes were stocked as well (Figure 2.5).  Before 1956, however, lakes were 

stocked from horseback (Hallows, 2009), making it unlikely for remote lakes like those 

studied here to have been stocked.  Fish sampling surveys from 1978 at East Carrol, 

Upper Carrol, No Name, and Bluebell Pass lakes indicate no natural fish populations, and 

that stocked fish were not reproducing (D.W.R. stocking reports, unpubl.). The timing of 

fish stocking at these sites is similar or slightly lagging the changes in chlorophyll a and 

percentage organics, making it a possible explanation for the increased primary 

production.  

http://www.utahfishinginfo.com/dwr/
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Based on the δ
15

N record, however, fish stocking is unlikely to be the main cause 

of increased lake production. Organic matter δ
15

N typically increases by ~3-4 ‰ with 

each trophic level (Minagawa and Eitaro, 1984; Adams and Sterner, 2000), so the 

repeated introduction of fish to these lakes over the last 50 years should result in 
15

N-

enrichment of the lakes.  Fish undernourishment, as has been observed in Bluebell Pass 

Lake (Rabe, 1968), No Name Lake and East Carrol Lakes (D.W.R. stocking reports, 

unpubl.), can result in further increases in δ
15

N values (Adams and Sterner, 2000).  

However, δ
15

N values decrease towards present, making fish stocking an unlikely 

dominant factor causing increased production at these sites.  

Many researchers have commented that alpine lakes are ultimately N-limited 

(Vitousek et al., 1997; D. W. Schindler, 2006) or co-limited by nitrogen and phosphorus 

(Baron et al., 2000).  However, recent research indicates that enhanced anthropogenic N 

deposition can result in a shift to P limitation (Arnett et al., 2012) and higher N:P ratios 

(Elser et al., 2009).  Shifting N:P ratios and corresponding changes in the limiting 

nutrient imply that P (via eolian transport of dust from intensive livestock grazing and 

fertilizer use (Neff et al., 2008; Reynolds et al., 2010), or mining) could contribute to 

enhanced primary production at times.  Focusing only on N inputs may be an 

oversimplification in this environment.   

The timing of the production changes illustrated by chlorophyll a and organic 

matter contents at five of the six Uinta study lakes coincides with the rise of intensive 

agriculture and rapid population growth upwind at the Wasatch Front, both of which are 

associated with the increase in fossil fuel combustion and the use of synthetic N 

fertilizers produced via the Haber-Bosch process (Figure 3.5).  These activities increase 

the availability of fixed N, and result in enhanced atmospheric N deposition.  The recent 

increase in the percentage of A. formosa in the Denise, Taylor, East Carrol, and Bluebell 

Pass Lake sediment cores is also consistent with increased fixed N availability, 

particularly in alpine environments (Saros et al., 2005).  The decrease in δ
15

N values 

observed for the lakes examined here is consistent with a change in the source of fixed N. 

Bateman and Kelly (2007) report a mean δ
15

N of +0.2 ± 1.9 ‰ for synthetic nitrogen 

fertilizer, which is sufficiently low that transport of agricultural dust could produce the 
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observed decrease in N isotopic compositions.  Enhanced fossil fuel combustion related 

to population growth and industrial expansion could also have contributed to the 

observed pattern in N isotopic compositions, given that nitrates derived from fossil fuel 

combustion typically have low δ
15

N values (–10 to +5 ‰) (Finlay and Kendall, 2007). 

 

Figure 3.5. Trends in potential supply of nitrogen and phosphorus to the Uinta Mountains.  

Data have been obtained from the following sources: (A) Population in the Wasatch Front (Davis, Salt 

Lake, Weber, Box Elder and Utah Counties) (United States Census Bureau, 

http://www.census.gov/popest/data/historical/index.html; University of Virginia, Geospatial and Statistical 

Data Center. 2004, http://mapserver.lib.virginia.edu/collections/). (B) Livestock in Utah State (United 

States Department of Agriculture, National Agricultural Statistics Service, http://quickstats.nass.usda.gov/). 

(C) Nitrogen and phosphorus fertilizer use in the Wasatch Front (Davis, Salt Lake, Weber, Box Elder, and 

Utah Counties) in thousands of metric tonnes per year (Alexander and Smith, 1990).  (D) Production of 

phosphate rock in the U.S.A. in millions of metric tonnes per year (Kelly et al., 2011). 

 

Although the natural phosphorus cycle does not have a significant atmospheric 

component, the recent increase in phosphate mining and phosphate fertilizer use (Figure 

3.5) has resulted in greater atmospheric transport of P.  A study of the sediments from 

http://www.census.gov/popest/data/historical/index.html
http://mapserver.lib.virginia.edu/collections/
http://quickstats.nass.usda.gov/
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Marshall Lake and Hidden Lake, Uinta Mountains, shows that P levels have become 

increasingly elevated since 1950, which is attributed to atmospheric dust fallout from 

intensive agricultural activity (Reynolds et al., 2010).  This timing coincides with the 

increase in primary productivity at the Uinta Mountain study sites (Figure 3.6) and with 

the rise in phosphate use in the Wasatch Front and overall phosphate production in the 

U.S.A. (Figure 3.5).  Phosphate in Uinta Mountain dust samples is elevated relative to the 

underlying bedrock; the higher P contents have been attributed to either nearby phosphate 

mining based on the presence of apatite in dust, or agricultural intensification based on 

elevated soil and fertilizer minerals like calcium, sodium, and cadmium (Squire, 2012).  

 

Figure 3.6. (A) Chlorophyll a + derivatives for each of the six study lakes compared to (B) the 

phosphorous (P) enrichment factor for Marshall Lake, Uinta Mountains (Reynolds et al. 2010).   

Data with solid symbols are constrained by 
210

Pb dates, whereas open symbols are extended below the 

210
Pb-dated section by fitting a linear regression to the dates.  The gray dotted line at 1935 represents the 

point in time after which phosphorus became elevated above background levels.   
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Although the recent (~1950) increase in lake primary production is the most 

prominent change observed in these sediment records, several of the lakes (Taylor, East 

Carrol, and Bluebell Pass) indicate an earlier, more subtle shift.  From approximately 

1850, A. formosa increases and δ
15

N values decrease suggesting an increase in nutrient 

delivery.  This change predates local grazing activity and fish stocking, and shows no 

relation to temperature.  We suspect these changes may result from an initial increase in 

land clearance in the southwest and mining activities after the settlement of the Wasatch 

Front in 1847 (Reynolds et al., 2010).  Grazing along the Wasatch Front could have 

produced a supply of excess nutrients to these high alpine sites, similar to the changes 

observed in the San Juan Mountains in the late 19
th

 Century (Neff et al., 2008).  NOx 

from smelting associated with local mining at this time could also have contributed to the 

small changes in δ
15

N and the slight increase in the abundance of the mesotrophic diatom, 

A. formosa.   

3.6 Conclusions 

Uinta Mountain lake sites are critical bellwethers for environmental change, as they 

record an increase in production in the last 60 years.  This adds to evidence that long-

distance transport of nutrients is causing detectable changes in lake ecosystems.  

Although evidence of more serious effects of eutrophication (e.g., algal blooms), has only 

rarely been reported in the Uinta Mountains (K. Moser, unpubl.), we can already detect 

subtle shifts in ecosystem function.  By studying several lake sites, we have shown that 

not all high elevation lakes are responding equally to increased nutrient deposition. The 

present study indicates that enhanced N and P deposition may both be important factors 

in increasing primary production in Uinta Mountain lakes.  This result comes at a critical 

time as populations, fossil fuel combustion, and agricultural activities are on the rise, and 

two phosphate mines are planned to join the current large phosphate mining operation 

near Vernal, Utah (Figure 3.1) (Squire, 2012).  Changing primary production may be 

further compounded by future increases in temperature in western North America, which 

are anticipated to increase by ~2.1 to 5.7 ˚C by the end of the 21
st
 century (Solomon et 

al., 2007).  In the arctic, where warming began in the mid to late 1800s, ecosystem 

functioning and structure are strongly correlated with temperatures (Smol et al., 2005).  
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Such changes may be delayed in the Uinta Mountains because temperatures in the 

western U.S.A have only recently begun to rise (Saunders et al., 2008).  Previous nutrient 

inputs may only serve to compound the impacts of future warming (D. W. Schindler, 

2006).  In other words, the full impact of warming in alpine regions that might be 

anticipated based on research on arctic lakes, where nutrient delivery has been less 

(Galloway et al., 2008) may not yet be realized.   
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Chapter 4  

4 Nitrate sources in alpine lakes: new insights from 17
O, 

18
O and 15

N 

4.1 Introduction 

Reactive nitrogen (NOx and NH4
+
) is added to the environment from natural 

sources including lightning, biogenic sources, biomass conversion, and wildfires, which 

globally account for about 90 to 140 Tg Nitrogen (N) deposition per year (Vitousek et al., 

1997; Alexander et al., 2009)
13

.  However, the nitrogen cycle is now dominated by 

anthropogenic sources of reactive nitrogen, which, as of 2005, contributed 187 Tg N per 

year to the global nitrogen cycle (Vitousek et al., 1997; Galloway et al., 2008).  The 

anthropogenic sources of reactive nitrogen include synthetic fertilizers, by-products of 

fossil fuel combustion (NOx = NO + NO2), cultivation of nitrogen-fixing legumes, and 

mobilization of previously unavailable nitrogen sources (Vitousek et al., 1997).   

Reactive nitrogen inputs are greatest in urban and agricultural areas, but locations 

with little human activity may also receive increased nitrogen inputs due to the mobile 

nature of NOx emissions and dust.  For example, in alpine regions of the Midwestern 

U.S.A., nitrate (NO3
-
) deposition models indicate that inputs of NO3

-
 are locally higher 

than the monitoring records from the National Atmospheric Deposition Program/ 

National Trends Network (NADP/NTN) would suggest (Nanus et al., 2008).  The 

modeled rates of nitrate deposition are lower than those observed in the eastern U.S.A., 

but alpine ecosystems are relatively sensitive to increased nutrient availability (Williams 

et al., 1996a).  Therefore, even modest increases in nitrogen deposition could result in 

changes such as forest decline (Tsunogai et al., 2010), eutrophication, acidification, and 

changes in biodiversity (Nanus et al., 2008) in these environments. 

                                                 

13
 Tg = teragram = 1,000,000,000 kilograms 
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Paleoenvironmental research on alpine ecosystems of the western U.S.A. suggests 

that nitrogen deposition associated with agricultural intensification and fossil fuel 

combustion is a factor leading to recent ecological changes.  For example, several 

researchers have suggested that decreasing sedimentary 15
N values and coincident 

ecological changes are at least in part a result of increased nitrogen inputs from 

agricultural
14

 and fixed and mobile fossil fuel combustion sources
15

 in the Colorado 

Front Range (Baron et al., 2000; Wolfe et al., 2001; Saros et al., 2003), the Uinta 

Mountains (Chapter 3, Hundey et al., (submitted)), and other arctic and alpine regions 

(Holtgrieve et al., 2011). Decreasing 15
N has also been observed in places as remote as 

Greenland, where Sowers et al. (2002) report that the 15
N value of N2O in ice core air 

bubbles has dropped by 1.7 ‰ during the 20
th

 century.  They attribute this change to 

increased agricultural activities whereas Hastings et al. (2009) suggest that decreasing 

15
N-NO3 in a Greenland ice core is due to increased fossil fuel combustion in the last 

150 years.    

Past studies have documented decreasing 15
N, however the postulation that this 

change is due to increasing anthropogenic nitrate inputs remains speculative.  In the 

arctic, for example, nutrient deposition is generally very low (Smol and Douglas, 2007b), 

and a number of lakes show the opposite (increasing) trend in 15
N values (Catalan et al., 

2013).  McLaughlan et al. (2013) analyzed a global sample of 58 paleolimnological 

records covering the last 500 years and report that 10 sites showed significant increases in 

δ
15

N, 18 sites showed significant decreases, and the remainder were unchanged.  The 

interpretation of δ
15

N values within lake sediments is also complicated by overlapping 

source 15
N values (Figure 4.1), internal lake N cycling, kinetic isotope fractionation 

effects, and coincident timing of other perturbations (e.g., rising temperatures). Thus, a 

gap remains in our understanding of the cause(s) of documented changes in 15
N in 

remote alpine ecosystems.  

                                                 

14
 Synthetic fertilizer 15

N: 0 ± 3 ‰ (Kendall and McDonnell, 1998) 

15
 Fossil fuel NOx 

15
N: -7 to +12‰ (Heaton, 1990) 
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In this study, the stable isotopes of nitrates (15
N, 18

O and 17
O)

16
 in modern 

water (inflows and lakes) and snow samples from the Uinta Mountains, Utah, U.S.A., 

were analyzed to determine the proportional contribution of various sources of nitrates to 

these alpine aquatic ecosystems.  Successful identification of the sources of nitrogen in 

these lakes may reduce speculation about the relative contributions of different 

anthropogenic inputs to the nitrogen cycle of these alpine systems. This knowledge 

should enhance our understanding of alpine nutrient budgets and provide a modern 

context (i.e., current nutrient sources) to aid our interpretation of paleolimnological 

records in the region.  

 

Figure 4.1. Box plots of 15
N values of NO3

-
 from various sources and sinks.  

Box plots illustrate the 25th, 50th and 75th percentiles; the whiskers indicate the 10th and 90th percentiles, 

and the circles represent outliers.  Reprinted from Water Research, 43, 5, Xue et al., Present limitations and 

future prospects of stable isotope methods for nitrate source identification in surface and groundwater, 

1159-1170, © 2009, with permission from Elsevier. 

 

                                                 

16
 There are three stable isotopes of oxygen. The most plentiful is 

16
O (99.759%), followed by 

18
O (0.204 

%), and 
17

O (0.037 %) (Junc and Svec, 1958).  Nitrogen has two stable isotopes, in the forms 
14

N (99.6447 

%), and
 15

N (0.3663 %) (Cook and Lauer, 1968).   
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A dual isotope approach (15
N and 18

O of nitrates) can be used to make inferences 

about nitrate sources, but there is ambiguity associated with only analyzing these 

isotopes.  Nitrate-18
O has been used to trace atmospheric nitrate because it has distinctly 

higher 18
O values than nitrate originating from microbial processes (i.e., nitrification) 

(Durka et al., 1994). However, if the contribution of atmospheric nitrate is small, it can be 

difficult to quantify because of overlap with the 18
O-NO3

-
 from other sources (Michalski 

et al., 2002).  Values of 15
N can also be used to differentiate NO3

- 
, but interpretation can 

be complicated by mixing of different sources (Xue et al., 2009).  Further problems arise 

with both 15
N and 18

O when nitrate species undergo biological transformations (e.g., 

assimilation, nitrification, and denitrification), because these processes result in mass-

dependent fractionation (Kendall and McDonnell, 1998).   

The ‘triple isotope’ approach to the analysis of nitrates allows us to take advantage 

of the anomalous enrichment of 
17

O-NO3
-
 that results from transfers of 

17
O in ozone 

during photochemical conversion of NOx to NO3 in the atmosphere (Michalski et al., 

2002).  This mass-dependent fractionation, quantified by the term 17
O, differs from the 

mass-dependent relationship between 17
O and 18

O during terrestrial processes, which is 

described by the Terrestrial Fractionation Line (TFL). Using 17
O-NO3

-
, therefore, 

allows for clear differentiation between nitrate of atmospheric and terrestrial origin.  Like 

other isotopes, over time, and through multiple mixing events, 17
O can be diluted.  

However unlike 18
O, the 

17
O anomaly is maintained and still measurable after wet or dry 

deposition of atmospherically oxidized (and 
17

O enriched) NO3
-
 at the earth’s surface, 

and through subsequent biological transformations (Tsunogai et al., 2010). Values for 

17
O provide us with a clear atmospheric/ terrestrial distinction, and analysis of 15

N and 

18
O provides further insight into the particular sources of atmospheric and terrestrially 

derived nitrates.   

In this paper, we further quantify the contributions of particular nitrate sources 

identified using the triple isotopes of nitrate by using these data as inputs to a stable 

isotope mixing model in the software package SIAR (stable isotope analysis in R) 

(Parnell et al., 2010).  SIAR was designed to estimate dietary proportions from stable 
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isotope data, but can also be used to determine source proportional contributions of 

nitrate sources.  The SIAR method uses a Bayesian framework to determine the 

probability distribution of proportional contribution of different sources to a mixture, fit 

via a Markov chain Monte Carlo permutation.    

4.2 Study Area 

The Uinta Mountains are an east-west trending mountain range that reaches 

elevations over 4000 m, and stretches 200 km across the northeastern part of Utah (40˚ to 

41˚ N, 109˚ to 111˚ W) into northwestern Colorado (Figure 4.2).  The mountain range 

contains hundreds of lakes and has experienced little direct human impact, making it 

ideal for investigating the influence of atmospheric nitrate.  Model results combining 

NADP/NTN and snow chemistry data indicate that the highest elevations of the Uinta 

Mountains receive 2-3 kg ha
-1

 inorganic N annually, exceeding critical loads of N 

deposition by 1-3 kg N ha
-1

 (Nanus et al., 2012).  Inorganic N deposition in the Uinta 

Mountains is greater than most low-lying areas of the western U.S.A., but similar to other 

high elevation regions such as the Colorado Front Range, which receives 2-4 kg ha
-1

 

inorganic N annually (Nanus et al., 2012).     

 Six high elevation (> 3000 m.a.s.l.), oligotrophic lakes were selected for this 

study.  It complements a paleolimnological study that reports recent changes in primary 

production in the same lakes (Chapter 3). The main study lakes, with Utah Department of 

Wildlife Resources codes in parentheses, are: (1) Denise (WR-9), (2) Taylor (WR-8), (3) 

Upper Carrol (X-18), (4) East Carrol (X-21), (5) No Name (X-26), and (6) Bluebell Pass 

(X-25) (Figure 4.2).  Lake water and inflow samples were collected from each site, and 

snow pack samples were collected both in summer and at peak snow accumulation 

(March- April).  An additional water sample from Walk-Up Lake (WR-55) (also > 3000 

m.a.s.l) was also collected.  A water sample was also obtained from Great Salt Lake in 

order to compare nitrates originating from this highly polluted lake to the compositions of 

nitrates in the Uinta Mountains.  
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Figure 4.2. Map of (A) the location of the Uinta Mountains in northeastern Utah and U.S.A., 

including the water sampling point in Great Salt Lake, and (B) the topography of the Uinta 

Mountains with the locations of study lakes and snow sampling sites. 

4.3 Methods 

4.3.1 Water and snow sampling 

 The six study lakes and their inflows and snowpack were sampled for isotope 

analyses in late July/ early August of 2008 and 2009, with some additional sampling in 

2011 and 2012. For the lake water samples, the bottles were filled ~ 0.5 m below the 
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water surface at the deepest portion of the lake, determined based on several point 

measurements of depth. Samples were collected for stable isotope analysis in 250 mL 

amber Nalgene® bottles, kept cool in the field, and frozen as soon as we returned from 

the field (1-3 days).  Summer snowpack samples were taken in zip lock bags after 

scraping off ~2 cm of surface snow.  The snow samples were transferred to tightly sealed 

sample bottles in the field after melting.  Samples for stable isotope measurements were 

shipped to the Lakes and Reservoirs Systems (LARS) Research Facility at the University 

of Western Ontario and stored frozen until transferred to the Laboratory for Stable 

Isotope Science (LSIS), also at the University of Western Ontario.   

 In addition to samples taken from summer snowpack, snow samples were 

collected around the time of maximum snow accumulation but before spring snowmelt 

(March 2009 and April 2011), at snow sampling locations shown in Figure 4.2.  These 

samples ensure that the isotopic signature of winter snow deposition is captured, as there 

is little snow pack left during the July-August sampling period.  Furthermore, it is 

possible that the isotopic composition of the snow and residual snow pack could change 

between winter and summer because solutes, such as nitrate and ammonium, are eluted 

from snowpack early in the melt period (Williams and Melack, 1991).  The March 2009 

snow samples (Lake Fork, Spirit Lake, Chepeta Lake, and Trial Lake sites) were 

collected by the U.S. Forest Service with a standard federal snow sampler using standard 

snow sampling techniques (United States Department of Agriculture Soil Conservation 

Service., 1984).  The April 2011 samples (Grizzly Ridge and Lake Fork sites) were 

collected by G. Ingersoll from snow pits as detailed in Ingersoll et al., (2002).  The 

samples were shipped frozen in clean, 19 L paint buckets to LARS Research Facility, 

where they were melted and aliquots provided to other laboratories for stable isotopic 

(LSIS) and chemical analyses, as described below.    

 Samples for water chemistry analysis (NO2, NH4, PO4, NO2 + NO3, TDP, TDN, 

Si, DOC, DIC) and chlorophyll a were taken concurrently with the isotope samples.  A 

portion of the sample was filtered using a 0.7 µm Whatman GF/F filter. All water samples 

were frozen before sending for analysis. The filtered samples and the filters were 

analyzed for water chemistry and chlorophyll a, respectively, at the Chesapeake 
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Biological Laboratory in Maryland, USA. A list of the samples analyzed for both 

nutrients and stable isotopic compositions of nitrates is provided in Appendix A.   

4.3.2 Nitrate Triple-isotope analysis  

 Stable isotope analyses are expressed as ratios of the heavier to the lighter 

isotopes, relative to an international standard, using the  notation,  

    
      

  
        

  
   

      
  

   

  1 

where R is the isotope ratio of the heavier (
i
E) to the lighter (

j
E) isotope (e.g., 

15
N/

14
N, 

18
O/

16
O, and 

17
O/

16
O) for the sample (P) and the standard (std). The 18

O-NO3
-
 values are 

reported relative to Vienna Standard Mean Oceanic Water (VSMOW) and 15
N-NO3

-
 

values are reported relative to standard atmospheric air (AIR).  

