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Abstract

Volcanism is an important mechanism by which internal heat is transported to the

Earth’s surface and volcanic eruptions are the results of the dynamics of a complex

system and are characterized by non-trivial temporal correlations. Understanding

the processes involved in volcano formation and magma ascent are crucial to develop

better hazard assessment techniques. This study focuses on three main points: un-

derstanding caldera formation in the solar system, investigating the global temporal

behaviour of volcanic eruptions and understanding the nonlinear interactions taking

place in the solid crust which lead to an eruption.

In chapter 2, I first examine the distribution of caldera diameters on Earth,

Mars, Io and Venus by performing a scaling analysis using the mean caldera diam-

eter as a scaling factor. I find that their probability densities can be described by

a universal distribution that can be approximated by a Generalized Extreme Value

distribution. This scaling implies that a similar process governs caldera formation

throughout the solar system.

In chapter 3, I investigate the distribution of interevent times between eruptions

for active volcanoes on Earth. When rescaling the axis using the mean rate of vol-

canism, the distributions collapse into a single one, the log-normal distribution. This

scaling implies that the processes governing volcanic eruptions on Earth are similar

and are independent of the type of volcanism and location, which emphasizes the

importance of studying volcanism by modelling a universal behaviour.

In the last chapter, I take a modelling approach to study the interactions be-

tween the magma and the crust. I define a lattice gas cellular automata model where

the magma is represented by discrete particles. In this model, magma propagates

through the crust and fracturing occurs until it reaches the top of the crust and an

eruption or a cascade of eruptions occur. I study the statistical behaviour of erup-

tions in the model and observe similar size and temporal behaviours that have been

ii



observed on active volcanoes.

Keywords: Statistical analysis, scaling, planetary calderas, volcanic eruptions, cel-

lular automata
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Chapter 1 Introduction

1.1 Preamble

Volcanic processes are the surface expression of a planetary body’s internal activity.

They constitute an efficient mechanism to dissipate internal heat. Volcanism is or was

present on rocky planetary bodies in our solar system such as Earth, Mars, Venus,

Mercury, the Moon, Io and several other planetary satellites [Wilson, 2009, Prockter

et al., 2010]. On Earth, volcanic eruptions constitute a major natural hazard and

with currently around 500 million people living in the vicinity of active volcanoes,

the potential effects of an eruption on population and goods is becoming greater every

day [Kusky, 2008] (Figure 1.1 shows a World map of the major cities and the location

of volcanoes and earthquakes). Large explosive eruptions can have local effects such

as land destruction through pyroclastic flows, but also global environmental effects

through the dissemination of ashes and aerosols in the atmosphere from eruption

plumes [Gilbert and Sparks, 1998].

Volcanoes are complex dynamical systems and the interactions between the

magma and the host rock occurring within the edifice result in eruptions. These

nonlinear interactions lead to the stochastic character of eruptions. Volcanic processes

have been extensively studied through field and numerical analysis providing us with

some quantitative understanding of the main physical mechanisms. However, our

current knowledge remains insufficient to explain and forecast the temporal behaviour

of eruptions. The deterministic character of the modelling fails at reproducing the

temporal patterns observed. Therefore, understanding the mechanisms responsible

for volcano formation and the nonlinear interactions that lead to eruptions alongside

with being able to reproduce the observed temporal patterns are crucial steps in the

field of volcanology and hazard assessment.

This thesis focuses on three primary areas of concern:

• Understanding caldera formation and evolution in the solar system using com-

parative planetology
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• Investigating the global temporal behaviour of volcanic eruptions on Earth,

• Understanding the nonlinear interactions taking place in the solid crust which

lead to an eruption.

In order to investigate similarities in volcanic processes throughout the solar

system, we compare the size distribution of volcanic features on Earth and other

planetary bodies to infer common formation mechanisms. Particularly, we investigate

the statistical properties of circular shaped depressions called calderas on Earth, Mars,

Venus and Io. This type of feature is associated with the collapse of the volcanic edifice

into a drained or partially drained magma chamber and can be used as a proxy to

estimate the potential size of eruptions [Lipman, 2000]. Our goal is to further our

understanding of formation and evolution mechanisms for planetary landforms.

The current knowledge on eruption processes, paired with the numerous moni-

toring tools available for volcano surveillance and historical records allow us to have

access to a large wealth of data. Utilizing these data through statistical analysis is

a powerful approach to determine temporal and spatial patterns in volcanic activity.

This thesis relies on statistical approaches investigating the temporal behaviour of

eruptions throughout the World [Siebert and Simkin, 2002-].

Using a computer modelling approach, we study the complex magma/crust

interactions in volcanic settings. More specifically, a cellular automaton model is

used in order to reproduce the statistics observed in the empirical eruption data for

volcanoes on Earth. The goal is to reproduce the statistical behaviour of eruptions

using the least amount of parameters to capture essential physical mechanisms of

volcanic eruptions.

1.2 Overview of Volcanism

1.2.1 Planetary Volcanism

Volcanism is an inevitable consequence of planetary differentiation and crustal gener-

ation by magmatic processes. The heat present in the solar system planetary bodies

is mostly generated by accretional energy and the decay of short and long lived ra-

dioactive nuclides. The release of planetary body’s internal energy creates internal

temperature gradients and allows for partial melting and the rise of hotter material
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Figure 1.1: Simplified map presenting the location of major cities, earthquakes and volca-

noes. (modified after www.USGS.gov)

towards the surface, which leads to volcanism. Tidal stresses induced on satellites

by the presence of a large body is also considered a considerable source of heat that

can enable volcanism. Space exploration has allowed remote access to most planetary

bodies in our solar system. While it is difficult to make any kind of observations

below the thick atmosphere of the gas giants, satellite observations from terrestrial

planets have indicated the presence of radioactive elements. Planetary exploration

has also directly shown that volcanism is or was operational on other solar system

bodies such as the Moon, Venus, Mars, Mercury, Io, and several other planetary satel-

lites [Wilson, 2009, Prockter et al., 2010]. Volcanic processes are therefore a typical

heat dissipation mechanism on terrestrial planetary bodies. The resultant landforms

depend on parameters such as the bulk chemistry of the parent magma, the nature

of fractures and feeders and their study can lead to a better understanding of the

planet’s internal dynamics.

Volcanism on the Moon is mostly characterized by large basaltic flows called

mares. In its early history, portions of the mantle experienced partial melting and

the melt was lead to rise through cracks and fractures created by the large impact

craters and basins at the surface. The large flows filled those craters and ended up

covering around 20% of the surface of the Moon [Spudis, 2000]. When smaller volumes

of magma are involved in the eruptive processes, smaller volcanic features can form
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such as domes and cones. Their shape depends on the style and rate of eruption

rather than on the magma composition [Head, 1976, Head and Gifford, 1980]. Some

pyroclastic materials were collected from the surface of the Moon by the Apollo 15 and

17 missions, suggesting that some lava fountain type of eruptions may have occurred

in the satellite’s past [Spudis, 2000].

One of the solar system’s planetary bodies that is the closest to the Earth as

far as composition, density and size is Venus. Because of those analogies, the thermal

evolution of Venus and the Earth is similar and they both experienced extensive vol-

canic activity. However, the style of volcanism on Venus is very different from the one

observed on Earth. Where mantle convection and plate tectonics are the main causes

for volcanic activity on Earth, major resurfacing events involving flood basalts seem

to be taking place on Venus [Nimmo and McKenzie, 1998]. The centres for volcanic

activity seem to be scattered at the surface, similarly to intraplates volcanic centres

on Earth [Wilson, 2009]. The type of features present on Venus include small and

large shields, lava flows, dike swarms and flood basalt provinces. Some do not have

terrestrial analogs such as coronae which are circular features exhibiting concentric

radial fractures [Crumpler and Aubele, 2000], arachnoids (named after their resem-

blance to spider webs) and novae. These unusual features might be the product of

how differently the Venusian crust handles deformation [Parfitt and Wilson, 2009].

Mars is one of the terrestrial planets in our solar system that exhibits great

geological diversity alongside with the Earth. No active plate tectonics has been

observed on this body as there is no evidence of active ridge and trench systems.

The planet is divided into two main areas: the highlands, covered with extensive lava

flows; and the lowlands, where volcanic plains cover most of the surface [Wilson, 2009].

Two volcanic provinces contain most of the erupted volcanic materials: Tharsis and

Elysium. In these areas, large shield volcanoes can be observed, including the highest

mountain in the solar system: Olympus Mons [Parfitt and Wilson, 2009]. These large

shields are the result of basaltic flows and can be compared to intraplate volcanoes

on Earth. Cones of various sizes are also present on Mars and have been compared

to cinder cones on Earth [Frey and Jarosewich, 1982].

Mercury is the smallest planet in our solar system and also the densest. This

very high density reflects the presence of a large iron core (compared to the size of the

planet) which could potentially provide a considerable heat source to enable volcanism

[Parfitt and Wilson, 2009]. Up until 2008, with the return of images from the fly-by
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of Messenger, our knowledge of the surface of the planet came from images made by

Mariner 10 during its fly-bys in 1974. Messenger was able to image an additional

21% of the planet and the hypothesis about the volcanic nature of intercrater plains

[Strom et al., 1975] was confirmed. Volcanic vents were observed and identified as

the source for effusive eruptions and the formation of shield volcanoes and lava flows

[Head et al., 2009]. Some evidence for explosive volcanism was also gathered from

the images [Prockter et al., 2010].

Io is one of Jupiter’s satellites and is the most volcanically active planetary body

in the solar system. Unlike most of the other bodies, the source for internal heating

for Io comes from the colossal tidal force that Jupiter applies on its satellite. More

than 300 vents have been identified at the surface and no signs of plate tectonics have

been detected. Silicate volcanism seems to be the main type of volcanism present

and the identified hot spots exhibit two types of activity: persistent and sporadic

[Lopes-Gautier et al., 1999]. The main types of feature present at the surface are

lava flows, lava fountains, high mountains and an analog to terrestrial caldera called

paterae [Radebaugh et al., 2001].

Comparative planetology aims at comprehending the physical factors governing

the shape of planetary landforms as well as the styles and patterns of eruption. Past

studies have attempted to compare volcanic structures on Earth to similar features

on other planetary bodies with some success. Similarities have been found between

Martian cones and cinder cones on Earth [Frey and Jarosewich, 1982] and also be-

tween small Venusian domes, shields and cones and terrestrial sea floor volcanoes

[Smith, 1996, Bulmer and Wilson, 1999]. Because of the relationship between caldera

diameter and magma chamber dimensions and depth, the comparative study of plan-

etary calderas constitute a great tool to gain a better understanding of planetary

subsurfaces [Wood, 1984].

1.2.2 Terrestrial Volcanism

Volcanic eruptions on Earth are the result of complex interactions between magma

(molten rock) and the crust, and volcanoes are non uniformly distributed across the

surface, being primarily located at plate boundaries (subduction zones or mid-ocean

ridges, see Figure 1.1). Around subduction zones, hydration of the mantle is caused

by the release of water from the subducting plate, which facilitates partial melting
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and subsequent rise of magma into the crust. At divergent margins, decompression of

the mantle under a thinning plate enables partial melting. Active volcanism can also

be found in the middle of tectonic plates and is characterized by hot spots volcanoes.

In this case, melting is allowed by the presence of high temperature zones deeper in

the mantle. A plume is generated and feeds the volcanoes at the surface.

Within the crust and the mantle, magma rises due to density differences. When

a depth where the magma is neutrally buoyant is reached, the latter accumulates

forming a continuous body called a magma chamber. The depth of magma chambers

ranges from about 2 to 10 km, depending on the magma composition (Pinkerton et al.

[2002] and references therein). Once in this storage area, the magma starts to evolve.

Cooling will bring its temperature below the liquidus, allowing successive minerals

to form. This process is referred to as fractional crystallization [Parfitt and Wilson,

2009]. As the magma cools and crystallizes in the chamber, volatiles such as water

and halogens will appear in the residual melt, according to the magma composition.

When their concentration reaches a saturation level, gas is exsolved to form bubbles

in the chamber. This process induces a sudden reduction in density, which increases

the buoyancy of the material in the magma chamber. This presence of bubbles is

also responsible for a pressure increase in the magma chamber. Once this pressure P

becomes larger than the lithostatic pressure PL by an amount larger than the value

of the tensile strength (maximum amount of stress the material can withstand before

failure) of the chamber walls, the creation of cracks, or dykes, above the chamber

is possible and the magma starts rising [Blake, 1981]. This gas bubbles formation

process, alongside with the addition of new magma in the chamber are considered as

two of the main causes for initiating eruptions. Figure 1.2 presents a schematic view

of the magmatic plumbing system.

Scandone et al. [2007] proposed a conceptual model to describe magmatic pro-

cesses. They divided the magma system into four different regions. The supply sys-

tem is located at the crust/mantle boundary and provides the primary deep source

of magma. For small eruptions, this area is not involved directly in the eruption

process. The intermediate storage system is located at mid to shallow depths in the

crust and constitute what we previously defined as the magma chamber. There, the

magma can stop or rise due to density differences and will start to cool and evolve.

The third region is the transport system. As previously described, when the magma

starts cooling, crystallization will occur as well as bubble formation. This will create
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Figure 1.2: Sketch of the magma plumbing system. The magma chamber is located at

a depth H from the surface and the pressure within the chamber is a combination of

the pressure due to the host rock P1(H) and the overpressure generated by the input of

magma or the increase in gas content in the chamber ∆Pc. The eruption exit pressure is a

combination of the atmospheric pressure Pa and the excess pressure in the vent ∆Pe. The

lithostatic pressure around the chamber PL(z) is a function of depth and the density of the

host rock ρr [Jaupart, 2000].
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local stress field changes and density unbalance that allows the magma to propagate

through a fracture system. The last component of Scandone et al. [2007]’s system is

the eruptive system, a shallow region in the crust from where the magma is erupted.

Depending on the magma composition and therefore the volatile content (H2O, CO2,

SO2, H2S) in the chamber, different styles of eruptions will be initiated.

The overpressure in the magma chamber initiated by the input of new magma

or the increase in volatile content leads to the formation of dikes. Dikes are hydraulic

fractures within the crust that allow the magma to rise from one reservoir to another,

and ultimately to the surface [Tait and Taisne, 2013]. Almost all eruptions are sup-

plied with magma from the chamber to the surface through dikes. The propagation

and evolution of dikes depend on the stress state surrounding the volcano [Gudmunds-

son, 2006]. Understanding the formation, propagation and arrest of dikes between the

magma chamber and the surface is therefore one of the requirements to understand

the temporal pattern of eruptions. Theoretical models have considered the effects of

overpressure or buoyancy in an existing crack. The flow in the magma filled crack can

be described using fluid dynamics non linear equations [Lister, 1990]. Many analogue

experiments have also been carried out to link theoretical models of dike propagation

and geological observations. Acocella et al. [2008] investigated the dike patterns of

Somma-Vesuvius and Etna using a laboratory experiment. The crust and magma

were modelled using respectively gelatin and water. The water was injected in the

cone and the formation of dikes was studied. The results of that experiment showed

that, in that case, dikes at the surface exhibited a radial pattern while tangential

and oblique dikes were observed at depth. These results have implications for the

prediction of the location of future eruptions on the volcanic edifice. As stated be-

fore, the stress state within the volcano influences the formation and propagation of

dikes. Many studies using analytical models have investigated the stress field around

a volcano by considering the host rock as a homogeneous and isotropic system with

an elastic behaviour ([Gudmundsson, 2006] and references therein).

Volcanoes can exhibit explosive and effusive activity. The type of eruption de-

pends largely on the magma’s silica content. Silica rich magmas can contain up to 6%

of water and the eruptions associated will be characterized as explosive. With a high

silica content comes a large volume of gas bubbles in the chamber. When this volume

is large enough, a continuous phase will be initiated from the bubbles connecting

together. This process is referred to as fragmentation [Cashman et al., 2000]. An ex-
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plosive eruption can be manifested by several outputs. Strombolian eruptions exhibit

small and discrete explosions of ashes, gas and magma. Hawaiian eruptions display in-

tense and near continuous fire fountains [Vergniolle and Mangan, 2000], while Plinian

eruptions are infrequent but extremely explosive and sustained and characterized by

stable eruption clouds [Cioni et al., 2000]. As stated before, fragmentation is one

of the processes responsible for explosive eruptions and has therefore been exten-

sively studied. This mechanism corresponds to the transformation process of bubbly

magma into gas-pyroclast dispersion [Papale, 1999]. Laboratory experiments have

been designed to study the mechanisms responsible for bubble nucleation, accelera-

tion of the flow and the process of fragmentation. Mader et al. [1994] proposed to

simulate explosive eruptions by generating supersaturation of CO2 in a liquid phase

(water in this case). Phillips et al. [1995], used a gum-rosin acetone solution to sim-

ulate the conduit flow that leads to fragmentation. Both these models were able to

demonstrate that decompression in a supersaturated liquid is the starting point of

the fragmentation process. Going further in the investigation of the fragmentation

process, Stix and Phillips [2012] studied the role of the speed of pressure changes

in the process of fragmentation. Using the same gum rosine acetone system, they

showed that fragmentation is induced by only fast decompression conditions.

Basaltic magma, with a significantly lower silica content, will result in effusive

eruptions. The main products of basaltic eruptions are lava flows, lava fountains

and the creation of volcanic fields. When the silica content increases, the magma

becomes more viscous and blocky flows and domes are generated. Volcanoes can

display different types of activity during their eruptive history. During an eruption,

the degree of explosivity will decrease with time. The volatile rich magma is mostly

concentrated at the top of the chamber and erupts first, leaving the magma available

for the rest of the eruption poor in volatiles. The reduced pressure in the chamber

due to the loss of magma from the eruption also has an effect on the ascent velocity,

which also controls the explosivity of the eruption [Pinkerton et al., 2002]. There

seem to be a transition between effusive and explosive activity when a critical ascent

rate of 0.2 ms−1 is reached [Rutherford and Gardner, 2000].

The different styles of volcanic activity give birth to different volcanic land-

forms [Lockwood and Hazlett, 2010]. Here, we only overview the most common and

prominent types of features. Shield volcanoes are the product of effusive activity

characterized by low discharge basaltic flows. The lava flows involved in building
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such structures have a very low viscosity and are initiated at shallow depth. Compos-

ite volcanoes, or stratovolcanoes, are the result of a complex eruptive history. The

edifice is built from the deposition of multiple eruptive layers. Cinder cones are a

smaller volcanic feature resulting from Strombolian type, basaltic eruptions. When

large eruptions occur, the drained magma chamber can collapse and form a multi-

kilometre wide, quasi-circular depression called a caldera [Lipman, 2000]. This type

of feature can be observed on top of shield or stratovolcanoes.

