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ABSTRACT

The quality of images produced by imaging devices of all types can be analyzed
and quantified by a variety of metrics. Resolution is an important metric for all
imaging devices because if the resolution characteristics do not meet the minimum
requirements of an application, the resultant image may be unsuitable and possibly
misleading. One resolution metric, called the Modulation Transfer Function
(MTF), describes the ratio of input to output signal magnitude as a function of
spatial frequency. Application of the MTF is limited to systems whose output
scales linearly with input (linearity) and produces the same output image regardless

of object position (shift invariance).

Although a variety of experimental MTF analysis techniques have been developed
for a range of imaging devices, no suitable technique has been developed for a
linear, shift invariant (within sub-regions) medical imaging modality called
Magnetic Resonance Imaging (MRI). Magnetic Resonance Imaging is the three
dimensional imaging modality of choice for detecting various soft tissue
pathologies in the head, spinal cord and other anatomical regions of the human
body. Unfortunately, most MR images are produced by the magnitude Fourier
Transform (FT) reconstruction algorithm, a non-linear method which is not

amenable to previously developed MTF analysis techniques. A new MTF analysis
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method, presented here, and deveioped specifically for MRI, eliminates the errors
caused by the magnitude operator in the reconstruction algorithm by using the
complex image formed just prior to the magnitude operator and modifying the
MTF theory accordingly. Tests with experimentally produced MRI data have
confirmed the feasibility of the new technique by producing accurate MTF’s which

agree with theoretically predicted resolution characteristics.
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CHAPTER 1
INTRODUCTION

Magnetic Resonance Imaging (MRI) has become a well established, safe, and
valuable imaging modality whose versatility is steadily improving. The quest for
increased performance has lead to many major hardware and software advances.
With these advances comes a requirement for more comprehensive analysis
techniques which provide a measure of quality control and assurance. This thesis
presents one such analytic technique called the Modulation Transfer Function
(MTF). The MTF is a well known method for determining the resolution
characteristics of imaging devices and has found application in a wide range of
medical imaging modalities. However, correct application to MRI has been
difficult due to its unique data properties. This thesis presents a technique, based

on a modified MTF theorem, which can be successfully applied to MRI.

Chapter 1 is devoted to introducing both MRI and the MTF and finishes with a
discussion on the motivation for this woik. Chapter 2 provides a comprehensive
analysis of M TF theory and the modification necessary for MRI application. The
magnitude Fourier Transform (FT) is the most common reconstruction algorithm
in MRI, but unfortunately it violates the requirements for MTF analysis. It is

shown that using the complex FT image created prior to the magnitude operator

1




2

meets the requirements for MTF analysis; therefore extending MTF theory to
permit the use of complex data will produce the correct MTF of an MR imager.
Chapter 3 explores one error which can occur during MTF analysis which is of
special relevance in MRI. To measure the MTF of an MR imager, an alignment
process which requires great precision, and to a lesser extent accuracy, is usually
necessary. Unfortunately, the required precision is not always achieved and a
characteristic error will occur in the MTF. Chapter 4 extends the material
presented in Chapter 3 and develops an alternate technique for computing MTF’s
which is immune to alignment errors, but is limited by image domain Signal to
Noise (S/N). Chapter 5 is a short demonstration of how the MTF can be used to
analyze a clinical pulse sequence called Turbo Spin Echo (TSE). Turbo Spin Echo
sequences are spin echo sequences modified to acquire a few images quickly rather
than collecting many images through the sample over a longer period of time. The
high speed requirement of the TSE sequence places demands on the imager which
arc rarely met in practice and MTF analysis shows how image resolution is altered
as a result. Chapter 6 summarizes the results of this thesis and discusses uses for
the MTF in MRI. The Appendix addresses errors found in a recent MTF paper {1]

which attempted to replicate some of my work [2].

The conception and development of this technique for computing the MTF of an
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MR imager is my own work. The three papers which form the core of this thesis
(Chapters 2, 3 and 4) have been submitted to Medical Physics. Chapter 2 is in
press, Chapter 3 has already been published and is reproduced here with
permission. Chapter 4 has been resubmitted and is awaiting acceptance. The
Appendix has been published, in Medical Physics, as a letter to the editor and is

reproduced here with permission.

1.1 MAGNETIC RESONANCE IMAGING

1.1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is a phenomenon in which nuclei with a
magnetic moment precess at a well defined frequency about the axis of an applied
magnetic field. The Larmor, or resonant frequency f [Hz], of the bulk magnetic

moment, M, is a function of the applied magnetic field strength B, [T}:

f = (y/2mB,, (1.1)

where /2 s the gyromagnetic ratio [Hz/T]. The gyromagnetic ratio, determined
by experimental methods, is unique to each nucleus [3]. For the purposes of this

thesis we assume hydrogen proton (y/2n= 42.57 MHz/T) and B, aligned with Z

in the lab coordinate system (x,y,z).
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The NMR phenomenon can be observed with a perturbation/relaxation experiment
[4]. A sample placed in a static magnetic field is first allowed to come to
equilibrium before perturbing the nuclei of the sample with a radio frequency (rf)
magnetic field (B,). The rf field, tuned to the Larmor frequency (Eqn. 1.1), is
applied in the xy plane (Fig. 1.1) and causes M to rotate by some angle ¢ around
the axis of B, such that a component of M will be in the xy plane. After B, is
removed, a time varying weak voltage signal (nanovolt - microvolt range [5]) is
induced in a specially designed rf probe which is sensitive to magnetic fields
fluctuating along the x axis. Figure 1.2a (solid line) shows the exponentially
decaying sinusoid acquired along x in the lab coordinate system and is
representative of the signal produced by the precession of M about Z. The signal
can be demodulated to remove the frequency of precession due to the static
magnetic field such that the exponentially decaying output in Fig. 1.2a (dashed
line) represents the signal which would have been collected in the frame of
reference rotating at the Larmor frequency (x’,y’,z’). It is also possible to process
the original signal with phase sensitive detection (also referred to as quadrature
detection) during demodulation and determine the y’ component of the acquired
signal (Fig. 1.2b, dashed line). The signal component produced along z (Fig. 1.2¢)