Values of 17
O are linearly related to 18

O at the Earth’s surface in a relationship 

defined as the Terrestrial Fractionation Line (Figure 4.3) (Thiemens, 2006),  

 17
O = 0.52 x 18

O    2 

Atmospheric ozone provides an exception to this relationship. This ozone undergoes 

mass independent fractionation such that it is enriched in 
17

O relative to the expected 

relationship shown in equation 2 (see 17
O in Figure 4.3). This anomaly is transferred to 

NO and NO2 during oxidation in the atmosphere (Alexander et al., 2009).  The mass-

independent isotopic variation, that is, the deviation of the isotopic composition of a 

sample from the terrestrial fractionation line relationship (equation 2), is reported as  

 17
O = 17

O – 0.52 x 18
O 3 
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Figure 4.3. Mass-independent (MIF) and mass-dependent oxygen containing species relative to the 

Terrestrial Fractionation Line (TFL). 

The TFL describes the mass dependent fractionation of 
18

O and 
17

O in terrestrial processes, (Equation 2).  

The exception to this relationship occurs in the atmosphere, where nitrate experiences mass independent 

isotopic fractionation.  Values of 17
O, therefore, measure the difference between measured 17

O and the 

expected relationship dictated by the Terrestrial Fractionation Line (Equation 2), such that 17
O > 0 if mass 

independent fractionation has occurred.  Mean 17
O of tropospheric ozone ranges from +25 to +35 ‰ 

(Costa et al., 2011). The 17
O isotope anomaly is transferred to NO and NO2 during oxidation in the 

atmosphere (B. Alexander et al., 2009) resulting in a 17
O of atmospheric nitrate of +20 to +32 ‰ (Costa et 

al, 2011).  Therefore, atmospherically derived nitrates will have 17
O values that are greater than 0.   

Republished with permission of Annual Review of Earth and Planetary Sciences from History and 

Applications of Mass-Independent Isotope Effects, 34, Thiemens, © 2006; permission conveyed through 

Copyright Clearance Center, Inc.  

 

 We used the coupled cadmium-azide reduction method described by McIlvin and 

Altabet (2005) with modifications described by S. Russell and Longstaffe (in prep) to 
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prepare nitrate for analysis of 18
O, 17

O and 15
N.  The methods are briefly summarized 

below and described in greater detail in Appendix B (S. Russell and Longstaffe, in prep).  

The chemical procedure involves two main steps.  The first is conversion of nitrate to 

nitrite using activated cadmium, and the second is the conversion of nitrite to N2O using a 

1:1 molar solution of sodium azide and acetic acid (S. Russell and Longstaffe, in prep).  

The isotope ratios of the resulting N2O are measured using a Thermo Finnigan Delta
plus

 

XL Isotope Ratio Mass Spectrometer (IRMS) accessorized with a Gas Bench II and CTC 

CombiPal autosampler.  Nitrous oxide isotope ratios are collected by monitoring the 

masses 44, 45, and 46 (
14

N
14

N
16

O, 
14

N
15

N
16

O + 
14

N
14

N
17

O, and 
14

N
14

N
18

O, respectively).   

A number of corrections (detailed in Appendix C) are made to the raw -values to 

account for overlapping masses and memory effects.  Briefly, for 15
N, two corrections 

are made to account for the mass overlap between 
15

N
14

N
16

O and
 14

N
14

N
17

O.  The first is 

a “Craig Correction”, which is applied by the IRMS operating system (ISODAT), and 

accounts for the mass-dependent overlap of these isotopologues
17

.  The second is applied 

to account for the mass independent (i.e., 17
O>0) overlap between these same 

isotopologues.  Corrections are also made to 18
O in each analytical run to account for 

exchange between sample water and laboratory water.  This is necessary because a 

fraction (~13%, (S. Russell and Longstaffe, in prep.)) of oxygen that ends up in the 

measured nitrous oxide product is derived from exchange with water oxygen, rather than 

from the original nitrate oxygen.     

Calibration of the raw isotopic ratios to AIR (nitrogen) and VSMOW (oxygen) is 

achieved using international standards USGS-32, USGS-34, USGS-35 (Table 4.1), and 

an internal standard, GSI-NO-3 (15
N = +1.3 ‰, 18

O = +14.13 ‰, courtesy of the 

Geological Survey of Israel). Accuracy of isotope values was determined by comparing 

to the standard IAEA-NO-3 value.  The mean 18
O, 17

O and 15
N values obtained on 

repeat measurements (n = 10) of IAEA-NO3 are summarized and compared to accepted 

values (from Bohlke et al., 2003) in Table 4.1.  Precision was calculated on duplicates 

                                                 

17
 Isotopologues are molecules that differ only in their isotopic composition 
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from each analytical session, and excellent reproducibility was achieved (± 0.04 ‰, ± 

0.23 ‰, and ± 0.5 ‰ for 17
O, 18

O, and 15
N, respectively).  Internal data from LSIS 

(N=48) has shown long-term precision as determined from sample duplicates as well (± 

0.50 ‰, ± 1.00 ‰, and ± 0.7 ‰ for 17
O, 18

O, and 15
N, respectively).   

Table 4.1.  Standard values used for calibration (±1 standard deviation) and comparison to IAEA-

NO-3 used to assess measurement accuracy.   

15
N and 18

O values are obtained from www.nucleus.iaea.org.  
17

O values are obtained from (Bohlke et 

al., 2003). 

  15
N (‰AIRN2) 18

O (‰VSMOW) 17
O (‰VSMOW) 

International 

Standards 

USGS-32 +180 ± 1 + 25.7 ± 0.4 Unknown 

USGS-34 –1.8 ± 0.2 –27.90 ± 0.6 –0.3 

USGS-35 +2.7 ± 0.2 +57.50 ± 0.6 21.60 

Precision 

IAEA-NO-3 

Accepted value 
+4.7 ± 0.2 +25.60 ± 0.4 –0.10 

IAEA-NO-3 

Check  

+4.8 ± 0.1 

(n=10) 

+25.49 ± 0.11 

(n=10) 

–0.48 ± 0.21  

(n=10) 

 

 Statistical analyses were made to determine differences between sample groups 

(lakes, inflows, and snow) with respect to nitrate isotope ratios.  The sample groups 

violate assumptions of the parametric ANOVA tests, namely that sample groups should 

be normally distributed (rejected via Shapiro-Wilks tests), and equal variance between 

sample groups (rejected via Fligner-Killeen tests).  Therefore, the non-parametric 

Kruskal-Wallace test was used to test for a significant difference between 15
N, 18

O and 

17
O values among different sample types (snow, lake, and inflows). Post-hoc Kruskal-

Wallace multiple comparison tests were used to identify the differences between pairs of 

sample groups.   

4.3.3 SIAR mixing model 

 Proportional contributions of nitrate sources to Uinta Mountain lakes and streams 

were estimated using the stable isotope mixing model Stable Isotope Analysis in R 

(SIAR).  SIAR uses a Bayesian framework to determine the probability distribution of the 

proportional contribution of each source to a mixture, as outlined in Parnell et al. (2010).  

http://www.nucleus.iaea.org/
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The model is fit via Markov chain Monte Carlo, which produces simulations of plausible 

source proportions for each sample group (Parnell et al., 2010), and models were run for 

500,000 iterations.  The strengths of the model that are particularly relevant to nitrate 

source allocation are (i) uncertainty in the system can be accounted for by factoring in 

variability in source values; (ii) solutions can be found for systems with more potential 

sources than previous approaches, and (iii)  probability distributions are generated for 

each of the sources (Parnell et al., 2010).   

Source parameters (mean and standard deviation) for soil nitrate, NO3
-
-based 

fertilizer, NH4
+
-based fertilizer + rain NH4

+
, and septic + manure sources for input into 

the SIAR model were drawn from Xue et al. (2009) (Table 4.2).  Although the review by 

Xue et al. (2009) also contains source isotopic compositions for atmospheric nitrate, we 

instead used the mean and standard deviation of the Uinta Mountain snow samples.  

Using snow samples should better represent the regional atmospherically oxidized nitrate 

source.  Still, we acknowledge that only winter precipitation is represented in our sample 

set, and that atmospheric 17
O can vary seasonally (Alexander et al., 2009).  The 

atmospherically oxidized nitrogen source does not include reactive nitrogen present in 

forms that are delivered but not oxidized atmospherically (e.g., particulate nitrate and 

ammonium from fertilizers, etc.), as they lack the 17
O enrichment acquired during 

atmospheric oxidation.   
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Table 4.2. SIAR input values for nitrate sources. 

Source values for fertilizer and rain NH4
+
, soil, septic waste + manure were estimated from the ranges 

provided in Xue et al. (2009).    

Source 
15

N ‰ 17
O ‰ 

Mean SD Mean SD 

Atmospherically 

oxidized NO3
-
 

+0.94 1.57 +23.66 5.58 

Fertilizer NO3
-
, 

Fertilizer NH4
+
 & 

Rain NH4
+
  

–1.4 5.1 0 1 

Soil +4.15 3.4 0 1 

Septic waste & 

manure 
+16.05 12.75 0 1 

 

After initial model runs, which contained five possible nitrate sources and all of 

15
N-, 18

O-, and 17
O-NO3

-
, we simplified the model in two ways: (1) NO3

-
 fertilizer 

and NH4
+
 fertilizer + rain NH4

+ 
were aggregated into a single source; and (2) the model 

inputs were reduced from three isotopes of nitrate to only include 17
O and 15

N.  The 

rationale for these modifications is given below:  

(1)  We combined the NO3
-
 fertilizer and NH4

+
 fertilizer + rain NH4

+
 source 

values into a single source because they have similar stable isotopic signatures.  

Furthermore, both NO3
-
 -based and NH4

+
-based fertilizers are associated with 

intensive agricultural activity.  NH4
+
 in rain is also largely derived from fertilizer, 

although soil and manure can also contribute (Russell et al., 1998; Li et al., 2007; 

Zhang et al., 2008).  Isotopically, NO3
-
 fertilizer and NH4

+ 
fertilizer + rain NH4

+
 

isotope ratios are similar, and are primarily differentiated based on 18
O (mean 

18
O of NO3

-
 fertilizer is ~+21 ‰, mean 18

O of NH4+ fertilizer + NH4+ in rain is 

~+7 ‰ (Xue et al., 2009)).  However, higher 18
O values can also be indicative of 

a larger proportional contribution of atmospherically oxidized nitrate, which 

complicates interpretation of the two fertilizer types when interpreted as separate 

end-members.   
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(2) The parameter 18
O-NO3

- 
was removed from the models because it is 

redundant given its high correlation with 17
O (R

2
 = 0.94).  In other words, at this 

site, both 17
O and 18

O are tracking atmospherically oxidized nitrate.   

4.4 Results 

4.4.1 Nitrogen concentrations and sample selection for isotopic 
analysis 

Nitrate concentrations for all (70) Uinta Mountain samples range from below the 

detection limit (< 0.016 µM) to 56 µM, with a median value of 1.8 µM (Appendix D, 

Table D.2).  Inflows have the highest mean nitrate concentrations (25.5 µM-NO3
-
), 

followed by snow (4.9 µM-NO3
-
), and lakes (0.7 µM-NO3

-
).  Ammonium concentrations 

range from 0.5 to 8.1 µM, with a median value of 0.9 µM.  Snow has the highest mean 

concentration of ammonium (4.5 µM-NH4
+
), with lower mean concentrations in lakes 

(0.9 µM-NH4
+
) and inflows (1.0 µM-NH4

+
). 

We limited our nitrate isotope analysis to inflows, lakes, and snow, disregarding 

eight outflow samples because the outflows had low nitrate concentrations and we 

expected similar results in the outflows as in the lakes.  Of the remaining samples, 34 had 

sufficiently high nitrate concentrations (> 1.6 µM) for analysis of 15
N-, 18

O-, and 17
O-

NO3
-
.  Because only two lake samples (one each from Walk-Up and Taylor Lake) met 

this nitrate concentration threshold, we analyzed 10 additional lake samples with <1.6 

µM-NO3
-
.  Of these, we were able to obtain 15

N and 18
O for seven samples, three of 

which yielded 17
O data.  In addition to the 41 Uinta Mountain samples for which we 

obtained results, results were also obtained for one sample from Great Salt Lake.  Two 

snowmelt samples (see Figure 4.4) are not included in the SIAR model.  These two 

samples are located directly below snowpack, and with such a location they are not 

clearly categorized into either the snowpack or inflow sample group.  However, these 

data still provide information on transitional waters between snow and stream.  The four 

lake samples for which we were unable to measure 17
O-NO3

-
 (unfilled diamonds in 

Figure 4.4) were also not included in the SIAR model. 
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The stable isotope compositions of the samples, illustrated in Figure 4.4, reveal 

several patterns.  The snow samples group together with high 18
O- and 17

O-NO3
-
 

values.  Lakes and inflows have lower 18
O- and 17

O-NO3
-
 than snow, but still have 

17
O-NO3

-
 values that plot above the TFL.  Great Salt Lake has a similar isotope 

composition to inflows and lakes with respect to 17
O- and 18

O-NO3
-
 but has 

significantly elevated 15
N-NO3

-
.   

The 15
N-NO3

-
 values range from –3.7 to +6.9 ‰, not including Great Salt Lake, 

which has a 15
N-NO3

-
 value of +10.4 ‰ (Figure 4.5).  Mean lake (+1.6 ‰) and snow 

(+0.9 ‰) 15
N-NO3

-
 values are higher than mean inflow (–1.5 ‰) 15

N-NO3
-
 values.  

The 18
O values range from –4.7 to +75.1 ‰.  All but one sample (an inflow of Denise 

Lake sampled in 2008, darkest blue lake in Figure 4.4) are significantly elevated above 

the Terrestrial Fractionation Line (along which 17
O = 0 ‰).  The snow samples are 

particularly elevated, with a mean 17
O-NO3

-
 of +23.7 ‰ (see Appendix E). 
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Figure 4.4. A triplot (15
N-, 18

O-, and 17
O-NO3

-
 values) of snow, lake, inflow, snowmelt, and Great 

Salt Lake samples.   

17
O is represented by colour, with blue representing lower values and red representing higher values.  It 

was not possible to accurately measure 17
O on the points with no fill colour due to low nitrate 

concentrations.  This figure was created using the “Lattice” package  (Sarkar, 2008) for the R software 

environment (R Development Core Team, 2011) 

 

A Kruskal-Wallis analysis of variance test revealed significant differences (p < 

0.05) between at least two sample groups for each of 15
N-, 18

O- and 17
O-NO3

-
.  

According to post-hoc Kruskal-Wallis multiple comparisons tests
18

, 15
N-NO3 in inflows 

are significantly different than lakes and snow, whereas lake and snow values cannot be 

differentiated (p < 0.05). For both 18
O-NO3

-
 and 17

O-NO3
- 
values, snow samples are 

                                                 

18
 The Kruskal-Wallis analysis of variance test is a separate test from the Kruskal-Wallis multiple 

comparisons test, and the use of the latter to determine which groups are different is carried out after 

significant differences have been demonstrated using the former.   
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significantly different from both inflow and lake samples, whereas the inflow and lake 

sample values cannot be differentiated (p > 0.05).  Thus, using a combination of 18
O-, 

17
O- and 15

N-NO3
-
 we can differentiate among three sample types (Figure 4.5, 

Appendix D).  

 

Figure 4.5. Summary boxplots for (A) NO3
- 
(µM), (B) NH4

+
 (µM), (C) 15

N-NO3
-
, (D) 18

O-NO3
-
, and 

(E) 
17

O-NO3
-
.   

The median is represented by the horizontal black bar, the lower and upper boundaries of the box represent 

the lower (25%) and upper (75%) quartiles of the data, and the whiskers represent the minimum and 

maximum values, excluding outliers.  Outliers are represented as points outside the whiskers.  The NO3
-
 

concentrations of the samples are elevated above the true average for these Uinta Mountain sites, because 

sample selection for isotopic analysis was limited by nitrate concentration. 

   

4.4.2 Source contribution model 

 The 15N and 17O values of lake inflow, GSL and snow samples are depicted 

relative to the SIAR model source parameters in Figure 4.6.  In Figure 4.7, the 

proportional contribution of these sources to inflows and lakes are graphically 

summarized by SIAR using 95 %, 75 %, and 50 % Bayesian credible intervals for each 

source of nitrates at lakes and inflows.   
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Figure 4.6. Snow, lake, and inflows from the Uinta Mountains, and a sample from Great Salt Lake 

(GSL) are shown relative to source values (± 1 standard deviation) for 15
N and 18

O.   

AON = Atmospherically oxidized nitrate.  The source parameters are listed in Table 4.2, and are derived 

from a review by Xue et al. (2009).  

 

For inflows, NO3
-
 and NH4

+
 fertilizer + rain NH4

+
 are the largest contributor of 

nitrate with 62 % modal probability estimate (MPE)
19

.  Atmospherically oxidized nitrate 

contributes 23 % MPE to the total nitrates in inflows, soil contributes 13 % MPE, and 

manure contributes 0 % MPE (all p values > 0.01) (Figure 4.7).   

NH4
+
 and NO3

-
 based fertilizers + rain NH4

+
 are also the top contributor to lake 

nitrate (35 % MPE), although a much greater proportional contribution comes from soil 

nitrates (34 % MPE) than inflows.  Atmospherically oxidized nitrate contributes 24 % 

                                                 

19
 The modal probability estimate, or MPE, is the solution (proportion contributed by that source) with the 

highest probability. 
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MPE to lakes, only slightly higher than inflows, and manure contributes 2 % MPE 

(Figure 4.7).   

 

 

Figure 4.7.  Mixing model estimated contributions of nitrate sources to (A) inflows and (B) lakes 

based on 15
N, and 17

O of samples.  

Bayesian credible intervals show estimated contributions of each source to inflows and lakes, as determined 

using the stable isotope mixing model SIAR.  The source types are atmospherically oxidized nitrate (AON), 

NH4
+
 fertilizer (upon nitrification) + NO3

-
 fertilizer + rain NH4

+
, soil nitrate, and manure.   

 

4.5 Discussion 

4.5.1 Isotopic composition of snow 

We compared the 18
O-NO3

-
 from Uinta Mountain snow to other atmospheric 

nitrate and precipitation records to establish whether our Uinta Mountain snow nitrate 

results are reasonably representative of atmospheric nitrate composition.  The average 

snow 17
O-NO3

-
 from the Uinta Mountains (+23.7 ± 5.6 ‰) is within the documented 

atmospheric range of +20 to +35 ‰ according to Morin (2009), and comparable to the 

average 17
O-NO3

-
 values obtained from snow pits in the Colorado Front Range (+28.6 ± 

0.2 ‰) by Darrouzet-Nardi et al. (2012).  There is also considerable overlap between 

Uinta Mountain snow nitrates (18
O-NO3

-
 range: +48.6 to +75.1, median: +69.4 ‰) and 
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precipitation nitrate from NADP/NTN sites in several national parks in the Rocky 

Mountains (18
O-NO3

-
 range: +71 to +78 ‰, median: +74.5 ‰) (Nanus et al., 2008).   

4.5.2 Source contributions to inflows and lakes 

4.5.2.1 NO3
- and NH4

+-based fertilizer + rain NH4
+ 

Inflows have low 15
N-NO3

-
 values indicating a high proportion of fertilizer-

derived nitrates, whereas lake samples have slightly higher 15
N-NO3

-
 values than 

inflows, indicating a contribution from soil or manure in addition to fertilizer inputs.  The 

SIAR model results confirm the important role of fertilizer in the inflows and lakes at the 

Uinta Mountain sites (Figure 4.7).  Since neither NH4
+
- nor NO3

-
-based fertilizers are 

used directly in the catchments, this contribution is attributed to atmospherically-

delivered fertilizers from lowland agricultural areas.   

The range in isotopic variation of inflow nitrates is quite small (Figure 4.6) 

considering the large range in nitrate concentrations (Figure 4.5A), site locations, and 

inflow types (e.g., through wetland, talus slopes, etc.), which suggests a widespread and 

homogenous source.  The consistency in isotopic composition among different inflow 

samples is best explained by the dominance of atmospheric fertilizer deposition at these 

sites.   

Snow samples have higher and more variable 15
N-NO3

-
 values, and therefore 

appear to be less influenced by the atmospherically transported fertilizers (particles and 

dust) than do inflow samples.  However, it is more likely that some fertilizer-derived N is 

still in the form NH4
+ in the snowpack, where nitrification does not occur (Williams et 

al., 1996b).  This explains the high concentrations of NH4
+
 in snow samples (Figure 

4.5B) relative to the inflows and lakes.  Upon release from the snow into soil, snowmelt, 

or inflows, the NH4
+
 can be nitrified to NO3

-
, resulting in the high NO3

-
 concentrations of 

inflows (Figure 4.5A).  If we therefore assume that the inflow 15
N reflects the combined 

isotopic composition of snow ammonium and nitrate, we approximate the 15
N of snow 

ammonium by solving for 15
NNH4snow in equation 4. 
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   4 

where 15Ninflow and 15
Nsnow are average values (from Appendix D, Table D.2); 

concentrations are reported in units NH4 as N and NO3 as N; [totalsnow]  is the sum of 

[NH4snow] and [NO3snow]; and 15NNO3snow  is assumed to be equal to 15
Nsnow.  This also 

assumes that there is little fractionation during conversion from ammonium to nitrate. 