There are approximately 1500 volcanoes on land on Earth [Tilling, 1989]. The

most active volcanoes are currently extensively monitored using a wide variety of

tools such as seismic sensors, GPS measurements, to mention a few. Historical data

are also very rich in information and allow us to have access to a significant amount

of data on the temporal evolution of eruptions. This wealth of data allows us to study

volcanic processes from a statistical point of view in order to identify patterns in their

activity.

1.3 Statistical Modelling of Volcanic Processes

Statistical analysis is a powerful tool to study the characteristics of natural processes

and to infer the physical mechanisms underlying those processes. One of the first

statistical analysis carried out on volcanic data was performed by Wickman [1966] on

Hawaiian volcanoes. One of the main statistical models used to describe the observed

temporal patterns of eruptions was the Poisson process.

A homogeneous Poisson process is a mathematical model that describes a series

of random events. Events in that case are stationary and independent from each other

[Ho, 1991]. The main characteristics of such a model are the following [Cox and Lewis,

1966]:

• The probabilities of an event happening or not, do not change in time, and

therefore, the time series does not display a trend.

• Two events have negligible chances of happening together.

• The probability of an event happening at time t + h is independent on what

happened at time t. The probability of an event happening at t + h does not

depend on the time elapsed since the preceding event.
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When studying natural hazards time series, one useful characteristic to inves-

tigate is the distribution of intervals between events, or interevent times τ . The

interevent times for a homogeneous Poisson process are exponentially distributed

and the distribution is characterized by the parameter λ. This parameter represents

the rate of events, or how many events can occur per unit time. In this case, λ is a

constant. The events are independently distributed and occur at a constant average

rate.

The hypothesis of volcanic eruptions behaving as a Poisson process has been

tested on a wide range of datasets. As previously stated, Wickman [1966] investigated

the temporal behaviour of Mauna Loa and Kilauea volcanoes. He found that the

eruptive activity of Mauna Loa can be approximated by a Poisson process but that

the activity of Kilauea showed a non-constant event rate. Reyment [1969] studied

the activity of 3 Japanese volcanoes, Etna, 3 Indonesian volcanoes and Mauna Loa.

He was able to show the random behaviour of Mauna Loa and Bromo volcanoes. His

study led him to conclude that some eruption time series could be approximated by

a Poisson process but that this model was not universal for all volcanoes.

The activity of Stromboli volcano was examined through the eruption sequence

of 3 different vents [Settle and Mcgetchin, 1980]. It was found that the interevent

time distributions for 2 of the 3 vents could be fitted by an exponential distribution,

and therefore their activity could be modelled by a Poisson process. The eruption

mechanism at the remaining vent could be characterized by a normal (Gaussian)

process. A correlation was observed between the temporal behaviour of vents 2 and

3 with vent 1. This dependency suggested that vents 2 and 3 were directly connected

to the magma reservoir beneath vent 1.

Another study of the activity of the Hawaiian volcanoes defined the interevent

times of volcanic events as the time elapsed from one eruption onset to the other,

Klein [1982] investigated flank and summit eruptions. Again, a Poisson process was

concluded to be a good fit, despite some departure from the model was observed for

the distribution of interevent times between large eruptions and eruptions of any size

following them. This discrepancy was explained by the finite character of the magma

supply in the volcano. De la Cruz-Reyna [1991] investigated the temporal patterns

of global volcanic activity. It was found that for large eruptions, the distribution

of interevent times between eruptions could be modelled by a homogeneous Poisson

process. Volcanoes were concluded to be systems capable of storing a large amount
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of energy while releasing it in small amounts at a constant rate.

In all of the aforementioned works, the hypothesis of volcanic events being a

series of independent random events has been validated but it was also often noticed

that this model was not universal for all of the datasets considered. The introduction

of the non-homogeneous Poisson process as a generalization of the model has allowed

some of the behaviours to be better explained. A non-homogeneous Poison process, or

time-dependent Poisson process, satisfies the same assumptions than a homogeneous

Poisson process, but λ is now a function λ(t) of time. When the randomness of

events implies that several processes are combined to trigger eruptions, having a

non-homogeneous Poisson process implies that the balance between those processes

changes with time.

Ho [1991] tested the non-homogeneous model on 5 individual volcanoes. In that

study, he considered an eruptive rate λ(t) such as λ(t) = βθ−βtβ−1 where β and θ are

constant parameters and t is the time since a predefined origin. Bebbington and Lai

[1996a] argued that this approach was unsatisfactory and proposed a more general

approach. They proposed a Weibull renewal model to describe the occurrence of vol-

canic eruptions on New Zealand volcanoes. A renewal process comprises interevent

times that are identically and independently distributed that have a common distri-

bution D. For the homogeneous Poisson process, D is an exponential distribution.

For the Weibull renewal process, used by Bebbington and Lai [1996b], D is a Weibull

distribution. This type of renewal model was used in order to issue prediction on the

eruptive activity of Mount Vesuvius, where D was defined as Gamma distribution [Ho,

1992]. Using this very same non-homogeneous Poison process approach, Dzierma and

Wehrmann [2010] investigated the interevent time distributions for volcanoes in the

south Chile volcanic zone using several distributions such as the Weibull, the log-

logistic and the exponential distributions to describe D. All the examples show that

the non-homogeneous Poisson process can be successful at describing eruption time

series. The nature of D seems to be different depending on the volcanoes considered.

Other methods have been developed with the same goal of fitting the interevent times

distribution of eruptions, such as a mixture of exponential distributions [Mendoza-

Rosas and De la Cruz-Reyna, 2009].

When examining the temporal patterns with the goal of mitigating volcanic

risks, it is important to consider the return period of large eruptions since they tend

to be more destructive. From a statistical approach, extreme events are located at the
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tail of the distributions describing their probability of occurrence [Albeverio et al.,

2006]. The statistics of extremes have been originally developed by Gumbel [1958]

and the goal is to gather as much information as possible on the temporal and spatial

distributions describing these large events. Being able to characterize the statistical

distribution of extreme events is one of the biggest challenges that researchers have

been trying to overcome. The main goal is to predict the size of the next largest

event, or the probability that the largest event will occur in a certain time window

and at a certain location [Gumbel, 1958]. Investigating the statistical behaviour of

the distribution times between two consecutive extremes, has been proven successful

at characterizing the temporal properties that can be used to predict such events

[Altmann and Kantz, 2005].

Pyle [1998] used the rank-ordering method in order to define the likely size of

extreme volcanic eruptions. This method was introduced in statistics by Gumbel

[1958] and has been applied to a large number of problems since then. The concept

of the method is simple. The sizes of eruptions are ordered where the largest event

has the first rank, the next largest the second and so on. The analysis is done by

plotting the size of the events versus their rank [Pyle, 1998]. One of the reasons for

carrying out this analysis was to try and place an upper limit on the size of future

extreme eruptions. For the study, several datasets were used: data for large volcanic

eruptions since A.D 1815 and data from the Taupo volcano in New Zealand for the

last 25 000 years [Pyle, 1998]. This method allowed them to predict the size of the

next largest events and the longest time interval between events for the catalogues

considered.

Coles and Sparks [2006] applied extreme value statistics to a 2000-year eruption

catalogue. The goal of the analysis was to determine the parameters associated with

intensity function λ(t), and ultimately deriving the return period r associated with a

certain magnitudem: r(m). This analysis raised the issue of the choice of a magnitude

threshold when using extreme value statistics. If a high threshold is chosen for the

analysis, the results will be truly representative of extreme events but the quality of

the statistics will be poor since extremes are, by definition, rare. On the other hand,

choosing a lower threshold will increase the quality of the statistics but the events

sampled are not all extremes events. In addition, the fact that the catalogue used

for this study only covers the last 2000 years makes it difficult to make inferences

on return periods over very long time scales. To address this problem, Deligne et al.
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[2010] applied the same method to a new database of Holocene explosive volcanism.

They showed that the model, due to a large amount of under reporting in the data,

was predicting maximum eruption magnitudes that were too small because of the

sampling biases. The likely explanation is that the available data only sample the

high end of ”ordinary” eruptions (characterized as Plinian) and that the mechanism

behind ”super eruptions” is different. The method used in that study was only able

to predict recurrence rates for the upper limit of Plinian-type eruptions but not for

the super-eruptions.

We have provided an overview of the type of common statistical analyzes that

have been done on volcanic eruptions. Like many natural hazards, eruptions have

also been considered as a self-organized process [Grasso and Bachelery, 1995]. Such a

process is characterized by a slowly driven dynamical system which organizes itself in

a critical state. Once this state is reached, dissipation occurs in the form of avalanches

of all sizes that are regular in time, but not periodic [Bak et al., 1988]. One example

of this kind of system is described by the sandpile model: when constantly adding

sand grains to a small sandpile, small and big avalanches will rapidly form in order

to decrease the local slope whenever they reached a critical angle. The frequency

size distribution of those avalanches is described as a power-law in the case of a self-

organized system [Bak et al., 1988]. The distribution of magnitudes and/or Volcanic

Explosivity Index (VEI) of volcanic eruptions, displays scale-invariant characteristics

[Newhall and Self, 1982, De la Cruz-Reyna, 1991, Simkin, 1993, Gusev et al., 2003].

The cumulative distribution of the annual amount of tephra produced by eruptions

also exhibits power-law behavior [Turcotte, 1997]. Power laws were also observed from

the spatial distribution of volcanic fields [Pelletier, 1999]. Gusev [2008] observed self-

similar clustering in time and size for eruptions. It was also observed that large

eruptions tend to occur during the most volcanically active periods [Gusev, 2008].

These characteristics of global volcanic activity lead to the conclusion that a global

mechanism was responsible for the time/size clustering. Marzocchi and Zaccarelli

[2006] observed two different regimes concerning interevent times: short times are

clustered and can be explained by an open conduit system while long interevent

times show random behaviour that can be characterized by a Poisson process and

explained by a closed conduit system. These two regimes were also associated with

different rhythms in magmatic intrusions [Dubois and Cheminee, 1991].

The latter statistical analyzes have in common the consideration of volcanic
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eruptions on a global scale, using worldwide data. Investigating natural hazards

such as earthquakes on a worldwide basis has proven to be a successful approach

to understand the triggering mechanisms of the system’s avalanches. In the case

of earthquakes, the constant loading is due to tectonic forces acting on faults while

the earthquakes constitute the avalanches. Several scaling laws, implying that the

triggering mechanism operates the same way at broad spatial and temporal scales

have been proposed in studies of seismicity [Corral, 2003], forest fires [Corral et al.,

2008], solar flares [Baiesi et al., 2006], tropical cyclones [Corral et al., 2010] and in

the occurrence of rock fracturing [Davidsen et al., 2007, Åström et al., 2006]. In

this thesis, we focus on a global approach to understand the temporal behaviour of

volcanic eruptions.

1.4 Modelling of Volcanic Processes

Field based observations of volcanic processes are often incomplete and/or uncer-

tain due to the infrequent nature of eruptions in most cases. One way to overcome

this issue and study volcanic processes is to formulate models that can describe the

empirical data collected in the field. The advantage of laboratory and numerical

modelling is the possibility to produce a large number of repetitions to validate the

results, and measurable outcomes. Magma processes follow the laws of physics and

many subdisciplines are involved in the modelling of volcanic processes such as ther-

modynamics, fluid dynamics, solid mechanics, wave theory [Fagents et al., 2013]. A

better understanding of the processes can be achieved through experimental, theo-

retical or numerical modelling. All approaches aim at describing processes such as

dike propagation, bubble formation and ascent, magma chamber formation and col-

lapse. The combination of the different types of modelling enables volcanologists to

refine our knowledge on the processes acting in the crust and leading to eruptions

(see Figure 1.3).

As seen in Figure 1.3, laboratory experiments are a major component of the

methodology used to understand volcanic processes. The empirical determination of

some important parameters happened through laboratory experiments. They can be

designed using natural or analog materials, according to the type of processes inves-

tigated. Small scale processes allow for the use of natural materials and a view of the

whole system, while large scale dynamics are studied using magma analogues [Mader
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Figure 1.3: Schematic steps of the use of experimental and numerical/mathematical mod-
eling to validate hypotheses on volcanic processes

et al., 2004]. In the latter case, the full range of behaviour is rarely captured and

scaling the system becomes a main concern. This thesis will not focus on laboratory

experiments, but rather on numerical methods.

1.4.1 Numerical Models

With the technological advances and the development of supercomputers, numerical

modelling has become widely used tool of most science disciplines. The approach

used to formulate a numerical model comprises three main steps. The first step

encompasses the formulation of the mathematical description of the phenomenon

studied which captures its essential physics. The second steps consists in finding the

optimal method to solve the previously defined equations. Many physical systems are

described using sets of partial differential equations and numerical approximation is

often the only approach available to solve them. Methods such as finite differences of

finite elements are already widely used and emergent approaches such as Monte Carlo

methods or cellular automata keep increasing the capabilities of numerical modelling.

The last step involves comparing the numerical results with real data in order to

ensure that the model reproduces the behaviour of the system investigated. This

entails a large qualitative understanding of the processes [Allen et al., 1988]. The use



Chapter 1: Introduction 17

of numerical modelling in the field of volcanology has permitted the study of complex

processes in the magma chamber.

As stated in the overview of volcanism Section 2.2, laboratory experiments and

theoretical modelling have been successful in describing some key volcanic processes

such as magma fragmentation. Numerical models using continuum mechanics have

also been developed in order to further our understanding of this transition from bub-

bly magma to pyroclasts in an explosive eruption. Using a non-equilibrium two phase

flow fluid dynamics model, Papale [1999] introduced a ”fragmentation criterion” in

order to show the possibility of a strain-induced brittle fragmentation. The advan-

tage here was the possibility to account for many variables such as friction, viscosity,

density, etc. The results from this analysis are in accordance with the experimental

results on the amount of the gas volume fraction needed for fragmentation to occur.

This study also showed that strain induced fragmentation is a feasible process for

explosive volcanic eruptions. In order to further our understanding of the process,

Melnik [2000] developed a model considering the pressure difference between the bub-

bles and the melt and later also considered vertical gas escape through the magma

[Melnik et al., 2005]. From this formulation, the critical overpressure between the

bubbles and the melt was shown to be a new requirement for fragmentation.

Considering dike formation and propagation, analytical models assume isotropic

and homogeneous systems to allow calculations of the fissure opening and propaga-

tion. However, the host rock is usually anisotropic and heterogeneous. These char-

acteristics imply that the derivation of simple analytical solutions is not possible and

numerical models provide an efficient alternative to investigate the effect of anisotropy

and heterogeneity for the propagation of dikes. Investigating the elastic deformation

of the host rock and the effect of magma fragmentation on the formation of dikes

using a numerical approach, Taisne and Jaupart [2011] showed that fragmentation

slows down the speed of dike formation. These results were tested against a Mount

Saint Helens eruptive unrest episode where the episode of slow progression of the

magma to the surface was attributed to fragmentation within the dike.

These models are non exhaustive examples of the necessity and complemen-

tarity of laboratory experiments, analogues and numerical models in understanding

volcanic processes. In all the cases presented, the models focus on describing one

specific process or set of processes that take place in the volcanic system using sets of

equations. The field of modelling has seen the emergence of different kinds of models,
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such as Monte Carlo methods and random walkers. These methods are classified

as stochastic, are characterized by the use of random numbers and the state of the

system is defined probabilistically [Rappaz et al., 2003]. The Monte Carlo method

entails the calculation of averages through the generation of a large amount of ran-

dom numbers and therefore allows for the determination of probabilities. This kind

of model was used to generate configurations of atoms or magnetic moments at the

microscopic scale in order to obtain information at the macroscopic scale for exam-

ple. A random walk model consists in a succession of random steps. On a lattice the

location changes at each time step according to a predefined probability distribution.

The random walk model has been used to simulate the movement of molecules in

liquids of gases [Spitzer, 1964]. Cellular automata methods are another type of sta-

tistical numerical model which aims, similarly to Monte Carlo methods, at replicating

a complex behaviour through the use of simple rules defined at the microscopic level

[Rappaz et al., 2003]. In this thesis, we will focus on the application of this type of

model on volcanic eruptions.

1.4.2 Cellular Automata Models

Volcanic eruptions can be considered as outcomes of complex interactions between

the magma and the host rock within the crust. In order to simulate eruptions, it is

important to formulate models that account for the complexity of the system as a

whole. One class of models that have been successful at simulating the behaviour of

complex systems are the cellular automata models (we will refer to the as CA from

now on). CAs are an idealization of a physical system where time and space are

discrete and the physical characteristics described are represented by only a set of

values. The dynamics of physical systems are often described using nonlinear partial

differential equations. Due to nonlinearities, the solutions of these equations are

strongly sensitive to the initial conditions. The same type of complications can occur

in discrete dynamical systems such as CAs [Chopard and Droz, 1998].

One of the first CA was formulated by Von Neumann in 1940 but the most

famous one is the Game of Life by John Conway in 1970 ([Chopard and Droz, 1998]

and references therein). In this two-dimensional model, simple rules are designed

to model a dynamical system. Live and dead cells (characterized by a value of re-

spectively 1 or 0) are located on a 2D lattice and their state depends on the sate
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Figure 1.4: Example of the evolution of the Wolfram CA from rule 30. The up-

per part displays the evolution rules for each possible configuration at time t (from

www.mathworld.wolfram.com)

of the cells in their neighbourhood. Live cells can die of overcrowdness or isolation

if surrounded by too many or too little live cells, and dead cells can come back to

life if surrounded by enough live cells. This system ended up displaying a complex

behaviour where distinctive complex structures would emerge and develop.

Wolfram [1986] defined and studied the simplest class of one-dimensional CA.

Each cell has a possible value of 0 or 1 and the rules for the time evolution of the sys-

tem are defined only according to the state of the nearest neighbour (see Figure 1.4).

The extensive study of this model lead to the conclusion that despite the dis-

crete character of CAs, they were successful at reproducing behaviours of continuous

systems. It was also found that the Boolean nature of this type of model (the values

describing the physical characteristics of the model can only take integer values) al-

lowed for exact numerical calculations, making the investigation of complex systems

more accessible. Because of these characteristics, cellular automata have been used

to describe physical systems.

