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Abstract 

Cloud based data centres benefit from minimizing operating costs and service level 

agreement violations. Vector-based data centre management policies have been shown to 

assist with these goals. Vector-based data centre management policies arrange virtual 

machines in a data centre to minimize the number of hosts being used which translates to 

greater power efficiency and reduced costs for the data centre overall. I propose an improved 

vector-based virtual machine arrangement algorithm with two novel additions, namely a 

technique that changes what it means for a host to be balanced and a concept that excludes 

undesirable target hosts, thereby improving the arrangement process. Experiments conducted 

with a simulated data centre demonstrate the effectiveness of this algorithm and compares it 

to existing algorithms. 
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Chapter 1  

1 Introduction and Problem Identification 

Cloud infrastructures may consist of one or more data centres. These data centres consist 

of large amounts of computing resources e.g., storage space, memory, and processing 

power. A possible business model for a cloud infrastructure provider is to rent computing 

resources to clients that wish to have their applications executed without having to incur 

the costs associated with buying and maintaining the hardware needed to execute the 

applications [1]. Such a business model is referred to as infrastructure as a service. 

Infrastructure as a service has many benefits that make it an appealing option for client 

businesses. IT systems are able to be obviated and outsourced when one opts to utilize the 

infrastructure as a service industry. With this streamlining of IT, clients will no longer 

have to incur costs associated with hardware acquisition, testing, maintenance, and 

staffing devoted solely to the aforementioned processes. Instead, a client pays a 

subscription fee associated with utilizing the infrastructure present within the cloud [1]. 

Security, testing, maintenance, uptime, and other requirements now become the 

responsibility of the cloud provider. Furthermore, the diverse range of hardware present 

within the cloud makes it possible to run different types of applications. From web 

servers and email servers to databases, a client company may request the execution of a 

variety of applications without having to worry about wildly disparate hardware 

requirements as, once again, the responsibility of hardware procurement falls to the cloud 

provider.   

One of the challenges that a cloud provider has is using the resources within the cloud as 

efficiently as possible. This is accomplished in part by hosting a client’s application in a 

virtual machine. Virtual machines consist of software that encapsulates a client’s 

application and provides all of the operating system and hardware requirements that 

would normally be provided by a physical machine [1]. A virtual machine allows 

computing resources to be allocated to it that are a fraction of the computing resources 

available on the physical machine. This allows multiple applications to run on the same 
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physical machine. A physical machine that is underutilized can have additional virtual 

machines placed on it. If the demand for an application increases then additional 

resources can be allocated. If a physical machine is overloaded it is possible to suspend a 

virtual machine, move it to another physical machine and restart from the state that the 

virtual machine was suspended in. This is referred to as migration. Effectively using 

cloud resources using virtual machines has been investigated e.g., [2] [3] [4] [5].  

1.1 Data Centre Managers 

Data centre managers provide the mechanism through which decisions can be made and 

virtual machines can be reorganized within a data centre to utilize resources more 

efficiently. The effectiveness of the data centre manager is directly tied to the 

effectiveness of the policies it implements to determine arrangements of virtual machines 

on the physical hosts [6]. It should be noted that in much of the literature, arrangements 

of virtual machines are simply referred to as placements. However, to avoid ambiguity 

with the initial placement of virtual machines, the locations of the virtual machines within 

a data centre at any point will be referred to as an arrangement.   

1.2  Resource Management 

Effective utilization of cloud resources requires the allocation of resources to virtual 

machines that satisfies the run-time requirements of the application running in the virtual 

machine. The static approach to resource allocation for an application assigns the 

maximum amount of resources needed by the application. This approach ensures that an 

application’s resource demands are met as long as the resource requirements are 

accurately calculated. This represents an overcommittment of resources [2] [3] [7] [8]. 

This strategy may result in an underutilization of resources [9] [5] [10] [4]. For example, 

consider a particular application that had a lifetime of 100 hours and for 90 of those hours 

only requires 10 units of resource A. For the remaining 10 hours, the application requires 

500 units of resource A. With static allocation, 500 units of resource A would be allotted 

to the application for the entire 100 hours of the application’s execution time. Clearly the 

majority of resource A could be better used in the execution of some other application. 
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Static allocation works best when the resource requirements of an application are not 

highly variable. Another approach allows for the oversubscription of a host’s resources 

[11]. This assumes that applications have highly variable demands and that the set of 

applications (and hence VMs) varies over time. Dynamic resource management takes 

advantage of migrating a VM from a physical machine to a host machine that is not 

overloaded. Migration results in a new arrangement. 

1.3 Virtual Machine Arrangement and Bin Packing 

The data centre manager selects the physical host to place each virtual machine. This is a 

non-trivial task since the resource requirements of each virtual machine and the 

availability of resources of host machines must be considered [12] [13] [14]. Determining 

an arrangement when only one resource is considered is analogous to the one 

dimensional bin packing problem, which has been shown to be NP-hard [15]. However 

determining an arrangement when multiple resources are to be considered is not the same 

as the multidimensional bin packing problem, and thus existing methods for the 

multidimensional bin packing problem do not apply [16] [17].  

Essentially virtual machine arrangement is a problem that with one resource is analogous 

to the one dimensional bin packing problem, but with multiple resources it is more 

complex than the multidimensional bin packing problem. The rest of this section 

discusses this in more detail. 

Virtual machine arrangement design is analogous to the bin packing problem where only 

one resource is considered. In the bin packing problem, items of varying weight are to be 

placed in bins. Each of the bins has a maximum weight. The objective is to achieve an 

arrangement where the minimum number of bins is used without exceeding the maximum 

weight of any one bin. Virtual machine arrangement design mirrors this task as the 

objectives are quite similar and approaches to solving the bin packing problem can be 

utilized to great effectiveness [18]. For example, a data centre may take only one resource 

under consideration, CPU usage. In this situation, the virtual machines represent the 

items. The hosts are akin to bins. The CPU requirements of each virtual machine are the 
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weight and the maximum CPU capabilities on a given host represent the maximum 

weight each bin may hold. The objective would be to satisfy all of the CPU needs for 

each of the applications while using the least number of physical hosts and maximizing 

the satisfaction of service level agreements. By minimizing the number of hosts, the data 

centre avoids underutilization and operates at increased efficiency [18]. Thus, power 

efficiency is maximized and the operating costs associated with powering a data centre 

are minimized [4] [19]. A variety of algorithms exist for approximating solutions to the 

bin packing problem. These algorithms can also be used by a data centre manager. 

Although the basic bin packing problem and its approaches are suitable for utilization in a 

data centre management policy where only one type of resource is considered, the 

similarities do not extend into higher dimensions and multiple resources [20] [16]. 

Multidimensional bin packing algorithms consider each dimension to be like an edge on 

an n-dimensional object. For example, in two dimensions length and width are considered 

in calculations. If items are thought to be represented by rectangles, a valid arrangement 

would be one where the rectangles are placed beside each other. This would result in 

reducing the “amount of width” remaining in a bin but the “amount of length” taken up 

would be the same as if only one rectangle were placed in a bin. In a virtual machine 

arrangement, virtual machines cannot be placed “beside” each other. Every additional 

virtual machine placed in a host must subtract some of the available resources from the 

host’s total across every dimension. Figure 1 demonstrates the only valid arrangement for 

two virtual machines in a host where two resources, RAM and CPU, are considered. The 

axes represent the amount of each respective resource that the host may allocate to the 

virtual machines. The lightly coloured rectangles represent, through the lengths and 

widths, the amount of each respective resource the virtual machines require. The diagonal 

black lines represent areas that cannot be occupied by virtual machines because that 

would imply the arrangement of a virtual machine with insufficient resources being 

deducted from the host’s total.  
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Figure 1 – Valid VM Arrangement 

Figure 2 illustrates a virtual machine arrangement that may be furnished by a solution 

that appropriates techniques from a two dimensional bin packing methodology. 

Nevertheless, such an arrangement is invalid for use in the virtual machine arrangement 

problem. This diagrammatic explanation was independently developed by this researcher 

however similar explanations, including similar diagrams, can be found in the literature, 

in particular [21]. It is because of the fact that a valid bin packing arrangement does not 

necessarily correspond to a valid virtual machine arrangement that the multiple resource 

virtual machine arrangement problem is not analogous to multidimensional bin packing. 

Consequently, the algorithms and solutions developed for that problem domain cannot be 

utilized for a data centre’s management policy, at least not without heavy modifications 

and additions.  
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Figure 2 – Invalid VM Arrangement 

1.4 Thesis Focus 

The focus of this thesis is to examine a novel technique for virtual machine arrangement 

that considers two resources. A valid technique will be one that allows all of the resource 

requirements of a series of applications to be met while minimizing service level 

agreements violations [2]. First, in chapter 2, a series of existing techniques for virtual 

machine arrangement will be enumerated. Next, in chapter 3, a novel virtual machine 

arrangement technique will be presented, with a special focus on the concepts and 

techniques that make the process as a whole novel. In chapter 4, a series of experiments 

will be presented where the results support the claims that the novel aspects of the new 

technique are effective when compared to existing, similar techniques and that the new 

technique overall may perform similarly when compared to said existing techniques. 

Lastly, in chapter 5 further improvements upon the novel algorithm and suggestions for 

future work will be discussed as well as any conclusions that can be drawn from the 

aforementioned experiments.  
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Chapter 2  

2 Related Works  

When solving the problem of creating suitable virtual machine arrangements within a 

data centre, one may approach the problem in different ways and with different 

techniques. First, the data centre manager must be designed to create either static or 

dynamic virtual machine arrangements within a data centre. Static arrangements are those 

that seek to place each virtual machine in the data centre once for the duration of its 

execution. This is known as performing an initial placement of a virtual machine. 

Typically, information pertaining to the application’s resource requirements is known 

beforehand and arrangements are constructed with an application’s peak resource 

requirements in mind. This is demonstrated when one utilizes the practice of 

overcommitting resources [22]. In contrast, dynamic arrangements are those that have the 

additional ability to migrate virtual machines to other physical hosts should the need arise 

for a virtual machine to be given more resources than are available on its current physical 

host [7]. These migrations can occur in the form of virtual machine relocation and 

consolidation. The method by which a suitable arrangement is calculated can utilize a 

variety of techniques, e.g. forecasting, genetic algorithms, greedy algorithms, in order to 

construct valid static and dynamic virtual machine arrangements within a data centre [18] 

[10] [23].  

