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ABSTRACT 

Reinforced concrete conical tanks are used in municipalities and industrial applications as 

liquid containing vessels. Such tanks can be ground supported tanks or elevated on a 

supporting shaft. Although most design codes provide guidelines for rectangular and 

cylindrical tanks, no guidance is provided in such codes for conical tanks. Therefore, this 

thesis is motivated to study the behaviour and design of this type of tanks. In the current 

study, the accuracy of a design approach based on the provisions of Portland Cement 

Association (PCA-CCTWP) code for cylindrical tanks combined with an equivalent 

cylindrical approach provided by the American Water Works Association AWWA-D100 

(2005) is assessed. This assessment is done by comparing the internal forces resulting 

from this method with those obtained from a linear finite element analysis model built in-

house. It is noticed that in some of the studied tanks, the PCA-CCTWP approach 

combined with the equivalent cylinder method is found to be unsafe. As such, and due to 

the complexity of analysing these conical tanks, a simplified design approach in the form 

of design charts is provided in this study. This set of charts can be easily used for the 

analysis and design of reinforced concrete conical tanks subjected to hydrostatic pressure 

and having a constant wall thickness. This approach is developed using the results 

obtained from finite element analysis of a wide range of reinforced concrete conical tanks 

having different configurations combined with code requirements. This simplified 

approach is then utilized to investigate the economics of reinforced concrete conical tanks 

versus steel counterparts. A cost analysis is conducted for several conical tanks having 

different capacities and different construction materials by including both construction 

and life-cycle costs. In addition to the cost analysis, a general study of the effect of tank 

dimensions on its cost is illustrated. 

 

KEYWORDS: Conical Tank, Hydrostatic Pressure, Finite Element Analysis, Wall 

Thickness, Hoop Tension, Meridional Moment, Meridional Compression, Cost Analysis. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

During the last few decades, above ground tanks were extensively constructed around the 

world. These tanks play an important role to store different liquids in functional and safe 

manners. The above ground tanks are categorized into ground, standpipe and elevated 

tanks. Ground tanks, which are also known as reservoirs, can take different shapes (e.g. 

rectangular, cylindrical, and cylindrical with conical base). Although ground tanks have a 

high storage capacity due to their large diameter, they have a low operation head 

pressure. Stand pipe tanks are cylindrical shape tanks that have a height up to 46 m and a 

diameter ranging between 7 m and 9 m. They are characterized by high storage capacity 

and high internal hydrostatic pressure. On the other hand, elevated tanks have smaller 

capacity compared to standpipes and ground tanks. However, they provide high operation 

pressure with relatively low internal liquid height, up to 10 m, (Grieve et al. 1987). 

Many water supply systems widely utilized elevated tanks because of their advantages 

that include: functional, economical and aesthetical aspects. Elevated tanks are used in 

districts with high elevation since this type of tanks provides sufficient head pressure 

during peak hours or even after power outages. Also, they provide lower energy cost 

since the water can be pumped during off peak times. Elevated tanks are considered as an 

economical solution for upgrading existing water supplying systems to satisfy the 

increasing demand of water supply. Moreover, the supporting tower (i.e., supporting 

shaft) of an elevated tank can be utilized as a multipurpose structure, especially for 

regions with lack of space below ground. Elevated tanks present aesthetical pleasure and 
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they are considered as visible landmarks for the surrounding areas. It should be 

mentioned that elevated tanks are essentially required to remain functional even during 

and after disaster events to meet the emergency requirements such as firefighting and 

public water demands. The damage of a storage tank containing hazardous materials (e.g. 

chemicals, and fuels) can adversely affect the environment causing significant economic 

loses.  

Nowadays, there is an extensive need to increase the storage capacities of elevated tanks. 

Therefore, elevated tanks have been built using different construction materials (e.g. 

reinforced concrete, partially pre-stressed concrete, or steel), and different shapes (e.g. 

rectangular, cylindrical, and conical) in order to obtain the optimum capacity in a safe 

and economical manner. Figure 1-1 shows different shapes of elevated tanks. 

 

 

 

 

 

 

 

 

 Figure 1-1 Different Configurations of Elevated Tanks 
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A typical elevated conical tank consists of a tower that supports the superstructure (i.e., 

storage conical vessel). This tower usually has a shape of cylindrical shaft constructed of 

reinforced concrete. The geometry of the conical vessel can take two configurations, 

including pure conical and combined conical cylindrical shapes. A pure conical tank is 

defined as a vessel that has a pure truncated conical geometry (Figure 1-2), while a 

combined conical tank refers to a conical vessel that has a superimposed top cylindrical 

cap (Figure 1-3). 

 

 

 

 

 

 

Elevated conical tanks are considered as one of the most popular constructions since they 

provide greater liquid retaining capacity for the same base radius of a cylindrical 

counterpart. These tanks require also lower height of water for the same containing 

volume of the cylindrical shape. Consequently, the hydrostatic pressure acting on the 

vessel base is minimized, leading to an increase in its structural efficiency. Moreover, a 

large containing volume can be achieved without having the base over hanged and 

cantilevered from the supporting tower as in the case of elevated cylindrical tanks. 

Conical vessel 

Supporting slab 

Supporting tower 

Figure 1-2Pure Conical Tank Figure 1-3Combined Conical Tank Figure 1-3 Combined Conical Tank Figure 1-2 Pure Conical Tank 

Upper cylindrical part 
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Conical tanks are more economical than cylindrical tanks that have the same capacity. 

The total cost of reinforced concrete cylindrical tanks is 18% to 40% more than that of 

conical tanks having the same capacity, as stated by Barakat and Altoubat (2009). 

As mentioned earlier, different materials can be used in the construction of such storage 

tanks. Selecting the proper construction material depends mainly on various criteria, 

including; required storage capacity, service life, structural performance, construction and 

operation cost. According to Meier (2002), steel is widely used as the construction 

material for tanks built in Canada and USA over the last 25 years. This is related to the 

fact that such tanks provide high tension resistance and lighter own weight compared to 

those constructed from reinforced concrete. The drawback of using steel as a construction 

material for liquid-filled tanks is that steel vessels might suffer from corrosion, buckling 

and geometric imperfections. On the other hand, reinforced concrete tanks provide high 

resistance to compression stresses and they have long service life (i.e., up to 50 years) 

compared to steel tanks (i.e., up to 20 years). However, the main concern about 

reinforced concrete tanks is related to the low tensile strength and the large required wall 

thickness which leads to a significant own weight (Cheremisinoff, 1996). 

1.2 Objectives of the Study 

The main objectives of the present research are as follows:      

1. Investigate the applicability of the available design provisions when applied to design 

reinforced concrete conical tanks 

2. Develop a simple procedure in the form of design charts for analysing and designing 

liquid-filled reinforced concrete conical tanks. These charts are developed based on 
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coupling code requirements with a set of data obtained from finite element analysis of 

a number of tanks covering a wide practical range of geometrical parameters.  

3. Utilize the simplified approach developed in step 2 to perform cost analysis for 

reinforced concrete tanks and investigate the economics of these concrete tanks 

versus steel counterparts. 

1.3 Scope of the Thesis 

This‎ thesis‎ has‎ been‎ prepared‎ in‎ “Monograph”‎ format.‎ This‎ chapter‎ introduces‎ the‎

general background and the main objectives of this research. In the next chapter, a review 

of previous researches and current available design codes as well as the motivation for 

the study are presented. The following three chapters address the objectives of this 

research. Chapter 6 presents relevant conclusions of the study together with suggestions 

for further research. 

 

1.3.1 Analysis and Design of Reinforced Concrete Conical Tanks 

In chapter 3, several reinforced concrete conical tanks subjected to hydrostatic pressure 

are analyzed and designed. Two different analysis methods are utilized to evaluate the 

internal forces for each tank. The first method follows a simplified approach provided by 

Portland Cement Association for concrete circular tanks combined with equivalent 

cylinder method to transfer conical shape tanks to equivalent cylinders. The second 

method is a linear Finite Element Analysis model built in-house and is based on a 

degenerated consistent sub-parametric shell element. A parametric study is conducted for 

a wide range of conical tanks with different configurations in order to compare the results 
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obtained from these two analysis methods. The results of this parametric study are 

utilized to assess the adequacy of code provisions available for cylindrical tanks when 

applied on conical shape vessels.  

1.3.2 Simplified Design Charts for Reinforced Concrete Conical Tanks under 

Hydrostatic Loading 

The objective of chapter 4 is to develop simplified design charts in order to design 

reinforced concrete conical tanks under the effect of hydrostatic pressure. A number of 

conical tanks are analyzed using a built in-house finite element model that is based on a 

degenerated consistent shell element. These tanks are initially designed to comply with 

the recommendations of both American Concrete Institute for liquid retaining structures 

(ACI350-06), and Portland Cement Association guidelines for the analysis and design of 

circular concrete tanks (PCA-CCTWP, 1993). Finally, a comparison between the finite 

element model and design charts is conducted to validate the accuracy of the developed 

charts. Useful conclusions are achieved from this study. 

1.3.3 Cost Analysis of Conical Tanks ; Comparison between Reinforced 

Concrete and Steel 

In chapter 5, the economics of reinforced concrete conical tanks are investigated by 

comparing the cost of reinforced concrete and steel as construction materials used for 

such tanks. The design charts, which are introduced in chapter 4, are employed to design 

a number of reinforced concrete conical tanks having different capacities. The steel 

conical tanks are designed by using a simplified approach that was developed in a 

previous investigation. The cost analysis is implemented for each of the concrete and 
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steel tanks. This analysis includes the cost of materials, formwork, labour and life-cycle 

cost. Also, a general study of the effect of tank dimensions is presented.  
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2 CHAPTER 2 

LITERATURE REVIEW ON CONICAL TANKS AND DESIGN PROVISIONS 

 

2.1 Introduction 

This chapter presents a review of the available literature regarding conical tanks and code 

provisions for design of reinforced concrete tanks.  

2.2 Conical Tanks 

Design of axisymmetric structures (e.g. conical tanks) depends on the concept of surface 

of revolution that is developed by the rotation of the curved surface (i.e. conical tank 

wall) about the vertical axis lying in the same plane. Based on this concept, Ghali (1979) 

presented an analytical method for the evaluation of circular cylindrical tanks subjected 

to hydrostatic pressure. According to Ghali (1979), it is sufficient to consider an element 

strip of one meter along the circumference of the wall and parallel to the cylinder axis. 

Under the effect of axisymmetric loading, the wall strip is assumed to deflect as a beam 

on elastic foundation. Therefore, Ghali presents the general elastic solution for circular 

tanks that is based on finite difference method. This method has been applied to conical 

shape tanks but without taking into account the effect of vertical components of the 

hydrostatic pressure. Hilal (1988) utilized the theory of plates and shells to design a paste 

tank having a funnel shape by presenting a set of equations to determine the hoop and 

meridional moments at different heights of the tank. This method is based on static 

analysis and is found to lead to conservative design. In 2000, Ghali extended his work to 

include a one dimensional straight finite element represented as a conical frustra and can 
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be generalized for any shape. However, this element does not account for the spurious 

shear modes and locking phenomenon. 

Intensive studies on liquid containing conical tanks started after a catastrophic failure of a 

steel conical water tank in Belgium in 1978. One of these studies was initiated at Ghent 

University by Vandepitte et al. (1982). The research was mainly conducted 

experimentally. A large number of small-scale conical vessel models were constructed. 

The models had different dimensions and were made of different materials. The 

experiments were conducted by gradually increasing the height of water inside the 

models. The water height at which each model buckled was detected. The experimental 

results were employed to develop a set of equations that can be used to assess the stability 

of conical tanks. Later on, Bornscheuer et al. (1983) studied the elasto-plastic behaviour 

of conical vessels using a degenerated shell element. The results of their study showed 

that the buckling strength of the studied tanks is significantly reduced by the presence of 

axisymmetric imperfections. 

In 1990, another catastrophic failure of an elevated conical tank occurred in Fredericton, 

Canada. Vandepitte (1999) related this failure to the inappropriate thickness of the lower 

part of the tank. The miscalculation of the thickness was attributed to the reason that the 

designer used buckling formulae that are valid for aerospace applications where the 

quality of the manufacturing is much higher than that in civil projects. Another 

investigation that was conducted by El Damatty et al. (1997) studied the elastic stability 

of a conical vessel under hydrostatic load assuming perfect shells. In their study, the 

imperfection shape, which leads to the lowest limit load, was determined by conducting 

elastic analyses of conical tanks with different imperfections. The study indicated that the 
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limit load for hydrostatically loaded conical vessels is reduced by the presence of an 

axisymmetric imperfection shape resulting from welding of curved steel panels. 

Furthermore, it was noticed that the smaller the thickness of a conical tank, the more the 

structure is sensitive to geometric imperfections. Lagae et al. (2007) conducted a 

numerical simulation of steel conical tanks with large axisymmetric imperfections. This 

study showed that circumferential stresses are increased by axisymmetric imperfections 

causing local yielding to precipitate the buckling failure.  All of these previous studies 

focused mainly on the behaviour of steel conical tanks which shows complexity in the 

analysis and design of these storage vessels. This complexity motivates Sweedan and El 

Damatty (2009) to develop a simplified procedure for the design of hydrostatically loaded 

combined conical tanks. In this procedure, a magnification function was provided in 

order to relate the maximum overall stresses developed in the tank walls to the theoretical 

membrane stresses resulting from static equilibrium of the shell under internal hydrostatic 

pressure.  

Despite all these previous studies related to conical tanks, which focused on steel as a 

construction material, there is a lack in the literature regarding reinforced concrete 

conical tanks. The literature shows only few records for collapses of reinforced concrete 

elevated conical tanks occurred mainly during past earthquakes. For example, in 1997, 

the Jabalpur earthquake caused failure of elevated conical water tank having a capacity of 

2270 m
3
. Another three reinforced concrete conical tanks collapsed during the Bhuj 

earthquake in 2001 (Rai, 2002). These failures grabbed the attention of a number of 

researchers to study the behaviour of such tanks. Most of these studies focused on the 
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supporting shafts and did not investigate the conical vessel itself (Rai 2003, Sezen et al. 

2008, Dutta et al. 2009).  

Barakat and Salah (2009) introduced an application of optimization techniques, which 

were combined with the finite element method, in the analysis and design of reinforced 

concrete conical and cylindrical water tanks. The finite element model was based on a 4-

node axisymmetric quadrilateral shell element. In addition, they illustrated the effect of 

different parameters on the optimum design. This study concluded that shear strength and 

crack width are the governing criteria that determine the optimum design based on 

working stress design method while crack width is the governing requirement in the 

strength-based formulation. According to Barakat and Altoubat (2009), the total cost for 

cylindrical tanks is found to be more than that for conical water tanks of the same volume 

by (20% to 30%) and by (18% to 40%) when working stress design method and strength 

design method are used, respectively.  

Based on the information presented above, it can be concluded that most of the published 

literature studied the structural behaviour of steel conical tanks. However, there is scant 

data available for the design and performance of reinforced concrete tanks.  Moreover, 

the effect of different loads, e.g. dead, hydrostatic, and earthquake loads, on the 

behaviour of the supporting shaft of a reinforced concrete tank was investigated using 

finite element methods, while there is no clear understanding of the behaviour of the 

conical vessel of these tanks. 



12 

 

 

 

2.3 Design Codes for Reinforced Concrete Tanks 

Since 1940, reinforced concrete liquid storage tanks and their properties have long been 

studied. Earlier studies done by Slater (1940), Gray (1948), Timoshenko and Woinowski-

Krieger (1959), and Wilby (1977) provided the basis for the design of such tanks. Those 

researchers proposed that the analysis of reinforced concrete tanks can be based on a 

linear approach.  

The theory of plates and shells, which was introduced by Timoshenko and Woinowski-

Krieger (1959), indicated that all problems of symmetrical deformation of cylindrical 

shells under uniformly distributed load can be expressed as a function of radial 

displacement at an arbitrary height.  Latterly, Ghali (1979) presented an analytical 

method for the evaluation of circular cylindrical tanks subjected to hydrostatic pressure. 

According to Ghali (1979), it is sufficient to consider an element strip of one meter along 

the circumference of the wall and parallel to the cylinder axis. He proposed that such a 

wall strip behaves as a beam on elastic foundation. Due to the inclination of the tank`s 

wall, the behaviour of reinforced concrete conical tanks under hydrostatic loading differs 

from that of circular cylindrical tanks.  

In addition to structural requirements, reinforced concrete tanks have to satisfy the 

durability needs, leading to functional success during the service life. Grieve et al. (1987) 

presented a report to investigate and inspect several above ground reinforced concrete 

tanks in Ontario. According to this report, 53 above ground tanks, which were 

constructed during the period of 1956 to 1980, suffered from deteriorations and cracks, 

and functionally failed although they were structurally accepted. This report reflects the 

importance of durability and service life of reinforced concrete tanks. During that time 
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and later on, many committees have been established to analyze and design liquid 

retaining structures, including: Portland Cement Association Circular Concrete Tanks 

without Pre-stressing (PCA-CCTWP), American Concrete Institute Design: 

Considerations for Environmental Engineering Concrete Structures (ACI350-06), British 

Standard Institute: Code of Practice for the Design of Concrete Structures for Retaining 

Aqueous Liquids (BS 8007), and Eurocode: Design of Concrete Structures – Part 3 

Liquid Retaining and Containment Structures (EN 1992-3). The PCA- CCTWP and 

ACI350-06 are globally used while BS 8007 and Eurocode are the predominated choice 

in Europe. 

Recently, many researchers investigated the behaviour and design of reinforced concrete 

tanks,‎especially‎for‎rectangular‎and‎cylindrical‎shape‎tanks.‎To‎the‎best‎of‎the‎author’s‎

knowledge, there are no particular provisions or standards that are available for concrete 

conical tanks. However, it is important to review current design codes that provide 

recommendations and standards for cylindrical and rectangular reinforced concrete tanks. 

This can help in establishing future procedures for reinforced concrete conical tanks. The 

majority of designers use strength design method, yet some still use working stress design 

approach. In the working stress method, stresses are kept at fairly low levels to minimize 

cracking, which leads to prevention of leakage. On the other hand, strength design 

method deals with cracked section analysis, which may not sufficiently address the 

leakage problem in liquid-filled structures.  