Since then, the use of cellular automata have largely increased in the field of

natural sciences and models have been successful at reproducing the complex be-

haviour of some natural hazards such as earthquakes [Ogata, 1992, Olami et al.,

1992, Helmstetter et al., 2004] and forest fires [Bak et al., 1990]. In order to model

fluid behaviour, Hardy et al. [1976] formulated the so-called HPP model. This type of
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CA is classified as a lattice-gas model and describes fluid behaviour on a microscopic

level. Particles interact with each other through collisions in a two-dimensional lattice

in way that allows conservation of momentum and energy. The use of CAs in the

field of volcanology is a new approach and has been mainly applied to model the flow

of erupted lava in order to improve the determination of hazardous zones on specific

volcanoes [Vicari et al., 2007, Crisci et al., 2003, Del Negro et al., 2008]. Lahaie and

Grasso [1998] developed a CA composed of fluid and rock cells interacting with each

other in order to reproduce the behaviour of the eruptive activity of the Piton de la

Fournaise volcano. They were able to show that the behaviour of the volcano can be

explained by a combination of multiple magma storages rather than a main magma

chamber. Pelletier [1999] combined a model of fluid migration in a disordered porous

media developed by Buldyrev et al. [1992] with eruption dynamics. His goal was to

describe magmatic upwelling through the continental crust. When analyzing the syn-

thetic history of volcanism produced by this model, Pelletier found that the spatial

and temporal pair-correlation functions were consistent with the functions obtained

from real data.

Interested in investigating the temporal and size distribution of volcanic events

in closed conduit systems, Piegari et al. [2008] designed a CA that models magma

ascent through the crust. The model is incorporating in a series of simple rules,

the key processes responsible for magma ascent such as buoyancy, the control of the

ascent by the ambient stress field, the injection of magma through preformed cracks,

and the magma induced formation of new cracks. In a two-dimensional lattice, the

initial stress level of each site is assigned randomly while a slow constant loading is

applied to each site following the rule of the model developed by Olami et al. [1992].

Fractures are initiated when the stress level at one site exceeds the maximum shear

stress of the rock and stress is redistributed to the site’s neighbours, creating a chain

reaction and the formation of crack networks. Magma feeding is initiated in the

magma reservoir at the bottom of the lattice and is allowed to rise in an upward

direction when in contact with a crack. An eruption occurs when a batch of magma

reaches the surface (top of the lattice) and the volume V of the eruption is defined by

the number of magma filled sites connected to the surface. From this model, Piegari

et al. [2008] computed the probability distributions of eruption volume P (V ) and

interevent time P (t). It was found that the size distribution of eruptions exhibits a

power-law behaviour consistent with the behaviour observed in nature by using the
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Figure 1.5: Power-law behaviour of the magnitude-frequency of Holocene eruptions

[Simkin, 1993]

Volcanic Explosivity Index (VEI) scale for eruptions (see Figure 1.5) [Newhall and

Self, 1982, Simkin, 1993]. Concerning the interevent time distribution P (t), the model

results exhibit an exponential behaviour for large eruptions, implying that the major

events are independent and occur at a constant rate, while small events are better

fitted by a stretched exponential distribution.

Expanding this model, Piegari et al. [2011] incorporated the effect of the water

content of the magma. When saturation pressure was reached in the chamber, the

magma exsolves water and this exsolution process affects the explosivity of the erup-

tion. From this model, it was found that magma that has been completely degassed

during ascent is most likely to produce eruptions than magma that was still gas-rich.

Low explosivity eruptions were more frequent but smaller in volume than high explo-

sivity ones, which was in agreement with observations. In another formulation of the

model, Piegari et al. [2013] introduced a rock density layered structure in order to ap-

proximate the density structure of mount Vesuvius. The density differences between

the magma and the host rock determined weather or not the magma was allowed to

rise, or had to stop and started cooling and solidifying. This solidification process

will also alter the density of the layer. The interevent time distributions produced by

the model is in agreement with the data from Vesuvius. A characteristic interevent

time arose when the model got reset after large eruptions, which was interpreted as
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the time it took for the magma to reach the surface from the reservoir at the bottom.

This model showed that the temporal pattern observed for Vesuvius as well as the

style of eruptions could be explained by the presence of density barriers within the

crust.

These cellular automata have shown that the use of a simple model imple-

menting a minimal number of rules and including a small amount of parameters is a

powerful tool to study the statistical properties of volcanic eruptions. In this thesis,

we formulate a CA model that investigates the magma/crust interactions in order

to further our understanding of the several volcanic temporal regimes in open and

closed conduit systems. We focus on using a minimal amount of parameters in order

to investigate universality in eruption processes. We compare the results of the CA

with temporal data obtained from worldwide catalogs.

1.5 Thesis Outline

The main goals of this thesis are:

• Understanding caldera formation and evolution in the solar system using com-

parative planetology,

• Investigating the global temporal behaviour of volcanic eruptions on Earth,

• Understanding the nonlinear interactions taking place in the solid crust which

lead to an eruption.

To address these goals, I divided the rest of the thesis into three chapters. The

second chapter focuses on comparative planetology and the investigation of caldera

formation mechanisms in the solar system. In chapter 3, the analysis is focused on

volcanism on Earth, and more specifically on the investigation of eruption mechanisms

on a global scale. Chapter 4 presents a computer modelling approach to investigate

magma-crust interactions.

1.5.1 Chapter 2: Scaling Properties of Planetary Calderas

Comparative planetology is important in understanding the formation mechanisms

of planetary volcanic structures. One surface feature that is common to Mars, Venus
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and Io is the paterae. This landform is described as an irregular volcanic crater with

scalloped edges. The general consensus in the interpretation of paterae on Venus and

Mars is that they are analogs for calderas [Sigurdsson et al., 2000]. This argument has

been supported by the comparison of the distributions and morphology of paterae on

Io to calderas on Earth and paterae on Mars and Venus [Radebaugh et al., 2001]. A

planetary definition of a caldera is a multi-kilometer wide, quasi-circular depression,

not of impact origin, formed in volcanic terrain by the collapse of the volcanic edifice

into a partially drained magma chamber [Lipman, 2000].

In this chapter, we first investigate the statistical properties of the size distri-

butions of calderas and paterae on Earth, Mars, Venus and Io using a scaling analysis

technique [Bak et al., 2002, Corral, 2003]. We compiled datasets of caldera/paterae

diameters and areas of those planetary bodies and performed a scaling analysis us-

ing the mean diameter/area as a scaling factor. Second, using the same method, we

investigate the scaling properties of calderas dimensions on Earth, according to vari-

ous crustal settings: continental sillicic crust, basaltic oceanic crust and transitional

crust. We propose a scaling law to quantify the distribution of caldera sizes on Earth,

Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on

their surrounding crustal properties.

1.5.2 Chapter 3: Temporal Scaling of Volcanic Eruptions

In Chapter 3, we focus on the temporal behaviour of volcanic eruptions throughout

the World. We compile the eruptive history of 26 of the most active volcanoes as well

as eruptions of 163 less active volcanoes that we group into 9 volcanic regions. We

also compare the temporal activity of volcanoes by grouping them into four different

volcano types: shield volcanoes, strato volcanoes, complex volcanoes and calderas.

We find that probability density functions have a similar functional form when they

are rescaled with the corresponding sample averages. The obtained scaling law for

interevent times can be modelled using the log-normal distribution and signifies that

the dynamics of volcanic eruptions on Earth is similar and quite independent of the

type of volcanism and the geographical location of volcanoes. The phenomenon of

triggering volcanic eruptions operates in a similar way for all volcano types, which

emphasizes the importance of studying volcanism as a universal process.
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1.5.3 Chapter 4: A Cellular Automata to Model

Magma/Crust Interactions and Volcanic Eruptions

In Chapter 3, we showed that the interevent time distributions of volcanic eruptions

are characterized by a universal behaviour, independent of the type of volcanism and

geographical location. The distribution for eruptions with a large interevent time

seems to deviate from the simple Poisson statistics.

In Chapter 4, we propose to use a lattice gas cellular automata (LGCA), which

have been proven efficient to simulate fluid flow behaviour. This type of cellular

automaton is a discrete dynamical model in space and time, where the fluid is repre-

sented at the microscopic level by discrete particles. We define a 2-dimensional model

which consists of a square lattice where particles interact with one another mimicking

magma movements through the crust. In this model, magma propagates through the

host rock, and fracturing occurs on the walls of the chamber. When magma reaches

the top of the crust, an eruption or a cascade of eruptions occur. We record the size

of each event and the number of time steps between consecutive events (or interevent

time). The model simulation results for a large number of iterations are compared

with observed data. We observe several regimes of eruptions that could be repre-

sentative of close and open conduits systems. This model allows us to describe the

dynamics of complex magma interactions using a minimum number of parameters.

In this thesis, we aim at showing that by using statistical analysis, we can iden-

tify global characteristics for volcanic landforms and patterns of volcanic eruptions.

These results, integrated with our qualitative knowledge on volcanic processes and

landform formation, will lead to a better understanding of physical mechanisms of

volcanism and ultimately to improved volcanic hazard assessment methods on Earth.
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Chapter 2 Scaling Properties of Planetary

Calderas1

2.1 Introduction

The formation of volcanoes and their corresponding eruption dynamics is a complex

phenomenon and a major natural hazard on Earth. The surface expression of vol-

canism is a mirror to magma composition, eruption processes and tectonic processes

[Wood, 1984]. Planetary exploration has shown that volcanism is or was operational

on other solar system bodies such as Mars, Venus, Mercury, the Moon, Io, and several

other planetary satellites [Wilson, 2009, Prockter et al., 2010].

Comparative planetology is the study of the morphology of geological features

and their genesis, utilizing knowledge of analogous landforms on Earth. Past stud-

ies have attempted to compare volcanic structures on Earth to similar features on

other planetary bodies with some success. Frey and Jarosewich [1982] investigated

the size distributions of volcanic cones on Mars. By comparing their base diame-

ters with volcanoes on Earth, they were able to conclude that small Martian cones

could be analogues for Icelandic pseudocraters; while larger cones can be compared

to terrestrial cinder cones. The size of flat topped ”pancake” domes on Venus and

flat topped seamount volcanoes on Earth were statistically compared and showed

some differences, implying different formation conditions (magma composition, effu-

sive rate, pressure, etc) [Smith, 1996]. Focusing more specifically on stellate planforms

on Venus and flat-topped seamounts on Earth, Bulmer and Wilson [1999] were able

to find some formation similarities. An important feature that is present on plan-

etary bodies such as Mars, Venus, Earth and Io is the caldera. The importance of

considering calderas in comparative planetology was emphasized by Wood [1984].

The definition for terrestrial caldera is ”a large collapse depression, more or less

circular or cirque-like in form, the diameter of which is many times greater than any

1. Published in Nonlin. Proc. Geophys., 19(6):585-593, 2012
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included vent” [Williams and McBirney, 1979]. They form from a roof collapse into

a shallow magma chamber and their diameter is highly correlated with the volume

of volcanic material involved in the eruption [Lipman, 2000]. Three main types of

calderas can be identified on Earth [Wood, 1984]:

• Shield calderas result from a partial drainage of the chamber into a rift zone

• Stratocone calderas form by collapse of the magma chamber roof after a large

eruption

• Ash flow calderas formation follows extremely large eruptions

Calderas can exhibit a large panel of features such as rings faults or collapse collar

in response to the collapse process [Cole et al., 2005]. Those volcanic depressions are

recognized in all volcanic environments: intraplate, convergent plate boundaries and

mid-ocean ridges [Cole et al., 2005]. Their size on Earth can range from less than 1

km to 40 ∗ 75 km2 for the largest ones observed [Lipman, 2000].

An equivalent volcanic feature, which is found on Mars, Venus, and Io, and

described as an irregular volcanic crater with scalloped edges is a patera. The general

consensus in the interpretation of paterae on Venus and Mars is that they are ana-

logues for calderas [Sigurdsson et al., 2000] and the largest known caldera/patera has

been observed on Olympus Mons on Mars and displays a size of 80∗65 km2 [Mouginis-

Mark and Robinson, 1992].The morphology and the size distribution of paterae on Io

have been compared to calderas on Earth, Mars and Venus and some similarities have

been observed, indicating that paterae on Io might also be an analogue for calderas.

While our understanding of the formation mechanisms of these features remains at its

early stage, Radebaugh et al. [2001] concluded that these paterae could be a hybrid

between basaltic shield and mafic ash-flow calderas.

The increase in space remote sensing data has allowed planetary calderas to

be studied and compared throughout the solar system in order to understand their

formation processes. The geomorphology of Olympus Mons caldera was studied using

high resolution images [Mouginis-Mark and Rowland, 2001]. Signs of extensional fea-

tures at the boundaries of the caldera and compressional features at the centre were

used to infer that the related magma chamber was shallow [Mouginis-Mark and Row-

land, 2001]. Using the Magellan satellite data, Cook et al. [1998] investigated large
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landforms on Venus and the presence of calderas alongside with lava flows allowed

them to infer rough volumes and geometries of magma chambers.

Important characteristics of calderas/paterae are their diameter and area which

are related to the size of the underlying magma chamber and can be used as a proxy

for estimating the potential of volcanic eruptions [Lipman, 2000]. The distribution of

magma chamber sizes for planetary bodies is directly related to the crustal thickness

and the properties of magma material such as density, concentration of volatiles, etc.

[Mouginis-Mark and Rowland, 2001]. As a result, constraining the volcano forming

and eruption processes would lead to a better understanding of the dynamical evo-

lution of planetary interiors [Sobradelo et al., 2010]. Several numerical and analogue

models have been proposed to analyze and understand caldera-forming eruptions in

the solar system [Kieffer, 1995, Acocella, 2007, and references therein].

Statistical studies have been carried out to analyze calderas on Earth. Sobradelo

et al. [2010] performed ANOVA (analysis of variance) on the distribution of caldera

areas in order to relate the size of calderas with various geodynamical settings. The

analysis was successful at determining three distinct geodynamical environments that

host small, medium and large calderas. Hughes and Mahood [2011] studied the

spatial distribution of calderas in arc settings and were able to correlate the spatial

distribution of calderas with the tectonic properties of arcs.

An alternative approach to statistically study volcanic processes is to look at

the phenomenon as a whole, in order to develop a general framework applicable to all

the volcanoes on Earth and in the solar system, independent of the volcano’s crustal

surrounding and geographical location. This type of global approach has been proven

successful at defining scaling laws for the occurrence of other natural hazards such

as forest fires [Corral et al., 2008], earthquakes [Corral, 2003, Shcherbakov et al.,

2005], solar flares [Baiesi et al., 2006] and tropical cyclones [Corral et al., 2010]. This

approach was also successfully used in analyzing the fracture of rocks [Davidsen et al.,

2007]. Despite their complexity, volcanic processes can also be approximated by a

point process in space and time. Using this approach several studies were undertaken

to analyze global eruption time series. Gusev [2008] observed self-similar clustering

in time and size for eruptions. It was also observed that large eruptions tend to

occur during the most volcanically active periods. These characteristics of global

volcanic activity lead to the conclusion that a global mechanism was responsible for

the time/size clustering.
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In this chapter, we investigate the universal properties of the size distribution

of calderas in the solar system. Particularly, we consider the four planetary bodies:

Earth, Mars, Venus, and Io. We also investigate the statistical properties of caldera

sizes on Earth, by grouping them according to their surrounding crustal properties.

We show that these distributions of caldera diameters and areas can be approximated

by a universal functional form when they were rescaled with the corresponding sample

averages. This approach allows us to conclude that the caldera formation is governed

by similar processes throughout the solar system and is independent of crustal prop-

erties on Earth.

2.2 Solar System Bodies

For our analysis, we consider that paterae are analogues of volcanic calderas and

therefore, we use the term caldera in the rest of the text. We extracted caldera size

data from the Collapse Caldera Database (CCDB) [Geyer and Marti, 2008] for Earth,

from the Magellan Venus volcanic feature catalogue [Crumpler et al., 1997], and from

the USGS astrogeology research program [http://planetarynames.wr.usgs.gov/, last

consulted in December 2013]. We consider that all the paterae in the USGS database

are analogues for simple calderas. For all the databases mentioned, we were able

to obtain diameter values in kilometres. For the caldera diameters on Earth and

Venus two measurements (minimum and maximum diameter) were reported in the

catalogues whereas for Mars and Io only one measurement was reported assuming

that calderas were circular in shape. In our analysis, we used the mean diameters

for each caldera and also computed the areas of each caldera by assuming that they

can be approximated by an ellipse except for the Earth where some actual areas of

calderas were reported in the CCDB (see Table 2.1). When the minimum and the

maximum diameters were given in the catalogue, we computed the average value

between the two.

To analyze the statistics of caldera sizes we constructed the probability density

functions of caldera diameters and areas for each planetary body. Because multiple

scales were involved (from a few kilometres to 103 kilometres and from hundreds of

square meters to 103 square kilometres), we used logarithmically increasing bins over

which we calculated the probability densities. We defined as xn the coordinate of the

right end of the nth bin (n = 0, 1, 2, ...). The coordinate xn+1 of the (n + 1)th bin
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was calculated recursively, xn+1 = bxn, where b was a bin factor. The length of the

nth bin was given by ∆xn = x0(bn − bn−1). In our analysis the number of bins was

chosen for each distribution and the corresponding bin factors b were computed. The

normalized probability density functions were calculated by dividing the number of

occurrences within each bin by the corresponding bin length and the total number of

data points considered. Due to the limited number of data points available for the

Martian calderas the distribution contained only a few points. The distributions of

diameters and areas for each planetary body considered are presented in Figure 2.1.

The difference in the distributions shapes for diameters and areas is due to different

bin factors for the individual distributions.

The constructed distributions display a similar behaviour for all four bodies.

There is a general power-law trend for large calderas and rollover and plateau for

small diameters/areas. This change in the distributions can be attributed to different

types of calderas present on those planetary bodies [Lipman, 2000]. Large calderas are

usually formed through a plate (piston) or downsag subsidence, while small calderas

frequently have funnel geometry and are associated with explosive eruptions through

the central vent and a subsequent subsidence [Lipman, 2000, Acocella, 2007]. It is

evident from Figure 2.1 that the distribution of caldera sizes on Earth is shifted to the

left indicating the presence of smaller caldera sizes compared to the other planetary

bodies. An explanation for this discrepancy can be related to the different caldera

forming processes operating on those planetary bodies: on Earth, most calderas are

formed around subduction zones and after large explosive (silicic) eruptions. On

Mars, for example, there are no evidence of subduction zones and most volcanism is

thought to be basaltic (non silicic). These factors can affect the size of the resulting

calderas [Wood, 1984].