2.1 Static and Dynamic Resource Management 

One of the key considerations for any data centre manager is whether the resource 

requirements of the applications on the virtual machines are to be considered static or 

dynamic. Resource requirements for applications generally fluctuate [7] [24]. If one 

wishes to treat the resource requirements of the applications as static regardless, certain 

assumptions must be made. Generally this consists of placing virtual machines such that 

their peak resource requirements are met. This can be very wasteful as a virtual 

machine’s peak resource requirements may only be necessary for a relatively short period 

of time given the overall execution time of the application [7] [8]. Consequently, 
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dynamic resource management techniques are seen as an overall improvement in the way 

data centre managers construct their arrangements [25] [24]. When constructing an 

arrangement to be used by the data centre with dynamic resource management, three 

operations are available. First, the data centre manager performs a placement operation 

when the virtual machine is first created. This placement operation is necessary for data 

centre managers that handle both static and dynamic resources. Metrics for resource 

requirements are used to place the newly created virtual machine based on information 

pertaining to each virtual machine’s resource usage. This information could be the virtual 

machine’s peak resource usage (as is the case with static arrangements), average resource 

usage, or typical resource usage. This information is then used as input for an 

arrangement technique, such as forecasting, integer linear programming, genetic 

algorithms, or a greedy technique. The output is a valid virtual machine arrangement 

within the data centre. The second and third operations available to a data centre manager 

used for dynamic resource management are relocation and consolidation. Virtual machine 

relocation occurs when the data centre manager has determined that a more efficient 

virtual machine arrangement can be attained by moving existing virtual machines from 

one host to another [3]. This is a result of the resource requirements of one or more 

virtual machines on a host increasing above and beyond the point at which it was when 

said machines were placed on the hosts, thereby causing the host to enter a stressed state. 

Typically, a poll of the hosts within a data centre or event driven programming is used to 

discern when a host enters such a state and relies on existing definitions of what it means 

for a host to be stressed, partially utilized, and underutilized. Such definitions are 

assumed to have been supplied to the data centre manager a priori. Finally, virtual 

machine consolidation occurs when the data centre manager has determined that a more 

efficient virtual machine arrangement can be attained by vacating all of the virtual 

machines from an underutilized host, moving said virtual machines to new hosts, and 

powering off the original host [3]. This is a result of the resource requirements of one or 

more virtual machines on a host decreasing below the point at which it was when said 

machines were placed on the hosts (including the possibility of one or more hosts 

completing their execution), thereby causing the host to enter an underutilized state. Once 

again, a poll of the hosts within a data centre or event driven programming is used to 
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discern when a host enters such a state and this process relies on existing definitions of 

what it means for a host to be stressed, partially utilized, and underutilized. The data 

centre manager then compensates by once again computing a valid data centre 

arrangement, often by using the same technique that was used for placement, and 

migrating the relevant virtual machines in order to implement the new arrangement. The 

ability to dynamically compensate for the fluctuations in the resource requirements of the 

virtual machines residing on the many hosts within the data centre allows for more 

efficient use of the data centre’s resource complements and as such has been found to be 

a superior approach when compared to static arrangements [7] [8] [25]. In summary, 

dynamic relocation and consolidation of virtual machines in response to dynamic 

resource requirements allows for a more efficient usage of the data centre as a whole. 

2.2 Virtual Machine Arrangement Techniques 

There exist several broadly defined techniques for virtual machine arrangement. Each 

technique uses a certain unique concept to decide on which hosts each virtual machine 

should be placed, relocated, or consolidated within a data centre. Each of these 

techniques may be used in either a static or dynamic policy. To implement a technique 

for a static policy, only the initial placement of a virtual machine need be considered. In 

order to implement a dynamic policy, relocation and consolidation of virtual machines 

must be considered as well. One such method is called forecasting and it refers to a broad 

range of techniques where previous arrangements are examined and trends are used to 

predict appropriate arrangements in the future [2] [26]. Also, techniques that involve the 

use of genetic algorithms may also be used to define valid virtual machine arrangements 

[10]. Furthermore, integer linear programming may be incorporated into data centre 

management policies [26]. Lastly, greedy algorithms have been utilized to provide valid 

virtual machine arrangements for data centre management policies [18]. Forecasting, 

genetic algorithms, integer linear programming, and greedy algorithms may all be used to 

construct valid virtual machine arrangements within a given data centre.  
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2.2.1 Techniques Involving Forecasting 

Forecasting is a method for establishing virtual machine arrangement. Forecasting, as the 

name suggests, attempts to predict which suitable virtual machine arrangement will be 

most effective in the future [27] [28] [29]. This is accomplished by examining past and 

current arrangements and attempting to discern which initial conditions resulted in said 

arrangements [28]. Once the initial conditions are identified, they are catalogued and 

stored. From then on, software that is specifically designed to examine the state of the 

data centre records statistics pertaining to the state. If at any time the state of the data 

centre matches, to some degree, one of the recorded states that the data centre has already 

encountered, the data centre manager is notified. The data centre manager will then place, 

relocate, and consolidate virtual machines as necessary to either match previously 

successful arrangements or avoid unsuccessful arrangements [23]. As mentioned 

previously, the success or failure of a given arrangement can be measured via metrics that 

take into account the number of hosts needed, the overall power consumption, and the 

ability of the data centre to adhere to service level agreements. Forecasting can most 

definitely be an effective tool in solving the virtual machine arrangement problem [27] 

[28]. 

Forecasting based data centre management policies have varying success depending on 

the workload. The ideal workload would be one in which the resource usages are periodic 

or at least have some element of repetition to their traces. The reason behind this being 

that these repetitions basically train the forecasting software such that it is better able to 

recognize trends in the workload [23]. Additionally, repetitive workloads give the data 

centre manager the opportunity to compare slightly different arrangements stemming 

from the same initial conditions [23]. The logic being that the more candidate 

arrangements a data centre manager has to choose from, the better chance the manager 

will have of selecting a successful arrangement. Periodic workloads can occur as a result 

of external periodic factors. For example, consider an application that runs 24 hours a 

day, but experiences its heaviest workload during the workday. A forecasting based data 

centre manager might take this into account by storing one arrangement for the hours 

during the workday and a second arrangement for any other time. Conversely, workload 
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traces that are random, have difficult to discern patterns, or are simply too short for the 

software to properly examine will surely cause problems for a forecasting based data 

centre manager. For example, data centres that execute a variety of applications ranging 

from CPU intensive HTTP servers to RAM intensive database management systems 

might not ever encounter similar states twice. Consequently, there will be no opportunity 

to utilize previously implemented arrangements and the efficiency of the data centre 

could possibly degrade [28]. All in all a forecast based data centre management strategy 

works best when the workload traces are such that similar states are often repeated. 

2.2.2 Techniques Involving Genetic Algorithms 

Another technique for creating virtual machine arrangements is through the use of genetic 

algorithms [30]. Genetic algorithms replicate the natural phenomenon of survival of the 

fittest and apply it to complex problems [30]. Genetic algorithms have been shown to be 

successful in solving said complex problems by trying many solutions, combining those 

that were successful to make new combinations, and discarding those that 

underperformed [10] [31]. One such area of success for genetic algorithms is path finding 

algorithms. It is not incomprehensible that one might expect genetic algorithms to 

produce desirable results for the virtual machine arrangement algorithm. The task is 

relatively straightforward. A pool of candidate arrangements is generated. The 

effectiveness of these arrangements are then rated using some metric [31]. For example, 

the number of hosts any given arrangement required would be said to be inversely related 

to its effectiveness. Then, a subset of the arrangements would be selected to move on to 

the next generation and the rest would be discarded. Finally, those arrangements that 

made it to the next generation would have their arrangements divided in some way, and 

crossed over with other candidate solutions [30]. The hope is that through enough 

generations, the arrangements will only pass on qualities that were successful, thereby 

resulting in a near optimal arrangement at the end of the evolutionary process. 

Additionally, random mutations could be included into every generation to account for 

arrangements that were not present in the original candidates. In theory, it is reasonable to 

expect genetic algorithms to be able to provide suitable solutions to the virtual machine 

arrangement problem. 
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In practice, the use of genetic algorithms did not provide solutions to the virtual machine 

arrangement problem that sufficiently outperformed other techniques. There are many 

variables that can be altered when constructing a genetic algorithm. The size of the initial 

pool of candidate solutions, the point of crossover, the rate of mutation, and the number 

of generations can all be altered to provide different results and, consequently, different 

levels of effectiveness when implementing a genetic algorithm. Nevertheless, the 

particular genetic algorithms that have been constructed to solve the virtual machine 

arrangement problem have not outperformed other methods [10]. Although the use of 

genetic algorithms has proven to be successful in the arenas of complex combinatorial 

problems, the virtual machine arrangement problem has so far left them performing 

poorer when compared to other load balancing techniques and forecasting techniques 

[10]. It should be noted that genetic algorithms have been shown to outperform simple 

greedy algorithms [10]. This may be because an ideal arrangement changes as virtual 

machines enter and leave the data centre. As mentioned before, data centres can host 

virtual machines that have dynamic resource requirements and perhaps this concept is 

difficult to integrate into a genetic algorithm. Furthermore, unlike a path finding 

algorithm, there is no logical or intuitive was to establish a crossover point for an 

arrangement. The success of any given arrangement of a virtual machine is inherently 

dependent on the arrangements that came before it. Contrast this with path finding 

algorithms where a movement towards the end goal is always considered improvement, 

regardless of other movements that occurred in the grand scheme of the path. In 

summary, despite the proclivity for genetic algorithms to solve complex combinatorial 

problems, they have shown to be suboptimal with respect to the virtual machine 

arrangement problem.   

2.2.3 Techniques Involving Integer Linear Programming 

Yet another method to solving the virtual machine arrangement problem encompasses 

techniques that utilize integer linear programming. Integer linear programming refers to 

solving a problem where some or all of the variables are restricted to integers [15] [30] 

[31]. Additionally, the constraints on the variables are linear. That is, there are no 

restrictions on the functions that are equal to or of higher order than a quadratic. In the 
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context of the virtual machine arrangement problem, the number of hosts must obviously 

be an integer value. Furthermore, the resource values used when placing the virtual 

machines can also be expressed as integers [30]. The problem of placing virtual machines 

suggests utilizing integer linear programming [31]. In conjunction with limiting the 

values of the problem domain to integers, said techniques incorporate a brute force 

component where every combination of virtual machine arrangements is explored, to a 

certain depth [31]. Such an approach can be best described in the context of a decision 

tree with every node representing a different combination of arrangements [15]. The logic 

behind this technique is that if the data centre manager tries every possible combination 

for the current arrangement as well as a certain number of anticipated future 

arrangements, the data centre manager can make the decision as to which course of 

actions would be the best to follow [31]. The technique is not unlike those implemented 

by chess playing computers. That is, the objective is to reach a state with a certain 

optimal value but there are multiple ways in which to proceed. Every possible path is 

then computed and ranked by some metric. Then the first step in the best performing path 

is taken. The process is repeated at each step.    

Integer linear programming techniques are prohibitively expensive when applied to the 

virtual machine arrangement problem. As mentioned before, there is a brute force 

element to this approach where every combination of a subset of the hosts and virtual 

machines are explored. In even a small data centre this can lead to the problem of state 

space explosion. That is, even if the number of hosts is on the order of 100, the total 

number of possible orderings of these hosts would take too much time to explore. As a 

result, this technique is restricted in its applications [15]. However, this technique can be 

shown to provide better orderings as every single possible combination is explored [31]. 