2.3.1 American Concrete Institute Guidelines 

In 1964, the American Concrete Institute (ACI) established a committee (ACI350-64) to 

provide guidelines for the design of liquid retaining reinforced concrete structures. The 
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most recent version of this guideline is the ACI 350-06. The basic design philosophy of 

this code is to reduce the stresses on the reinforcement under the effect of applied 

working stress. This code (ACI 350-06) provides an expression to calculate the maximum 

stress in the steel, which should not be exceeded, in order to keep the crack width less 

than the allowable width.  

ACI 350-06 limits the flexural cracks to 0.27 mm and 0.23 mm for normal and sever 

environmental exposures, respectively. It should be mentioned that ACI 350-06 refers to 

another code ACI 224R-01 to control the cracking in environmental engineering concrete 

structures such as elevated conical tanks. Conservatively, ACI 224R-01 specifies 0.1 mm 

as the maximum allowable crack width in order to protect the steel reinforcement from 

corrosion. For resisting the shrinkage and temperature effects, ACI 350-06 provides 

minimum reinforcement ratio to be ranging between 0.3% and 0.6%. Moreover, ACI 

350-06 limits the minimum thickness to 300 mm for walls equal to or higher than 3 m 

height. ACI 350-06 refers to the Portland Cement Association code of practice (PCA-

CCTWP, 1993) for the analysis and design of cylindrical concrete tanks while it does not 

refer to any codes for the design of conical shaped tanks. 

2.3.2 Portland Cement Association Guidelines 

The Portland Cement Association (PCA) provided guidelines for analysis and design of 

rectangular and cylindrical reinforced concrete tanks (PCA 1942, 1963, 1981, and 1993). 

However, PCA does not specify any recommendations for conical shape tanks. The most 

widely used code for design of cylindrical concrete tanks is PCA-CCTWP (1993). The 

advantage of this code over others is that it provides guidelines for the carrying capacity 
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of the stresses in concrete resulting from ring tension. It includes coefficients for 

evaluating the ring tensions, moments and shears in cylindrical tank walls. 

Several studies were published to investigate the discrepancy between PCA-CCTWP and 

other design guidance. Godbout et al. (2003) evaluated analytically the internal forces in 

a cylindrical tank wall and compared them with to those obtained from PCA-CCTWP-93. 

It was concluded that the estimated internal forces developed in the cylindrical walls (i.e., 

circumferential tensions and vertical bending moments) agreed well with the code results. 

Bruder (2011) evaluated the internal forces of the walls of cylindrical concrete tanks with 

a conical base. He used two different analysis methods; PCA-CCTWP and finite element 

analysis (FEA). It was reported that there was a disagreement between these two 

methods. Also, Bruder (2011) concluded that FEA should be employed if the tank 

parameters (e.g. shape, load cases, and boundary conditions) are not covered by PCA-

CCTWP. However, this study did not present any information about the analysis of the 

conical part of the tank.  

2.4 Conclusions 

Elevated reinforced concrete conical tanks are widely used for storage of different liquids 

since they provide greater capacity with lower liquid height. Although most codes 

provide guidelines for analysis and design of reinforced concrete rectangular and 

cylindrical tanks, no guidance is provided in such codes for conical shape tanks. The 

literature shows that most of the previous studies focused on the structural behaviour of 

steel conical tanks. However, there is scant data available for the design and behaviour of 

reinforced concrete tanks. It is important to review the current design codes that provide 
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recommendations and standards for reinforced concrete tanks. These codes which mainly 

provide guidelines for cylindrical tanks might be employed to design reinforced concrete 

conical tanks.  

FEA is a predominate choice for analysis of conical tanks due to the complexity of the 

analysis of these conical shaped tanks. The parameters that lead to such complexity 

include the angle of inclination of the tank wall with the vertical axis, total height of the 

tank and the base radius. Therefore, there is an extensive need to establish a simplified 

method for design and analysis of such tanks that can be used separately or in 

conjunction with FEA models, leading to an economical and safe design. 
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3 CHAPTER 3 

ANALYSIS AND DESIGN OF REINFORCED CONCRETE CONICAL TANKS 

 

3.1 Introduction 

Elevated tanks are playing very important role in municipal systems. Their roles are to 

contain different liquids at sufficient head pressure, and to satisfy the emergency 

requirements after any disaster that might happen. Elevated tanks are made from steel, 

reinforced concrete, or partially pre-stressed concrete. Moreover, they can take different 

shapes such as rectangular, cylindrical or conical. Reinforced concrete is used as a 

construction material for elevated conical tanks because of its advantages such as 

strength, durability, low maintenance cost and high buckling resistance compared to steel 

counterparts. 

The structural design of reinforced concrete conical tanks includes selection of adequate 

wall thickness, circumferential and longitudinal reinforcement steel, and related detailing. 

Serviceability is the most important design requirement for such a type of structures and 

mainly governs the design. Moreover, the design of conical tanks has to satisfy the 

general requirements of environmental engineering concrete structures specified by 

ACI350 (2006). Although most design codes provide guidelines for rectangular and 

cylindrical tanks, no guidance is provided in such codes for conical tanks. The analysis 

and design of conical tanks under the effect of hydrostatic pressure incorporates the 

presence of many parameters, including the angle of inclination of the tank wall with the 

vertical axis, total height of the tank and the base radius. The evaluation of the internal 
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forces in a conical tank wall is not an easy task because of the complicated state of 

stresses that includes bending stresses as well as membrane stresses. In addition, current 

available codes do not provide any guidelines to evaluate these internal forces. 

Consequently, two different analysis methods are presented in this study. The first 

method follows a simplified approach given in the Portland Cement Association for 

Concrete Circular Tanks without Pre-stressing (PCA-CCTWP, 1993). Although, this 

approach is specific for cylindrical tanks, an attempt is made in this study to extend it to 

conical tanks. This is done by combining this approach with a procedure to transform the 

geometry of a conical tank to an equivalent cylinder based on the information provided in 

the American Water Works Association AWWA-D100 (2005). The second method is 

based on a Finite Element Analysis (FEA) model built in-house using a degenerated 

consistent sub-parametric shell element developed by Koziey and Mirza (1997). In this 

study, both methods are used to investigate the behaviour of reinforced concrete conical 

tanks.   

Elevated conical tanks can be subjected to different types of loading such as hydrostatic 

pressure, earthquake and wind loads. The current study only focuses on the effect of 

axisymmetric hydrostatic pressure. The study proceeds by first analyzing a number of 

conical tanks having different practical geometric parameters using the PCA-CCTWP 

procedure. This involves trials that are carried out in order to obtain the required 

thickness and the amount of reinforcement that comply with the recommendations of 

ACI350-06. Second, the designed thickness, which is obtained from PCA-CCTWP, is 

used in the FEA to model the chosen conical tanks. Third, a comparison is conducted 

between the internal forces obtained from PCA-CCTWP procedure and those predicted 
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by the FEA. Finally, the wall section, which was first designed by PCA-CCTWP 

approach, is checked for ultimate strength requirements of ACI350-06 under the internal 

forces determined by FEA. 

3.2 Forces Due to Hydrostatic Pressure 

The weight of the contained liquid exerts an internal hydrostatic pressure on the tank 

walls. The hydrostatic pressure varies linearly along the wall height while it is constant 

along the circumferential direction of the wall as shown in Figure 3-1. In cylindrical 

tanks, the horizontal hydrostatic pressure results in outward displacement that is 

prevented due to the symmetry of the tank vessel, leading to both hoop tension force and 

meridional moment. The hoop tension acts on the vertical segment of the circular wall 

(i.e., circumferential direction) while the meridional moment acts along the horizontal 

segment (i.e., longitudinal direction). In case of conical vessels, the inclination of the wall 

of the tank complicates the state of stresses. In such conical shaped tanks, the horizontal 

segment of the wall is subjected to an additional meridional axial compression that is 

constant along the circumferential direction but varies along the longitudinal direction of 

the wall (Figure 3-2). The magnitude and distribution of these stresses are based on 

several parameters, including the tank height, tank base diameter, angle of inclination 

with the vertical, and wall thickness. 
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Figure 3-1 Axisymmetric Loading Conditions 

Figure 3-2 Wall Segments of a Conical Tank 

Vertical segment in the circumferential direction and 

Horizontal segment in the longitudinal direction 
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3.3 Analysis Approach 

This study employs the two different methods described earlier for the analysis and 

design of conical tanks. The first method is based on using PCA-CCTWP provisions for 

cylindrical concrete tanks combined with a procedure to transform conical tanks into 

equivalent cylinders. The second method is based on a FEA model, which is 

recommended for tank shapes that fall outside the parameters outlined by PCA-CCTWP 

(Bruder 2011).  

3.3.1 PCA-CCTWP Analysis Method 

Portland Cement Association provides a commonly used publication known as circular 

concrete tanks without pre-stressing (PCA-CCTWP). In this publication, tabled 

coefficients, including CH, and CM, are presented in order to simplify the evaluation of 

different forces in the walls of a liquid-filled circular tank under different support 

conditions. The provided coefficients are based on theory of plates and shells (Kamara 

2010). PCA-CCTWP does not account for the meridional compression resulting from the 

self-weight of the circular walls. The tabled hoop coefficient CH is function of the ratio 

   
 

     
 , where     is the total height of the cylindrical tank,     is the diameter of the 

circular tank, and   is the wall thickness. Based on the equations provided by PCA-

CCTWP, the internal forces acting at different heights of the circular wall can be 

calculated by applying Equations 3.1 and 3.2 for evaluating the hoop tension (T) and 

meridional moment (M), respectively. 

                                                                                                                       (3.1) 
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                                                                                                                (3.2) 

Where, T is the service hoop tension force per unit length acting on a vertical segment of 

the wall,    is the hoop coefficient at different heights of the wall, which depends on the 

value of  
   

 

     
 as shown in Table A.1 in appendix A, w is the liquid unit weight, M is the 

service meridional moment per unit length acting on a horizontal segment of the wall, 

and CM is the moment coefficient at different heights of the wall. Table A.2 presents the 

values of CM, according to the ratio  
   

 

     
. 

In order to apply this procedure on conical tanks, such vessels have to be transformed to 

equivalent cylinders. The procedure provided by AWWA-D100 (2005) recommendations 

for such transformation is used in the current study. The AWWA-D100 predicts that the 

behaviour of the steel conical tank is simulated by an equivalent geometry of a cylinder 

having the same thickness and projected perpendicular to the longitudinal axis of the 

cone. The equivalent diameter of the cylinder is taken as the average of the top and 

bottom diameter of the original conical tank.  

This transformation approach can be applied using the following equations. 

     
 

      
                                                                                                                   (3.3) 

    
           

      
                                                                                                                (3.4) 

                                                                                                                                 (3.5) 
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Where,     and     are the height and the radius of the equivalent cylinder, respectively. 

H is the total height of the conical tank,    is the angle of inclination of the meridian with 

the vertical, Rb is the base radius of the conical tank, tcy is the wall thickness of the 

equivalent cylindrical tank, and t is the wall thickness of the conical tank. 

3.3.2 Finite Element Analysis Method 

In this study, a finite element model based on a degenerated consistent sub-parametric 

shell element is used. The consistent shell element is an excellent tool to analyze plates 

and shell structures. It was successfully used in several previous studies and was 

validated versus many experimental and numerical results (e.g., Koziey and Mirza 1997; 

El Damatty et al. 1997, 1998; Sweedan and El Damatty 2002). This element was 

developed by Koziey and Mirza (1997) and extended by El Damatty et al. (1997) to 

include the geometric nonlinear effects. The consistent shell element has two main 

advantages. First, it eliminates the spurious shear modes and locking phenomenon 

observed when many isoparametric elements are used to model shell structures. Second, 

its formulation includes special rotational degree of freedom that lead to cubic variation 

of the displacement through the thickness. As such, quadratic transverse shear strain and 

shear stress can be predicted by this element. This feature is very useful in analyzing 

thick plates and shell structures such as reinforced concrete conical tanks.   

The formulation of the element, which has 13 nodes, as shown in Figure 3-3, includes 

three displacement degrees of freedom;      and   along the global      and   

coordinates, respectively, and four rotational degrees of freedom        and   acting at 

the corner and mid-side nodes. Both   and   are about local axis   , and   and   are 
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about local axis  x′, where the local axes  ′ and x′ are located in a plane tangent to the 

surface. Rotations   and   are constant through the depth of the element, while rotations 

  and   vary quadratically. Thus,   and   provide a linear variation of displacements 

     and   along the thickness representing bending deformations, while   and   lead to 

a cubic variation of displacements      and  , simulating transverse shear deformations. 

The shape functions of the consistent shell element are given in Appendix B. 

Both the load acting on the tank walls resulting from hydrostatic pressure and the tank 

geometry are symmetric about two perpendicular axes located in the cross sectional plan 

of the tanks. Accordingly, one quarter of the tank is modeled in the analysis. The vertical 

projection of a typical finite element mesh for one quarter of a conical vessel is shown in 

Figure 2-3 Consistent Shell Element Coordinate 
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Figure 3-3 Consistent Shell Element Coordinate 

System and Nodal Degrees of Freedom 
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Figure 3-4. As shown in this figure, the mesh is developed using 256 triangular elements, 

with 8 and 16 rectangular divisions along the circumferential and longitudinal directions, 

respectively. A finer mesh is applied at the bottom region of the vessel where stress 

concentration is anticipated near the tank base. The mentioned mesh size is selected 

based on a sensitivity analysis that is conducted for one of the tanks (v=45°, H=7m, 

R=3.5m, t=200mm) using different mesh sizes under the same hydrostatic pressure as 

presented in Table 3-1. This optimum mesh size which yields to accurate radial 

displacements has been used for all other studied tanks. At the base of the vessel, the 

boundary conditions are assumed to be simply supported. The tank wall is assumed to be 

hinged at the base since the hoop tension predicted following this assumption is greater 

than that in case of fixed bottom edge of the wall (CPA-CCTWP, 1993). A free edge 

boundary condition is assumed at the top of the conical vessel. This assumption is valid 

since the hydrostatic pressure at the top is negligible and the radial displacement at the 

top is so small (El Damatty et al. 1997). 

 

 

 

 

 

 

 

Figure 3-4 Finite Element Mesh of a Quarter Cone 
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Table 3-1 Mesh Sensitivity Analysis 

(*) For tank dimensions of v=45°, H=7m, R=3.5m, t=200mm. 

3.4 Cracking Mechanisms 

Cracking in liquid retaining structures is of significant importance since cracks adversely 

affect the required serviceability, leading to functional failure (i.e. liquid leakage).  In 

order to achieve a durable and safe design of concrete conical tanks, it is essential to 

understand the mechanism of cracking that may occur due to the effect of hydrostatic 

pressure. PCA-CCTWP presents two main cracking mechanisms, which occur due to 

hydrostatic pressure, including pure tension cracks and flexural cracks. 

3.4.1 Pure Tension Cracking 

The vertical segment of the tank wall resists pure tension stresses resulting from hoop 

forces. Since ACI 350-06 does not provide any explicit measurement to control the direct 

tension cracks, PCA-CCTWP prevents any direct tension cracks to form. The main 

reason behind this assumption is that direct tension cracks are normally full depth cracks, 

leading‎ to‎ water‎ seepage‎ even‎ at‎ low‎ range‎ of‎ cracks’‎ widths.‎ These‎ cracks‎ lead‎ to‎

leakage, reinforcement corrosion and functional failure. A study that was conducted by 

Mesh Size
(*)

 
Max Radial 

Displacement 

(mm) 

Max Hoop 

(kN/m) 

Max 

Meridional 

Meridional 

(kN.m/m) 

Max 

Meridioanl 

Compression 

(kN/m) 

4  8 1.1390 411.06 8.32 509.60 

6  12 1.1330 412.19 8.52 521.98 

8  16 1.1320 414.12 8.85 528.06 

10  20 1.1310 414.15 8.84 527.86 
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Ziari and Kianoush (2009) showed that leakage can begin at a very low crack width of 

0.04 mm. Also, a reduction in the rate of leakage is observed over time due to self-

healing of cracks. The self-healing can be defined as the ability of concrete to heal its 

cracks which have a width less than 0.2 mm. When the water flows in the micro-cracks, it 

reacts with non-hydrated cement molecules to produce further limestone, which fills 

these cracks. The ACI350-06 code does not account for self-healing of cracks when 

exposed to water flow in case of water tanks although it was found that 0.2 mm width 

cracks can be sealed after seven weeks of continuous exposure to water (Ziari and 

Kianoush 2009). 

Based on the requirements of PCA-CCTWP and ACI350-06, the applied tension stresses 

should not exceed the allowable tensile stress of concrete, which is considered as 10% of 

the compressive strength. The cracks are only governed by the tensile strength of 

concrete while the reinforcements control the crack width and do not prevent occurring of 

cracks. The applied tension stress includes the combined hoop tension and shrinkage 

effect acting on the area of the wall section transformed to concrete.  

The tension stress in concrete can be calculated from Equation 3.6 that takes into account 

an explicit allowance for shrinkage.  

   
       

      
                                                                                                                    (3.6) 

Where    is the applied tensile strength acting on the ring that should be less than the 

tensile strength of concrete (        
 
),   

 
 is the concrete compressive strength,   is the 

shrinkage coefficient (i.e.,          ,    is the modulus of elasticity of horizontal 



28 

 

 

 

reinforcement steel,    is the area of horizontal reinforcement per 1000 mm height 

section,   is the non-factored ring hoop force per 1000 mm length resulting from the 

hydrostatic pressure,    is the area of concrete for 1000 mm height section (i.e.,    

         , t is the wall thickness,   is the modular ratio (i.e.,   
  

  
), and    is the 

concrete modulus of elasticity. 

3.4.2 Flexural Cracking 

Although PCA-CCTWP and ACI350-06‎ don’t‎ allow‎ direct‎ tension cracks to occur, 

flexural cracking is allowed to be formed. This is justified by the fact that flexural cracks 

are less severe than the direct tension cracks. ACI350-06 limits the flexural cracks to 0.27 

mm and 0.23 mm for normal and severe environmental exposures, respectively. The 

normal environmental exposure is defined as exposure to a liquid with a pH value greater 

than 5 or sulfate solutions of 1000 ppm or less, while the severe exposures are considered 

when these limits are exceeded (Kamara 2010). Moreover, ACI350-06 refers to other 

code ACI 224R (2001) to control the cracking in environmental engineering concrete 

structures, such as elevated conical tanks. Conservatively, ACI 224R specifies 0.1 mm as 

the maximum allowable crack width in order to protect the reinforcement from corrosion. 