In order to compare the distributions, we performed a scaling analysis. We first

calculated the sample averages Dn and An of caldera diameters and areas, where n

enumerated a planetary body (the Earth, Mars, Venus, and Io). We then rescaled

the individual probability density functions, P (d) and P (a), according to

x̄ P (x) = f
(x
x̄

)
, (2.1)

where x ≡ d and x̄ ≡ Dn for the diameters and x ≡ a and x̄ ≡ An for the caldera ar-

eas, and f(y) is a scaling function. Figure 2.2 shows the resulting plots of the rescaled
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Figure 2.1: Distributions of caldera sizes for the Earth, Venus, Mars and Io. a) Caldera
diameters in km, b) Caldera areas in km2.
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distributions. After rescaling the distributions using the mean diameter/area accord-

ing to Eq. (2.1), we observed a good collapse of the data into a single functional form.

In order to model this functional form, we tested 3 different heavy tailed distributions:

the generalized Pareto distribution, the log-normal distribution and the generalized

extreme value distribution (GEV). We chose to test heavy tailed distributions since

they are not exponentially bounded and are commonly used to describe the behaviour

of extreme events. Here, the collapse of a caldera can be considered as a catastrophic

event and we therefore investigate the resulting landform using heavy tailed distribu-

tions. We also chose to fit the whole distribution rather than using a size cutoff in

order to investigate the full behaviour of calderas. We estimated the parameters for

each of the models using the maximum likelihood method which is not affected by the

varying bin sizes of the distributions. The maximum likelihood estimation was done

using the Matlab software. In order to determine best fitting distribution to model

the scaling function f(y), we computed the Akaike information criterion (AIC) which

provides a relative goodness of fit, taking into account the number of parameters in

each model [Akaike, 1974]. If L is the maximum value of the likelihood function for a

model described by k different parameters, then AIC = −2 lnL+ 2k. Smaller values

of the AIC indicate a better fit. When the AIC values are close (±20), we still pick

the smallest value in order to keep a systematic approach.

The Earth data set contains significantly smaller caldera areas compared to the

other planetary bodies considered. Because of erosion processes and vegetation on

Earth, measuring and locating small features can be a difficult task which can lead

to the under-reporting of small calderas. We also observed a divergence of the data

from the collapse for the small caldera areas. For these reasons, we performed the

goodness of fit test for calderas/paterae with areas larger than 30 km2. This cutoff

only affects the Earth and Io data sets. The results of this test are given in Tables 2.2

and 2.3.

The obtained AIC values suggest that the GEV distribution provides the best

fit for the collapsed data:

f(y) =
1

σ
u(y)−1−1/θ exp

[
−u(y)−1/θ

]
, (2.2)

where u(y) = 1 + θ(y − µ)/σ with the shape parameter θ = 0.22± 0.06, the location

parameter µ = 0.64±0.04, and the scale parameter σ = 0.42± 0.03 for the diameters
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Planetary body #calderas Dn [km] An [km2]
Earth 386 12.6± 1.1 205.6± 48.4
Venus 83 62.3± 6.8 3741.0± 947.0
Mars 19 102.0± 44.8 14615.0± 1285.0
Io 144 72.7± 7.4 5715.0± 1430.0
Continental crust 209 289.7± 42.3
Oceanic crust 44 111.3± 57.0
Transitional crust 85 98.5± 12.4

Table 2.1: Summary of the data used for the planetary caldera analysis. Dn is the mean
diameter and An is the mean caldera area computed from the minimum and maximum
diameters assuming an elliptic shape for each planetary body except for the Earth where
some caldera areas are estimated using the actual shape [Geyer and Marti, 2008]. The
errors are given at 95% confidence intervals.

Distribution k lnL AIC
Generalized Pareto 2 -627.15 1258.29
Log-normal 2 -539.72 1083.45
Generalized Extreme Value 3 -521.85 1049.70

Table 2.2: The maximum values of the log-likelihood function (lnL) and the correspond-
ing values of the Akaike Information Criterion (AIC) for the model distribution functions
considered to fit the rescaled distributions given in Figure 2.2a.

Distribution k a) lnL AIC b) lnL AIC
Generalized Pareto 2 -462.0 928.1 -213.8 431.6
Log-normal 2 -442.4 888.8 -192.6 389.2
Generalized Extreme Value 3 -435.4 876.9 -185.4 376.9

Table 2.3: The maximum values of the log-likelihood function (lnL) and the corresponding
values of the AIC for the model distribution functions considered to fit a) the rescaled
distributions given in Figure 2.2b and b) he rescaled distributions given in Figure 2.4. k
is the number of parameters for the considered distribution. The values correspond to the
fitting analysis considering only calderas/paterae with an area above 30 km2.
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Figure 2.2: Rescaled caldera/paterae distributions for Earth, Mars, Venus and Io according
to Eq. (2.1): a) rescaled diameters, with the mean diameter Dn computed for each planetary
body (Table 2.1). The solid curve is a fit to the rescaled distributions and is given by the
GEV distribution, Eq. (2.2), with θ = 0.22 ± 0.06, µ = 0.64 ± 0.04, and σ = 0.42 ± 0.03;
b) rescaled areas, with the mean area An computed for each planetary body (Table 2.1).
The solid curve is a fit to the rescaled distributions and is given by the GEV distribution,
Eq. (2.2), with θ = 0.84± 0.11, µ = 0.26± 0.03, and σ = 0.30± 0.03
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(Figure 2.2a) and θ = 0.84 ± 0.11, µ = 0.26 ± 0.03, σ = 0.30 ± 0.03 for the areas

(Figure 2.2b). The estimates of the parameters were calculated with a 95% confidence

interval. The value of the shape parameter for the GEV distribution characterizes

the tail of the distribution: if θ > 0, the distribution displays heavy tail behaviour

as opposed to a light tail behaviour when θ = 0 or a bounded tail if θ < 0. Here,

both distributions, for the diameters and the areas are heavy tail distributions. The

mean value of the GEV distribution is defined as: µ + σ
[

Γ(1−θ)−1
θ

]
and is equal

to 1 for both distributions by definition, because of the normalization process. The

standard deviation is defined as:

√
σ2(g2−g21)

θ2
where gk = Γ(1−kθ) (Γ is the Gamma

function) and is equal to 0.81 for the distribution of diameters and is undefined for the

distribution of areas since θ > 0.5. We observed a deviation from the data collapse

for small values of diameters and areas. This discrepancy can be explained by the

small number of data in the Martian catalogue and by a possible misinterpretation

of the smaller landforms for Io. Another explanation for this deviation from the

collapse could be a different scaling form that applies to small caldera areas. It is

important to note that a similar type of distribution, displaying a power-law tail and

an exponential rollover was used to fit the distributions of three different landslides

inventories [Malamud et al., 2004].
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2.3 The Earth

We also investigated the scaling properties of caldera sizes on Earth according to their

surrounding crustal properties. The CCDB provides size data for calderas worldwide

as well as other characteristics such as plate tectonic settings, crustal type, world

region, and rock type [Geyer and Marti, 2008]. For our analysis, we grouped the

calderas according to 3 distinct crustal types: continental silicic crust, oceanic basaltic

crust and transitional crust (see Table 2.1).

Using the same methodology, we computed the probability density distributions

for each of the 3 data sets (Figure 2.3). We performed the scaling analysis using the

mean caldera area as a scaling factor for each distribution (Figure 2.4). Comparably

to planetary calderas, we observed a good collapse of all the distributions into a

single functional form. Similarly to planetary calderas, we only focused on areas

larger than 30 km2. After testing the generalized Pareto distribution, the log-normal

distribution and the GEV distribution as fits for the rescaled distributions (see Table

2.3), we found that the best AIC value was obtained for the GEV distribution, Eq.

(2.2) with θ = 0.94 ± 0.16, µ = 0.22 ± 0.04, and σ = 0.28 ± 0.05. The estimates of

the parameters were calculated with a 95% confidence interval. We note that for this

scaling analysis and for the one using the planetary data sets, the GEV parameters

are similar within the error limits. We observe a departure from the collapse for small

values in the case of the Earth calderas, which could be explained by incompleteness

of the catalogue or by a different scaling form for small calderas.
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Figure 2.3: Probability density functions of caldera areas for three separate crustal types
on Earth.
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with θ = 0.94± 0.16, µ = 0.22± 0.04, and σ = 0.28± 0.05.
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2.4 Conclusions

Calderas are formed by the collapse of the edifice of the erupting volcanoes into

partially drained magma chambers. Their sizes are related to the complex processes

that build the original volcanoes, to the propagation of the rising magma through

the host crustal rock, and to the size of the magma chamber itself. Therefore, the

caldera size distribution is an important characteristics that can be used to infer and

constrain the geodynamical processes operating on planetary bodies.

Using the proposed scaling analysis, we have shown that the distributions of

large caldera diameters and areas on Earth, Mars Venus and Io can be described as

a universal function, the Generalized Extreme Value (GEV) distribution. We also

analyzed the distribution of caldera sizes on Earth by grouping them into 3 distinct

crustal types: continental silicic crust, oceanic basaltic crust and transitional crust.

We showed that their distributions were described by the same GEV distribution.

The obtained parameters of the GEV distribution for planetary calderas and for the

calderas on Earth with distinct crustal types were similar within error limits. This

inferred scaling implies that the dynamic processes responsible for caldera formation

are similar for the Earth, Mars, Venus, and Io and are quite independent of the

crustal settings on Earth. The mean caldera/patera diameters and areas play the

role of characteristic sizes for each of the distributions. This result has important

implications for physical constraints on any realistic model describing the volcano

formation and eruption. In this context, the comparative planetology is a powerful

approach that can help to further understand caldera formation in the solar system.
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Chapter 3 Temporal Scaling of Volcanic

Eruptions1

3.1 Introduction

Volcanic eruptions are outcomes of complex processes that operate in the upper man-

tle and crust when magma reaches the surface of the Earth. They constitute a major

natural hazard on Earth especially in the areas with significant population density.

Therefore, understanding the processes taking place in the magma chamber and sur-

rounding crust that lead to an eruption is of fundamental importance. A typical

approach to studying volcanoes involves examination of their structures, tectonic set-

tings and associated eruptive activities. Statistical analysis is a powerful tool that can

be used to identify patterns and correlations in the occurrence of volcanic eruptions.

The first statistical analysis of eruption time series were performed on individual vol-

canoes in Hawaii and groups of volcanoes in Japan [Wickman, 1966, Klein, 1982].

Since then, stochastic models and various distributions have been proposed on se-

lected volcanoes such as homogeneous and non-homogeneous Poisson models [De la

Cruz-Reyna, 1991, Ho, 1991, Salvi et al., 2006], Weibull renewal model for volcanoes

in New Zealand [Bebbington and Lai, 1996], or a mixture of exponential distributions

[Mendoza-Rosas and De la Cruz-Reyna, 2009]. Rank-ordering power-law statistics

was used to predict the repose time of extreme volcanic eruptions and the method was

applied to the Taupo volcano [Pyle, 1998]. The frequency-magnitude statistics of his-

torical recurrence rates of large explosive eruptions was analyzed using extreme value

theory [Deligne et al., 2010]. The temporal structure of global sequences of explosive

eruptions in Kamchatka was analyzed and self-similar clustering and episodicity were

observed [Gusev et al., 2003]. Clustering was also observed on the onsets of volcanic

eruptions and their statistical behaviour was modelled using a trend renewal process

[Bebbington, 2010].

1. Pulished in J. Volcanol. Geotherm. Res., 247-248:115121, 2012. doi:
10.1016/j.jvolgeores.2012.08.004
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A promising approach to study volcanism is to look at the phenomenon as a

whole in order to develop a general framework applicable to all the volcanoes, in-

dependent of the volcano’s type and geographical location. This type of statistical

analysis has been successfully applied to other natural hazards and several scaling

laws, implying that the triggering mechanism operates the same way at broad spa-

tial and temporal scales have been proposed in studies of seismicity [Corral, 2003],

forest fires [Corral et al., 2008], solar flares [Baiesi et al., 2006], tropical cyclones

[Corral et al., 2010] and in the occurrence of rock fracturing [Davidsen et al., 2007,

Åström et al., 2006]. Similarly to the aforementioned processes, volcanism operates

through nonlinear threshold dynamics. Despite this complexity, one can consider vol-

canic eruptions as a point process in space and time. In addition, the distribution

of magnitudes and/or Volcanic Explosivity Index (VEI) of volcanic eruptions, dis-

plays scale-invariant characteristics [Newhall and Self, 1982, De la Cruz-Reyna, 1991,

Simkin, 1993, Gusev et al., 2003]. The cumulative distribution of the annual amount

of tephra produced by eruptions also exhibits power-law behaviour [Turcotte, 1997]. A

few statistical analysis have been performed on global data sets of volcanic eruptions.

Gusev [2008] observed self-similar clustering in time and size for eruptions. It was

also observed that large eruptions tend to occur during the most volcanically active

periods. These characteristics of global volcanic activity lead to the conclusion that

a global mechanism was responsible for the time/size clustering. Marzocchi and Zac-

carelli [2006] observed two different regimes concerning interevent times: short times

are clustered and can be explained by an open conduit system while long interevent

times show random behaviour, that can be characterized by a Poisson process and

explained by a closed conduit system. These two regimes were also associated with

different rhythms in magmatic intrusions [Dubois and Cheminee, 1991].

In this chapter, we analyzed the scaling properties of volcanic eruptions on

Earth. For this purpose, we considered eruptive histories of the 26 most active volca-

noes as well as eruptions of 163 less active volcanoes around the world. The volcanoes

were also analyzed by grouping them into 9 geographical regions as well as into 4 vol-

cano types: calderas, complex volcanoes, shield volcanoes, and stratovolcanoes. We

computed the distributions of interevent times between successive eruptions for all

the eruption data sets considered. The scaling analysis was performed to quantify

their universal properties. This was accomplished by using the corresponding mean

interevent time of each data set as a scaling factor. A collapse of all the distributions



Chapter 3: Temporal Scaling of Volcanic Eruptions 53

into a single functional form for interevent times lead us to conclude that the pro-

cesses responsible for volcanic eruptions on Earth were similar and quite independent

of the type of volcanism and geographical location.

3.2 Volcanic Eruption Data

A time interval between two successive volcanic eruptions, or an interevent time,

is an important characteristic of volcano dynamics [Marzocchi and Zaccarelli, 2006,

Deligne et al., 2010]. When one studies the distribution of interevent times it is crucial

to define what constitutes the onset of an eruption. Here, we consider the onset as

the time of the arrival of volcanic products at the Earth’s surface. This includes

explosive ejection of fragmental material or effusion of previously liquid lava. To

analyze the interevent time distributions of eruptions, we extracted eruptive histories

of volcanoes on Earth from the Smithsonian Institution global eruption catalogue

[Siebert and Simkin, 2002-] and assembled them into separate data sets. For each

individual volcano data set, we computed the time intervals ∆t between successive

eruptions as ∆ti = ti− ti−1, with ti being the time onset of the ith eruption. For the

analysis, we ignored the eruption duration but instead measured the interevent time

between the onset of one eruption and the onset of the subsequent eruption.

The incompleteness of the catalogues is an important issue that had to be

addressed in our analysis. Indeed, the number of reported volcanic eruptions has

dramatically increased in the past 500 years [Simkin, 1993]. This is mainly due

to the development of modern tools and methods for monitoring and detection of

volcanic activities. Previous studies of individual and combined volcanic catalogues

have addressed the problem of incompleteness with some success [Marzocchi and

Zaccarelli, 2006, Bebbington, 2010, Deligne et al., 2010]. To ensure that the catalogues

considered in our analysis were complete and that our estimates of the interevent times

were not biased by incompleteness, we introduced a cutoff date for older eruptions for

each of the considered eruption sequences. The cutoff date was determined specific

to each volcano sequence considered. For this type of data, as stated before, the

older the eruption date, the less reliable it was. We chose the cutoff date for each

volcano by detecting when the data became less reliable based on the number of

uncertain dates and changes in the mean rate of eruptions. This method might not

fully account for uncertain or missing eruption dates, but at present, there is no truly
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reliable technique to validate the completeness of the volcanic eruption catalogues

to ensure sufficient data for the analysis. In comparison, when studying earthquake

interevent times, one often introduces a lower magnitude cutoff in the catalogues to

address their incompleteness. In our case, we were dealing with the eruptive history

of individual volcanoes, and even small eruptions represent the outcome of complex

processes occurring in the magma chamber and could not be ignored in our analysis.

In addition, the Volcanic Explosivity Index (VEI) [Newhall and Self, 1982] used as an

estimate of the eruption’s magnitude only takes into account the explosive component

of an eruption and ignores the volume of lava produced by effusive eruptions. However,

to analyze the scaling of interevent times with respect to the lower magnitude cutoff

we also considered different VEI cutoffs in our study.

For our analysis, we considered the individual eruption sequences of 26 promi-

nent volcanoes around the world (Table 3.1). We selected these individual volcanoes

because their eruptive histories were long enough to be considered in a statistical

analysis and the events were relatively recent and therefore the dates were reasonably

reliable. We also studied other volcanoes from the volcanically active regions around

the world. Their eruption sequences were usually not very long so the construction

of statistical distributions for interevent times was problematic. To increase statistics

by assuming that volcanoes located in the same region and surrounded by similar tec-

tonic settings produce statistically similar eruption sequences [Rodado et al., 2011],

we subdivided the Earth into nine volcanically active regions: Alaska (3 volcanoes

considered, 72 eruptions), Aleutians (14 volcanoes, 142 eruptions), Central America

(22 volcanoes, 403 eruptions), Iceland (7 volcanoes, 100 eruptions), Indonesia (37

volcanoes, 768 eruptions), Japan (21 volcanoes, 502 eruptions), Kamchatka (11 vol-

canoes, 289 eruptions), New Zealand (4 volcanoes, 175 eruptions), and South America

(36 volcanoes, 522 eruptions) (the detailed information for each volcano considered

is given in appendix A). We also considered these volcanoes by classifying them into

4 groups according to their type: caldera, complex, shield, and stratovolcano (see

Table 3.2). For each of the catalogues considered, when the day of the event was not

specified, we assigned it as being the first day of the month. When both the day and

the month were missing, we assigned the date to the first of July. This was done

following the methodology suggested by Gusev [2008].