Additionally, efforts have been made to reduce the time complexity of such techniques by 

utilizing branch and bound mechanisms. That is to say, paths are checked quite early in 

their traversal to find if they will result in an optimal ordering and if they are determined 

to result in a less than optimal ordering, they are excluded from further investigation [15]. 

This is known as pruning. Nevertheless, the time complexity of implementing such 

techniques is exponential and is not suitable for all applications. In summary, integer 
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linear programming based approaches allow for the discovery of optimal arrangements, 

but are useless in some applications due to their prohibitive time complexity.  

2.2.4 Techniques Involving Greedy Algorithms 

In addition to the previously discussed methods, the virtual machine arrangement 

problem can be effectively solved using greedy algorithms. In contrast to forecasting or 

integer linear programming which both try to anticipate the future needs of the data 

centre, greedy algorithms choose the best possible choice given the immediate situation. 

It is the hope that by repeatedly choosing the local optimal solution, a global optimal 

solution will be the end result [18] [21]. Furthermore, the task of constructing virtual 

machine arrangements is difficult when one considers a single resource, let alone 

multiple resources. Greedy algorithms provide a way to combine multiple resource values 

into a single criterion so that they may factor into the creation of a virtual machine 

arrangement. The key differentiator between greedy algorithms then becomes the criteria 

with which the local solution is chosen. In the virtual machine arrangement problem there 

exist multiple ways to rank the hosts and virtual machines if only one resource is 

considered. A ranking system with such stipulations would simply consist of two parts. 

The first part would be a metric with which to rank the hosts, usually the resource value 

under scrutiny and the second part would simply be whether the ordering was increasing 

or decreasing. One such ranking system is “first fit decreasing” where the hosts are 

associated with a scalar value based on some metric and then organized from highest to 

lowest. This ordering has been shown to be effective however alternate orderings exist 

such as “first fit increasing” where the order of the hosts is reversed from the 

aforementioned method, as well as methods that divide the target hosts into subsets based 

on their utilization [18]. When only one resource is under consideration, the scalar value 

is simply the raw value for whatever resource was chosen. For example, if CPU usage is 

the only resource to be factored into the arrangement, each host may be ranked according 

to its percentage of CPU resource currently being used. There have been studies on the 

effectiveness of ranking hosts in such a way, namely [18]; however the purpose of this 

thesis is to examine more than one resource requirement and integrate that information 

into a data centre management policy so such methods will be mentioned only briefly. 
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Consequently, the matter of how to determine a scalar metric when more than one 

resource is to be considered becomes an issue. That is to say, there a several ways to 

combine multiple resource values. Some examples include, summing the values, 

computing the product, calculating the dot product, and finding a ratio between values 

[15]. Of particular interest to this thesis are specific summation, product, and ratio 

methods. 

2.2.4.1 Greedy Metric Type 1 – Summation and Product Methods 

One way to combine resource values is to simply sum them together. CPU utilization, 

RAM requirements, and bandwidth usage are common data centre attributes used when 

deciding how to place virtual machines [30]. For example, if the resources one wishes to 

consider are the CPU utilization, the RAM requirements, and the bandwidth usage, these 

three raw values for a given host may simply be summed together. It is up to the data 

centre management policy designer to decide whether the resource values should be raw 

values, percentages, or weighted values [15]. A possible equation for use in a summation 

based management strategy might be as follows:      (    )   ∑              . This 

equation was inspired by the one discussed in [15]. The resource values of every resource 

under considerations are simply summed together. The value of alpha can be altered to 

reflect a weight if one resource should be considered more heavily in the ordering 

process. A similar method to the summation method is one where the resource values are 

multiplied together rather than having their sum calculated. Once again, it is up to the 

data centre management policy designer to decide whether the resource values should be 

raw values, percentages, or weighted values [15]. A possible equation for use in a product 

based management strategy might be as follows:      (    )   ∏              . Once 

again, this equation was inspired by the one discussed in [15]. The resource values of 

every resource under considerations are simply multiplied together. The value of alpha 

can be altered to reflect a weight if one resource should be considered more heavily in the 

ordering process. All in all, summation and product methods have been used effectively 

to order hosts when more than one resource is under consideration. 
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2.2.4.2 Greedy Metric Type 2 – Ratio Method 

Yet another method of combining multiple resources is one that takes the ratio of the 

resources under consideration. Now, multiple resources could theoretically be used in this 

manner however research into this method has been limited to two resources only. 

Specifically the CPU utilization resource and the RAM requirements resource were 

considered and the ratio of CPU to RAM was the only combination considered. The 

equation used to reach the scalar value when only CPU and RAM resource levels are 

considered is as follows:      (    )  
           

           
 [15]. It should be noted that the 

assignment of numerator and denominator to their respective resources could be altered 

and indeed could provide alternate results. Nevertheless, this was the assignment 

described in the related work, and the assignment used in experiments mentioned in this 

thesis. 

Greedy algorithms are effective when it comes to the virtual machine arrangement 

problem for several reasons. First, any algorithm that uses a “first fit” methodology has 

been shown to use no more than twice the number of hosts that the optimal solution 

would use [15]. The proof of this is trivial and as such is omitted. In addition to this, it 

has been shown that the number of hosts needed is actually no more than 11/9 times the 

number of bins that the optimal ordering would use, plus one more bin when one uses a 

“first fit decreasing” methodology [31]. Additionally, the time complexity for such 

algorithms is quite favourable. The dominant operation in these types of orderings is the 

sort used to reach the final ordered state. Due to the fact that the ordering involves 

comparing pairs of values, the time complexity of the sort can be found to be n*log(n). 

This is much more desirable than say the integer linear programming technique which 

experiences time complexities on the order of exponentials [15]. The drawbacks to using 

such greedy methods are evident when considering multiple resources. They occur when 

the raw values of the resources are on different orders or a wildly disparate. For example, 

if the CPU utilization is on the order of thousands, but the RAM utilization is on the order 

of millions, any summation or product would be dominated by the RAM component. 

Expressing the resource values as percentages would be a necessity in this instance. 
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Additionally, using the aforementioned greedy techniques is somewhat naïve as one 

should be able to place virtual machines such that a host’s individual resource limits are 

used most effectively. When combining multiple resource value into one metric, this 

information is lost. For example, consider a data centre that considers two resources, 

CPU and RAM, and utilizes the summation strategy. Imagine a host that is then assigned 

a scalar value of 10. This value of 10 could be the result of several combinations of CPU 

and RAM values. 9 CPU units and 1 RAM unit, or 5 CPU units and 5 RAM units both 

satisfy the equation. Thus it is in the combining of the resources that one loses 

information pertaining to individual resource needs. One can no longer place virtual 

machines in such a way to compensate for individual resource disparity. All things 

considered, greedy algorithms are effective due to their simple equations and their low 

time complexity, but may not be ideal due to their ability to obfuscate individual resource 

requirements.    
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Chapter 3  

3 A Novel Algorithm for VM Arrangement 

This chapter describes a new algorithm that builds upon the vector-based approach. The 

first novel contribution to existing vector-based approaches is the use of a balance vector 

that does not assume resources should be used in equal proportions. The second novel 

contribution is one of excluding some viable hosts from the list of potential target hosts to 

make a more intelligent selection. 

3.1 Existing Vector-based Techniques 

The basis of a vector-based technique is the use of a vector where each element 

represents a resource usage. Vectors can be used to represent the resource utilization of 

hosts and virtual machines [21]. Resource utilization is expressed as a percentage of the 

host’s total complement for that resource. Vector-based approaches consider all 

utilizations as percentages. This is to ensure that the algorithm is extensible to 

environments where resources can differ by orders of magnitude. Figure 3 illustrates the 

concept of a resource utilization vector that has a dimension of two. Resource A is 90% 

utilized and resource B is 30% utilized.   

 

Figure 3 – A Host's Resource Utilization Vector 
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When a virtual machine is placed on a host, the vector addition of the virtual machine’s 

resource utilization vector and host machine’s resource utilization vector results in a new 

host resource utilization vector. Placing a virtual machine on an existing host is illustrated 

in figure 4. Vector addition is performed on the virtual machine and host vectors. 

Consequently, the host’s resource utilization vector changes from (0.90, 0.30) to (0.95, 

0.45). Placing the virtual machine on the host machine resulted in a 5% point increase in 

the utilization of ‘resource A’ and a 15% point increase in the utilization of ‘resource B’. 

The ‘Updated Host Resource Utilization Vector’ now represents the utilization levels of 

the host machine.  

 

Figure 4 – A VM Resource Utilization Vector added to a Host Resource Utilization 

Vector  

The resource utilization vector of the virtual machine may result in the updated host’s 

resource vector’s slope changing. With a vector-based approach, a virtual machine is not 

necessarily assigned to the first host that can accommodate it. Placement makes use of a 

balance vector, which represents the ideal utilization of a host machine. A virtual 

machine is assigned to a host that has the smallest magnitude of the updated host’s 

rejection vector on the balance vector. The vector rejection of a vector vi on vj is a vector 

vk which is either null or orthogonal to vj. In this work the rejection vector measures the 
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shortest distance between the end of one vector to another vector. Figure 5 illustrates the 

concept of the rejection and balance vectors. The rejection vector has one end at the 

terminus of the host resource utilization vector and the other end meeting the balance 

vector at a right angle. In Figure 5, the balance vector used represents equal utilization of 

each resource. Basically, virtual machines are placed on hosts in order to equalize 

resource usage across all resources and bring host resource utilization closer to what an 

ideal host’s resource usage should be as represented by the balance vector. In contrast to 

other techniques that simply place a virtual machine onto the first host onto which it will 

fit, vector-based techniques utilize a best fit concept. A virtual machine’s theoretical 

arrangement is considered on all possible target hosts, and the host that produces the best 

arrangement, that is the one resulting in the smallest rejection vector, is the one that is 

selected to house the virtual machine [21].  

 

Figure 5 – Balance and Rejection Resource Utilization Vectors 

For example, if a host is overutilized with respect to ‘resource A’ but underutilized with 

respect to ‘resource B’, a virtual machine with the opposite resource characteristics, that 

is one that is underutilized with respect to ‘resource A’ and overutilized with respect to 

‘resource B’, could be placed on the host so that the host resource utilization is closer to 

the ideal resource utilization as represented by the balance vector. This is thought to 
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allow for more virtual machine arrangements on the same host as the ability to single out 

particular resources should allow for arrangements that would otherwise be overlooked.  

The idea behind this approach is that it should result in fewer hosts used overall [21]. 

This concept is illustrated using Figure 6 which considers four available hosts each with 

different levels of their RAM and CPU complements utilized. Now consider five 

additional virtual machines to be placed with varying levels of RAM and CPU 

requirements. Different arrangements are possible that result in a different number of 

hosts being needed. Note that the arrangement that utilized the fewest hosts was one that 

placed virtual machines with the intent of using equal amounts of each resource, 

percentage wise.  