This limit is followed by most of designers for this type of structures. ACI350-06 

presents a special method to control the width of flexural cracks. This method is based on 

the Frosch model for predicting flexural cracking (Frosch, 1999).‎ Frosch’s‎ model‎

specifies the maximum crack spacing to be twice the controlling cover distance. ACI350-

06 specifies rules for the spacing of flexural reinforcement and for the allowable stresses 

that can be achieved by preventing the tensile stresses in the steel reinforcement from 
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exceeding the maximum allowable stresses specified by ACI350-06 

(i.e.,(                 (                             ).  

These maximum allowable stresses are provided for non-compression controlled sections 

and are presented by Equations 3.7a and 3.7b. 

For normal exposures,        
    

 ̀√    (   
  

 ⁄ )
 
                                               (3.7.a) 

                     , for one-way members 

                     , for two-way members 

For severe exposures,        
     

 ̀√    (   
  

 ⁄ )
 
                                                (3.7.b) 

                     , for one-way members 

                     , for two-way members 

Where, fsmax is the maximum allowable steel stress (MPa), S is the bar spacing (mm), db is 

the bar diameter (mm),  ̀ is the strain gradient amplification factor  ̀ = 1.2 for a wall 

thickness‎ ≥‎ 400‎mm‎ and‎ 1.35‎ for‎ a‎wall‎ thickness‎ <‎ 400‎mm,‎ and‎ fs is the calculated 

stress in reinforcement at service loads (MPa), it can be calculated as the service moment 

divided by the product of steel area and internal moment arm, as shown in Equation 3.8. 

The steps to calculate the stress in reinforcement are shown in Equations 3.8 to 3.12. 

   
 

    
                                                                                                                       (3.8) 
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                                                                                                                  (3.9) 

   √    (                                                                                                  (3.10) 

          
  

 
                                                                                                     (3.11) 

  
  

  
                                                                                                                         (3.12) 

Where,   is the service moment resulting from the applied loads (i.e., unfactored 

moment),     is area of flexural reinforcement,   is steel ratio,   section width (  

       ),   is the modular ratio   
  

  
 ,    is the modulus of elasticity of flexural 

reinforcing steel,    is the concrete modulus of elasticity, and    is bar diameter. 

3.5 Design Approach 

The design of liquid containing tanks is generally governed by the serviceability 

requirements, including durability and leakage. Basically, the philosophy of serviceability 

limit state is to minimize the stresses applied on the reinforcing steel. This can be 

achieved by using the working stress approach. However, most of recent design codes are 

based on the ultimate strength approach. Consequently, ACI350-06 introduced the 

environmental durability factor as an additional load factor used for liquid retaining 

structures. This factor enables the designers to achieve the serviceability requirements 

through providing a sufficient amount of reinforcement steel. 
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3.5.1 Environmental Durability Factor 

The last publication of PCA-CCTWP, which complies with the requirements of the old 

version of ACI350 (1989), requires that the lateral liquid pressure shall be multiplied by a 

load factor of 1.7. Moreover, sanitary durability factor (i.e., 1.65 for axial tension and 1.3 

for flexural) should be provided to reduce the cracks, leading to a more conservative 

design. However, the last publication of ACI350-06, which is applied in this research, 

uses a load factor of 1.4 instead of 1.7 for both hydrostatic and dead loads. In addition, an 

environmental durability factor Sd  should be utilized. This factor is essential to reduce the 

stresses in the reinforcement steel, leading to fewer cracks. Consequently, durability and 

long term service life required for reinforced concrete conical tanks can be achieved. On 

the other hand, ACI350-06 does not recommend to apply the environmental durability 

factor for compression controlled sections since compression controlled members are 

subjected to lower tensile stress and associated low strain (i.e., less than or equal to 

0.002), and the cracks are in minor concern. According to the ACI350-06, the strength of 

concrete should be greater than Sd·U, where U is the factored loads. The environmental 

durability factor Sd can be calculated from Equation 3.13. 

   
   

    
                                                                                                                          (3.13) 

Where   is the strength reduction factor, (       for both hoop tension and flexural 

members),    is the steel yield strength,            is the allowable stress in normal 

environment, and   
              

               
    , in case of hydrostatic pressure and dead 

loads. 
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3.5.2 Wall Thickness 

A reasonable wall thickness is required to satisfy the strength requirements, the allowed 

crack width, concrete cover and ease of construction. Based on the recommendations of 

PCA-CCTWP, which prevent forming of direct tension cracks, the wall thickness can be 

estimated using Equation 3.14, considering 1000 mm width of the wall. 

  
           

         
                                                                                                       (3.14)                                                   

Where    is the allowable concrete tensile strength (            
 
),   

  is the concrete 

compressive strength,    is the allowable stress in hoop tension (          ),   is the 

coefficient of shrinkage (         ,    is the modulus of elasticity of horizontal 

reinforcing steel,   is the non-factored ring hoop force per 1000 mm length resulting 

from the hydrostatic pressure,   is the modular ratio   
  

  
, and    is the concrete 

modulus of elasticity, (PCA-CCTWP, 1993). 

Although several codes, such as BS2007, do not specify a minimum wall thickness, 

ACI350-06 provides a minimum thickness of 300 mm for walls equal to or higher than   

3 m. The required concrete volume and the overweight of the wall depend on the 

minimum wall thickness required for constructability.  

3.5.3 Wall Reinforcement 

Since the tank walls are subjected to two types of stresses, including hoop tension 

stresses and meridional stresses, it is required to provide sufficient reinforcing steel for 
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both circumferential and longitudinal directions. Moreover, selection of bar diameter and 

distribution of reinforcements is important to design a leak free tank.    

The horizontal reinforcement steel (i.e., circumferential reinforcement) is required to 

resist all hoop tension forces resulting from the hydrostatic pressure. According to PCA-

CCTWP, the area of circumferential steel can be specified from the following expression 

(   
  

      
), where    is the maximum factored hoop tension force magnified by the 

environmental durability factor   , (            , where   is the service hoop 

tension obtained from the analysis method, and    is the steel yielding strength. It should 

be noted that the required area of horizontal steel should not be less than the minimum 

specified area (           ), for walls without joints (ACI350, 2006).  

Moreover, vertical reinforcement (i.e., longitudinal reinforcement) is provided to carry 

the forces applied on the horizontal segment of the wall. In cylindrical tanks, PCA-

CCTWP specifies the vertical reinforcement to resist the flexural moment resulting from 

the hydrostatic pressure ignoring the compression normal force due to wall self-weight. 

In case of conical tanks, the vertical reinforcement resists both flexural moment and 

compression normal force, which has a large value compared to cylindrical tanks. That is 

related to the inclination of the vessel wall. Hence, the circumferential segment of the 

conical shaped tanks is to be designed as a compression member. These compression 

normal forces have a confinement effect which leads to a reduction in the crack width 

initiated in the circumferential segment. In such cases, check for crack width can be 

neglected except if the section is under large flexural moment compared to a small 

normal compression force. ACI350-06 requires a minimum vertical reinforcement for the 
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wall to be (       ), where    is the concrete gross area and can be simplified to 

(       ) for 1000 mm width section.  

3.6 Parametric Study 

Selection of an appropriate method for the analysis of liquid-filled reinforced concrete 

conical tanks is extremely important in order to determine the internal forces acting on 

the‎ tank’s‎ wall.‎ Two‎ analysis‎ tools,‎ as‎ previously‎ presented,‎ are‎ available;‎ the‎ first‎ is 

PCA-CCTWP and the second is FEA. The simplified approach presented by PCA-

CCTWP can be used exclusively or as a preliminary design in order to determine the 

initial wall thickness and the internal forces developed in the tank wall due to hydrostatic 

pressure. The initial thickness obtained from PCA-CCTWP can be utilized in FEA 

models to predict the actual behaviour. This section presents a parametric study that is 

conducted to compare the two methods and to evaluate the discrepancy that may exist 

due to analysis assumptions and approximations in the approach used to transfer from a 

conical shape to an equivalent cylinder. The findings of this parametric study assist to 

understand the behaviour of reinforced concrete conical tanks under hydrostatic pressure. 

In the first step of this parametric study, all studied conical tanks are transformed to 

equivalent cylinders using the AWWA-D100 (2005) procedure. The wall thickness of 

each equivalent cylindrical tank is then designed to comply with the requirements of 

PCA-CCTWP. The maximum forces (i.e., hoop tension and meridional moment) are 

obtained. In the second step, the designed thickness of the equivalent cylinder is used in 

the finite element analysis to model the conical tank in order to predict the maximum 

internal forces which are compared with those obtained from PCA-CCTWP. Finally, the 
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wall sections which are designed according to the forces resulting from the PCA-

CCTWP, are checked under the effect of the internal forces obtained from the finite 

element analysis. For more illustration, Figure 3-5 presents a flowchart for the steps 

followed in this parametric study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2-5 Flow Chart for the Steps of the Parametric Study 
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Figure 3-5 Flow Chart for the Steps of the Parametric Study 
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3.6.1 Assumptions for Analysis and Design 

The study focuses on the behaviour of reinforced concrete tanks that have a pure conical 

shape. The walls of these tanks are assumed to be simply supported at the base while they 

are free on the top. The wall thickness is considered as constant along its height and 

designed according to the requirements of PCA-CCTWP. The tanks are analyzed under 

the hydrostatic loads resulting from the liquid weight. This liquid is assumed to be water 

and fully fill the tank vessel. The own weight of the tank vessel is not considered in the 

FEA model since it is ignored by the PCA-CCTWP method. Also, linear elastic 

behaviour of the material is assumed in both cases as the design of liquid tanks has to 

satisfy serviceability requirements by preventing cracks from initiating at any location of 

the concrete section. The dimensions and properties of the tanks in concern are chosen to 

cover a wide practical range of reinforced concrete conical tanks (Table 3-2). 

Table ‎3-2 Tank Properties 

 Property 

Inner volume (Capacity) 100 ~ 2000 m
3
 

Tank height (H) 3 ~ 8m, (1 m increment) 

Base radius(Rb) 3 ~ 5 m, (1 m increment) 

Inclination angle (v) 15~ 60, (15 increment) 

Wall thickness (t) 300 ~ 700 mm 

Concrete compressive strength (  
 
) 30 MPa 

Concrete tensile strength (   ) 3 MPa 

Steel yield strength (fy) 400 MPa 

Concrete modulus of elasticity (Ec) 24647 MPa 

Steel modulus of elasticity (Es) 200000 MPa 

Poission ratio ()   0.3 

Modular ratio (n) 8.1 

Liquid specific weight (    10000N/m
3
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3.6.2 Parametric Study Results 

In this section, the results of the parametric study are presented. Such study is conducted 

by considering 66 reinforced concrete conical tanks covering practical geometries with 

different vessel capacities. This parametric study is used to assess the adequacy of 

utilizing the code provisions used for cylindrical tanks when applied on conical shaped 

tanks. This is done by checking the wall thickness as well as reinforcements in both 

directions; horizontal and vertical that are obtained following code guidelines. Table 3-3 

shows the maximum forces (i.e., hoop tension forces and meridional moments), required 

thickness, and the designed section based on PCA-CCTWP method. It should be noted 

that the thickness of the wall is mainly governed by the maximum hoop tension. Also, the 

minimum flexural reinforcement satisfies the ultimate strength requirement. 
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Table ‎3-3 Results of PCA-CCTWP Analysis Method 

(v= 15) 

No. 
Rb 

(m) 

H 

(m) 

Volume 

(m
3
) 

Equivalent 

Cylindrical Tank 
Max.  Hoop 

Tension (N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Section Design 

(PCA-CCTWP / ACI350-06) 

t  

(mm) 

s  

Horizontal 

Reinforcement 

Vertical 

Reinforcement Hcy(m) Dcy(m) 

1 3 3 110 3.1 7.0 65682 3129 300 0.006 0.0075 

2 4 158 4.1 7.3 104872 4191 300 0.006 0.0075 

3 5 214 5.2 7.6 147018 5512 300 0.006 0.0075 

4 6 277 6.2 7.9 190791 6792 300 0.006 0.0075 

5 7 347 7.2 8.2 243763 8575 300 0.006 0.0075 

6 8 426 8.3 8.4 295917 10033 300 0.007 0.0075 

7 4 3 183 3.1 9.1 77941 4030 300 0.006 0.0075 

8 4 260 4.1 9.4 125493 5475 300 0.006 0.0075 

9 5 345 5.2 9.7 179538 6718 300 0.006 0.0075 

10 6 439 6.2 9.9 233275 8678 300 0.006 0.0075 

11 7 543 7.2 10.2 292470 10183 300 0.007 0.0075 

12 8 656 8.3 10.5 359534 12627 300 0.009 0.0075 

13 5 3 276 3.1 11.2 87971 4805 300 0.006 0.0075 

14 4 386 4.1 11.5 146318 6698 300 0.006 0.0075 

15 5 507 5.2 11.7 208566 8477 300 0.006 0.0075 

16 6 639 6.2 12.0 275082 10280 300 0.007 0.0075 

17 7 782 7.2 12.3 339177 12378 300 0.008 0.0075 

18 8 936 8.3 12.6 417665 13990 300 0.010 0.0075 
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Table 3-3 (continued) 

 (v= 30) 

No. 
Rb 

(m) 

H 

(m) 

Volume 

(m
3
) 

Equivalent 

Cylindrical Tank 
Max.  Hoop 

Tension (N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Section Design 

(PCA-CCTWP / ACI350-06) 

t  

(mm) 

s  

Horizontal 

Reinforcement 

Vertical 

Reinforcement Hcy(m) Dcy(m) 

19 3 3 143 3.5 8.9 92359 4426 300 0.006 0.0075 

20 4 222 4.6 9.6 150922 6225 300 0.006 0.0075 

21 5 321 5.8 10.3 218697 8182 300 0.006 0.0075 

22 6 441 6.9 10.9 288451 10548 300 0.007 0.0075 

23 7 584 8.1 11.6 379933 13317 300 0.009 0.0075 

24 8 753 9.2 12.3 473907 16240 300 0.011 0.0075 

25 4 3 226 3.5 11.2 107553 5546 300 0.006 0.0075 

26 4 339 4.6 11.9 176503 7727 300 0.006 0.0075 

27 5 476 5.8 12.6 257958 9840 300 0.006 0.0075 

28 6 638 6.9 13.2 344142 12883 300 0.008 0.0075 

29 7 827 8.1 13.9 433786 15671 300 0.010 0.0075 

30 8 1045 9.2 14.6 550689 17308 300 0.013 0.0075 

31 5 3 327 3.5 13.5 120668 6462 300 0.006 0.0075 

32 4 482 4.6 14.2 202552 9257 300 0.006 0.0075 

33 5 663 5.8 14.9 293220 12047 300 0.007 0.0075 

34 6 873 6.9 15.5 394721 14674 300 0.009 0.0075 

35 7 1114 8.1 16.2 496611 18327 300 0.012 0.0075 

36 8 1387 9.2 16.9 603129 23179 300 0.013 0.0076 
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Table 3-3 (continued) 

 (v= 45) 

 

No. 
Rb 

(m) 

H 

(m) 

Volume 

(m
3
) 

Equivalent 

Cylindrical Tank 
Max.  Hoop 

Tension (N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Section Design 

(PCA-CCTWP / ACI350-06) 

t  

(mm) 

s  

Horizontal 

Reinforcement 

Vertical 

Reinforcement Hcy(m) Dcy(m) 

37 3 3 198 4.2 12.7 163656 7703 300 0.006 0.0075 

38 4 331 5.7 14.1 273859 11188 300 0.007 0.0075 

39 5 508 7.1 15.6 405426 15153 300 0.010 0.0075 

40 6 735 8.5 17.0 548074 19987 300 0.013 0.0075 

41 7 1019 9.9 18.4 697752 29628 350 0.016 0.0078 

42 8 1366 11.3 19.8 858525 44280 425 0.014 0.0081 

43 4 3 292 4.2 15.6 188238 9394 300 0.006 0.0075 

44 4 469 5.7 17 312339 13577 300 0.007 0.0075 

45 5 696 7.1 18.4 464477 17516 300 0.011 0.0075 

46 6 980 8.5 19.8 624659 24992 320 0.014 0.0076 

47 7 1327 9.9 21.2 788408 37378 380 0.015 0.0079 

48 8 1743 11.3 22.6 957249 57412 480 0.014 0.0082 

49 5 3 405 4.2 18.4 208578 10980 300 0.006 0.0075 

50 4 633 5.7 19.8 350294 15894 300 0.008 0.0075 

51 5 916 7.1 21.2 514717 20153 310 0.012 0.0076 

52 6 1263 8.5 22.6 675038 33226 380 0.013 0.0079 

53 7 1679 9.9 24 839095 51956 480 0.012 0.0082 

54 8 2170 11.3 25.5 1030823 70964 550 0.013 0.0083 
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Table 3-3 (continued) 

(v= 60) 

 

No. 
Rb 

(m) 

H 

(m) 

Volume 

(m
3
) 

Equivalent 

Cylindrical Tank 
Max.  Hoop 

Tension (N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Section Design 

(PCA-CCTWP / ACI350-06) 

t  

(mm) 

s  

Horizontal 

Reinforcement 

Vertical 

Reinforcement Hcy(m) Dcy(m) 

55 3 3 317 6 22.4 419787 19063 300 0.010 0.0075 

56 4 575 8 25.9 679372 37174 380 0.013 0.0079 

57 5 942 10 29.3 992392 64806 470 0.015 0.0082 

58 6 1436 12 32.8 1316450 117150 630 0.015 0.0084 

59 4 3 432 6 26.4 474885 22653 300 0.011 0.0075 

60 4 750 8 29.9 746288 45187 400 0.013 0.0080 

61 5 1188 10 33.3 1057166 81657 520 0.015 0.0083 

62 6 1764 12 36.8 1413543 136682 660 0.015 0.0085 

63 5 3 565 6 30.4 511590 27744 320 0.011 0.0076 

64 4 951 8 33.9 804500 55548 430 0.013 0.0081 

65 5 1466 10 37.3 1113460 106820 600 0.013 0.0084 

66 6 2129 12 40.8 1512211 161218 700 0.015 0.0085 
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In the FEA method, the selected conical tanks are modeled using the consistent shell 

element described in the previous section. The wall thickness is assumed following PCA-

CCTWP (1993) code design provisions. The internal forces acting on the wall are 

obtained, including hoop tension force, meridional moment and meridional normal 

compression force. The tank wall, which was previously designed by the PCA-CCTWP, 

is checked under the forces predicted by the FEA. Table 3-4 summarizes the maximum 

internal forces obtained from FEA. Moreover, it shows the results of the checked wall 

sections for both serviceability and ultimate strength requirements. 
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Table ‎3-4 Results of FEA Method 

(v= 15) 

 

No. 
Rb 

(m) 

H 

(m) 

Designed Section 

(PCA-CCTWP / ACI350-06) 

(From Table 3-2) 
Max.  