From this, we approximate that the snow ammonium 15
N is -4.5‰, which falls in the 

range of fertilizer isotope composition (Figure 4.6).  

4.5.2.2 Atmospherically oxidized nitrate 

 A comparison of the 15
N-NO3

-
 and 17

O-NO3
-
 of the samples and sources 

(Figure 4.6) suggests that both lakes and inflows are influenced by atmospherically 

oxidized nitrate (17
O > 0).  The SIAR model results indicate a contribution of 

atmospherically oxidized nitrate to lakes and inflows of 23 and 24 % MPE, respectively 

(Figure 4.7).  Some sources of atmospherically oxidized nitrate are natural (lightning, soil 

emissions, and wildfire), and some are anthropogenic (fossil fuel combustion and 

biomass burning).  It is beneficial to estimate the proportion of atmospherically oxidized 

nitrate originating from each of these sources.  In practice, this task is difficult because 

the source of atmospherically oxidized nitrate varies depending on the region, and the 

contribution of nitrate from sources like lightning is difficult to estimate.  Nevertheless, 

we apply global estimates (Table 4.3; Price et al. (1997)) of atmospherically oxidized 

nitrates of the overall contribution of atmospherically oxidized nitrates in the Uinta 

Mountains (which accounts for ~ 24% MPE for lakes and inflows based on the SIAR 

model, Figure 4.7).  From this, we estimate that ~10 % of total nitrate inputs to Uinta 

Mountain lakes are originally derived from fossil fuel combustion.   
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Table 4.3. Sources of tropospheric NOx and their estimated contribution to Uinta Mountain lake 

nitrates.   

The estimated contribution of each tropospheric NOx source to Uinta Mountain lakes is calculated based on 

the global percentage contribution to the troposphere and an overall contribution of atmospherically 

oxidized nitrate to Uinta Mountain lakes of 24 % MPE, based on the proportional contribution of 

atmospherically oxidized nitrate to lakes and inflows determined using the SIAR model (Figure 4.7).  The 

sources of tropospheric NOx and their contributions to the global N cycle are taken from Price et al (1997) 

and sources within. 

Source of tropospheric 

NOx 

Contribution             

(Tg N yr
-1

) to 

tropospheric NOx 

Contribution (%) to 

tropospheric NOx 

Estimated contribution 

to Uinta Mountain 

lakes (%) 

Fossil fuels 
24 40 10 

Lightning 12 20 5 

Soil emissions 12 20 5 

Biomass burning 8 13 3 

NH3
+
 oxidation 3 5 1 

Transport from 

stratosphere 
0.4 0.7 0.2 

Aircraft 0.4 0.7 0.2 

Total 60 100 24 

 

4.5.2.3 Soil nitrate 

The soil NO3
-
 contribution to Uinta Mountain lakes and inflows is 34 and 13 % 

MPE, respectively.  The lower impact of soil NO3
-
 is not surprising, given that alpine 

environments are typically low nutrient, tightly cycled systems.   

4.5.2.4 Septic effluent and manure 

Our results suggest that septic effluent and manure have little to no influence on 

the nitrate concentrations in the Uinta Mountains (0 % and 2 % MPE for lakes and 

inflows, respectively), despite that free-range grazing is commonplace in Uinta Mountain 
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catchments.  Septic and manure inputs to Great Salt Lake are likely responsible for the 

high 15
N present in the Great Salt Lake water sample (Baskin et al., 2002) (Figure 4.6).  

4.5.2.5 Biological fractionation processes 

 Denitrification involves conversion of NO3
-
 to N2O and N2 under oxygen-limiting 

conditions and when organic carbon is available (Mayer et al., 2002).  During microbial 

denitrification, 
14

N and 
16

O are preferentially utilized, leaving the remaining NO3
-
 

relatively enriched in 
15

N and 
18

O (Roadcap, 2001).  Therefore, during denitrification, as 

concentrations of NO3
-
 decrease (as NO3- is converted to N2), 

15
N- and 18

O-NO3
-
 

increase (Mayer et al., 2002).  Values of 17
O, on the other hand, do not undergo 

fractionation during denitrification so any changes in 17
O result from dilution.   A 

longer-term sampling plan would be required to determine the extent of denitrification at 

these sites.  However, we speculate that denitrification may explain the higher 15
N and, 

to a lesser extent, 
18

O-NO3
-
 values in lakes relative to inflows (Figure 4.5C, Figure 

4.5D), and the relatively stable values for 17
O-NO3

-
 (Figure 4.4 and Figure 4.5E).  

Inflow nitrate is less likely to undergo denitrification than lake nitrates, given the high 

oxygen availability in running water (dissolved oxygen concentrations of > 5 mg L
-1

 are 

not suitable for denitrification) (Xue et al., 2012)).  In contrast, three of the six study 

lakes (Taylor, Bluebell, and Upper Carroll), are known to stratify, and can reach 

dissolved oxygen concentrations below 5 mg L
-1 

(Figure 2.8).   

4.5.3 Comparison to other high elevation sites 

 A comparison of the Uinta Mountain lake 15
N- and 18

O-NO3
-
 data with that 

from five National Parks in the U.S.A. Rocky Mountains (Nanus et al., 2008) shows 

considerable overlap in isotopic composition of nitrates.  The high 18
O-NO3

-
 values, 

particularly in Glacier, Grand Teton, and Rocky Mountain National Parks indicate that 

these lakes are, as Nanus et al. (2008) suggest, influenced by wet deposition of dissolved 

inorganic nitrogen (DIN = NO3
-
 + NH4+), while the low 15

N values (all < 5 ‰) present 

in the National Park lakes are indicative of fertilizer sources of DIN.  Future 

measurements of 17
O-NO3

-
 and application of a mixing model would have great 
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potential for determining the source contributions of DIN from fertilizer and 

atmospherically oxidized nitrate at these sites.     

 

Figure 4.8. Range of (A) 18
O versus 15

N, and (B) NO3
-
 concentration versus 15

N for the Uinta 

Mountain lakes compared to lakes from five National Parks in the U.S. Rocky Mountains (Nanus et 

al., 2008).   

The extent of each cross spans the range of the data from each set of lakes, and centre of the cross is the 

median value.  Yellowstone is represented by one measurement. 

 

 A study of 17
O-NO3- along a stream in the Colorado Front Range indicated that 

during early snowmelt, stream nitrates range from 95 % atmospherically produced NO3- 

at the headwater wetland to 65 % in the lower reach of the stream (Darrouzet-Nardi et al., 

2012).  At later sampling dates, which are more comparable to our sampling period of 

late July, the percent of atmospherically derived NO3
-
 is less variable between sample 

locations, and very similar (~20 - 25 %) to the percentage of atmospherically oxidized 

nitrate in the Uinta Mountain inflows (24 % MPE).  Darrouzet-Nardi et al. (2012) 

recognized the presence of two end-members, atmospherically derived nitrate and 

microbially derived nitrate.  Measurement of 17
O values will allow for a close estimate 

of atmospherically derived nitrate.  The microbially derived nitrate source is, more 

accurately, a simplification of all non-atmospherically oxidized sources.  For example, at 
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the Uinta Mountain study sites, 77 % of inflow nitrates are not derived from 

atmospherically oxidized nitrate, and of this fraction, only 13 % is actually soil nitrate 

(microbially-derived).  An investigation of the influence of other important sources, such 

as NH4
+
- and NO3

-
-based fertilizers, at the Colorado stream study site would allow us to 

compare the contribution of fertilizer nitrate in the Uinta Mountains to the Colorado sites. 

4.6 Conclusion 

 This research demonstrates that agricultural activities are currently the most 

important influence on the nitrate concentrations in small, high elevation sites in the 

Uinta Mountains, with atmospherically delivered fertilizers contributing 62 % MPE of 

nitrates to inflows and 35 % MPE of nitrates to lake waters.  About 10 % MPE of total 

lake and inflow nitrates (or 40 % MPE of atmospherically oxidized nitrates) originate 

from byproducts of fossil fuel combustion.  Combined, anthropogenic sources (primarily 

atmospherically delivered fertilizers and fossil fuel combustion) comprise 72 % MPE of 

inflow nitrates and 45 % MPE of lake nitrates at the Uinta Mountain sites.   

The triple-isotope approach for analyzing nitrates combined with SIAR mixing 

models has the potential to improve our understanding of nitrogen sources and cycling in 

high alpine environments.  Similarities in nitrate isotope composition (15
N and 18

O) 

between our results and National Parks in other areas of the U.S.A. Rocky Mountains 

(Nanus et al., 2008) suggest that these findings may be applicable to other mountain 

regions in Western North America.  Increasing nutrient delivery has been shown to have 

profound effects on lake primary production for more than fifty years in the Colorado 

Front Range (Baron et al., 2000; Wolfe et al., 2001; Saros et al., 2003), and the Uinta 

Mountains (Chapter 3).  This history of primary aquatic production combined with our 

results that identify fertilizers as the largest modern source of nitrates to the Uinta 

Mountains underline the importance of careful management of fertilizer application in 

surrounding lowlands.   
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Chapter 5  

5 Variable diatom responses to increased nutrients in 
Uinta Mountain lakes 

5.1 Introduction 

Unprecedented changes in the nitrogen cycle are occurring on a global scale.  

Anthropogenic reactive nitrogen emissions have increased nine-fold in the last century, to 

the point that humans now fix more N2 than all natural processes combined (Galloway 

and Cowling, 2002).  Evidence from alpine environments indicates that lakes in the 

U.S.A. Rocky Mountains are susceptible to enhanced nitrogen deposition (Williams et 

al., 1996a; e.g., Nanus et al., 2003; Saros et al., 2003; Wolfe et al., 2003).  Mountain 

lakes may also be susceptible to the effects of warming temperatures, which can affect 

the length of the growing season and ice-free period, plus the duration and stability of 

lake stratification (Smol, 1988; Smol et al., 1991).  These changes, in turn, can affect lake 

water properties, water chemistry, light availability, nutrient cycling, habitat availability, 

and ultimately, biological communities within a lake (Rühland et al., 2003; Rühland et 

al., 2008).  Researchers have recognized that climate warming and nitrogen deposition 

are not mutually exclusive drivers of ecological change, and the interplay between 

warming and fertilization by atmospheric deposition is not well understood (Catalan et 

al., 2013).  Climate warming and nitrogen deposition may influence different 

limnological variables to varying degrees in different environments.  For example, it has 

been suggested that climate has the strongest influence on diatom ß-diversity (species 

turnover) in arctic environments where 20
th

 century warming has been rapid but 

atmospheric nitrogen deposition is still relatively low (< 50 mg N m
-2

 yr
-1

) (Galloway and 

Cowling, 2002; Hobbs et al., 2010).  Conversely, reactive nitrogen deposition has a 

stronger influence on diatom ß-diversity in mid-latitude alpine environments where 

nitrogen deposition is greater (100-500 mg N m
-2

 yr
-1

) (Hobbs et al., 2010).  

The main goal of this study is to determine whether past changes in diatom 

community composition recorded in lake sediments from remote, high elevation sites in 

the Uinta Mountains, U.S.A. can be linked to warming and/or nitrogen deposition.  The 



 

112 

 

Uinta Mountains provide an ideal setting for this investigation because direct human 

impacts are restricted to free-range grazing and moderate recreational use. However, the 

Uinta Mountains are exposed to atmospheric nitrogen deposition as they are located east 

and downwind of the Wasatch Front, a densely populated region that has seen a rapid 

increase in population, industry, and agricultural activity since initial settlement in 1847.  

The Uinta Mountains have also experienced recent, rapid warming.  Temperature data 

from nearby meteorological stations (Heber and Vernal, Utah) show a fluctuating pattern 

until the mid-1980s when mean annual temperatures increase
20

 (Chapter 1), which is 

comparable to the regional trend in the mid-western U.S.A. The western U.S.A. is 

predicted to undergo further warming in the coming decades (McAfee and Russell, 

2008).   

A second goal is to determine the range of potential responses by selecting lakes 

of varying characteristics and catchments. This will provide a deeper understanding of 

how lake ecosystem sensitivity varies with these forcings. Lake response to climate 

warming or nitrogen deposition may be affected by several factors including water depth, 

vegetation cover, talus slopes and through-flow. Water depth is linked closely to the 

thermal inertia of arctic lakes and therefore the susceptibility of the lake to temperature 

changes (Smol and Douglas, 2007a); closed basin lakes are more likely to retain nutrients 

than lakes with high throughflow; well-vegetated catchments may have a greater ability 

to take up nutrients; and talus slopes are potential sites of microbial nitrification 

(Williams et al., 1997).   

In order to investigate the influence of both warming and nitrogen deposition on 

Uinta Mountain lake ecosystems, fossil diatom (Class Bacillariophyceae) assemblages 

from six Uinta Mountain lakes were examined in relation to a calibration set (modern 

limnological data + surface sediment diatom assemblages) of 57 Uinta Mountain lakes. 

The six study lakes are all at high elevations and share a similar geology, but differ in 

lake depth, catchment landcover, catchment area, and through-flow.  By selecting lakes 

                                                 

20
 The trends in mean summer (NDJFM) and mean winter (MJJAS) temperature are similar to mean annual 

temperature trends and magnitude of change in Heber. 
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with different characteristics we will gain an understanding of which lakes most 

vulnerable to these regional-scale stressors.   

Diatoms are useful biological indicators of ecosystem response because the 

numerous species have specific ecological preferences and respond rapidly to 

environmental changes, including lake water nutrient concentrations (Hall and Smol, 

2001) and indirectly to changes in temperature (Lotter et al., 2001).  We establish the 

relationship between diatoms and their contemporary aquatic environment using the 

calibration set.  Diatom stratigraphies from lake sediment cores can be superimposed 

upon this modern diatom-environment relationship to aid our understanding of past 

environmental conditions and changes in diatom community composition.  The findings 

will improve our understanding of ecosystem response and biological sensitivity to 

climate warming and nutrient deposition, which has been identified as a remaining 

challenge in paleolimnology of remote lakes (Catalan et al., 2013).   

5.1.1 Anticipated ecological changes resulting from climate 
warming and nitrogen deposition 

Although some expected changes in diatom community composition in response 

to warming climates and nitrogen deposition are similar, there are also some differences 

that help distinguish between the ecological effects of these two forcings.  Warming 

temperatures can affect the length of the growing season, the length of the ice-free period 

and the duration and stability of stratification (Smol, 1988; Smol et al., 1991). These 

changes can affect lake water chemistry, light availability, nutrient cycling, habitat 

availability, and aquatic biology.  Several paleolimnological studies in arctic regions and 

in European alpine lakes have shown striking changes in diatom assemblages due to 

recent warming (Lotter and Bigler, 2000; Catalan et al., 2002; Koinig et al., 2002; 

Rühland et al., 2003; Smol et al., 2005).  Fewer studies illustrate the response of aquatic 

biota to warming in alpine regions of North America (e.g. a chironomid-based 

temperature inference model by Porinchu et al., 2007).  Because arctic ecosystems are 

often grouped with high alpine ecosystems based on similarities in climate, vegetation, 

and diatom species composition (Lotter et al., 2001), we can use the results from both 
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arctic and alpine studies to hypothesize the expected changes with warming of Uinta 

Mountain lakes.   

Increases in nitrogen deposition can affect freshwater lakes by causing 

acidification and eutrophication.  Lake acidification is rare in U.S.A. alpine systems, 

including the Colorado Front Range (Williams et al., 1996a; Wolfe et al., 2001) and the 

Uinta Mountains, where it is speculated that CaCO3 supplied from dust may neutralize 

the effects of acid deposition (Squire, 2012).  However, changes in primary production 

associated with increased nitrogen deposition have been recorded in several alpine 

ecosystems, including in the Colorado Front Range (Wolfe et al., 2001), and in the Uinta 

Mountains (Chapter 3, Hundey et al., (submitted)).  Changes in primary production, in 

turn, can influence biodiversity, water quality, and oxygen levels in the hypolimnion. 

Diatoms are sensitive to these changes because individual species have specific water 

chemistry and habitat requirements, and are sensitive to changes in nutrient 

concentrations (Hall and Smol, 2001). 

Based on findings from arctic and alpine lakes, warmer temperatures should result 

in an increased abundance of planktonic species (Lotter and Bigler, 2000; Koinig et al., 

2002; Catalan et al., 2002; Rühland, Smol et al., 2003; Smol et al., 2005).  This shift 

results from a longer ice-free season and associated increase in habitat availability, plus 

stronger, longer periods of stratification, which favour fast growing planktonic species 

that can exploit the stable conditions of the epilimnion (Rühland et al., 2003).  Although 

diatom assemblages are complex, planktonic Cyclotella species have been consistently 

linked to warming trends in many circumpolar, alpine and temperate northern hemisphere 

lakes (Sorvari and Korhola, 1998; Rühland et al., 2003; Rühland et al., 2008).  Cyclotella 

species do well in warmer lakes with increased thermal stratification (Rühland et al., 

2008; Hobbs et al., 2010) and a longer ice-free season (Rühland et al., 2003; Smol et al., 

2005).  Conversely, during colder conditions with longer ice-covered seasons, benthic 

species like Fragilaria are abundant and competitive whereas planktonics under ice cover 

quickly sink to the bottom (Lotter and Bigler, 2000). An increase in planktonic diatoms is 

also associated with increased nutrient inputs (Wolin and Duthie, 2001).  However, 

unlike with warming, the increase in planktonic diatoms is not expected to feature 
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substantial increases in Cyclotella species, as lower abundances of Cyclotella have been 

associated with higher nutrient concentrations (Rühland et al., 2003).  With increased 

biologically available nitrogen, we would instead expect an increased abundance of 

species such as Asterionella formosa (Saros et al., 2005; Michel et al., 2006).  In 

temperate systems, A. formosa has been associated with human settlement, the 

introduction of agriculture, and P enrichment (Baron et al., 2000; Hall and Smol, 2001), 

but in alpine systems, A. formosa populations are stimulated by N additions and not P 

(Interlandi and Kilham, 1998).  The maximum abundance of A. formosa in Sky Pond, 

Colorado Front Range, coincides with elevated NO3
-
 concentrations (Wolfe et al., 2003), 

and increased prevalence of the species has been linked to increased reactive nitrogen 

availability (Wolfe et al., 2001; Saros et al., 2005). 

It is expected that species assemblage turnover (ß-diversity) will increase with 

climate warming.  With enhanced lake stratification and decreased ice cover, algae are 

able to exploit newly available habitats and as a result, ß-diversity increases (Smol et al., 

2005).  Smol et al. (2005) studied 42 diatom records from circumpolar sites and all 

experienced increasing ß-diversity over the last 150 years, with the largest changes 

occurring in the high arctic where the temperature change is greatest.  It is also expected 

that ß-diversity would increase with increased nitrogen deposition and higher primary 

productivity as occurred in alpine lakes that were influenced by nitrogen deposition in 

North American mountain lakes (Hobbs et al., 2010).  Few studies have evaluated the 

relationship between ß-diversity and algal productivity, however the most common 

response to increased productivity is a unimodal response among phytoplankton 

(Declerck et al., 2007; Leps, 2013; Skácelová and Leps, 2014).  However, experiments 

have illustrated that phytoplankton species richness declines with increasing plankton 

productivity (Jeppesen et al., 2000; Declerck et al., 2007).  Still other experiments reveal 

that community evenness is negatively correlated with nutrient enrichment, meaning that 

a few species become abundant at the expense of others when nutrient inputs increase 

(Larson and Belovsky, 2013).  These shifts in diversity that coincide with increased 

productivity are likely to be accompanied by shifts in species composition, in which case 

ß-diversity should increase. 
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Changes in ß-diversity and the timing of major shifts in species assemblages 

(determined by CONISS zones) are expected to be linked to known changes in 

temperature and/ or nitrogen deposition.  If changes in ß-diversity and species 

assemblages are being driven by warming temperatures, the variables should track 

temperature change.  For example, in the Hudson Bay Lowlands, changes in diversity and 

percent planktonics coincide with climate trends, including with recent warming since 

1990 (Rühland et al., 2013).  If, on the other hand, the changes in diatom community 

composition are being driven by nitrogen deposition, they should track 15
N (often linked 

to changing N sources) in the sediments.  For example, in the Colorado Rocky 

Mountains, a change in the diatom assemblage and declining sedimentary15
N beginning 

around 1950 coincides with increasing nitrogen fixation via fossil fuel combustion and 

fertilizer production (Wolfe et al., 2001).  Similarly, recent (since ~1950 AD) decreases 

in sedimentary 15
N values in Uinta Mountain lakes have been attributed to increased 

contributions of N from fertilizer and fossil fuel combustion (Chapter 3, Hundey et al., 

(submitted)). 

5.2 Study Area 

The Uinta Mountains are an east-west trending mountain range that reaches 

elevations over 4000 m, and stretches 200 km across the northeastern part of Utah (40˚ to 

41˚ N, 109˚ to 111˚ W) (Figure 5.1). The bedrock geology is comprised of the Uinta 

Mountain Group, which includes quartz, arenite, silitite, arkose, and shale (Condie et al., 

2001).  Cirques, U-shaped valleys, and many glacial lakes have been formed during 

multiple glacial events (Munroe et al., 2007).   
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Figure 5.1. Location of study sites. (A) The position of the Uinta Mountains in northeastern Utah and 

U.S.A., and (B) the topography of the Uinta Mountains with the locations of the 6 study lakes, the 57-

lake calibration set, including the 46-lake subset that was used for statistical analyses. 