is not directly observed with the apparatus described here; however it is possible,




z,7

M
¢

(x,y,2) lab coordinate system
(x',y',2') rotating coordinate system

B, g
: ~~ "
Y : rf receive probe
/B, >X

yl

Figure 1.1 The ¢ tip of the bulk magnetization vector as caused by an rf magnetic
field, B,, tuned at the Larmor frequency and applied orthogonally to the main

static magnetic field.
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Figure 1.2 A schematic of the acquired time domain signal in the lab coordinate
system along the x axis (Fig. 1.2a, solid line), rotating reference frame (Fig. 1.2a,
dashed line); the derived time domain signal in the lab coordinate sysiem along the
y axis (Fig. 1.2b, solid line), rotating reference frame (Fig. 1.2b, dashed line); the
derived time domain signal along the z axis in both the lab and rotating reference

frame (Fig. 1.2c).




7
with various pulse sequences [6] to deduce the z component of M as a function of

time.

The induced signal shown in Fig 1.2 is short due to the exponential decay
characteristics (T2) of relaxation. The constant T1 describes longitudinal relaxation
along the dircction of the applied static field (z) and T2 describes transverse
relaxation in the xy plane orthogonal to the applied static field [5]. The typical
order of magnitude range of T1/T2 found when imaging humars (proton) is:T1 ~
100-1000 ms., T2 ~ 10-100 ms. [7]. By using special types of pulse sequences,
it is possible to obtain additional information about the nuclei and their chemical
environment [8]. For example, MR spectroscopy can measure pH [9] from the

spacing between certain spectral peaks.

1.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) further extends the utility of NMR by
spatially localizing the signal source with additional magnctic fields, called
gradients [10]. The gradients vary the magnitude of the magnetic field linearly
with respect to position and hence the frequency of precession changes with
position. The frequency of precession, and consequently the location of the signal
source, is determined by applying the Fourier Transform (FT) [11] to the acquired

time domain signal during a process called image reconstruction.
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One method of encoding spatial position information, called frequency encoding
(Fig. 1.3), uses a magnetic field gradient, G, which varies the magnitude of the
magnetic field in the Z direction as a function of position, x [m}. The gradient field

can be described as:

G(x) = gx, (1.2)

where 2 is on the order of 1 mT/m. The Larmor frequency, when G(x) is applied

in conjunction with B, * :

f(x) = y(B, + gx). (1.3)

After demodulation to remove the frequency component associated with the

static magnetic field, Eqn. 1.3 becomes:

£'(x) = gx. (1.4)

The demodulation reduces the signal frequenci=s from the MHz band down to the
KHz band for sampling, but the demodulated signal contains both positive and
negative frequencies [5]. Phase sensitive detection produces the (x’,y’) components

of the time domain signal and are often labelled as the real and imaginary




/

vy
o

Frequency of Precession: f(x) = y(Bo + gx)
OR Field Strength: B'(x) = Bo+gx

Figure 1.3 The change in magnetic field strength, in the Z direction, caused by a
linear magnetic gradient applied in the x direction. The change in magnetic field
strength also implies a change in Larmor frequency as a function of position. This

relationship is the basis of MR imaging.
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components because the Fourier Transformation which follows acquisition, during

image reconstruction, is done in the complex domain.

Another encoding technique, called phase encoding, compliments frequency
encoding. It is possible to phase encode spatial information by applying the
gradients shown in Eqn. 1.4 for a fixed period of time, t,, prior to data

acquisition:

¢"(x) = ygxt,. (1.5)

Differences in frequency produce relative phase differences which are maintained
once the gradient is removed. The two spatial encoding mechanisms, frequency
and phase, can be generalized into one equation which demonstrates their

equivalence in what is called k-space:

k, = vgidt. (1.6)

The term k, = vg,t, which has units of spatial frequency [m'], shows that the
duration of gradient application and gradient are independent variables of k,. The
spatial encoding described by Eqn. 1.6 can be extended to three dimensions and

the resultant signal, S(k,.k,.k,), produced by an object, p(x,y,z), would be the
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summation of signal produced by all regions of the object undergoing spatial

encoding in k-space:

Sk k)= [o(xy.2ye™ = O, (1.7)

where p(X,y,z) describes the signal magnitude produced by the object as a

function of location,

dv indicates a volume integral and,

e 2ritkxky kD) jescribes the various phases at different locations within

the object due to the application of the three gradients.

The important term in Eqn. 1.7, for the purposes of imaging, is p(x,y,z) and can
be retrieved by computing the Fourier Transform [11] of S(k,,k,.k,). The image
reconstraction step is simply the process required to retrieve p(x,y,z) from the

acquired data.

The flexibility .a gradient application allows S(k,.k,.k,) to be collected in any
order of phase encoding or frequency encoding. Figure 1.4 is a pulse sequence
timing diagram which shows how Fig. 1.1 could sweep through k-space (Fig. 1.5).

There are three basic steps shown in Fig. 1.4:




m 1
if (N L
hd D |
x grad c EL ﬂ
| B |
y grad J A__— _______ {
z grad | o s
T s
signal //\\ ...... L
SN . I eemraeemeerizoieed i

Figure 1.4. A pulse sequence timing diagram. An initial 90° tip of predetermined
bandwidth, in the presence of the z gradient, causes a slab of object to be excited
at some point along the z axis. This is followed by phase encoding in the y
gradient direction (step A). The striped marking is a typical indicator of a phase
encode gradient of fixed time but variable amplitude. Finally, the sample is
initially dephased in the x direction (step B) before rephasing (steps C, D) during
signal acquisition. The time to the centre of data acquisition (step D) is referred
to as Time to Echo (TE) and the time interval between excitations is called the

Time of Repetition (TR). The letters are used in conjunction with Fig. 1.5.




