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Abstract 

This thesis addresses some of the challenges that clinicians face in the course of treatment 

of brain tumors. Glioblastoma multiforme (GBM, grade IV) is the most malignant form 

of primary brain tumor and recurrence following treatment is common.  Non-invasive 

imaging is an important component of brain tumor treatment planning and monitoring.  

Unfortunately, tumor recurrence and radiation injury (RI) in patients with GBM have 

similar appearances on follow-up conventional magnetic resonance imaging (MRI), 

making it difficult to choose the most appropriate treatment plan.  Brain metastases which 

are secondary brain tumors are common in patients with systemic cancer.  Differentiating 

between GBM and metastatic tumor is also difficult with conventional MRI, but is 

essential for guiding surgical and radiotherapy treatment. Therefore, the overall goal of 

this thesis is to develop imaging methods that improve brain tumor detection. 

The first objective was to develop a method to discriminate between GBM tumor 

recurrences and RI using a multiparametric characterization of the tissue incorporating 

conventional MRI signal intensities (T2-weighted (T2w) and fluid attenuated inversion 

recovery (FLAIR)) and diffusion tensor imaging parameters (fractional anisotropy (FA) 

and radial diffusivity (RD)). In the RI region there were significant correlations between 

FA and RD as well as between T2w and FLAIR signal intensities.  No such correlations 

were observed in the tumor region. These correlations may aid in differentiating between 

tumor recurrence and RI. 

The second objective was to differentiate between GBM and metastasis (MET); the two 

most common types of brain tumors.  Both exhibit similar radiologic appearance on 
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routine MR imaging but require different treatment strategies. The goal of this study 

was to investigate whether texture based image analysis of routine MR images (contrast-

enhanced T1-weighted images) would provide quantitative information that could be 

used to differentiate between GBM and MET. Our results demonstrate that first-order 

texture feature of standard deviation and second-order texture features of entropy, inertia, 

homogeneity, and energy show significant differences between the two groups. Receiver 

operating characteristic (ROC) curve analysis showed that combining first- and second-

order features increased the predictive accuracy in differentiating between GBM and 

MET.  

Finally, helical tomotherapy (HT) is a type of radiation delivery technique that allows for 

a radiosurgery-type simultaneous infield boost (SIB) of multiple brain metastases, 

synchronously with whole brain radiation therapy (WBRT). However, some patients’ 

tumors may not respond to HT type WBRT+SIB. The goal of our study was to 

investigate whether quantitative measurements of tumor size and appearance on magnetic 

resonance imaging (MRI) scans acquired prior to HT type WBRT+SIB treatment could 

be used to differentiate responder and non-responder patient groups. Our results 

demonstrated that smaller size lesions may respond better to this type of radiation 

therapy. Measures of appearance provided limited added value over measures of size for 

response prediction. Quantitative measurements of rim enhancement and core necrosis 

performed separately did not provide additional predictive value. 

In summary, our correlation based method for differentiating tumor from RI, 

differentiating GBM and MET using quantitative texture features, and correctly selecting 
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patients who will respond to HT type radiation treatment may be used to better plan 

patient treatment. 
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Epigraph 

“The scientist is not a person who gives the right answers, he's one who asks the right 
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1 Introduction 

Accurate discrimination of tumor from radiation injured tissues and differentiation of 

tumor types and grades using noninvasive imaging is essential for guiding surgical and 

radiotherapy treatments. This thesis describes the use of multiparametric imaging and 

image processing techniques to characterize brain tumors.  The long-term goal of these 

methods is to help select appropriate treatment and assess treatment response in patients 

with brain tumor.  

This chapter introduces the imaging and image processing techniques upon which the 

following chapters are based. Chapter 2 describes the application of multiparametric 

imaging in an attempt to improve the detection of brain tumor recurrence following 

treatment. Chapter 3 describes the use of texture based analysis in differentiating 

enhancing lesions as primary or secondary tumor types. Chapter 4 outlines the use of 

texture based image analysis for patient selection in radiation therapy.  

1.1 Brain Tumor  

A tumor is any uncontrolled growth of abnormal cells. Tumors that are located within the 

brain are called brain tumors and can be classified into two categories: primary and 

secondary brain tumors.  

Primary brain tumors can arise from the cells, the meninges (membranes around the 

brain), or neurons in the brain. Gliomas and meningiomas are the most common primary 
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brain tumors. Gliomas are thought to be derived from glial cells such as astrocytes, 

oligodendrocytes, and ependymal cells. Gliomas are classified into four grades by the 

World Health Organization (WHO) on the basis of their histologic features and 

malignancies1. Glioblastomas are considered grade IV; the most aggressive and 

malignant type of brain tumor.  

Secondary brain tumors are referred to as metastases. They do not initiate in the brain, 

but rather metastases occurs when cancer cells break away from a primary tumor site 

elsewhere in the body and travel to the brain through the blood system.  

1.1.1 Primary Brain Tumor: Glioblastoma Multiforme 

Glioblastoma multiforme (GBM) is the most lethal and aggressive form of primary brain 

tumor. It is a grade IV type of brain tumor. Median survival for patients with 

glioblastoma is 12-15 months2. GBM is derived from the malignant transformation of 

glial cells3. Despite recent advances in radiation, chemotherapy, surgical techniques, and 

newer investigational drugs, GBM has a poor prognosis. Medical imaging plays an 

important role in the diagnosis of GBM. Typically post-contrast magnetic resonance 

(MR) imaging is used for diagnosis followed by biopsy for pathological validation. GBM 

often appear as ring-enhancing lesions on post-contrast MR images (Figure 1.1)3, 4. 

Treatment options for patients with GBM are determined by tumor size, location, and the 

associated symptoms. The current standard of care for patients with GBM is surgical 

resection of the tumor followed by radiation therapy and concomitant and adjuvant 

temozolomide chemotherapy. This approach has been shown to standardize treatment and 

prolong survival for patients5.  Radiation therapy damages the genetic material (DNA) 
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within tumor cells and limits their ability to successfully reproduce6, 7. Tumor cells are 

less able to repair DNA than healthy cells. With each subsequent radiation dose, the 

cumulative effect of unrepaired DNA strand breaks initiates apoptosis (cell death) in 

these tumor cells6, 7. 

Radiation injury (RI) is an undesirable but unavoidable side effect of radiation treatment. 

Radiation injury is characterized by extensive necrosis due to small artery injury and 

direct damage to oligodendroglia8. The incidence of radiation injury depends on the total 

radiation dose and the rate of delivery9. Concomitant chemotherapy enhances radiation 

injury. RI appears as enhancing lesions on MR imaging. Since GBM is a high grade 

tumor, recurrences are common even after treatment, and these recurrences appear as 

hyperintense regions on post-contrast MR images.  

 

Figure 1.1 Post-contrast T1-weighted image of patient with glioblastoma. The tumor 

appears to have a necrotic core and enhancing rim. 

The presence of enhancing lesions after chemo-radiation therapy may represent either 

tumor recurrence or radiation induced injury or both 10, 11. Differentiating between tumor 

recurrence and RI regions can be difficult with conventional MR imaging 12, however it 
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is very important to differentiate these two entities since the treatment options and 

prognoses for each are considerably different. 

There have been numerous attempts to differentiate tumor recurrences from RI using 

conventional morphologic imaging as well as various functional imaging techniques such 

as CT perfusion, MR perfusion, diffusion weighted imaging, MR spectroscopy, single-

photon emission computed tomography and positron emission tomography12-29. Table 1.1 

provides a partial list of studies that have used various techniques to differentiate tumor 

recurrence from RI.  

Table 1.1  Techniques used for differentiating tumor recurrence from radiation 

injury12-29 

Technique Reference Parameter 
Diffusion Hein et al. Apparent diffusion coefficient ratios 
 Kashirmura et al. Fractional anisotropy 
 Asai et al. Apparent diffusion coefficient 
 Sundgren et al. Fractional anisotropy 
 Xu et al. Fractional anisotropy 
 Zeng et al. Apparent diffusion coefficient 
   
Perfusion Barajas et al. Cerebral blood volume 
 Jain et al. Cerebral blood flow 
 Jain et al. Cerebral blood volume 
 Bobek-Billewicz Cerebral blood volume 
 Fisher-stevens et al. Permeability  
   
MRS Rabinov et al. Choline / Creatine 
 Zeng et al. Choline / Creatine 
 Zeng et al. Choline / N-Acetyl aspartate 
 Rock et al. Choline / Creatine 
 Rock et al. Choline / N-Acetyl aspartate 
   
PET Langleben et al.  Fluorodeoxy glucose uptake 
 Tsuyuguchi et al. 11C-Methionine uptake 
   
SPECT Schwartz et al.  201Thallium uptake 
 Samnick et al. 123 Iodine uptake 
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All of the above techniques have shown some promise but none of them have been able 

to convincingly differentiate radiation injury from tumor recurrence. FDG-PET and 

dynamic contrast enhanced CT have shown better sensitivity and accuracy compared to 

other techniques. However, with the limited availability of PET scanners and the risks 

associated with radiation exposure from CT, the search for an accessible and reliable 

technique continues with biopsy of the affected tissue still considered the gold standard. 

1.1.2 Secondary Brain Tumor: Metastasis 

Brain metastasis is common among patients with systemic cancer. They are a significant 

public health issue, with 20–40% of patients with solid tumors subsequently developing 

symptomatic brain metastases30. Approximately 150,000 brain metastases are diagnosed 

annually in the United States. Brain metastasis (MET) is thought to occur when the 

primary tumor acquires the ability to migrate away from the primary site and travels to 

the brain. The most common origins of brain metastasis are from breast cancer, 

melanoma and lung cancer. Metastasis often causes severe neurological symptoms that 

significantly impair quality of life. With recent improvements in diagnostic imaging and 

increasing patient survival due to improved systemic cancer control, the incidence of 

intracranial metastatic disease is projected to rise31. Imaging is the most important 

diagnostic modality for brain metastasis. Metastasis appears as an enhancing rim with 

necrotic core on a post-contrast MRI (Figure 1.2). The management of brain metastasis 

initially involves treating the symptoms using corticosteroids, anticonvulsants to reduce 

peritumoral edema and prevent recurrent seizures and surgical resection for debulking 
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followed by therapeutic approaches of whole brain radiotherapy (WBRT), stereotactic 

radiosurgery (SRS), and/or chemotherapy.  

 

 

Figure 1.2 Post-contrast T1-weighted image of patient with metastasis. The tumor 

has a necrotic core and enhancing rim. 

 

Whole brain radiotherapy (WBRT) is the most commonly used treatment for patients 

with brain metastasis. It involves delivering a uniform dose of radiation from a linear 

accelerator to the entire brain while the patient head is immobilized to minimize 

movement during treatment32. A perforated thermoplastic mask that is shaped to conform 

to the individual patient’s facial features is used to immobilize the patient’s head during 

treatment. Whole brain radiation therapy (WBRT) delivers an even dose of radiation to 

the entire brain. Figure 1.3 shows WBRT radiation dose planning image. It can be used to 

treat small undetectable tumors, large tumors that may be developing in different areas of 

the brain and tumors that are deep in the brain which are inaccessible to surgery. Since 

radiation is delivered to the entire brain WBRT has side effects that include nausea, 

vomiting, headache, fever, fatigue and possible worsening of neurologic symptoms. 
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There is also a risk of memory loss or dementia. WBRT typically improves symptoms, 

but longer-term survivors may develop neurocognitive deficits33, 34. 

 

 

Figure 1.3 Radiation dose planning image for WBRT (yellow=100% of the dose, 

orange =98%, red=95%, green = 80%, blue =70%). A traditional WBRT delivers 

30-60 Gy in 10-15 fractions. 

 

Stereotactic radiosurgery (SRS) is a more targeted form of radiation therapy in which a 

higher dose of radiation is delivered to the tumor in a single treatment session. Figure 1.4 

shows a typical SRS radiation dose planning image. The radiation beam is concentrated 

on a small region of the parietal lobe. Typically multiple radiation beams are delivered to 
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the tumor from many different angles using special computer planning. A stereotactic 

head frame is used to keep the patient’s head completely still during the procedure. 

Because this form of radiation targets the tumor more precisely, it is less likely to hurt 

healthy tissue. Generally, SRS may be used to treat patients with up to three lesions, 

although this may vary depending on the size and location of the tumors. For multiple 

lesions (>3), WBRT is usually the best option. WBRT or SRS is also an option for people 

who are not candidates for surgery.  

 

 

Figure 1.4 Radiation dose planning image for SRS (yellow=100% of the dose, 

orange =98%, red=95%, green = 80%, blue =70%). A traditional SRS would deliver 

15-20 Gy in a single fraction. 
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SRS combined with WBRT has been shown to yield superior local control, as compared 

with WBRT alone35. Since SRS involves high dose of radiation to a small region, it has a 

higher frequency of side effects related to brain tissue necrosis and edema, which can put 

pressure on surrounding healthy brain tissue. SRS also requires separate stereotactic 

localization and treatment procedures that add to the cost and patient inconvenience. In 

addition, the sequential delivery of WBRT and SRS does not allow for the integration of 

radiation delivery across both components, limiting the ability to fully optimize the 

radiation dose. 

Helical tomotherapy (HT) is a radiotherapy delivery technique that allow for 

radiosurgery-type simultaneous infield boost (SIB) treatments to be given synchronously 

with the standard WBRT dose. In HT, the treatment beam rotates about the gantry while 

the patient table is moved through the gantry, thereby creating a helical or spiral type of 

beam, hence the name helical tomotherapy. This form of delivery technique can be used 

to efficiently boost multiple brain metastases without the need for separate stereotactic 

procedures36, 37. The ability to incorporate this boost contribution with larger field 

volumes as part of the treatment planning optimization process is advantageous over 

sequential WBRT and SRS. It has also been shown that HT type WBRT+SIB dose 

distribution and lesion conformity is comparable to SRS alone38. This type of radiation 

delivery is beneficial for patients with multiple lesions and lesions that are in close 

proximity to sensitive organs. It is also useful for patients who cannot be immobilized 

due to claustrophobia, obesity or physical impairment39.  
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Figure 1.5 Radiation dose planning image for HT, illustrating a whole brain 

radiation plan with integrated high-dose boost (purple) to a metastatic lesion. The 

patient underwent HT with 30 Gy WBRT and 60 Gy SIB in 10 fractions. 