The steep elevation gradients and the location of the Uinta Mountains in an ecotone 

between the northern and southern U.S.A. Rocky Mountain vegetation zones result in a 

range of vegetation types in the Uinta Mountains (Shaw and Long, 2007).  At tree line, 

catchments are covered by a mix of alpine tundra and forest-tundra vegetation, including 

subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmanii), either as erect 

trees or krummholz (Shaw and Long 2007).   
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The Uinta Mountains have an alpine climate with short but warm summers.  They 

are snow covered from mid-October to mid-May at higher elevations (e.g., Chepeta 

Snotel site, 3228 m.a.s.l.), and all but the highest peaks are snow free in summer.  

Precipitation varies substantially with elevation and longitude; higher elevation sites 

receive more precipitation than lower elevation sites, and the western slopes receive 

nearly twice the average annual precipitation as the eastern slopes (MacDonald and 

Tingstad, 2007).     

 A 57-lake calibration set (Figure 5.1B) has been assembled consisting of surface 

sediment diatom assemblages and water chemistry (Tingstad, 2010).  The lakes were 

selected to maximize the elevation range and climatic variability.  These lakes vary in 

elevation from 2652 to 3650 m.a.s.l., and alkalinity from 1 to 16.7 mg L
-1 

CaCO3
- 
(see 

Appendix 1, summary).   

Six high elevation (> 3000 m.a.s.l.) oligotrophic lakes from this calibration set 

were cored and analyzed to provide an historical record of change in diatom community 

composition. The lakes were selected to maximize the range of lake and catchment 

characteristics to evaluate the full range of potential responses in diatom community 

composition. The six study lakes are Denise (WR-9)
21

, Taylor (WR-8), Upper Carrol (X-

18), East Carrol (X-21), No Name (X-26), and Bluebell Pass (X-25) (Figure 5.1). The 

catchment surfaces are characterized by a thin glacial till cover over bedrock (Munroe 

and Laabs, 2009).  Two lakes (Bluebell Pass and Upper Carrol Lakes) have rock glaciers 

within their catchments (Munroe and Laabs, 2009).  The lakes range from closed-basin 

(No Name Lake) to one with high inflow (Upper Carrol Lake); from shallow (Denise 

Lake, 2.4 m maximum depth) to deep (Upper Carrol Lake, 13.8 m); from large catchment 

(Denise Lake, 391.9 ha) to small (East Carrol Lake 35.1 ha), and with a range of 

catchment landcover.   

                                                 

21
 Utah Department of Wildlife Resources codes in parentheses.  Denise, No Name, and Bluebell Pass are 

unofficial lake names. 
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5.3 Methods 

5.3.1 Catchment landcover 

Variables describing the characteristics of the lakes and their catchments were 

determined using GIS analysis.  Watershed boundaries were determined using a digital 

elevation model (10 m resolution) (U.S. Geological Survey, 2006).  The extent of each 

landcover type within each catchment were determined by overlaying the watershed 

boundaries with landcover data from the USGS National Gap Analysis Program (2004) 

(30 m resolution) using the Terrain Analysis System (Lindsay, 2005).  Several land use 

categories from the USGS National Gap Analysis Program were merged for comparison 

between sites, as follows: talus + bedrock combines bedrock and scree and alpine fell 

field; forest + shrubland includes subalpine dry-mesic spruce-fir forest and woodland, 

subalpine mesic spruce-fir forest and woodland, alpine dwarf shrubland,  subalpine-

montane riparian shrubland; and meadow + tundra combines dry tundra,  subalpine 

mesic meadow, southern montane subalpine grassland, and alpine-montane wet 

meadow
22

. 

5.3.2 Sediment cores 

5.3.2.1 Field methods 

Lake sediment cores between 25 and 50 cm in length with an undisturbed 

sediment-water interface were obtained from the deepest part of each of six lakes during 

the summers of 2006 (Taylor and Denise lakes) and 2007 (East Carrol, Upper Carrol, No 

Name, and Bluebell Pass lakes) using a Kajak-Brinkman gravity corer fitted with a 6.5 

cm diameter plastic tube (Glew et al., 2001).  Lake sediments were extruded on site using 

a specially designed extruder (Glew et al., 2001) and were subsampled at 0.5 cm 

contiguous intervals, except at greater than 20 cm depth in Taylor and Denise lakes, 

which were sub-sampled at 1 cm intervals (daylight was limited and weather was 

threatening).  The sub-samples were stored in Whirlpak bags in dark conditions at 4 ˚C at 

                                                 

22
 Detailed landcover descriptions are provided by the Southwest Regional Gap Analysis Project (Utah 

State University) at http://earth.gis.usu.edu/swgap/data/landcover/descriptions/landc_database_report.pdf 

http://earth.gis.usu.edu/swgap/data/landcover/descriptions/landc_database_report.pdf
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the Lakes and Reservoir Systems Research Facility at the University of Western Ontario, 

London, Canada.  

5.3.2.2 Chronology 

Lake sediments were dated using 
210

Pb (half-life = 22.26 years) techniques 

(Appleby, 2001) on 15 dried and ground samples per lake between 0 and 22 cm core 

depth.  Samples were analyzed using -spectrometric measurements of 
210

Po, a decay 

product of 
210

Pb, at MyCore Scientific Inc. in Deep River, Canada (Cornett et al., 1984).  

The 
210

Pb ages were calculated using the constant rate of supply (CRS) model, in which 

lake sediments are assumed to be receiving a constant input of unsupported 
210

Pb from 

the atmosphere (Appleby, 2001). Due to the absence of suitable organic material for 
14

C 

dating, the 
210

Pb dating models were extended using linear regression (R
2
 = 0.95 for all 

six lakes) below the dateable sections.  The 
210

Pb chronology is discussed in further detail 

in Chapter 3. 

5.3.2.3 Diatoms 

Samples were prepared for diatom analysis using the method described by 

Battarbee et al. (2001).  Approximately one cm
3
 subsamples were treated with 10% 

hydrochloric acid to eliminate excess calcium carbonates, followed by a 50:50 molar 

weight solution of nitric and sulfuric acid to digest organic matter.  After 24 hours the 

samples were heated to 80 ˚C for two hours. Treated subsamples were rinsed a minimum 

of 10 times (at least 24 hours between washes) with distilled water until neutrality was 

reached, and then mounted to slides using Naphrax® or Z-rax®.  For each sample, a 

minimum of 600 diatom valves were identified and counted, except in select cases in 

which half of a cover slip was counted before 600 diatoms were reached.  In these cases, 

counting was stopped at half of a cover slip as long as 500 diatoms were identified and 

counted.  Counts were done using a Leica E-600 light microscope outfitted with 

differential interference contrast optics and 100x magnification and a Retiga ® 2000 Fast 

1394 digital camera. The main reference for taxonomy used was Krammer and Lange-

Bertalot (1986-1991).  Diatom assemblages are presented as relative frequencies of taxa 

(in some cases groups of taxa) relative to the total number of valves counted.  Groups of 
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similar species were created to overcome discrepancies between the downcore and 

calibration set counts.  Two of the major groups were the small Fragilaria species (F. 

construens var. venter, F. pinnata varieties and F. brevistriata) and three of the 

Cyclotella species (C. stelligera, C. pseudostelligera, and C. atomus).   

5.3.3 Calibration set 

The calibration set used for this study consists of 57 lakes in the Uinta Mountains 

sampled in July and August from 2000 to 2004 by Moser (Figure 5.1).  These data will be 

presented elsewhere in more detail (Tingstad et al., in prep), but briefly, at each lake both 

water samples and surface sediments were collected for analysis.  Lake environmental 

variables were recorded over the deepest part of the lake, which was approximated based 

on several depth measurements near the centre of the lake.  At this location, surface water 

temperature and specific conductivity were measured using a YSi-M85 meter, and pH 

was measured using a minimum of three Hanna PH meters.  Alkalinity was determined 

using a Hach kit.  At the same location, 0.5 m below the water surface, samples were 

collected for analysis of water chemistry.  The samples were filtered in the field using a 

0.45 µm filter and collected in 30 ml pre-cleaned Nalgene bottles.  Samples were 

analyzed for several ions and elements, including fluorine, chlorine, nitrate, sulfate, 

sodium, magnesium, aluminum, silica, potassium, calcium, manganese, strontium, 

barium, lithium, boron, chromium, cobalt, nickel, copper, zinc, arsenic, rubidium, lead, 

uranium, iron, dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC).  

Water samples were kept cool in the field until they were shipped to Rick Knurr at the 

Aqueous Geochemistry Lab at the University of Minnesota.  Dissolved organic carbon 

and dissolved inorganic carbon were analyzed by David Lean at the University of 

Ottawa.   

The surface sediments (top 0-1 cm), which represent a spatially (from all parts of 

the lake) and temporally (the last ~5 years) integrated sample of diatoms, were collected 

with a Glew Mini Corer (Glew, 1991) and stored in WhirlPak ® bags and kept cool until 

shipped.  Diatom slides were prepared in the same fashion as described in section 5.3.2.3.  
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5.3.3.1 Zonation 

Zonation in the diatom assemblages was determined by Constrained Incremental 

Sums of Squares cluster analysis (CONISS) (Grimm, 1987).  CONISS was performed 

using the “rioja” package (Juggins, 2013) for the R software environment (R 

Development Core Team, 2011).  The dispersion of the hierarchical zones was compared 

to that of a broken stick model (Bennett, 1996) in order to determine the number of 

significant splits (zones = splits + 1).  The precise placement of the splits between zones 

is determined by visual inspection and by the CONISS hierarchy.  The dendrograms 

returned from CONISS and the broken stick models for each lake are displayed in 

Appendix H.   

 

5.3.4 Ordination 

Diatom taxa that occurred in the calibration set with a relative abundance of at 

least 1 % in one lake and present in at least three lakes formed the diatom species dataset 

used for statistical analysis of the calibration set.  Prior to analysis the percentage data 

were square root transformed with the intention of stabilizing the variance in each 

dataset.  All ordinations were determined using the computer program CANOCO V. 4.55. 

Ordination plots were drawn by CANODRAW 3.0.  A detrended canonical 

correspondence analysis (DCCA), detrended by segments with Hill’s scaling, was used to 

determine whether diatom species in the calibration set primarily follow a unimodal 

(DCCA gradient length > 4) or linear distribution (DCCA gradient length < 3) by 

assessing the dominant gradient lengths (ter Braak & Prentice, 1988; Leps and Smilauer, 

2009).  DCCA axis 1 had a gradient length of 3.083, so either linear or unimodal methods 

are appropriate.  We quantified the diatom compositional responses to the explanatory 

environmental variables by using canonical correspondence analyses (CCA), which 

assumes unimodal species distributions.   

Diatom species from the six study lake sediment cores were included if they were 

also in the calibration set described above (relative abundance of at least 1 % in one 

calibration set lake and present in at least three calibration set lakes).  The lake sediment 
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core diatom data was plotted as supplementary data only (thus not influencing the 

ordination axes).  A CCA on the 57-lake calibration set with the downcore data from the 

six study lakes plotted as supplementary revealed that multiple outlying sites in the 

modern calibration set reduced the visibility of any variability in the downcore data.  The 

outlying sites shared several characteristics that differentiated them from the study lakes; 

they were low elevation, situated in limestone, and had high alkalinity.  Therefore, the 

calibration set was reduced, eliminating sites with alkalinity > 10 mg L
-1 

CaCO3.  All of 

the following statistical analyses were performed on the remaining 46-lake calibration 

set.  A CCA performed on these lakes revealed that the first two axes collectively 

explained 30.5 % of the variance in diatom species data (λ1 = 0.307 [18.9 %]; λ2 =  0.190 

[11.6 %]) and 37.5 % of the variation in the species environment relationship.   

A series of CCAs were performed on the calibration subset in order to exclude 

environmental variables with high colinearity and those with variance inflation factors 

(VIFs) above 20.  During this step we removed the following variables, one at a time: 

lead, chlorine, sodium, zinc, and specific conductivity.  Barium, boron, rubidium, 

uranium, and fluorine were also removed as there are no known influences of these 

elements on diatom species abundances, leaving 24 remaining environmental variables 

(Appendix F). The first two axes collectively explained 23.1 % of the variance in diatom 

species data (λ1 = 0.237 [14.5 %]; λ2 = 0.140 [8.6 %]) and 37.4 % of the variation in the 

species environment relationship.   

A forward selected CCA was performed with the following manually selected 

variables: nitrate, temperature, depth, Secchi depth, and magnesium.  Each of these 

variables explains more than would be expected of a random contribution (p < 0.05), 

which was determined by performing separate CCAs with one variable as the sole 

explanatory variable, and the previously selected variable(s) as covariables.  This is 

problematic only for the first selected variable, which is likely to be judged as significant 

even if the species are unrelated to the variable (Leps and Smilauer, 2003).  The 

eigenvalues of the first two CCA axes were λ1 = 0.184 and λ2 = 0.093, and the variables 

accounted for 39 % of the variance explained by all variables.  The first two axes explain 

17 % of the species variance and 70.8 % of the species environment relationship. Monte 



 

124 

 

Carlo permutation tests indicate that the canonical axes of the reduced environmental 

dataset are significant (p < 0.01).   

Using this subset of environmental variables, a CCA biplot was made which 

included the sediment core samples from the six lakes; these samples were made 

supplementary.  This biplot allowed us to assess historical lake response in the context of 

modern lake properties and diatom assemblages. 

5.3.4.1 Turnover of diatom assemblages 

The diatom assemblages of each of the six study lakes were ordinated individually 

using detrended correspondence analysis (DCA).  Similar to ordination of the calibration 

data, the diatom percentage data was square root transformed.  The data were detrended 

by segments and rare taxa were downweighted.  The first axis of a DCA is a 

representation of turnover units of ß-diversity in standard deviation units, so the 

difference between samples estimates species turnover (Birks, 1998; Smol et al., 2005).  

That means that the difference between two sample scores approximates the variation in 

species composition among samples, in this case, along a temporal gradient.  This 

technique allows for the analysis and comparisons of the magnitude and timing of 

compositional changes between samples (Birks, 1998).  The statistical significance of the 

first four axes were determined by comparing the variance explained by each additional 

axis to that of a random model with the same total variance and number of axes using the 

broken stick model (Bennett, 1996).   

5.4 Results 

5.4.1 Lakes and catchment landscapes 

The six study lakes vary in depth from 2.4 m (Denise) to 13.8 m (Upper Carrol).  

Four of the lakes are under 3.4 ha in area (Denise, East Carrol, No Name, and Bluebell 

Pass) whereas Taylor Lake and Upper Carrol Lake are 9 and 11.6 ha respectively (Table 

5.1).  The lakes are all low nutrient systems, but due to their naturally dilute nature are 

likely susceptible to small changes in nutrients.  The lake catchments are dominated (56 

to 81 %) by talus and bedrock cover (Table 5.2), with the remainder covered by 
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vegetation types ranging from alpine tundra to alpine dwarf shrubland and subalpine 

mesic spruce-fir.   

Table 5.1. Summary characteristics of the six study lakes, including lake area (AL), depth, pH, and 

trophic status.   

Trophic status was determined by comparison of Secchi depth, TP, TN, and chlorophyll a values (Tables 

3.1 and 3.2) to those listed in Table 13-18 of Wetzel (2001). 

Lake Depth 
Stratifies 

AL pH 
Trophic 
status 

 (m)  (ha)   

Bluebell Pass 7.7 Yes 3.3 8.03 Oligo/ meso 
Taylor 9.7 Yes 9 7.5 Oligo/ meso 
Denise  2.4 No 1.1 7.7 Oligo 

East Carrol 5.3 No 3.4 7.5 Oligo/ meso 
No Name 5.2 No 2.6 7.53 Oligo 

Upper Carrol 13.8 Yes 11.6 7.73 Oligo/ meso 

 

Table 5.2. Summary catchment characteristics, including catchment area (AC), catchment area: lake 

area ratio (AC:AL), throughflow, and land cover.   

Land cover absolute area and percentage area have been combined into three major categories.  

Catchment AC AC:AL Throughflow 
Talus, bedrock 

& ice 

Subalpine 

spruce-fir & 

shrubland 

Meadow & 

tundra 

 (ha)   % (ha) % (ha) % (ha) 

Bluebell Pass 174.5 52.9 Low 69.7 121.7 19.4 33.9 10.8 18.9 

Taylor 349.9 38.9 medium 71.0 242.7 6.5 22.2 22.5 76.8 

Denise 391.9 359.5 Low 66.1 252.5 10.3 39.4 23.6 90.3 

East Carrol 35.1 10.3 Low 80.7 25.7 3.2 1.0 16.0 5.1 

No Name 83.6 35.2 closed-basin 69.6 56.6 24.2 19.7 6.2 5.1 

Upper Carrol 316.1 27.25 High 56.3 172.8 16.7 51.2 27.0 82.9 

 

5.4.2 Chronology 

The 
210

Pb activity of each lake decreases predictably with depth, and background 

210
Pb was reached within 9-12 cm in each of the six lakes (Hundey et al., (submitted)).  

This allowed us to develop robust CRS chronologies for all six lakes (Figure 5.2).  These 

extrapolations provide a historical context, but we interpret pre-1850 trends with caution, 

as basal 
210

Pb sedimentation rates tend to be systematically overestimated compared to 
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models that include 
14

C dates (Cooke et al., 2010), and the errors associated with early 

210
Pb dates are large.  

 

Figure 5.2. (A-F) Core chronologies for each study lake based on the constant rate-of-supply model 

from alpha-spectrometry.   

Error bars represent one standard deviation above and below the date. 

 

5.4.3 Calibration set 

5.4.3.1 Diatom flora characteristics 

In total, 220 diatom taxa representing 31 different genera were identified to the 

species level from the surface sediment collections.  When this data was reduced to 

include only those diatoms present in at least three lakes, with at least one percent 

abundance in one lake, the dataset included 93 taxa from 19 different genera, and 

represented, on average, 95% of total diatoms enumerated.  Diatom species codes, names, 

and species authorities are listed in Appendix G. The diatom taxa (or groups of taxa) 

found in the greatest abundance in the calibration set surface sediments, with species 

code in square brackets, were small benthic Fragilaria species (F. brevistriata, F. 

construens var. venter, F. construens var. construens, and F. pinnata varieties) 
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[Fra.pin.con.bre] (mean abundance: 36%).  Several other abundant taxa with mean 

relative abundance between 8 and 2 % (in order of decreasing abundance) were F. 

virescens [Fra.vir]; Cyclotella species (C. stelligera, C. pseudostelligera, C. atomus) 

[Cyc.ste.pse.ato]; Asterionella formosa [As.for]; F. tenera [Fra.ten]; Achnanthes 

minutissima; Tabellaria flocculosa [Ta.flo]; and Pinnularia mesolepta [P.mes].  On 

average, 85 % of diatoms from the six study lake sediment core (unscreened) were 

represented in the calibration set. Those species from the sediment cores that were not in 

the calibration set represented at most 1.5 % mean abundance in the core. 

5.4.3.2 Relationships between environmental variables 

Summary statistics of the manually selected environmental variables included in 

the CCA are shown in Table 5.3.  The t-values of regression coefficients indicate that 

depth and temperature are important for defining CCA axis 1, and Secchi depth, depth, 

and temperature are important in defining axis 2.  NO3 and Mg are not important for 

either of the first two axes, although Mg is an important variable in explaining axis 3 and 

NO3 is an important variable in explaining axis 4. 

 

Table 5.3. Summary statistics for forward selected calibration set variables (Secchi depth, depth, 

temperature, nitrate, and magnesium), plus elevation, which is included as a supplementary variable. 

 
Elevation 

(m) 
Secchi 

depth (m) 
Depth 

(m) 
Temp 
(°C) 

NO3 

(ppm) 

26
Mg 

(ppm) 

Min 2850 0.88 1.12 4.60 0.00 0.13 

Max 3560 7.00 22.33 21.00 0.502 0.82 

Median 3199 2.66 5.55 14.4 0.001 0.38 

Mean ± 1 SD 3210±192 2.95±1.41 6.65±4.86 14.5±3.0 0.033±0.092 0.42±0.18 

 

 The relationships between environmental variables are illustrated in Figure 5.3. As 

is expected, temperature is significantly negatively correlated to elevation (Pearson = -

0.644, p < 0.001).  Nitrate appears positively correlated with elevation although the 

correlation is not significant (Pearson Correlation = +0.122), and nitrate values are 

generally low (Table 5.3).  Greater nitrate concentrations are expected at higher relative 
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to low elevations because increased orographic precipitation in high elevations has been 

linked to greater wet deposition of nitrate at other Rocky Mountain sites (e.g., Nanus et 

al., 2003).  The group of lakes that plot positively on axis 1 (e.g., 32, 33, 34, 52, 53, 54 

and 55) are therefore generally high elevation lakes that are colder and have greater 

nitrate concentrations (Figure 5.4).  Lakes that plot positively on axis 2 are characterized 

by greater Secchi depth (3.6 to 7 m) (e.g., 36, 57, 59, 63 and 65), and because of their 

medium depth (5 to 7 m) often are visible to the bottom.  Magnesium values are generally 

low (Table 5.3), but are significantly correlated with specific conductivity (Pearson = 

0.694, p < 0.001), and significantly correlated to temperature (Pearson = 0.400, p<0.01).  

Higher temperatures result in more evaporation and increased ionic concentrations, 

including Mg.  Therefore the lakes that plot negatively on axis 1 (e.g., 10, 12, 15) are 

warmer, low elevation lakes with greater salinity.   
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Figure 5.3. Results of the CCA ordination displayed as a biplot of diatom species (green diamonds) 

and environmental variables (red arrows) for the 46 lake subset of Uinta Mountain lakes.  