Figure 1.5. The path through which a pulse sequence (Figs. 1.4, 1.1) can traverse
k-space. The first phase encode gradient moves from the origin of k-space up to
some predetermined value of k, (step A, Fig. 1.4). The initial frequency encode
gradient dephasing moves to the most negative k, value (step B, Fig. 1.4) so that
data acquisition is symmetric about k, = 0 (steps C+E, Fig. 1.4). Step D
corresponds to TE in Fig. 1.4. After a period of time TR, the process is repeated
again; however the phase encode step will move to a different k,. The MR image

can be formed by computing the two-dimensional magnitude FT of the k-space

data.
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1) The initial ¢ tip (Fig. 1.1), applied in conjunction with the z gradient, selects
a xy slab whose thickness is controlled by the bandwidth of the rf pulse and the
z gradient.
2) The second step prepares for data acquisition by moving to the required k-space
location.
2a) Phase encoding (step A, Figs. 1.4, 1.5) locates the required k, position.
The striped marking (Fig. 1.4) indicates stepped phase encoding gradient
application through the required range of k, (Fig. 1.5).
2b) The frequency encoding gradient locates the required k, position (step

B, Figs. 1.4, 1.5). Each gradient application should be identical.

3) Once the required start point in k-space is reached, the frequency encoding
gradient reverses polarity and data acquisition commences as the sample is
progressively rephased (negative k,, step C in Fig. 1.5) and progressively
dephased (positive k,, step E in Fig. 1.5). The signal peak occurs when the initial
dephasing produced by the frequency encoding gradient is rephased at step D (TE)

in Fig. 1.5.

After a suitable time interval in which the system is allowed to relax (TR, Time

of Repetition) the process is repeated, with a different k, gradient amplitude.
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Orce sufficient data have been collected, the image of the sample (o(x,y,z) in Eqn.
1.7) can be produced by a two dimensional FT (2DFT). A third FT is not required
to determine the z component of the sample distribution because the initial
excitation was done in the presence of a z gradient which localized the signal to

a specific slice along the z axis.

The resolution characteristics of the image can be improved by increasing the
extent of k-space sampling because, as will be discussed in section 1.2, the greater
the range of spatial frequencies collected, the better image resolution becomes.
Therefore, the term "sufficiently sampled data” implies that the extent of k-space
sampling meets the resolution requirements. If n samples are separated by Ak in
k-space, the image produced by Fourier Transformation has n points separated by
1/nAk and the width, or Field of View (FOV) is 1/Ak. Consequently, the rate of
sampling determines the FOV size and the duration of sampling determines
resolution. The rate of sampling must be sufficient in the time domain, according
to the Nyquist sampling theorem [11], so that the range of frequencies produced
by the object under the influence of gradients is properly sampled. If the sampling
rate is too low, an aliased signal will be produced which cannot be properly
assigned a spatial mapping in the image domain. For the purposes of this thesis we
assume the digitization rate is sufficient in both respects. Since the sampling

process is done in the spatial frequency domain, the response at any given spatial
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frequency is determined by the gain characteristics of the receiver system. Ideally
the gain is constant for the entire duration of sampling such that all spatial

frequencies are equally weighted.

1.2 THE MODULATION TRANSFER FUNCTION

The quality of an imaging device can be assessed partly on the basis of its
resolution characteristics. One commonly used method for analyzing the resolution
characteristics of linear, shift invariant imaging systems is the Modulation Transfer
Function (MTF). The MTF measures the ratio of imaging system output:input
signal magnitude response as a function of spatial frequency. This is a useful
measure because Fourier Transform (FT) theory tells us that any function with a
finite number of discontinuities can be decomposed into an infinite sum of sine
waves with varying frequency, magnitude, and phase. Since any input can be
mathematically decomposed, the output produced by the imager can be predicted
mathematically by weighting the individual components of the input according to
the MTF. This type of testing is called transfer function analysis because the
output signal characteristics are determined by how the input is transferred through
the imaging system. Transfer functions mathematically describe the ability of a
system to transfer spatial sinusoidal waves, the eigenfunctions of a linear shift
invariant imaging system. Consequently, transfer function analysis is restricted to

systems whose output scales linearly with input (linearity) and whose output does




not depend on object location (shift-invariance).

An ideal imager passes all spatial frequencies with constant gain. In practice the
ideal imager does not exist because some spatial frequencies are not resolved, i.e.
the system is spatial frequency bandlimited, and the resultant image is blurred. The
blurring will increase as the range of spatial frequencies resolved decreases; hence
an imager can be considered as a type of spatial frequency filter. Additionally, the
ideal imager does not vary the phase of the input signal at any spatial frequency.
The imaging system phase response is analyzed with the Phase Transfer Function
(PTF). Together, the PTF and MTF comprise the Optical Transfer Function (OTF)
and completely describe the spatial frequency transfer response of the noise-free

imaging system [12].

An ideal input for testing a two dimensional (2D) imaging system is an infinitely

thin and long object, described mathematically by the impulse symbol (delta

function) 8(x):
]l x=0 (1.8)
6(x)"{o lxl>0s

because it represents the sum of all sine waves with unit amplitude and constant

phase:
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FT{5(x)} = 1. (1.9)

Therefore, if 6(x) is input to an imaging system, the output, or Line Spread
Function (LSF), contains only those spatial frequencies which the imaging system
is capable of reproducing. The spatial frequency information required to describe
system resolution can be retrieved from the LSF with the Fourier Transform. The

MTF, PTF and OTF are thus defined:

(1.10)
MTF() - EBLSFI|
|[FTLSF(:) .
(1.11)
PTF(H =arctan{8[FT {LSF (x)}]}
RIFT{LSFON|’
(1.12)

OTF(f) =MTF(f)-e FTT0,

where R indicates the real component of the Fourier Transform,
& indicates the imaginary component of the Fourier Transform and,

f=0 denotes normalization with respect to the {=0 term.