 

 

HT type WBRT+SIB has potential advantages compared to surgery and SRS but it is not 

appropriate for every patient. Some patients’ tumors may not respond to simultaneous 

WBRT+SIB, and are more appropriately treated with radiosurgery or conventional 

surgery.  

1.2 Treatment Assessment 

Treatment assessment is critical for measuring tumor response to therapy. The 

development of contrast-enhanced CT and MR imaging has allowed radiologists to assess 

therapeutic response more accurately and reproducibly in patients with brain tumors. 

Imaging for treatment assessment is routinely performed at three months interval post 

chemo-radiation therapy. Advanced CT and MRI techniques are currently being used in 

research settings as response assessment tools for brain tumor patients and are based on 

detecting cellular changes, and detecting changes in metabolic and hemodynamic 
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activity40.  In clinical settings, changes in lesion size are widely used to assess tumor 

response to therapy. 

1.2.1 Response Evaluation Criteria in Solid Tumors 

The assessment of treatment response in brain tumors is based on clinical and imaging 

parameters. A number of techniques have been proposed to assess treatment response. 

The Macdonald criteria are widely used in assessing treatment response41 of glial tumors. 

These criteria involve computing the cross-sectional area of the tumor by measuring the 

longest single diameter and the longest perpendicular diameter. A 50% decrease in the 

area is considered a partial response while an 25% increase in the area is considered 

progression. As an update to the Macdonald criteria, the revised assessment in neuro-

oncology criteria42 is used for assessing disease progression and treatment response in 

GBM. 

The most common way to assess treatment response in metastasis is the anatomical based 

method known as response evaluation criteria in solid tumors (RECIST). RECIST were 

originally published in 2000 and then updated in 2009 for use as a treatment assessment 

tool in clinical oncology43, 44. RECIST are a set of guidelines that were developed to 

allow for a simplified and standardized assessment of solid tumors. They classify 

therapeutic responses in brain tumors based on a one-dimensional tumor measurement: 

the longest diameter across a contrast-enhancing lesion in the axial plane. In cases where 

multiple lesions are present, the sum of the longest diameters of up to two measurable 

lesions is obtained.  
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Table 1.2 Four categories of RECIST. 

Response Criteria: 

RECIST 1.1 

Description 

Complete Response 
(CR) 

Disappearance of all target lesions. 
 

Partial Response (PR) At least a 30% decrease in the sum of 
diameters of the target lesions, taking as reference the 
baseline sum diameters. 
 

Progressive Disease 
(PD) 

At least a 20% increase in the sum 
of diameters of target lesions, taking as reference 
the baseline sum diameters. The appearance of one or 
more new lesions is also considered progression. 
 

Stable Disease (STD) Neither sufficient shrinkage to qualify as PR nor 
sufficient progression to qualify as PD.  
 

 

The major advantage of the RECIST system is its simplicity. A single diameter 

measurement is done in the axial plane on the post-contrast images, which can be 

performed easily and rapidly. The technique performs comparably to more complex 

two-dimensional and volumetric methods of treatment assessment in brain tumor 

studies45, 46. 

1.3 Multiparametric Imaging 

Imaging modalities such as computed tomography (CT) and magnetic resonance imaging 

(MRI) are commonly used for diagnosis and treatment assessment. CT is often the first 

line imaging modality performed in patients with brain tumors because it is relatively 

inexpensive, minimally invasive, and widely available in clinical settings. CT is also used 
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for surgical planning and radiation treatment planning but MRI is preferred due to its 

superior soft tissue contrast. For brain tumors, imaging is routinely performed before the 

initial treatment, immediately after the treatment and at 3-6 month interval thereafter (for 

high grade brain tumor patients imaging is performed at 2-3 months intervals).  

RECIST measures tumor response to treatment based on assessment of anatomical MR 

images. RECIST requires a well-defined anatomical lesion and relies on the serial 

measurements of reduction in tumor size during treatment as the basis for response 

assessment. Treatment selection and response assessment can also be based on functional 

evaluation of CT and MR images. 

1.3.1 Perfusion CT  

Brain tumors are associated with angiogenesis and neovascularization (forming new 

blood vessels) that results in increased blood volume and permeability related to the 

immature vessels47-51. Previous studies have indicated increased microvascular 

permeability with the increase in biologic aggressiveness of tumors, while a reduction in 

permeability in response to therapy correlates with decreased tumor growth49, 50. Since 

perfusion CT (PCT) provides an in vivo marker of angiogenesis, it is widely used as both 

a diagnostic tool and as a treatment assessment tool in brain tumor imaging52, 53. 

Perfusion CT typically requires the acquisition of a baseline image without contrast 

enhancement followed by a series of images acquired as a function of time following an 

intravenous bolus injection of a conventional iodinated CT contrast material. The 

resulting temporal changes in contrast enhancement of the tissue are displayed as time–
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attenuation curves (TAC). These TACs are used to quantify a range of parameters that 

reflect the functional status of the vascular system. This approach is used to produce 

parametric maps that represent cerebral blood volume (CBV), blood flow (CBF), 

permeability (PS), mean transit time (MTT), and the size of extravascular space. Many of 

these parameters have been correlated with tumor grade, aggressiveness, and 

prognosis54, 55.   

Tissue perfusion, blood volume, mean transit time, and other vascular physiological 

parameters can be derived from dynamic CT data53, 56. The first phase of enhancement 

(Figure 1.6) can be used to evaluate blood flow, and blood volume which are generally 

increased in malignant tissues. The second phase is used to evaluate vascular 

permeability (since tumor blood vessels are abnormally permeable to the contrast agent 

used)56, 57. Deconvolution method is the most widely used analysis method for 

determination of perfusion parameters. The deconvolution operation uses a reference 

“arterial” input function that is selected most often within the anterior cerebral artery. The 

impulse residue function (IRF) is then calculated by deconvolution of the arterial and 

tissue time–attenuation curves for the tissue of interest. The IRF (Figure 1.7) is usually 

constrained in its shape to comprise a plateau followed by a single exponential decay53. 

The height of the flow scaled IRF will provide the cerebral blood flow and the area under 

the curve will determine the cerebral blood volume. Width of the IRF equals the mean 

transit time (MTT). This approach can also be used to include a measurement of capillary 

permeability by use of a distributed parameter model53.  
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Figure 1.6 A general arterial time attenuation curve showing the first and second 

phase enhancement. (HU = hounsfield units). 

 

 

 

Figure 1.7 Blood flow scaled IRF according to the Johnson and Wilson model. The 

height of the IRF is the cerebral blood flow and the area under the curve will 

determine the cerebral blood volume. Width of the IRF equals the mean transit 

time. 
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PCT provides quantitatively accurate assessment of brain perfusion. PCT measurements 

have been shown to be reproducible and have been validated against a range of reference 

methods including xenon CT and positron emission tomography (PET)58-64. PCT has 

been used to estimate tumor grade and predict response to radiation therapy in cerebral 

tumors65-67. The results of perfusion studies49, 50 have shown that CBV and PS, a measure 

of microvascular permeability, are predictive of pathologic grade and correlates with 

tumor activity. Studies utilizing perfusion techniques have used cerebral blood volume 

(CBV) values68-70 and recovered percentage of signal intensity and peak height71 (i.e. 

shape of dynamic perfusion data) to differentiate  between metastasis and GBM. 

1.3.2 MRI: T1w, T2w and FLAIR Imaging72, 73, 74 

MR imaging is an important diagnostic and treatment assessment imaging modality that 

has become essential to routine clinical brain tumor imaging due to its superior soft tissue 

contrast. In clinical MR imaging, the hydrogen nucleus (proton) is primarily used because 

it is abundantly present in the human body (70-90%) and has high detection sensitivity 

due to its high gyromagnetic ratio. Since hydrogen atoms have an odd number of protons, 

this nucleus possesses a property known as spin angular momentum. The phenomenon of 

magnetic resonance arises in atoms with odd numbers of protons. In absence of a static 

magnetic field, the protons are oriented randomly and the net macroscopic magnetic 

moment is zero. When these protons are subjected to a static magnetic field (B0), the 

magnetic moment vectors have a tendency to align in the direction of the static field 

producing a net magnetization (M0). They also exhibit precessional behavior at a well-

defined frequency due to the interaction between the static magnetic field and the 
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magnetic moment of the nucleus. The frequency of precession is proportional to the 

strength of the static magnetic field and is expressed by the Larmor Equation (equation 

1.1). 

𝑓 =  𝛾
2𝜋

 𝐵0  [1.1] 

f = Larmor frequency in Hertz 

B0 = static magnetic field strength in Tesla (T) 

γ = gyromagnetic ratio (for protons, γ = 42.57 MHz/T) 

In order to induce signal in the tissue of interest, a component of the net magnetization 

must be tilted away from its equilibrium axis (z-axis) into the transverse (x-y) plane, 

which is achieved by applying a rotating magnetic field in the transverse plane at the 

Larmor frequency using a radio frequency (RF) coil. This process is called excitation, 

and the applied magnetic field is called an RF pulse. The amplitude and duration of this 

RF pulse produces a predictable torque on the magnetization vector causing it to rotate 

away from its equilibrium position by precessing about the axis defined by the RF pulse. 

This angle of rotation away from the z-axis is also known as flip angle. The transverse 

component of the magnetization is then detected by the same RF coil. The resulting time-

varying signal is called the free induction decay (FID) and represents the basic MR 

signal. The most common excitation RF pulse is a 90o pulse that rotates the 

magnetization by 90o into the x-y plane resulting in no z-component. Eventually the net 

magnetization vector will return to its equilibrium state along the z-axis: this process is 

called relaxation. Relaxation has both longitudinal and transverse components that occur 

simultaneously but independent of each other. Longitudinal relaxation refers to recovery 
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of the longitudinal magnetization along the z-axis, and is characterized by the T1 time 

constant (Figure 1.8). This is the mechanism by which protons give up their energy to the 

surrounding lattice in order to return to their equilibrium energy distribution. This process 

of relaxation is also known as spin-lattice relaxation.    

The longitudinal component of magnetization can be written as:  

𝑀𝑧(𝑡) =  𝑀0 (1 −  𝑒
−𝑡
𝑇1 ) [1.2] 

 

 

Figure 1.8 T1 relaxation curve showing recovery from Mz = 0 following a 90o pulse. 

 

Figure 1.8 shows the T1 relaxation curve. There is no longitudinal magnetization 

following the 90o RF pulse. Longitudinal magnetization is generated as protons release 
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their energy to the lattice. This regeneration of the longitudinal magnetization follows an 

exponential growth process characterized by the T1 time constant.  

Transverse relaxation describes the loss of phase coherence of the magnetization in the 

transverse plane and is characterized by the T2 time constant (Figure 1.9). One 

mechanism that leads to the decay of transverse magnetization is when protons exchange 

energy amongst themselves (spin-spin interactions) resulting random phase following 

energy transfer. This process is also known as spin-spin relaxation. 

The transverse component of magnetization can be written as: 

𝑀𝑥𝑦(𝑡) =  𝑀0 (𝑒
−𝑡
𝑇2 ) [1.3] 

 

 

Figure 1.9 T2 signal decay in the transverse plane following excitation.  The Blue 

line represents a long T2 decay while the orange line represents a short T2 decay. 
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Figure 1.9 shows the T2 decay curve. Following a 90o RF pulse, the magnetic moments 

of protons have a transverse orientation and rotate together (in-phase) around the 

magnetic field axis. After a short period of time due to spin-spin interactions, the 

directions of the protons begin to spread (dephase) causing the transverse magnetization 

to decay. 

During relaxation of the longitudinal magnetization, individual tissues have different 

levels of magnetization due to their inherently unique T1 values. Similarly, during decay 

of the transverse magnetization, individual tissues have different levels of magnetization 

due to of their unique T2 values. These T1 and T2 relaxation time constants are intrinsic 

features of the underlying tissue and vary according to tissue type. 

MR images are made up of thousands of tiny squares known as pixels (picture element) 

or voxels (volume elements). The signal intensity in the pixel or voxel represents the MR 

signal arising from a volume of tissue that is excited. The greater the MR signal from that 

tissue, the higher will be the signal intensity of that voxel. Various tissues have different 

signal intensities on MR image. The differences of the signal intensity are described as 

image contrast and it allows us to see the boundaries between the tissues. T1 and T2 

values of the tissue are important factors that determine the image contrast. MR imaging 

allows us to produce a wide range of contrasts by changing the acquisition parameters of 

the MRI pulse sequence. 
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The MRI pulse sequence represents a precisely timed series of RF and gradient pulses. 

Gradient pulses create linear variations in the static magnetic field strength and are used 

to produce a spatially localized signal. Figure 1.10 shows one cycle of a hypothetical 

MRI pulse sequence. The repetition time (TR) is defined as the time from the center of 

the first RF pulse to the center of the first RF pulse in the next repetition of the sequence. 

The time at which the signal is measured is the echo time (TE). TE is defined as the time 

between the center of the first RF pulse and the center of the echo.  

 

 

Figure 1.10 A simplified spin echo sequence (phase and frequency encoding gradients 

not shown here). 

 

By varying the TR and TE, image contrast can be manipulated. Varying the TR modifies 

the amount of T1 weighting while varying the TE modifies the amount of T2 weighting 
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in an image. The ability to modify image contrast gives MRI tremendous flexibility. The 

most common pulse sequences used to create contrast in MR imaging are “spin echo”, 

“gradient echo”, and “inversion recovery” sequences.  