Hoop 

Tension 

(N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Max. 

Meridional 

Compression 

(N/m) 

Check Designed Sections  

along Wall Height 

t 

(mm) 

s 

Horizontal Vertical  
Horizontal Vertical 

1 3 3 300 0.006 0.0075 62395 18542 10410 safe safe 

2 4 300 0.006 0.0075 97056 24584 20524 safe safe 

3 5 300 0.006 0.0075 132480 30451 34311 safe safe 

4 6 300 0.006 0.0075 168121 37290 52026 safe unsafe 

5 7 300 0.006 0.0075 205422 43439 73915 safe unsafe 

6 8 300 0.007 0.0075 241638 48493 100179 safe unsafe 

7 4 3 300 0.006 0.0075 74133 24810 9662 safe safe 

8 4 300 0.006 0.0075 118840 32966 19245 safe safe 

9 5 300 0.006 0.0075 165283 41119 32321 safe unsafe 

10 6 300 0.006 0.0075 212343 48676 49021 safe unsafe 

11  7 300 0.007 0.0075 259149 57975 69518 safe unsafe 

12  8 300 0.009 0.0075 307959 66087 94007 safe unsafe 

13 5 3 300 0.006 0.0075 84247 30694 9127 safe safe 

14 4 300 0.006 0.0075 139174 41178 18328 safe unsafe 

15  5 300 0.006 0.0075 195366 51061 30927 safe unsafe 

16 

 

6 300 0.007 0.0075 251917 61467 46985 safe unsafe 

17 7 300 0.008 0.0075 311230 71501 66592 safe unsafe 

18 8 300 0.010 0.0075 369749 82997 89997 safe unsafe 
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Table 3-4 (continued) 

(v= 30) 

 

No. 
Rb 

(m) 

H 

(m) 

Designed Section 

(PCA-CCTWP / ACI350-06) 

(From Table 3-2) 
Max.  

Hoop 

Tension 

(N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Max. 

Meridional 

Compression 

(N/m) 

Check Designed Sections  

along Wall Height 

t 

(mm) 

s 

Horizontal  Vertical  
Horizontal Vertical 

19 3 3 300 0.006 0.0075 76842 22204 27886 safe safe 

20 4 300 0.006 0.0075 120848 29407 56124 safe safe 

21 5 300 0.006 0.0075 165731 36611 95676 safe safe 

22 6 300 0.007 0.0075 212595 45487 147754 safe unsafe 

23  7 300 0.009 0.0075 259751 53448 213479 safe unsafe 

24  8 300 0.011 0.0075 308316 62771 294076 safe unsafe 

25 4 3 300 0.006 0.0075 90307 29456 25486 safe safe 

26 4 300 0.006 0.0075 145870 38858 51560 safe unsafe 

27  5 300 0.006 0.0075 204159 48505 87820 safe unsafe 

28  6 300 0.008 0.0075 262847 58374 135166 safe unsafe 

29 7 300 0.010 0.0075 322450 69705 194450 safe unsafe 

30 8 300 0.013 0.0075 383702 79838 266569 safe unsafe 

31 5 3 300 0.006 0.0075 101987 36165 23781 safe safe 

32  4 300 0.006 0.0075 169263 48476 48405 safe unsafe 

33 

 

5 300 0.007 0.0075 238816 60068 82584 safe unsafe 

34 6 300 0.009 0.0075 309138 71786 126971 safe unsafe 

35 7 300 0.012 0.0075 382426 85054 182272 safe unsafe 

36 8 300 0.013 0.0076 454066 98587 249173 safe Unsafe 
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Table 3-4 (continued) 

(v= 45) 

 

No. 
Rb 

(m) 

H 

(m) 

Designed Section 

(PCA-CCTWP / ACI350-06) 

(From Table 3-2) 
Max.  

Hoop 

Tension 

(N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Max. 

Meridional 

Compression 

(N/m) 

Check Designed Sections  

along Wall Height 

t 

(mm) 

s 

Horizontal  Vertical  
Horizontal Vertical 

37 3 3 300 0.006 0.0075 107817 29632 67842 safe safe 

38 4 300 0.007 0.0075 170599 39284 138909 safe unsafe 

39  5 300 0.010 0.0075 235697 50533 240966 safe unsafe 

40  6 300 0.013 0.0075 303569 63353 378091 safe unsafe 

41 7 350 0.016 0.0078 373990 76796 550687 safe unsafe 

42 8 425 0.014 0.0081 449513 91773 763268 safe unsafe 

43 4 3 300 0.006 0.0075 126177 38692 60996 safe unsafe 

44  4 300 0.007 0.0075 203264 50738 124951 safe unsafe 

45  5 300 0.011 0.0075 285049 63498 215839 safe unsafe 

46 6 320 0.014 0.0076 365711 79086 335396 safe unsafe 

47 7 380 0.015 0.0079 449286 95623 484670 safe unsafe 

48 8 480 0.014 0.0082 536551 113172 665784 safe unsafe 

49 5 3 300 0.006 0.0075 141350 47424 56367 safe unsafe 

50  4 300 0.008 0.0075 233672 62975 115748 safe unsafe 

51 

 

5 310 0.012 0.0076 328765 78595 199103 safe unsafe 

52 6 380 0.013 0.0079 419228 95694 305021 safe unsafe 

53 7 480 0.012 0.0082 512256 113861 436950 safe unsafe 

54 8 550 0.013 0.0083 614622 132554 601382 safe safe 
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Table 3-4 (continued) 

(v= 60) 

No. 
Rb 

(m) 

H 

(m) 

Designed Section 

(PCA-CCTWP / ACI350-06) 

(From Table 3-2) 
Max.  

Hoop 

Tension 

(N/m) 

Max. 

Meridional 

Moment 

(N.m/m) 

Max. 

Meridional 

Compression 

(N/m) 

Check Designed Sections  

along Wall Height 

t 

(mm) 

s 

Horizontal  Vertical  
Horizontal Vertical 

55 3 3 300 0.010 0.0075 186661 46498 202472 safe unsafe 

56  4 380 0.013 0.0079 285820 66338 411399 safe unsafe 

57  5 470 0.015 0.0082 403030 87671 721953 safe safe 

58 6 630 0.015 0.0084 527755 115271 1106827 safe safe 

59 4 3 300 0.011 0.0075 217343 59926 178817 safe unsafe 

60  4 400 0.013 0.0080 331843 82641 360029 safe unsafe 

61 5 520 0.015 0.0083 458726 109392 620716 safe safe 

62 6 660 0.015 0.0085 598605 139231 970910 safe safe 

63 5 3 320 0.011 0.0076 238606 73545 161541 safe unsafe 

64 

 

4 430 0.013 0.0081 366588 101832 323433 safe unsafe 

65 5 600 0.013 0.0084 497659 134417 549217 safe safe 

66 6 700 0.015 0.0085 659872 165342 864731 safe safe 
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For more illustration, the vertical section is checked under the effect of hoop tension that 

is predicted by the FEA model. In order to achieve the adequate wall thickness, the 

following conditions have to be satisfied; 

 (         (       (                 , and  

(        
   (            

(         (      
  (     

  . 

Where (       is the area of horizontal reinforcement required to resist the hoop tension 

predicted by FEA,  (       
     

      
, (Tu)FEA is the factored hoop tension, and    is the 

steel yield strength, (       is the horizontal reinforcing steel required to resist the hoop 

tension obtained from PCA-CCTWP.  

The design requirements (i.e., ultimate strength and serviceability) for different 

horizontal sections along the wall are checked. Interaction diagrams are developed for the 

designed sections which are subjected to a combined bending and high axial load, while 

sectional analysis is performed for wall sections that are mainly governed by flexural 

moments. Based on the constructability aspects, the section is assumed to have the same 

vertical reinforcement for both sides (i.e., external and internal faces of the tank's wall). 

Serviceability is controlled by preventing the tensile stresses in the steel reinforcement 

from exceeding the maximum allowable stresses specified by ACI350-06. Figure 3-6 

presents a typical distribution for meridional moment and meridional normal compression 

along the wall height of tank No. 52 while Figure 3-7 shows the related interaction 

diagram. 
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Figure 2-6 Distribution diagram of the meridional moment and 

axial compression for tank #52 (v=45, Rb=5m, H=6m) 
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Figure 2-7 Distribution diagram of the meridional moment 

and axial compression for tank #52 (v=45, Rb=5m, H=6m) 

s= 0.79% is the ratio of vertical reinforcement 
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axial compression for tank #52 (v=45, Rb=5m, H=6m) 

Figure 3-7 Interaction Diagram for tank #52 (v=45, Rb=5m, H=6m) 

s= 0.79% is the ratio of vertical reinforcement 
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3.6.2.1 Comparison between PCA-CCTWP and FEA Results 

This subsection provides a comparison between the two analysis methods used in the 

current study (i.e., PCA-CCTWP, and FEA). This comparison is presented in order to 

evaluate the adequacy of applying code provisions in case of conical tanks.  

Based on the results obtained from both PCA-CCTWP and FEA, it is noticed that the 

internal forces (i.e., hoop tension, meridional moment, and meridional normal force) 

increase as the angle of wall inclination increases, leading to a larger required wall 

thickness. For example, the thickness of broad conical tanks (i.e., v ≥‎ 45°) ranging 

between 400 mm to 600 mm, and reaches up to 700 mm for tank No. 66. On the other 

hand, the minimum wall thickness specified by PCA-CCTWP and ACI350-06 (i.e., 300 

mm) is found to be sufficient for serviceability requirements for a wide range of narrow 

conical tanks (i.e., v  45°). The same trend is observed by increasing the tank height 

and base radius. It can be also noticed that the meridional compression force obtained 

from FEA decreases as the base radius increases because the hydrostatic pressure is 

distributed over a larger circumferential area.   

The internal forces obtained from PCA-CCTWP are compared with FEA in order to 

evaluate the range of discrepancies. Table 3-5 presents the differences between the 

maximum forces, including hoop tension forces and meridional moments for the all 66 

studied tanks. It should be mentioned that the meridional compression is excluded from 

the comparison because PCA-CCTWP ignores the compression developed by the wall 
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own weight in case of cylindrical tanks. It is noticed that PCA-CCTWP method results in 

maximum hoop tension forces that are greater than those obtained from FEA. The range 

of discrepancy between the two approaches depends on the angle of inclination of the 

wall, base radius and tank height. Typically, the maximum hoop obtained from both 

methods is located between the bottom third and bottom fifth region of the wall height. 

For hoop tension distribution along wall height, a typical agreement is found for short-

narrow tanks having small inclination angles (i.e., v  45°, H  5m). On the other hand, 

there are disagreements for the hoop values along wall height of tall-wide conical tanks. 

This can be related to the fact that as the inclination angle decreases; the behaviour of the 

conical tank is closer to be cylindrical. Figure 3-8 shows a typical distribution diagram 

for hoop tension predicted by the two methods for a short-narrow conical tank while 

Figure 3-9 presents the hoop diagram of a tall-wide tank.  
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Table ‎3-5 Comparison between PCA-CCTWP and FEA Maximum Internal Forces 

(v= 15) 

 

No. Rb(m) H (m) t (mm) 

Maximum Hoop Tension (N/m) 
Maximum Meridional 

Moment (N.m/m) 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

1 3 3 300 65682 62395 -5 3129 18542 83 

2 4 300 104872 97056 -8 4191 24584 83 

3 5 300 147018 132480 -11 5512 30451 82 

4 6 300 190791 168121 -13 6792 37290 82 

5 7 300 243763 205422 -19 8575 43439 80 

6 8 300 295917 241638 -22 10033 48493 79 

7 4 3 300 77941 74133 -5 4030 24810 84 

8 4 300 125493 118840 -6 5475 32966 83 

9 5 300 179538 165283 -9 6718 41119 84 

10 6 300 233275 212343 -10 8678 48676 82 

11 7 300 292470 259149 -13 10183 57975 82 

12 8 300 359534 307959 -17 12627 66087 81 

13 5 3 300 87971 84247 -4 4805 30694 84 

14 4 300 146318 139174 -5 6698 41178 84 

15 5 300 208566 195366 -7 8477 51061 83 

16 6 300 275082 251917 -9 10280 61467 83 

17 7 300 339177 311230 -9 12378 71501 83 

18 8 300 417665 369749 -13 13990 82997 83 

1): Difference = 
   x        -  x        -      

  x        
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Table 3-5 (continued) 

(v= 30) 

 

No. Rb(m) H (m) t (mm) 

Maximum Hoop Tension (N/m) 
Maximum Meridional 

Moment (N.m/m) 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

19 3 3 300 92359 76842 -20 4426 22204 80 

20 4 300 150922 120848 -25 6225 29407 79 

21 5 300 218697 165731 -32 8182 36611 78 

22 6 300 288451 212595 -36 10548 45487 77 

23 7 300 379933 259751 -46 13317 53448 75 

24 8 300 473907 308316 -54 16240 62771 74 

25 4 3 300 107553 90307 -19 5546 29456 81 

26 4 300 176503 145870 -21 7727 38858 80 

27 5 300 257958 204159 -26 9840 48505 80 

28 6 300 344142 262847 -31 12883 58374 78 

29 7 300 433786 322450 -35 15671 69705 78 

30 8 300 550689 383702 -44 17308 79838 78 

31 5 3 300 120668 101987 -18 6462 36165 82 

32 4 300 202552 169263 -20 9257 48476 81 

33 5 300 293220 238816 -23 12047 60068 80 

34 6 300 394721 309138 -28 14674 71786 80 

35 7 300 496611 382426 -30 18327 85054 78 

36 8 300 603129 454066 -33 23179 98587 76 

1): Difference = 
   x        -  x        -      

  x        
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Table 3-5 (continued) 

(v= 45) 

 

No. Rb(m) H (m) t (mm) 

Maximum Hoop Tension (N/m) 
Maximum Meridional 

Moment (N.m/m) 

PCA-

CCTWP
)

 
FEA 

Diff. 

(%)
(1)

 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

37 3 3 300 163656 107817 -52 7703 29632 74 

38 4 300 273859 170599 -61 11188 39284 72 

39 5 300 405426 235697 -72 15153 50533 70 

40 6 300 548074 303569 -81 19987 63353 68 

41 7 350 697752 373990 -87 29628 76796 61 

42 8 425 858525 449513 -91 44280 91773 52 

43 4 3 300 188238 126177 -49 9394 38692 76 

44 4 300 312339 203264 -54 13577 50738 73 

45 5 300 464477 285049 -63 17516 63498 72 

46 6 320 624659 365711 -71 24992 79086 68 

47 7 380 788408 449286 -75 37378 95623 61 

48 8 480 957249 536551 -78 57412 113172 49 

49 5 3 300 208578 141350 -48 10980 47424 77 

50 4 300 350294 233672 -50 15894 62975 75 

51 5 310 514717 328765 -57 20153 78595 74 

52 6 380 675038 419228 -61 33226 95694 65 

53 7 480 839095 512256 -64 51956 113861 54 

54 8 550 1030823 614622 -68 70964 132554 46 

1): Difference = 
   x        -  x        -      

  x        
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Table 3-5 (continued) 

(v= 60) 

 

No. Rb(m) H (m) t (mm) 

Maximum Hoop Tension (N/m) 
Maximum Meridional 

Moment (N.m/m) 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

PCA-

CCTWP 
FEA 

Diff. 

(%)
(1)

 

55 3 3 300 419787 186661 -125 19063 46498 59 

56 4 380 679372 285820 -135 37174 66338 41 

57 5 470 992392 403030 -146 64806 87671 26 

58 6 630 1316450 527755 -149 117150 115271 -2 

59 4 3 300 474885 217343 -118 22653 59926 62 

60 4 400 746288 331843 -125 45187 82641 45 

61 5 520 1057166 458726 -130 81657 109392 25 

62 6 660 1413543 598605 -136 136682 139231 2 

63 5 3 320 511590 238606 -114 27744 73545 62 

64 4 430 804500 366588 -119 55548 101832 45 

65 5 600 1113460 497659 -124 106820 134417 21 

66 6 700 1512211 659872 -129 161218 165342 2 

1): Difference = 
   x        -  x        -      

  x        
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3.6.2.2 Effect of Changing Geometric Parameters on Results 

This part of the study discusses the effect of changing the dimensions of conical tanks 

(i.e., radius, height, wall inclination angle, and wall thickness) on the maximum internal 

forces due to hydrostatic pressure. In addition, it is found that increasing the tank height 

leads to more difference in the maximum hoop tension forces obtained from the two 

analysis methods (i.e., PCA-CCTWP and FEA). Figure 3-10 shows this trend for conical 

tanks having base radius (Rb = 4m); the same trend is found for other base radiuses. This 

figure shows that increasing the wall inclination angle leads to more discrepancies in the 

values of the maximum hoop tension. Moreover, for relatively tall tanks having a ratio of 

(  
   

 

     
     , PCA-CCTWP neglects the effect of hydrostatic pressure on the upper part 

of tall walls of the equivalent cylindrical tanks compared to a significant great hoop 
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tension at the lower third part of the wall. As illustrated in Figure 3-11, significant 

disagreement is observed for such cases (i.e.,   
   

 

     
      . 