 

Figure 6 – Different Arrangement Choices Result in Different Number of Hosts 

Required 

One drawback to this approach is that it is a best fit algorithm rather than a first fit. The 

vector-based approach must compare the VM resource utilization vector with all target 

host resource utilization vectors. Although an additional series of comparisons is needed, 

the dominating operation remains the sorting of the hosts based on the rejection vector. 
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The sorting can use any algorithm that sorts based on a comparison of pairs of values 

such as the quick sort or merge sort. The possible target hosts are sorted in increasing 

order of how far away the host resource utilization vector is from the balance vector. The 

total time complexity is on the order of V*n*log(n) where V is the number of virtual 

machines to be moved and n is the number of target hosts. In summary, vector-based 

approaches preserve individual resource requirements of virtual machines and hosts in an 

attempt to balance resource utilizations across all resources in a single host.   

3.2  Changing the Balance Vector 

Current work that uses vector-based approaches uses a balance vector with a slope of 

one. This assumes that the ideal host utilization is one with equal usage of the host’s 

resources [21] i.e., for each resource the percentage of resource utilization is the same. 

This assumption may not always result in the best utilization of the data center resources. 

It may be the case that there are virtual machines that have applications that have a 

disparately higher need for CPU resources when compared to RAM resources. In this 

case it is not feasible to assume that all hosts should strive to use both resources equally. 

The slope of the balance vector could reflect an ideal host resource utilization that does 

not assume that both resources are used equally. Figure 7 illustrates this point.   
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Figure 7 – Altered Balance Vector 

We will represent the slope by the ratio of ideal memory usage to the CPU usage. By 

choosing a balance vector with a slope of 0.50:1.00 rather than 1.00:1.00, the data centre 

manager will strive to arrange virtual machines such that ‘resource B’ is used twice as 

much as ‘resource A’. This should counterbalance the resource utilization vector of the 

host shown which clearly uses a much higher complement of ‘resource A’ than it does 

‘resource B’ at the current state of execution. The data centre manager will be inclined to 

place only those virtual machines that have a high ‘resource B’ requirement onto the host 

in question. The task then becomes one of finding the ideal slope to use in a given 

environment. Currently, it is not known what an ideal slope for an environment would be. 

We acknowledge that a single slope implemented on every host might not be ideal either. 

It could be the case that it might benefit a large data centre to have several racks or 

clusters of hosts each with their own respective slopes. Virtual machines could then be 

assigned to appropriate racks or clusters based on resource requirements. However, 

whether one considers a single rack, a cluster, or an entire data centre, we believe that a 

slope that counteracts the average resource requirements for virtual machines to be placed 
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will be most effective. For example, if the resources required by the virtual machines are 

such that the amount of ‘resource A’ within the data centre is routinely exhausted, then an 

ideal slope favours arrangements that use ‘resource B’ as much as possible, while using 

as few hosts as possible. Once found, a more intelligent selection of target hosts can be 

made by the data centre manager. The hope is that this will allow for more efficient 

virtual machine arrangements and fewer hosts used overall. In summary, the first novel 

concept is the introduction of an unequal balance vector to counteract a data centre’s 

natural tendency to use resources unequally.  

3.3 Theta Regions 

The second novel component to the algorithm presented in this thesis is the inclusion of a 

method to exclude possible target hosts. Vector-based approaches use a best fit method to 

derive the target host on which a given virtual machine is to be placed [21]. However, 

there is often only a subset of the possible targets that would benefit from the addition of 

another virtual machine. Consequently, if the set of possible targets was narrowed down 

then it would speed up the assignment of a VM to a host machine. Existing vector-based 

approaches employ some method to accomplish this. This usually involves graphing 

vectors on a plane that represents the utilization of each resource and then selecting hosts 

that are in a region that is diametrically opposed to the region in which the virtual 

machine’s vector resides [21]. This technique does not take into account the fact that 

some suitable hosts are in a severely underutilized state and would be better off being 

powered down and having their virtual machines consolidated on another host. As such, 

better opportunities to balance the resource utilizations of certain hosts may be omitted. 

For example, consider a data centre with two identical hosts. The first host is severely off 

balance with 90% of its CPU complement in use and 5% of its RAM complement in use. 

The second host is slightly off balance with 10% of its CPU complement in use and 5% 

of its RAM complement in use. A virtual machine that would use 10% of a host’s CPU 

complement and 95% of a host’s RAM complement now needs to be placed. The virtual 

machine should be placed on the first host to use all of the host’s available resources. If 

the virtual machine were to be placed on the second host, only the second host’s RAM 
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complement would be exhausted. Additionally, 80% of the second host’s CPU 

complement would be rendered unusable. (A virtual machine cannot utilize only CPU 

resources.) Consequently, preference as a target should be given to off balance hosts. 

The algorithmic construct that has been designed to achieve this is referred to as the 

“theta region”. It is so named because the region takes on the shape of an isosceles 

triangle (when utilized in two dimensions) and the size of the triangle can be uniquely 

identified by the angle that the balance vector makes with one of the equal sides of the 

triangle. By overlaying this triangle, or theta region, on a Cartesian plane populated by 

vectors representing the resource utilizations of hosts, it has the effect of partitioning the 

set of available target hosts into those that are balanced and those that are off balanced. 

This can be seen in figure 8. The physical machines can be sorted by their degree of 

imbalance and achieve the same effect by considering a subset of the resulting list.  

 

Figure 8 – The Theta Region 

The challenge is determining the size of the theta region to reach a subset of target hosts 

that is small enough to include only the pertinent hosts but large enough to account for 

the possibility of a host not being able to accommodate an incoming virtual machine. In 

summation, the second novel contribution is the concept of a region that acts to partition 
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the set of possible target hosts such that a more intelligent host can be selected to receive 

a given virtual machine.  

3.4 The New Vector-Based Algorithm 

The new vector-based algorithm outlined in this thesis builds on existing algorithms [21]. 

It contains the novel additions outlined above that should provide a more economic 

assignment of virtual machines to data centre hosts. First, it should be mentioned that in 

order to implement this algorithm in a data centre, it must be replicated in three different 

instances. The algorithm must be implemented with respect to virtual machine placement, 

virtual machine relocation, and virtual machine consolidation operations.  

Virtual machine placement refers to placing an incoming virtual machine on a host 

machine [3]. When placement occurs, virtual machines are considered individually, one 

at a time, as they are created from the pool of incoming client applications. Virtual 

machine relocation occurs when the data centre manager has determined that a virtual 

machine arrangement that can execute more virtual machines without powering on 

additional hosts can be attained by moving existing virtual machines from one host to 

another [3]. Periodically the data centre manager classifies all hosts as stressed, partially 

utilized, and underutilized. Virtual machines may be migrated from a stressed host to a 

host that is not stressed. The definition of stressed, partially utilized and underutilized has 

been made a priori and is outside of the scope of the algorithm described in this section. 

The periodicity with which these classifications are made, as well as the resource 

utilization levels associated with stressed, partially utilized and underutilized states are 

experimental parameters that are listed in chapter 4. Finally, virtual machine 

consolidation occurs when the data centre manager has determined that a virtual machine 

arrangement that can execute the same number of virtual machines on fewer hosts can be 

attained by vacating all of the virtual machines from an underutilized host, moving said 

virtual machines to new hosts, and powering off the original host [3]. Relocation and 

consolidation may also be triggered by other factors, such as SLA violations. In the end, 

the decision as to whether or not a physical host should be part of a relocation or 

consolidation depends on the objectives one wishes to achieve within the data centre. 
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However, proper utilization levels and minimization of SLA violations are most 

definitely examples of such goals. It should also be noted that a key difference between 

placement and relocation or consolidation is observed. Whereas placement only involves 

a single virtual machine, relocation and consolidation handle a set of virtual machines for 

which new target hosts must be found. The policies used by the three individual 

operations combine to form a single data centre policy [3]. It should be noted that the 

algorithm assumes that a suitable balance vector slope and a theta region have been 

determined a priori. Once the decisions regarding the periodicity of the aforementioned 

processes and the definitions of stressed, partially utilized, and underutilized have been 

assigned, the algorithm is then run to create a suitable virtual machine arrangement. The 

algorithm is run each time there is a need for the data centre manager to perform a 

placement, relocation, or consolidation operation.  

1: Input: VMs, theta, slope 

2: Output: - 

3: targetFound = false 

4: z, pBig, pSmall, uBig, uSmall, e = classHosts(hosts, theta, slope) 

5: targetCategories.add(pBig, uBig, pSmall, uSmall, e) 

6: for vm in VMs do 

7:     for category in targetCategories do 

8:          targets = sortCategoryByRej(category, vm, slope) 

9:          for host in targets do 

10:           if host.hasCapacity(vm) then 

11:              host.deploy(vm) 

12:              targetFound = true 

13:              break 

14:           end if 

15:         end for 

16:         if targetFound then 

17:            break 

18:     end for 

19: end for 

Figure 9 – The New Vector-Based Algorithm 

First, existing hosts must be categorized. There are a total of five categories into which a 

host may fall. The first category is for hosts that are partially utilized and whose resource 

vector’s terminus is outside the theta region. This category is represented by the variable 

‘pBig’. The second category is for hosts that are underutilized and whose resource 

vector’s terminus is outside the theta region. This category is represented by the variable 

‘uBig’. The third category is for partially utilized hosts whose resource vector’s terminus 
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is inside the theta region. This category is represented by the variable ‘pSmall’. The 

fourth category is for hosts that are underutilized and whose resource vector’s terminus is 

inside the theta region. This category is represented by the variable ‘uSmall’. The fifth 

and final category is that of empty hosts. This category is represented by the variable ‘e’. 