 

Spin echo: A basic spin echo pulse sequence consists of two RF pulses (Figure 1.10). The 

first RF pulse is a 90o pulse that excites the protons and produces a FID, and the second 

RF pulse is an 180o pulse that refocuses the transverse magnetization so that the 

dephasing effects resulting from B0 inhomogeneities can be removed. This 180° pulse is 

exactly halfway between the excitation pulse and the echo. It is also known as a 

refocusing pulse since it flips the protons around an axis in the transverse plane. The 

phase that the spins accumulated during the first half of the TE interval is then reversed 

during the second half of the TE interval and the spin echo is formed. 

Gradient echo: A basic gradient echo sequence (GRE) uses a single RF pulse with a flip 

angle (α) of less than 90o. The echo is generated by gradient reversal (Figure 1.11). GRE 

are a class of imaging sequences that do not use an 180o RF pulse to refocus the 

transverse magnetization. The absence of the 180o refocusing pulse allows for faster 

imaging, but makes it sensitive to the effects of B0 inhomogeneities.   
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Figure 1.11 Gradient echo sequence. 

T1-weighted and T2-weighted images can be produced with either spin echo or gradient 

echo sequences. T1w images rely on relatively short values of TR to produce T1-

weighting and very short TE values to eliminate T2-weighting. T2w images rely on very 

long values of TR to eliminate T1-weighting and long TE values to produce T2-

weighting by creating differences in transverse magnetization between tissue types. 

Inversion recovery: Inversion recovery is a variant of a spin echo or gradient echo 

sequence. The only difference is an additional 180o inversion pulse that is applied before 

the excitation pulse. Following the inversion pulse and before the excitation pulse there is 

a delay (known as the inversion time). This inversion time provides a mechanism to use 

differences in T1 relaxation to generate contrast between tissues of interest. One of the 

most common variants of the inversion recovery sequence is the fluid attenuated 

inversion recovery (FLAIR). In a FLAIR sequence, the inversion time is chosen to 

correspond to the zero-crossing point (Figure 1.12) in the T1 relaxation curve of fluid, 
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specifically cerebrospinal fluid (CSF). With signal from CSF nulled, lesions in the brain 

parenchyma appear brighter.  

 

 

Figure 1.12 Inversion recovery sequence. 

 

In routine brain tumor imaging, morphological MR images are usually acquired as pre- 

and post-contrast T1w images, T2w images, and FLAIR images. Contrast agents are 

pharmaceuticals which are used to improve diagnostic information by changing the signal 

intensity differences. They change the intrinsic tissue properties by changing the local 

magnetic field and consequently the T1 and T2 relaxation times. Along with CT, MRI is 
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the first line of diagnostic imaging performed for patients with symptoms suggesting 

brain tumor. T1w images best depict the anatomy of the brain, and, when used with a 

contrast agent they also may show brain pathology. However, T2-weighted images 

provide the best depiction of the tumor, because most tissues that are involved in a 

pathologic process have higher water content than the normal brain matter, and the fluid 

causes the affected areas to appear bright on T2w images. 

Most brain tumors have prolonged T1 and T2 relaxation times and will appear 

hypointense relative to normal brain tissue on a T1w image and hyperintense on a T2w 

image. However, the presence of hemorrhage, necrosis, or calcification can cause a 

heterogeneous appearance of the tumor. On a post-contrast T1-weighted image, the 

contrast (gadolinium) accumulates in the extracellular space of the tumor due to local 

disruption of the blood-brain barrier. As a result, the tumor appears brighter than the 

normal brain tissue on a post-contrast T1-weighted image due to shortening of the T1 

relaxation time constant. 

Morphological MRI is helpful in diagnosis of brain tumors, however morphologic MRI 

alone is insufficient for grading malignant brain tumors, differentiating between tumor 

types, or differentiating between tumor recurrence and radiation necrosis75. Additional 

imaging techniques have been developed to overcome this problem. Tumors can be 

further characterized by using advanced MRI techniques such as diffusion tensor 

imaging, dynamic contrast-enhanced MRI, perfusion MRI and MR spectroscopy76-79. 
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1.3.3 Diffusion Tensor Imaging  

Diffusion Tensor Imaging (DTI) is an advanced MRI technique that provides information 

about the diffusivity of water molecules in the tissue and that can be used to map fiber 

tracts in the brain80, 81, 82. DTI is non-invasive. It utilizes existing MRI technology and 

does not require the administration of a contrast agent. This technique exploits the 

sensitivity of MRI to random water diffusion in the brain tissue in the presence of 

diffusion gradient pulses that are incorporated into the MR imaging pulse sequence.  

To understand diffusion it is important to understand the concept of ‘phase’. Consider 

three sine waves (Figure 1.13) that are oscillating at the same rate but two of them are 

shifted along the x-axis. It can be said that the sine waves have the same frequency but 

different phase. Phase describes the instantaneous position of the sine wave within the 

cyclic variation. Similarly, phase in MRI refers to an angle and describes the position of 

the protons relative to each other. Immediately after the first 900 RF pulse, all the protons 

precess synchronously, they have a phase difference of 0o and are said to be in-phase 

(phase coherence). Due to T2 relaxation and susceptibility differences within tissue 

leading to magnetic field inhomogeneities, the phase coherence disappears and the 

protons are said to be out of phase (dephased). Figure 1.13 (a) shows the protons with 

same phase and (b) different phase. 
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Figure 1.13 Sine waves and protons with (a) same phase and (b) different phase. 

 

In DTI imaging, the 90° RF pulse generates a transverse magnetization that is purposely 

dephased by the application of a large diffusion gradient. If no diffusion is present, the 

protons do not move, and a second diffusion gradient is designed to rephase the 

magnetization completely. However, if diffusion occurs, the protons change their spatial 

position, and the second gradient does not perfectly rephase the magnetization. Since the 

gradients are controlled by the MRI pulse sequence, information about the diffusion 

process can be inferred by measuring the signal with (M) and without (M0) diffusion 

gradients. Figure 1.14 below shows a basic spin echo MRI pulse sequence with the 

addition of diffusion gradients. 

 

(a) (b) 



 

28 

 

 

 

Figure 1.14 DTI sequence: spin echo sequence with the addition of diffusion 

gradients. 

 

Diffusion in the anisotropic white matter is modeled as a second-order tensor (Figure 

1.15). To quantify the second-order tensor, measurements are made in at least six non-

collinear directions.  

The diffusion tensor is calculated for each pixel according to the following equation83, 84. 

 

𝑀
𝑀0

= exp(−∑ ∑ 𝑏𝑖𝑗6
𝑗=1

6
𝑖=1  𝐷𝑖𝑗)  [1.4] 

𝐷𝑖𝑗 are elements of the diffusion tensor matrix 

 𝑏𝑖𝑗 are elements of the b matrix and is calculated as 𝑏𝑖𝑗 =  𝛾2𝜕2𝐺𝑖𝐺𝑗(∆ − 𝜕
3

) 

where i, j = x, y, z 
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The tensor can be diagonalized to obtain its eigenvalues (λ1, λ2, λ3). The corresponding 

directions of these eigenvalues are the eigenvectors (e1, e2, e3). The eigenvectors 

represent the tensors principle coordinate, and the eigenvalues describes the shape and 

size of the tensor. Figure 1.15 below shows the diffusion tensor with the eigenvalues. 

  

 

Figure 1.15 Diffusion tensor with eigen values λ1, λ2, λ3. The diffusion is highly 

anisotropic in fibrous tissues such as white matter, and the direction of largest 

diffusivity is generally assumed to be parallel to the local direction of the white 

matter. 

The eigen value information from the diffusion tensor measurements are used to calculate 

the following diffusion tensor parameters: mean diffusivity (MD), fractional anisotropy 

(FA), axial diffusivity (AxD) and radial diffusivity (RD) as shown in the following 

equations:  

Mean Diffusivity (MD): The mean diffusivity is the average of the eigenvalues. 

 𝑀𝐷 = �̅� = (𝜆1 +  𝜆2 +  𝜆3)/3  [1.5]                              
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Fractional Anisotropy (FA): The fractional anisotropy is the ratio of the anisotropic 

component of the diffusion tensor to the whole diffusion tensor 

𝐹𝐴 =  �3
2

 � (𝜆1−𝜆)���2+(𝜆2−𝜆)���2+ (𝜆3−𝜆)���2 
𝜆12+ 𝜆22+ 𝜆32

        [1.6] 

Axial Diffusivity (AxD): The axial diffusivity is the principal eigenvalue. 

𝐴𝑥𝐷 =  𝜆1                [1.7]          

Radial Diffusivity (RD): The radial diffusivity is the average of the radial eigenvalues.  

𝑅𝐷 =  (𝜆2+ 𝜆3)
2

 [1.8] 

 

Table 1.3 Summary of the diffusion tensor parameters. 

Diffusion Tensor 
Parameters 

Formula Description 

Mean Diffusivity  
𝜆1 +  𝜆2 +  𝜆3

3
 

Average of the eigen 
values. 

Fractional 
Anisotropy  �

3
2

 �
 (𝜆1 − 𝜆)���2 + (𝜆2 − 𝜆)���2 + (𝜆3 − 𝜆)���2 

𝜆12 + 𝜆22 + 𝜆32
 

Ratio of the anisotropic 
component of the 
diffusion tensor to the 
whole diffusion tensor. 

Axial Diffusivity 𝜆1 Principal eigen value. 
 

Radial Diffusivity 
 
(𝜆2 +  𝜆3)

2
 

Average of the middle and 
shorter eigen values. 

 
 

Diffusion is considered isotropic when the eigenvalues are nearly equal. Conversely, the 

diffusion tensor is anisotropic when the eigenvalues are significantly different in 
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magnitude. The magnitudes of eigenvalues are affected by changes in local tissue 

microstructure that occurs due to normal physiological changes (i.e. aging) and also by 

different types of tissue injury or neurological diseases85, 86, 87.  Therefore, the parameters 

derived from the diffusion tensor may be a sensitive probe for characterizing both normal 

and abnormal tissue microstructure.  

There has been strong interest in exploring the clinical applications of DTI in the 

assessment of brain tumors88-92.  DTI has been used for tumor grading93 and tumor 

delineation94. Functional diffusion maps have been used for early assessment of tumor 

response to treatment95. DTI has also been used to differentiate between glioblastoma and 

metastasis96. DTI studies have shown differences in DT parameters in GBM compared to 

MET97. In some studies higher DT parameter values of FA, linear tensor (CL) and planar 

tensor (CP) and lower values of spherical tensor (CS) were observed in GBM and were 

useful for discriminating between the tumor types98-100. 

1.4 Texture Analysis 

Texture is an important characteristic of images and refers to the appearance of the 

image. Image texture is a function of the spatial variation of pixel intensities in an 

image101, 102. Image texture analysis can provide quantitative information in the form of 

texture features that is not visible to human vision103. Texture features are mathematical 

parameters computed from the distribution of pixels, which characterize the texture type 

in the image. The most common method of computing the image texture is to use a 

statistical based method that analyzes the properties of individual pixel intensities and 

their spatial distribution within the image104.  
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Statistical based texture analyses are commonly classified as first-order and second-

order textures, based on the number of pixels defining the local features. First-order 

textures estimate properties of individual pixel values, ignoring the spatial interaction 

between the neighboring image pixels, whereas second-order textures estimate properties 

of two or more pixel values occurring at specific locations relative to each other. 

1.4.1 First-Order Textures 

Textures based on first order statistics are features that can be computed from the gray 

level histogram. The histogram of an image is the count of the number of pixels in the 

image that possess a given grey-level value. Figure 1.16 shows an example gray-level 

histogram. The most common first-order texture features are the mean, standard 

deviation, skewness and kurtosis. 

 

 

Figure 1.16 Gray-level histogram. 
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(1) Mean of the histogram is the mean of the gray-levels in an image.  

�̅� =  1
𝑛

 ∑ 𝑥𝑖𝑛
𝑖=1  [1.9] 

  x = gray levels 

  n = number of gray-levels 

(2) Standard deviation is a measure of how far from the mean the gray values in the 

image are distributed.  

𝑠 = �1
𝑛

 ∑ (𝑥𝑖 −  �̅�)2𝑛
𝑖=1   [1.10] 

(3) Skewness of the histogram refers to the asymmetry of the distribution of the gray 

values 105. A distribution is symmetric if the right side of the distribution is similar to the 

left side of the distribution. If the distribution is symmetric, then the skewness value is 

zero. A distribution with an asymmetric tail extending out to the right is referred to as 

positively skewed, while a distribution with an asymmetric tail extending out to the left is 

referred to as negatively skewed.  

The skewness of a distribution is defined as: 

𝑠𝑘 =  
1
𝑛
∑ (𝑥𝑖−�̅�)3𝑛
𝑖=1

��1
𝑛
∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1  �

3  [1.11] 

(4) Kurtosis is a measure of how flat or peaked the top of a symmetric distribution is 

when compared to a normal distribution. If the grey level distribution is similar to the 
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normal distribution, the kurtosis value is 3. Flat-topped distributions are referred to as 

platykurtic and have a kurtosis value of less than 3, while less flat-topped distributions 

are referred to as leptokurtic and have a kurtosis value greater than 3.  

The kurtosis of a distribution is defined as: 

𝑘 =  
1
𝑛
∑ (𝑥𝑖−�̅�)4𝑛
𝑖=1

��1
𝑛
∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1  �

4  [1.12]   

The limitation of the histogram-based measurements is that they carry no information 

regarding the relative spatial position of pixels with one another. The spatial relationship 

of the pixels can be incorporated by taking in to account the distribution of intensities as 

well as the position of pixels with equal or nearly equal intensity values. This can be 

achieved by constructing a gray level co-occurrence matrix as explained in the next 

section. 

1.4.2 Second-Order Textures 

Textures based on second-order statistics are features that can be computed from the gray 

level co-occurrence matrix (GLCM). The GLCM is a two-dimensional histogram of gray-

levels for a pair of pixels separated by a fixed distance (d) at a fixed angle (θ)103. 104.  It is 

an estimate of the joint probability G(i, j) of the intensity values of two pixels (i and j), at 

a certain pixel distance apart along a given direction (i.e., the probability that i and j have 

the same intensity). This joint probability takes the form of a square matrix with row and 

column dimensions equal to the number of discrete gray levels (intensities) in the image. 