 

 

 

 

 

 

 

 

 

Although PCA-CCTWP approach results in higher values of maximum hoop tension 

compared to the FEA method, the maximum meridional moment obtained from PCA-

CCTWP is found to be less than that from the FEA. This is because the equivalent 

cylindrical approach does not present the vertical component of the hydrostatic pressure 

acting on the inclined walls of the conical tanks. The average difference is noticed to be 

83%, 79%, 66%, and 32% for V =15°, V =30°, V =45°, and V =60°, respectively. The 

results also show that increasing the wall height leads to a reduction in the difference 

between the maximum meridional moments obtained from the two analysis methods as 
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illustrated in Figure 3-12. This figure presents the ratio of discrepancies of maximum 

meridional moment for a tank having 4 m base radius. The same trend is observed for 

tanks having 3 m and 5 m. This is due to the fact that for large conical tanks, the 

equivalent cylinder approach leads to deep cylindrical tanks which results in meridional 

moments higher than that of shallow tanks. Figure 3-13 shows the moment distribution 

diagram for a typical short-narrow conical tank while Figure 3-14 presents the diagram 

for a tall-wide one. As concluded from these figures, moment discrepancies between the 

two analysis methods are reduced by increasing the angle of inclination of the wall with 

the vertical. 
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The compression force that acts on the meridional direction of the wall is neglected by 

PCA-CCTWP while FEA method predicts the meridional compression force developed 

by the effect of hydrostatic pressure. The maximum compression is located at the base of 

the wall and it exhibits a high compression stresses acting on the horizontal section of the 

tank wall. However, such compression force is expected to increase the compression zone 

of the wall and enhance its cracking resistance. 

As mentioned earlier, the wall of the pure conical tank requires two segments to be 

designed; vertical section in the circumferential direction to resist hoop forces, and 

horizontal section in the longitudinal direction to resist the dual effect of both moments 

and compression forces. For the vertical section of the wall, PCA-CCTWP provides 

sufficient concrete thickness that can resist concrete cracking but it requires area of 

horizontal reinforcement more than that required by the FEA method. Therefore, the 

hoop tension predicted by PCA-CCTWP is more conservative than that obtained from the 

FEA.  It is found that the area of horizontal steel estimated by PCA-CCTWP approach  is 

more than that predicted according to the FEA results by  10%, 30%, 65%, and 129% for 

angles of inclination 15°, 30°, 45°, and 60°, respectively.  

On the other hand, PCA-CCTWP neglects the resultant meridional compression force and 

designs the horizontal section of the wall to only resist the flexural moment. Based on the 

ultimate strength and serviceability requirements provided by the design code ACI350-

06, the minimum flexural reinforcement is sufficient. In contrast, it is found that the 

designed vertical reinforcement does not satisfy the ultimate strength requirements when 

using the FEA method. This is attributed to the reason that FEA provides meridional 
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compression forces and significant moments compared with those obtained from PCA-

CCTWP. Consequently, the horizontal section requires (2% to 180%) additional vertical 

reinforcement compared to the PCA-CCTWP. This main conclusion proves the 

inadequacy of applying code provisions used for cylindrical tanks on conical storage 

vessels.   

3.7 Conclusions 

Based on the available codes of design, there are currently no guidelines to evaluate the 

internal forces acting on the walls of elevated reinforced concrete conical tanks. These 

codes provide guidelines only for rectangular and cylindrical tanks. PCA-CCTWP (1993) 

provides a simplified approach for concrete cylindrical tanks. This approach is applied 

for the selected conical tanks by using a special procedure specified by AWWA-D100 

(2005) to convert these conical tanks to equivalent cylindrical tanks. Moreover, a built in-

house finite element model, which is based on a degenerated consistent sub-parametric 

shell element, is employed to model the conical tanks. In this study, several reinforced 

concrete conical tanks subjected to hydrostatic pressure are analyzed and designed. Based 

on a parametric study conducted on 66 conical tanks having different configurations and 

by comparing the internal forces in the walls of these tanks that are obtained from PCA-

CCTWP and FEA, the following conclusions can be drawn: 

 PCA-CCTWP provides higher maximum hoop tension than that obtained from 

FEA models. The average difference is 10%, 30%, 65%, and 129% for wall 

inclination angles v = 15°, v = 30°, v = 45°, andv = 60°, respectively. However, 
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the study shows that the results of hoop tension from PCA-CCTWP and FEA have 

a good agreement for short-narrow tanks. 

 The maximum meridional moments obtained from PCA-CCTWP are less than that 

predicted by FEA. The average range of disagreement is 32% to 83% depending on 

the inclination angle and the wall height. It is noticed that as the inclination angle 

and wall height increase the range of disagreement decreases. Therefore, there is an 

agreement in maximum meridional moments obtained from PCA-CCTWP and 

FEA in case of tall-wide conical tanks. 

 The wall minimum thickness specified by ACI350-06 (i.e., 300 mm) is found to be 

sufficient for serviceability requirements for conical tanks having v  45°. 

However, increasing wall inclination angle and tank height, especially for   

     leads to an increase in the required wall thickness in order to achieve 

serviceability requirements. 

 For tall-wide reinforced concrete conical tanks (i.e., v ≥‎45°, H  5m), the designed 

wall thickness using PCA-CCTWP method is found to be overestimated. This is 

attributed to that PCA-CCTWP method provides higher hoop tension, leading to an 

over conservative design. Consequently, wall thickness can be reduced without 

affecting the serviceability requirement. 

 PCA-CCTWP method is mainly used to design tank walls to carry only hoop 

tension and meridional moment. In case of conical tanks, a larger meridional 

moment combined with high meridional compression, which is not presented in 

PCA-CCTWP, are caused by the vertical component of the hydrostatic pressure 
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acting on the inclined walls of the tanks. This may lead to an inadequate design by 

following the PCA-CCTWP approach. 
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4 CHAPTER 4 

SIMPLIFIED DESIGN CHARTS FOR REINFORCED CONCRETE CONICAL 

TANKS UNDER HYDROSTATIC LOADING 

 

4.1 Introduction 

Structural engineers usually seek a simple approach that satisfies all design requirements 

to be utilized while designing complex structures. The design of a conical shaped tank is 

considered as a challenging task because of the complication in the state of stresses and 

the lack of direct guidelines for hydrostatically loaded reinforced concrete conical tanks 

in codes of design. The design of steel liquid-storage structures in North America is 

usually based on the specifications provided by either the American Water Works 

Association AWWA-D100 (2005) or the American Petroleum Institute API 650 (2006). 

Both specifications adopt an equivalent cylindrical tank approach in which the conical 

segment is replaced by a cylindrical part. The main drawback of this approximation is 

that it does not accurately simulate the state of stresses induced in the inclined walls of 

the conical segment.  

In chapter 3, the accuracy of a design approach for reinforced concrete conical tanks 

which combines PCA-CCTWP provisions with the equivalent cylinder approach defined 

by AWWA-D100 (2005) has been assessed. This assessment was done by conducting a 

parametric study covering a practical range of conical tanks having different dimensions 

and capacities. It was concluded that the proposed PCA-CCTWP approach leads to an 

inadequate design if applied to conical tanks. It was also noticed that such approach 
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provides higher hoop tension and less meridional moment compared to those obtained 

from FEA results. 

In order to achieve the most economical and safe design of conical tanks, a 

comprehensive finite element analysis combined with detailed design specifications is 

essentially required. In performing the analysis of these tanks using the finite element 

method, the resulting internal forces are predicted along both the meridional and 

circumferential‎ directions‎ of‎ the‎ tanks’‎ walls.‎ Shell‎ elements‎ are‎ used‎ to‎ predict‎ such‎

behaviour, which requires knowledge and expertise in sophisticated 3-D finite element 

analysis. Accordingly, it is not an easy task for the designer to choose the adequate 

thickness as well as to provide sufficient reinforcement for both circumferential direction 

for tension hoop, and longitudinal direction for meridional moment and concurrent 

compression. Several trials should be done to achieve an optimum design. 

This is obviously a complex procedure and most likely not applicable in the routine 

practice applications. As such, simple approaches can be usefully employed for a 

preliminary‎design‎phase‎and‎for‎cost‎estimation.‎To‎the‎best‎of‎the‎author’s‎knowledge,‎

no previous studies have been conducted to provide a simple approach for analysing and 

designing reinforced concrete conical tanks. The only available studies focused on steel 

conical vessels.  

In a previous study that was conducted by El Damatty et al. (1999), a simple design 

approach for hydrostatically loaded conical steel vessels was developed based on a linear 

regression analysis of the buckling strength values determined numerically using finite 

element analysis. The suggested procedure is limited to pure steel conical tanks having 

wall-inclination angle of 45° and yield strength of 300 MPa. Later on, Sweedan and El 
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Damatty (2009) extended this simplified procedure to include combined conical steel 

tanks taking into account variation of both the angle of inclination of the conical part of 

the vessel as well as the yield strength of steel. Another simplified procedure was 

developed by El Damatty and Marroquin (2001) to design stiffened liquid-filled steel 

conical tanks. This procedure depends on the combination of the orthotropic theory and 

design formulae for unstiffened conical tanks. 

Based on the above, and according to the main conclusions achieved in the previous 

chapter, the current study is motivated to provide practitioners with a simplified design 

approach based on a set of design charts for practical applications. The present study is 

confined to linear elastic analysis of reinforced concrete pure conical tanks having a 

constant wall thickness and subjected to an axisymmetric hydrostatic pressure. The 

proposed design charts take into account the fundamental requirements of the Portland 

Cement Association PCA-CCTWP (1993) and the American Concrete Institute ACI350-

06 (2006). These charts are developed to assist the designer in determining the required 

minimum wall thickness, and the associated maximum internal forces acting on the 

tank’s‎ walls.‎ In‎ order‎ to‎ achieve‎ the‎main‎ goal‎ of‎ the‎ research,‎ this chapter starts by 

reviewing the available code provisions for reinforced concrete liquid storage tanks. This 

is followed by describing the finite element model. The methodology of developing the 

proposed design charts is then presented. Finally, a number of numerical case studies that 

are used to validate the accuracy of the developed charts are presented. 
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4.2 Finite Element Analysis 

The conical tanks considered in the current study are simulated numerically in a three-

dimensional continuum approach. The numerical model is based on a degenerated 

consistent shell element that was developed by Koziey and Mirza (1997) and was 

extended by El Damatty et al. (1997) to account for the geometric nonlinear effects. This 

element was successfully used in several previous studies and was validated versus many 

experimental and numerical results (e.g., El Damatty et al. 1997, 1998; Hafeez et al. 

2010, 2011). 

The formulation of this element, which has 13 nodes, as shown in Figure 4-1, includes 

three displacement degrees of freedom;      and   along the global      and   

coordinates, respectively, and four rotational degrees of freedom        and   acting at 

the corner and mid-side nodes. Both   and   are about a local axis   , and   and   are 

about local axis  x′, where the local axes  ′ and x′ are located in a plane tangent to the 

surface. Rotations   and   are constant through the depth of the element, while rotations 

  and   vary quadratically. Thus,   and   provide a linear variation of displacements 

     and   along the thickness representing bending deformations, while   and   lead to 

a cubic variation of displacements      and  , simulating transverse shear deformations. 

These special rotational degrees of freedom are important when modeling thick plates or 

shells, where the shear deformation is significant. 

 

 



68 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1 Modelling and Assumptions 

Due to the double symmetry in geometry, loading, and boundary conditions, only one 

quarter of the vessel is modeled in the analysis, following the same procedure used in 

chapter 3. A number of analyses with different mesh sizes are performed for one of the 

studied tanks under the same hydrostatic loading. The maximum radial displacement in 

the tank walls are obtained for various mesh sizes until the mesh size that yields to 

accurate results has been reached. From the analyses, it is shown that a finite element 

mesh consisting of 256 triangular elements can predict the behaviour with good accuracy.  

The vertical projection of a typical finite element mesh for one quarter of the concrete 

vessel used for all studied tanks is shown in Figure 4-2. It can be noticed from this figure 
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Figure 4-1 Consistent Shell Element Coordinate 
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that the mesh consists of 8 and 16 rectangular divisions in both the circumferential and 

longitudinal directions, respectively. A finer mesh is applied at the bottom region of the 

vessel where stress concentration is anticipated near the tank base. In this numerical 

model, the walls of the vessels are assumed to be simply supported at the base and free at 

the top. This assumption is valid since the hydrostatic pressure is negligible at the top and 

the radial displacement at the top is so small (El Damatty et al. 1997). The wall thickness 

is considered to be constant along the height and is designed according to the general 

requirements of PCA-CCTWP (1993) and ACI 350-06 (2006) that prevent forming of 

pure tension cracks and limit flexural crack width. All tanks are analyzed under the effect 

of hydrostatic loading assuming that the liquid is filling the whole vessel. Table 4-1 

shows the dimensions and material properties of the selected tanks that are chosen to 

cover a wide practical range of reinforced concrete conical tanks.  

 

 

 

 

 

 

 

 

Figure 4-2 Finite Element Mesh of a Quarter Cone 
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Table ‎4-1 Tank Properties 

 

 

 

4.3 Methodology for Developing Simplified Design Charts 

In order to achieve the main objective of this study (i.e., a set of simplified design charts), 

144 tanks with different geometries and capacities covering a wide range of tanks in 

practice and designed following PCA-CCTWP provisions are analyzed using the finite 

element model described in the previous section.  

For the first analysis and design, the wall thickness is assumed to be less than that was 

obtained by using PCA-CCTWP. This thickness is then utilized in FEA model and the 

internal forces obtained for each tank are then implemented in the design equations 

provided by PCA-CCTWP. The designed wall thickness and the required reinforcement 

Property                                                         Assumption 

Tank height (H) 4 – 12 m, (1 m increment) 

Base radius (Rb) 3 - 6 m, (1 m increment) 

Inclination angle (v) 15- 60, (15 increment) 

Minimum wall thickness (tmin) 200 mm 

Concrete compressive strength (  
 
) 30 MPa 

Concrete tensile strength (   ) 3 MPa 

Steel yield strength (fy) 400 MPa 

Concrete modulus of elasticity (Ec) 24647 MPa 

Steel modulus of elasticity (Es) 200000 MPa 

Poisson ratio ()   0.3 

Modular ratio (n) 8.1 

Liquid specific weight (  ) 10000 N/m
3 

Vertical reinforcement ratio  1% of concrete gross area 
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in both the circumferential and longitudinal directions are achieved by repeating this 

procedure.  

Following the above approach, all chosen tanks are designed to satisfy both serviceability 

and ultimate strength requirements. A minimum thickness for each tank is predicted to 

satisfy both requirements and to achieve minimum weight of the vessel. It should be 

mentioned that ACI350-06 and PCA-CCTWP provide a minimum thickness of 300 mm 

for walls equal to or higher than 3 m to satisfy the constructability aspects. However, 

other standards (e.g. BS2007 and EN 1992-3), do not provide a specific minimum wall 

thickness and it is left for the designer and constructability requirements. In the current 

study,‎ a‎ theoretical‎ minimum‎ thickness‎ of‎ 200‎ mm‎ for‎ the‎ tanks’‎ walls‎ is‎ assumed‎

following the provisions of standards that do not provide restrictions on the minimum 

wall thickness. This assumption is considered such that the simplified design charts 

provide the designer with an optimum thickness that satisfies serviceability and strength 

requirements only without taking into account the constructability aspects. The minimum 

thickness that will be predicted from these design charts could be increased to satisfy 

constructability requirements according to the designer judgment which might differ 

based on the techniques used in construction.   

The following steps summarize the methodology for developing the proposed design 

charts. 

4.3.1 Step 1: Design for the Minimum Wall Thickness  

The main conclusion drawn from chapter 3 is that the PCA-CCTWP provisions combined 

with‎ the‎ equivalent‎ cylinder‎ approach‎ leads‎ to‎ an‎ overdesigned‎ thickness‎ of‎ the‎ tanks’‎
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walls. The reason behind this inaccurate design is that the hoop tension predicted by the 

PCA-CCTWP approach is much higher than that obtained from the finite element 

analysis. This discrepancy is related to the approximation in the equivalent cylinder 

approach used to transfer the conical tank to an equivalent cylinder. As such, the 

designed wall thickness following PCA-CCTWP provisions combined with the 

equivalent cylinder approach can be reduced without affecting the serviceability 

requirements.  

In‎order‎to‎reach‎the‎reduced‎thickness‎(i.e.,‎optimum‎thickness),‎the‎wall’s‎thickness‎is‎

first assumed to be less than that obtained in the first step by PCA-CCTWP. The reduced 

thickness is then utilized in the FEA model to predict the internal forces. The tensile 

capacity of the wall section is checked by Equation 4.1 to satisfy the cracking criteria. 

This step is repeated many times for each tank until the applied tensile stresses equals to 

the concrete tensile strength (i.e.,      
 
). 

   
       

      
      (     

                                                                                      (4.1) 

Where    is the applied tensile strength,   
 
 is concrete compressive strength,   is the 

shrinkage coefficient (i.e.,          ,    is the modulus of elasticity of horizontal 

reinforced steel,    is area of concrete for 1000 mm height section (i.e.,          

   ,   is the wall thickness,   is the modular ratio (i.e.,   
  

  
), and    is the concrete 

modulus of elasticity.    is the area of horizontal reinforcement per 1000 mm height 

section, and can be estimate from Equation 4.2,   is the non factored ring hoop force per 

1000 mm length resulting from the hydrostatic pressure,  
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                                                                                                                    (4.2) 

Where    is the maximum factored hoop tension             , where   is the 

service hoop tension,     is the steel yielding strength, and Sd is the environmental 

durability factor that can be calculated from Equation 4.3. 

   
   

    
                                                                                                                            (4.3) 

 Where   is the strength reduction factor, (       for both hoop tension and flexural 

members),    is the steel yield strength,            is the allowable stress in normal 

environment, and   
              

                
    , in case of hydrostatic pressure and dead 

loads. 