For most imaging devices the Edge Spread Function (ESF) and LSF are real
valued functions and the MTF will be symmetric about the zero spatial frequency

[11]. In such cases only half of the MTF defined in Eqn. 1.10 is plotted.
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In practice it is difficult to use 8(x) as a test object because the signal is
vanishingly small. The signal magnitude can be increased by using a larger test
object, but then the analysis must account for the input function shape. For

example, if the test object is a perfect edge, described mathematically by H(x), the

Heaviside step function,

1 >0
H() = {0 1<0°

more signal is produced. The profile associated with the edge is called the Edge

Spread Function (ESF) and the required LSF is generated by computing the

derivative:

LSF(x)= %ESF (x).
(1.13)

In the ideal case, the perfect edge H(x), produces a delta function:
6(x)=iH(x). (1.14)
dx

The ESF based MTF technique forms the basis of the methods presented in this

thesis.

The MTF is limited in application to those imaging deviccv. which are linear and
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shift invariant {12]. The output of a linear system scales linearly with the input and
a shift invariant imaging device produces the same output, but shifted, no matter
where in the field of view the object resides. If the system is nonlinear, frequency
components not present in the input can be produced in the output, implying that
the gain of the system is infinite at those new frequencies. If the system was shift

variant, the MTF would then vary as a function of position.

Magnetic Resonance imagers typically produce complex domain images [13],
which are forced into the positive real domain with the ncn-linear magnitude
operator for the convenience of image display. Since the magnitude operator is
non-linear, the images violates the requirements of the MTF. We have chosen to
bypass the non-linearity by using the linear complex image. Consequently, the
complex LSF is not guaranteed to produce a symmetric MTF, and any MTF
computed from a complex domain image must plot both positive and negative
spatial frequencies; a format never previously required. It is useful to note that
such two-sided MTF’s which differentiate between positive and negative spatial
frequencies match the theoretical expectations of MR data where both positive and
negative spatial frequencies are collected in k-space as positive/negative phase

encode lines or positive/negative time relative to echo formation.

The PTF has already been mentioned, but this thesis does not examine it in any
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detail. The PTF is not often used as it is difficult to make a general statement
about the impac. of the PTF on image quality {14] aside from the fact that non-
linear PTF’s produce asymmetric LSF’s. If the PTF produces any visually
significant changes in image quality, the best opportunity for detection occurs
when viewing periodic and regular structures [15, 16}. Non-linear PTF’s were
encountered with chemical shift artifacts [17]. The chemical shift artifact produces

multiple, closely spaced edges which cause blurring and a non-linear PTF.

1.3 MOTIVATION

When using imaging devices, it is important to ensure consistent and appropriate
resolution characteristics, whereas during the manufacture and design of imaging
devices it is often necessary to find new methods for improving the resolution
characteristics. Both of these situations require an analytic technique which is
robust, relatively simple to implement. and accurate. The MTF has proved to be
accurate, robust and useful for other imaging modalities when the appropriate
procedure is implemented correctly. Although several attempts have been made
[1,2,18] to compute the MTF of an MR imager, none of the procedures were

suitable for MRI, for a variety of reasons. until the work presented here.

The need for the MTF in MRI has been less pressing than in other imaging

modalities because spatial resolution is a theoretically well defined characteristic,
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if the gradients and receiver stage of an MR imager work to specification. Since
the various MRI components can be accurately characterized and tested by a
variety of well understood procedures, it was possible to verify the resolution
characteristics by other means [19]. However, this does not eliminate the need to
experimentally verify theory and show that the various components comprising a
MRI work together in the assumed manner. For example, the MTF can be used
in MRI to experimentally analyze various so-called "k-space” trajectory pulse
sequences {20], image reconstruction algorithms, and signal processing algorithms.
Recently, there has been an increasing interest in MTF’s for MR microscopy

purposes [21,22].

The original personal motivation was the need to test a reconstruction algorithm
[23], developed during my MSc thesis work, which attempted to reduce motion
artifacts. It was necessary to determine if the reduction in motion artifacts was the
result of the algorithm or the consequence of some spatial frequency filtering
process. The merits of the reconstruction algorithm appeared weak whereas the
results obtained developing the MTF technique seemed promising. Consequently
the focus of this work was directed towards finding a suitable technique for
computing the MTF of an MR imager, and the proven utility of the MTF became

the motivation for this work.
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CHAPTER 2
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COMPUTING THE
MODULATION TRANSFER FUNCTION
OF A MAGNETIC RESONANCE IMAGER

by

Michael C. Steckner, Dick J. Drost and Frank S. Prato

2.1 ABSTRACT

A new method for computing the Modulation Transfer Function (MTF) of
Magnetic Resoiiance (MR) iragers is presented. Previous attempts to compute the
MTF of MR imagers used non-linear magnitude reconstructed images, resulting
in erroneous MTF’s. By using complex domain images, the new method produces
pre-display MTF’s which describe the spatial frequency transfer characteristics of
the entire image formation process, except the magnitude operator, eliminating the
artifacts previously found in MR imager MTF’s. The use of complex domain
images results in MTF’s which are not symmetrical about the zero spatial
frequency. Two-sided MTF’s differentiate the positive and negative frequencies
associated with positive and negative phase encoding or positive and negative time

relative to the echo formation. Experimental results are presented which confirm
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the theoretically predicted form of MR imager MTF’s (see pg. 15) and the need

for two-sided MTF’s.

2.2 INTRODUCTION

The spatial frequency response of a linear, shift-invariant [1] imaging system can
be characterized with the Modulation Transfer Function (MTF). In practice no
linear, shift-invariant imaging device exists, but various techniques have been
developed which compute useful MTF’s. For example, the non-linear response of
film based imaging systems can be made linear with a suitable transformation of
data [2]. Additionally, most systems are also sufficiently shift-invariant to produce
useable MTF’s. Lastly, recent analysis [3] of signal and noise (S/N) propagation
for three MTF measurement techniques (edge, line, slit) in x-ray based medical
imaging systems has defined the limitations of the various techniques when noise

is present.