For the sake of completion, it should be noted that stressed hosts are never considered 

valid target hosts for any virtual machine movement operation. This category is 

represented by the variable ‘z’. This can be seen in lines 4 and 5 of the algorithm. Next, 

for every virtual machine that is to undergo some sort of movement, a suitable target 

must be found. This is seen in the loop that starts at line 6 in the algorithm. This is 

accomplished by inspecting the categories one by one in the order that they were 

described above. This order was chosen as it best replicated the order and successes 

found in [18]. This order was successful in that it allowed the data centre to achieve the 

best utilization levels while incurring few SLA violations when compared to other 

permutations of the above categories. This success stemmed from the fact that a new host 

was turned on only after all other hosts were checked and deemed unfit to house an 

incoming virtual machine. That is, turning on another host was only done so as a last 

resort. The loop that accomplishes this occurs at line 7. Within each category of potential 

target hosts, each target host is checked to see if placing a virtual machine on it will make 

the host’s resource utilization vector trend more towards the balance vector. The terminus 

of the newly created vector is calculated and its rejection from the balance line is 

computed. The category of potential target hosts is then sorted by the magnitude of said 

rejection in increasing order. This occurs at line 8 in the algorithm through the calling of 

the sortCategoryByRej function. This gives the effect of placing the virtual machine onto 

the host whose state will then be closest to being balanced as a result of hosting the 

virtual machine undergoing the movement. Next, each host in the category is inspected in 

the order described above and the first host onto which the virtual machine will fit is 

selected as the target. The sort combined with the fact that the targets are inspected in 

order results in a best fit heuristic. This process begins at line 9 of the algorithm. If the 

target can accommodate the incoming virtual machine with respect to its resource needs, 

the movement is recorded, set to be executed at the end of the derivation of the 

arrangement, and the algorithm moves on to the next virtual machine to be moved. If the 
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selected host cannot accommodate the virtual machine, the next target host in the 

category is inspected. This is accomplished in lines 10-17 of the algorithm. This process 

repeats until the subset of target hosts is exhausted or until an appropriate target can be 

found. If the category of hosts is exhausted, the algorithm sorts and inspects the next 

category of hosts in the manner described above. This process continues until all 

categories have been exhausted and either results in a new host being turned on or the 

data centre simply cannot hold another virtual machine. It should be noted that as is the 

case with other data centre manager policies, conditions are in place to ensure that the 

source host for a given machine cannot be the same as its destination during relocation 

and consolidation operations, for obvious reasons. This was seen in the experiments 

conducted in [2]. In summary, the new vector-based algorithm organizes possible hosts 

into 5 categories, considers said categories one by one, and sorts potential target hosts in 

increasing order of the magnitude of the rejection of the vector made by the sum of the 

host’s resource vector and the virtual machine’s resource vector with respect to the 

balance vector. 
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Chapter 4  

4 Experimental Design and Results 

This chapter investigates the effectiveness of the new vector-based approach described in 

Chapter 3. Section 4.1 describes the simulator used in the experiments. Section 4.2 

describes the workload traces. Section 4.3 presents the utilization levels used to define 

underutilized, partially-utilized and stressed hosts. Section 4.4 describes the metrics used 

to evaluate the different virtual machine arrangements. In sections 4.5 to 4.7, three 

experiments are presented.  

4.1 Simulator 

The simulator used in the experiments is DCSim [3] [2]. The simulated data centre 

configuration used in the experiment, DCSim, consisted of 200 host machines, of which 

there were an equal number of two types of hosts. The first type of host was modeled 

after the HP ProLiant SL380G5, with 2 dual-core 3Ghz CPUs and 8GB of RAM. The 

other type of host was modeled after the HP ProLiant SL160G5 with 2 quad-core 2.5GHz 

CPUs and 16 GB of RAM. The power consumption of both hosts is calculated using the 

SPECPower benchmark. The power efficiency of the first type of host was 

46.51cpu/watt. The power efficiency of the second type of host was 85.84cpu/watt. 

4.2 Traces 

The five workload traces used consisted of traces from Clarknet, EPA, SDSC, and two 

Google cluster data traces. These traces consist of HTTP server requests. The traces were 

sampled over a fixed time interval and the number of requests during the interval spurred 

the creation of virtual machines. A greater number of requests resulted in a virtual 

machine being created with higher resource requirements and a smaller number of 

requests caused virtual machines to be spawned with lower resource requirements [3]. 

Five random seeds were chosen as the five starting points in each of the workload traces 

for the simulations. This was to control the possibility of one point in the traces being 
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more favourable to any given virtual machine placement policy. The random seeds 

remained constant across all of the experiments and across all changes in policy.  

4.3 Virtual Machine Arrival, Departure, and SLAs 

Virtual machine arrival and departure was based on several workload traces. These 

workload traces contained counts of how often server requests were made over a period 

of time. Higher rates of server requests spur the creation of virtual machines with larger 

CPU resource requirements and lower rates of server requests spur the creation of virtual 

machines with smaller CPU resource requirements [3]. These simulated hosts 

specifications and methods of virtual machine arrival and departure conformed to the 

specifications outlined in other implementations of experiments that also used DCSim, 

namely [2]. In DCSim, an SLA violation occurs when resources required by a VM are 

not available to it and thus performance is impacted. DCSim reports the percentage of 

time that that amount of required resources was not provided to the VM. For migration, 

DCSim applies a penalty which corresponds to the percentage of time that sufficient 

resources are not available to a VM while it is being migrated. 

4.4 Utilization Levels 

The CPU baseline requirements were set at the creation of the virtual machine. During 

execution, the CPU requirements of the virtual machines were allowed to fluctuate 

through a range of 200 CPU resource units. The RAM values were static. For the 

placement operation, the values used for CPU underutilization and stressed hosts were 

60% and 85% with partial utilization being the range between those two values. For the 

relocation operation, the values used for CPU underutilization and stressed hosts were 

60% and 85% with partial utilization being the range between those two values. For the 

consolidation operation, the values used for CPU underutilization and stressed hosts were 

60% and 95% with partial utilization being the range between those two values. The 

relocation and consolidation operations were run periodically at 10 minutes and one hour 

of simulation time, respectively. These values also form the criteria by which the hosts 

are categorized as outlined in the algorithm in chapter 3.  
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4.5 Evaluation Metrics 

There are two metrics used for evaluation. The first metric is the maximum number of 

hosts used during a given simulation. The second metric is the number of SLA violations 

that occur during a given simulation. The first metric is an indicator of energy usage in 

that fewer hosts used typically implies less power consumption. Our goal is to minimize 

the number of hosts used while committing the least number of SLA violations as 

possible.   

4.6 Experiment 1 

This experiment is used to determine the effect of balance vectors where the slope is not 

one and the effect of the theta region.   

4.6.1 Virtual Machines Used 

Three types of virtual machines were used as follows: 

 Virtual machine type one’s resource requirements included 500 shares of CPU 

resource, 1024MB of RAM, one CPU core and 1GB of storage.  

 Virtual machine type two’s resource requirements included 500 shares of CPU 

resource, 1024MB of RAM, one CPU core and 1GB of storage.  

 Virtual machine type three’s resource requirements included 2500 shares of CPU 

resource, 1024MB of RAM, two CPU cores and 1GB of storage.  

These configurations allow hosts to become unbalanced.   

4.6.2 Policies 

Different policies choose target hosts in a different manner. The first policy randomly 

selects virtual machines for migration when a host becomes overloaded. This policy was 

used as a baseline for comparison with other policies. The second policy uses the vector-

based approach described in chapter 3. The slopes used for the balance vector are 
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described in section 4.6.3. Theta regions were not used. The third policy uses the vector-

based approach described in chapter 3 but also used the theta region.  

4.6.3 Slope and Theta Region Values 

The value of the angle identifying the theta region was set to ten degrees for the third 

policy. The value of the theta region remained the same for the duration of the 

experiment since the purpose of this experiment was to determine if the theta region has 

an effect. Ten degrees was seen as a reasonable value but was arbitrarily chosen. Slope 

values are expressed in the form of a CPU:RAM ratio. The final set of slope values for 

the vector-based algorithms used in the second and third policies is as follows: 2.00:1.00, 

1.50:1.00, 1.10:1.00, 1.00:1.00, 1.00:1.10, 1.00:1.50, 1.00:2.00.  

4.6.4 Experiment 1 Results 

 

Figure 10 – Experiment 1 Results 

A detailed table of the results of experiment one may be found at the end of section 4.6.4. 

This experiment shows for the second policy that the number of hosts utilized was 

different for different slopes of the balance vector. This is seen in Figure 10 when 

comparing the second policy’s worst performance, which occurred when using a ratio of 

1.00:2.00 and resulted on average using 182.4 hosts, to the second policy’s best 

100

120

140

160

180

200

2.0:1.0 1.5:1.0 1.1:1.0 1.0:1.0 1.0:1.1 1.0:1.5 1.0:2.0

Number of 
Hosts 

Slope 

Maximum Hosts Used By Policy  

Vector with
Theta Region

Vector without
Theta Region

Random



34 

 

performance, which occurred when using a ratio of 1.50:1.00 and resulted on average 

using only 158.8 hosts. Using a balance vector where the slope is not one in vector-based 

approaches and not using a theta region can have an impact on the produced 

arrangements.  

The third policy uses the vector-based algorithm with a theta region. As with the second 

policy the number of hosts utilized was different for different slopes of the balance 

vector. Using a ratio of 1.00:2.00 resulted on average using 162.2 hosts while using a 

ratio of 1.00:1.10 and resulted in using only 122 hosts.  

Table 1 shows that at no time did any simulation produce service level agreement 

violations in excess of 0.101%. This experiment used an experimental environment as 

described in [2] where three policies that only considered CPU were designed to 

maximize the utilization of a data centre incurred SLA violations of 0.228%, 0.223%, and 

0.220%. The SLA violation values incurred with this experiment are less than half of any 

of SLA violation values when only CPU was considered. Furthermore the SLA violations 

incurred in this experiment are similar to that of the Foster et al. Hybrid policy used in [2] 

that incurred a penalty of 0.092%. In terms of SLA violations, the policies used in this 

experiment are comparable to those found in the literature.   

This experiment showed that the inclusion of a theta region to exclude possible target 

hosts provided statistically insignificant better results compared to not using the theta 

region. This effect is seen when comparing the number of hosts used by the vector-based 

approach without a theta region to the number used by the vector-based approach with a 

theta region. The vector-based approach with a theta region used fewer hosts for a variety 

of ratio used. Results show that the vector-based approach with a theta region performs at 

least as well as the vector-based approach without a theta region on every ratio except 

2.00:1.00 where the vector-based with a theta region performed worse by a fraction of a 

host. Furthermore, the disparity in performance is evident when considering results 

obtained at ratios between 1.50:1.00 and 1.00:1.50. In every case, the vector-based 

approach with a theta region used fewer hosts. The effectiveness of the theta region is 

most evident after examining the results finding that the least number of hosts used by the 
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vector-based approach without a theta region is 156 hosts whereas the least number used 

by the vector-based approach with a theta region is fewer at 122 hosts. Once again, it 

should be noted that at no time did any simulation produce service level agreement 

violations in excess of 0.101%. The vector with theta policy performed statistically 

insignificantly better than the vector without theta policy. Also, regarding the vector with 

theta policy, the best slope/theta combination performed statistically insignificantly better 

than the worst slope/theta combination. The statistical analysis can be found in appendix 

A.  