 

In order to assess the applicability of the proposed methodology, the tanks that were 

designed in chapter 3 following PCA-CCTWP approach are analyzed using the finite 

element model. This is followed by redesigning these tanks by implementing the internal 

forces obtained from the finite element analysis in PCA-CCTWP equations to predict the 

wall thickness. It is noticed that the designed thicknesses, which comply with the 

requirements of ACI350-06, are decreased significantly. Table 4-2 shows a comparison 

between the walls` thicknesses designed by the FEA and those by the PCA-CCTWP as 

previously presented in chapter 3. It is observed from this comparison that the optimum 

design can lead to a reduction in the wall thicknesses ranging from 43% to 57% which 

leads to a reduction in the cost of the construction material. 
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Table ‎4-2 Designed Thickness (PCA-CCTWP and FEA) 

 

 

 

 

 

 

 

 

 

(*): Thickness is designed based on the analysis of  PCA-CCTWP combined with the equivalent 

cylinder approach, which is presented in chapter 3. 

 

 

After proving the feasibility of this methodology, the analysis is extended by conducting 

a parametric study on the 144 chosen tanks. Table 4-3 summarizes the proposed 

minimum thickness for each tank which will be checked in the next steps for ultimate 

strength and serviceability requirements. 

 

 

 

 

 

v Rb (m) H (m) 
tmin (mm) 

PCA-CCTWP
(*)

 FEA 

45 3 7 350 200 

45 3 8 425 200 

45 4 7 380 204 

45 4 8 480 240 

45 5 7 480 238 

45 5 8 550 281 

60 3 5 470 200 

60 3 6 630 241 

60 4 5 520 250 

60 4 6 660 285 

60 5 5 600 257 

60 5 6 700 327 
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Table ‎4-3 Required Minimum Thickness 

 

H (m) 4 5 6 7 8 9 10 11 12 

v Rb tmin (mm) 

15° 3 200 200 200 200 200 200 200 200 200 

4 200 200 200 200 200 200 200 202 222 

5 200 200 200 200 200 200 218 243 266 

6 200 200 200 200 200 223 251 280 310 

30° 3 200 200 200 200 200 200 200 200 221 

4 200 200 200 200 200 200 224 251 278 

5 200 200 200 200 205 235 266 298 331 

6 200 200 200 201 235 270 306 343 380 

45° 3 200 200 200 200 200 227 263 304 349 

4 200 200 200 204 240 279 320 362 407 

5 200 200 200 238 281 326 373 421 472 

6 200 200 224 271 320 370 422 477 534 

60° 3 200 200 241 302 373 450 535 630 731 

4 200 240 285 355 430 510 599 697 803 

5 200 256 327 402 485 572 666 768 876 

6 216 286 363 446 534 629 730 837 950 

 

4.3.2 Step 2: Design for the Ultimate Strength and Serviceability 

Based on the previous step, the minimum required thickness is obtained for each tank. 

Design steps proceed by checking to a 1 m wall section having the minimum required 

designed thickness for ultimate strength and serviceability requirements. Two different 

types of wall section should be designed along the meridional direction. The first section 

is subjected to bending and high axial where an interaction diagram is developed for this 

section and is checked for strength requirements. The other type is a section governed by 

flexural moments where sectional analysis is performed. The minimum vertical 
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reinforcement is assumed to be (1% Ag) and is layered into two layers (0.5 % for each 

face). 

The previous mentioned steps are repeated for all selected tanks, leading to a 

comprehensive data that are employed to develop the required design charts. These charts 

provide a simple approach to adequately estimate the minimum required thickness and 

the‎ associated‎ state‎ of‎ stresses‎ that‎ varies‎ according‎ to‎ the‎ tank’s‎ geometry (i.e., tank 

height H, base radius Rb, and angle of inclination v). It should be mentioned that the 

proposed design charts are limited to the chosen range for each geometric parameter. 

4.4 Simplified Design Charts 

Based on the obtained data, two sets of charts are developed. The first one provides the 

minimum required thickness associated with specific tank geometry. The charts are 

arranged for each inclination angle and depend on both the tank height and its base 

radius. The second set enables the designer to predict the maximum internal forces 

developed‎ in‎ the‎ tank’s‎wall.‎The‎maximum‎ internal‎ forces‎ are‎ illustrated‎ according‎ to‎

the inclination angle. For each angle, the internal forces are evaluated according to the 

tank base radius and the ratio of tank height to wall thickness as will be explained in the 

next sub-sections. 

4.4.1 Minimum wall thickness determination 

Using the charts provided in Figures 4-3, 4-4, 4-5, and 4-6, the minimum required wall 

thickness is determined for each specific tank. These charts are categorized according to 

inclination angles of (v = 15°, 30°, 45°, and 60°). For each specific angle of inclination, 

the design chart gives different values of the required thickness according to the tank 
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height as well as the base radius. As an example, the required thickness for a conical tank 

that have ( v = 30°, H = 9 m, and Rb = 6 m ) is 270 mm. it is important to note that this 

study limits the minimum thickness to 200 mm. By observing the design charts for wall 

thicknesses, it is noticed that the design charts are almost linear. This is expected since 

this study deals with a non-cracked section and performs a linear analysis. The minimum 

thickness of 200 mm satisfies the design requirements for most of the tanks having 

inclination angle of 15° and height less than 9 m. it also is the designed thickness for 

angles of 30 and 45, and a height less than 6 m. It is noticed that increasing the 

inclination angle from 15° to 60° increased the required wall thickness about 10% to 

320% depending on tank dimensions. The design charts also show that as the wall height 

is increased from 3 m to 12 m, the ratio of increasing wall thickness ranges from 3% to 

57%.  
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Figure 4-4 Minimum Required Thickness (v=30°) 
 

Figure 4-3 Minimum Required Thickness (v=15°) 
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Figure 4-6 Minimum Required Thickness (v=60°) 
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4.4.2 Determination of internal forces 

This sub-section presents the design charts developed in this study to determine the 

maximum internal forces acting on the walls of reinforced concrete conical tanks under 

hydrostatic pressure, as shown in Figures 4-7, 4-8, 4-9, and 4-10. Each figure presents the 

maximum internal forces for each angle of inclination (i.e., v= 15°, 30°, 45°, and 60°). 

The maximum values of hoop tension, meridional moment and meridional compression 

can be obtained from these charts depending on the tank dimensions as well as the 

designed thickness, which is obtained from Figures 4-3, 4-4, 4-5, and 4-6. In order to 

relate the tank dimensions to its thickness, a factor Gf is presented in the design charts. 

This factor Gf depends on the wall thickness, tank height and inclination angle, and can 

be calculated from Equation (4.4).  

(Gf) = 
  

      (       
 
                                                                                        (4.4) 

Where, H is the total height of the conical tank,    is the angle of inclination of the 

meridian with the vertical, Rb is the base radius of the conical tank, tmin is the wall 

minimum thickness that was determined in sub-section 4.5.1. 

 

It is noticed that the factor (Gf) and the associated maximum forces display two different 

trends: linear and non-linear trend. The linear trend is due to that the tanks are designed 

for the limited thickness (i.e., 200 mm). On the other hand, for nonlinear trend, the 

designed thickness is variable depending on the tank dimensions. 
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Figure 4-7Design Charts for Maximum Internal Forces (v=15°) 

 

Figure 4-7 Design Charts for Maximum Internal Forces (v=15°) 
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Figure 4-8 Design Charts for Maximum Internal Forces (v=30°) 
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Figure 4-9 Design Charts for Maximum Internal Forces (v=45°) 
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Figure 4-10 Design Charts for Maximum Internal Forces (v=60°)  
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4.5 Case Studies 

A number of case studies are used to assess the accuracy of the proposed simplified 

design approach. These case studies include nine conical tanks having geometric 

parameters different from those used in developing the design charts. The dimensions of 

these tanks are presented in Table 4-4.  

Table ‎4-4 Dimensions of Case Studies Tanks 

 

These tanks are analyzed and designed utilizing the simplified charts. A linear 

interpolation is done to predict the optimum wall thickness and the associated internal 

forces in each tank. In order to assess the accuracy of the proposed charts, all nine tanks 

are analyzed using the finite element model which provides the accurate behaviour of 

conical shaped tanks. The comparison between the two methods is shown in Table 4-5. 

This table gives the designed thicknesses associated with finite element analysis as well 

as those that are determined by the design charts. The discrepancy between the internal 

forces (hoop, moment and compression) is also presented. By comparing the internal 

forces obtained from both the simplified charts and finite element analysis, it is notices 

that there is a very good agreement with a maximum of 7% difference. 

 

Case Study 1 2 3 4 5 6 7 8 9 

v 30 30 30 45 45 45 60 60 60 

Rb (m) 3.75 4.75 6 3.25 5.25 5.75 4.5 3.6 3.4 

H (m) 10.25 9.5 8.5 11.55 7.85 6.35 4.5 7.85 11.85 
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Table ‎4-5 Comparison between FEA and Design Charts 

Case 

Study
(*)

 

tmin(mm) 

Gf
(*)

 

Max. Hoop Tension 

(kN/m) 

Max. Meridional Moment 

(kN.m/m) 

Max. Meridional 

Compression (kN/m) 

FEA Charts 
Diff. 

(%) 
FEA Charts 

Diff. 

(%) 
FEA Charts 

Diff. 

(%) 
FEA Charts 

Diff. 

(%) 

1 219 223 -1.8 629 508.3 520 -2.3 12.1 12 0.8 551.7 580 -5.1 

2 241 241 0 499 559.8 566 -1.1 14.20 14.65 -3.2 428.0 428.1 0 

3 253 252 0.4 382 587.4 585 0.4 16.2 16 1.2 312.3 312.5 -0.1 

4 341 343 -0.6 777 791.8 775 2.1 32.8 31.6 3.7 2013 1896 5.8 

5 284 284 0 434 660.0 659.5 0.1 20.1 20.6 -2.5 646.9 647.5 -0.1 

6 234 233 0.4 346 542.6 555 -2.3 14.2 14.45 -1.8 389.0 403.75 -3.8 

7 211 224 -6.2 361 488.9 476 2.6 11.4 11.5 -0.9 559.1 540 3.4 

8 394 396 -0.5 622 916.4 916.4 0 41.1 44 -7.1 2320.6 2274 2 

9 741 744 -0.4 755 1722.2 1638 4.9 163.9 152.24 7.1 6646.1 6130 7.8 

(*) for tanks dimensions of each case study, refer to Table 4-2. 

(*) Gf= 
  

      (        
, 
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4.5.1 Numerical Example 

For more illustration, the general procedure used to design tank No. 5 is presented as an 

example in the following steps. These steps are considered as a typical procedure that can 

be repeated to analyze and design any conical tank with geometry lying within the range 

specified in this study.  

- Tank dimensions (v = 30°, H = 6 m, Rb = 8.5 m) 

- In order to determine the minimum required thickness, Figure 4-4 is used for v = 

30°, and height H = 6 m. Wall thicknesses for base radiuses Rb = 8 m, and Rb = 9 

m are determined. A linear interpolation is then used to determine the required 

thickness of Rb = 8.5 m. (tmin = 252 mm). 

- Calculate the factor Gf =  
  

      (       
 
 = 

    

    (        
       = 382 m. 

- Figure 4-8 is used for v = 30°, where the internal forces corresponding to factors 

Gf = 300 m and Gf = 400 m are obtained. A linear interpolation is applied to 

determine the maximum internal forces for Gf = 382 m (Hoop = 520 kN/m, 

Moment = 12 kN.m/m, Compression = 580 kN/m). 

4.6 Conclusions 

The current study presents a simplified procedure to analyze and design reinforced 

concrete conical tanks under the effect of hydrostatic pressure. This procedure depends 

on different design charts that are categorised according to the tank dimensions. The 

required wall thickness and the associated maximum internal forces (hoop, moment and 
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compression) can be determined by using the proposed charts. In order to develop these 

design charts, a wide range of conical tanks having various dimensions is analyzed and 

designed by using a linear finite element analysis method. The design is repeated for each 

tank until the minimum required thickness is achieved. The serviceability and strength 

requirements of both ACI350-06 and PCA-CCTWP are satisfied in the design. The 

accuracy of the developed charts is validated by a number of numerical case studies. The 

following main conclusion can be drawn from the current study. 

 The design charts provided in this study enable the designers to determine the 

minimum required thickness‎for‎tanks’‎walls.‎This‎thickness‎satisfies‎serviceability‎

and strength requirements, leading to a reduction in the vessel own weight as well 

as the construction cost.  

 It is noticed that all tanks having walls inclined with an angle 15° to the vertical 

axis are governed by a minimum thickness of 200 mm. Also, this thickness (i.e., 

200 mm) satisfies the design requirements of all conical tanks with height ranges 

from 4 m to 5 m regardless the variation in other geometric parameters. On the 

other hand, significant increase in the required thickness is noticed for tanks higher 

than 7 m height. 

 The design charts provide simple and accurate procedure to determine the 

maximum internal forces (hoop, meridional moment and meridional compression). 

The proposed charts are presented graphically according to the angle of inclination 

and the base radius. For each specific angle of inclination and base radius, the 

predicted maximum internal forces are provided according to the ratio between the 

tank height and the minimum designed thickness.  The obtained forces can be 
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successfully utilized to design the wall section for ultimate strength design 

requirements and the related reinforcements.    
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5 CHAPTER 5 

COST ANALYSIS OF CONICAL TANKS; 

COMPARISON BETWEEN REINFORCED CONCRETE AND STEEL 

 

5.1 Introduction 

The vessels used for liquid storage containers are commonly built in a conical shape, 

including pure conical tanks and conical cylindrical combined tanks. The construction of 

conical tanks is dominated by using either steel, conventional reinforced concrete or 

partially pre-stressed concrete. The decision to select the most proper construction 

material for such tanks depends on various factors: structural performance, material cost, 

life service, material availability and cost of labour works (Barry 2011).  

The main advantages of  reinforced concrete tanks over steel tanks are that they provide 

high resistance to compression stresses and have long service life (i.e., up to 50 years) 

compared to steel tanks (i.e., up to 20 years) (Cheremisinoff 1996). On the other hand, 

the main disadvantages of reinforced concrete tanks are related to the low tensile strength  

and the large thickness required to satisfy design requirements which leads to a 

significant increase in the own weight. Despite the advantage of using reinforced 

concrete as a construction material for storage tanks, steel tanks are widely used in 

Canada and USA over the last 25 years. This is due to the fact that steel storage tanks are 

leak-free structures and they also provide high tension resistance and lighter own weight 

compared to reinforced concrete counterparts. The only concern about steel as a 

construction material is that it is sensitive to geometric imperfections, buckling, and 

corrosion problems. Most of structural optimization techniques of conical tanks deal with 
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minimizing the weight of the structure by achieving the minimum thickness which 

satisfies design requirements. (Kamal, 1998; El Ansary et al. 2010, 2011). 

Choosing the most proper construction material which leads to an economical design is 

not an easy task as it involves many parameters. These parameters are: type of the 

structure, construction techniques, and life-cycle cost of construction material. The 

literature shows that very few studies are concerned about comparing the cost of 

reinforced concrete conical tanks to that of steel counterparts. 

In this regard, few researches presented trials to minimize the cost of storage tanks; 

Saxena et al. (1987) presented a cost function which includes the cost of different 

construction materials (e.g. concrete and steel) and the cost of formwork. It was 

concluded in their study that mores savings in cost can be achieved for water tanks 

having large storage capacities. Later, Copley et al. (2002) presented the design and cost 

analysis of a partially pre-stressed concrete conical tank having a storage capacity of 2 

Million Gallons. In their cost analysis, they showed that the cost of construction of a steel 

tank is more economical than a pre-stressed concrete counterpart. However, the life-cycle 

cost analysis, which was implemented in Copley`s work, showed that pre-stressed 

concrete is a better alternative in terms of long service life.  

Barakat and Altoubat (2009) introduced optimization techniques which were coupled 

with the finite element method in the analysis and design of reinforced concrete conical 

and cylindrical water tanks. They illustrated the effect of different parameters, which 

include the wall thickness at the base and at the top of the tank, the base thickness, the 

tank height, the inclination angle, and concrete compressive strength, on the optimum 

design. Barakat and Altoubat (2009) concluded that the total cost of cylindrical tanks is 
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more than that of conical water tanks having the same volume. This increase in cost has 

been estimated by 20% to 30% and by 18% to 40% when working stress design method 

and ultimate strength design method were used, respectively. 

The main objective of this chapter is to investigate the economics of reinforced concrete 

conical tanks versus steel counterparts. This study considers only conical vessels having a 

constant thickness and subjected to hydrostatic loading. The design of concrete tanks is 

conducted following the simplified approach presented in the previous chapter, which 

complies with the requirements of the ACI350-06. On the other hand, the design of steel 

tanks is obtained by using the simplified approach provided by Sweedan and El Damatty 

(2009).  

According to the American Public Works Association, it is essential to include the life-

cycle costing procedures in the project bidding (Ross, 2001). As such, this research 

includes an estimation of a 50 years life-cycle cost for both concrete and steel tanks in 

addition to the construction cost (i.e., construction material and labour works). The same 

service life of 50 years is selected for both reinforced concrete conical tanks and steel 

tanks for the purpose of comparison between the two options. 

Moreover, this study presents an average unit prices for contractors working in Canada. It 

should be noted that these unit prices are variable depending on various factors such as 

site location, material availability, energy cost and others. A total of 52 tanks are chosen 

to cover a wide range of practical tank dimensions and are categorized into three 

capacities; 500 m
3
, 1750 m

3
, and 3000 m

3
. These tanks are designed first as reinforced 

concrete tanks then as steel tanks. The cost of each tank is estimated and a comparison is 

then conducted to analyze the economics of using the two construction materials (i.e., 
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reinforced concrete and steel) for these tanks. Statistical analyses are also performed in 

order to evaluate the factors having the most significant effect on the cost of conical 

tanks. 

5.2 Design of Reinforced Concrete Conical Tanks under Hydrostatic Load 

Design of reinforced concrete conical tanks includes many parameters; angle of 

inclination‎of‎tank’s‎wall,‎tank‎height,‎base‎radius,‎and‎wall‎thickness.‎In‎order to achieve 

an adequate design, it is essential to predict the maximum internal forces that include 

hoop tension acting in the circumferential direction and the meridional moment combined 

with the axial compression force acting in the longitudinal direction. Conducting this 

analysis needs modeling experience and knowledge about design steps. An alternative 

way is to rely on simplified design procedures which satisfy code provisions. In this 

study, a reliable simplified procedure proposed in the previous chapter was utilized in the 

design of reinforced concrete tanks. This approach includes certain design charts that 

were developed by modelling a wide practical range of conical tanks having different 

dimensions. All analyzed tanks were modelled using a degenerated consistent sub-

parametric shell element developed in-house (Koziey and Mirza 1997; El Damatty et al. 