The few previous attempts to measure the MTF of a MR imager experimentally

[4,5,6] applied the Edge Spread Function (ESF) method described by Judy {7] but
were unsuccessful because non-linear magnitude reconstructed images were used.
MR images should theoretically be real only [8, 8b], but never are in practice,
therefore the magnitude operator is used to force the images into the positive real

domain for convenience of image display, producing distortions which cannot be
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undone.

Lerski [4] compared MR imagers from various manufacturers using MTF’s
computed from magnitude images. We attempted [5] to compute MTF’s from MR
imagers using filters to bypass magnitude reconstruction induced errors. Although
the artifact identified by us [9] was removed, image domain phase information
inherent in the MR imaging process was also removed by the magnitude operator
and could not be restored. Therefore the computed MTF was an incomplete
description of the spatial frequency transfer characteristic. Additionally, the
precision and accuracy of {5] for the higher spatial frequencies was limited because
the correction function required to compensate for the initial filter introduced large
multiplicative factors which boosted noise levels significantly in the MTF curve.
Recently Mohapatra [6] published a similar technique. A filter was used to smooth
the magnitude image ESF but the frequency characteristics of this filter and the
derivative operator used to compute the LSF, were not corrected for, resulting in

an erroneous MTF [10].

This paper describes a new method for computing the MTF of an MR imager
using ESF’s derived from complex domain images, bypassing magnitude
reconstruction artifacts, retaining all image phase information, and producing two-

sided MTF’s which separates the contributions of the positive and negative
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frequencies. MTF’s produced by this method are called pre-display MTF’s because
the results only apply to the cumulative spatial frequency transfer characteristics
up to, but not including, the magnitude operator and display. To describe the new

technique, this paper has been broken into a further five sections. First a brief

outline of basic MTF theory is given, including the ramifications of complex

domain LSF. The second section deiails the unique experimental complexities that
have to be considered when computing a MTF for a MR imager. Results are
presented in the third section, discussed in the fourth section and summarized in
the final section. An appendix has been included which outlines a technique which
produces MTF’s from magnitude images, under limited conditions, when it is nct

possible to compute the complex image.

2.3 MTF THEORY
There are several methods for calculating MTF’s. We have chosen an ESF method
because it produced the best S/N [3] for low spatial frequencies. This section

reviews the basic ESF technique, which is the basis for this paper.

The MTF can be defined as:

MTE(f) = FT{LSF(x , (2.1a)
IETZ£SF(X)%f=O,

where LSF(x) is the Line Spread Function computed from an Edge Spread
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Function (ESF):

LSF(x) = d ESF(x), (2.1b)
dx

and x denotes spatial location,
f indicates spatial frequency,
FT denotes the Fourier Transform,
| | defines the absolute value, or magnitude, of complex values,

and |FT{LSF(x)}-,] denotes the magnitude of the O frequency term.

With discrete data, the derivative (or forward difference) is taken in the following

manner [11]:

LSF(x;) = [ESF(x; - ESF(x; ,)]. 2.2)
[(x, - X;.1)]

The frequency response of the discrete derivative is removed by weighting the

MTF with the following function:

a(f) = 1/ sinc(xf / 2f), 2.3)

where f, is the Nyquist frequency of the sampling system.

It will be noted here, for the sake of completeness, that the magnitude operator in
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Eqn. 2.1a discards phase information. The phase of FT{LSF(x;)} describes the

Phase Transfer Function (PTF) characteristics of an imaging device [12].
Together, the PTF and MTF comprise the Optical Transfer Function, the total
descriptor of spatial frequency transfer characteristics. For the results presented
in this paper, the phase response was a constant for all spatial frequencies, except

for the MTF’s calculated from magnitude reconstructed images.

Since the MTF can be applied only to linear systems, it is not possible, in general,
to use LSF produced by non-linear magnitude reconstructed MR images. However,
there is no reason why the LSF used to compute the MTF in Eqn. 2.1a cannot be
in the complex domain. Therefore, we use the complex image formed just prior
to the magnitude step. As a consequence of using complex LSF, the MTF is no
longer symmetric about f=0 [13]. Therefore a two-sided MTF becomes necessary
in which the two sides distinguish between positive and negative spatial

frequencies.

2.4 MRI MTF IMPLEMENTATION
We present a ten step ’recipe’ for determining the MTF of a MR imager. A

description of the difficulties encountered at each step follows:

1) Construct a phantom suitable for computing the MTF of a MR imager.
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2) Align the phantom with the coordinate system of the MRI so that the ESF

profiles are not geometrically lengthened and collect a data set.

3) Center the echo peak in the raw data matrix.

4) Reconstruct the complex domain image.

5) Select the direction in which the MTF is required and choose the profiles
removed from the corners of the phantom.

6) Accurately register the individual profiles and average them together.

7) Remove the undesired ESF by truncation and compute the LSF with the discrete
derivative operator.

8) Taper the LSF (e.g. Hanning window) to reduce ringing artifacts in the MTF.
Compute |FT{LSF(x)}| and normalize with respect to the f=0 frequency term.
9) If the image was rotated 180° (or mirror image flip) the MTF frequency axis
must be inverted.

10) Correct the MTF for the frequency response of the discrete derivative

operator.