If an intensity image contained no texture (intensity variations) the resulting GLCM 
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would be completely diagonal. As the image texture increases (i.e. as the local pixel 

intensity variations increase), the off-diagonal values in the GLCM become larger. 

GLCMs are usually computed with neighboring pixels defined in angular directions 0o, 

45o, 90o and 135o. 

Figure 1.17 shows an example to construct a GLCM. Consider a 4x4 image (Figure 

1.17a) with 4 gray-levels from 0 to 3 (Figure 1.17b). A generalized GLCM is shown in 

Figure 1.17c where (i, j) stands for the number of times gray-level i and j satisfy the 

condition stated by the offset distance vector d and angle θ. 

The resulting four GLCMs for d = [0 1] and [0 -1] and θ = 0o, 45o, 90o, 135o are shown in 

Figure 1.17d-g. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 a Sample image. Figure 1.17a Sample image. Figure 1.17b Gray-levels in the 

sample image. 
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(i, j) 0 1 2 3 

0 (0,0) (0, 1) (0, 2) (0, 3) 

1 (1,0) (1, 1) (1, 2) (1, 3) 

2 (2,0) (2, 1) (2, 2) (2, 3) 

3 (3,0) (3, 1) (3, 2) (3, 3) 

 

 

4 2 1 0 

2 4 0 0 

1 0 6 1 

0 0 1 2 

  

 

 

6 0 2 0 

0 4 2 0 

2 2 2 2 

0 0 2 0 

          

 

GLCMs as seen above are symmetric matrices. Hence either upper or lower triangle is 

used for calculation of the second-order features. Each element in the GLCM is the 

4 1 0 0 

1 2 2 0 

0 2 4 1 

0 0 1 0 

 2 1 3 0 

1 2 1 0 

3 1 0 2 

0 0 2 0 

Figure 1.17c: general form of a GLCM  

 

Figure 1.17d: GLCM for θ = 0o           Figure 1.17e: GLCM for θ = 45o       

 

 

Figure 1.17d: GLCM for θ = 90o           Figure 1.17e: GLCM for θ = 135o           
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probability of co-occurrence of the pixel gray-levels. The second-order texture features 

can then be calculated using the formulas shown below. 

Each of the five GLCM-based second-order texture features that are used in this thesis 

are described below:  

(1) Entropy is the measure of randomness of the GLCM. It describes the amount of chaos 

or disorder within the elements of the GLCM. Entropy is higher when the image is non-

uniform. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑ 𝐺(𝑖, 𝑗)𝑖,𝑗 𝑙𝑜𝑔2𝐺(𝑖, 𝑗) [1.13] 

 G(i, j) = probability of co- occurrence of the pixel gray-levels 

(2) Homogeneity measures the closeness of the distribution of elements in the GLCM to 

the GLCM diagonal. It is also known as inverse difference moment. It is sensitive to the 

near diagonal elements of the GLCM. It is higher for a diagonal GLCM.  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ 1
1+|𝑖−𝑗|

𝐺(𝑖, 𝑗)𝑖,𝑗  [1.14] 

(3) Inertia measures the intensity or gray-level variation between the reference pixel and 

its neighbor over the whole image. It describes the local variations in the GLCM. It is 

inversely correlated to homogeneity and will be lower for a diagonal GLCM. 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =  ∑ (𝑖 − 𝑗)2𝑖,𝑗 𝐺(𝑖, 𝑗) [1.15]  
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(4) Correlation measures how correlated a reference pixel is to its neighbor over the 

whole image. It describes the joint probability occurrence of the specified pixel pairs. 

Correlation is 1 or -1 for a perfectly positively or negatively correlated image. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ (𝑖−𝜇)(𝑗−𝜇)𝐺(𝑖,𝑗)
𝜎2𝑖,𝑗  [1.16] 

𝜇 𝑎𝑛𝑑 𝜎  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛. 

(5) Energy describes the uniformity of the image. It measures the sum of squared 

elements of the GLCM. It is also known as angular second moment feature. Energy is 

high if the image is homogenous. 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝐺(𝑖, 𝑗)2𝑖,𝑗  [1.17] 

 

1.4.3 Texture Analysis of Medical Images 

MR images hold a large amount of texture information that may be relevant for clinical 

diagnosis. Due to its inherent resolution limitation, MR images are not capable of 

providing microscopic tissue information that can be evaluated visually. However, 

histological changes present in various diseases may generate textural changes in the MR 

image that can be quantified through texture analysis.  

Image texture analysis has been used in a range of MR studies for classifying tissues in 

brain tumors.  It has also been used to differentiate between different tumor grades106 and 

discriminate between benign, malignant, and normal tissue types on MR images107. 
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Texture analysis has been used to study the effects of traumatic brain injury on texture 

features108. Genetic features have been discovered by texture analysis that could favor 

prognosis in low grade oligodendroglioma109. Texture analysis has been used to segment 

structures in the normal brain110, 111 as well as in epilepsy to identify abnormalities in the 

hippocampus112 by detecting differences in the texture features.  

Image texture analysis has been used in a range of CT and MRI studies for classifying 

non- cerebral tissues. Texture analysis has been used on computed tomography (CT) 

images to detect microcalcification in breast cancer113, microcalcification susceptibility 

effects on breast MRI114, and to analyze breast tumors on contrast-enhanced MRI 115. 

Texture differences were observed in MR images of the spinal cord between normal 

subjects and patients with relapsing multiple sclerosis before the atrophy was visually 

detectable116.Texture analysis has also been successfully applied to the classification of 

pathological tissues in the lungs117 and skeletal muscles118. 
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1.5 Thesis Objectives 

1.5.1 Objective 1: Multiparametric imaging in patients with 

glioblastoma 

Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor. 

The current standard of care for patients with GBM is surgery followed by chemo- and 

radiation therapy. Since GBM is a grade IV tumor, recurrences are common even after 

the treatment. Radiation injury (RI), a side effect of radiation therapy and tumor 

recurrences appears hyperintense on conventional MR images. Differentiating between 

RI and tumor recurrences is important for treatment planning. Numerous techniques have 

been utilized trying to find biomarkers for differentiation, however biopsy is still the gold 

standard. The purpose of our current study was to determine whether a multiparametric 

characterization of tissue based on correlations of T2w signal intensity, FLAIR signal 

intensity, and diffusion tensor imaging parameters could differentiate RI from tumor 

recurrence.  

1.5.2 Objective 2: Texture analysis in differentiating between 

glioblastoma and metastasis  

Glioblastoma and metastasis are the two most common types of brain tumor. Both types 

of tumors exhibit similar radiologic appearance on routine MR images. Differentiating 

between GBM and MET is very important because they have different biological 

mechanisms and require different treatment strategies. Previous studies have focused on 

advanced imaging modalities, such as diffusion tensor imaging, perfusion MRI, MR 

spectroscopy and perfusion CT, that require longer scan times and expertise in advanced 
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imaging, which results in increased cost, examination time, and exposure to radiation. 

The goal of our current study was to use texture based image analysis on routine MR 

images to provide quantitative information that can be used to differentiate between 

GBM and MET. 

1.5.3 Objective 3: Texture analysis in patient selection for radiation 

therapy 

Whole brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) is frequently used 

to treat metastatic brain tumors. However, SRS has side effects related to necrosis and 

edema, and requires separate and relatively invasive localization procedures. Helical 

tomotherapy (HT) allows for a SRS-type simultaneous infield boost (SIB) of multiple 

brain metastases, synchronously with WBRT and without separate stereotactic 

procedures. However, some patients’ tumors may not respond to HT type WBRT+SIB, 

and would be more appropriately treated with radiosurgery or conventional surgery 

despite the additional risks and side effects. The goal of the current study was to 

investigate whether quantitative measurements of tumor size and appearance (including 

first- and second-order texture features) on a magnetic resonance imaging (MRI) scan 

acquired prior to treatment could be used to differentiate responder and non-responder 

lesions after HT type WBRT+SIB treatment of metastatic disease of the brain.  
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2 Analysis of morphological MRI parameters and diffusion 

tensor parameters for perfusion CT derived high 

permeability areas in glioblastoma: identifying tumor 

recurrence from radiation induced necrosis 

2.1 Introduction 

Glioblastoma multiforme (GBM) is the most lethal and aggressive form of primary brain 

tumor. Median survival for patients with glioblastoma is 12-15 months1. Treatment 

options are determined by tumor size, location, and associated symptoms. Advances in 

brain tumor treatment have led to aggressive management strategies utilizing 

combinations of surgery, chemotherapy, and radiation therapy. The current standard of 

care for patients with GBM is surgical resection of the tumor followed by radiation 

therapy and concomitant and adjuvant temozolomide chemotherapy. This approach has 

been shown to standardize the treatment protocol and prolong the overall survival for 

patients2.  Radiation Injury (RI) is an undesirable but unavoidable side effect of treatment 

that appears as enhancing lesions following contrast agent injection on magnetic 

resonance imaging (MRI). Since GBM is a high grade tumor, recurrences are common 

after treatment, and these recurrences also manifest as hyperintense regions on MRI after 

contrast agent injection. Therefore the presence of enhancing lesions after radiation 

therapy may represent either tumor recurrence or radiation induced injury3, 4. Similarly, 

both recurrent tumor and radiation are also known to produce hyperintense regions on 

T2-weighted (T2w) and fluid attenuated inversion recovery (FLAIR) MRI.  Although 
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important for treatment planning and prognosis, differentiating between tumor 

recurrence and RI can be difficult with conventional MRI5. 

Currently tumor biopsy or histology is the gold standard for differentiating tumor from 

RI. There have been various attempts to differentiate tumor recurrences from RI in the 

past using in-vivo morphologic imaging as well as various functional imaging techniques 

such as CT perfusion, MR perfusion, diffusion weighted imaging, magnetic resonance 

spectroscopy (MRS), single-photon emission computed tomography, and positron 

emission tomography5, 6-18.  However, each modality has its limitations and therefore the 

search for an accurate and easy to implement technique continues19.   

Numerous studies have successfully correlated CT perfusion properties of the tumor with 

histology and shown that progressive or recurrent tumors have high permeability (PS) 

compared to RI regions20-22. CT has been widely used to obtain perfusion information in 

brain tumor, but it has several disadvantages that include additional cost, examination 

time, and increased exposure to radiation. Since MRI is part of routine brain tumor 

imaging, an MRI technique that provides similar information would be advantageous.  

The purpose of the current study was to determine whether a multiparametric 

characterization of tissue based on T2w signal intensity, FLAIR signal intensity, and 

diffusion tensor imaging parameters could differentiate RI from tumor recurrence.  

Tumor recurrence was defined as tissue with high permeability and high blood volume 

measured by CT perfusion. RI was defined as tissue with low permeability measured by 

CT perfusion that was hyperintense on FLAIR MRI23-24.  We hypothesized that 
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correlations between MRI parameters could identify regions of high vascular 

permeability and therefore could differentiate RI from tumor recurrence. 

2.2 Methods 

This study was approved by the University of Western Ontario Health Sciences Research 

Ethics Board. All patients provided written informed consent prior to imaging. Twelve 

patients with glioblastoma multiforme were recruited for the study. Patients were eligible 

for this study if they met the following criteria: histologically proven cancer before 

radiation and chemotherapy, magnetic resonance imaging findings on follow-up clinical 

MRI and clinical presentation consistent with glioblastoma. Patients underwent a 

perfusion CT scan and a 3 Tesla MRI. Of the twelve patients, two did not complete the 

perfusion CT scan and two patients showed no increase in permeability values and 

therefore could not be used in the analysis. Higher permeability values were 

approximately ten times the normal values. Table 2.1 shows the patient demographics 

and tumor location. 
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Table 2.1 Patient demographics and clinical information. 

Patient  Gender, Age Brain tumor location 

1 M, 44 Lt. Parietal 

2 M, 46 Lt. Parietal, Corpus Callosum 

3 M, 57 Lt. Parieto-Occipital 

4 M, 50 Lt. Temporal 

5 F, 64 Rt. Parietal 

6 M, 56 Lt. Temporal  

7 F, 63 Rt. Temporal-Occipital 

8 M, 43 Rt. Frontal 

 

MR imaging was performed on a 3T Tim Trio MRI system (Siemens Medical Systems, 

Erlangen, Germany) with a 32-channel head coil. The MR imaging protocol included the 

following sequences: transverse T2-weighted (T2w) fast spin-echo (repetition time= 6000 

ms, echo time = 93 ms, field of view = 220 mm, slice thickness = 2 mm; matrix = 320 × 

320), transverse FLAIR (repetition time = 9000 ms, inversion time = 2500 ms, echo time 

= 91 ms, field of view = 256 mm, slice thickness = 5 mm; matrix = 256 x 256), and 
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diffusion-weighted spin-echo imaging (repetition time = 7500 ms, echo time = 90 ms, 

number of directions = 64, field of view = 256 mm, b-value = 1000, slice thickness = 2 

mm; matrix = 128x128). 

2.2.1 CT Perfusion Imaging 

The patients were scanned on a GE CT scanner (GE LightSpeed VCT; GE Healthcare, 

Waukesha, WI) with a nonionic contrast bolus (Iomeron, 350 mg iodine/mL, 40 mL; 

Bracco Imaging Scandinavia, Goteborg, Sweden). A two-phase CT perfusion scan, 

guided by a prior non-contrast CT scan that identified eight 5 mm sections to cover the 

tumor, was performed for each patient. The bolus of contrast was injected into the vein at 

a rate of 2 to 4 mL/s at 3 to 5 seconds after the first phase started. The preselected brain 

sections were scanned for 45 seconds at 1-second intervals during the first phase and for 

a period of 105 seconds at 15-second intervals during the second phase. All patients were 

scanned at 80 kVp with a 250 mm field of view. 