The individual volcanoes or groups of volcanoes produce interevent distributions

over comparable length scales. In order to model broader time scales of the interevent
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time distribution, we compiled an additional group consisting of 24 volcanoes located

around the world and characterized by the presence of a caldera and long interevent

times between eruptions (see details in the appendix). This was done assuming that

the processes controlling the eruptions of this type of volcanoes were similar and

therefore their interevent time distributions were comparable. For the major caldera

data sets, we did not introduce a date cutoff since the eruptions characterizing these

volcanoes were all of considerable size and present in the geological records. We

therefore assumed that the eruptive histories were approximately complete.

3.3 Results and interpretation

Using the extracted sequences, we computed the probability density functions of in-

terevent times for each of the 26 data sets for the individual volcanoes. Because

multiple time scales were involved (days to hundreds of years), we used logarithmi-

cally increasing bin lengths to plot the probability densities. We defined xn as the

coordinate of the right end of the nth bin (n = 0, 1, 2, ...). The coordinate xn+1 of

the (n+ 1)th bin was calculated recursively, xn+1 = bxn, where b was the bin factor.

The length of the nth bin was given by ∆xn = x0(bn − bn−1). In our analysis the

number of bins was chosen for each distribution and the corresponding bin factors b

were estimated. The normalized probability density function was calculated by di-

viding the number of occurrences within each bin by the corresponding bin length

and the total number of data points considered. Figure 3.1 shows the corresponding

distributions for the 26 individual volcanoes. They all display a power-law trend for

large interevent times and rollover for small times.

To analyze scaling properties of the interevent time distributions, we used the

mean interevent time, τn, between eruptions computed for each data set as a scal-

ing parameter, where n enumerates each volcano. We then rescaled the individual

probability density functions, P (∆t), according to

τn P (∆t) = f

(
∆t

τn

)
, (3.1)

where f(x) is a scaling function. This transformation results in dimensionless co-

ordinate axes. Figure 3.2 shows the resulting plot of the rescaled distributions for

the 26 individual volcanoes. We observe a good collapse of the data into one single
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Volcano (region) #eruptions time span τn [days]
Ambrym (Vanuatu) 46 1888 – 2008 976± 160
Asama (Japan) 110 1595 – 2009 1386± 247
Aso (Japan) 129 1434 – 2008 1637± 232
Bezymianny (Kamchatka) 53 1955 – 2010 387± 54
Colima (Mexico) 51 1519 – 1997 3495± 709
Cotopaxi (Ecuador) 58 1532 – 1940 2612± 1108
Etna (Italy) 155 1381 – 2010 1492± 217
Grimsvotn (Iceland) 44 1610 – 2011 3405± 403
Kilauea (Hawaii) 64 1790 – 1983 1116± 272
Kirishima (Japan) 55 1524 – 2010 3285± 613
Kliuchevskoi (Kamchatka) 99 1697 – 2009 1163± 156
Krakatau (Indonesia) 41 1883 – 2010 1164± 401
Llaima (Chile) 53 1640 – 2008 2584± 885
Marapi (Indonesia) 59 1770 – 2004 1474± 280
Mauna Loa (Hawaii) 38 1832 – 1984 1498± 267
Merapi (Indonesia) 56 1768 – 2010 1608± 185
Piton de la Fournaise 160 1721 – 2010 665± 61
(Reunion island)
Poas (Costa Rica) 44 1880 – 2009 1099± 163
Raung (Indonesia) 55 1815 – 2008 1302± 217
Ruapehu (New Zealand) 58 1861 – 2007 938± 206
Semeru (Indonesia) 58 1818 – 1967 954± 202
Slamet (Indonesia) 41 1772 – 2009 2161± 528
Taupo (New Zealand) 25 9460 BC – 260 AD 147923± 47242
Tenger (Indonesia) 58 1804 – 2010 1322± 174
Tongariro (New Zealand) 68 1839 – 1977 755± 96
Villarrica (Chile) 66 1730 – 2009 1570± 173

Table 3.1: Summary of the eruption data used for the interevent time analysis of 26
prominent volcanoes. τn is the mean interevent time between eruptions computed for each
volcanic data set. The last column gives the time span of the eruption history considered
for each volcano. The errors are given at 95% confidence intervals
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Group #eruptions #volcanoes
Caldera 448 24
Complex volcano 333 13
Shield volcano 266 12
Strato volcano 2135 113

Table 3.2: Summary of the eruption data used for the interevent time analysis for the
volcano types

101 102 103 104 105

10-7

10-6

10-5

10-4

10-3

10-2

 Ambrym
 Asama
 Aso
 Bezymianny
 Colima
 Cotopaxi
 Etna
 Grimsvotn
 Kilauea
 Kirishima
 Kliuchevskoi
 Krakatau
 Llaima

 

 

P(

t)

t

Figure 1: Sanchez and Shcherbakov (2012)
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Figure 3.1: Probability density functions of interevent times for the 26 volcanoes on Earth
with the largest eruptive history
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functional form, similar to the observed scaling reported for the distributions of other

natural hazards and rock fractures [Corral, 2003, Corral et al., 2008, Baiesi et al.,

2006, Davidsen et al., 2007].

The data sets for grouped volcanoes belonging to specific regions or volcano type

typically consist of several volcanoes. Each volcano has its own rate of eruption. In

order to combine the datasets into a single one, we first rescale the interevent times of

each individual volcano sequence with the corresponding sample mean value. For each

individual volcano eruption sequence belonging to the 9 regional groups and the four

volcano type groups, we computed the corresponding interevent times and the sample

mean τn. We then divided each interevent time ∆ti, by this sample mean, in order to

normalize each interevent sequence to have the same unit mean rate. After that we

combined these normalized interevent times from all volcanoes belonging to a specific

region or group and computed their interevent time distribution functions. This was

done to ensure that the distributions were computed from the data having the same

rate of occurrence [Marzocchi and Zaccarelli, 2006]. This approach is appropriate for

processes with the exponential trend in the distribution of interevent times [Marzocchi

and Zaccarelli, 2006]. The result of this rescaling is shown in Figure 3.3 and the result

for the volcano type subdivision is shown in Figure 3.4. This approach is essentially

the same as given by Eq. (3.1).

We also performed the analysis of interevent times between successive eruptions

by introducing the threshold magnitude above which eruptions were considered. This

was done to confirm that the proposed scaling was valid for different lower magnitude

cutoffs. We used the VEI values as a magnitude because it was the only eruption

size scale listed for all volcanoes considered in the catalogue. This analysis is useful

in establishing the invariance with respect to the magnitude threshold. This is illus-

trated in Figure 3.5 for the geographically grouped distributions, where the magnitude

cutoffs were 1.0, 2.0, and 3.0, respectively. Comparing these plots with Figure 3.3

confirms the invariance of the rescaled functional form with respect to the magnitude

cutoff. The only deviation is observed for VEI 3.0 and can be attributed to the low

statistics and resulting spread in the data points. We performed the same analysis for

the 26 individual volcano sequences with the similar result that the proposed scaling

holds for higher magnitude thresholds (Figure 3.6).
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Figure 2: Sanchez and Shcherbakov (2012)
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Figure 3.2: Rescaled interevent time distributions for the 26 individual active volcanoes
according to Eq. (3.1) with the mean interevent time τn computed for each volcano (Ta-
ble 3.1). The solid curve is a fit to the rescaled distributions and is given by the log-normal
distribution, Eq. (3.2), with µ = −0.66 ± 0.05 and σ = 1.14 ± 0.04. The errors on the
parameters are given at the 95% confidence interval assuming a log-normal distribution.
The error bars are not displayed for the sake of clarity
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Figure 3.3: The combined rescaled interevent time distributions of groups of volcanoes
belonging to 9 different regions. Each individual volcano sequence was first rescaled with
the mean interevent time and only after that the distributions were constructed. Data
collapse was observed similar to the one shown in Figure 3.2. The solid curve is a fit to the
rescaled distributions and is given by the log-normal distribution with µ = −0.70 ± 0.05
and σ = 1.23± 0.03.The errors on the parameters are given at the 95% confidence interval
assuming a log-normal distribution
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Figure 4: Sanchez and Shcherbakov (2012)

Figure 3.4: The combined rescaled interevent time distributions of volcanoes grouped by
type. Each individual volcano sequence was first rescaled with the mean interevent time
and only after that the distributions were constructed. Data collapse was observed similar
to the one shown in Figure 3.2. The solid curve is a fit to the rescaled distributions and
is given by the log-normal distribution with µ = −0.70 ± 0.04 and σ = 1.24 ± 0.03. The
errors on the parameters are given at the 95% confidence interval assuming a log-normal
distribution
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Figure 3.5: The combined rescaled interevent time distributions of groups of volcanoes
belonging to different regions. Each individual volcano sequence was first rescaled with the
mean interevent time and only after that the distributions were constructed. The lower
magnitude cutoff of eruptions was used: a) VEI ≥ 1.0; b) VEI ≥ 2.0; c) VEI ≥ 3.0. The
solid curve is a fit to the rescaled distributions and is given by the log-normal distribution
with a) µ = −0.70± 0.05 and σ = 1.23± 0.04; b) µ = −0.67± 0.06 and σ = 1.22± 0.04; c)
µ = −0.59± 0.15 and σ = 1.27± 0.11. The errors on the parameters are given at the 95%
confidence interval assuming a log-normal distribution. The error bars are not displayed for
the sake of clarity
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Figure 3.5: Continued.
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Figure 3.5: Continued.
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Figure 3.6: Rescaled interevent time distributions for the 26 individual volcanoes according
to Eq. (1) with the mean interevent time τn for each volcano. Lower magnitude cutoffs of
eruptions were used: a) VEI ≥ 1.0; b) VEI ≥ 2.0. The solid curve is a fit to the rescaled
distributions by the log-normal distribution with a) µ = −0.68± 0.08 and σ = 1.20± 0.06;
b) µ = −0.68± 0.07 and σ = 1.18± 0.06.
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Figure 3.2: Continued.
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The above analysis indicates that the mean sample interevent time τn plays the

role of a characteristic time scale for each data set. To model the scaling function

f(x), we tested several distributions: the generalized Pareto, the log-normal, and the

generalized extreme value (GEV) which are used to model heavy tailed distributions,

and the gamma and the exponential distributions which are both part of the expo-

nential family and a common choice when fitting interevent time distributions. The

estimation of the parameters for these distributions was performed using the maxi-

mum likelihood method. In order to select the best among several tested models, we

used the Akaike information criterion (AIC) which measures the relative goodness of

fit taking into account the number of parameters for each model [Akaike, 1974]. If L

is the maximum value of the likelihood function for a model described by k different

parameters, then AIC = −2 lnL + 2k. Smaller values of the AIC indicate a better

fit of a model. The results of this test are given in Table 3.3.

Distribution k a) lnL AIC b) lnL AIC c) lnL AIC
Log-normal 2 -1527.8 3059.6 -2306.5 4617.0 -2775.2 5554.3
GEV 3 -1544.5 3095.0 -2378.6 4763.2 -2853.6 5713.2
Exponential 1 -1718.0 3438.0 -2497.0 4996.0 -2987.0 5976.0
Gamma 2 -1710.4 3424.8 -2471.8 4947.5 -2955.4 5914.7
Generalized Pareto 2 -1607.2 3218.3 -2366.4 4736.7 -2832.3 5668.5

Table 3.3: The maximum values of the log-likelihood function (lnL) and the corresponding
values of the Akaike Information Criterion (AIC) for the model distribution functions con-
sidered to fit a) the rescaled distributions given in Fig. (3.2), b) the rescaled distributions
given in Fig. (3.3) and c) the rescaled distributions given in Fig. (3.4). k is the number of
parameters for the considered distribution

The obtained AIC values (Table 3.3) suggested that the log-normal distribution

was the best fit to model the functional form of the rescaled data:

f(x) =
1

x σ
√

2π
exp

[
−(ln(x)− µ)2

2σ2

]
, (3.2)

with µ = −0.66 ± 0.05 and σ = 1.14 ± 0.04 for the individual distributions

(Figure 3.2), µ = −0.70 ± 0.05 and σ = 1.23 ± 0.03 for the regional groups of

volcanoes (Figure 3.3), and µ = −0.70 ± 0.04 and σ = 1.24 ± 0.03 for the volcano

type groups (Figure 3.4). These parameter values are equivalent within the error

limits, implying a common functional form for all the distributions considered. For
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short interevent times, we observe a deviation from the proposed scaling behaviour.

This can be attributed to a different scaling form for short interevent times as observed

for earthquakes [Davidsen and Goltz, 2004] or it can be due to low statistics in the

event count. To check the latter we also plot the uncertainties in the event counts

corresponding to one standard deviation which are based on the binomial distribution.

The estimation of the parameters of the log-normal distribution for the proposed

scaling model was performed using the maximum likelihood method and the errors

are reported at 95% confidence levels. The maximum likelihood method has been

chosen as it does not depend on the type of the binning of distribution functions

and provides a robust estimate of model parameters. In this method the individual

interevent times are used to find an optimal set of parameters based on a specific

probability model.

The fit using the exponential distribution exhibits the largest AIC value, indi-

cating that the volcanic eruptions cannot be explained by a Poisson process where

events are independent of each other. Instead, the smallest AIC value for the log-

normal fit indicates that the occurrence of volcanic eruptions can be modelled by a

random multiplicative process. This distribution has already been reported to de-

scribe the conditional probability density function of the times to the next eruption

given a magnitude of the current eruption for open conduit systems [Marzocchi and

Zaccarelli, 2006]. The eruption sequences we considered, except for the caldera type,

were characterized by small mean interevent times and were consistent with an open

conduit system. In that regard, our analysis is in agreement with the previous results

obtained by Marzocchi and Zaccarelli [2006]. The calderas considered were, on the

other hand, described by long mean interevent times, which would be described as a

closed conduit system. The result from our scaling analysis states that this type of

volcanic system is not characterized by a Poissonian behaviour as stated by Marzocchi

and Zaccarelli [2006].

3.4 Conclusions

The interevent time statistics is an important signature of any underlying stochastic

process. Particularly, volcanic eruptions can be considered as a stochastic process

in time generated by the complex interaction of the rising magma with surrounding
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solid rock layers. This process generates events (eruptions) which are characterized

in most cases by non-trivial temporal correlations.

Using the proposed scaling analysis, we demonstrated that the distributions

of interevent times between eruptions can be described by a universal functional

form when rescaled with the corresponding mean interevent times. The observed

scaling law indicates that the distributions are controlled by the mean interevent

time τn of each data set. This implies a consistent behaviour quite independent of

the type of volcanism and geographical setting of volcanoes. In addition, the log-

normal distribution plays an important role in describing the temporal distribution

of eruptions.

The obtained log-normal scaling can signify that the interevent times between

eruptions are the result of a multiplicative process. This also signifies that eruption

times are correlated with elements of clustering. Clustering and self-similarity were

reported earlier by Gusev et al. [2003]; Gusev [2008]; Marzocchi and Zaccarelli [2006].

The proposed scaling and the log-normal model were derived for relatively short time

spans of each volcano sequences. This was done to ensure that the existing records

are relatively complete and the average rates of individual volcanic eruptions stayed

approximately constant. We also considered sequences of large caldera eruptions to

analyze the interevent time distribution for longer time spans. The same analysis was

also performed on the eruption sequences with the different lower magnitude (VEI)

cutoffs. For all these data sets the obtained rescaled distributions followed a universal

functional form described by the log-normal distribution. The obtained universality

in the distribution of interevent times is a manifestation of self-similar nature of

volcanic processes in time. It also indicates that the temporal structure of volcanic

sequences deviates from the simple Poisson statistics. Therefore, the obtained results

are important in constraining the physics of eruption processes as well as in any

volcanic hazard assessment and mitigation techniques.
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J. Åström, PCF Di Stefano, F. Pröbst, L. Stodolsky, J. Timonen, C. Bucci, S. Cooper,

C. Cozzini, F. Feilitzsch, H. Kraus, et al. Fracture processes observed with a

cryogenic detector. Phys. Lett. A, 356(4):262–266, 2006.

M. Baiesi, M. Paczuski, and A.L. Stella. Intensity threshold and the statistics of the

temporal occurence of solar flares. Phys. Rev. Lett., 96(5):051103, 2006.

M. S. Bebbington. Trends and clustering in the onsets of volcanic eruptions. J.

Geophys. Res., 115(B1):B01203, 2010.

M. S. Bebbington and C. D. Lai. On nonhomogeneous models for volcanic eruptions.

Math. Geol., 28(5):585–600, 1996.
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Chapter 4 A Cellular Automata to Model

Magma-Crust Interactions and Volcanic

Eruptions

4.1 Introduction

Volcanic eruptions are the expression of complex interactions between magma and

the host rock. They can display a variety of behaviours, ranging from gentle effusive

activity to highly explosive events. Volcanic processes have been extensively studied

through field work and numerical analysis providing us with some quantitative under-

standing of the main physical mechanisms involved. However, our current knowledge

remains insufficient to explain and forecast the temporal behaviour of eruptions. The

deterministic character of the modelling fails at reproducing the temporal patterns

observed. Therefore, understanding the nonlinear interactions that lead to eruptions

alongside with being able to reproduce the observed temporal patterns are crucial

steps in the field of volcanology and hazard assessment.

Statistical analysis of the spatial, temporal and size distribution of volcanic

eruptions has allowed to uncover some of the behaviour of these characteristics. The

size distribution of volcanic eruptions has been shown to display scale-invariant be-

haviour [Newhall and Self, 1982, De la Cruz-Reyna, 1991, Simkin, 1993, Gusev et al.,

2003], implying that there exist no characteristic eruption size for a given region. The

spatial distribution of basaltic flows seems to exhibit self-similarity [Pelletier, 1999]

and the distribution of magma fractions at depth was found to display self-similar

clustering [Shaw and Chouet, 1991]. The size and temporal distribution of acous-

tic emissions from volcanic rocks are also characterized by power-law distributions,

implying a single underlying mechanism [Diodati et al., 1991, 2000]. The temporal

patterns describing volcanic events are complex and are the results of non-trivial cor-

relations. Studying the temporal organization of global volcanic activity, Gusev [2008]

observed self-similar clustering of eruptions. These characteristics of worldwide activ-

ity lead to the conclusion that a common mechanism was responsible for the time/size
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clustering. The scaling properties of the temporal behaviour of eruptions displayed

by multiple volcanic regions and by the most currently active volcanoes on Earth

also hints towards a universal mechanism for the triggering of events [Sanchez and

Shcherbakov, 2012]. Other natural hazards such as earthquakes, landslides, forest

fires or tropical cyclones have also been shown to display power law distributions in

size [Kagan, 2002, Malamud et al., 2004, 2005, Corral et al., 2010]. This kind of

statistical behaviour implies the presence of complex behaviour, where a broad range

of events are triggered by small driving processes such as tectonic forcing, and the

relationship between input and output is highly non-linear [Deluca and Corral, 2013].