Although elevation is not expected to directly influence diatom growth, it is a possible control on other 

variables that do (e.g., temperature, nitrate), and thus was plotted as a supplementary environmental 

variable (gray arrow).  The length of each red arrow relates to its relative importance in affecting each axis. 

The angle of the arrow relative to an axis indicates the environmental variable’s correlation to that axis.  

The relative weighted-average optimum of a diatom species can be estimated based on the diatom species-

position. For example, species with a preference for higher temperatures and lower nitrate are found on the 

negative side of axis 1 (horizontal axis), whereas those with a preference for lower temperatures and higher 

nitrate are found on the positive side of axis 1. Species found in the middle of the graph are cosmopolitan 

species. Species codes and authorities are listed in Appendix G.  
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Figure 5.4. Results of the CCA ordination displayed as a biplot of environmental variables and sites.  

The modern lakes (numbered) are colour-coded by elevation. Orange sites are situated at 2600-3000 

m.a.s.l., green are 3000-3300 m.a.s.l., and blue sites are located above 3300 m.a.s.l.  The circles outline the 

three elevation groupings.   

 

5.4.3.3 Species-Environment Relationships 

The results of the CCA plotted in Figure 5.3 display the weighted average optimum 

of diatom species in relation to the environmental variables.  Several dominant planktonic 

species, including Asterionella formosa [As.for] (species score
23

 = 1.3) and small 

Cyclotella species (C. stelligera, C. pseudostelligera, and C. atomus) [Cyc.ste.pse.ato] 

(species score = 1.1) are positively correlated with axis 1, and are therefore typical of 

                                                 

23
 The species score for a given latent variable (i.e. the axis in consideration) is the estimate of the species 

optimum on that axis. 
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high elevation lakes with elevated nitrate concentrations, and also deep water lakes.  

Other species correlated with the first axis, and therefore also typical of high elevation 

lakes with elevated nitrate concentrations are Fragilaria delicatissima [Fra.del] (species 

score = 1.0), Fragilaria capucina var. gracilis [Fra.capgra] (species score = 0.7), 

Fragilaria capucina var. capucina [Fra.capcap] (species score = 0.5), and Tetracyclus 

glans [Te.gla] (species score = 0.4). 

Diatoms with large negative scores on the first axis include larger pennate 

diatoms and Navicula cryptonella [Na.cryten] (species score = −1.06), several Cymbella 

species, and Pinnularia microcephela [P.mic] (species score = −0.28). This diverse 

community of pennates is associated with warmer temperatures and higher salinity. 

Diatoms with positive scores on axis two include several species that are typical 

of undisturbed oligotrophic lakes (Lotter et al., 1997; Koinig et al., 1998), and are 

associated with higher Secchi depth (clearer waters), such as small Achnanthes (e.g., A. 

curtissima [Ac.cur], A. stolida [Ac.sto] and A. lanceolata [Ac.lan]), and small benthic 

Fragilaria (F. brevistriata, F. pinnata, and F. construens varieties) [Fra.pinconbre] 

(species score = 0.44).   

5.4.4 Downcore diatom assemblages and ordination 

5.4.4.1 Diatom flora characteristics: Six lake sediment cores 

A large number of taxa were identified in the lake sediments of the six study lake 

sediment cores (on average 200 per lake). However, many were rare and were eliminated 

when the data was screened for taxa whose relative abundances were present in three 

samples and at an abundance of 1 % in at least one.  After screening, 60 (Denise Lake), 

44 (Taylor Lake), 53 (Upper Carrol), 37 (East Carrol), 57 (No Name Lake), and 58 

(Bluebell Pass Lake) species remained, which represented an average of 94% of total 

diatom valves counted per interval.  The diatom stratigraphies, including dominant taxa 

and notable changes in diatom species abundance are included in Figure 5.5 through 5.10.   

The most consistent change in diatom species composition is an increase in A. formosa in 

four (Denise, Taylor, East Carrol, and Bluebell Pass lakes) of the six lakes around ~1950 

AD.  In Denise, Taylor, and Bluebell Pass lakes, planktonics like Cyclotella species and 
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Fragilaria tenera and tychoplanktonic F. capucina var. gracilis also increase, while 

small benthic Fragilaria (F. construens var. venter, F. pinnata and F. brevistriata) and 

Achnanthes species decrease. This shift in the diatom community composition is marked 

by a CONISS zone in Taylor (1956 AD), Denise (1973 AD), and Bluebell Pass (1961 

AD) lakes.  A coinciding shift and CONISS zone occurs in No Name Lake (1960 AD) as 

well, but this rapid shift in species composition consists of a decrease in C. stelligera, C. 

pseudostelligera, C. atomus and Aulacoseira species and an increase in small benthic 

Fragilaria species. In East Carrol Lake, there is a shift within the planktonic diatom 

community from mainly Aulacoseira and Cyclotella species to A. formosa, F. capucina 

var. gracilis and F. tenera, although this change is more gradual and is marked by an 

earlier (1869 AD) CONISS zone. In Upper Carrol Lake, there is almost no change in the 

diatom community composition and A. formosa is a dominant species throughout.  

 East Carrol, Taylor, and Bluebell Pass lakes each also have an earlier CONISS 

zone.  Few similarities can be drawn between these shifts, aside from a gradual increase 

in A. formosa.  In East Carrol Lake, the shift at 1807 AD is marked by increasing A. 

formosa, and Aulacoseira species and decreasing benthic Fragilaria species.  In Taylor 

Lake, the shift at 1800 AD is marked by a slight increase in A. formosa, and Cyclotella 

species, and a decrease in Aulacoseira and Eunotia species. In Bluebell Pass Lake, the 

shift at 1930 AD is characterized by increasing A. formosa, F. tenera, Cyclotella species, 

and Navicula species and decreasing small benthic Fragilaria and Achnanthes species.   
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Figure 5.5. East Carrol Lake Diatom stratigraphy.  

Three significant zones are separated by red lines. All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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Figure 5.6. Taylor Lake diatom stratigraphy.  

Three significant zones are separated by red lines.  All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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Figure 5.7. Denise Lake diatom stratigraphy.   

The dashed red line denotes two non-significant zones. All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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Figure 5.8. Bluebell Pass Lake diatom stratigraphy.  

Three significant zones are separated by red lines.  All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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Figure 5.9. Upper Carrol Lake diatom stratigraphy.   

All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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Figure 5.10. No Name Lake diatom stratigraphy.   

Two significant zones are separated by a red line. All data are expressed as relative frequency percentages of individual or grouped diatom taxa. 
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In Figure 5.11A and B, the downcore samples are plotted as supplementary data 

on the calibration set CCA biplot (sites and environmental variables) in order to visualize 

the downcore changes in relation to the modern species environment relationships. On 

average, 85% of the diatoms in the six study lake sediment samples were represented in 

the calibration set.  The bottom sediments of the six lakes are in or near the top right 

quadrant, which is indicative of greater abundances of small, benthic Fragilaria species 

(F. brevistriata, F. construens var. venter, F. pinnata and F. pseudoconstruens), small 

Achnanthes species, and Aulacoseira species (A. lirata, A. perglaba).  This is a 

characteristic assemblage of oligotrophic alpine lakes (Lotter et al., 1997; Koinig et al., 

1998).   

Denise, Taylor, and Bluebell Pass Lakes (Figure 5.11A) exhibit directional 

changes towards the bottom right of the CCA plot, indicating a diatom community 

composition shift from a diverse benthic community towards greater dominance of 

planktonics such as A. formosa and F. tenera (see also Figures 5.6 to 5.8).  The 

ordination also suggests a shift to deeper, and/ or less transparent, and/ or cooler 

conditions with lower NO3
-
 concentrations. The remaining three lakes show changes that 

are less pronounced (No Name and East Carrol Lakes) or no changes at all (Upper Carrol 

Lake) (Figure 5.11B).  The change in diatom community composition at East Carrol Lake 

is similar to that of Denise, Taylor, and Bluebell Pass Lakes such that A. formosa 

increases, and other planktonics like C. stelligera, C. pseudostelligera, C. atomus and 

Aulacoseira species disappear (see also Figures 5.5 to 5.8).  However, on the CCA, East 

Carrol appears to undergo little change because despite the changes in planktonic 

diatoms, it has always been dominated (61-93%) by small Fragilaria species (Figure 

5.5).  No Name Lake exhibits an abrupt change toward the positive end of axis 2, during 

which planktonics such as C. stelligera and Aulacoseira species decrease and small 

benthic Fragilaria species increase (Figure 5.10). 
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Figure 5.11 (A) and (B): Canonical Correspondence Analysis (CCAs) for Uinta Lake calibration set, with 6 lake sediment cores plotted as 

supplementary data.   

The six study lake sediment cores are plotted from bottom (filled circle labeled “B”) to the top (arrowhead labeled “T”) of the core. Lines are dashed until 

chlorophyll a begins to increase (between 1937 and 1955 depending on the lake (Figure 5.12, also see Chapter 3) after which the points are connected by solid 

lines.   
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5.4.4.2 Species turnover 

DCA axis 1 is significant for each study lake (Table 5.4), and therefore the 

differences between samples can be used to approximate ß-diversity or species turnover.   

Table 5.4. Summary of the results of detrended correspondence analysis analysis (DCA) of the 

square root transformed diatom stratigraphies for all six lakes.  

 λ = eigenvalue, % = percentage of total inertia. Axes that have eigenvalues larger than expected under a 

simple broken-stick model are shown in bold.  

Lake dataset Total inertia  DCA axes 

   1 2 3 4 

Bluebell Pass 1.392 λ 0.170 0.066 0.023 0.011 

 % 31.2 12.14 4.2 2.0 

Taylor 2.683 λ 0.162 0.045 0.031 0.014 

 % 30.5 8.5 5.8 2.6 

Denise 1.672 λ 0.229 0.064 0.02 0.010 

 % 31.4 8.8 2.7 1.4 

East Carrol 3.508 λ 0.226 0.076 0.039 0.017 

 % 33.6 11.3 5.8 2.5 

No Name 1.402 λ 0.155 0.057 0.032 0.012 

 % 29.1 10.7 6.0 2.3 

Upper Carrol 1.427 λ 0.065 0.028 0.009 0.006 

 % 24.9 10.7 3.4 2.3 

 Pre-19
th

 century values of DCA axis 1 sample scores are relatively stable, 

indicating that little assemblage turnover occurred (species compositions are similar 

between samples) (Figure 5.12).  Beginning in the late 19
th

 to early 20
th

 century, DCA 

axis 1 values begin to decrease below pre-disturbance values
24

 in East Carrol, Denise, 

Taylor, Bluebell Pass lakes, and to a small degree, in No Name Lake, indicating greater 

species turnover between samples.  This early shift in ß-diversity post-dates the early 

CONISS zone in Taylor and East Carrol Lakes.  The early CONISS zone at Taylor 

(1800) and East Carrol (1807) do coincide with increases in ß-diversity but the sample 

scores are still within the range of pre-disturbance variability, indicating that species 

composition were still typical of pre-disturbance conditions (Figure 5.12).  By ~ 1950 

AD, DCA axis 1 values are decreasing more rapidly in five of six lakes indicating an 

                                                 

24
 These dates, ranging from 1883 to 1924, were determined based on when DCA axis sample scores 

continuously extend below pre-1850 values (mean ± 1 standard deviation).  Pre-1850 sample scores are 

indicated in Figure 5.12. 
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increase in species turnover (Figure 5.12).  The exception is Upper Carrol Lake, which 

has relatively noisy, but unchanging DCA axis 1 sample scores.  The percent of 

planktonic species increases subtly towards present day in Denise, Taylor, and Bluebell 

Pass lakes (also the three lakes showing similar changes in the CCA, Figure 5.11).  The 

timing of shifts in percentage of planktonics coincide with those in DCA axis 1 sample 

scores at Taylor, Bluebell, and Denise Lake, indicating that the shifts between benthic 

and planktonic diatoms largely account for changes in species turnover.  DCA axis 1 

sample scores show a similar shaped profile to 15
N.  Chlorophyll a appears to have an 

inverse pattern compared to DCA axis 1 sample scores and 15
N, but the main change in 

chlorophyll a (1950 AD) lags behind the early (1877 - 1924 AD) shifts in DCA axis 1 

and 15
N. Temperatures in Heber begin to warm in the mid-1980s, which post-dates the 

changes in 15
N, species turnover, and chlorophyll a.   
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Figure 5.12. Comparison of Detrended Correspondence Analysis Axis 1 to 15
N, Chlorophyll a family 

+ derivatives (Hundey et al., (submitted)), and the mean annual temperature record for Heber, Utah 

(Western Regional Climate Center, http://www.wrcc.dri.edu).  

The differences between samples in DCA axis 1 sample scores scale to ß-diversity or species turnover in 

SD units.  Therefore, when DCA axis 1 appears invariant, species turnover is low, and when it changes 

rapidly, species turnover is high.  The light gray vertical lines represent mean pre-1850 (note continues) 

http://www.wrcc.dri.edu/
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Figure 5.12 (Continued). sample scores (dotted) ±1 standard deviation (solid).  In the temperature record, 

the gray line is the mean annual temperature and the black line is the 9-year running mean.  Gray horizontal 

lines represent significant CONISS zone delineations as determined from each diatom stratigraphy (Figure 

5.5- 5.10).  Dotted gray horizontal lines are non-significant zone delineations. Sedimentary 15
N data are 

indicative of changes in atmospheric nitrate deposition and chlorophyll a is indicative of primary 

production (Chapter 3).  

 

5.5 Discussion 

5.5.1 What is influencing diatom ecology at these sites? 

The strongest evidence for the influence of nitrogen deposition on diatom 

community composition comes from the timing of an initial change in DCA axis 1 

sample scores in the late 19
th

 to early 20
th

 century, and a second change in DCA axis 1 

sample scores that coincides with the post-1950 CONISS zones (Figure 5.12).  In Chapter 

3 (this volume, also Hundey et al. (submitted)), we determined that the subtle decrease in 

15
N values ca. 1850 AD were likely due to increased nitrogen deposition as a result of 

land clearance, agricultural activities, and mining operations following the settlement of 

the Wasatch Front.  The similarity of the shape of the DCA axis 1 sample scores to the 

15
N profiles in Bluebell Pass, Taylor, Denise and East Carrol lakes indicates that ß-

diversity has increased (i.e., large shift in diatom species composition) in response to this 

early source of nutrient pollution.  The initial shift (1877-1924 AD) in DCA axis 1 

outside the range of pre-disturbance variability occurs just after the initial decrease in 

15
N (ca. 1850), indicating a lag in diatom response to increased nitrogen deposition.  

Overall primary production (see chlorophyll a, Figure 5.12) had not yet been affected.  

Beginning in the 1950s AD, 15
N decreased more rapidly as agriculture activities 

intensified, synthetic fertilizers were produced, and population in the Wasatch Front 

increased rapidly (Figure 3.5, also Hundey et al. (submitted)).  At this time both 

sedimentary 15
N and DCA axis 1 decrease more rapidly and chlorophyll a increases at 

all but Upper Carrol Lake.  The rapid change (steep slope) in DCA axis 1 sample scores 

indicates greater species turnover after 1950.  CONISS zones from Bluebell Pass, Taylor, 

Denise, and No Name lakes also coincide with this shift (Figure 5.12).  The increase in 



 

145 

 

species turnover is similar to findings in alpine sites that are influenced by increased 

nitrogen deposition (Hobbs et al., 2010).   

Evidence that warming is causing changes in the diatom ecology is less compelling. 

Arctic sites that are influenced by warming have also experienced increased ß-diversity 

(Smol et al., 2005; Hobbs et al., 2010). However, at the Uinta Mountain sites, the timing 

of changes in DCA axis 1 sample scores and the ca. 1950 CONISS zones both precede 

the most dramatic temperature warming at the nearby Heber climate station, which 

occurred post-1980 AD (Figure 5.12).  A longer temperature record would be useful to 

compare historical temperature fluctuations with DCA axis 1 sample scores because the 

initial shift in ß-diversity occurs before temperature data are available.  Unfortunately, an 

appropriate tree ring-based temperature reconstruction was not available.  Ongoing work 

at Lakes and Reservoir Systems Research Facility at the University of Western Ontario 

on the association between temperature and diatom species composition on a seasonal 

basis will be useful in determining the relationship between diatoms and temperature in 

Uinta Mountain lakes. 

Several changes in the diatom community composition provide further evidence 

that nitrogen deposition is affecting these sites.  The increase in planktonics observed at 

Denise, Taylor, and Bluebell Pass lakes is expected with both warming and with nitrogen 

deposition, but similar to the changes in DCA axis 1 sample scores, the change in 

planktonics begins before recent climate warming (Figure 5.12).  Furthermore, the 

increase in planktonics is largely due to the increase in long pennate species like A. 

formosa and F. tenera.  A. formosa is a mesotrophic-eutrophic species that has been 

associated with higher N in high alpine environments (Saros et al., 2005; Michel et al., 

2006), and it has increased in abundance in Bluebell Pass, Denise, Taylor and East Carrol 

lakes.  Conversely, planktonic species like C. stelligera and C. pseudostelligera that 

reportedly do well in warmer lakes are instead associated with colder, higher elevation 

lakes in the Uinta Mountains (Figure 5.4).  A recent increase in Cyclotella species is 

confirmed in the Denise Lake diatom stratigraphy (Figure 5.7), but at the other sites, the 

relative abundance of Cyclotella species is either unchanging (Taylor Lake) or decreasing 
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(East Carrol Lake, Bluebell Pass Lake, No Name Lake) during recent climate warming. 

In Upper Carrol Lake Cyclotella species are not present.   

The CCA results also indicate, at least for Taylor, Bluebell, and Denise Lakes, a 

relationship between diatom community composition change and NO3 (Figure 5.11A). 

NO3
-
 is positively (though not significantly) related to elevation (Pearson Correlation: 

+0.122) and negatively correlated to temperature (Pearson Correlation: -0.645) – both of 

which are expected relationships given changing climatic conditions with increasing 

altitude (i.e., with increasing altitude, temperature decreases, and precipitation and wet 

deposition increase).  A. formosa, a nitrophilous diatom, is associated with higher NO3
-
 

according to the CCA (Figure 5.3, [As.for]) and in the literature (Yang et al., 1996; Saros 

et al., 2005). The trends indicated by the arrows representing Taylor, Bluebell and Denise 

Lakes indicate increasing NO3
-
 and A. formosa. Although the East Carrol Lake record 

shows little change in the CCA (Figure 5.11B), it nonetheless shows a response in diatom 

species composition that is indicative of increased nitrogen concentrations and similar to 

the responses observed in Denise, Taylor, and Bluebell Pass lakes (e.g., increasing 

species turnover (Figure 5.12), increased A. formosa, decreased Cyclotella and 

Aulacoseira species, Figure 5.5).  The record appears invariant on the CCA because of 

the dominance of F. construens var. venter, F. pinnata, and F. brevistriata throughout the 

record, even though there is a shift in ß-diversity and changes in the planktonic diatoms.   

The CCA could also be interpreted to be indicative of other environmental 

changes.  For example, the records from Denise, Bluebell Pass, and Taylor lakes all show 

a substantial shift toward the bottom right of the CCA diagram (Figure 5.11A).  This 

would seem to imply that Denise, Bluebell Pass, and Taylor lakes are getting deeper, but 

there is little evidence that the lakes are actually deeper today than in the recent past (e.g., 

submerged terrestrial vegetation, six Google Earth historical images from 1993 - 2011). If 

these lakes were increasing in depth we would expect the greatest change in No Name 

Lake as it is a closed-basin lake with an unvegetated ring of exposed rock and substantial 

lake level changes are evident in historical Google Earth images (Google Inc., 2013). 

However, minimal changes in lake level are indicated for No Name Lake based on the 

CCA, which instead indicates a change toward greater Secchi depth (Figure 5.11B).  
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Lake level fluctuations are also evident at Bluebell Pass and Taylor Lake on historical 

satellite images (Google Inc., 2013), although no overall trend toward decreasing or 

increasing lake levels is evident.  

The change in diatom community composition from a shallow lake to a deep lake 

would be expected to be similar to a change from a lake that is more ice covered to one 

that is less ice covered; both a deeper lake (Wolin and Duthie, 2001) and a lake with less 

ice cover (Rühland et al., 2003; Smol et al., 2005) are expected to have more diatom 

habitats, stronger stratification, and increased abundance of planktonic algae. Perhaps the 

change in diatom community composition observed in recent lake sediments is indicative 

of reduced ice cover duration? The modern calibration set, however, would suggest that 

warmer lakes (negative side of axis 1, Figure 5.11A&B) have a different diatom 

community composition than the recent samples of the six study lakes (positive side of 

axis 1, Figure 5.11A&B).  This is further indication that warming, and resulting changes 

in ice cover, are not a dominant influence on the changes in the six study lakes. However, 

duration of ice cover is related to temperature and snow cover, the latter being temporally 

and spatially variable in alpine areas (Cayan, 1996; Bales et al., 2006), so ice cover may 

not be positively related to temperature in alpine regions. For example, at Green Lake in 

the Colorado Front range, ice cover thickness steadily declined from 1980 to 2000 despite 

unchanging temperatures; these changes were attributed to increased snow cover, which 

insulated the lake ice and increased groundwater flow to the lake (Caine, 2002). Without 

ice cover data, it is inconclusive whether changing ice cover has played a role in diatom 

community composition at these sites. 