2.2.2 Data Analysis 

The CT perfusion studies were analyzed using the prototype version of CT Perfusion 4D 

software (GE Healthcare, Waukesha, WI), which is based on the Johnson-Wilson model25 

and is insensitive to the delay between arterial and tissue time-attenuation curve (TAC) to 

generate a map of permeability. For each patient, the arterial and venous regions of 

interest (ROIs) were automatically chosen by the software in one of the anterior cerebral 

arteries and the posterior superior sagittal sinus, respectively. The venous TAC was used 

as a reference to correct for the partial volume averaging of the arterial TAC25. Tissue 

TACs were measured from 2 x 2 pixel blocks of the CT images. Parametric perfusion 
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maps of permeability (PS) were calculated by deconvolving the arterial TAC with each 

tissue TAC using the Johnson-Wilson model25.  

The diffusion tensor imaging (DTI) data were analyzed using Brainvoyager QX software 

(Brain Innovation, Maastricht, The Netherlands). From the DTI dataset six independent 

elements of the diffusion tensor were determined for each voxel, and the eigen values 

(λ1, λ2, λ3) of the diffusion tensor were calculated. The eigen value information was used 

to calculate the following diffusion tensor parameters26: mean diffusivity (MD), 

fractional anisotropy (FA), axial diffusivity (AxD) and radial diffusivity (RD) as shown 

in the following equations (1-4):  

𝑀𝐷 =  𝜆1 +  𝜆2 +  𝜆3   [2.1] 

𝐹𝐴 =  �3
2

 � (𝜆1−𝜆)���2+(𝜆2−𝜆)���2+ (𝜆3−𝜆)���2 
𝜆12+ 𝜆22+ 𝜆32

  [2.2] 

𝐴𝑥𝐷 =  𝜆1  [2.3]         

𝑅𝐷 =  (𝜆2+ 𝜆3)
2

 [2.4] 

The diffusion tensor maps of MD, FA, AxD, RD, the T2w images, the FLAIR images, 

and the permeability maps were all coregistered in 3D slicer27.  

Three regions of interest (ROIs) were selected for each patient. The ROIs were selected 

using the PS map and the coregistered FLAIR images simultaneously. ROI1 was defined 

within a high permeability region on the PS map and a high signal intensity region on 

FLAIR. ROI1 was labeled as a high permeability region attributed to tumor. ROI2 was 
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defined as a high signal intensity region on FLAIR with normal permeability on the PS 

map and attributed to radiation induced necrosis (RI).  A region on the white matter on 

the contralateral side with normal signal intensity on FLAIR and normal permeability on 

the PS map was selected as ROI3, and labeled as normal tissue. For each patient, the 

three ROIs were used to extract the mean MD, FA, AxD, and RD values from the 

diffusion tensor maps and the mean T2-weighted and FLAIR signal intensities. The 

values in ROI1 (high permeability) and ROI2 (RI) were normalized by the values in the 

normal tissue on the contralateral side. These normalized values were used for statistical 

comparisons. 

All statistical comparisons were performed with SPSS software version 21 (SPSS, IBM, 

Chicago, IL). Independent sample t-tests were conducted to determine if there were 

differences in the normalized DTI parameters, the T2w signal intensity (SI) and FLAIR 

signal intensity between the high permeability region and RI region.  A Pearson product-

moment correlation was computed to determine whether there was an association 

between the measured MRI parameters in both the high permeability (tumor) and low 

permeability (RI) regions. 

2.3 Results 

A typical FLAIR image (Figure 2.1A), T2W image (Figure 2.1B), CT perfusion map 

(Figure 2.1C), and blood flow map (Figure 2.11D) from a single subject were used to 

visualize the tumor and tissue with RI. The FLAIR image with the corresponding 

permeability map overlaid is shown in Figure 2.1E.  Based on these images, regions of 
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interest in the high permeability area (green), the high intensity area (brown), and the 

normal area (yellow) on the contralateral side were defined (Figure 2.1F).   

 

 

Figure 2.1a-f  FLAIR, T2w images, PS and CBV maps, and the ROIs used for 

analysis. 
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Table 2.2 provides the mean and standard deviation (SD) of each measured parameter in 

the high permeability (tumor) and low permeability (RI) regions and the p-values.  There 

were no significant differences in the T2w (p =.94) and FLAIR (p = .99) signal intensities 

between the high permeability region and the RI region. Also there were no significant 

differences in the diffusion tensor parameters FA (p = .82), MD (p = .44), AxD (p = .33) 

and RD (p = .56) comparing the high permeability region to the RI region. 

Table 2.2 Parameters measured in the high permeability and RI regions. 

Normalized 
Parameters  

High Permeability Region 

(mean ± SD) 

RI Region 

(mean ± SD) 

p-value 

  

FA .73 ± .29 .77 ± .35 .82 

MD 1.14 ± .47 .97 ± .36 .44 

AxD 1.04 ± .42 .87 ± .24 .33 

RD 1.23 ± .54 1.07 ± .50 .56 

T2w SI .96 ± .33 .94 ± .42 .94 

FLAIR SI .94 ± .43 .94 ± .36 .99 

 

As expected, there was a strong positive correlation between MD and RD (r = .98, p < 

.01) in both the high permeability (tumor) region and in the low permeability (RI) region 

(r = .98, p < .01).  The low permeability (RI) region also produced a strong negative 

correlation between FA and RD (r = - .76, p < .05) and a strong positive correlation 

between T2w signal intensity and FLAIR signal intensity (r = .89, p < .01). These 

associations are summarized in Figure 2.2. 
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Figure 2.2a-f  Scatterplots summarizing the correlation analysis. 
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2.4 Discussion    

Differentiating radiation injury (RI) from recurrent or progressive tumor in patients with 

glioblastoma is essential since the prognoses and treatment for the two entities is 

different. Conventional morphologic imaging alone has failed to differentiate tumor 

regions from RI regions. With the advent of newer aggressive treatment options, RI is on 

the rise and the follow-up imaging of patients over time is becoming more complex. 

Diffusion MRI has shown promise in differentiating these two entities to a limited 

extent5, 13. Various other imaging techniques also offer moderate success due to the 

complexity of the tissue microenvironment and the inherent limitations of these 

modalities and techniques.   

The goal of this study was to determine whether morphological MRI and diffusion tensor 

imaging (DTI) could differentiate tumor recurrence from RI. The morphological 

parameters we explored were T2w SI and FLAIR SI, while the diffusion tensor 

parameters we explored were FA, MD, AxD, and RD.  We did not find any statistically 

significant differences in the means of the measured parameters in the high permeability 

(tumor) region and the low permeability (RI) region. 

There was a significant correlation between MD and RD in both the high permeability 

region and RI region. Such a correlation is expected because infiltrating tumor cells can 

cause an increase in MD and RD while edema from radiation damage can also cause a 

similar increase31. Therefore the correlation between MD and RD may not be a good 

marker to distinguish the two regions. Interestingly, a significant negative correlation was 

observed between FA and RD and a significant positive correlation was observed 
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between T2w SI and FLAIR SI in the low permeability (RI) region. A decrease in FA 

can be caused by vasogenic edema due to radiation injury13, 29, which can in turn cause an 

increase in RD (the radial component of diffusion)30. Therefore the presence of vasogenic 

edema could explain why FA has a significant negative correlation with RD in the RI 

region. These correlations were not observed in the high permeability (tumor) region. 

Therefore, the correlations between FA and RD, and between T2w SI and FLAIR SI may 

differentiate these two regions.  

Further work is needed to determine whether these correlations could help differentiate 

high permeability regions from radiation injury.  One possible approach would involve 

identifying suspicious regions and then correlating DTI parameter values and 

mophological MRI values on a pixel-by-pixel basis from within the ROI. If a significant 

correlation was found, it may indicate radiation injury.  This success of this approach 

depends on the heterogeneity of the tissue within the ROI. 

To date, no objective study on correlation analyses of diffusion tensor parameters has 

shown any diagnostic potential in patients with glioblastoma multiforme. Our study had 

several limitations. First, the patient population was small, and further investigation with 

a larger patient population is necessary to confirm these preliminary findings. Further 

large-scale studies would provide estimates of the accuracy and diagnostic utility of this 

new method. The second limitation of this study is the use of permeability maps to select 

possible tumor regions. There have been numerous studies that have successfully 

correlated perfusion properties of tumors with histology, and shown that progressive or 

recurred tumors have high permeability compared to RI regions20-22. Ideally in a future 
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study the tumor regions would be confirmed histologically, which is the current gold 

standard. 

Perfusion CT is widely used for differentiating RI from tumor tissue but has several 

disadvantages that include additional cost, examination time, increased exposure to 

radiation, and increased post-processing and reading time. Obtaining similar information 

directly from MRI would circumvent these disadvantages. T2, FLAIR and DTI are part 

of routine clinical MRI protocols for brain tumor patients. The results of the present study 

suggest that correlations observed among routine MRI parameters may help differentiate 

RI from tumor. 

In conclusion, our results indicate that the significant correlations of diffusion tensor 

imaging parameters FA and RD, along with the significant correlations of morphological 

MRI parameters of T2w SI and FLAIR SI, could be used to differentiate recurred tumor 

from RI regions in patients with GBM. 
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3 Differentiating between glioblastoma and metastasis 

using first- and second-order MR image texture 

3.1 Introduction 

Glioblastoma multiforme (GBM) and metastasis (MET) are the two most common types 

of brain tumors in adults1. These tumors can have similar appearance on magnetic 

resonance imaging (MRI) specifically a necrotic mass surrounded by ring-like 

enhancement and extensive edema2-4.  Discriminating between these two types of tumor 

remains challenging when the patient presents with a solitary enhancing mass, since both 

types of tumors exhibit similar radiologic appearance4. Differentiating between GBM and 

MET is very important because they have different biological mechanisms and require 

different treatment strategies5, 6. Histopathologic analysis of a biopsy sample from the 

tumor region is the only currently accepted method to make a definitive diagnosis7, 8. The 

use of noninvasive methods is preferable and sometimes mandatory when a biopsy is not 

possible because of the general condition of the patient or if the mass is located near a 

critical area. Therefore, it would be clinically beneficial to have a noninvasive method of 

differentiating between these tumor types without the need for biopsy9. Since routine 

MRI is not very useful for non-invasively differentiating between these two types of 

tumor, many studies have focused on advanced imaging modalities, such as diffusion 

tensor imaging10-13, perfusion MRI14,15, MR spectroscopy16-19 and perfusion  CT20-23. The 

advanced imaging modalities that have been used require longer scan times, expertise in 

advanced imaging, and additional imaging modality like CT which increases cost, 



 

76 

 

 

examination time, and patient exposure to radiation. Since MRI is part of the routine 

brain tumor imaging, a technique based on routine MRI that would provide quantitative 

information without the additional cost would be highly advantageous. 

Image texture analysis has been used in a range of studies for classifying tissues24-26 in 

breast and brain tumors. Image texture is a function of the spatial variation of pixel 

intensities in an image27.  Texture analysis can provide quantitative information that is 

not visible to human vision28. The most common technique to compute image texture is 

to use statistical based methods, namely first- and second-order textures, which analyze 

properties of individual pixel intensities and their spatial distribution within the image.  

The purpose of the current study was to determine whether first- and second- order image 

texture properties of GBM and MET could be used to differentiate between these two 

types of tumor. We hypothesized that the texture properties of GBM and MET tumor 

tissue on post-contrast T1-weighted (T1w) MRI are different, and therefore these texture 

properties could be used to differentiate GBM from MET. This study compares four first-

order texture features: the mean signal intensity, standard deviation of the signal 

intensity, skewness, and kurtosis; and five second-order texture features: entropy, 

homogeneity, inertia, correlation, and energy of GBM and MET tumors. 
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3.2  Methods 

Thirty-Nine (39) patients with a diagnosis of brain metastasis and 31 patients with a 

diagnosis of glioblastoma multiforme were evaluated retrospectively for this study. All 

patients had undergone routine brain MR examination before radiation treatment and/or 

surgical resection at London Health Sciences Center, Canada. The tumors that were 

resected fulfilled the 2007 WHO histopathologic criteria for diagnosis1.  

MR imaging was performed on a 1.5T GE Signa MRI system (GE Healthcare, 

Milwaukee, Wisconsin). The MR imaging protocol included pre- and post-contrast T1w 

sequences. Post-contrast images were acquired immediately after contrast injection. A 3D 

spoiled gradient echo sequence was used to acquire the T1w images with the following 

parameters: repetition time: 8.84 msec, echo time: 3.47 msec, slice thickness: 2 mm, 

matrix size: 512 × 512, flip angle: 13º.  

3D lesion contouring on the post-contrast T1w MR images was performed under the 

supervision of a radiation oncologist with expertise in the treatment of brain tumors using 

ITK-SNAP (Version 2.4.0)29. The contours were saved as 3D label maps. Figure 3.1 

shows the post-contrast T1w images of GBM and MET lesions, with the contours 

overlaid on the images. 
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Figure 3.1 Post-contrast T1w image of GBM and MET lesion, with the contour 

overlaid. 

Type of tumor Post-contrast T1w 
image  

Contour overlaid 

GBM  

 

 

 

 

 

MET  

 

 

 

 

 

 

3.2.1 Data Analysis 

All calculations were performed using Matlab 7.1. (The Mathworks Inc., Natick, MA, 

USA).  For each lesion, we calculated the following first- and second-order texture 

features: (1) mean T1w signal intensity, (2) standard deviation of the T1w signal 

intensity, (3) skewness, (4) kurtosis, (5) information entropy of the T1w signal intensity 

histogram, (6) homogeneity, (7) inertia, (8) energy, and (9) correlation. Features (1) 

through (4) are first-order texture measures that are estimated from individual pixel 
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values in the tumor region. Features (5) through (9) are second-order texture features 

that were calculated based on a gray-level co-occurrence matrix (GLCM)30, 31, 32.  

The GLCM approach is based on the use of second-order statistics of the grayscale image 

histograms and is an estimate of the second-order joint probability G(i, j) of the intensity 

values of two pixels (i and j), at a certain pixel distance apart along a given direction (i.e., 

the probability that i and j have the same intensity). This joint probability takes the form 

of a square matrix with row and column dimensions equal to the number of discrete gray 

levels (intensities) in the image. If an intensity image contained no texture the resulting 

GLCM would be completely diagonal. As the image texture increases (i.e. as the local 

pixel intensity variations increase), the off-diagonal values in the GLCM become larger.  