1997, 1998).  

The simplified design charts enable the designers to easily evaluate the required 

minimum thickness and the associated internal forces in both circumferential and 

longitudinal directions. Consequently, the cost of the required construction material can 

be estimated. 

The steps of the procedure involved in the design can be explained as follows: 
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1. The tank dimensions (angle of inclination v, base radius Rb, and tank height H) 

are chosen according to the required tank volume (i.e., capacity). It should be 

mentioned that specific capacity ranges are assumed in this study covering a 

practical range starting from 500 m
3
 up to 3000 m

3
.  

2.  Figures 4-5, 4-6, 4-7, or 4-8, which were presented in chapter 4, are then used to 

determine the minimum required thickness. By knowing the values of the base 

radius and the tank height, linear interpolation is applied to predict the minimum 

required thickness. 

3. A factor (Gf), which relates the tank dimensions to the internal forces that are 

developed in the tank wall due to hydrostatic pressure, is calculated using 

Equation 5.1. This factor is then used in the charts illustrated in Figures 4-9, 4-10, 

4-11 or 4-12‎to‎estimate‎the‎internal‎forces‎developed‎in‎tanks’‎walls‎due‎to‎un-

factored hydrostatic pressure. The outputs of these charts include hoop tension, 

meridional moment and meridional compression.  

  (Gf) = 
  

      (        
                                                                                            (5.1)                     

4. The required circumferential (horizontal reinforcement) (    is then calculated 

using Equation 5.2. 

   
  

      
                                                                                                        (5.2)  

Where    is the maximum factored hoop tension force magnified by the environmental 

durability factor   , (            , where   is the service hoop tension obtained 

from step 3,     is the steel yielding strength, and Sd is the environmental durability factor 

calculated from Equation 5.3. 
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                                                                                                                            (5.3) 

 In Equation 5.3,   is the strength reduction factor, (       for both hoop tension and 

flexural members),    = 400 MPa is the steel yield strength,            is the 

allowable stress in normal environment, and   
              

                
    , in case of 

hydrostatic pressure and dead loads. 

5.3 Design of Steel Conical Tanks under Hydrostatic Load 

Similar to reinforced concrete tanks, hydrostatic pressure acting on the walls of steel 

tanks leads to tension hoop stresses (h) that are acting in the circumferential direction 

and vary along the wall height. In addition, meridional compressive stresses (m) that 

reach their maximum value at the base of the wall are acting in the meridional direction. 

Those stresses are magnified due to the effect of boundary conditions as well as 

geometric imperfections. As such, a magnification factor should be provided to relate the 

theoretical membrane stresses, which can be evaluated from static equilibrium of the 

shell to the actual maximum stresses acting on the wall. Sweedan and El Damatty (2009) 

developed a simplified procedure that can evaluate this magnification factor associated 

with‎ the‎ maximum‎ stresses‎ developed‎ in‎ the‎ tank’s‎ wall.‎ Consequently,‎ the‎ wall‎

thickness can be designed to prevent steel yielding. This simplified procedure is utilized 

in the current study to design the steel conical tanks under consideration according to the 

following steps: 

1. The‎tanks’‎dimensions‎(angle‎of‎inclination‎v, base radius Rb, and tank height H) 

are chosen to be similar to the concrete tanks designed in section 5.2 to keep 
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storage capacities the same. For each tank, an initial value of the wall thickness 

(ts) is assumed taking into account that the minimum thickness is 6.4 mm 

according to AWWA-D100 (2005) code provisions. 

2. From static equilibrium, the theoretical tensile hoop stress (  
  ) and the 

theoretical meridional compression stress (  
  ) are calculated from Equations 

5.4, and 5.5, respectively. 

  
    

      

        
                                                                                                    (5.4) 

  
    

         

             
[            (

 
 ⁄   ]                                                 (5.5)  

 

3. Based on the Von Mises yield criterion, the theoretical maximum effective 

membrane stresses (l
th

)   is calculated from Equations (5.6 to 5.9) 

  
    √

 

 
[( ̅     ( ̅     ( ̅   ]                                                                 (5.6)  

in which 

 ̅     
    

  
      

  

 
                                                                                    (5.7)  

 ̅     
    

  
      

  

 
                                                                                     (5.8)  

 ̅     
  

      
  

 
                                                                                              (5.9)  
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4. The magnification factor () is then calculated from Equation 5.10. 

    (
  

 
)
 

   (
  

 
)
 

  (
  

 
)
 

(
  

 
)
 
(   

                                                 (5.10)  

Where, the regression factors (a, b, c, e, f, g, h) are given in Table B1 in Appendix 

B. It should be mentioned that a good quality of welding of steel panels is 

assumed in the current study. As such, regression factors for good conical shells are 

used in Equation 5.10. A yield stress of 300 MPa is assumed for all studied tanks.  

5. The total actual stress (l) is then calculated by multiplying the magnification 

factor () by the theoretical maximum effective membrane stresses (l
th

) as shown 

in Equation (5.11).  

        
                                                                                                         (5.11) 

6. The actual total stress is then compared to the yield strength of steel ( y = 300 

MPa ). The yield strength should be greater than the actual total stress. The 

procedure is repeated until the optimum thickness is achieved (i.e.,         ). 

5.4 Cost Estimation 

The total cost of the storage vessel of a tank is the summation of the cost of different 

parameters. This study focuses on the construction costs, which includes material, 

labours, and erection costs as well as the life-cycle cost. This section presents the details 

and methodology of analyzing the cost of each tank using two different construction 

materials (reinforced concrete and steel). 
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5.4.1 Construction Cost Estimation 

In this sub-section, the cost of construction using each material (i.e., reinforced concrete, 

and steel) is estimated to identify the most cost effective construction material for conical 

tanks. The cost of reinforced concrete, which includes labour works, is measured by 

concrete volume, the weight of steel rebar and the surface area of the formwork. For the 

cost of steel tanks, the martial unit prices are presented by unit weight. The prices 

assumed in the current study are based on average prices collected from the local 

construction industry. 

5.4.1.1 Construction Cost Estimation for Concrete Tanks 

 The cost of materials and construction is estimated according to the volume of 

concrete and the reinforcing ratio of circumferential (i.e., horizontal) and 

longitudinal (i.e., vertical) steel as well as the surface area for the formwork (EL 

Reedy, 2011). Table 5-1 shows the unit prices for concrete used in the 

construction of the tanks considered in this study. The construction cost function 

is presented as the summation of the following parameters: 

 Cost‎of‎concrete‎=‎(tank’s‎surface‎area‎×‎wall‎thickness)‎×‎cost‎of‎cubic‎meter‎of‎

concrete 

 Cost of reinforcement steel = concrete volume × 7.85    

  × ( sh + sv ) × cost of 

steel    

   
 

Where     is the ratio of circumferential steel (    
  

  
)  As is the area of 

circumferential reinforcement that is determined by using the simplified design 

charts. Referring to Equation (5.2), the area of the circumferential reinforcement can 
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be calculated which is then used to determine the ratio of circumferential steel.   The 

ratio of vertical steel sv is always taken as (sv = 1% of gross area of concrete). 

 Cost of formwork‎=‎tank’s‎surface‎area‎×‎cost‎of‎double‎face‎of‎formwork 

 

Table ‎5-1 Unit Price for Reinforced Concrete Conical Tanks 

Item Description Unit 
Price 

(CAD/Unit) 

1. Cost of Material   

 Pumped Concrete with 

admixtures and air entraining 

agents 

m
3 

255 

Reinforcement steel M16/20 ton 1324 

Impermeable plywood 

formwork double face 

m
2
 266 

2. Cost of Labour 

 Fabrication of wood and 

reinforcing steel and pouring 

concrete (per concrete volume) 

m
3
 45 

 

5.4.1.2 Construction Cost Estimation for Steel Tanks 

In this sub-section, the cost of the designed steel tanks is estimated assuming the material 

unit cost for steel to be 3000 
   

   
. The construction and erection unit cost is taken as 30% 

of the total material cost, as stated by (EL Reedy, 2011). The construction cost function is 

calculated as the summation of the cost of the following parameters: 

 Material cost = Material weight × Material unit cost  
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= (Steel unit weight; 7.850  
   

   ) × wall thickness; ts) × (Tank 

surface area) × (material unit cost; 3000  
   

   
 ) 

 Total cost (material + Construction) per volume (
   

   ) = 
(                     

      
 

5.4.2 Life-Cycle Costs 

In order to estimate the current cost of future maintenance and rehabilitation works, the 

present value analysis method is performed for all concrete and steel tanks for a service 

life of 50 years (EL Reedy, 2011). This method is widely used in construction 

applications‎ and‎ it‎ also‎ presents‎ the‎ future‎ costs‎ in‎ today’s‎ monetary‎ taking‎ in 

considerations the inflation and interest rates. It should be mentioned that for comparison 

purposes, the same period of life-cycle (i.e., 50 years) is chosen for both steel and 

concrete tanks. EL Reedy (2011) provided an expression to calculate the value of 

maintenance and repairs required, as shown in Equation (5.12).  

                             (    (                                                       (5.12) 

Where; m is the discount rate (m = 4%), and n is the number of years of each 

maintenance period. 

Based on the data collected from the local market, the maintenance cost of concrete tanks 

is assumed in the current study to be 89 
   

   every 5 years while in case of steel, it is 

recommended to cost 40 
   

   at a period of 3 years. It is worth to mention that the 

operating cost is not taken as part of this study. 
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5.5 Results and Discussion 

This study includes 52 conical tanks having wide range of dimensions with different 

capacities; 500 m
3
, 1750 m

3
, and 3000 m

3
. The dimensions of these tanks are presented in 

Table 5-2. The considered tanks are first designed as reinforced concrete and then as steel 

tanks according to the simplified design procedures mentioned in the previous sections. 

The cost analysis is then conducted for all designed tanks as presented in Table 5-2. This 

table shows the design outputs and the total cost described as price per unit volume (i.e., 

CAD per m
3
) for each tank.  

The comparison between the cost of reinforced concrete conical tanks and steel tanks is 

displayed in Figures 5-1, 5-2, and 5-3 for tanks with volumes of 500 m
3
, 1750 m

3
,        

3000 m
3
, respectively. Also, each figure categorizes the tank cost according to the base 

radiuses, where Rb is varying from 3 m to 6 m with an increment of 0.5 m.  Table 5-2 and 

Figure 5-1 show that steel tanks are more cost-effective than reinforced concrete for 

small capacity tanks, i.e., 500 m
3 

tanks. The average total cost of reinforced concrete 

conical tanks are estimated to be 338 
   

  , which is approximately 1.7 times the cost of 

steel counterparts.  

For conical tanks having a volume of 1750 m
3
, it is concluded that steel tanks are more 

economical than reinforced concrete tanks. Figure 5-2 shows that the total cost of steel 

tanks is less than that of reinforced concrete tanks having the same dimensions. In 

general, steel tanks show less cost compared to reinforced concrete counterparts with a 

percentage of reduction varying between 4% and 39%. It can be noticed from the figure 

that in only two cases the cost of steel tanks is found to be greater than that of reinforced 

concrete tanks. The reported percentage of increase for these two cases are 9 % and 2 % 
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for tanks having walls inclined to the vertical with an angle of  60° and having base 

radiuses of 3 m, and 3.5 m, respectively.  

Based on the cost analysis of large capacity (3000 m
3
)
 
tanks as presented in Figure 5-3, it 

can be noticed that in some cases concrete as a construction material is a more 

economical choice. Figure 5-3 shows that the cost of concrete tanks is less than steel for 

the case of wide conical tanks having walls inclined to the vertical with an angle greater 

than 45° and a base radius less than 4 m. Otherwise, steel provides a more economical 

choice for all conical tanks having 30° inclination angle and tanks with 45° walls and 

having a base radiuses of (4 m to 6 m). Based on the results reported for large capacity 

tanks, no clear trend can be reached in order to decide which construction material is the 

most cost effective one. 

The results obtained from the cost analysis are evaluated statistically by using one way 

analysis of variance ANOVA for a single factor (Stamatis 2002). This analysis is 

conducted to assess the significance in the change of the cost from one case to another. 

Two different case studies are performed using ANOVA. The first case is conducted for 

reinforced concrete tanks and steel counterparts in order to study the variance in the cost 

function with the change of material type. In the second case of this study, ANOVA is 

employed to evaluate the effect of tank dimensions on its cost for each type of the studied 

tanks.  
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Table ‎5-2 Design and Cost of Conical Tanks 

(Capacity = 500 m
3
) 

Tank # 
Rb 

(m) 
v H (m) 

Section Design Cost (CAD/m
3
) 

Concrete Steel Concrete Steel 

tc 

(mm) 
sh 

(%)
ts (mm) Construction Life-Cycle Sum Construction Life-Cycle Sum 

1 3 15 8.85 200 1.01 6.4 177 214 391 94 134 228 

2 3 30 6.43 200 0.88 6.4 165 201 366 89 126 215 

3 3 45 4.96 200 0.9 6.4 177 215 392 95 134 229 

4 3.5 15 7.65 200 0.98 6.4 165 200 365 88 125 213 

5 3.5 30 5.77 200 0.87 6.4 158 192 350 85 120 205 

6 3.5 45 4.55 200 0.91 6.4 171 207 378 91 129 220 

7 4 15 6.6 200 0.92 6.4 153 186 339 82 116 198 

8 4 30 5.16 200 0.86 6.4 150 182 332 80 114 194 

9 4 45 4.15 200 0.91 6.4 164 199 363 88 124 212 

10 4.5 15 5.7 200 0.88 6.4 142 173 315 76 108 184 

11 4.5 30 4.61 200 0.84 6.4 142 173 315 76 108 184 

12 5 15 4.94 200 0.86 6.4 133 161 294 71 101 172 

13 5.5 15 4.3 200 0.82 6.4 124 151 275 67 94 161 

14 6 15 3.76 200 0.79 6.4 115 141 256 62 88 150 
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Table 5-2 (Continued) 

(Capacity = 1750 m
3
) 

Tank # 
Rb 

(m) 
v H (m) 

Section Design Cost (CAD/m
3
) 

Concrete Steel Concrete Steel 

tc 

(mm) 
sh 

(%)
ts (mm) Construction Life-Cycle Sum Construction Life-Cycle Sum 

15 3 45 8.93 226 1.66 16 134 150 284 166 94 260 

16 3 60 6.52 273 1.67 22 172 180 352 273 112 385 

17 3.5 30 11.3 233 1.76 11.5 128 141 269 112 88 200 

18 3.5 45 8.47 236 1.75 14.5 134 147 281 148 92 240 

19 3.5 60 6.25 280 1.75 20 172 177 349 245 111 356 

20 4 30 10.56 240 1.66 11 125 137 262 104 85 189 

21 4 45 8.02 241 1.69 13 132 144 276 130 90 220 

22 4 60 5.98 285 1.66 18.5 170 175 345 223 109 332 

23 4.5 30 9.85 241 1.71 10 122 133 255 92 83 175 

24 4.5 45 7.58 244 1.52 12 129 141 270 117 88 205 

25 4.5 60 5.72 230 3.5 17 172 172 344 202 107 309 

26 5 30 9.17 241 1.66 9 118 129 247 80 80 160 

27 5 45 7.16 245 1.67 11.5 127 138 265 110 86 196 

28 5 60 5.46 230 3.39 16 168 169 337 187 106 293 

29 5.5 15 11.2 267 1.61 8.5 122 129 251 76 81 157 

30 5.5 30 8.52 258 1.42 8.5 115 125 240 73 78 151 

31 5.5 45 6.75 244 1.7 10.5 124 135 259 98 84 182 

32 5.5 60 5.21 287 2.14 15 167 166 333 172 104 276 

33 6 15 10.17 256 1.68 8 115 123 238 68 77 145 

34 6 30 7.92 233 1.66 8 109 121 230 67 75 142 

35 6 45 6.36 241 1.67 10 120 131 251 91 82 173 

36 6 60 4.96 284 2.46 14.5 166 163 329 163 102 265 
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Table 5-2 (Continued) 

(Capacity = 3000 m
3
) 

Tank # 
Rb 

(m) 
v H (m) 

Section Design Cost (CAD/m
3
) 

Concrete Steel Concrete Steel 

tc 

(mm) 
sh 

(%)
ts (mm) Construction Life-Cycle Sum Construction Life-Cycle Sum 

37 3 45 11.25 316 1.66 24.5 129 127 256 215 80 295 

38 3 60 8.13 384 1.66 34 167 152 319 356 95 451 

39 3.5 45 10.8 325 1.68 22 129 126 255 191 79 270 

40 3.5 60 7.86 391 1.68 30.5 167 150 317 317 94 411 

41 4 45 10.31 333 1.57 20 127 124 251 171 77 248 

42 4 60 7.58 399 1.66 27.5 166 149 315 282 93 375 

43 4.5 45 9.85 340 1.7 18 127 122 249 152 76 228 

44 4.5 60 7.31 354 2.66 25.5 168 147 315 259 92 351 

45 5 45 9.41 346 1.66 17 126 120 246 141 75 216 

46 5 60 7.04 406 1.68 24 164 145 309 241 91 332 

47 5.5 30 11.62 343 1.68 13 116 110 226 99 69 168 

48 5.5 45 8.97 347 1.69 16 124 118 242 130 73 203 

49 5.5 60 6.78 407 2.09 22.5 168 143 311 223 89 312 

50 6 30 10.95 342 1.67 12 112 107 219 89 67 156 

52 6 45 8.55 348 1.67 15 122 115 237 120 72 192 
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Figure 5-2 Cost analysis for tanks capacity 1750 m
3

 
Figure 5-2 Cost Analysis for Tanks Capacity 1750 m
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Figure 5-1 Cost Analysis for Tanks Capacity 500 m
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As a result of the analysis of variance of the first case study, small capacity tanks show 

significant differences in cost due the difference in construction material (i.e., concrete 

and steel). It is noticed that for 500 m
3
 and 1750 m

3
 capacities, where (p  0.05) as 

presented in Table 5-3, the cost of steel conical tanks is significantly less than concrete 

counterparts. On the other hand, for large tanks having 3000 m
3
 capacity, there is no 

significant difference in cost. As such, it can be stated that for large capacity tanks the 

effect of the type of construction material (steel or concrete) on the cost is negligible. 
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Table ‎5-3 Effect of Material Type on Cost of Conical Tanks 

Descriptive of ANOVA 

 

Effect of tank material on the cost (a = 0.05) 

Capacity: 500 m
3
 

summary of analysis      

Groups Count Sum Average Variance 
  

Concrete 14 4731 337.92857 1794.6868 
  

Steel 14 2765 197.5 604.42308 
  

Source of Variation SS df MS F P-value  

Between Groups 138041.2857 1 138041.29 115.07708 4.81715E-11  

Within Groups 31188.42857 26 1199.5549 
 

Fcrit 
 

Total 169229.7143 27 
  

4.225201273 
 

Capacity: 1750 m
3
 

summary of analysis      

Groups Count Sum Average Variance 
  

Concrete 22 6267 284.86364 1748.0281 
  

Steel 22 5011 227.77273 5201.2316 
  

Source of Variation SS df MS F P-value  

Between Groups 35853.09091 1 35853.091 10.318535 0.00252908 
 

Within Groups 145934.4545 42 3474.6299 
 

Fcrit 
 

Total 181787.5455 43 
  

4.072653759 
 

Capacity: 3000 m
3
 

summary of analysis      

Groups Count Sum Average Variance 
  

Concrete 15 4067 271.13333 1432.2667 
  

Steel 15 4208 280.53333 8138.1238 
  

Source of Variation SS df MS F P-value 
 

Between Groups 662.7 1 662.7 0.1384896 0.712588948 
 

Within Groups 133985.4667 28 4785.1952 
 

Fcrit 
 

Total 134648.1667 29 
  

4.195971819 
 

 

 

For the second case study, ANOVA results as presented in Table 5-4 show that for 1750 

m
3
 and 3000 m

3
capacities, regardless the type of the construction material, the inclination 

angle v has a significant effect on the cost of the tanks. As such, increasing the 

inclination angle increases the cost of both concrete and steel conical tanks.  It is also 
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noticed that there is no effect of the inclination angle in case of small capacity tanks (i.e., 

500 m
3
). The reason of this negligible effect is that the minimum wall thickness governs 

the design of these small capacity tanks. Moreover, the results show that the base radius 

has a minor effect on the cost of conical tanks except in case of small capacity (500 m
3
) 

tanks.  