STEP 1) We collect ESF profiles from a cube phantom filled with distilled water
doped with gadolinium-DTPA (Berlex Magnevist). Gadolinium-DTPA doped
distilled water (T1/T2 = 1200/800 msec., 0.125 umol/L) was used to avoid
chemical shift artifacts, shorten T1 and T2 yet avoid T2 decay artifacts. Chemical

shift produces multiple edges in the frequency encoded direction, causing a
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resolution loss [14] similar to misregistered ESF averaged together [15]. T2 decay

causes an error in the frequency encoded direction MTF because the positive
spatial frequencies collected at the end of data acquisition in the time domain are
attenuated relative to the negative spatial frequencies collected at the beginning of
data acquisition. For single shot fast imaging sequences, T2 decay causes errors
in both the frequency and phase encoded direction MTF [16]. For the purposes of

this paper, a T2 of 800 msec causes an error in the MTF of approximately 1% in

the frequency encoded direction.

The size of the phantom partly determines the FOV because a sufficient number
of data points, in buth the background region around all edges and the plateau

region within the phantom, are required to properly define the tails of the LSF

(17].

STEP 2) Rotating the cube around an axis perpendicular to the imaging plane
causes a geometric lengthening [18] which varies as cos '(rotation angle) because
the LSF derived from the raster of data points is not perpendicular to the edge. As
long as the rotation is less than 12°, the apparent edge broadening is <2% and

spatial frequencies are decreased by <2%.

Phantom rotation in the slice select direction around an axis parallel with the
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imaging plane causes a partial volume error which introduces a resolution loss

which is a function of slice profile. The resolution loss can be analyzed by

dividing the slice into thin lamina, each producing an ESF in a different location

weighted according to the slice profile.

STEP 3) The raw data echo peak must be accurately centred or else the resultant
first order image domain phase variation causes the system to be shift variant. A
miscentered echo peak causes a single period, sine wave like, variation of the
MTF around zero spatial frequency whose amplitude is a function of the

misalignment distance in the raw data.

STEP 4) Do not apply a window to the raw data before image reconstruction or
else the MTF will be modulated by the window function. As well, the image
reconstruction must not have any non-linear steps, such as magnitude
reconstruction, otherwise spurious structures will be introduced into the MTF.
Zero padding to double the size of the raw data [13] set improves ESF
visualization and extends the frequency axis of the MTF so that it is easier to

examine the cutoff frequency region of the MTF.

STEP 5) The shape of the phantom directly affects field homogeneity. Since sharp

corners distort the magnetic field [19], use ESF profiles well removed from
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corners. Additionally, profiles close to edges may be further degraded by Gibb’s

ringing artifact caused by the spatial frequency response in the orthogonal

direction, if the profiles are not parallel to the edge.

As well, poor rf spatial uniformity will introduce a low frequency modulation of
the MTF phantom (5] which causes a degradation in a small region of the low
frequency response in the MTF. If necessary, a flood field correction, as used in

Nuc’ear Medicine, can compensate for the non-uniformity.

STEP 6) Many ESF profiles are averaged together to improve the S/N of the
resultant LSF. Since static field inhomogeneities, gradient non-linearities and
phantom rotation will cause registration errors between individual ESF profiles,
each ESF must be registered or else the final ESF will be slightly blurred. We
have shown [15], that each ESF must be registered to within 1/9 of a pixel to
ensure that worst case error in the MTF is <2%. The registration procedure used

in this paper is described in [15].

STEP 7) Since the MTF phantom must be smaller than the FOV to avoid aliasing,
there will be two edges in both the frequency and phase encoded direction. The
second edge must be removed by image domain truncation before the MTF is

computed or else a high frequency cosine modulation of the MTF, identical to that
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produced by the misregistration of LSF profiles [15], will occur. Although image

domain truncation removes the second edge from the ESF profile, it does not
remove the Gibb’s ringing artifact induced by the second edge. One solution
requires the two edges in the image to be separated such that the size of the
ringing artifaci induced by the unwanted edge is negligible in the region of the
desired ESF. For the MTF’s presented in the results section, the two edges were
separated by approximately 100 pixels in the frequency encoded direction and 50
pixels in the phase encoded direction. In the middle of the plateau, the size of the
ringing in the associated LSF is approximately 0.01 of the LSF peak size. Another
possible solution, which can be used with MR imagers with sharp filter rolloff
characteristics in the frequency cncoded direction and oversampling capabilities,
is to shift a portion of the phantom outside the FOV in the frequency encoded
direction. This method has the added benefit of eliminating the ringing artifact
induced by the second edge. However, this technique is limited to the frequency

encoded direction.

Truncation of the ESF causes large errors in the MTF if the loss of area under the
LSF is significant [17]. The sinc(x) function best describes the LSF in the results

section and the area under sinc(x) is described by Si(x):

Si(x) = f ;wsinc(x)dx,
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However, there are an infinite number of positions on the Si(x) curve [20] at
which there is no area lost due to truncation because the sinc(x) function has both
positive and negative lobes. It 1s not clear if area lost by truncation is an
appropriate guideline in this case. Further, we do not know the optimal tradeoff
between errors introduced into the MTF by LSF truncation versus the error
introduced by the inclusion of Gibb’s ringing artifact from the second ESF. We
assume here that the errors are small relative to other sources of experimental

€rror.

STEP 8) Since the image was truncated by a rectangle function to isolate the
required ESF, the MTF will be convolved by a sinc(x) function (Gibb’s ringing
artifact) which can obscure important information [21]. The amplitude of any
ringing artifact in the MTF can be reduced, at the expense of resolution in the
MTF, by using a taper like the Hanning window [11] which changes the shape of

the truncation function to another function with better characteristics.

STEP 9) Since the spatial frequency axis of the MTF is two-sided, it is possible
to reverse the MTF. The MTF frequency axis will be reversed if the
reconstruction algorithm mirrors the image about one of the axes. Such image
domain manipulations are routinely used to present a consistent viewing

perspective to the MR operator. The entire image reconstruction and MTF
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calculation process can be tested for axis reversal, in both encoding directions, by

asymmetrically truncating the raw MR data set in a known direction.

STEP 10) Compensating the MTF for the frequency response of the discrete

derivative (Eqn. 2.3) completes the MTF calculation process.