Such statistical observations are hard to quantify using classical mechanical laws and

an alternative approach is therefore needed [Lahaie and Grasso, 1998].

The non-linear interactions of several entities in a complex system lead to a

global behaviour that cannot simply be described by the sum of each entity’s lo-

cal behaviour. This kind of systems are highly sensitive to initial conditions and

the emerging temporal patterns are not predictable or deterministic [Schadschneider

et al., 2009]. The analysis and modelling of cellular automata (we will call them CA

from now) is one of the approaches used to study complex systems. CAs are an ide-

alization of a physical system where the physical characteristics of a physical system

are represented by only a set of values. The dynamics of physical systems are often

described using nonlinear partial differential equations. Due to non-linearities, the

solutions of these equations are strongly sensitive to the initial conditions. The same

type of complications can occur in discrete dynamical systems such as CAs [Chopard

and Droz, 1998]. A CA is represented by a lattice (can be one, two-dimensional or

more) filled with cells. The state of each cell at a given time step is updated according

to local rules that depend on the state of the neighbouring cells. Following the prede-

fined rules, the CA can produce a variety of behaviours including complex ones. CAs

therefore represent a good alternative to explore the dynamics of continuous systems

and to simulate natural processes. These kind of models have been successful in the

past at reproducing the complex behaviour of some natural hazards such as earth-

quakes [Ogata, 1992, Olami et al., 1992], forest fires [Bak et al., 1990] and processes

such as percolation [Sahimi, 1993].

The use of CAs in the field of volcanology is a new approach and has been mainly

applied to model the flow of erupted lava in order to improve the determination of

hazardous zones on specific volcanoes [Vicari et al., 2007, Crisci et al., 2003, Del Negro
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et al., 2008]. Lahaie and Grasso [1998] developed a CA composed of fluid and rock

cells interacting with each other in order to reproduce the size and temporal behaviour

of the eruptive activity at the Piton de la Fournaise volcano. They were able to show

that the behaviour of the volcano could be explained by a combination of multiple

magma storages rather than a main magma chamber. Pelletier [1999] combined a

model of fluid migration in a disordered porous media developed by Buldyrev et al.

[1992] with eruption dynamics. His goal was to describe magmatic upwelling through

the continental crust. When analyzing the synthetic history of volcanism produced

by this model, it was found that the spatial and temporal pair-correlation functions

were consistent with the functions obtained from real data.

Piegari et al. [2008] designed a CA that models magma ascent through the crust.

In a two-dimensional lattice, the initial stress level of each site is assigned randomly

while a slow constant loading is applied to each site following the rule of the model

developed by Olami et al. [1992]. Fractures are initiated and magma is allowed to rise

in an upward direction when in contact with a crack. An eruption occurs when a batch

of magma reaches the surface (top of the lattice) and the volume V of the eruption

is defined by the number of magma filled sites connected to the surface. It was found

that the size distribution of eruptions exhibits a power-law behaviour consistent with

the behaviour observed in nature by using the Volcanic Explosivity Index (VEI)

scale for eruptions [Newhall and Self, 1982, Simkin, 1993]. Concerning the interevent

time distribution P (t), the model results exhibit an exponential behaviour for large

eruptions, implying that the major events are independent and occur at a constant

rate, while small events are better fitted by a stretched exponential distribution.

Expanding this model Piegari et al. [2011] incorporated the effect of the water content

of the magma and investigated the effect of water exsolution on the explosivity degree

of eruptions. In another formulation of the model, Piegari et al. [2013] introduced a

rock density layered structure in order to approximate the density structure of mount

Vesuvius. The density differences between the magma and the host rock determined

whether or not the magma was allowed to rise, or had to stop and start cooling and

solidifying. The interevent time distributions produced by the model is in agreement

with the data from Vesuvius.

In this chapter, we formulate a CA model that investigates the magma-crust

interactions in order to further our understanding of the several volcanic temporal

regimes in open and closed conduit systems. We focus on using a minimal number of



Chapter 4: A Cellular Automata to Model Magma-Crust Interactions and Volcanic
Eruptions 76

parameters in order to investigate universality in eruption processes. We compare the

results of the CA with temporal data obtained from worldwide catalogues [Siebert

and Simkin, 2002-].

4.2 The Model

Our goal is to reproduce the statistical properties of volcanic eruptions using a simple

physically motivated model. We are interested in the size and temporal behaviour

of events in a large range of tectonic settings. To achieve this goal, we formulate a

model that describes the magma-crust interactions in volcanic settings. We base our

model on the consensus that overpressure in the reservoir leads to the rise of magma

through a network of cracks to the surface, and the hypothesis that magma ascent is

mainly controlled by buoyancy differences [Ryan, 1987].

As previously stated, CAs represent a powerful tool to model complex be-

haviours. One class of CAs has been specifically developed and used to simulate

fluid flow behaviour. Based on the discretization of partial differential equations, the

Lattice Gas Cellular Automata (LGCA) had been used as a tool to simulate fluid

flow. The first model, formulated by Hardy et al. [1973] and now referred to as the

HPP model, describes particle interactions on a 2-dimensional square lattice which

consist in a series of collision and propagation stages where particle number and mo-

mentum are conserved. Using the same evolution rules on a hexagonal lattice, Frisch

et al. [1986] showed that this type of model is successful at solving the Navier-Stokes

equations of fluid flow as the change of geometry from the HPP model introduced

isotropy in the system. For this study, we will expand the HPP model in order to

represent the interactions between magma and the solid crust in a volcanic setting.

We consider a rectangular lattice composed of nodes that can contain a maxi-

mum of 4 particles at a time, one particle on each branch of the node (see Figure 4.1).

The state of each site (i, j) of the lattice at time t is characterized by its strength

s(i, j, t) and by the presence or not of magma at each branch of the node md(i, j, t)

where d = (n, e, s, w) is the branch position on the node:

0 ≤ scrust(i, j, t) ≤ 1, (4.1)
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schamber(i, j, t) = 0, (4.2)

md(i, j, t) = {10, (4.3)

The system is divided into two distinct areas, the magma chamber and the crust

(see Figure 4.1 e)). The strength of the sites in the crust scrust(i, j) can range from

0 for a completely ”open” site to 1 for a completely ”closed” site (see Eq. (4.1)). The

strength of the sites in the magma chamber is set at a constant value of 0, so all sites

in this area are ”open” (see Eq. (4.2)). A closed site, characterized by s(i, j) < 1,

will prevent the propagation of magma particles while an open site, where s(i, j) = 0,

will allow an undisturbed movement of the particles. At each time increment ∆t, the

system is updated in 3 steps. First, we input particles in order to simulate a magma

feeding rate. Each empty site at the bottom of the chamber has a probability Pf to

be filled by a particle with an upward motion. In the second step, collisions between

particles are updated. The only configuration of particles affected by this stage is the

case where only two particles are present and in an opposite position on a horizontal

or a vertical plane (see configurations c) and d) of Figure 4.1). Once all the collisions

have been updated, the third step consists in the propagation of the particles. In the

simple case where s(i, j, t) = 0, the particles are free to move to the next site (see

Figure 4.2). This process occurs at all times in the magma chamber. In the crust,

when scrust(i, j, t) 6= 0, the particles are not allowed to propagate and will bounce

back and be guided in the opposite direction. A particle headed upwards in the crust

encountering a locked site will end up heading downwards for example. In order to

create a pathway to the surface, the particles will progressively damage the sites in

the crust. Each particle is indeed assigned a constant ”damage capacity” 0 < d < 1,

while the crustal sites are assigned a constant ”healing capacity” value 0 < h < 1.

The healing property of the host rock can be compared to the solidification of magma

in the conduit for example.

scrust(i, j, t+ 1) = scrust(i, j, t)− d (4.4)

scrust(i, j, t+ 1) = scrust(i, j, t) + h (4.5)
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Every time a site is hit by a particle, its strength will be affected according

to Eq. (4.4). When not hit by any particles, crustal sites will ”heal” according to

Eq. (4.5). This characteristic of the model is one of the main difference with the

CAs formulated by Piegari et al. [2008, 2011, 2013]. In our case, we consider that

density differences cause the ascent of magma through the crust and that this ascent

is the primary force that generates fractures within the crust. Slow constant tectonic

loading is ignored in our case.

When a particle reaches the top of the crust and scrust(i, top, t) = 0, an eruption

occurs. In order to evaluate the size of the eruption (or the number of particles

involved), we compute the number of open sites connected to the eruption site and

containing magma particles. To do so, we use the rules defined in the forest fire model

[Bak et al., 1990]. Starting from the eruption site at the top of the crust, we scan the

lattice one site after the other in order to find the connected open sites. We introduce

a connectivity factor C which controls whether or not the open site is considered as

part of the eruption cluster. C is the probability of the open site to be considered part

of the eruption. We then define the eruption size as the number of magma particles

present in the defined cluster. These particles will exit the system at time t.

With these rules, we want to represent a wide range of volcanic behaviours by

only changing the values of two parameters: d and h. In this model, these two param-

eters are not the only ones responsible for the complex interactions occurring in the

crust, but rather the ratio d/h can be considered as a proxy to characterize the global

state of the crust and magma body. These two parameters comprise the different

variables defining the strength of the crust alongside with the pressure changes in

the magma body. We want to investigate open and closed conduit systems using the

same model and therefore demonstrate the universality of the processes responsible

for all types of volcanic eruptions.



Chapter 4: A Cellular Automata to Model Magma-Crust Interactions and Volcanic
Eruptions 79

Figure 4.1: Different possible configurations for particle positions in the HPP model for

the cases of 4, 3 and 2 particles on a node (a,b,c,d). Schematic view of the 2D lattice with

the distinction between the magma chamber and the crust (e)

Figure 4.2: Collision and propagation rules for the different configuration of particles on

the lattice
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4.3 Results

For numerical simulations of the model, we studied the behaviour of two different

configurations. The first one (we will call it model 1) is defined on a 2-dimensional

square lattice of size 300×110. The crustal dimensions are 300×100 and the magma

reservoir at the bottom of the system has a size of 300 × 10. The particles are

propagating in the [N,S,E,W ] directions as shown in Figure 4.3. Model 2 is also

defined on a 2-dimensional square lattice but has a size of 256× 256. The crust fills

80% of the system and the magma chamber fills the remaining 20%. The particles in

this case are propagating in the [NE,NW,SE, SW ] directions (see Figure 4.3). For

both models, we only consider one value of constant feeding rate. A change in the

feeding rate will influence the size and temporal behaviour of the model eruptions.

Figure 4.3: Propagation directions for model 1 (left) and model 2 (right).

For both configurations, at time t = 0, the whole crust is ”locked” and empty

and the magma chamber contains a random number of particles (each position on

a node has a probability of 80% to be filled with a particle at t = 0). We consider

reflective boundary conditions so the particles bounce back on the sides and bottom

of the system, and the sites at the boundaries can only contain a maximum of 3

particles. After the system has reached a steady state (the number of particles in the

system is oscillating around a constant value), we collect the size of each eruption

in order to compute statistics on the frequency-size distribution of events as well as

the time of occurrence of events to obtain statistics on the temporal behaviour of

eruptions in the two systems.

4.3.1 Model 1 (300× 110)

We studied a range of values for d and h (0.04 < d < 0.95 and 0.03 < h < 0.90)

in order to simulate different volcanic settings. We investigated several connectivity

values (C = 0.4; 0.5; 0.6) but we will focus our analysis on the results of C = 0.5. For
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C = 0.4, we obtain a very small amount of eruptions and our statistics are therefore

low. For C = 0.6, the number of particles involved in an eruption is much greater,

creating almost constant eruptions and leading to low statistics as well.

4.3.1.1 Frequency size distribution of eruptions

An eruption event consists in the undisrupted succession of magma loss from the

system. When particles have reached the top of the system and the strength of

the top of the crust scrust(i, top, t) = 0, particles start exiting the system according

to the eruption process previously described. If eruptions occur within consecutive

time steps, they are counted as a single eruption and its size consists in the sum of

exiting particles at each time step. An eruption event can last for one or many more

time steps. We collected eruption data for different values of d and h and computed

the probability density distributions P (V ) (normalized histogram, or PDF) for all of

them. V corresponds to the number of particles involved in the eruption.

We observe a consistent power-law behaviour for the frequency-size distributions

of events with the appearance of a peak for large eruptions. The peak being located

at a size of 3 × 104 and the size of the system being 3 × 100 = 30, 000, we conclude

it corresponds to the maximum size of an event (see Figure 4.4). To show that this

peak is indeed related to the size of the system, we investigated the effect of a change

in the system thickness on P (V ) (see Figure 4.6). We observe a shift of the peak to

larger values when the thickness of the system increases.

We fit the distribution by a truncated power-law model using a maximum like-

lihood estimation, following the fitting method by Deluca and Corral [2013] (see

Figure 4.5). The probability density of the power-law distribution is defined over the

range a ≤ x ≤ b and is given by:

P (x) =
α− 1

a1−α − b1−α

(
1

x

)α
(4.6)

where α is the power-law exponent. When b → ∞, α ≥ 1 and a > 0, Eq. (4.6)

describes the left-truncated power-law distribution. When b takes a finite value,

Eq. (4.6) provides a doubly truncated power-law distribution [Deluca and Corral,

2013]. Here, we use a doubly truncated power-law model to fit our data since the

finite size effect of the system prevents b to tend to infinity. We choose to use the

truncated distributions in order to fit the size and temporal ranges non-affected by
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size effects in the model. In Chapter 2 and 3, we fit the whole distributions in order

to investigate all ranges of the phenomenon.

After fitting the frequency-size distributions, we observe that the power-law

exponent α varies with the values of d and h and ranges from 1.3 to 4.5. We observe

a consistent increase in the value of α when h increases for small values of d (see

Figure 4.7). For larger values of d (0.2 < d < 0.9), α seems to stay constant when h

increases for a given d (within the errors limits, see Figure 4.8). In that case, when

d increases, α seems to increase as well. Figure 4.9 shows the size distributions for

large values of d and a constant h. This result implies that the effect of a change in h

affects the potential eruptions sizes more efficiently for smaller than for larger values

of d.

Model 1 is successful at reproducing the power-law behaviour of volcanic erup-

tion sizes observed in nature [Newhall and Self, 1982, Simkin, 1993, Diodati et al.,

2000]. The exponent change according to the model parameters may reproduce a

change in the power-law exponent of the size distribution of events from one volcano

to another. The frequency-size distribution of events at the Piton de la Fournaise vol-

cano was shown to display a power-law behaviour with an exponent around α = 1.2

[Lahaie and Grasso, 1998], which is consistent with values found in our model for

small values of d and h (within the error limits). We also observe the appearance

of a characteristic behaviour of eruptions, with small events following a power-law

distribution while events of the size of the system have a relative high probability of

occurrence. These large events could be compared to extreme events in the system

and a separate analysis using extreme value statistics should be carried out.
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Figure 4.4: Example of the frequency-size distribution of eruptions for d = 0.08 and

h = 0.04. We note the peak at 3× 104
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Figure 4.5: Truncated power-law fit of the frequency-size distribution for the size range

V ∈ [30 , 1000] with α = 1.36± 0.03.
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Figure 4.6: Frequency-size distributions of eruptions for d = 0.5 and h = 0.2 and varying
thickness of the system.
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Figure 4.7: Variation of the power-law exponent α with h for small values of d.
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Figure 4.8: Variation of the power-law exponent α with h for large values of d (b).
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Figure 4.9: Frequency size distributions of eruptions for h = 0.5 and large values of d.
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Figure 4.10: Truncated power-law fit of the frequency-size distribution for d = 0.9 and

h = 0.5 for the size range V ∈ [7 , 100] with α = 4.36± 0.72.
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4.3.1.2 Temporal behaviour

We define the interevent time as the time from the onset of one eruption to the other

and ignore the duration of an event [Klein, 1982, Sanchez and Shcherbakov, 2012]. We

collected the interevent times of eruptions for varying values of d and h and computed

their probability density functions P (τ).

Unlike the distribution of eruption sizes, we observe several temporal regimes

according to the values of d and h. In order to describe these different regimes,

we tested several models. First, the truncated exponential distribution (Eq. (4.7))

[Hannon and Dahiya, 1999]

P (x) =
λe−λx

e−aλ − e−bλ
(4.7)

where λ is the event rate and the distribution is defined for a < x ≤ b. The sec-

ond distribution tested was the truncated log-normal distribution (Eq. (4.8)) [Cohen,

1988]:

P (x) =
1

σ
√

2π(x− a)
exp

{
− 1

2σ2
[ln(x− a)− µ]2

}
(4.8)

where σ is the shape parameter, µ is the scale parameter and a < x < ∞. The last

model tested was the truncated power-law distribution (Eq. 4.6).

We fitted our temporal data using the maximum likelihood method for each of

the considered distributions. In order to find the best fitting model, we first tested the

null hypothesis that the data is drawn from each distribution using the Koglomorov-

Smirniov test (KS test) [Massey and Frank, 1951]. In our case, we considered that

if p ≥ 0.01 (p is the statistical p-value from the KS test), we could not reject the

null hypothesis. If more than one model passed the KS test, we used the Akaike

Information Criterion (AIC) which measures the relative goodness of fit taking into

account the number of parameters for each model [Akaike, 1974]. If L is the maximum

value of the likelihood function for a model described by k different parameters, then

AIC = −2 lnL+ 2k. Smaller values of the AIC indicate a better fit of a model.

We observed three regimes with varying d and h that can be described by the

following distributions:

• truncated log-normal (see Figures 4.11 and 4.12),
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• truncated exponential (see Figure 4.13 and 4.14),

• truncated power-law (see Figure 4.15 and 4.16).

We explored the parameter space of the model with different values of d and h in

order to uncover some consistent behaviour from those three regimes. The phase di-

agram for the model is presented in Figure 4.17. We observed a consistent power-law

behaviour for small values of d/h. A power-law distribution of the interevent times

implies that there is no characteristic time describing eruptions, and points towards

the criticality of the temporal behaviour of the model. This kind of behaviour ap-

plied to volcanism would signify that volcanic systems are extremely sensitive to small

perturbations, and this power-law distribution of interevent times of volcanic erup-

tion has previously been observed for the Piton de la Fournaise volcano [Grasso and

Bachelery, 1995]. As d/h increases, the temporal distribution of eruptions becomes

better characterized by the log-normal distribution and the exponential distribution.