The images were quantized to thirty-two gray levels, and four 32 × 32 GLCMs were 

computed with neighboring pixels defined in angular directions of 0, 45, 90 and 135. The 

resulting texture features were averaged over the four directions. Each GLCM-based 

second-order texture feature was calculated as follows:  
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Table 3.1 GLCM-based second-order texture features  

Feature Equation Description 

Entropy −�𝐺(𝑖, 𝑗)
𝑖,𝑗

𝑙𝑜𝑔2𝐺(𝑖, 𝑗) Measures the randomness of the GLCM. 

Homogeneity �
1

1 + |𝑖 − 𝑗|
𝐺(𝑖, 𝑗)

𝑖,𝑗

 Measures the closeness of the distribution 
of elements in the GLCM to the GLCM 
diagonal. 

Inertia �(𝑖 − 𝑗)2
𝑖,𝑗

𝐺(𝑖, 𝑗) Measures the intensity contrast between a 
pixel and its neighbor over the whole 
image. Describes the local variations in the 
GLCM. 

Correlation 
�

(𝑖 − 𝜇)(𝑗 − 𝜇)𝐺(𝑖, 𝑗)
𝜎2

𝑖,𝑗

 
Measures how correlated a pixel is to its 
neighbor over the whole image. Describes 
the joint probability occurrence of the 
specified pixel pairs. 

Energy � 𝐺(𝑖, 𝑗)2
𝑖,𝑗

 Measures sum of the squared elements of 
the GLCM. It describes the uniformity of 
the image. 

 

3.2.2 Statistical Analysis 

All statistical analysis was performed using SPSS software (IBM SPSS, Version 21, 

Chicago, IL).  Kolmogorov-Smirnov test was used to assess the normality of the data. 

Mann-Whitney U test was conducted to test the differences between the two groups 

(GBM and MET). P < .05 was considered to indicate a statistically significant difference.   

The efficacy of the texture features for classification was evaluated using logistic 

regression analysis. The first- and second-order texture features were combined into a 
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multivariate logistic regression analysis to determine the most significant parameters 

and to build an optimal logistic regression model (LRM) to classify GBM and MET. 

Model fit was evaluated by means of the Hosmer–Lemeshow goodness-of fit test33. 

Areas under the receiver operating characteristic (ROC) curves were computed for each 

of the first- and second-order texture features. ROC curves were also computed for the 

predictive features that were the calculated from the LRM. ROC curve analyses were 

performed to determine optimum threshold and the diagnostic accuracy of each 

histogram parameter for discriminating the two types of tumors. These analyses allowed 

us to determine the sensitivity, specificity, 95 % confidence interval (CI), standard error 

(SE), and area under the curve (AUC) associated with each individual texture parameter 

and combined texture parameter as a function of the threshold value used to discriminate 

the two types of tumors. 
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3.3 Results 

The independent samples Mann-Whitney U test for the first-order texture features 

showed significant differences in the standard deviation of the T1w signal intensity for 

the GBM and MET groups. No differences were found in T1w signal intensity, skewness 

and kurtosis between the GBM and MET groups. Table 3.2 shows the mean and standard 

deviation (SD) of each first-order texture feature for the GBM and MET, as well as the 

result of the Mann-Whitney U test for each feature. Figure 3.2 summarizes the results in 

form of bar graphs for each of the first-order texture feature. 

 

Table 3.2 Mean and SD of each of the first-order texture feature. 

First-Order Texture 

Feature 

GBM 

(mean ± SD) 

MET 

(mean ± SD) 

p-value 

 

T1w Signal Intensity 1382 ± 660.62 1194 ± 808.27 .08 

SD T1w Signal Intensity 438 ± 258.21 312 ± 235.29 .02 

Skewness .159 ± .39 .079 ± .50 .52 

Kurtosis 2.85 ± .74 2.97 ± .63 .22 
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The independent samples Mann-Whitney U test for the second-order texture features 

showed significant differences in the entropy, homogeneity, inertia and energy feature for 

the GBM and MET groups. No differences were found in the correlation feature for the 

GBM and MET groups. Table 3.3 shows the mean and standard deviation of each 

second-order texture feature for the GBM and MET, as well as the result of the Mann-

Whitney U test for each feature. Figure 3.3 summarizes the results in form of bar graphs 

for each of the second-order texture feature. 

 

Table 3.3 Mean and SD of each of the second-order texture feature. 

Second-Order Texture 

Feature 

GBM 

(mean ± SD) 

MET 

(mean ± SD) 

p-value 

  

Entropy 10.18 ± 1.11 9.32 ± 1.46 .007 

Homogeneity .995 ± .003 .998 ± .001 .000 

Inertia .320 ± .183 .155 ± .092 .000 

Correlation .915 ± .047 .914 ± .065 .615 

Energy .981 ± .013 .992 ± .005 .000 
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Figure 3.2 Plots of the first-order texture features for GBM and MET. Standard 

deviation of the T1w signal intensity was the only significantly different feature 

between the two tumor types. 
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Figure 3.3 Plots of the second-order texture features for GBM and MET. Contrast, 

homogeneity, energy and entropy features were significantly different between the 

tumor types. 
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3.3.1 ROC curve analysis: 

Each texture feature was evaluated for its discriminative ability using ROC analysis as 

shown in Table 3.4 and Figure 3.4, 3.5 and 3.6. When used alone, second-order texture 

feature of inertia (AUC= .790) was the best feature for discrimination, followed by 

homogeneity (AUC= .776), energy (AUC= .752) and entropy (AUC= .688). The first-

order texture features of mean of the T1w signal intensity (AUC= .621), standard 

deviation of the T1w signal intensity (AUC= .659), skewness (AUC= .544) and kurtosis 

(AUC= .585) were not very useful in discriminating the tumor types.  

The LRM of the combined first- and second-order texture features was the most accurate 

in differentiating the tumor types with AUC= 0.885, sensitivity = 90.3%, specificity = 

82.1 % and cutoff value = 0.673. The LRM of the second-order texture features also 

showed good accuracy differentiating the tumor types with AUC= 0.840, sensitivity = 

83.9 %, specificity = 66.7 % and cutoff value = 0.708 compared to the individual second-

order textures. The LRM of the first-order texture features was a poor discriminator of 

the tumor types with AUC= 0.658, sensitivity = 61.3%, specificity = 64.1 % and cutoff 

value = 0.562. The optimum threshold, sensitivity, and specificity of each texture 

parameter and combined texture parameters to distinguish the two tumor types are 

summarized in Table 3.4 
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Table 3.4 ROC curve analysis for each of the first- and second-order texture 

features and combination of the first- and second-order texture features for 

differentiation between GBM and MET. (the cut-off value was chosen as a point on 

the ROC curve that maximizes sensitivity + specificity) 

Texture Feature Cut-off Value  Sensitivity Specificity AUC SE CI 

Mean T1w 
1073 61.3 56.4 .621 .067 (.49, .75) 

Std T1w 
305 67.7 64.1 .659 .065 (.53, .78) 

Skewness 
.054 58.1 48.7 .544 .069 (.40, .68) 

Kurtosis 
2.91 64.5 56.4 .585 .070 (.44, .72) 

Entropy 
9.74 71.0 64.1 .688 .064 (.56, .81) 

Homogeneity 
.998 74.2 71.8 .776 .062 (.65, .89) 

Inertia 
.180 71.0 71.8 .790 .054 (.68,.89) 

Correlation 
.929 64.5 53.8 .535 .072 (.39, .67) 

Energy 
.992 74.2 66.7 .752 .063 (.62, .87) 

First order 
.562 61.3 64.1 .658 .067 (.52, .79) 

Second order 
.708 83.9 66.7 .840 .047 (.74, .93) 

First + Second 
order .673 90.3 82.1 .885 .043 (.80, .97) 
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Figure 3.4 ROC curves for each of the first-order texture measures: mean T1w 

signal intensity (AUC= .621), standard deviation (std) of the T1w signal intensity 

(AUC= .659), skewness (AUC= .544) and kurtosis (AUC= .585). All four features 

have poor predictive value. 
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Figure 3.5 ROC curves for the second-order texture measures: entropy (AUC = 

.688), inertia (AUC= .790), homogeneity (AUC= .776), correlation (AUC= .535), and 

energy (AUC= .752). Inertia, homogeneity and energy (next page) are the best 

predictors for differentiating between GBM and MET when used alone. 

 

 

 



 

90 

 

 

 

Figure 3.5 (contd): ROC curve for the second-order texture measure of energy. 

 

Figure 3.6 ROC curves for the first order textures (AUC = .658), second-order 

textures (AUC = .840) and combined first + second-order texture measures (AUC = 

.885). Combining the first and second order textures may provide the best predictive 

accuracy for differentiating between GBM and MET. 
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3.4 Discussion 

GBM and MET typically demonstrate similar appearances on routine MR imaging. Since 

they have same clinical symptoms but different treatment strategies, a technique is 

needed to differentiate between these two types of tumors.  In this study we investigated 

the feasibility of using texture-based analysis of routine MR images to differentiate GBM 

from MET. Texture analysis provides quantitative information about the spatial variation 

of pixel intensities in an image. 

We investigated four first-order texture features (mean T1w signal intensity, standard 

deviation of the T1w signal intensity, skewness, and kurtosis) and five second-order 

texture features (entropy, homogeneity, inertia, correlation, and energy). First-order 

texture features are computed from gray level histogram while second order texture 

features are computed from the gray level co-occurrence matrix (GLCM) which analyzes 

gray level distribution of pairs of pixels. Figure 3.8a and 3.8b show sample GBM and 

MET images having similar radiologic appearance, where the second-order texture 

features of inertia, energy, and homogeneity are able to successfully differentiate between 

GBM and MET. 
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 a GBM MET 

Image 

  

Inertia 7.475 5.594 

Energy 0.0050 0.0133 

Homogeneity 0.4468 0.5336 

 

b GBM MET 

Image 

  

Inertia 9.248 3.114 

Energy 0.0136 0.0186 

Homogeneity 0.4987 0.6063 

Figure 3.4a,b GBM and MET tumors showing similar appearance on routine MR 

image but differences in the second-order texture measures. 

 

A statistically significant difference was observed in the standard deviation of the mean 

T1w signal intensity. The first-order texture features of mean, skewness, and kurtosis did 

not show any significant differences between the two types of tumors. A statistically 

significant difference was observed in the second-order texture features of entropy, 
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inertia, homogeneity, and energy. No statistically significant difference was seen in the 

second-order texture feature of correlation.  

ROC analysis showed that the combination of first- and second-order texture features had 

the largest AUC (0.88) and would have the best predictive accuracy for differential 

diagnosis between GBM and MET, followed by the combined second-order texture 

features (AUC= 0.84). The individual second-order texture features of inertia (AUC= 

.79), homogeneity (AUC= .77), and energy (AUC= .75) also showed good predictive 

accuracy. The combined first-order texture features (AUC= .65) was not very useful in 

differentiating the tumor types. 

Other investigators have used advanced imaging techniques including diffusion and 

perfusion to differentiate between the two types of tumor10-15. Previous studies have also 

used a region of interest (ROI) approach within the whole tumor to derive imaging 

parameters for differentiation. However, this may not be the suitable approach since a 

small ROI in a large tumor may not provide information about the changes occurring 

within the tumor and may not be a good indicator of the global change within the entire 

tumor. Our technique is unique in several ways: (1) This is the first study to apply first- 

and second-order texture analysis for differentiating between GBM and MET tumors, (2) 

we use the routine clinical MR images instead of advanced imaging modalities to 

discriminate between the two tumor types, which saves time and cost; (3) we use a 

whole-tumor approach rather than small ROIs drawn inside the tumors. Our approach 

yields information about the textural properties of the whole tumor rather than a small 

ROI within the tumor: and (4) the simplicity of implementation makes it desirable than 



 

94 

 

 

other techniques. Simple mathematical calculations are used to compute the texture 

parameters. 

A limitation of this study is the small sample size. Features that may have less effect on 

the differentiation may have been missed. Features which were approaching significance, 

such as the mean of the T1w signal intensity (p =.08), may become statistically 

significant with a larger sample size. Even within our sample size we had significant 

effects that were useful, suggesting that the texture features we found to be significant are 

important in differentiating GBM from MET. Another limitation is that the performance 

of the LRM is unclear without the use of a separate validation set, and further evaluation 

of the models need to be explored in future work on a larger data set.  

3.5 Conclusions 

We have demonstrated the ability of texture-based analysis of routine MR images to 

differentiate between GBM and MET. Our results indicate that the combination of first- 

and second-order texture features provides us with the highest predictive accuracy 

followed by the combined second-order features. When used individually, the second 

order texture feature of inertia had the best predictive accuracy followed by homogeneity 

and energy. Given the simplicity of our technique and availability of the post-contrast 

T1w MR images which are part of the routine brain tumor imaging, we believe this 

method may have practical significance and may become a useful tool for differentiating 

between GBM and MET.  
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4 MRI-based prediction of response to whole-brain helical 

tomotherapy with simultaneous intralesional boost for 

metastatic brain cancer using quantitative size and 

appearance features 

4.1 Introduction 

Metastatic brain tumors are an important public health issue, with 20%–40% of patients 

having solid tumors subsequently developing symptomatic brain metastases1, and 

approximately 150,000 annual brain metastasis diagnoses annually in the United States. 