2.5 EXPERIMENTAL MODEL

The single experimental data set (also used for the results shown in the appendix)
was collected on a 1.5T MR unit (Siemens Helicon - Erlangen, Germany) using
the standard Siemens head coil and loading ring. The phantom is a plexiglas cube
(inner dimension of 10 cm, plexiglas walls 1.5 mm thick) filled with distilled
water doped with gadolinium-DTPA (T1/T2 = 1200/800 msec). A 4.5 mm thick
plexiglas plate (5 cm high and 9.5 cm long) is positioned in the middie of the
phantom such that a plateau of reduced signal, formed by partial volume, could
be formed if the slice selected is coplanar with the plexiglas plate (see Fig. 2.Al).
All MTFs presented in the main body of this paper used the ESF produced by the
air/plexiglas/water interface. A spin echo sequence was used (TR/TE = 3600/20
msec) with 256 phase encoded lines of 256 frequency encoded points, each phase
encoded line acquired four times, producing a square image with a field of view
of 256 mm and 4 mm slice thickness. Before image reconstruction, the raw data

matrix was zero padded to 512 by 512 so that more points were available te
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register the ESF. The S/N of the image, computed by dividing the average of the

signal within the cube phantom by the average of the noise in the background
region of a magnitude reconstructed image [22], was approximately 210:1. The
Half-Fourier data were derived from the same full data set by truncating phase

encoded lines -128 to -33 and retaining phase encoded lines —32 to +127.

The star pattern phantom shown in Fig. 2.4 used fibreglass reinforced plastic
wedges, poured from one mould, glued by hand to a plexiglas sheet and immersed
in a water bath. The wedges are 20 mm tall, 62 mm long, 3.5 mm thick at the
widest part and 0.25 mm thick at the narrowest point. The inner and outer edge
of the wedges are 5 mm and 67 mm respectively from the centre of the phantom,

producing a star pattern ranging from 1/7 Ip/mm to 2 Ip/mm, or 1/6 Ip/degree.

2.6 RESULTS

Three MTF and associated LSF graphs are presented to show the validity of the
proposed method and the importance of the two-sided MTF. All complex LSF are
shown after tapering with the Hanning window and only the central 64 points out
of the 120 used for computing the MTF are actually plotted. The remaining tails

have very low signal magnitude (<2%).

The first LSF (Fig. 2.1a) is from a magnitude reconstructed image (average of 150
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Figure 2.4. The magnitude reconstructed image of a star pattern phantom shows
spatial frequency response directly in the image domain. The theoretically expected
spatial frequency cutoff points are 0.5 Ip/mm in the frequency encoded direction and
0.25 lp/mm in the phase encoded direction (The raw data matrix contained 128 phase
lines of 256 frequency encoded points, zero padded to 512 by 512 and reconstructed
as a 512 by 512 image.). This is confirmed by the cutoff frequencies of 0.55 and
0.26 Ip/mm in the frequency and phase encoded direction respectively in the image.
The minor axis of the ellipse denotes the cutoff point in the frequency encode
direction and the major axis indicates the phase encode direction cutoff point. Note
that some wedges are faintly visible beyond the expected cutoff frequency because

of gap width variations due to inaccurate alignment during phantom assembly.
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ESF profiles) in the phase encoded direction and produced the incorrect MTF

shown in Fig. 2.1b. The second LSF (Fig. 2.2a) calculated from: the complex

domain image (average of 150 ESF profiles) in the phase encoded direction,
produced the correct MTF shown in Fig. 2.2b (solid line). The dashed line in
Fig. 2.2b shows, for comparison, the MTF in the frequency encoded direction

(average of 80 ESF profiles).

Figure 2.3a (solid and long dashed line) and Figure 2.3b (solid line) show the
phase encoded LSF, generated from the average of 150 ESF profiles, and MTF
of a Half-Fourier data set. For comparison, Fig. 2.3a (short dashes) shows the
LSF produced from the magnitude reconstructed image which produced the second

MTF in Fig. 2.3b (dashed line).

Figure 2.4 is a magnitude reconstructed MR image of a star pattern phantom

which provides a qualitative assessment of resolution.

2.7 DISCUSSION

The LSF shown in Figure 2.1a is highly asymmetrical due to magnitude
reconstruction inverting the ESF ringing artifacts. The associated MTF (Fig. 2.1b)
shows the characteristic distortion analyzed in [9]. Although Fig. 2.1b shows the

frequency characteristics of the LSF, it does not accurately represent the transfer
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characteristics of the imaging device because new spatial frequencies were

introduced by the magnitude operator, violating the linearity requirement. These
results, when compared to the properly computed MTF, show how the magnitude

operator can introduce significant distortions.

Figure 2.2a shows the phase encoded LSF derived from a complex domain image.
Note that the ringing artifact caused by data domain truncation is visible and
decays to approximately 2% in the tails of the LSF (Only a portion of the LSF is
shown. The tails drop off to 1%). The error in the associated MTF (Fig. 2.2b) due

to image domain truncation is small. The expected maximum resolution:

_ (number of collected k-space data points in given encode direction)

resolution
max 2-FOV

of approximately 0.5 mm' _ 256 =0.5 mm ! |, is confirmed in Fig. 2.2b.
2-256 mm

The MTF in the frequency encoded direction is very similar because a square FOV
and square data acquisition matrix were used. The sharp rolloff characteristic at
the cutoff frequency for both phase and frequency encoding signifies the start and
finish of data sampling. Additionally, the shape of the MTF is essentially
independent of the frequency encoded direction acquisition filter which controls the

FOV characteristics. The frequency encoded direction acquisition filter, which
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defines the shape of the image domain window, causes the raw data, or MTF, to
be convolved with a narrow function which causes negligible broadening at the

edge of the MTF.