An exponential distribution of interevent times implies that eruptions behave as a

Poisson process where all the events are independent and occur at a constant rate

in time. This kind of temporal behaviour has previously been observed in volcanic

activity [Wickman, 1966, Reyment, 1969, Klein, 1982, De la Cruz-Reyna, 1991]. The

log-normal distribution implies that the interevent times between eruptions can be

the result of a multiplicative process. This also signifies that eruption times are corre-

lated with elements of clustering. Clustering has been reported by Gusev et al. [2003];

Gusev [2008] and Marzocchi and Zaccarelli [2006], and the log-normal distribution

was used to describe the temporal behaviour of the currently most active volcanoes

[Sanchez and Shcherbakov, 2012].
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Figure 4.11: Example of the log-normal regime for the distribution of eruptions interevent

times for d = 0.5 and h = 0.2.
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Figure 4.12: Truncated log-normal fit of the distribution for the time range τ ∈ [60 , 300]

with µ = 3.48± 0.61 and σ = 0.54± 0.14
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Figure 4.13: Example of the exponential regime for the distribution of eruptions interevent

times for d = 0.5 and h = 0.4.
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Figure 4.14: Truncated exponential fit of the distribution for the time range τ ∈ [50 , 200]

with λ = 26.27± 2.11.
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Figure 4.15: Example of the power-law regime for the distribution of eruptions interevent

times for d = 0.5 and h = 0.6.
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Figure 4.16: Truncated power-law fit of the distribution for the time range τ ∈ [30 , 300]

with α = 1.51± 0.05 (b)



Chapter 4: A Cellular Automata to Model Magma-Crust Interactions and Volcanic
Eruptions 98

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

E x p o n e n t i a l

L o g - n o r m a l
P o w e r  L a w

d a m a g e

hea
lin

g

1 . 0 0 0
2 . 0 0 0
3 . 0 0 0
4 . 0 0 0

I n t e r e v e n t  t i m e  s t a t i s t i c s :  m o d e l  t y p e

Figure 4.17: Phase diagram representing the best model to describe the interevent data
for varying values of d and h.
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4.3.2 Model 2 (256× 256)

For model 2, we studied a range of values for d and h (0.06 < d < 0.50 and 0.04 <

h < 0.50) in order to simulate different volcanic settings. We investigated several

connectivity values (C = 0.50;C = 0.55;C = 0.60;C = 0.65). For the same reasons

than for model 1,we will focus our analysis on the results for C = 0.60 but will

also present the phase diagrams for the other values of C. We investigated the size,

interevent times and duration of eruptions.

4.3.2.1 Frequency-size distribution of eruptions

In model 2, we observed several distinct behaviours for the distribution of eruption

sizes. We tested the truncated exponential, Eq. (4.7), the truncated log-normal,

Eq. (4.8) and the truncated power-law distributions, Eq. (4.6) in order to describe

the frequency-size distribution of events. Figures 4.18 and 4.19 show examples of the

fitted frequency-size distributions.

The phase diagram for the models best describing the frequency-size distribu-

tion of eruptions is presented in Figure 4.20. Some of the frequency-size distributions

could not be fitted by the models for a significant range of sizes and are labelled as

”other” in Figure 4.20. Figure 4.21, 4.22 and 4.23 display the variations in parameter

values for the truncated log-normal and the power-law distributions. We note that

the log-normal behaviour seems to be more represented for small values of d and h

while the power-law distribution provides a better fit for the distributions with larger

sizes of d and h.

We observed an increase in the values of µ and a decrease in the values of σ

when d/h decreases. The power-law exponent takes large values when d/h is large

and small while the intermediate values of d/h are represented by a small α. In

Figures 4.24 and 4.25, we show the phase diagrams for the best fitting frequency-

size distribution models for C = 0.55 and C = 0.65. For C = 0.50, none of the

distributions can be fitted to the data for a long enough range. This is due to the

low amount of eruptions produced from this connectivity value. For C = 0.55 and

C = 0.65, we observe slightly different behaviours. The log-normal distribution is a

better fit when d/h is large and this trend is reversed for C = 0.65: the power-law is

a better fit for large values of d/h.
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Figure 4.18: Truncated log-normal fit of the distribution for the size range V ∈ [100 , 10000]
with µ = 3.52± 0.58 and σ = 1.46± 0.17 (model 2)
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Figure 4.19: Truncated power-law fit of the distribution for the size range V ∈ [100 , 10000]
with α = 1.96± 0.03 (model 2)
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Figure 4.20: Phase diagram representing the best model to describe the frequency-size
distributions from model 2 for varying values of d and h. The label ”other” corresponds to
cases where the 3 distributions considered were not a good fit
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Figure 4.21: Phase diagram representing variations in the µ parameter for the truncated
log-normal fit of the size distribution of events for C = 0.6
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Figure 4.22: Phase diagram representing variations in the σ parameter for the truncated
log-normal fit of the size distribution of events for C = 0.6
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Figure 4.23: Phase diagram representing variations in the α parameter for the truncated
power-law fit of the size distribution of events for C = 0.6.
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Figure 4.24: Phase diagram representing the best model to describe the frequency-size
distributions from model 2 for varying values of d and h for C = 0.55
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Figure 4.25: Phase diagram representing the best model to describe the frequency-size
distributions from model 2 for varying values of d and h for C = 0.65
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4.3.2.2 Temporal behaviour, interevent times

In model 2, we observed the same 3 behaviours as for model 1, described by the

truncated exponential, the truncated log-normal and the truncated power-law distri-

butions. Examples of those distributions of interevent times are displayed in Figures

4.26, 4.27 and 4.28.

The changes in temporal behaviour according to the d/h ratio are shown in

the phase diagram in Figure 4.29. The power-law distribution is a better fit for low

values of d/h while the exponential and the log-normal distributions become better

fits when d/h increases.

The variations in the parameter values for each fit seem to be consistent and we

observed an increase of µ and a decrease of σ with increasing d/h (Figure 4.30 and

4.31). The exponential rate parameter λ (Figure 4.32) and the power-law exponent

α increase for increasing d/h (Figure 4.33). Figures 4.34, 4.35 and 4.36 present the

interevent time behaviour for C = 0.50;C = 0.55 and C = 0.65 respectively. For those

3 connectivity values, we observed that a lot of the distributions cannot be fitted for

a long enough time range. Indeed, values of C that are too small or too large will

either prevent eruptions from happening or trigger constant eruptions, making the

interevent times statistics very low.
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Figure 4.26: Truncated exponential fit of the distribution for the time range τ ∈
[300 , 10000] with λ = 215.4± 11
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Figure 4.27: Truncated log-normal fit of the distribution for the time range τ ∈ [100 , 10000]
with µ = 3.53± 0.22 and σ = 1.42± 0.07
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Figure 4.28: Truncated power-law fit of the distribution for the time range τ ∈ [100 , 10000]
with α = 1.92± 0.02
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Figure 4.29: Phase diagram representing the best model to describe the interevent distri-
butions from model 2 for varying values of d and h for C = 0.60
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Figure 4.30: Phase diagram representing variations in the µ parameter for the truncated
log-normal fit of the size distribution of events for C = 0.6.
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Figure 4.31: Phase diagram representing variations in the σ parameter for the truncated
log-normal fit of the size distribution of events for C = 0.6.
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Figure 4.32: Phase diagram representing variations in the λ parameter for the truncated
exponential fit of the size distribution of events for C = 0.6.
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Figure 4.33: Phase diagram representing variations in the α parameter for the truncated
power-law fit of the size distribution of events for C = 0.6.
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Figure 4.34: Phase diagram representing the best model to describe the interevent distri-
butions from model 2 for varying values of d and h for C = 0.50
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Figure 4.35: Phase diagram representing the best model to describe the interevent distri-
butions from model 2 for varying values of d and h for C = 0.55
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Figure 4.36: Phase diagram representing the best model to describe the interevent distri-
butions from model 2 for varying values of d and h for C = 0.65
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4.3.2.3 Temporal behaviour, eruption duration

For model 2, we also investigated the distribution of eruption durations P (t). Simi-

larly to interevent times, we observed 3 temporal regimes described by the truncated

exponential, truncated log-normal and truncated power-law distributions (see Fig-

ures 4.37, 4.38 and 4.39). The phase diagram representing the best model for the dis-

tribution of eruption durations is presented in Figure 4.40. We observe a power-law

behaviour for low d/h ratios while larger d/h values lead to log-normally distributed

eruption durations. The exponential behaviour is only observed for a small amount

of d/h ratios.

The parameter values for the log-normal and power-law fits are displayed in

Figures 4.41, 4.42 and 4.43. Both parameters µ and σ of the log-normal distribution

increase for increasing values of d/h while the power-law exponent α displays no pat-

tern according to the value of the d/h ratio.

The best fitting models for the eruption duration distributions for C = 0.50;C =

0.55 and C = 0.65 are presented in Figures 4.44, 4.45 and 4.46. For connectivity val-

ues of C = 0.50 and C = 0.55, only a small amount of distributions are fitted by the

models over a long enough time range. For C = 0.65, we observe that the power-law

behaviour of eruption duration seems to become less prevalent while the exponential

distribution becomes a better fit for intermediate values of d/h.
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Figure 4.37: Truncated exponential fit of the distribution for the time range t ∈ [100 , 10000]
with λ = 163.5± 6.9
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Figure 4.38: Truncated log-normal fit of the distribution for the time range t ∈ [100 , 10000]
with µ = 5.7± 0.18 and σ = 0.81± 0.13
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Figure 4.39: Truncated power-law fit of the distribution for the time range t ∈ [200 , 10000]
with α = 4.23± 0.75
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Figure 4.40: Phase diagram representing the best model to describe the duration distribu-
tions from model 2 for varying values of d and h for C = 0.60
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Figure 4.41: Phase diagram representing variations in the µ parameter for the truncated
log-normal fit of the distribution of durations for C = 0.60.
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Figure 4.42: Phase diagram representing variations in the σ parameter for the truncated
log-normal fit of the distribution of durations for C = 0.60.
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Figure 4.43: Phase diagram representing variations in the α parameter for the truncated
power-law fit of the distribution of durations for C = 0.60.
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Figure 4.44: Phase diagram representing the best model to describe the duration distribu-
tions from model 2 for varying values of d and h for C = 0.50



Chapter 4: A Cellular Automata to Model Magma-Crust Interactions and Volcanic
Eruptions 129

0 . 0 0 0 . 0 8 0 . 1 6 0 . 2 4 0 . 3 2 0 . 4 0 0 . 4 80 . 0 0

0 . 0 8

0 . 1 6

0 . 2 4

0 . 3 2

0 . 4 0

0 . 4 8

 

E r u p t i o n  D u r a t i o n :  M o d e l  t y p e

hea
lin

g

d a m a g e

1 1

2 1

4 1

4 1

o t h e r

e x p

l o g - n o r m a l

p o w e r - l a w

Figure 4.45: Phase diagram representing the best model to describe the duration distribu-
tions from model 2 for varying values of d and h for C = 0.55
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Figure 4.46: Phase diagram representing the best model to describe the duration distribu-
tions from model 2 for varying values of d and h for C = 0.65
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4.4 Conclusions

In this chapter, a cellular automaton is introduced in order to investigate the interac-

tions between the magma and the solid crust and reproduce the statistical behaviour

of eruptions. Through numerical simulations of two versions of the model, we col-

lected the size and occurrence time of volcanic events and studied their probability

density functions.

For model 1, the frequency-size distributions of events displayed a consistent

behaviour for the range of values of d and h investigated and the truncated power-law

distribution was defined as the best model to describe it. The power-law exponent α

of the distribution was found to vary with different values of d and h. We observed

a peak in the size distribution of events attributed to the finite-size of the system.

This kind of power-law behaviour is consistent with the observed size distribution

of volcanic events on a global scale [Newhall and Self, 1982, Simkin, 1993] but also

on individual volcanoes [Lahaie and Grasso, 1998]. The variation in the value of α

can be attributed to different tectonic settings as well as different magma and crustal

properties.

For model 2, we observe an additional behaviour characterized by the log-normal

distribution. This additional regime manifests for small values of d and h for C = 0.60.

This kind of distribution is a heavy tailed distribution and points toward a power-law

distribution of large eruptions and a roll-over for small sizes.

The temporal behaviour of models 1 and 2 was characterized by three distinct

regimes according to the d/h ratio. For small values of d/h, the interevent time

distribution was best modelled by a truncated power-law distribution. This type of

behaviour indicates criticality in the system and the absence of a characteristic time

scale for the interevent time and has been observed on the Piton de la Fournaise

volcano [Grasso and Bachelery, 1995]. For larger values of d/h, the distribution can

be described by either an exponential or a log-normal distribution. The exponential

distribution implies the existence of a Poisson process and could be hypothesized

as reproducing the behaviour of closed conduit systems. In this case, the path to

the surface is closed and the magma particles need to damage the crust completely

in order to rise to the surface. After an eruption, since the value of h is high, the

path taken by the magma gets ”sealed” and the fracturation process has to start

again. The eruptions in that case are independent from each other and the rate of
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events is constant. In the case of a log-normally distributed series of eruptions, the

events are the result of a multiplicative process and are correlated and clustered.

Here, we conclude that we are observing an open conduit system behaviour. After an

eruption, the path to the surface heals but does not do so fast enough and becomes

therefore a ”preferential” path to the surface for the magma particles. Eruptions

times will influence the probability of occurrence of the next event. These two types

of statistical temporal behaviour have been observed on empirical data [Wickman,

1966, Klein, 1982, De la Cruz-Reyna, 1991, Gusev, 2008, Marzocchi and Zaccarelli,

2006, Sanchez and Shcherbakov, 2012]. The duration of events from model 2 display

the same 3 behaviours: truncated exponential, truncated power-law and truncated

log-normal.

Our model has proven to be efficient at reproducing the statistical behaviour of

volcanic eruptions. We were able to obtain the multiple temporal behaviour observed

in nature and the size distribution of events in the model was consistent with the data.

Our results emphasize the critical and unpredictable nature of volcanic eruptions and

the need to use statistical approaches to understand the processes involved in the

triggering of volcanic eruptions.
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Chapter 5 Discussion and Concluding

Remarks

Throughout this thesis I have been addressing the following goals:

• Understanding the formation and evolution of calderas in the solar system using

a comparative planetology approach,

• Investigating the global temporal behavior of volcanic eruptions on Earth,

• Understanding the nonlinear interactions taking place in the solid crust which

lead to an eruption.

To fulfil these goals, I combined several approaches. The first method involved

statistical analysis on empirical data. More specifically, I employed scaling analysis

on multiple datasets. First, I performed the analysis on planetary calderas to investi-

gate landform formation and evolution processes in the solar system. Zooming in to

the Earth, I then used the same type of scaling analysis on the temporal behaviour

of volcanic eruptions. The results from these statistical studies lead me to conclude

that taking a global approach when studying volcanic processes is a novel and efficient

approach in volcanology. Considering volcanoes as a complex system, I developed a

computer model with the goal of reproducing the behaviour of all volcanoes, indepen-

dent of their location and magma properties, using only a limited set of parameters.

This study allowed me to reproduce temporal and size distributions of volcanic events

in a variety of settings. In this chapter, I summarize all the results from the studies

and draw conclusions on their implications for the field of volcanology.
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5.1 Caldera formation in the solar system

In Chapter 2, I focused on investigating volcano formation in the solar system using a

comparative planetology approach. To do so, I chose to study the distribution of sizes

properties of calderas on Earth, Mars, Venus and Io. The diameter and area of this

planetary feature are related to the size of the underlying magma chamber and can

be used as a proxy for estimating the potential of volcanic eruptions [Lipman, 2000].

The distribution of magma chamber sizes for planetary bodies is directly related to

the crustal thickness and the properties of magma material such as density, concen-

tration of volatiles, etc. [Mouginis-Mark and Rowland, 2001]. For these reasons, the

study of planetary calderas is of major importance to understand volcano formation

in the solar system as well as to uncover subsurface characteristics of the planetary

bodies investigated. Using the mean caldera diameter and area of each planetary

body as scaling factors, I performed a scaling analysis on their respective probability

distribution functions. I observed a collapse of all the distributions into a single one,

the Generalized Extreme Value (GEV) distribution. Looking closer to the Earth, I

also performed a similar scaling analysis on the distributions of caldera sizes accord-

ing to their crustal settings. There again, I observed a collapse of all the distributions

into the GEV distribution with similar parameters to the planetary bodies investi-

gated. These results lead me to conclude that the use of comparative planetology

is a powerful tool to understand formation and evolution mechanisms of planetary

landforms. The processes responsible for caldera formation are similar on the four

planetary bodies considered and independent of the crustal settings on Earth. Using

the properties of the GEV distribution for each planetary body considered could lead

to a better estimation of the probability of caldera maximum size, and therefore also

the estimation of the maximum sizes of magma chambers on a given body.

Through statistical scaling analysis I demonstrated that the processes governing

caldera formation on Earth, Mars, Venus and Io are similar and I highlighted the

importance of comparative planetology in the study of geomorphological features.

Building on these results, further analysis could entail the study of magma chamber

depth on Venus, Mars and Io.
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5.2 Temporal behaviour of volcanic eruptions on

Earth

In Chapter 4, I focused on temporal aspects of volcanism on Earth by performing

comprehensive statistical analysis of time intervals between consecutive eruptions.

Assuming that volcanism operates through non-linear threshold dynamics, I took a

global approach to study the temporal behaviour of volcanic eruptions. I collected

eruption histories for 26 of the most active volcanoes throughout the world as well

as for 163 less active volcanoes that I grouped into regional datasets. I performed a

scaling analysis on the distributions of interevent times of all the datasets considered,

using the mean interevent time as a scaling factor. I observed a collapse of all the dis-

tributions into a single one, characterized by a log-normal distribution. I performed

this analysis with several magnitude cutoffs to ensure the validity of results for the

broadest range of eruption sizes. The results from this analysis lead me to conclude

that volcanic eruptions on Earth can be the result of a multiplicative process and

that eruption times are correlated with elements of clustering. The obtained univer-

sality of the distribution of interevent times is a manifestation of self-similar nature

of volcanic processes in time. It also indicates that the temporal structure of volcanic

sequences deviates from simple Poisson statistics. These results imply that the pro-

cesses involving magma transfer from the mantle to the crust, that are responsible for

the triggering of volcanic eruptions, operate on a global scale. These results stress the

importance of using statistical approaches when studying eruptions instead of classic

deterministic methods. They also have implications in the design of future volcano

hazard assessment programs.