With recent improvements in diagnostic imaging and increasing patient survival due to 

improved systemic cancer control, the incidence of intracranial metastatic disease is 

projected to rise2. Whole brain radiotherapy (WBRT) is widely used in the treatment of 

patients with metastatic disease and involves the delivery of a uniform dose of radiation 

to the entire brain3. It improves symptoms, but longer-term survivors may develop 

neurocognitive deficits4, 5. Stereotactic radiosurgery (SRS) is a more targeted form of 

radiation therapy in which a higher dose of radiation is delivered to the tumor in a single 

treatment session. SRS combined with WBRT has been shown to yield superior local 

control, as compared with WBRT alone6. However, SRS has a higher frequency of side 

effects related to brain tissue necrosis and edema, which can put pressure on surrounding 

healthy brain tissue. SRS also requires separate localization and treatment procedures that 

add cost and patient inconvenience. Depending on the SRS system used, invasive 

immobilization devices may be needed, increasing patient discomfort. In addition, the 
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sequential delivery of WBRT and SRS does not allow integration of radiation delivery 

across both components, limiting the ability to fully optimize the radiation dose. 

Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are two 

radiotherapy delivery technologies that allow for radiosurgery-type simultaneous infield 

boost (SIB) treatments to be given synchronously with the standard WBRT dose, and in 

this way be used to efficiently boost multiple brain metastases without the need for 

separate stereotactic procedures7,8. The ability to incorporate this boost contribution with 

larger field volumes as part of the treatment planning optimization process provides an 

advantage of this WBRT+SIB strategy over sequential WBRT and SRS. During 

fractionated radiotherapy, reassortment and reoxygenation may occur between 

treatments, resulting in increased efficacy of subsequent doses in the treatment course; 

single-fraction treatments cannot exploit these radiobiologic properties9. Although 

WBRT+SIB has potential advantages compared to surgery and SRS, it is not necessarily 

appropriate for every patient. Some patients’ tumors may not respond to WBRT+SIB, 

and would be more appropriately treated with radiosurgery or conventional surgery 

despite the additional risks and side effects. A means for predicting response to 

WBRT+SIB based on pre-treatment imaging could support the selection of the best 

treatment for each individual lesion as early as possible while the metastatic lesion has 

the greatest chance of control. 

As a first step toward a broader objective of developing a means for response prediction 

to WBRT+SIB, the goal of this study was to determine whether quantitative 

measurements of tumor size and appearance on a magnetic resonance imaging (MRI) 
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scan acquired prior to treatment could be used to differentiate responder and non-

responder lesion groups after WBRT+SIB using HT (henceforth WBHT+SIB) treatment 

of metastatic disease of the brain.  In this study, we used the longest axial diameter (as 

used in Response Assessment Criteria in Solid Tumors [RECIST] measurements10 and 

the 3D volume as the measure of tumor size.  To measure imaging appearance, we used 

three first-order features (the mean signal intensity, standard deviation of the signal 

intensity, and skewness of the intensity histogram) and five second order texture features 

(entropy, homogeneity, inertia, correlation and energy). 

4.2 Materials and methods 

4.2.1 Materials 

This study was approved by the Human Subjects Research Ethics Board of our institution 

and informed consent was obtained from all patients.  We recruited 21 patients for the 

study. These 21 patients had a total of 31 lesions. Inclusion criteria were: histologic 

diagnosis of primary cancer; contrast-enhanced MRI demonstrating 1–3 metastases 

within 6 weeks of study enrollment; age ≥ 18 years; Karnofsky performance status ≥ 70; 

anticipated survival ≥ 3 months; extracranial disease controlled; to be treated, or  absent. 

Exclusion criteria were: metastases not suitable for SIB (> 3 lesions or any lesion 

maximum diameter > 3 cm, metastases within 5 mm of brainstem or optic apparatus, 

evidence of leptomeningeal spread, intracranial extension of an osseous metastasis, 

evidence of intraventricular or subependymal growth), prior cranial radiotherapy, 

concurrent cytotoxic chemotherapy, contraindications to MRI or gadolinium contrast. 

The patients underwent HT with 30 Gy WBRT and 60 Gy SIB in 10 fractions at the 
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London Regional Cancer Program, London Health Science Centres, Canada. Figure 4.1 

illustrates the isodose curves for a 60 Gy/10-fraction WBHT+SIB case.  

 

Figure 4.1 Isodose curves for an HT plan, illustrating a whole brain radiation plan 

(yellow = 30Gy) with integrated high-dose boost (purple = 60Gy) to a metastatic 

lesion. 

 

For each patient, we acquired pre-treatment and post-treatment T1-weighted (T1W) 

gadolinium contrast-enhanced MRI scans (for an overall total of 21 × 2 = 42 scans) using 

3D spoiled gradient echo sequence (repetition time: 8.84 msec, echo time: 3.47 msec, 

slice thickness: 2 mm, matrix size: 512 × 512, flip angle: 13º). The mean time between 

the baseline and follow-up scans was 3.4 months (range 1–6 months). Imaging was 

performed on a 1.5 Tesla General Electric Signa HDxt MRI scanner (GE Healthcare, 

Waukesha, WI, USA).  
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 Patient 1 Patient 2 Patient 3 

Pre-
treatment 
Image 

   

Post-
treatment 
image 

   

Figure 4.2 Sample images of brain metastases at the pre-treatment and follow-up 
imaging time points, with manual contours overlaid in red.  Note the variability of 
MRI appearance of the different lesions. 

 

Table 4.1 Primary site of metastasis for non-responders and responders  

Primary Site 
Number of Non-

responding lesions 
Number of 

Responding lesions 

Breast 4 1 

Melanoma 3 3 

Lung 1 8 

Colon 1 0 

Kidney 4 0 

Parotid 1 0 

Thyroid 1 0 

Prostate 0 3 

Unknown 1 0 
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Figure 4.3 Representative axial cross sections from inferior (left) to superior (right) 

of two tumors, one in each row.  The tumor in the first row (a) had a standard 

deviation of 375.79 within its core region.  The tumor in the second row (b) had a 

standard deviation of 238.97 within its core region.  The higher standard deviation 

value in the upper tumor is reflective of the more variegated texture within the 

tumor; bright pixels are sometimes neighbouring bright pixels, but are also 

sometimes neighbouring dark pixels; the correlation between intensities of 

neighbouring pixels is not as high as in the tumor in the second row. 
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4.2.2 Methods 

3D lesion contouring on the post-contrast T1W MR images was performed by a radiation 

oncologist with expertise in treatment of brain metastases using ITK-SNAP (Version 

2.4.0) for all the baseline and follow-up lesions11. The regions enclosed by the contours 

were recorded as 3D binary label maps.  All subsequent image processing and data 

analysis was performed using Matlab 7.1 (The Mathworks Inc., Natick, MA, USA). 

The longest diameter lying entirely within tumor tissue on any axial slice for each lesion 

was calculated based on the 3D binary label maps according to the Response Evaluation 

Criteria in Solid Tumors (RECIST) 1.1 guidelines10. For each lesion, the percentage 

change in RECIST was calculated as 100% × (follow-up RECIST - baseline RECIST) / 

baseline RECIST. Lesions with a percentage change in RECIST of ≤ -30% were grouped 

as responders (15 lesions), with the remainder of the patients grouped as non-responders 

(16 lesions), according to the RECIST guidelines for clinical assessment10.  

Measures of size and appearance were computed on each 3D contoured tumor, as well as 

on two tumor subregions, defined as follows. The 3D binary label maps were 

automatically separated by software into two regions: a peripheral region intended to 

correspond to the tumor rim, and the remaining region intended to correspond to the 

tumor core.  The rim was defined as the set of image voxels within 3 mm of the tumor 

boundary on each slice within each 3D tumor.  The core was defined as the set of image 

voxels on the inside of the tumor and not within the rim. 
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Inspired by qualitative categorizations of metastases as “homogeneous”, 

“heterogeneous”, and “rim-enhancing” in related work in the SRS context12,13, we 

calculated the following features for each tumor and its subregions: (1) 3D tumor volume 

(number of voxels within the contoured tumor × voxel size), (2) tumor diameter, (3) 

mean T1W signal intensity, (4) standard deviation of the T1W signal intensity, (5) 

skewness, (6) information entropy of the T1W signal intensity histogram, (7) 

homogeneity, (8) inertia, (9) energy, (10) correlation, and (11) the ratio of mean intensity 

within the rim to mean intensity within the core (henceforth rim:core ratio). Features (1) 

and (2) are size measures. Features (3)–(5) are first-order appearance and texture 

measures. Features (6)–(10) are a subset of the Conners and Harlow second-order texture 

features14 and were calculated based on a gray-level co-occurrence matrix (GLCM) 𝑔, 

where 𝑔(𝑖, 𝑗) contains the number of neighbouring pixels having intensities 𝑖 and 𝑗. Each 

GLCM-based feature was calculated as follows:  

homogeneity = ∑ 1
1+|𝑖−𝑗|

𝑔(𝑖, 𝑗)𝑖,𝑗 ,  

inertia = ∑ (𝑖 − 𝑗)2𝑖,𝑗 𝑔(𝑖, 𝑗),  

energy = ∑ 𝑔(𝑖, 𝑗)2𝑖,𝑗 , and  

correlation = ∑ (𝑖−𝜇)(𝑗−𝜇)𝑔(𝑖,𝑗)
𝜎2𝑖,𝑗 .  

Images were quantized to 60 gray levels and we computed four GLCMs with neighboring 

pixels defined in angular directions of 0, 45, 90 and 135. For each axial slice containing 

tumor, a single GLCM was constructed from the sum of the four GLCMs taken in each 
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direction.  These slice-wise GLCMs were then summed to produce a final GLCM, from 

which the texture features were calculated. 

Kolmogorov-Smirnov tests were used to assess the normality of the distributions of the 

data. Mann-Whitney U tests were conducted to test for significant differences between 

the medians of the two groups (responders and non-responders), with α = 0.05. Receiver 

operating characteristic (ROC) curve analyses were performed for each feature 

independently and areas under the curves (AUC) were computed. ROC curve analysis 

was conducted using the SPSS software package (IBM SPSS, Version 21, Chicago, IL). 

4.3 Results 

Table 4.2 shows the median and interquartile range (IQR) of each feature within each 

group for the whole tumor, as well as the result of the Mann-Whitney U test for each 

feature. Tables 4.3 and 4.4 show the same information for the core and rim regions, 

respectively, although for these regions only the appearance measures, not the size 

measures, were calculated as the sizes of the rim and core are directly correlated with the 

size of the whole tumor.  For the whole tumor and for the core region, significant 

differences in median tumor diameter, 3D volume, and second-order homogeneity, 

inertia, correlation, and energy were found.  For the rim region, significant differences in 

homogeneity, inertia and energy were found. For the whole tumor, the 3D volume 

measure had a smaller p-value, compared to the tumor diameter measure.  For all 

significant differences, non-responders had larger 3D volume, diameter, inertia, and 

correlation values, and smaller homogeneity and energy values.  Figures 4.4, 4.5 and 4.6 
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shows box and whisker plots for features found to be significant, to graphically illustrate 

the differences between the groups.   

 

Table 4.5 shows the AUC values for the three top-performing individual features, as well 

as the optimal thresholds (chosen as the upper left-most points on the ROC curves).  In 

addition, logistic regression was done to examine combined performance of the variables, 

and we calculated the AUC yielded by the combination of the best-performing size 

measure (tumor 3D volume) and the best-performing appearance measure (core 

correlation) to investigate whether the combination of size and appearance characteristics 

would yield improved per-patient prediction of response.  This combination did not 

outperform the measure of core correlation. The threshold shown in Table 4.5 for this 

feature combination is on the response variable from the logistic regression model. 
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Table 4.2 Feature values measured for each group in the whole tumor.  For rows 

with p < 0.05, the larger median is underlined. 

 

Feature 

  

Responders 

(median ± IQR) 

Non-responders 

(median ± IQR) 

p-value 

  

3D volume (mm3) 1326 ± 2529 3879 0.01  ± 7120 

Tumor diameter 17.8 ± 12.1 24.1 0.03  ± 15.0 

T1W signal intensity 1369 ± 1723.7 1199 ± 885.1 0.24 

SD T1W signal intensity 466.1 ± 441.6 339.7 ± 271.6 0.39 

Skewness 0.04 ± 0.56 0.11 ± 0.72 0.67 

Entropy 9.7 ± 2.0 10.1 ± 1.3 0.67 

Homogeneity 0.998 0.997 ± 0.002  ± 0.001 0.02 

Inertia 0.25 ± 0.20 0.35 0.02  ± 0.22 

Correlation 0.93 ± 0.05 0.95 0.03  ± 0.02 

Energy 0.995 0.993 ± 0.007  ± 0.004 0.01 

Rim:core ratio 0.73 ± 0.16 0.66 ± 0.14 0.73 
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Table 4.3 Feature values measured for each group in the tumor core.  For rows with 

p < 0.05, the larger median is underlined. 

 

Feature 

  

Responders 

(median ± IQR) 

Non-responders 

(median ± IQR) 

p-value 

  

T1W signal intensity 1382.9 ± 2005.2 1240.6 ± 900.7 0.22 

SD T1W signal intensity 390.7 ± 366.8 334.6 ± 290.9 0.48 

Skewness 0.09 ± 0.41 0.15 ± 0.86 0.95 

Entropy 9.62 ± 2.1 9.90 ± 1.6 0.46 

Homogeneity 0.9987 ± 0.001 0.9981 ± 0.001 0.02 

Inertia 0.34 ± 0.28 0.44 0.04  ± 0.20 

Correlation 0.90 ± 0.07 0.93 <0.01  ± 0.02 

Energy 0.996 0.994 ± 0.007  ± 0.004 0.01 
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Table 4.4 Feature values measured for each group in the tumor rim.  For rows with 

p < 0.05, the larger median is underlined. 

  

Feature 

  

Responders 

(median ± IQR) 

Non-responders 

(median ± IQR) 

p-value 

  

T1W signal intensity 1082.3 ± 1100.9 830.3 ± 510.8 0.19 

SD T1W signal intensity 359.2 ± 304.4 230.9 ± 235.9 0.41 

Skewness 0.69 ± 0.47 0.83 ± 0.65 0.29 

Entropy 9.44 ± 1.41 9.73 ± 1.5 0.82 

Homogeneity 0.9986 ± 0.0008 0.9984 ± 0.0008 0.03 

Inertia 0.56 ± 0.27 0.74 ± 0.29 0.03 

Correlation 0.79 ± 0.02 0.79 ± 0.02 0.70 

Energy 0.996 ± 0.002 0.995 ± 0.002 0.03 
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Figure 4.4 Boxplots for 3D volume and Diameter for the whole tumor, the core, and 

rim regions, comparing responders (R) and non-responders (NR). 