Table 1 – Experiment 1 Tabulated Results 

 

4.6.5  Experiment 1 Discussion 

This section discusses why the two novel contributions may have an effect. Using a 

balance vector with a slope of one does not consider the resource requirements of the 

individual virtual machines. The resource requirements of these virtual machines are not 

necessarily equally balanced so there is no reason to believe that the optimal arrangement 

Policy Slope
Max Active 

Hosts
SLA Violation

Power 

Consumption (kWh)
Avg DC Util Avg Host Util

2.00 : 1.00 160.2 0.101% 3768.5992 35.65% 60.69%

1.50 : 1.00 153.8 0.099% 3662.1114 35.53% 62.37%

1.10 : 1.00 128 0.045% 3392.8988 35.36% 69.17%

1.00 : 1.00 126 0.027% 3408.3618 35.47% 69.70%

1.00 : 1.10 122 0.016% 3422.5262 35.46% 69.21%

1.00 : 1.50 126.6 0.016% 3587.6228 35.71% 66.88%

1.00 : 2.00 162.2 0.055% 4061.2726 35.78% 59.82%

2.00 : 1.00 159.4 0.091% 3843.8032 35.48% 58.72%

1.50 : 1.00 158.8 0.088% 3878.4224 35.72% 59.04%

1.10 : 1.00 159 0.083% 3846.355 35.61% 59.07%

1.00 : 1.00 159.6 0.081% 3861.7744 35.46% 58.56%

1.00 : 1.10 162.6 0.087% 3933.4162 35.72% 58.09%

1.00 : 1.50 178.2 0.099% 4194.9368 36.42% 57.17%

1.00 : 2.00 182.4 0.080% 4389.8494 37.28% 57.16%

Random N/A 185.2 0.068% 4975.0458 36.10% 52.62%

Experiment 1 Averaged Over 5 Heats

Vector

Approach 

without

a Theta 
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of the virtual machines should result in a perfectly balanced host. This suggests focusing 

on having hosts use their resources to reflect virtual machine resource requirements. This 

can be achieved by allowing for balance vectors to have a slope other than one. In 

experiment one the ideal balance vector ratio, that is to say the one that resulted in the 

fewest number of hosts being needed, was not 1.00:1.00 but rather 1.00:1.10. This 10% 

preference of one resource over the other implies that the virtual machines themselves fit 

best when the data centre manager did not try to use both resources equally but rather 

gave a slight preference or handicap to one. This reflects the unbalanced nature of the 

virtual machines that can be seen when inspecting the resource requirements of the 

individual machines set forth in the environment’s setup. Upon inspection, it is easy to 

see that not one of the virtual machines utilizes resources equally. It is the view of this 

researcher that the value of 1.00:1.10 was the most successful slope in experiment one 

because it best counteracted the tendencies of the combined efforts of all three virtual 

machines to slightly favour the CPU resource over the RAM resource. This researcher 

acknowledges that this particular slope’s success does not necessarily generalize to all 

environments. In summary, an altered balance vector most likely achieves its success 

because it works to counteract virtual machine arrangements that would otherwise 

unbalance the data centre overall, yet does not force the resource allotments of a single 

host to be precisely equal. 

Without a theta region, virtual machines are placed on the host that will become the 

closest to becoming balanced as a result of the newly added virtual machine. This is a 

logical way to proceed as it simply places virtual machines where at least some benefit is 

reaped. However, experiment one illustrates that not all arrangements that trend toward 

improvement should be treated equally. In fact, experiment one seems to imply that it is 

more important to prioritize hosts that are at risk of becoming unbalanced before tending 

to those that may become perfectly balanced as the result of the next virtual machine 

movement operation. There does appear to be some logic behind these results. 

Unbalanced hosts are generally more difficult to move virtual machines onto. This is 

because it only takes maxing out of one of the host’s resource complements for the 

movement to fail. Often, the only recourse to a data centre with sufficiently off balance 
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hosts is to power on additional empty hosts. Consequently, it makes sense that a data 

centre will be more successful if it strives to keep as few unbalanced hosts as possible. To 

achieve this, every opportunity must be made to transition a host from an unbalanced 

state and this is accomplished by moving to it virtual machines whose resource 

requirements naturally counterbalance the current resource utilization levels of the 

unbalanced host. It is akin to placing more weight on an unbalanced scale. The theta 

region ensures that rather than wasting virtual machine arrangements on hosts that are 

already nearly balanced, unbalanced hosts have an opportunity to stabilize. The question 

now becomes one of finding the ideal size of the theta region, if such a size exists. The 

theta region should not be too small lest the algorithm fail to exclude any hosts nor too 

big lest the algorithm exclude all of the hosts. Ideally, the theta region would exclude all 

but the most off balance suitable host. However, the fact that a given virtual machine 

might not fit in the most off balance host requires the set of target hosts to strive for some 

cardinality that allows for off balance hosts to be tended to while still allowing for the 

possibility that a portion of said off balance hosts might not be suitable. In summation, 

the concept of the theta region succeeds by allowing data centre managers to identify 

target hosts that would result in a lesser need to power on additional hosts. 

4.7 Experiment 2 

The purpose of experiment two was to examine the interactions, if any, between the novel 

constructs of the altered balance vector and the theta region when they were varied 

simultaneously. In other words we used experiment two to determine the effect of 

different combinations of theta values and slope ratios.   

4.7.1 Virtual Machines Used 

Three types of virtual machines were used as follows:  

 Virtual machine type one’s resource requirements included 1500 shares of CPU 

resource, 512MB of RAM, one CPU core and 1GB of storage.  
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 Virtual machine type two’s resource requirements included 2500 shares of CPU 

resource, 512MB of RAM, one CPU core and 1GB of storage.  

 Virtual machine type three’s resource requirements included 2500 shares of CPU 

resource, 1024MB of RAM, two CPU cores and 1GB of storage.  

These figures were chosen as they allowed resource usage on hosts to become 

unbalanced. 

4.7.2 Policies 

All simulations were run in the data centre with two different policies. The first policy 

was one in which virtual machines were randomly selected for migration when a host 

became overloaded. This was used as a control to compare with the other policy. The 

second policy is the same as the third policy defined for Experiment 1.  

4.7.3 Slope and Theta Region Values 

The set of ratio values for the new vector-based algorithm expressed in the format of 

CPU:RAM were as follows: 0.5:1.0, 1.0:1.0, 1.5:1.0, 2.0:1.0, 2.5:1.0. The theta values 

were as follows: 5 degrees, 10 degrees, 20 degrees, 30 degrees. .  
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4.7.4 Experiment 2 Results 

 

Figure 11 – Experiment 2 Results 

A detailed table of the results of experiment two may be found at the end of section 4.7.4. 

Figure 11 shows the number of hosts used for different pairings of slope and theta values 

and Table 2 presents results on power consumption and SLA violations for different 

pairings of slope and theta values. Experiment 2 shows that there are several pairings of 

various values from the set of ratios and set of thetas that provide approximately the same 

number of minimal hosts used in their respective virtual machine arrangements. 

However, it was at first surprising that the pairings that were the most successful did not 

have any commonalities. That is to say that they shared neither a slope ratio nor a theta 

value. For example, the pairing that performed the best with approximately 110 hosts 

used in the arrangement occurred with a slope ratio of 0.5:1.0 and a theta value of 5 

degrees. A nearly as successful pairing was that of the ratio of 1.5:10 with a theta value 

of 30 degrees. Not only that, but the pairing of the ratio of 1.5:1.0 with a theta of 5 

degrees performed relatively poorly, utilizing approximately 135 hosts, as did the pairing 

of 0.5:1.0 degrees with the theta value of 30 degrees as it used approximately 145 hosts. 

It seems that not only do suitable pairings not have any factors in common, pairings that 
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contain factors that performed well in other instances actually performed abysmally. In 

summary, the results of experiment 2 imply that there are multiple suitable pairings for 

the new vector-based approach but pairings that consist of factors that were found in 

successful pairings perform poorly when paired together. 

Table 2 – Experiment 2 Tabulated Results 

 

4.7.5 Experiment 2 Discussion 

On the surface, the results of experiment two are not intuitive. However, upon further 

inspection, the results obtained in experiment two do indeed make sense when 

considering the objective of the new vector-based approach. The objective of the new 

vector-based approach is to find a suitable cardinality for the set of target hosts. The new 

vector-based approach strives to consider only those hosts that are off balanced and 

suitable for the incoming virtual machine as a target host. Adjusting the balance vector, 

and the size of the theta region (which is always positioned relative to the balance vector) 

Policy Slope Theta
Max Active 

Hosts
SLA Violation

Power 

Consumption (kWh)
Avg DC Util Avg Host Util

5 110 0.007% 2652.6522 19.97% 42.79%

10 110.6 0.004% 2666.301 19.86% 43.22%

20 144 0.004% 2976.2954 20.71% 37.98%

30 145 0.004% 3012.6758 20.76% 37.69%

5 132.2 0.027% 2992.7274 20.80% 37.54%

10 131.2 0.023% 2944.6028 20.80% 38.22%

20 116 0.008% 2717.0464 20.07% 41.27%

30 115.4 0.004% 2778.8012 19.99% 43.56%

5 135.2 0.028% 3059.0454 20.27% 37.12%

10 135.2 0.028% 3050.4632 20.25% 37.14%

20 132.8 0.024% 2998.401 20.23% 37.79%

30 116.8 0.009% 2746.4024 19.87% 40.63%

5 132.8 0.028% 3003.2698 20.01% 37.36%

10 136.4 0.028% 3010.283 20.06% 37.36%

20 132 0.028% 2999.3992 20.03% 37.41%

30 132.2 0.021% 2927.449 20.09% 38.47%

5 133.8 0.028% 2995.7836 20.01% 37.40%

10 133.8 0.028% 2989.3718 20.02% 37.48%

20 136 0.028% 2997.407 20.08% 37.48%

30 134.6 0.026% 2980.046 20.10% 37.78%

Random N/A N/A 159.8 0.026% 3725.8962 21.59% 41.75%

2.50:1.00

New Vector

Experiment 2 Averaged Over 5 Heats

0.50:1.00

1.00:1.00

1.50:1.00

2.00:1.00
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one directly affects the cardinality of the set of target hosts. By choosing a balance vector 

that is in the middle of the host resource vectors and a small theta region, it stands to 

reason that a small number of hosts will be excluded. However, by choosing a balance 

vector that is far away from all of the host resource vectors and choosing a large theta 

region also means that a small number of hosts will be excluded. This is because the theta 

region will ever so slightly encroach on the host resource vector population. This 

phenomenon is akin to fishing with a net where the balance vector represents the position 

of the boat in the water and the theta region represents the size of the net. The number of 

fish caught represents the cardinality of a set. There are two ways to catch the same 

number of fish. First you may use a small net if your boat is positioned right on top of a 

school of fish. The fish you catch will most likely be from the centre of the mass of fish. 

Second, you may use a large net if your boat is far from a school of fish. The fish you 

catch will most likely be from the periphery of the mass of fish. Nevertheless, the number 

of fish caught will be similar. This is similar to the new vector-based approach. There are 

multiple ways to exclude an appropriate amount of hosts. First, you may position the 

balance vector in the middle of the host resource vectors and use a small theta region. Or, 

you may position the balance vector away from all of the host resource vectors and use a 

larger theta region. The cardinality of the set of possible target hosts may be similar and 

thus similar results are logically obtained. The implication is that there is flexibility in 

choosing slope values and theta values. A value can be chosen for a construct and the 

value for the other construct can then be assigned a value. This makes the new vector-

based approach easier to deploy.  

4.8 Experiment 3  

The purpose of experiment three was to examine the performance of the new vector-

based algorithm when compared with other virtual machine arrangement algorithms.  

4.8.1 Virtual Machines Used 

Three types of virtual machines were used as follows:  
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 Virtual machine type one’s resource requirements included 1500 shares of CPU 

resource, 512MB of RAM, one CPU core and 1GB of storage.  

 Virtual machine type two’s resource requirements included 2500 shares of CPU 

resource, 512MB of RAM, one CPU core and 1GB of storage.  