 

Table ‎5-4 P-values of ANOVA - effect of tank dimensions on cost based on a significance level 

(a= 0.05) 
 

Tank capacity (m
3
) 

Effect of v Effect of Rb 

Concrete Steel Concrete Steel 

500 0.288133 0.326551 0.055180847 0.04254477 

1750 1.66E-09 1.12E-06 0.971745071 0.812747932 

3000 3.23E-10 0.000494 0.999773457 0.804062029 

 

5.6 Conclusions 

The current study presents a cost analysis to compare the effectiveness of using 

reinforced concrete versus steel as a construction material for conical tanks. In order to 

conduct this comparison, 52 conical tanks having different capacities (i.e., 500 m
3
, 1750 

m
3
, 3000 m

3
) and different dimensions are designed first as reinforced concrete tanks and 

then as steel. Two simplified design approaches that were developed in previous 

investigations are utilized in designing the studied tanks. The cost analysis conducted in 

this study includes the cost of materials, formwork, labour and life-cycle. At the end of 

the study, statistical analyses using one way ANOVA are conducted to study the 

significance of type of construction material on the cost function and to investigate the 
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effect of dimension parameters on the cost for both reinforced concrete tanks and steel 

counterparts. The main conclusions of this study are listed below: 

 Compared to reinforced concrete, steel is a more cost-effective construction 

material for conical tanks with capacities of 1750 m
3
 or less. Steel tanks provide a 

reduction in the cost up to 42%, and 22% for 500 m
3
, and 1750 m

3
, respectively. 

This conclusion can be generally applied for conical tanks having different 

dimensions except those tanks with inclination angle 60° and base radiuses of 3 m 

and 3.5 m. 

 For 1750 m
3
 capacity conical tanks having dimensions of 60° inclination angle and 

base radius less than 4 m, reinforced concrete is considered to be more economical 

construction material compared to steel.  

 Cost analysis for conical tanks with 3000 m
3
 volume shows that concrete is more 

economical for tanks that have inclination angle of 60° and base radiuses of (3 m to 

3.5 m). For all other studied cases, no general conclusion is reached. 

 ANOVA technique demonstrates that the angle of wall inclination has the main 

effect on the cost of conical tanks as increasing the wall inclination increases the 

cost. Moreover, the angles of inclination 15° and 30° are found to be more 

economics than angles of 45° and 60° for tanks having the same capacities. On the 

other hand, the change in the base radius has a slight effect on the cost function. 

The effect of the base radius is only noticed in case of small capacity (500 m
3
) 

tanks, where the increase in base radius leads to a slight reduction in cost.  
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6 CHAPTER 6 

CONCLUSIONS 

 

6.1 Summary and Conclusions 

This thesis studies the behaviour of reinforced concrete conical tanks under the effect of 

hydrostatic pressure. The available design codes provide provisions on rectangular and 

cylindrical reinforced concrete tanks and there are no clear guidelines for conical shaped 

tanks. As such, there are two main objectives considered in this study. The first objective 

is to assess the adequacy of such available codes when applied to conical tanks using an 

equivalent cylindrical approach provided by AWWA-D100 (2005). This is achieved by 

comparing the internal forces in the tank walls that are predicted according to code 

provisions to those obtained from finite element analysis models. These numerical 

models are based on a sub-parametric triangular shell element.  

The second objective is to make use of the conclusions reached in assessing the adequacy 

of available code provisions in order to provide a simple and adequate design approach. 

This simplified approach is based on utilizing accurate internal forces predicted by finite 

element analysis together with code requirements for serviceability and strength design to 

develop a set of design charts. Finally, the developed design charts are validated and 

utilized to design and estimate the cost of reinforced concrete conical tanks. The cost of 

these tanks is compared to steel counterparts in order to present a comparison between 

the two different types of construction materials for conical tanks.  Based on all the above 

findings, the following conclusions are drawn. 
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 The available design codes for reinforced concrete tanks do not provide any clear 

provisions for analyzing the forces acting on the walls of conical shaped vessels. 

Therefore, there is a need for guidelines for such tanks. 

 The equivalent cylindrical approach recommended by the AWWA-D100 (2005) is 

used to transform the geometry of conical vessels to equivalent cylindrical tanks. A 

large disagreement has been found between the maximum forces resulting from the 

finite element method and those resulting from the PCA-CCTWP approach 

combined with the equivalent cylinder approach. It is noticed that this disagreement 

is directly proportional to the wall inclination angle. 

 The PCA-CCTWP leads to larger hoop tension and smaller meridional moment 

compared to internal forces obtained from finite element analysis. Therefore, the 

PCA-CCTWP leads to an inadequate design if applied to conical shaped tanks. 

 The internal forces acting on tank walls obtained from a built in-house finite 

element model together with code requirements are successfully employed to 

develop a set of simplified design charts. These design charts are developed for a 

certain practical range of conical tank dimensions, including tank height, base 

radius, and angle of inclination. The accuracy of such charts was also assessed.  

 The proposed simplified design approach can be generally used for any reinforced 

concrete conical tank within the assumed bounds of dimensions. The outputs of this 

approach include the wall minimum required thickness and the associated 

maximum internal forces.   

 The developed design charts are utilized to design a number of reinforced concrete 

conical tanks then the cost of such tanks is estimated and compared to steel tanks 
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having the same capacity. It is concluded from this comparison that steel tanks are 

considered as a more economical choice for medium and small capacity tanks, 

regardless their dimensions. On the other hand, for large capacity conical tanks 

(more than 1750 m
3
), the tank dimensions (i.e., tank height, base radius, and angle 

of inclination) govern which construction material (reinforced concrete vs. steel) is 

more cost effective.   

 A cost analysis for conical tanks having the same material and specific capacities 

has been conducted in order to study the effect of changing dimension parameters 

on the cost function. It is concluded that the cost of conical tanks is mainly affected 

by the wall inclination angles, which is directly proportional to the cost.  

6.2 Recommendations for Future Research 

This thesis studies the behaviour and design of reinforced concrete conical tanks having 

constant thickness under the effect of hydrostatic pressure. For future research, the 

following investigations are recommended: 

 Study the effects of variable thickness along the tank height on the behaviour of 

reinforced concrete conical tanks. 

 Investigate the non-linear behaviour of reinforced concrete tanks. 

 Examine the response of reinforced concrete tanks under the effect of 

hydrodynamic pressure resulting from earthquake loading. 

 Deflection of conical tanks should be investigated by using a computer program 

that considers cracking ad nonlinearity. 

 Additional experimental study of wall specimens subjected to both axial tension 

and combined meridional moment and axial compression is needed. 
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 Assess the effect of pre-stressing on the design procedure of reinforced concrete 

conical tanks 

 Investigate the applicability of using steel/concrete composite section for conical 

shaped tanks.  
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7 APPENDIX A - PCA-CCTWP (1993) COEFFICIENTS TO DETERMINE THE RING TENSION AND MOMENT 

 

Table A-1 The Hoop Coefficient CH according to PCA-CCTWP (1993) 

 

Positive sign indicates tension 

  

  
 

Coefficients at point 

0.0H 0.1H 0.2H 0.3H 0.4H 0.5H 0.6H 0.7H 0.8H 0.9H H 

0.4 0.474 0.44 0.395 0.352 0.308 0.264 0.215 0.165 0.111 0.057 0 

0.8 0.423 0.402 0.381 0.358 0.33 0.297 0.249 0.202 0.145 0.076 0 

1.2 0.35 0.355 0.361 0.362 0.358 0.343 0.309 0.256 0.186 0.098 0 

1.6 0.271 0.303 0.341 0.369 0.385 0.385 0.362 0.314 0.233 0.124 0 

2 0.205 0.26 0.321 0.373 0.411 0.434 0.419 0.369 0.28 0.151 0 

3 0.074 0.179 0.281 0.375 0.449 0.506 0.519 0.479 0.375 0.21 0 

4 0.017 0.137 0.253 0.367 0.469 0.545 0.579 0.553 0.447 0.256 0 

5 -0.008 0.114 0.235 0.356 0.469 0.562 0.617 0.606 0.503 0.294 0 

6 -0.011 0.103 0.223 0.343 0.463 0.566 0.639 0.643 0.547 0.327 0 

8 -0.015 0.096 0.208 0.324 0.443 0.564 0.661 0.697 0.621 0.386 0 

10 -0.008 0.095 0.2 0.311 0.428 0.552 0.666 0.73 0.678 0.433 0 

12 -0.002 0.097 0.197 0.302 0.417 0.541 0.664 0.75 0.72 0.477 0 

14 0 0.098 0.197 0.299 0.408 0.531 0.659 0.761 0.752 0.513 0 

16 0.002 0.1 0.198 0.299 0.403 0.521 0.65 0.764 0.776 0.536 0 

 Supplemental Coefficients 

  

  
 

Coefficients at point 

0.75H 0.8H 0.85H 0.9H 0.95H H 

20 0.812 0.817 0.756 0.603 0.344 0 

24 0.816 0.839 0.793 0.647 0.377 0 

32 0.814 0.861 0.847 0.721 0.436 0 

 

 

 

 

 

  

  
 

Coefficients at point 

0.75H 0.8H 0.85H 0.9H 0.95H H 

40 0.802 0.866 0.88 0.778 0.483 0 

48 0.791 0.864 0.9 0.82 0.527 0 

56 0.781 0.859 0.911 0.852 0.563 0 
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Table A-2 The Moment Coefficient CM according to PCA-CCTWP (1993) 

 

Positive sign indicates tension 

  

  
 

Coefficients at point 

0.0H 0.1H 0.2H 0.3H 0.4H 0.5H 0.6H 0.7H 0.8H 0.9H H 

0.4 0 0.002 0.0072 0.0151 0.023 0.0301 0.0348 0.0357 0.0312 0.0197 0 

0.8 0 0.0019 0.0064 0.0133 0.0207 0.0271 0.0319 0.0329 0.0292 0.0187 0 

1.2 0 0.0016 0.0058 0.0111 0.0177 0.0237 0.028 0.0296 0.0263 0.0171 0 

1.6 0 0.0012 0.0044 0.0091 0.0145 0.0195 0.0236 0.0255 0.0232 0.0155 0 

2 0 0.0009 0.0033 0.0073 0.0114 0.0158 0.0199 0.0219 0.0205 0.0145 0 

3 0 0.0004 0.0018 0.004 0.0063 0.0092 0.0127 0.0152 0.0153 0.0111 0 

4 0 0.0001 0.0007 0.0016 0.0033 0.0057 0.0083 0.0109 0.0118 0.0092 0 

5 0 0 0.0001 0.0006 0.0016 0.0034 0.0057 0.008 0.0094 0.0078 0 

6 0 0 0 0.0002 0.0008 0.0019 0.0039 0.0062 0.0078 0.0068 0 

8 0 0 0 -0.0002 0 0.0007 0.002 0.0038 0.0057 0.0054 0 

10 0 0 0 -0.0002 -0.0001 0.0002 0.0011 0.0025 0.0043 0.0045 0 

12 0 0 0 -0.0001 -0.0002 0 0.0005 0.0017 0.0032 0.0039 0 

14 0 0 0 -0.0001 -0.0001 -0.0001 0 0.0012 0.0026 0.0033 0 

16 0 0 0 0 -0.0001 0.0002 -0.0004 0.0008 0.0022 0.0029 0 

 

 

 

 

 
 

 

Supplemental Coefficients 

  

  
 

Coefficients at point 

0.75H 0.8H 0.85H 0.9H 0.95H H 

20 0.0008 0.0014 0.002 0.0024 0.002 0 

24 0.0005 0.001 0.0015 0.002 0.0017 0 

32 0 0.0005 0.0009 0.0014 0.0013 0 

 

 

 

 

  

  
 

Coefficients at point 

0.75H 0.8H 0.85H 0.9H 0.95H H 

40 0 0.0003 0.0006 0.0011 0.0011 0 

48 0 0.0001 0.0004 0.0008 0.001 0 

56 0 0 0.0003 0.0007 0.0008 0 
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APPENDIX B - Shape Function of Consistent Shell Element (Koziey and Mirza, 1997) 
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Where        and    designate the area coordinates of the triangular parent element. 
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Matrix [  ̅] 

[  ̅]  [ ̅    ̅  ] 

Where  ̅   and  ̅   are directed along the  ́ and  ́ axes, respectively. 

Shape function (            

   
    

 
  

   
    

 
 (      

Where    is the shell thickness at the  th- node. 

 

The Jacobian matrix 

   {
 
 
 
} 

Where vectors   and   are tangent to the surface defined by   = constant. A vector    

normal to this surface is found as: 

       

The remaining vectors    and    of the orthogonal basis are given by 

                  

Normalizing   ,   , and    gives the set of unit vectors  ̅ ,  ̅ and  ̅  from which the 

transformation matrix of direction cosines is constructed as 

   {
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8 APPENDIX C – MAGNIFICATION FUNCTION 

 

Table C-1 Regression Coefficients (Sweedan, and El Damatty 2009) 

Level of 

imperfection 

Cap ratio 

(CPr) (%) 

Mean value of regression coefficient 

a b c d e f g h 

(a) y = 250 MPa 

        

Good shells 0 1.3737 -0.1281 0.5199 -1.4468 4.0353 0.1853 -1.2604 3.7744 

15 1.3994 -0.1309 0.4971 -1.6456 3.7186 0.2103 -1.2479 3.7425 

30 1.3874 -0.1324 0.4253 -1.5879 3.5000 0.2015 -1.2512 3.7463 

45 1.3640 -0.1320 0.3491 -1.5680 3.0878 0.1693 -1.2408 3.7476 

          

Poor shells 0 1.5316 -0.2280 1.0213 -1.4156 6.0260 0.0034 -0.9545 3.5209 

15 1.5523 -0.2190 1.0006 -1.5432 5.6011 0.0170 -0.9422 3.5007 

30 1.5099 -0.2157 0.8712 -1.4236 5.1581 -0.0106 -0.9251 3.4775 

45 1.4571 -0.2106 0.7349 -1.3386 4.5153 -0.0574 -0.9098 3.5046 

          

(b) y = 300 MPa         

Good shells 0 1.4003 -0.1252 0.5235 -1.6221 4.9353 0.2325 -1.4210 3.9860 

15 1.4242 -0.1293 0.5032 -1.8295 4.6128 0.2589 -1.4204 3.9936 

30 1.4116 -0.1310 0.4261 -1.8200 4.2536 0.2455 -1.4093 3.9455 

45 1.3870 -0.1326 0.3393 -1.7355 3.7588 0.2226 -1.4093 3.9975 

          

Poor shells 0 1.5477 -0.2222 1.0432 -1.4616 6.7132 0.0326 -1.0314 3.6333 

15 1.5587 -0.2158 1.0099 -1.5437 6.1035 0.0411 -1.0036 3.5881 

30 1.5345 -0.2128 0.8895 -1.5246 5.6955 0.0156 -0.9980 3.5889 

45 1.4848 -0.2090 0.7246 -1.4561 5.0363 -0.0219 -0.9953 3.5862 

          

(c) y = 350 MPa         

Good shells 0 1.4269 -0.1235 0.5281 -1.7940 6.0760 0.2728 -1.5913 4.2570 

15 1.4433 -0.1277 0.4982 -2.0318 5.4473 0.2909 -1.5554 4.1278 

30 1.4376 -0.1310 0.4248 -2.0455 5.2392 0.2886 -1.5878 4.2346 

45 1.4082 -0.1330 0.3300 -1.9606 4.4655 0.2629 -1.5615 4.2108 

          

Poor shells 0 1.5711 -0.2172 1.0703 -1.5442 7.4099 0.0501 -1.1022 3.7549 

15 1.5900 -0.2123 1.0192 -1.6724 6.8602 0.0634 -1.0910 3.7013 

30 1.5634 -0.2100 0.8773 -1.6121 6.4559 0.0479 -1.0974 3.7121 

45 1.5147 -0.2090 0.7166 -1.5322 5.7202 0.0157 -1.0982 3.7612 
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