 

5.5.2 What makes a lake less sensitive to nutrient deposition? 

The results indicate that recent changes in diatom species composition and ß-

diversity occur mainly in response to increased nitrogen availability.  There is little 

evidence to support an influence of warming on lake ecology, although temperatures are 

expected to further increase in the western U.S.A. (Solomon et al., 2007) and may have 

synergistic effects with nutrient loading at these sites in the future.  Although 
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geographical proximity of the six study lakes would suggest that atmospheric delivery of 

nutrients should be similar at all six sites, the diatom stratigraphies (Figure 5.5 – 5.10), 

CCA biplots (Figure 5.11A and B), and ß-diversity indicate that there are substantial 

differences in the ecological response between lakes.  The primary production profiles 

(Chapter 3, this volume, Hundey et al., (submitted)) provide further evidence that some 

lakes (Taylor Lake, Denise Lake, Bluebell Pass Lake, and East Carrol lakes) are more 

sensitive to the influence of nitrogen deposition than others (Upper Carrol and No Name 

lakes).  For example, Taylor Lake appears sensitive; the DCA Axis 1 decreases rapidly 

indicating an increase in species turnover, there are distinct changes in the diatom 

stratigraphy around 1800 and 1950, and 15
N decreases rapidly. Upper Carrol Lake, on 

the other hand, appears the least sensitive; the diatom stratigraphy and ß-diversity profile 

are fairly stable, the decrease in 15
N is subtle, and there is only a gradual increase in 

chlorophyll a + derivatives (Figure 5.12).   

Similar to the other lakes, the early part of the Upper Carrol Lake record consists 

of some diatom species typical of oligotrophic conditions: small Achnanthes species, 

Aulacoseira species, and small benthic Fragilaria species (Figure 5.9, Figure 5.3).  

However, unlike the other lakes, A. formosa is a dominant species (> 20 %) throughout 

the record which suggests nutrient concentrations that are naturally elevated relative to 

the other lakes.  Furthermore, compared to the other study lakes, the diatom assemblages 

and species turnover are invariant over time.  This stability could be linked to a couple of 

factors.  First, Upper Carrol Lake has the highest through-flow, which would make it less 

sensitive to recent increases in nitrogen deposition.  Lakes with permanent inflows are 

likely to be less dependent on snowmelt, which is variable year to year. For example, 

Nydick et al. (2003) showed that a permanent inflow in one lake in the Colorado Front 

Range (The Loch) provided sustained, high NO3
-
 concentrations, whereas nearby lakes 

dominated by snowmelt had more variable NO3
-
 inputs.  Second, Upper Carrol Lake has 

the most vegetated catchment of the six lakes measured in both absolute area (134.1 ha) 

and by percent of catchment area (43.7 %).  Increased terrestrial vegetation can reduce 

nutrient delivery because of increase uptake of nutrients by the terrestrial system as 

runoff passes through a vegetated landscape en route to a lake (Williams et al., 1997).  In 
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the case of Upper Carrol Lake, the area around the lake is covered by marsh vegetation 

and shrubs like Salix planifolia (shrub willow) and Betula glandulosa (dwarf birch), 

which have naturally elevated nutrient concentrations (Pathak et al., 2012), and could 

account for elevated nutrients throughout the lake sediment record.   

 ß-diversity increases rapidly in No Name Lake in around 1960 AD, but the 

changes in diatom species composition and on the CCA are different from the other 

lakes.  No Name Lake has a typical oligotrophic diatom assemblage in the base 

sediments, similar to that of the other study lakes.  However, unlike the other lakes, 

planktonics decrease, A. formosa never colonizes, and pioneering benthic species like F. 

construens var. venter, F. pinnata, and F. brevistriata rapidly increase in relative 

abundance (Figure 5.10).  This change is reflected in the CCA (Figure 5.11B).  It is 

hypothesized that a local event (landslide) occurred in the No Name Lake catchment in 

1960 based on a large increase in sediment accumulation rate (Figure 3.3) that coincides 

with a light band in the sediment core (Figure 2.12D).  It is suspected that this landslide 

event overrode the regional atmospheric deposition signal, although nitrogen deposition 

may still explain the increased primary production (Hundey et al., (submitted)).   

 The changes in diatom species composition and increasing species turnover in 

Bluebell Pass, Taylor, Denise, and East Carrol lakes indicate that these lakes are sensitive 

to increases in nitrogen deposition.  The sensitivity of these sites could be linked to the 

proportion of talus within the catchment; the limited vegetation on these slopes could 

result in greater amounts of nitrogen from snow entering lakes (Campbell et al., 2000). 

As well, it has been speculated that the drainage of water through talus slopes can 

increase the amount of biologically active N that enters water bodies, as these slopes are 

potential sites of microbial nitrification (Williams et al., 1997; Campbell et al., 2000; 

Nydick et al., 2003).  All four sensitive lakes have greater than 66% talus, bedrock and 

ice cover in the catchments (Table 5.2).  At East Carrol, Taylor, and Bluebell Pass lakes, 

the talus slopes are immediately adjacent to the shore, with little vegetation buffer 

between.  In contrast, Upper Carrol Lake is surrounded on all sides by vegetation (Figure 

2.11E). These differences might be especially critical in spring, when nitrogen in 

snowmelt rapidly enters the lake from the talus slopes.   
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5.6 Conclusion 

There are several compelling lines of evidence that show the influence of 

increased nitrogen deposition on Uinta Mountain lakes, including the coincident timing 

of changes in species composition and increased nutrient deposition, the similarity 

between DCA axis 1 and 15
N profiles, and the widespread increase in the nitrophilous 

diatom Asterionella formosa.  The timing of changes in diatom ecology precede recent 

warming trends leading me to presume that warming is not the initial trigger of ecological 

change.  There is also little evidence of separate shifts in ß-diversity or diatom species 

composition that coincide with warming beginning in the mid-1980s AD.  However, it is 

possible that recent and future climate warming could exacerbate the impacts of increased 

nutrients on these lakes, and that further warming may yet cause changes in lake ecology.   

The lake ecosystem changes resulting from nitrogen deposition are not 

ubiquitous; by studying changes in diatom community composition in six high elevation 

lakes, we were able to determine that some lakes are more or less sensitive than others.  

Based on these findings, several factors could decrease a lake’s sensitivity to increased 

nitrogen, including: 1) naturally high nutrient concentrations as a result of the amount and 

type of surrounding vegetation; 2) high through-flow resulting in greater stability in 

nutrient levels; and 3) local catchment disturbances that mask effects of longer-term and 

more regional environmental stressors.  Lakes that are more sensitive to increased 

nitrogen deposition tend to have a high proportion of talus, and a minimal vegetation 

buffer between the talus slope and the lake.   

With continued nitrogen deposition, we can expect further increases in 

productivity and changes in diatom community composition in the most sensitive lakes. 

These lakes could be approaching a tipping point and change to a new stable state as has 

occurred at other sites undergoing cultural eutrophication (Scheffer et al., 2001; Smith 

and Schindler, 2009). The resiliency of the unaffected lakes may also be surpassed, 

meaning that changes currently only observed in sensitive lakes may become even more 

widespread. Site selection (and the use of multiple study sites) in poorly understood 
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environments is critical in order to determine whether changes are due to local or regional 

factors, or whether a lake is relatively sensitive (or insensitive) to change.  
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Chapter 6  

6 Conclusion 

Mountain lakes are important as critical water resources for adjacent lowlands, key 

components of the larger recreational landscape, and as part of a unique ecosystem and 

reservoir of biodiversity (Beniston, 2003). Although local disturbances are minimal at 

these remote lakes, it is postulated that these systems could be threatened by atmospheric 

deposition of nutrients from anthropogenic sources such as synthetic fertilizers and fossil 

fuel burning.  In this thesis, I investigated recent (within the last 200 years) trends in 

nutrient inputs and their resulting influence on primary production and diatom 

community composition in six high alpine lakes in the Uinta Mountains, U.S.A.  The 

investigation had three primary goals: (1) to identify the timing and nature of changes in 

primary production and determine the potential drivers of changes in trophic status, 

including nutrient deposition and warming temperatures (Chapter 3); (2) to determine the 

proportional contributions of nitrates from different sources to the modern lake 

ecosystems (Chapter 4); and (3) to determine the diatom community responses to 

atmospheric fertilization and climate warming and investigate differences in lake 

sensitivity to these factors (Chapter 5).  In this concluding chapter, I briefly summarize 

the cumulative findings from these three manuscripts and the combined contribution of 

the three papers to our understanding of alpine aquatic ecosystems in general.  I also offer 

suggestions for improving our understanding of nutrient deposition and lake response in 

alpine environments and conclude with remarks about the challenges that remain for 

effective management and protection of these high elevation ecosystems.  

6.1 Nutrient deposition and lake response in the Uinta 
Mountains 

 Five of the six high elevation lakes studied in the Uinta Mountains record an 

increase in primary production over the last 60 years.  This change is synchronous with 

rapidly decreasing sedimentary 15
N values, which suggests increasing atmospheric 

deposition of nitrogen (Chapter 3). Smaller, initial changes in diatom community 

composition and species turnover occur earlier (1850 AD) at some sites and coincide 
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with more subtle increases in nitrogen deposition (Chapter 5). These changes are 

attributed to nitrogen deposition derived from intensive agriculture and fossil fuel 

production.  Additional atmospheric contributions of phosphorus may be transported to 

these lakes as dust from increased phosphate mining and fertilizer.  We confirmed the 

influence of atmospheric nitrate deposition at these sites by analysis of stable isotopes of 

nitrate in modern water and snow samples (Chapter 4). The results show that 

atmospherically-delivered nitrogen from fertilizers are currently the most important 

influence on nitrate concentrations at high elevation sites as they currently contribute ~35 

% of nitrates to the study lakes and ~65 % to inflows. Additional anthropogenic 

components of atmospheric inputs of N originate as byproducts of fossil fuel combustion 

(~10%).   

Grazing and fish stocking do not have a detectable influence on primary 

production or diatom species composition in Uinta Mountain lakes. The timing of 

increases in mean annual temperature in the Uinta Mountains in the 1980s occurs several 

decades later than the major shifts in primary production and diatom communities. This 

indicates that warming temperature was not the initial trigger for changes in primary 

production, although it may contribute to later biotic trends.  Recent shifts in diatom 

community composition are also more indicative of increases in nitrogen (e.g., increased 

nitrophilous species) than warming (e.g., decreased small Cyclotella species). 

Nevertheless, warming is predicted to continue in the Western U.S., so it is possible that 

future warming may have synergistic effects with increasing nutrient inputs.  Predicting 

these changes will require a greater understanding of the complex relationships between 

snow cover, temperature, and ice thickness/duration in the Uinta Mountains. 

By analyzing primary production profiles from six high elevation lake sites, we 

determined not only that nitrogen deposition is increasing, but also that not all lakes are 

responding equally (Chapter 3).  These differences in lake sensitivity to nutrient 

deposition were confirmed by our analysis of changes in diatom community composition 

(Chapter 5).  The results suggest that elevated nutrient concentrations in lakes with 

greater through-flow, and/or naturally higher nutrient inputs from catchment vegetation 

can lead to decreased sensitivity to atmospheric nutrient inputs, whereas greater 



 

163 

 

sensitivity is associated with catchments having a large percentage of surface covered 

with talus and/or little vegetation surrounding the lakes. 

  These results are timely because population in the western U.S.A.continues to 

increase and fossil fuel combustion and agricultural activities are on the rise.  

Temperatures in western North America are anticipated to increase by ~2.1 to 5.7 ˚C by 

the end of the 21
st
 century (Solomon et al., 2007) and higher temperatures have been 

linked to increased algal production (Posch et al., 2012).  I therefore predict that with 

warming there will be further reductions in alpine lake water quality in the near future. 

This has implications for water resource management because Uinta Mountain lakes are 

important water resources to the much drier adjacent lowlands (Beniston, 2003; Tingstad, 

2010).  

6.2 Contributions to the study of eutrophication in high 
elevation environments and future research directions 

6.2.1 Combining approaches: benefits of paleolimnological study 
and triple isotope analysis of nitrates 

This research is unique in combining paleolimnological techniques and isotope 

analysis of nitrates in modern water samples to determine the impacts of atmospheric 

nitrogen deposition to lake ecosystems. It is also one of the first studies to use the triple 

isotope approach to identify nitrate sources in alpine environments (see also Darrouzet-

Nardi et al., 2012).  This approach vastly improves our interpretation of the causes of 

recent increases in primary production by combining paleolimnological research (to 

determine the history of recent eutrophication) with identification and modeling of nitrate 

sources by triple isotope analysis of nitrates in modern samples. Several researchers have 

previously analyzed bulk sedimentary 15
N (as in Chapter 3) to speculate about the 

source of nitrogen in high alpine environments (Baron et al., 2000; Wolfe et al., 2001; 

Holtgrieve et al., 2011) and indicated that the most parsimonious explanation for the 

decreased 15
N values in Uinta Mountain lake sediments is an increase in nitrogen to 

remote lakes from anthropogenic N sources.  However, the interpretation of this proxy is 

difficult because of overlapping source 15
N values, internal lake N cycling (Teranes and 
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Bernasconi, 2000) and similar timing of other changes such as climate warming (Catalan 

et al., 2013).  By analyzing triple isotope composition of nitrates in contemporary water 

and snow samples, I was able to determine the proportional contribution of modern 

nitrate sources, which also improves my confidence in my interpretation of the 

paleolimnological results.  With the combination of the paleolimnological productivity 

data and the modern stable isotopic study of nitrates it is clear that primary production is 

increasing above natural variability and that fertilizer and fossil fuel-derived atmospheric 

nitrate is reaching these high elevation sites.  

Continued use of this combined approach could prove extremely valuable in 

regions where the impact of nitrogen deposition has only been investigated using the 

paleolimnological record (e.g., the Colorado Front Range), as well as regions where 

nitrogen deposition has not yet been studied.  Geographic expansion of the triple isotope 

nitrate analysis approach to other mountain regions will improve our understanding of 

spatial patterns of nitrate sources in environments that typically have scarce monitoring 

data.  It would also prove extremely valuable to apply this combined approach to arctic 

regions where there has been debate regarding the role of  warming versus (or combined 

with) nitrogen deposition (Smol and Douglas, 2007b; Hobbs et al., 2010; Holtgrieve et 

al., 2011; e.g., Catalan et al., 2013). Although nitrogen deposition in the arctic is among 

the lowest in the world (e.g., Galloway and Cowling, 2002; Smol and Douglas, 2007b, 

Figure 1.3) triple isotope analysis of nitrates on snow, inflow, and lake samples could be 

used to determine whether nitrates in arctic lakes primarily originate from soil nitrate, 

with only minor contributions from atmospherically oxidized nitrate and atmospherically 

delivered fertilizer.  This critical information could give a better context to the post-1850 

shifts in paleolimnological records of diatom community composition and ß-diversity at 

these sites (Smol et al., 2005).  

6.2.2 Use of the multiproxy approach 

The use of a multiproxy paleolimnological approach (e.g., analyzing several 

biological and geochemical variables in the same lake sediment cores) (H. H. Birks and 

Birks, 2006) has been critical to this research in the Uinta Mountains, where few actual 

measurements of limnological varaibles are available.   Multiproxy studies will continue 
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to be invaluable in alpine regions lacking monitoring data, especially with continuing 

concern over the potential for synergistic effects of nitrogen deposition and climate 

warming, which have often been discussed (e.g., Catalan et al., 2013) but are not yet 

understood. 

6.2.3 Importance of multiple study lakes  

Our ability to understand differences in lake sensitivity rests on our in-depth 

analysis of multiple study sites, without which our conclusions would have been very 

different.  As an example, if we had studied the Upper Carrol Lake alone, we could 

conclude that nitrogen deposition has little influence on high elevation Uinta Mountain 

lakes, as Upper Carrol Lake has undergone little change in diatom ß-diversity, diatom 

community composition, and primary production.  Instead, we were able to identify four 

sensitive lakes (Taylor, Bluebell, Denise, and East Carrol), one lake with little sensitivity 

to change (Upper Carrol Lake), and one in which the regional signal has been overridden 

by a local landslide event (No Name Lake). The use of multiple sites is especially 

important in dynamic and remote environments like the Uinta Mountains where local 

disturbances can have a marked impact. 

Although the changes in primary production and lake ecology are obvious in lake 

sediment records, they are not yet visible to a recreational visitor. This kind of 

environmental problem is a challenge to water managers because people tend to respond 

to visible problems and symptoms (Smol, 2008). The “invisibility” of the changes is 

confounded because the causes of the changes are located hundreds of kilometers away.  

The lake sediment records provide an early warning system and bellwether of the effects 

of continued atmospheric fertilization and climate change that should help direct effective 

water resource management.    

 

6.3 Concluding remarks 

Humans have become a significant force in the earth system, altering the earth, 

water and air to the extent that many scientists argue we are now in the Anthropocene 
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epoch (Crutzen and Stoermer, 2000), in which human impacts are a major driving force 

in the Earth System.  Although the six study lakes investigated in this thesis are in a 

designated “Wilderness Area” (Wilderness Act, 1964) of the Uinta Mountains, which 

offers them increased protection from direct impacts of human activities, my research 

shows that they are not isolated from human impacts. These lakes are being significantly 

impacted by the long-distance transport of nutrients resulting in detectable changes in 

primary production and diatom community composition.  These changes are caused in 

part by atmospheric nutrient deposition from fertilizer use and fossil fuel combustion. 

The timing of this research is critical, as population, agricultural activities, and 

urbanization are expected to continue to increase in the Wasatch Front, which will result 

in further increases in atmospheric nutrient deposition to high elevation Uinta Mountain 

lakes.  The resulting increases in lake production may be compounded by continued 

warming predicted for the western U.S.A. (Solomon et al., 2007).  It is my hope that by 

identifying these changes and the threats that they present to these fragile lakes, my 

research will contribute to protecting these important ecosystems.  

 

  



 

167 

 

6.4 References 

Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. F., Allstott, E. J., Minear, T., & 

Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado 

Front Range. Ecosystems, 3, 352-368.  

Beniston, M. (2003). Climatic change in mountain regions: A review of possible impacts. 

Climatic Change, 59, 5-31.  

Birks, H. H., & Birks, H. J. B. (2006). Multi-proxy studies in palaeolimnology. 

Vegetation History and Archaeobotany, 15(4), 235-251. doi: 10.1007/s00334-006-

0066-6 

Catalan, J., Pla-Rabes, S., Wolfe, A. P., Smol, J. P., Rühland, K. M., Anderson, N. J., 

Kopacek, J., Stuchlik, E., Schmidt, R., Koinig, K. A., Camarero, L., Flower, R. J., 

Heiri, O., Kamenik, C., Korhola, A., Leavitt, P. R., Psenner, R., & Renberg, I. 

(2013). Global change revealed by palaeolimnological records from remote lakes: a 

review. Journal of Paleolimnology, 49(3), 513-535. doi: 10.1007/s10933-013-9681-

2 

Darrouzet-Nardi, A., Erbland, J., Bowman, W. D., Savarino, J., & Williams, M. W. 

(2012). Landscape-level nitrogen import and export in an ecosystem with complex 

terrain, Colorado Front Range. Biogeochemistry, 109(1-3), 271-285. doi: 

10.1007/s10533-011-9625-8 

Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of 

change. Ambio, 31(2), 64-71. doi: 10.1639/0044-

7447(2002)031[0064:RNATWY]2.0.CO;2 

Hobbs, W. O., Telford, R. J., Birks, H. J. B., Saros, J. E., Hazewinkel, R. R. O., Perren, 

B. B., Saulnier-Talbot, E., Wolfe, A. P., & Wolfe, A. P. (2010). Quantifying recent 

ecological changes in remote lakes of North America and Greenland using sediment 

diatom assemblages. Plos One, 5(3), e10026. doi: 10.1371/journal.pone.0010026 



 

168 

 

Holtgrieve, G. W., Schindler, D. W., Hobbs, W. O., Leavitt, P. R., Ward, E. J., Bunting, 

L., Chen, G., Finney, B. P., Gregory-Eaves, I., Holmgren, S., Lisak, M. J., Lisi, P. J., 

Nydick, K., Rogers, L. A., Saros, J. E., Selbie, D. T., Shapley, M. D., Walsh, P. B., 

& Wolfe, A. P. (2011). A coherent signature of anthropogenic nitrogen deposition to 

remote watersheds of the Northern Hemisphere. Science, 334, 1545-1548.  

Posch, T., Koester, O., Salcher, M. M., & Pernthaler, J. (2012). Harmful filamentous 

cyanobacteria favoured by reduced water turnover with lake warming. Nature 

Climate Change, 2(11), 809-813. doi: 10.1038/NCLIMATE1581 

Smol, J. P., & Douglas, M. S. V. (2007). From controversy to consensus: making the case 

for recent climate using lake sediments. Frontiers in Ecology and the Environment, 

5(9), 466-474. doi: 10.1890/060162 

Smol, J. P., Wolfe, A. P., Birks, H. J. B., Douglas, M. S. V., Jones, V. J., Korhola, A., 

Pienitz, R., Rühland, K. M., Sorvari, S., Antoniades, D., Brooks, S. J., Fallu, M. A., 

Hughes, M., Keatley, B. E., Laing, T. E., Michelutti, N., Nazarova, L., Nyman, M., 

Paterson, A. M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, 

S., Solovieva, N., & Weckstrom, J. (2005). Climate-driven regime shifts in the 

biological communities of arctic lakes. Proceedings of the National Academy of 

Sciences of the United States of America, 102(12), 4397-4402. doi: 

10.1073/pnas.0500245102 

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., . . . (eds.). 

(2007). Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge 

University Press.  

Teranes, J. L., & Bernasconi, S. M. (2000). The record of nitrate utilization and 

productivity limitation provided by 15
N values in lake organic matter - A study of 

sediment trap and core sediments from Baldeggersee, Switzerland. Limnology and 

Oceanography, 45(4), 801-813.  