 Virtual machine type three’s resource requirements included 2500 shares of CPU 

resource, 1024MB of RAM, two CPU cores and 1GB of storage.  

4.8.2 Policies 

All simulations were run in the data centre with six different policies. The first policy was 

one in which virtual machines were randomly selected for migration when a host became 

overloaded. This was used as a control to compare with the other policies. The second 

policy was an implementation of the new vector-based virtual machine arrangement 

policy that had the ability to have its balance vector’s slope and theta region value altered 

prior to the running of the simulation. This is the policy described in chapter 3. The third 

policy was an implementation of a policy that focused on one resource rather than two. It 

is referred to as the Foster et al. Hybrid policy and can be found in [2]. The fourth policy 

was an implementation of the summation policy mentioned in section 2.2.4.1 of this 

thesis. The fifth policy was an implementation of the product policy mentioned in section 

2.2.4.1 of this thesis. The sixth policy was an implementation of the ratio policy 

mentioned in section 2.2.4.2 of this thesis. The last three policies are all greedy 

techniques. The purpose of experiment three was designed to compare the new vector-

based approach to the other approaches described in the literature 

4.8.3 Slope and Theta Region Values 

The following sets of slope values and theta values for the new vector-based algorithm 

were tested and the best performing pair was represented in the final results: CPU:RAM: 

0.5:1.0, 1.0:1.0, 1.5:1.0, 2.0:1.0, 2.5:1.0. The theta values were as follows: 5 degrees, 10 

degrees, 20 degrees, 30 degrees.  
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4.8.4 Experiment 3 Results 

 

Figure 12 – Experiment 3 Results 

A detailed table of the results of experiment three may be found at the end of section 

4.8.4. The results of experiment three showed that the new vector-based approach 

performed statistically insignificantly better than all of the other strategies. The random 

strategy performed worst. It utilized all 200 of the available hosts in the data centre. The 

ratio strategy, that is the one that ordered the hosts based on the ratio of a hosts CPU to 

RAM utilization, utilized, on average, 187.2 hosts. The product strategy performed ever 

so slightly better utilizing 187 hosts on average. The Foster et al. Hybrid policy managed 

to utilize only 186.6 hosts on average. The summation strategy performed better still 

utilizing only 185.4 hosts on average. Lastly, the new vector-based strategy performed 

the best with 181.6 hosts used on average. It should also be noted that the new vector-

based strategy performed well with respect to service level agreement violations as well. 

The new vector-based approach’s best simulation encountered service level agreement 

violations of 0.077% which is definitely comparable to the violations of its nearest 

competitor, the summation method, which had service level agreement violations of 
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0.046%. Furthermore, the new vector-based algorithm performed worse than the Foster et 

al. Hybrid policy with respect to service level agreement violations in that the Foster et 

al. Hybrid policy had a service level agreement violation value of 0.041%. However, with 

such small values, this defeat is not taken too heavily. The new vector-based policy 

performed statistically significantly better than the random policy with respect to the 

number of hosts required. However, the new vector-based policy did not perform 

statistically significantly better than any other policy with respect to the number of hosts 

required. In conclusion, although the new vector-based approach outperformed all of the 

other strategies as it used on average, less hosts than all of the other strategies, it did not 

perform statistically significantly better. The statistical analysis may be found in 

appendix A. 
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Table 3 – Experiment 3 Tabulated Results 

 

4.8.5 Experiment 3 Discussion 

The results of experiment three show the statistically insignificant success of the new 

vector-based approach. The results of experiment three also support existing literature 

that suggests that approaches that do not obfuscate information pertaining to individual 

resource levels should perform more admirably [21]. This is ostensibly a result of the 

data centre manager being able to make more intelligent arrangement decisions with 

respect to virtual machine movements. In turn, this naturally lends itself to individual 

hosts being utilized to a higher level and consequently results in better data centre 

Policy Slope Theta
Max Active 

Hosts
SLA Violation

Power 

Consumption 

(kWh)

Avg DC Util Avg Host Util

5 199.8 0.241% 5565.8662 68.63% 52.01%

10 195 0.201% 5412.6312 69.95% 52.13%

20 181.6 0.091% 4827.2022 77.18% 52.20%

30 185.4 0.045% 4865.0514 76.65% 52.56%

5 181.6 0.077% 4802.6412 77.65% 52.26%

10 185.6 0.051% 4843.1434 77.09% 52.57%

20 184.6 0.055% 5144.3492 77.54% 52.76%

30 183.2 0.080% 5223.5822 77.83% 52.62%

5 185 0.068% 4897.7146 77.33% 52.52%

10 185.4 0.060% 4929.7976 76.79% 52.31%

20 184.6 0.044% 4903.3554 77.15% 52.53%

30 184.8 0.041% 4870.78 77.23% 52.61%

5 181.8 0.096% 5029.9838 77.47% 51.92%

10 183.6 0.097% 5098.3732 77.34% 52.44%

20 185.4 0.056% 4959.209 76.90% 52.42%

30 184 0.039% 4948.3446 76.98% 52.57%

5 186 0.104% 5010.9974 76.71% 51.61%

10 182.6 0.106% 5163.3588 77.40% 52.01%

20 185 0.083% 5085.3868 76.94% 52.34%

30 185.6 0.046% 5012.8762 76.90% 52.56%

Foster et al. 

Hybrid N/A N/A 186.6 0.041% 4984.0286 76.61% 51.78%

Sum N/A N/A 185.4 0.046% 5304.9078 77.24% 51.80%

Product N/A N/A 187 0.048% 5361.673 77.27% 51.68%

Ratio N/A N/A 187.2 0.045% 4840.7176 76.48% 52.08%

Random N/A N/A 200 0.076% 6671.914 60.09% 51.46%

2.50:1.00

New Vector

Experiment 3 Averaged Over 5 Heats

0.50:1.00

1.00:1.00

1.50:1.00

2.00:1.00
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utilization overall. Both the sum and product strategies suffer from their respective 

shortcomings mentioned in section 2.2.4.1 of this thesis. The same could be said for the 

ratio strategy. The Foster et al. Hybrid policy was at an inherent disadvantage because it 

only considered one of the resources in its arrangement strategy. In order to compensate 

for this, an environment that would most benefit the Foster et al. Hybrid policy was 

chosen. Nevertheless, the new vector-based approach outperformed the aforementioned 

strategies. In conclusion, the new vector-based approach performed best most likely 

because it utilized all of the information available to it in a logical manner. 
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Chapter 5  

5 Future Work and Conclusions 

Although several conclusions were reached through the experiments detailed in this 

thesis, there is still room for future research. First, the algorithm naturally lends itself to 

being extended beyond two resources. Also, the process of finding suitable values for the 

theta region and balance vectors could be automated. Additionally, there are additional 

methods of ranking the hosts that still involve the magnitude of the rejection; these 

should be explored. These research areas could add to the conclusions that have already 

been made through this thesis. It was concluded that different values for the balance 

vector most definitely affect the success of the algorithm. Furthermore, the usefulness of 

the theta region construct was also validated. Additionally, an interesting interaction 

between the novel contributions was observed leading to another incentive to use the new 

vector-based approach. Lastly, the new vector-based algorithm was shown to outperform 

other methods. This chapter details possible avenues for future study such as extending 

the new vector-based algorithm into the third dimension, automating some aspects, and 

altering the ordering criteria, as well as codifies the conclusions reached through the 

experiments. 

5.1 Future Work 

The algorithm set forth in this thesis has the ability to be extended beyond two resources. 

Although all of the experiments conducted in this thesis only take into account CPU 

utilization and RAM utilization, there is no inherent reason as to why the new vector-

based approach should be limited to only two resources. The main component of the 

algorithm, that is utilizing the magnitude of the rejection to order possible target hosts, 

can definitely be extended to three dimensions and beyond [15]. The linear algebra 

concept of finding projections and rejections is not limited in any way to two dimensions 

and can be visually represented in three dimensions by placing resource vectors on a 3 

dimensional coordinate system. Furthermore, n-dimensional vectors may be used, 

although it might be difficult to visualize the concept in higher dimensions [15]. Not only 



48 

 

can any aspect of the algorithm that deals with vectors be extended to higher dimensions, 

but the entire theta region construct may be extended as well. In two dimensions, the 

theta region takes on the appearance of an isosceles triangle however all that is needed to 

translate the construct into three dimensions is to represent the theta region as a conic 

section. Figure 12 demonstrates what the approximate visual representation of the new 

vector-based approach would look like if the algorithm was extended into three 

dimensions. The conic section has been truncated and hollowed out so that one may see 

the host vectors (here represented by red spheres) that would be excluded as possible 

target hosts. If one were to imagine if the maw of the conic section were to be extended 

to the extent to the coordinate system, it would more accurately demonstrate the theta 

region concept; however the need to show some spheres being engulfed by the conic 

section was thought to be paramount to explaining the concept. Clearly, three resources 

could be managed quite adequately if one were to implement a three dimensional version 

of the new vector-based algorithm. 

 

Figure 13 – The New Vector-Based Algorithm in 3D 
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The process through which appropriate theta values and ratio values are found could be 

automated in the future. Strictly speaking, the theta values and slope values for the 

balance line are parameters passed to the new vector-based algorithm. However, if one 

were to actually implement the algorithm, it would befit the owners of the data centre to 

automate the process through which those values are found. The experiments conducted 

in this thesis utilized values that were found experimentally through manual testing. 

Additionally, different subsections of a data centre could be preprogrammed to have 

static values for their theta regions and slope values. Furthermore, if applications on 

virtual machines could come with some sort of resource utilization statistic, this 

information could be used to further fine tune the data centre management policy 

automatically. This could obviate the need for finding those values every time a new set 

of applications was set to run on a data centre. In summary, a logical addition to the new 

vector-based approach would be a more efficient way of finding suitable values for the 

theta region and the balance vector slope. 

Lastly, it has been suggested that the ordering criteria for the new vector-based approach 

could be improved upon. The criteria, as mentioned before, are simply a measure of the 

magnitude of the rejection from the host’s resource vector to the balance vector. Hosts 

are chosen based on how small the rejection would be after the proposed arrangement of 

the virtual machine in question was calculated. This method was chosen because it most 

accurately reflected the way vector-based approaches were implemented in the past 

especially as seen in [21]. However, it may prove useful to use the target host that shows 

the greatest improvement through receiving the virtual machine in question. That is, the 

most suitable host is no longer the one that becomes least off balance but rather the one 

that showed the most improvement. It is not immediately clear if this change in the 

algorithm would result in significant gains in performance however it is an interesting 

addendum to the algorithm as it should have the tendency to select more off balance hosts 

more often. The downside is that it may not produce more balanced hosts at the end of an 

arrangement. The fact that this proposed change in the algorithm presents a non-trivial 

area on which to improve upon the algorithm suggests that it is an ideal area for future 
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research. All in all, changing the ordering criteria of the new vector-based approach is 

most definitely an area for future research. 