5.3 Modelling of volcanic eruptions

Following up the results from Chapter 4 which imply that volcanic systems could

be regarded as a critical system, I designed a computer model to simulate the in-

teractions between the magma and the solid crust on a global scale. To do so, I

used a cellular automata approach which has been proved successful at reproduc-

ing the dynamics of various natural hazards [Ogata, 1992, Olami et al., 1992, Bak

et al., 1990]. Using simple dynamics with a small number of parameters, the model

was able to reproduce the power-law size distribution of volcanic events implying the
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self-similarity of eruptions [Newhall and Self, 1982, Simkin, 1993, Lahaie and Grasso,

1998]. Looking at the temporal behaviour of volcanic eruptions, the model displayed

three different regimes: power-law, log-normal and exponential. The first one hints

towards the criticality of the system and correlates with observations from the Piton

de la Fournaise volcano [Grasso and Bachelery, 1995]. The exponential distribution

of the model interevent times could describe the behaviour of closed conduit volcanic

systems, implying a Poisson process for eruptions [De la Cruz-Reyna, 1991]. The

log-normal distribution describes events resultant from a multiplicative process and

displays clustering of the events. This could represent the behaviour of open con-

duit systems and has been shown to describe the temporal behaviour of some active

volcanoes [Sanchez and Shcherbakov, 2012].

5.4 Future work

The results from this thesis emphasize the importance of statistical methods and

computer modelling in order to study complex natural systems. Where the use of

deterministic approaches often fails at defining reliable prediction models, statistical

analysis of data combined with modelling can lead to a better understanding of the

processes in play. Future work would entail a broader analysis of the temporal distri-

butions of volcanic events throughout the world in order to uncover more clearly the

different existing temporal regimes. Distinguishing the location of the eruption (i.e.

flank or summit) as well as the event duration during the statistical analysis might

help uncover some separate behaviours.

The investigation of the size distribution of volcanic eruptions is a major step in

defining better hazard models. Studies of the frequency size-distribution of volcanic

eruptions have been mostly focusing on large, explosive eruptions [Simkin, 1993, Ma-

son et al., 2004, Bonadonna and Costa, 2013]. These studies were primarily done

using the Volcanic Explosivity Index scale [Newhall and Self, 1982], which only ac-

counts for the amount of tephra and column height produced by an eruption. When

studying eruptions on a global scale, it is important to consider every type and size of

eruption in order to determine whether or not eruptions truly display scale invariance

characteristics. Investigating the frequency size distribution of all types of eruptions

is a non-trivial problem since there is no precise magnitude scale for volcanic eruptions

describing effusive and explosive eruptions on the same level. An effusive eruption
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will be treated as a very low magnitude event using the VEI index (due to the non

existence of explosive products) even though the amount of lava involved might be

very large. The dense rock equivalent (DRE) provides an estimate of the erupted

volume using the amount of tephra and lava erupted. Future work could attempt to

combine the 2 magnitude scales in order to define a more complete scale, including all

types of erupted materials for large but also for small events, in order to determine

the statistical characteristics of the different types of eruptions.

Expanding on the work of modelling eruption processes, future work would

entail investigating the effect of heterogeneities in the crust and the effect of changes

in the magma properties through time. Refining the ratio of d/h in order to match the

distribution parameters describing the interevent time distribution of real volcanoes

could also be another step towards better hazard models of the volcanoes considered.
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Appendix A Tables of Volcanic Eruptions

Time Series

Group #eruptions #volcanoes
Alaska 69 3
Aleutian Islands 122 13
Central America 381 23
Iceland 100 7
Indonesia 561 34
Japan 239 18
Kamchatka 278 11
New Zealand 175 4
South America 416 34

Table A.1: Summary of the eruption data used for the interevent time analysis for
the world regions

Volcano #eruptions time span τn [days] volcano type
Pavlof 39 1790 – 2007 2086.9± 341.2 Strato
Trident 13 1913 – 1974 1852.7± 1034.8 Strato
Veniaminof 20 1838 – 2008 3259.4± 1011.7 Strato

Table A.2: Summary of the data used for the Alaska region with the number of
eruptions, the time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days] volcano type
Akutan 32 1865 – 1992 1501.8± 312.5 Strato
Amukta 5 1878 – 1997 10836.0± 6933.8 Strato
Bogoslof 8 1796 – 1992 10236.1± 4017.2 Submarine
Cleveland 13 1986 – 2010 733.2± 211.7 Strato
Fisher 3 1795 – 1830 6407.0± 5017.0 Strato
Gareloi 9 1873 – 1989 5301.9± 2219.3 Strato
Kiska 4 1962 – 1990 3451.7± 2088.0 Strato
Korovin 6 1987 – 2006 1441.2± 692.2 Strato
Okmok 16 1805 – 2008 4943.7± 1317.9 Shield
Seguam 6 1891 – 1993 7413.6± 5081.9 Strato
Shishaldin 23 1922 – 1999 1268.6± 275.7 Strato
Vsevidof 3 1817 – 1878 11140.0± 6392.0 Strato
Westdahl 7 1795 – 1991 11956.3± 7680.4 Strato

Table A.3: Summary of the data used for the Aleutian islands with the number of
eruptions, the time span, the mean interevent time and the type of volcano.

Volcano (region) #eruptions time span τn [days] volcano type
Acatenango (Guatemala) 3 1924 – 1972 8748.0± 8157.0 Strato
Atitlan (Guatemala) 7 1826 – 1853 1613.3± 543.6 Strato
Cerro Negro (Nicaragua) 23 1850 – 1999 2478.9± 658.3 Cinder cones
Colima (Mexico) 51 1519 – 1997 3494.6± 708.7 Strato
Concepcion (Nicaragua) 31 1883 – 2009 1542.4± 234.4 Strato
Cosiguina (Nicaragua) 3 1835 – 1859 4491.5± 2033.5 Strato
Fuego (Guatemala) 23 1880 – 2002 2017.5± 630.6 Strato
Izalco (El Salvador) 48 1770 – 1937 1300.5± 166.4 Strato
Masaya (Nicaragua) 26 1852 – 2008 2279.8± 718.9 Caldera
Momotombo (Nicaragua) 12 1736 – 1905 5596.3± 2688.1 Strato
Pacaya (Guatemala) 9 1846 – 2004 7234.6± 3513.0 Complex
Pico de Orizaba (Mexico) 6 1545 – 1846 21987.6± 10010.1 Strato
Poas (Costa Rica) 44 1880 – 2009 1098.6± 163.5 Strato
Popocatepetl (Mexico) 10 1919 – 2005 3485.7± 1797.0 Strato
Rincon de la Vieja (Costa Rica) 13 1922 – 1998 2308.7± 1317.5 Complex
San Cristobal (Nicaragua) 13 1997 – 2010 413.2± 61.7 Strato
San Miguel (El Salvador) 31 1510 – 2002 5984.5± 2340.0 Strato
San Salvador (El Salvador) 4 1572 – 1917 41994.7± 25128.0 Strato
Santa Ana (El Salvador) 8 1722 – 2005 14780.0± 7774.5 Strato
Santa Maria (Guatemala) 3 1902 – 1922 3590.5± 3340.5 Strato
Tacana (Mexico) 3 1878 – 1986 19648.0± 6458.0 Strato
Telica (Nicaragua) 32 1927 – 2008 953.5± 156.4 Strato

Table A.4: Summary of the data used for Central America with the number of erup-
tions, the time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days] volcano type
Askja 9 1875 – 1961 3963.6± 2027.9 Strato
Hekla 16 1510 – 2000 11921.3± 1920.9 Strato
Katla 9 1580 – 1918 8643.0± 7534.2 Subglacial
Krafla 12 1724 – 1984 15439.1± 2364.14 Caldera
Kverkfjoll 6 1655 – 1968 22871.8± 13325.6 Strato
Vestmannaeyjar 4 1637 – 1973 40823.33± 27558.7 Submarine

Table A.5: Summary of the data used for Iceland with the number of eruptions, the
time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days] volcano type
Agung 3 1808 – 1963 28239.5± 15456.5 Strato
Batur 26 1804 – 1999 2844.6± 810.5 Caldera
Bur Ni Telong 5 1837 – 1937 9109.5± 4910.4 Strato
Cereme 6 1698 – 1951 18486.2± 8695.7 Strato
Dempo 27 1817 – 2009 2683.2± 572.1 Strato
Dieng Volcanic Complex 21 1786 – 2009 4076.85± 1093.5 Complex
Egon 4 2004 – 2008 512.7± 326.2 Strato
Galunggung 5 1822 – 1984 14724.3± 6069.8 Strato
Gede 20 1832 – 1957 2394.0± 748.1 Strato
Guntur 21 1800 – 1847 863.7± 143.2 Complex
Ijen 8 1796 – 1999 10591.4± 4685.3 Strato
Iliboleng 20 1885 – 1993 2071.3± 569.7 Strato
Iliwerung 12 1870 – 1999 4279.6± 1352.3 Complex
Kaba 11 1833 – 2000 6090.2± 1776.9 Strato
Kelut 21 1716 – 2007 5317.9± 932.3 Strato
Kerinci 30 1838 – 2009 2150.6± 531.5 Strato
Krakatau 41 1883 – 2010 1163.6± 400.7 Caldera
Lamongan 41 1799 – 1898 900.3± 124.5 Strato
Lewotobi 21 1861 – 2003 2594.5± 666.0 Strato
Lewotolo 7 1819 – 1951 8063.2± 1876.5 Strato
Papandayan 4 1772 – 2002 28032.0± 14152.0 Strato
Perbakti Gagak 6 1923 – 1939 1157.6± 434.14 Strato
Peuet Sague 7 1918 – 2000 5021.3± 3472.3 Complex
Raung 55 1815 – 2008 1301.7± 216.8 Strato
Rinjani 15 1847 – 2009 4217.1± 1144.2 Strato
Salak 5 1780 – 1938 14389.0± 10121.8 Strato
Sirung 8 1934 – 1970 1880.9± 566.2 Complex
Slamet 41 1772 – 2009 2161.3± 527.8 Strato
Sorikmarapi 5 1892 – 1986 8594.3± 4024.9 Strato
Sundoro 9 1806 – 1971 7548.1± 3543.2 Strato
Talang 13 1833 – 2007 5300.8± 2705.9 Strato
Tangkubanparahu 16 1826 – 1983 3821.1± 1210.3 Strato
Tandikat 3 1889 – 1924 6412.0± 2819.0 Strato
Tengger 58 1804 – 2010 1321.5± 174.1 Strato

Table A.6: Summary of the data used for Indonesia with the number of eruptions,
the time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days] volcano type
Adatara 3 1899 – 1996 17718.5± 17391.5 Strato
Akita Komaga Take 4 1890 – 1970 9715.0± 2873.0 Strato
Akita Yake Yama 11 1867 – 1997 4752.8± 1814.2 Strato
Chokai 4 1800 – 1974 21092.3± 14975.9 Strato
Iwo Tori Shima 8 1796 – 1968 8963.7± 2616.5 Complex
Kikai 9 1934 – 2004 3171.3± 2396.6 Caldera
Kirishima 55 1524 – 2010 3285.5± 613.3 Shield
Kuchinoerabu Jima 13 1840 – 1980 4268.6± 2148.4 Strato
Kurikoma 5 1726 – 1950 20411.8± 17689.9 Strato
Kusatsu Shirane 19 1882 – 1983 2048.8± 585.3 Strato
Nasu 5 1846 – 1963 10711.0± 5838.7 Strato
Niigata Yake Yama 12 1852 – 1998 4829.1± 3014.6 Lava dome
Nikko Shirane 5 1872 – 1952 7316.8± 5274.2 Shield
Sakura Jima 30 1468 – 1955 6137.1± 2214.1 Strato
Suwanose Jima 18 1921 – 2004 1780.6± 526.1 Strato
Unzen 5 1663 – 1996 30393.8± 17725.8 Complex
Yake Dake 26 1907 – 1995 1273.7± 548.8 Strato
Zao 25 1620 – 1896 4195.5± 1579.8 Complex

Table A.7: Summary of the data used for Japan with the number of eruptions, the
time span, the mean interevent time and the type of volcano.

Volcano #eruptions time span τn [days] volcano type
Avachinsky 19 1737 – 2001 5360.5± 1283.4 Strato
Bezymianny 53 1955 – 2010 386.9± 54.0 Strato
Gorely 11 1828 – 2010 6647.5± 2188.5 Caldera
Karymsky 32 1771 – 2001 2714.3± 932.8 Strato
Kliuchevskoi 99 1697 – 2009 1163.1± 156.0 Strato
Koryaksky 3 1926 – 2008 14976.0± 4039.0 Strato
Maly Semiachik 5 1804 – 1952 13553.25± 7812.1 Caldera
Mutnovsky 18 1848 – 2000 3265.7± 1174.5 Complex
Shiveluch 19 1854 – 1999 2952.1± 756.6 Strato
Tolbachik 24 1904 – 1975 1127.4± 418.8 Shield
Zhupanovsky 6 1882 – 1959 5624.6± 2689.4 Compound volcano

Table A.8: Summary of the data used for Kamchatka with the number of eruptions,
the time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days] volcano type
Okataina 21 1886 – 1981 1732.9± 549.8 Lava dome
Ruapehu 58 1861 – 2007 937.8± 206.0 Strato
Tongariro 68 1839 – 1977 754.6± 96.4 Strato
White Island 28 1909 – 2001 1241.5± 256.7 Strato

Table A.9: Summary of the data used for New Zealand with the number of eruptions,
the time span, the mean interevent time and the type of volcano.

Volcano (region) #eruptions time span τn [days] volcano type
Calbuco (Chile) 12 1893 – 1972 2644.1± 604.2 Strato
Carran-los Venados (Chile) 3 1907 – 1979 13151.5± 4489.5 Pyroclastic cones
Cerro Azul (Chile) 8 1906 – 1967 3188.4± 1086.9 Strato
Cerro Azul (Galapagos) 10 1932 – 2008 3080.7± 850.8 Shield
Cerro Hudson (Chile) 4 1740 – 1991 30571.0± 13828.6 Strato
Copahue (Chile/Argentina) 9 1867 – 2000 6072.3± 3082.6 Strato
Cotopaxi (Equador) 58 1532 – 1940 2612.0± 1108.1 Strato
Fernandina (Galapagos) 22 1819 – 2009 3300.7± 940.4 Shield
Galeras (Colombia) 29 1535 – 2010 6198.1± 1335.7 Complex
Guagua Pichincha (Equador) 18 1582 – 2002 9031.2± 4213.4 Strato
Guallatiri (Chile) 3 1913 – 1960 8660.5± 8154.5 Strato
Huequi (Chile) 6 1890 – 1920 2191.4± 757.5 Strato
Isluga (Chile) 7 1863 – 1913 3038.5± 1508.8 Strato
Lascar (Chile) 27 1848 – 2006 2216.7± 508.9 Strato
Lautaro (Chile) 9 1876 – 1979 4676.5± 2230.5 Strato
Llaima (Chile) 53 1640 – 2008 2584.2± 884.7 Strato
Llullaillaco (Chile/Argentina) 3 1854 – 1877 4240.5± 1076.5 Strato
Lonquimay (Chile) 4 1853 – 1988 16545.0± 2282.6 Strato
Minchinmavida (Chile) 3 1742 – 1835 16918.0± 16831.0 Strato
Nevado del Huila (Colombia) 3 2007 – 2008 307.5± 9.5 Strato
Nevado del Ruiz (Colombia) 8 1805 – 1985 9417.9± 4313.6 Strato
Nevado del Tolima (Colombia) 4 1822 – 1943 14649.5± 14011.7 Strato
Planchon-Peteroa (Chile) 10 1878 – 2010 5364.3± 1899.5 Strato
Purace (Colombia) 23 1816 – 1977 2668.2± 484.2 Strato
Puyehue-Cordon Caulle (Chile) 11 1759 – 2011 9201.4± 4550.6 Strato
Reventador (Equador) 28 1541 – 2008 6321.7± 1649.5 Strato
Sabancaya (Peru) 7 1750 – 2003 15405.8± 11848.0 Strato
Sangay (Equador) 3 1628 – 1934 55854.5± 19331.5 Strato
San Jose (Chile/Argentina) 7 1822 – 1960 8377.2± 3732.8 Strato
Sierra Negra (Galapagos) 12 1813 – 2005 6384.4± 1791.4 Shield
Tupungatito (Chile/Argentina) 16 1889 – 1987 2396.2± 604.7 Strato
Ubinas (Peru) 16 1662 – 2006 8369.7± 2627.7 Strato
Wolf (Galapagos) 9 1797 – 1982 8449.5± 5356.3 Shield
Yucamane (Peru) 5 1780 – 1902 11132.0± 4429.2 Strato

Table A.10: Summary of the data used for South America with the number of erup-
tions, the time span, the mean interevent time and the type of volcano.
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Volcano #eruptions time span τn [days]
Acigol Nevsehir 6 7810 BC – 2080 BC 523209.8± 185702.2
Aniakchak 13 5250 BC – 1931 218562.1± 79540.8
Batur 26 1804 – 1999 2844.6± 810.5
Campi Flegrei 20 8480 BC – 1538 192583.6± 79317.0
Chacana 5 8050 BC – 1773 896944.5± 509545.6
Crater Lake 5 5900 BC – 2850 BC 278497.3± 199780.0
Cuicocha 4 2550 BC – 650 389592.0± 159670.6
Gorely 11 1828 – 2010 6647.5± 2188.5
Kikai 9 1934 – 2004 3171.3± 2396.6
Krakatau 41 1883 – 2010 1163.6± 400.7
Krasheninnikov 31 8050 BC – 1550 116877.6± 16230.6
Kutcharo 6 5800 BC – 1320 520105.4± 149939.1
Maly Semiachik 5 1804 – 1952 13553.25± 7812.1
Masaya 26 1852 – 2008 2279.8± 718.9
Mashu 7 5550 BC – 1080 403593.0± 119506.6
Narugo 5 4400 BC – 837 478185.0± 238765.4
Nemo Peak 11 7550 BC – 1938 346546.2± 86916.2
Opala 4 3500 BC – 1776 642378.0± 110437.3
Pululagua 4 4800 BC – 290 619694.7± 443867.5
Towada 8 9490 BC – 915 542906.9± 124161.2
Yellowstone 4 7400 BC – 1350 BC 736572.3± 183330.3

Table A.11: Summary of the data used for the eruption of major calderas on Earth
with the number of eruptions, the time span and the mean interevent time.
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