 

169 

 

Tingstad, A. H. (2010). Climate Variability and Ecological Response in the Uinta 

Mountains, Utah Inferred from Diatoms and Tree-rings. (Unpublished Ph.D. 

Thesis). University of California, Los Angeles, California. 

Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition 

induces rapid ecological changes in alpine lakes of the Colorado Front Range 

(USA). Journal of Paleolimnology, 25, 1-7.  

  

 



 

170 

 

 

 

Plate 1. Achnanthes and Anomonoeis species.  
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Plate 2. Aulacoseira species.  
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Plate 3. Cyclotella and Asterionella species.  
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Plate 4. Cymbella species.  
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 Plate 5. Eunotia species (previous page) 

 

 

Plate 6. Gomphonema species.  
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Plate 7. Fragilaria species (previous page) 

 

 

 Plate 8. Navicula species.  
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Plate 9. Navicula species.  
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Plate 10. Nitzschia species.  
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Plate 11. Pinnularia species.  
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Plate 12. Pinnularia species.  
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Plate 13. Tetracyclus, Tabellaria, Diatoma, and Meridion species.  
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Plate 14. Stauroneis, Neidium, Frustrulia, and Surirella diatom species, and a Chrysophyte scale.  
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Appendices 

Appendix A. Water sample data from triple isotope analysis of nitrates. 

Date 

MM/Y

Y 

Sample Name 
Sample 

Type 

Latitude 

(N) 

Longitude 

(W) 
Elev. 

(m) 
15N 

‰ AIR 
18O ‰ 
VSMOW 

17O ‰ 

VSMOW 

NO3
- 

(µM) 

NH4
+  

(µM) 

03/09 Chepeta snow 40.76 110.016 3228 +1.5 +75.08 +30.68 7.85 5.78 

03/09 Trial Lk snow 40.68 110.95 3046 +0.6 +71.74 +25.28 4.38 4.64 

03/09 Spirit Lk snow 40.83 110.0 3116 +2.1 +74.14 +29.24 10.14 7.43 

03/09 Lakefork snow 40.6 110.43 3174 +3.4 +73.81 +28.54 7.50 6.57 

04/11 Lakefork snow 
40.5955 110.4339 3094 

+1.8 +55.00 +20.18 10.00 6.0 

04/11 Grizzly Ridge snow 
40.7489 109.5051 2914 

–1.2 +48.60 +15.04 15.79 3.4 

07/09 UN58SNOW snow 40.7117 110.3923 3611 –0.8 +62.50 +20.04 2.59 4.64 

08/09 UN08SNOW snow 40.7904 110.0954 3486 –0.0 +67.00 +20.31 2.01 8.07 

07/08 UN08IN1A snowmelt 40.7904 110.0953 3483 +2.7 +52.51 +17.11 1.86 3.00 

07/08 UN08IN1B snowmelt 40.7904 110.0952 3469 –3.7 +35.82 +12.68 4.31 0.79 

07/08 UN08IN1C inflow 40.7899 110.0935 3428 –1.2 +11.86 +5.82 19.78 0.78 

07/08 UN08IN1D inflow 40.7902 110.0939 3435 –2.0 +14.65 +7.40 14.79 0.71 

07/08 UN08IN2 inflow 40.7888 110.0939 3429 –3.3 +13.37 +6.15 28.47 0.64 

07/08 UN08IN3 inflow 40.7876 110.0931 3426 –1.4 +7.33 +4.40 9.20 1.21 

07/08 UN07IN inflow 40.7820 110.0872 3408 –1.3 –4.66 +0.52 2.88 0.64 

07/08 UN55IN1 inflow 40.7226 110.3564 3403 –0.7 +9.46 +4.49 14.69 0.57 

07/08 UN56IN1 inflow 40.7198 110.3451 3428 –2.0 +11.42 +4.95 41.39 0.57 

07/08 UN58IN1A inflow 40.7006 110.3881 3366 –2.6 +17.07 +7.16 47.18 0.64 

07/08 UN58IN1B inflow 40.7009 110.3877 3354 –2.8 +17.78 +6.89 46.50 0.71 

08/09 UN08IN1A inflow 40.7907 110.0943 3447 –0.9 +11.23 +5.40 19.92 0.92 

08/09 UN08IN1B inflow 40.7902 110.0938 3434 –1.3 +11.34 +5.50 19.42 0.64 

08/09 UN08IN1C inflow 40.7921 110.0948 3456 –2.1 +15.26 +6.90 15.14 0.57 

08/09 UN08IN2 inflow 40.7888 110.0939 3432 –1.6 +12.34 +5.91 55.97 0.86 

08/09 UN08IN3 inflow 40.7876 110.0931 3426 –0.9 +10.35 +4.75 38.98 0.57 

08/09 UN07IN1 inflow 40.7820 110.0872 3408 –1.3 –2.42 +1.77 6.20 1.14 

07/09 UN55IN1A inflow 40.7226 110.3564 3403 –1.1 +13.04 +5.89 19.42 1.00 

07/09 UN55IN1B inflow 40.7230 110.3576 3415 +1.0 +13.14 +5.13 8.21 4.36 

07/09 UN56IN1A inflow 40.7203 110.3444 3435 –2.0 +13.10 +5.08 45.12 0.50 

07/09 UN56IN1B inflow 40.7198 110.3451 3428 –1.6 +13.12 +4.85 44.48 0.71 

07/09 UN58IN1A inflow 40.7006 110.3881 3366 –1.7 +15.91 +6.82 44.55 0.79 

07/09 UN58IN1B inflow 40.7006 110.3881 3364 –2.0 +16.23 +6.33 45.19 0.57 

07/09 UN58IN1C inflow 40.7009 110.3877 3353 –2.7 +15.62 +6.56 44.55 0.64 

07/08 UN32 lake 40.8114 110.0380 3393 +2.4 +12.26 +4.70 7.35 0.50 

07/08 UN08A lake 40.7884 110.0926 3424 +0.4 +15.60 +2.63 1.83 0.93 

07/08 UN55 lake 40.7215 110.3545 3400 –1.1 +24.40  0.39 0.50 

07/08 UN58 lake 40.7017 110.3866 3400 +0.0 +21.60  0.76 0.50 

07/09 UN56 lake 40.7187 110.3449 3424 +0.4 +14.62 +3.81 0.78 1.57 

08/09 UN08b lake 40.7884 110.0926 3425 +0.9 +17.96  0.21 0.79 

08/09 UN07 lake 40.7818 110.0860 3404 +2.3 +12.37  0.59 1.21 

09/12 UN55 lake 40.7215 110.3545 3400 +1.5 +9.58 +8.04 0.87 1.43 

05/12 UN08 lake 40.7884 110.0926 3424 +0.8 +21.86 +7.52 1.57 0.64 

07/11 GSLH2O  GSL 40.7357 112.2107 1281 +10.4 +16.25 +4.66 3.06  
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Appendix B. Detailed coupled cadmium azide reduction lab methods. 

The chemical procedure for determining 15
N-, 18

O- and 17
O-NO3

-
 involves 

two main steps - the conversion of nitrate to nitrite using activated cadmium, and the 

conversion of nitrite to N2O using a 1:1 molar solution of sodium azide and acetic acid 

(Russell and Longstaffe, in prep). Chemical procedures are carried out in a fume hood 

designated for nitrate isotope analysis preparation in order to avoid contamination. 

Prior to analyses, frozen samples were thawed in a hot water bath and filtered 

using a 0.45 µM syringe filter.  Samples, standards (USGS-35, USGS-34, USGS-32, 

IAEA-NO-3 and GSI-NO-3) and blanks are prepared to meet a set of consistent chemical 

conditions to ensure that the same fractionation affects all standards and samples.    

 40 mL volume 

 Nitrate concentration is diluted to 1.24 ppm (maximum for samples)  

 Sodium chloride concentration is set to 0.5± 0.04 M NaCl 

 pH is set to 8.5 ± 0.05 

The cadmium is activated by transferring 2 % CuSO4 solution through the 

column.  The samples are pumped at a rate of ~5 mL/minute through the cadmium 

column (3 mm Tygon® tubing filled with cadmium) to convert nitrate to nitrite.  Before 

each sample or standard, 15 mL of blank solution (0.5 M NaCl) is flushed through the 

column, and the first 15 mL of sample is discarded, thus eliminating any potential for 

memory effects.  The samples and standards are collected in 15 mL Falcon tubes and 

immediately frozen.  Following nitrate reduction, sample, standard, and blank nitrate 

concentrations are measured by spectrophotometry (O’Dell, 1993) and the necessary 

volume of solution (up to a maximum of 7.5 mL) is calculated in order to decant 60 nmol 

of nitrate into a Labco Exetainer (4) vial.  Two Exetainer® vials per sample (one for 

analysis of N20 and one for analysis of N2 and O2) are prepared and sealed with a septa-

lined cap.  Samples are mixed and placed in the refrigerator at 4°C until the next step. 

A solution of 1:1 acetic acid and sodium azide is prepared in the fume hood.  Exactly 0.8 

mL of the mixture is injected into each sample vial through its septum cap using a syringe 

with a needle.  This step serves to reduce nitrite to nitrous oxide.  Samples are placed in a 

30 ˚C bath for 30 minutes, after which 0.3 mL of NaOH is injected into each vial to stop 
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the reaction. The isotopic ratios of the resulting N2O are measured the following day 

using a Thermo Finnigan Delta
plus

 XL accessorized with a Gas Bench II and CTC 

CombiPal autosampler, as described by Russell and Longstaffe (in prep).   
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Appendix C. Isotope ratio corrections. 

15
N corrections 

An explanation of the conversion from isotope mass ratios into raw 15
N values can 

be found in McIlvin and Altabet (2005). 

The intent is to measure the ratio of 
15

N/
14

N, which is achieved by measuring mass 

45/ mass 44 of N2O gas.  However, there are two isotopologues with the mass number 45, 

15
N

14
N

16
O (what we intend to measure) and 

14
N

14
N

17
O.  This interference occurs even 

when Δ
17

O values are zero due to mass-dependent fractionation.  Therefore, a “Craig 

correction” (Craig, 1957) is applied by the computer software (ISODAT) to account for 

the artificially high 15
N due to mass interference as described in McIlvin and Altabet 

(2005). This correction is based on the 18
O value, which is proportional to 17

O, 

assuming mass-dependent fractionation.    

 In most of our samples, 17
O is larger than would be expected based on the mass-

dependent relationship with 18
O (i.e., 17

O >0), for which the Craig correction does not 

account.  To correct for this effect, we apply a 17
O dependent correction: 

 15
NNO3 17corr=

15
NNO3cal–xcorr  Δ

17
Ospl A1 

where 15
NNO3 17corr is the corrected value reported in this paper (herein 15

NNO3) and 

15
NNO3cal is calibrated result produced using standards. The value of xcorr is based on: 

 xcorr = (15
NN2O USGS-35cal-

15
NUSGS35True)/

17
OUSGS35cal A2 

where 15
NN2O USGS35cal, 

15
NUSGS35True and 17

OUSGS35cal are the calibrated (cal) and true 

values of USGS-35 nitrate. In our case, xcorr = 0.1 ‰, meaning that 15
N is inflated by 0.1 

‰ for every 1 ‰ increase in 17
O.  Thus, for snow samples with 17

O values upwards of 

+30 ‰, this effect causes uncorrected 15
N values to be higher by 3 ‰ than the true 

result.  In the case of four lake water samples, we could not correct for the mass overlap 

between 
15

N
14

N
16

O  and 
14

N
14

N
17

O because the nitrate concentrations were too low to 

measure Δ
17

O accurately.  In these cases, uncorrected 15
N-NO3

-
 values were used.  
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Although the mix of uncorrected and corrected nitrogen isotopic ratios is not ideal, the 

correction would likely have been minor because the lakes tend to have low Δ
17

O-NO3
-
 

values (mean lake Δ
17

O = + 5.3 ‰).  

18
O corrections 

18
O is calculated from the ratio of masses 46/44 (

14
N

14
N

18
O/

14
N

14
N

16
O).   An 

explanation of the conversion from isotope mass ratios into raw 15
N and 18

O values can 

be found in McIlvin and Altabet (2005). 

18
O values must be adjusted during each analytical run to account for oxygen 

isotopic exchange between the 18
O of nitrate and water during the reduction to nitrous 

oxide, following the equation of McIlvin and Altabet (2005):   

 18
ONO3corr = 18

ONO3 – (1-(1/mstds))×(18
OH2Ospl– 18

OH2Ostd) 
A3 

where 18
OH2Ospl and 18

OH2Ostd are the oxygen isotope values of the water containing the 

nitrate samples and the water used for standard mixtures, respectively.  This correction is 

important because of potential differences in 18
O from laboratory water and sample 

water. 

17
O Corrections 

 Oxygen (O2) and nitrogen (N2) gas isotope ratios were collected by monitoring 

masses 32, 33, and 34, and 28, 29, and 30, respectively.  Raw 15
N, 18

O and 17
O values 

are calculated by mass spectrometry software as described in Kaiser et al. (2006). 

The 17
O value is calculated using raw - values by rearranging the Terrestrial 

Fractionation Line (Matsuhisa et al., 1978): 

 17
Osample  = 17

O – 0.52 × 18
O A4 
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Appendix D. Average ammonium and nitrate concentrations and triple isotope compositions. 

Table D.1. Nitrate and ammonium concentrations for all samples.  This listing includes those samples that 

did not have sufficiently high nitrate concentrations for triple isotope analysis.   

  NO3
-  

(µM) NH4
+ 

(µM) 

Snow 

n=14 

Mean 4.9 4.5 

Median 2.3 5.1 

Minimum 1.1 1.1 

Maximum 15.7 8.1 

Lakes 

n=23 

Mean 0.7 0.9 

Median 0.28 0.8 

Minimum 0.01 0.5 

Maximum 7.4 1.9 

Inflows 

n=25 

Mean 25.5 1.0 

Median 19.8 0.7 

Minimum 0.1 0.5 

Maximum 56 4.4 

All Uinta Samples 

n=70 

Mean 10.4 1.7 

Median 1.8 0.9 

Minimum 0.01 0.5 

Maximum 56.0 8.1 

Great Salt Lake, n = 1 3.1 - 

 

Table D.2. Summary of concentrations and triple isotope compositions of nitrate for samples selected for 

the study.  

*for lake 17O, n =5, due to low concentrations of nitrate. Similarly, for all Uinta samples, N = 37 for 17O due to 

missing values for the same 4 samples. 

 

 

 

 

 

 

 

 

 

  NO3
- (µM) NH4+ (µM) 15N (‰) 18O (‰) Δ17O (‰) 

Snow 

n=8 

Mean 7.5 5.8 +0.9 +66.0 +23.7 

Median 7.7 5.9 +1.1 +69.4 +22.8 

Minimum 2.0 3.4 –1.2 +48.6 +15.0 

Maximum 15.8 8.1 +3.4 +75.1 +30.7 

Lakes 

n=9* 

Mean 1.6 0.9 +0.83 +16.7 +5.3 

Median 0.8 0.8 +0.9 +15.6 +4.7 

Minimum 0.2 0.5 –1.1 +9.6 +2.6 

Maximum 7.4 1.6 +2.4 +24.4 +8.0 

Inflows 

n=24 

Mean 26.6 1.0 –1.5 +14.4 +6.2 

Median 19.9 0.7 –1.6 +13.1 +5.9 

Minimum 1.9 0.5 –3.7 –4.7 +0.5 

Maximum 56.0 4.4 +2.6 +52.5 +17.1 

All Uinta 
Samples 

n=41* 

Mean 17.4 1.9 –0.5 +25.0 +9.9 

Median 10 0.8 –1.12 +15.3 +6.3 

Minimum 0.2 0.5 –3.7 –4.7 +0.5 

Maximum 56.0 8.1 +3.4 +75.1 +30.7 

Great Salt Lake, n=1 3.1  +10.4 +16.3 +4.7 



 

190 

 

 

 

Appendix E. Uinta Mountain samples and the terrestrial fractionation line. 

 The calculation of 17
O and the concept of the Terrestrial Fractionation Line 

(TFL) are illustrated by plotting 17
O versus 18

O for the Uinta Mountain data (Figure 

A5.1).  The lake, inflow and snow sample isotopic compositions are elevated above the 

TFL (this ‘vertical’ difference is described by 17
O), indicating the presence of nitrate 

that has had atmospheric reactions with ozone. The TFL has a slope of 0.52, whereas the 

regression equation of the sample points from the Uinta Mountains is 17
O = 0.85(18

O) 

+ 0.81 (Figure E.1).  Therefore, 17
O is ~85 % of the 18

O values, rather than ~52% as 

expected for terrestrial sources and processes.  The lake samples deviate somewhat from 

this relationship, possibly because (i) the concentration of nitrates in these samples is 

particularly low, so measurements are likely to be less precise and (ii) given the low 

nitrate concentrations in these systems, even a small change in nitrate inputs could result 

in a large change in stable isotope composition.  A third possibility is that a process not 

affecting snowmelt and inflows occurs in this lake – a yet unidentified source of nitrate to 

the lake water or the influence of processes that have more time to occur in lake water, 

such as assimilation.   
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Figure E.1 Sample 18
O and 17

O relative to the Terrestrial Fractionation Line. 
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Appendix F. Calibration set data. 

Those sites excluded from the calibration subset due to high alkalinity (>10 Mg L
-1

 CaCO3
-
) are shaded gray. 

Lake 
LAT 
°N 

LONG 
°W 

Elev. 
(m) 

Secchi 
(m) 

Depth 
(m) 

Temp 
°C 

pH 
Alkalinity 

Mg L-1 CaCO3
- 

NO3 

ppm 
SO4 

ppm 

26
Mg 

ppm 

27
AI 

ppb 

29
Si 

ppm 

39
K 

ppm 

44
Ca 

ppm 

55
Mn 

ppb 

88
Sr 

ppb 

7
Li 

ppb 

52
Cr 

ppb 

59
Co 

ppb 

60
Ni 

ppb 

65
Cu 

ppb 

66
Zn 

ppb 

75
As 

ppb 
DOC 
ppm 

DIC 
ppm 

54
Fe 

ppb 

1 40.68 110.87 3021 4.04 8.1 16.9 7.3 3.0 0.00 2.10 0.48 49.2 0.44 0.26 1.5 0.56 8.26 0.00 0.32 0.05 0.54 2.12 37.92 0.32 4.33 1.33 36.93 

2 40.68 110.87 3048 5.26 10.7 16.3 7.4 3.0 0.00 1.13 0.40 13.6 0.00 0.33 1.3 0.37 7.69 0.00 0.29 0.00 0.16 0.47 1.73 0.31 7.05 1.16 0.00 

3 40.67 110.89 3133 1.83 1.8 16.2 7.1 3.0 0.00 0.57 0.30 60.3 0.29 0.09 1.2 1.80 7.43 0.00 0.35 0.07 0.22 0.64 1.43 0.28 11.11 1.24 0.00 

4 40.67 110.89 3087 2.02 2.0 17.0 6.9 3.0 0.00 0.89 0.39 65.4 0.33 0.43 1.5 4.06 8.85 0.00 0.38 0.15 0.31 0.92 2.64 0.38 3.59 1.32 62.62 

5 40.66 110.90 2975 5.19 11.6 18.5 6.8 4.0 0.00 0.99 0.39 47.5 0.54 0.29 1.5 0.39 8.49 0.00 0.32 0.04 0.29 0.66 1.74 0.30 6.39 1.09 34.19 

6 40.74 110.03 3158 3.86 15.7 16.6 7.2 3.0 0.00 1.13 0.36 87.8 0.69 0.36 1.6 4.35 8.74 0.82 0.39 0.05 0.35 0.39 0.64 0.32 6.44 1.09 68.77 

Denise 40.77 110.09 3399 2.36 2.4 13.6 7.5 3.0 0.01 0.60 0.23 13.7 0.56 0.23 1.1 1.42 5.86 0.00 0.33 0.03 0.00 0.35 0.86 0.19 4.87 1.29 33.11 

Taylor 40.79 110.09 3414 5.42 9.7 13.5 7.5 4.0 0.00 0.60 0.21 13.6 0.60 0.29 1.0 1.36 5.52 0.00 0.23 0.00 0.00 0.24 1.08 0.18 8.35 1.29 24.37 

9 40.78 110.02 3231 1.12 1.1 16.4 7.5 3.0 0.00 0.88 0.36 43.1 0.00 0.12 1.5 1.11 8.31 1.06 0.43 0.04 0.38 0.59 1.44 0.41 2.11 1.01 0.00 

10 40.72 110.03 2990 2.73 2.7 18.8 7.2 5.0 0.00 1.22 0.52 94.0 0.53 0.64 2.5 3.67 13.13 0.00 0.56 0.05 0.40 0.67 1.51 0.31 1.42 1.66 83.99 

11 40.70 109.54 2652 1.50 1.5 19.1 9.1 72.4 0.00 0.00 5.11 2.7 4.54 2.88 25.3 6.65 92.74 3.97 1.62 0.11 0.82 0.36 1.61 0.99 7.77 20.64 146.8 

12 40.74 109.73 2938 1.61 1.6 21.0 7.1 3.0 0.00 1.40 0.76 93.5 0.00 0.60 1.9 7.25 11.13 0.00 0.66 0.08 0.50 0.95 1.97 0.58 8.39 1.12 67.86 

13 40.88 110.81 2719 1.53 1.5 18.3 7.3 13.0 0.00 4.19 1.55 49.2 0.31 0.63 5.2 4.48 23.99 0.00 0.67 0.09 0.76 0.99 4.58 0.74 10.37 4.02 179.7 