5.2 Conclusions 

A series of conclusions could be drawn from the set of experiments conducted in this 

thesis. The first conclusion being that the balance vector’s slope does indeed impact the 

successfulness of the algorithm as a whole. It was shown in experiment one that varying 

the slope ratio parameter’s value can have dramatic effects on the number of hosts needed 

to satisfy all of the virtual machines in the simulation. The number of hosts required 

varied by a substantial amount for both the vector-based approach without a theta region, 

and the vector-based approach with a theta region. Minimizing the number of hosts 

required to run the simulation greatly decreases power consumption and therefore 

operating costs, so long as service level agreements are not violated, and therefore any 

method that achieves this should be considered when designing a real world data centre 

[5] [4] [19]. It was also shown that a slope that represents equal utilization across all 

resources does not necessarily produce the best virtual machine arrangement. This was 

best demonstrated when a ratio of 1.00:1.10 was shown to perform the best. This is 

important as literature surrounding vector-based approaches exclusively uses balance 

vectors that promote precise equality among all resources [15]. In summation, the varying 

slope values used proved important as they demonstrated that they can severely impact 

the overall success of the algorithm, and it should not be taken as fact that equal resource 

utilization is desirable. 

Additionally, it was shown in experiment one that the concept of a theta region can 

favourably impact the efficiency of vector-based approaches although experiment one did 

not produce statistically significant results. When compared to vector-based approaches 

without a theta region, the vector-based algorithm with a theta region equipped often used 

less hosts to complete its virtual machine arrangement. It may be concluded that vector-

based approaches may, in the future, benefit from the use of some such construct to 

minimize the cardinality of the set of target hosts. This in turn will lead to less hosts used 

overall and result in lower power consumption and therefore operating costs, so long as 
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service level agreements are not violated, and therefore any method that achieves this 

should be considered when designing a real world data centre [5] [4] [19]. All in all, it is 

clear to see that the novel contribution of the theta region does indeed improve vector-

based approaches to the virtual machine arrangement problem however this improvement 

is not statistically significant. 

Moreover, it was seen in experiment two that using the novel contributions in tandem 

will provide more opportunities for a successful implementation. The new vector-based 

approach relies on two parameters, namely the balance vector slope and the theta region 

value. It was noted in experiment two that there are a wide range of possible, suitable 

values such that this component to the process should not be looked at as a hindrance to 

implementing the new vector-based approach. It was observed that different 

combinations of theta values and slope values produced approximately the same benefits. 

This should assuage any thoughts of shying away from using the new vector-based 

approach for fear of having to devote effort to finding such suitable values. The ease with 

which suitable parameters are found for the new vector-based algorithm should be taken 

as an impetus to utilize the algorithm in real world data centres. 

Lastly, in experiment three, the new vector-based approach was shown to outperform 

other data centre management policies but the results were not all statistically significant. 

The other data centre management policies ranged in complexity from one that only took 

into account one of the resources, to random arrangement of virtual machines, to policies 

that ordered hosts based on an arbitrary binary operation performed on the hosts’ 

resource utilization levels. It should be noted that all of the policies that were compared 

to the new vector-based approach were ones that were used in the literature, and some are 

in fact routinely used to benchmark the success or failure of other data centre 

management policies [21]. Therefore, by using fewer hosts in a data centre to run the 

same simulation, the new vector-based approach was shown to be more efficient than 

those policies that came before it however these results were not statistically significant. 

Yes, the new vector-based approach utilized fewer hosts on average, while still adhering 

within reason to service level agreements, thereby proving it to be an effective data centre 
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management policy given the environment. In summation, the new vector-based 

approach outlined in this thesis is most definitely a policy that can rival the performance 

of its real world counterparts.  

The new vector-based approach is a data centre management policy that has been proven 

to be effective through its use of varying the balance vector’s slope, the inclusion of the 

theta region, the ease with which said parameters could be found, and direct comparisons 

to other policies. However the results of the various experiments were not statistically 

significant. By varying the balance vector’s slope it was concluded that said variable 

plays an important role in vector-based management policies and that an equal ratio is not 

necessarily the optimal one. Additionally, the inclusion of the theta region to reduce the 

size of the target host set proved to have a profound impact by allowing the vector-based 

approach with a theta region to outperform the vector-based approach without a theta 

region with respect to the number of hosts used. Furthermore, the ease with which slope 

values and theta values could be combined to produce suitable pairings spoke to the new 

vector-based approach’s ease of use. Lastly, when faced with direct competition from 

various virtual machine arrangement policies, the new vector-based approach performed 

best with respect to the number of hosts used, all while adhering to service level 

agreements within a reasonable margin. It should be noted that this result was not 

statistically significant. In conclusion, the new vector-based approach and its novel 

components have been proven effective and should be considered for future research as 

well as real world implementation.  
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Appendices 

Appendix A - Statistical Analysis 

 

Figure A1 – Experiment 1 Results, Vector with Theta Policy 

Figure A1 illustrates the data points and statistical analysis for the vector with theta 

region policy found in experiment 1. The mean value of the number of hosts utilized was 

found to be 136.34 hosts. The median value was found to be 134 hosts. The standard 

deviation was found to be 17.11 hosts. The mean and standard deviation were used to 

check for statistical significance as shown in figures A3 and A4. 

 



59 

 

 

Figure A2 – Experiment 1 Results, Vector without Theta Policy 

Figure A2 illustrates the data points and statistical analysis for the vector without theta 

region policy found in experiment 1. The mean value of the number of hosts utilized was 

found to be 165.71 hosts. The median value was found to be approximately 161 hosts. 

The standard deviation was found to be 13.66 hosts. The mean and standard deviation 

were used to check for statistical significance as shown in figures A3 and A4.  
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Figure A3 – Experiment 1 Results, Policy Variance Comparison 

Figure A3 illustrates the statistical insignificance between the performances of the vector 

with theta region policy and the vector without theta region policy found in experiment 1. 

The purpose of this test was to determine if there was a statistically significant 

improvement due to the use of the theta region construct. Although the vector with theta 

region policy utilized a fewer number of hosts on average when compared to the vector 

without theta region policy, the fact that both policies’ means are within one standard 

deviation of each other proves that this is a statistically insignificant improvement. 

Furthermore, statistical tests yielded values of p > 0.05 which is traditionally taken to 

mean that an experiment’s results are statistically insignificant.  
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Figure A4 – Experiment 1 Results, Box Plot 

Figure A4 illustrates the statistical insignificance between the performances of the vector 

with theta region policy and the vector without theta region policy in experiment 1. Once 

again, the purpose of this test was to determine if there was a statistically significant 

improvement due to the use of the theta region construct. Although the vector with theta 

region policy utilized a fewer number of hosts on average, when compared to the vector 

without theta region policy, the fact that both policies’ means are within one standard 

deviation of each other proves that this is a statistically insignificant improvement. This is 

evident when one inspects the whiskers in the above box and whisker plot. Due to the 

fact that the whiskers of each policy overlap, the results from experiment 1 can be 

concluded to be statistically insignificant.  
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Figure A5 – Experiment 1 Results, Best Performing Vector with Theta and Worst 

Performing Vector with Theta Test for Equal Variance 

Figure A5 illustrates the statistical insignificance between the performances of the vector 

with theta region policy’s best performing run and the vector with theta region policy’s 

worst performing run in experiment 1. The purpose of this test was to determine if there 

was a statistically significant improvement when varying the value of the balance 

vector’s slope. Specifically, the purpose was to see if there was a statistically significant 

improvement over the worst performing slope value when compared to the best 

performing slope value. Although the vector with theta region policy’s best performing 

slope value utilized fewer hosts on average when compared to the vector with theta 

region policy’s worst performing slope value, statistical tests yielded values of p > 0.05 

which is traditionally taken to mean that an experiment’s results are statistically 

insignificant.  
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Figure A6 – Experiment 3 Results, Test for equal Variances for Number of Hosts 

Used 

Figure A6 illustrates the statistical insignificance between the performances of the new 

vector-based policy, the Foster et al. hybrid policy, the sum policy, the product policy and 

the ratio policy. The purpose of this test was to determine if there was a statistically 

significant improvement when using the new vector-based policy to construct virtual 

machine arrangements when compared to the other, aforementioned policies. Although 

the new vector-based policy utilized fewer hosts on average when compared to the other 

policies, statistical tests yielded values of p > 0.05 which is traditionally taken to mean 

that an experiment’s results are statistically insignificant. Use of the new vector-based 

policy to construct virtual machine arrangements does not result in statistically significant 

improvements with respect to the number of hosts used when compared to the other 

polices mentioned.  
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Figure A7 – Experiment 3 Results, Box Plot 

Figure A7 illustrates the statistical insignificance between the performances of the new 

vector-based policy, the Foster et al. hybrid policy, the sum policy, the product policy and 

the ratio policy. The purpose of this test was to determine if there was a statistically 

significant improvement when using the new vector-based policy to construct virtual 

machine arrangements when compared to the other, aforementioned policies. Although 

the new vector-based policy utilized fewer hosts on average when compared to the 

policies, the fact that the aforementioned policies’ means are within one standard 

deviation of each other proves that this is a statistically insignificant improvement. This is 

evident when one inspects the whiskers in the above box and whisker plot. Due to the 

fact that the whiskers of each policy overlap, the results from experiment 3 can be 

concluded to be statistically insignificant.  Use of the new vector-based policy to 

construct virtual machine arrangements does not result in statistically significant 

improvements with respect to the number of hosts used. However, it should be noted that 

the above statistical analysis did not discount the new vector-based policy from being a 

statistically significant improvement over random placement. This was further analyzed 

in figure A8. 
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Figure A8 – Experiment 3 Results, Test for equal Variances between New Vector 

Policy and Random Policy Only 

Figure A8 illustrates the statistical significance between the performances of the new 

vector-based policy, and random placement. The purpose of this test was to determine if 

there was a statistically significant improvement when using the new vector-based policy 

to construct virtual machine arrangements when compared to random placement. The 

new vector-based policy utilized fewer hosts on average when compared to randomly 

generated virtual machine arrangements. Statistical tests yielded values of p < 0.05 which 

is traditionally taken to mean that an experiment’s results are statistically significant. Use 

of the new vector-based policy to construct virtual machine arrangements results in 

statistically significant improvements with respect to the number of hosts used when 

compared to random virtual machine arrangements. 
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Figure A9 – Experiment 3 Results, Box Plot for New Vector Policy and Random 

Policy Only 

Figure A9 illustrates the statistical significance between the performances of the new 

vector-based policy, and random placement. The purpose of this test was to determine if 

there was a statistically significant improvement when using the new vector-based policy 

to construct virtual machine arrangements when compared to random placement. The 

new vector-based policy utilized fewer hosts on average when compared to randomly 

generated virtual machine arrangements. This is evident when one inspects the whiskers 

in the above box and whisker plot. Due to the fact that the whiskers of each policy do not 

overlap, the results from this portion of experiment 3 can be concluded to be statistically 

significant. Use of the new vector-based policy to construct virtual machine arrangements 

results in statistically significant improvements with respect to the number of hosts used 

when compared to random virtual machine arrangements. 
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