 

 

Figure 4.5 Boxplots for Homogeneity and Inertia for the whole tumor, the core, and 

rim regions, comparing responders (R) and non-responders (NR). 
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Figure 4.6 Boxplots for Correlation and energy for the whole tumor, the core, and 

rim regions, comparing responders (R) and non-responders (NR). 
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Figure 4.7 ROC curves for the four features that had the largest AUCs (Table 4.4). 

 
 

Table 4.5 Optimal thresholds of features having the four largest AUCs. 

 
Features AUC  Threshold 
Tumor 3D Volume .75 2154  
Tumor Diameter .72 16.84  
Core Correlation .77 0.92 
Combined (core correlation +3D volume)  .77 0.32 
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4.4 Discussion 

The role of brain radiotherapy has been a source of controversy since some patient 

populations show limited clinical benefit15. WBRT is widely used in the treatment of 

patients with metastatic disease16 since it is technically easy to deliver and it improves 

symptoms in 75% of symptomatic patients with brain metastases17,18, but long-term 

survivors may develop neurocognitive deficits4,5 and local control may be inadequate, 

especially in patients who live longer than a few months.  

The feasibility and safety of HT+SIB using 30 Gy WBRT with intralesional boost of 60 

Gy has been shown by Rodrigues et al. in a phase I clinical trial7. For selected patients 

with brain metastasis, aggressive treatment of the individual lesions with high dose 

radiation combined with a lower dose of radiation to the remainder of the brain has 

produced the best results in terms of controlling cancer in the brain and preventing new 

lesions from developing22. HT allows for radiosurgery-type SIB treatments to be given 

synchronously with the standard WBRT dose, and can be used efficiently to boost 

multiple brain metastases without the need for separate stereotactic procedures7,8. 

Bauman et al. have shown that the WBHT+SIB strategy is also relatively independent of 

the number of lesions being boosted and may be a feasible strategy for treating multiple 

intracranial lesions efficiently19. 

In this study, we investigated size and imaging appearance features of the whole tumor, 

tumor rim and tumor core for differentiation of patient groups that would benefit from the 

WBHT+SIB therapy for brain metastases. This is the first study to apply quantitative size 

and imaging texture measures of tumors to measure the differences on pre-treatment 
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contrast-enhanced T1-weighted MRI between responders and non-responders to helical 

tomotherapy with simultaneous infield boost for intracranial metastases. Our approach 

adapts and extends previous work in the stereotactic radiosurgery context by using 

quantitative measures that are related to previously used categorical subjective tumor 

assessments. To measure imaging appearance, we used three first-order features (the 

mean signal intensity, standard deviation of the signal intensity, and skewness) derived 

from the gray-level histogram, where mean and standard deviation are the mean of the 

gray-levels and the measure of deviation of these gray-levels in the image, while 

skewness is the asymmetry of the distribution of the gray-levels. We also tested five 

second order texture features (entropy, homogeneity, inertia, correlation and energy) 

which are calculated from the GLCM, where GLCM provides an estimate of the joint 

probability of the intensity values of neighboring pixels. The use of these predictive 

markers could help to identify the lesions which would benefit from WBHT+SIB 

(responders) while sparing the non- responders which would not benefit so that the latter 

may be treated with other combinations of therapies. For the former group of lesions, 

WBHT+SIB may represent an effective and less invasive option compared to traditional 

combinations of surgery or radiosurgery combined with WBRT.    

For the whole tumor, size measures of 3D volume and diameter were significantly 

different between the responders and non-responders with responders having smaller size 

tumors than the non-responders. One possible explanation for the limited response of 

large tumors is related to the presence of hypoxic regions. Hypoxic regions are resistant 

to radiation damage23. During the course of fractionated WBHT + SIB treatment, smaller 

hypoxic regions may become reoxygenated and therefore may be more sensitive to 
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radiation damage. Conversely, larger tumors have bigger hypoxic regions that may need 

more fractionated radiation delivery (>15 fractions) than is currently used in clinical 

settings.   

Appearance measure of first-order features did not show any significant differences 

between the groups. Second-order features of homogeneity, inertia, correlation and 

energy showed significant differences between the two groups.  Figure 4.3a-b shows an 

example of the differences in the standard deviation (SD) and correlation values for the 

two patients. The tumor in the first row (4.3a) had a SD value of 375.79 and correlation 

value of 0.89 within its core region.  The tumor in the second row (4.3b) had a SD value 

238.97 and correlation value of 0.97 within its core region. The lower correlation value in 

the upper tumor is reflective of the more variegated texture within the tumor and the 

correlation between intensities of neighbouring pixels is not as high as in the tumor in the 

second row.  

Since the tumor appears to have a hypodense core and a hyperintense rim, we also looked 

at the first and second order texture features separately for each of the two regions (the 

tumor core and tumor rim) to assess whether separating the two regions would give us 

better predictive capability. For the core region, we saw similar results to that of the 

tumor as a whole. Core size measures of 3D volume, tumor diameter and second-order 

appearance measures of homogeneity, inertia, correlation and energy were significantly 

different between the responders and non-responders groups. For the rim region, the size 

measure of 3D volume and second-order features of homogeneity inertia and energy were 

significantly different between the two groups. To investigate the predictive value of an 



 

118 

 

 

enhancing rim and/or a necrotic core, we calculated the rim-core ratio. No significant 

difference was seen for the rim-core ratio between the responder and non-responder 

groups. The AUC for the ROC curve (0.46) of rim-core ratio feature was very low, 

suggesting that the appearance (or lack thereof) of an enhancing rim or necrotic core on 

the pre-treatment image may not predict response at first follow-up. 

 

For all three regions (tumor, core, rim), no significant differences were seen in the first-

order features of T1w signal intensity and SD between the responders and non-responders 

suggesting that the T1w signal intensity and SD may not be useful as a predictive marker 

for response to WBHT+SIB therapy.  The failure to detect statistical significance for the 

first-order texture features for the three regions may imply that the global appearance of 

the tumor may be less important than the local pixel intensity relationships to prediction 

of WBHT+SIB treatment response. Further testing of this observation will require greater 

statistical power with a larger sample size.  

There are several limitations to this study. First, all the contours were drawn by a single 

observer; further study is required to measure the impact of observer contouring 

variability on the size and appearance measures used in this study. Second, our sample 

size necessitates that the results of this study be considered hypothesis-generating, with 

more extensive validation required on a separate data set. Third, although our study tested 

a subset of the Conners and Harlow second-order texture features14, this does not 

constitute an exhaustive evaluation of the texture measures that have been proposed, so 

firm conclusions regarding the predictive power of appearance measures in general 
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cannot be drawn from the results of this study and further investigation of alternative 

texture measures is required. Fourth, the texture measure of T1w signal intensity was not 

normalized.  Although this parameter was not significantly different between the two 

groups, factors such as coil loading may have increased the variance of the measured 

signal intensity. In the future a quantitative approach should be taken24 to measure the 

absolute T1 of the tissue for texture analysis. Finally, the logistic regression model's 

performance on a separate validation set should be explored in future work on a larger 

data set. 

Metastatic brain lesion size and second order appearance as measured on pre-treatment 

MRI can distinguish responders from non-responders to WBHT+SIB. . The results of this 

study suggest that the 3D tumor volume and the second-order correlation texture measure 

within the tumor core are the best predictors, with smaller lesions (< 2.1 cm3) and those 

with a relatively smaller second order core correlation value (< 0.92) having a greater rate 

of response to WBHT+SIB. The results also suggest that the longest axial diameter (as 

measured in RECIST) could be a useful surrogate for 3D volume, with tumors having 

diameters < 1.7 cm responding more favorably to treatment.  Appearance measures in 

general can quantify visual changes but they did not substantially outperform measures of 

size; there is high variability of appearance in both responders and non-responders to 

WBHT+SIB. The amount of rim enhancement and/or core necrosis, as reflected in our 

signal intensity measures did not provide useful prediction of response. Ongoing work on 

a larger sample size will include further validation of our results and the development of 

an approach to per-lesion prediction of response to WBHT+SIB therapy based on pre-

treatment MRI, supporting optimal treatment selection. 
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5 Conclusion and Future Work 

This thesis addresses important questions about improving the detection of brain tumor 

recurrence following treatment, differentiating glioblastoma from metastasis using 

quantitative texture parameters, and improving patient selection for helical tomotherapy 

type whole brain radiation therapy with simultaneous infield boost. The main scientific 

contributions are summarized below. 

5.1 Multiparametric Imaging in Patients with 

Glioblastoma  

GBMs are the most malignant form of primary brain tumor where recurrences are 

common even after surgery and chemo-radiation therapy1. Discrimination of tumor from 

radiation injured tissue is essential for guiding proper surgical and radiotherapy 

treatments since tumor recurrences and radiation injury (RI) have similar appearance on 

follow-up conventional magnetic resonance imaging2, 3 (MRI). There have been 

numerous attempts to differentiate tumor recurrences from RI using various functional 

imaging modalities such as CT, MRI, single-photon emission computed tomography and 

positron emission tomography, however biopsy is still the gold standard. DTI derived 

parameters have been used in an attempt to differentiate tumor16 from radiation injury. 

The AxD parameter showed significant differences between the tumor region and RI 

region. Other DTI parameters like FA, MD and RD showed no significant differences 

between the two regions16.  The majority of the studies that were performed to 

differentiate tumor recurrence from RI had no histopathological verification4,5 of the final 
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diagnosis and most of these studies were retrospective4,6. A search for an accurate 

technique to differentiate tumor from RI continues. As described in Chapter 2 we did not 

see significant differences in the diffusion tensor parameters between the two groups. 

Instead, we have shown that correlations between diffusion tensor parameters and routine 

MRI signal intensities were significant and may be able to differentiate the tumor regions 

from radiation injured regions. In this study we used perfusion CT information along with 

FLAIR images to separate the tumor regions from radiation injured regions. This was 

based on the numerous studies that have successfully correlated perfusion properties of 

tumors with histology, and have shown that progressive or recurrent tumors have high 

permeability compared to RI regions7,8,9. The correlation of MRI signal intensity values 

from FLAIR and diffusion tensor parameters is a novel approach that was tested on a 

small group of patients. The preliminary results from this study require further 

investigation with a larger patient population to confirm our initial findings and provide 

estimates as to the accuracy and diagnostic utility of this new method. In future studies 

the tumor regions would need to be confirmed histologically, which is the current gold 

standard.  

 

5.2 Texture Analysis in Differentiating between 

Glioblastoma and Metastasis 

Glioblastoma and metastasis (MET) are the two most common types of brain tumor and 

both these of tumor types exhibit similar radiologic appearance on routine MR imaging10, 
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11. Differentiating between GBM and MET is very important because they have different 

biological mechanisms and require different treatment strategies. Many studies have 

focused on advanced imaging modalities12- 14 such as diffusion tensor imaging, perfusion 

MRI, spectroscopy, and perfusion CT for non-invasively differentiating between these 

two types of tumor. These advanced imaging modalities require long scan times, 

expertise in advanced imaging, and additional imaging modalities in the case of CT, 

which increases cost, examination time, and patient exposure to radiation. Since T1w 

imaging is part of routine brain tumor MRI examination, our technique utilizes easily 

accessible MR images and provides quantitative information without additional cost. In 

our current study (Chapter 3) we have shown that first-order texture feature of standard 

deviation and second-order texture features of entropy, inertia, homogeneity, and energy 

may be able to differentiate between the two groups. ROC curve analysis showed 

combining first- and second-order features increases the predictive accuracy in 

differentiating between GBM and MET. When used individually, the second order 

texture feature of inertia had the best predictive accuracy followed by homogeneity and 

energy. This study was the first attempt to quantify the texture appearance of the tumor 

and use it as an indicator in order to differentiate between GBM and MET. The simplicity 

of implementing our technique makes it more desirable than other advanced techniques. 

In future studies, various models can be created with combinations of these texture 

parameters. With further evaluation and validation of the models on a larger sample size, 

these models can be used in clinical settings to predict tumor types with routine MR 
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images. This would prevent needless tumor biopsies and cut down the imaging and 

ultimately examination time. 

 

5.3 Texture Analysis in Patient Selection for Radiation 

Therapy 

Helical tomotherapy (HT) is a radiation delivery technique that allows for a radiosurgery-

type simultaneous infield boost (SIB) of multiple brain metastases15, 16 synchronously 

with whole brain radiation therapy (WBRT) without separate stereotactic procedures. 

Patient selection is crucial since some patients’ tumors may not respond to HT type 

WBRT+SIB. In our current study (Chapter 4), as a first step toward the broader objective 

of developing a means for response prediction, we have demonstrated that smaller size 

lesions may respond better to this type of radiation therapy. We have also shown that 

measures of appearance provide limited added value for response prediction. Size 

measures have also been shown to be a good prognostic factor for the SRS type of 

radiation therapy17. Qualitative assessment of the lesions may also predict the success of 

the SRS type of radiosurgery18. None of these predictors have previously been studied for 

the WBHT + SIB type of radiation therapy. Our study was the first attempt to quantify 

the texture appearance of the lesions and use it as an indicator for the prediction of tumor 

response to the WBHT + SIB type of radiation therapy. The use of these predictive 

markers can help identify the groups of patients who would benefit from WBHT+SIB 

(responders) while sparing the non-responders who would not benefit so that the latter 
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may be treated with other therapies. For the responders, this type of radiation therapy 

may represent an effective and less invasive option compared to the traditional 

combinations of surgery, or radiosurgery combined with WBRT. Future work with a 

larger sample size will support further validation of our results. This will lead to the 

development of a per-lesion prediction of response approach based on pre-treatment 

MRI, which will support optimal treatment selection for patients with multiple brain 

metastases. 
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