15 40.79 110.90 2987 2.30 2.3 18.7 7.9 7.3 0.00 0.87 0.55 62.8 0.80 0.20 1.9 1.55 13.41 0.77 0.45 0.07 0.37 0.45 0.55 0.36 15.10 2.18 76.19 

16 40.65 110.97 2987 2.25 2.3 17.5 7.1 4.0 0.00 0.77 0.44 59.4 0.00 0.30 1.7 2.47 10.38 0.00 0.52 0.16 0.33 0.90 0.87 0.46 0.34 1.30 99.82 

17 40.64 110.97 2950 2.10 2.1 18.0 7.0 4.0 0.00 0.90 0.43 62.3 0.00 0.28 1.8 1.35 11.15 0.00 0.42 0.11 0.50 0.92 2.47 0.40 5.76 1.43 64.54 

18 40.61 110.98 2850 4.56 9.0 19.1 7.6 6.0 0.00 0.80 0.56 27.2 0.14 0.47 2.7 0.74 13.86 0.88 0.43 0.03 0.66 2.16 73.71 0.45 6.52 1.84 63.74 

19 40.96 110.39 2841 1.86 4.0 16.0 7.7 35.3 0.00 2.81 2.25 3.5 2.97 0.89 9.9 24.02 34.42 0.00 0.51 0.04 1.11 1.06 3.48 0.62 6.55 12.86 425.5 

20 41.00 110.38 2778 4.30 5.0 16.9 8.3 76.4 0.01 2.32 6.11 2.3 3.87 0.94 33.4 4.15 82.25 2.10 0.99 0.04 1.03 0.92 9.52 0.53 6.54 29.11 55.62 

21 40.97 110.31 2717 1.74 1.7 16.4 9.2 74.0 0.00 1.26 11.61 7.0 5.45 1.71 9.3 3.31 24.59 0.00 0.75 0.02 0.58 0.73 2.53 0.66 10.56 21.27 90.90 

22 40.98 110.32 2737 2.00 2.0 17.2 8.4 20.4 0.00 0.76 1.39 33.4 0.22 2.46 3.2 3.74 25.27 0.00 0.34 0.03 0.63 1.10 5.91 0.85 11.67 4.68 132.8 

23 40.73 110.89 3304 2.78 7.1 14.3 9.5 4.1 0.00 0.61 0.13 10.3 0.00 0.12 0.5 0.52 4.05 0.00 0.09 0.00 0.00 0.83 0.41 0.41 12.36 1.05 28.32 
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Lake 
LAT 
°N 

LONG 
°W 

Elev. 
(m) 

Secchi 
(m) 

Depth 
(m) 

Temp 
°C 

pH 
Alkalinity 

mg L-1 CaCO3- 
NO3 

ppm 
SO4 

ppm 

26Mg 
ppm 

27AI 
ppb 

29Si 
ppm 

39K 
ppm 

44Ca 
ppm 

55Mn 
ppb 

88Sr 
ppb 

7Li 
ppb 

52Cr 
ppb 

59Co 
ppb 

60Ni 
ppb 

65Cu 
ppb 

66Zn 
ppb 

75As 
ppb 

DOC 
ppm 

DIC 
ppm 

54Fe 
ppb 

24 40.73 110.90 3197 3.84 4.0 15.7 8.5 3.8 0.00 0.75 0.20 9.1 0.29 0.12 0.8 1.23 6.49 0.00 0.12 0.00 0.00 0.91 0.56 0.25 22.39 1.11 0.00 

29 40.68 110.93 3033 2.00 13.0 15.0 8.4 4.3 0.00 0.44 0.55 21.9 0.20 0.46 2.2 1.47 12.49 0.00 0.11 0.02 0.21 0.35 0.71 0.30 4.78 2.81 40.78 

30 40.68 110.89 3034 1.23 8.0 11.8 7.4 3.1 0.01 0.70 0.34 87.1 0.80 0.21 1.4 2.52 7.80 0.23 0.17 0.00 0.31 0.62 1.99 0.55 3.60 1.80 54.90 

31 40.65 110.90 2960 2.11 10.2 14.7 7.4 3.7 0.00 1.31 0.60 55.6 0.49 0.31 1.7 1.46 9.81 0.22 0.16 0.04 0.28 0.67 1.50 0.20 4.37 2.01 70.89 

32 40.82 110.04 3392 1.41 22.3 4.6 7.2 2.2 0.15 0.75 0.29 5.8 0.36 0.26 1.4 7.18 7.04 0.07 0.00 0.03 0.16 0.17 1.01 0.17 0.91 1.61 0.00 

33 40.79 110.03 3354 2.90 10.7 10.1 7.4 3.0 0.01 0.83 0.34 28.6 0.36 0.25 1.7 1.61 8.50 0.22 0.14 0.02 0.22 0.28 1.78 0.23 3.94 2.01 40.66 

34 40.70 110.08 3239 2.50 5.4 9.7 7.6 1.9 0.50 0.94 0.26 6.8 0.63 0.19 1.5 0.71 6.80 0.09 0.07 0.00 0.08 0.21 0.76 0.12 0.41 1.01 0.00 

36 40.67 109.91 3071 5.20 6.5 13.9 7.1 2.8 0.00 0.80 0.37 16.8 0.07 0.37 1.2 3.70 5.73 0.16 0.13 0.00 0.14 0.18 0.87 0.36 5.90 1.70 0.00 

37 40.73 110.47 3416 3.69 6.9 11.9 7.5 1.0 0.00 0.95 0.38 13.1 0.83 0.17 1.1 0.44 5.99 0.14 0.10 0.01 0.20 0.44 7.86 0.10 1.63 1.64 0.00 

39 40.43 110.47 3322 1.76 1.8 17.7 7.1 2.7 0.01 1.07 0.46  84.6  0.10  0.24  1.6  1.29  8.89  0.31  0.28  0.08  0.40  0.81  4.31  0.35  7.81 1.82 28.48  

40 40.69 110.45 3473 3.25 5.8 12.3 7.2 3.2 0 1.73 0.38  7.6  0.90  0.20  1.3  0.45  10.10  0.13  0.09  0.01  0.14  0.50  3.61  0.07  1.24 1.67 0.00  

41 40.76 110.46 3552 1.40 3.1 11.3 6.9 3.7 0.04 1.18 0.39  8.0  1.57  0.23  1.2  0.90  7.09  0.22  0.11  0.02  0.20  0.66  6.42  0.09  0.97 1.59 0.00  

42 40.76 110.45 3560 2.37 2.4 15.1 7.5 1.9 0.00 1.73 0.37 9.5 0.85 0.23 1.3 1.15 10.37 0.20 0.10 0.01 0.15 0.60 13.93 0.07 0.82 1.53 0.00 

43 40.75 110.45 3458 2.59 3.6 13.8 7.2 3.1 0.00 1.27 0.36 6.8 0.60 0.22 1.3 0.95 7.98 0.15 0.08 0.00 0.14 0.46 2.15 0.13 1.43 1.76 0.00 

45 40.73 110.88 3164 1.90 8.2 16.2 7.9 2.9 0.01 0.54 0.26 28.5 0.70 0.13 1.2 0.57 6.28 0.22 0.07 0.02 0.21 0.39 0.99 0.25 2.97 1.77 11.16 

46 40.72 110.87 3115 3.05 3.1 17.6 7.3 3.1 0.01 0.84 0.82 66.2 0.21 0.31 3.4 2.17 19.13 0.32 0.13 0.06 0.34 0.61 20.03 0.39 6.12 2.01 37.92 

47 40.94 110.62 2827 4.65 7.3 19.0 9.1 123.0 0.00 0.38 12.32 6.0 1.06 0.62 22.7 5.56 41.74 1.08 0.21 0.09 0.47 0.36 4.13 0.77 10.57 31.11 82.56 

48 40.92 110.54 2811 0.30 1.1 20.8 9.1 30.0 0.01 4.12 2.69 51.2 0.55 1.44 8.2 13.85 30.44 1.41 0.32 0.19 0.64 0.91 1.98 1.93 30.33 10.22 188.5 

49 40.93 110.19 2813 7.22 13.8 17.6 8.7 167.0 0.00 0.02 6.40 1.8 0.21 8.08 21.7 2.33 114.30 1.23 0.17 0.07 0.42 0.18 1.62 0.38 14.10 26.74 0.00 

50 40.93 110.20 2804 3.50 10.5 17.9 8.7 64.0 0.00 0.95 2.94 13.2 0.09 2.96 7.7 1.43 39.93 0.54 0.19 0.04 0.30 0.40 6.35 0.42 15.80 9.1 32.21 

51 40.93 110.20 2848 3.75 4.6 17.8 8.9 84.0 0.00 2.30 4.28 5.1 0.11 4.58 11.5 3.50 61.15 1.02 0.14 0.05 0.31 0.23 3.72 0.55 15.55 13.55 23.80 

52 40.83 110.00 3200 1.10 2.6 11.1 8.2 3.5 0.22 0.96 0.37 13.8 1.62 0.31 1.7 0.99 8.62 0.28 0.06 0.02 0.18 0.21 2.48 0.15 1.31 1.96 2.12 

53 40.83 110.02 3188 0.88 6.2 10.0 7.7 3.4 0.30 1.15 0.40 11.7 1.29 0.40 1.9 0.56 9.18 0.37 0.10 0.07 0.13 0.20 1.12 0.19 0.99 1.78 6.63 

54 40.83 110.02 3186 3.60 16.8 13.5 7.7 3.9 0.05 1.09 0.44 23.0 0.14 0.40 2.0 3.07 10.55 0.27 0.00 0.03 0.17 0.19 1.36 0.16 1.99 2.19 29.89 
Upper  
Carrol 40.72 110.35 3395 3.95 13.8 12.9 7.7 2.4 0.01 0.74 0.29 12.9 0.55 0.19 1.3 0.65 6.58 0.16 0.06 0.05 0.17 0.29 1.67 0.10 1.53 1.60 9.36 

East  
Carrol 40.72 110.35 3423 3.45 5.3 12.9 8.0 1.9 0.03 1.01 0.32 8.8 0.30 0.24 1.7 1.79 8.00 0.15 0.00 0.02 0.00 0.22 0.82 0.20 1.14 1.79 2.29 

No Name 40.71 110.38 3355 5.17 5.2 13.6 7.7 1.9 0.00 0.76 0.27 9.9 0.00 0.19 1.4 2.18 6.67 0.00 0.00 0.02 0.00 0.30 1.51 0.16 1.93 1.73 1.77 
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Lake 
LAT 
°N 

LONG 
°W 

Elev. 
(m) 

Secchi 
(m) 

Depth 
(m) 

Temp 
°C 

pH 
Alkalinity 

Mg L-1 CaCO3
- 

NO3 

ppm 
SO4 

ppm 

26Mg 
ppm 

27AI 
ppb 

29Si 
ppm 

39K 
ppm 

44Ca 
ppm 

55Mn 
ppb 

88Sr 
ppb 

7Li 
ppb 

52Cr 
ppb 

59Co 
ppb 

60Ni 
ppb 

65Cu 
ppb 

66Zn 
ppb 

75As 
ppb 

DOC 
ppm 

DIC 
ppm 

54Fe 
ppb 

Bluebell  
Pass 40.70 110.39 3342 1.95 7.7 13.1 7.5 2.5 0.02 0.77 0.28 12.0 0.00 0.36 1.5 0.98 6.71 0.11 0.08 0.01 0.11 0.23 0.78 0.14 2.17 2.85 10.88 

59 40.69 110.38 3297 4.66 4.7 14.4 7.4 2.3 0.13 0.95 0.25 11.9 0.00 0.16 1.4 0.45 6.51 0.10 0.06 0.00 0.00 0.19 0.56 0.14 0.91 1.31 0.00 

60 40.75 109.74 3018 1.09 6.4 15.4 8.1 5.6 0.01 1.17 0.82 101.9 0.28 0.66 3.4 1.64 15.58 0.30 0.38 0.06 0.67 1.10 22.03 0.44 15.21 3.87 78.65 

61 40.71 109.72 2950 2.01 12.1 16.0 7.8 5.6 0.00 1.26 0.82 68.7 0.17 0.67 3.1 1.44 15.60 0.21 0.32 0.03 0.42 0.53 2.22 0.33 12.72 2.84 41.21 

62 40.77 109.81 3239 3.10 4.9 12.7 8.0 5.2 0.00 0.85 0.57 26.7 0.82 0.35 2.1 1.61 8.87 0.44 0.16 0.03 0.38 0.91 40.72 0.12 2.53 2.62 23.79 

63 40.81 110.24 3392 7.00 7.0 12.8 7.6 8.4 0.00 1.55 0.81 10.7 1.55 0.16 2.0 1.12 10.24 0.33 0.11 0.02 0.14 0.35 1.15 0.10 1.66 2.86 27.09 

64 40.81 110.24 3419 3.50 4.9 12.4 7.0 5.0 0.00 0.79 0.70 12.9 0.29 0.26 1.4 1.54 7.36 0.25 0.00 0.03 0.21 0.48 2.09 0.20 2.56 2.42 109.9 

65 40.82 110.25 3456 3.56 3.6 12.9 6.8 2.2 0.00 0.61 0.24 16.6 0.00 0.25 1.0 1.48 4.87 0.00 0.08 0.01 0.00 0.36 1.27 0.20 1.87 2.06 17.43 

Min 40.43 109.54 2651.76 0.30 1.1 4.6 6.8 1.0 0.00 0.00 0.13 0.0 0.00 0.09 0.5 0.37 4.05 0.00 0.00 0.00 0.00 0.17 0.41 0.07 0.34 1.01 0.00 

Max 41.00 110.98 3559.76 7.22 22.3 21.0 9.5 167.0 0.50 7.35 12.32 117.8 5.45 8.08 33.4 24.02 114.30 4.28 1.62 0.19 1.11 2.16 296.9 1.93 30.33 29.11 425.50 

Median  40.74 110.38 3145.54 2.76 5.2 15.3 7.5 3.5 0.00 0.95 0.44 13.7 0.36 0.30 1.7 1.54 9.04 0.16 0.17 0.03 0.29 0.48 1.87 0.31 4.82 1.31 29.19 

Mean 40.76 110.39 3132.94 3.06 6.4 15.1 7.7 15.6 0.03 1.29 1.33 31.0 0.69 0.71 4.1 2.78 17.01 0.41 0.27 0.04 0.31 0.59 10.62 0.35 6.39 4.85 45.48 

StDev 0.11 0.38 243.67 1.59 4.6 3.0 0.7 31.4 0.08 1.18 2.40 30.5 1.04 1.25 6.4 3.69 21.09 0.80 0.27 0.04 0.25 0.40 38.78 0.29 5.92 7.80 66.28 
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Appendix G. Species codes and authorities 

Species code Species name Authority 

Ac.bio Achnanthes bioretii Germain 1957 

Ac.car Achnanthes carissima Lange-Bertalot 1990 

Ac.chl Achnanthes chlidanos Hohn & Hellerman 1963 

Ac.cur Achnanthes curtissima J.R. Carter 1963 

Ac.did Achnanthes didyma Hustedt 1933 

Ac.hel Achnanthes helvetica (Hustedt) Lange-Bertalot in LB & K 

1989 

Ac.hol Achnanthes holsatica Hustedt 1936 

Ac.kue Achnanthes kuelbsii Lange-Bertalot 1989 

Ac.lan+ Achnanthes lanceolata ssp. lanceolata var. 

lanceolata
1
 + A. lanceolata spp. 

frequentissima
2
.  

1. (Brébisson) Grunow, 2.  

Ac.mar Achnanthes marginulata Grunow in Cleve & Grunow 1880 

Ac.min+ Achnanthes minutissima
1
 + Achnanthes 

minutissima var. minutissima
2
 

Kützing 1833 

Ac.pet Achnanthes petersenii Hustedt 1937 

Ac.pus Achnanthes pusilla Grunow in Cleve & Grunow 1880 

Ac.sto+Na.sch Achnanthes stolida
1
 + Navicula 

schassmannii
2
 

1. (Krasske) Krasske 1949, 2. Hust. 

1937 

Ac.sub Achnanthes subatomoides (Hust.) Lange-Bertalot & Archibald 

in Krammer & Lange-Bertalot 1985 

Am.kri Amphipleura kriegerana (Krasske) Hustedt 1954 

Am.ova Amphora ovalis (Kützing) Kützing 1844 

Au.alp Aulacoseira alpigena  

Au.gra Aulacoseira granulata (Ehrenberg) Simonson 1979 

Au.lir+ Aulacoseira lirata + Aulacoseira distans (Ehrenberg) R. Ross in Hartley 1986 

Au.per Aulacoseira perglaba  

As.for Asterionella formosa Hassall 1850 
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Species code Species name Authority 

B.int Brachysira intermedia (Østrup) Lange-Bertalot 1994 

B.neo Brachysira neoexilis Lange-Bertalot 1994 

Cyc.ste.pse.ato Cyclotella stelligera
1
 + Cyclotella 

pseudostelligera
2
 + Cyclotella atomus

3
 

1. Cleve & Grunow 1880, 2. Hustedt 

1950, 3. Hustedt 1937  

Cym.des Cymbella descripta (Hustedt) Krammer & Lange-

Bertalot 1985 

Cym.gae Cymbella gaeumannii Meister 1934 

Cym.gra Cymbella gracilis (Rabenhorst) Cleve 1894 

Cym.inc Cymbella incerta Grunow in Cleve & Moller 1878 

Cym.mic Cymbella microcephela Grunow (in Van Heurck) 1880 

Cym.min Cymbella minuta Hilse ex. Rabenhorst 1862 

Cym.sil Cymbella silesiaca Bleisch ex Rabenhorst 1864 

D.anc Diatoma anceps (Ehrenberg) Kirchner 1878 

E.bil Eunotia bilunaris (Ehrenberg) F.W. Mills 1934 

E.min+ Eunotia incisa
1
 + Eunotia minor

2
 Gregory 1854, 2. (Kützing) Grunow 

in Van Heurck 1881.   

E.mus Eunotia muscicola var tridentula Nörpel & Lange-Bertalot 1993 

E.pra Eunotia praerupta Ehrenberg 1843 

F.pin.con.bre Fragilaria brevistriata
1
 + F. construens var 

construens
2
 + F construents var venter

3
 + F. 

pinnata
4
 

1. Grunow in Van Heurck 1885, 2., 

3. (Ehrenberg) Grunow in Van 

Heurck 1881, 4. Ehrenberg 1843 

Fra.capcap Fragilaria capucina var capucina (Kützing) Lange-Bertalot 1991 

Fra.capgra Fragilaria capucina var gracilis (Østrup) Hustedt 1950 

Fra.del Fragilaria delicatissima (W. Smith) Lange-Bertalot 1991 

Fra.ten Fragilaria tenera Lange-Bertalot 1980 

Fra.vir Fragilaria virescens Ralfs 1843 

Fru.rho+ Frustulia rhomboides
1
 + Frustulia 

rhomboides var crassinervia
2
 

1. (Ehrenberg) De Toni 1891, 2. 

(Brébisson ex W. Smith) Ross 

G.acu Gomphonema acuminatum Ehrenberg 1832 
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Species code Species name Authority 

G.ang Gomphonema angustatum (Kützing) Rabenhorst 1864 

G.par Gomphonema parvulum (Kützing) Kützing 1849 

G.tru Gomphonema truncatum Ehrenberg 1832 

G.unid Gomphonema unidentified  

Na.bry Navicula bryophila J. B. Petersen 1928 

Na.coc Navicula cocconeiformis Gregory Ex Greville 1855 

Na.crycep Navicula cryptocephela Kützing 1844 

Na.cryten Navicula cryptotenella Lange-Bertalot 1985 

Na.exp Navicula expecta S.L. VanLandingham 1975 

Na.lae Navicula laevissima Kützing 1844 

Na.lep Navicula leptostriata Jørgensen 1948 

Na.lae Navicula laevissima Kützing 1844 

Na.lep Navicula leptostriata Jorgensen 1948 

Na.pse+ Navicula pseudoscutiformis
1
 + Navicula 

scutiformis
2
 

1. Hustedt 1930, 2. Grunow ex A. 

Schmidt et al. 1881 

Na.pseve Navicula pseudoventralis Hustedt 1953 

Na.pup Navicula pupula Kützing1844 

Na.rad Navicula radiosa Kützing 1844 

Na.sem Navicula seminulum Grunow 1860 

Ne.amp Neidium ampliatum (Ehrenberg) Krammer 1985 

Ne.dub Neidium dubium (Ehrenberg) Cleve 1894 

Ni.bry Nitzschia bryophila (Hustedt) Hustedt 1943 

Ni.fon Nitzschia fonticola Grunow in Van Heurck 1881 

Ni.fle  Nitzschia flexoides Geitler 1968 

Ni.gra Nitzschia gracilis Hantzsch 1860 

Ni.pal Nitzschia palea (Kützing) W. Smith 1856 
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Species code Species Name Authority 

Ni.per Nitzschia perminuta (Grunow in Van Heurck) Peragallo 

1903 

Ni.unid Nitzschia unid  

P.mes Pinnularia mesolepta (Ehrenberg) W. Sm. 1853 

P.mic Pinnularia microstauron (Ehrenberg) Cleve 1891 

P.sub Pinnularia subgibba Krammer 1992 

S.anc Stauroneis anceps Ehrenberg 1843 

S.neo Stauroneis neohyalina Lange-Bertalot and Krammer 1996 

Ta.flo Tabellaria flocculosa (Roth) Kützing 1844 

 



 

199 

 

Appendix H. CONISS dendrograms and broken stick models. 
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