Figure 2.3b shows the MTF computed from the Half Fourier data set LSF shown
in Fig. 2.3a. It is clear which spatial frequencies are missing, and that the
collected spatial frequencies are equally weighted. The need to separate the
positive and negative frequency components is illustrated with a further MTF in
Fig. 2.3b (dashed line). The MTF computed from a magnitude reconstructed Half
Fourier data set is corrupted by artifacts from the non-linear magnitude operator.
The spatial frequency response is not constant and it is ambiguous which frequency
components are missing. Since the MTF from magnitude reconstructed images
combines positive and negative spatial frequencies together, and distorts them, it
would be impossible to determine if a Half Fourier reconstruction algorithm

properly modelled the missing data or corrupted the collected, good data.

For the frequency range covered by the Half Fourier two-sided MTF shown in
Fig. 2.3b, the phase encoded direction MTF shown in Fig. 2.2b agrees within
0.5% (absolute value of the differences between MTF’s within the theoretically
predicted cutoff frequencies), on average. This confirms the stability of the MTF

technique because removing 3/8 of the raw data set did not alter the MTF’s within
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the remaining frequency limits of the Half Fourier MTF. Comparison of th~
frequency encoded direction MTF from the full data set (Fig. 2.2b) versus the
Half-Fourier data set (not shown) also gives differences <0.1% (absolute value
of the differences between MTF within the theoretically predicted cutoff
frequencies), on average. This confirms that the two spatial encoding mechanisms
are independent because removing 3/8 of the phase encoded lines did not alter the
frequency encoded direction MTF. A further comparison of the phase encoded
direction MTF to the frequency encoded direction MTF (Fig. 2.2b) shows
agreement within 1%, on average, within the cutoff frequency range. This
confirms that the resolution of the two orthogonal spatial encoding mechanisms are
similar, as expected for the matrix size and FOV chosen. The cutoff frequencies
of all the properly computed MTF’s match the theoretically predicte) values to
within t %, confirming that the sampling rate and the frequency encoding gradient

are synchronized correctly.

Figure 2.4 shows experimental confirmation of our MTF technique. Note that the
wedges are of constant magnitude and equally well defined for all resolved spatial
frequencies, confirming the results shown in Fig. 2.2b. It is clear that the spatial
frequency response drops off very quickly over a very limited range, and does not
recover, whereas the MTF from a magnitude image would indicate a more gradual

drop off at a higher limiting spatial resolution. Figure 2.4 agrees with the two-
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sided MTF and is believed to be the correct result. Note that the resolution is
different in the two orthogonal directions because the k-space data comprised 128
phase lines with 256 frequency encoded points. The limiting resolution in the
frequency and phase encoded direction, as computed from the image, are 0.55 and
0.26 Ip/mm respectively. This agrees closely with the theoretically predicted values
of 0.50 and 0.25 Ip/mm respectively. Note that some wedges are faintly visible
beyond the expected cutoff frequency because of gap width variation due to

inaccurate alignment during assembly.

Ideally the MTF should describe the entire image formation process, but that is not
possible due to the non-linear magnitude operator. There are partial and
unsatisfactory solutions to this problem which are neither robust nor rigorous. Tt
appendix outlines one method which can produce an approximation of the MTF,
under limited conditions, but should only be used when it is impossible to produce
the complex domain image. The use of the complex domain image formed just
prior to magnitude reconstruction is necessary to eliminate the aliased spatial
frequency components formed in the displayed image which arc introduced by the

magnitude operator. We describe our results as the pre-display MTF.

2.8 CONCLUSION

A method for computing the MTF of MR imagers has been presented which
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eliminates previously reported artifacts caused by the non-linear image
reconstruction magnitude operator. The demonstrated technique requires complex
domain LSF’s and the resultant MTF’s are two-sided functions which uniguely
differentiate the contributions of positive and negative phase encoding or positive
and negative time relative to the echo. Results derived from Half-Fourier images
show that two-sided MTF’s are required to completely describe the frequency

transfer characteristics of MR imagers.

This technique should be useful in analyzing many reconstruction algorithms and
pulse sequences, especially those which may be compromised by excessive

hardware demands.
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2.11 APPENDIX - AN ALTERNATE METHOD FOR COMPUTING THE

MTF OF MR IMAGERS FROM MAGNITUDE IMAGES

Sometimes the raw data is not available to compute the complex image required
by the MTF analysis method presented in this paper. This appendix shows a
technique for estimating the MTF from magnitude images and shows, with a
simplified mathematical model, why it is an approximation. The conditions
limiting the application of this technique are not specified because we are not
aware of any suitable criteria by which MTF’s from non-linear systems can be

judged.

The magnitude image operator can be described as a phase function (Jp(x)| = 1)

which rotates any complex domain function into the positive real only domain.

Therefore the magnitude of the complex domain LSF can be written as:

LSF’(x) = p(x)-LSF(x) = |LSF(x)|. .Al)

and the relationship between the complex image MTF and magnitude image MTF’

is:

MTF’(f) = FT{p(x)}*MTE(f). (2.A2)
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Note that after the magnitude operation p(x) is permanently lost; therefore it is not
possible to determine the correct MTF from Eqn. 2.A2. Equation 2. A2 shows that

any non-constant phase response will cause errors in MTF’(f). For example, if the

ESF used to compute the MTF is in the real domain and was produced by a

high/zero signal interface, the magnitude operator will invert all negative lobes
associated with the ringing artifact. In this case, p(x) is a boxcar function of
constant magnitude, with boxes alternating sign and changing length. Such p(x)
produces a significant distortion in MTF’(f) because FT{p(x)} is not bandlimited.
This particular problem can be overcome by offsetting the ESF baseline to
eliminate all negative lobes. The offset can be nroduced experimentally by
constructing a plexiglas cube with a plexiglas plate suspended in the middle and
collecting a transverse slice coplanar with the plexiglas plate (Fig. 2.Al). A step
function is produced because the plate creates a plateau of partially filled pixels
with reduced signal magnitude relative to the surrounding water bath. However,
the plexiglas plate cannot displace more than 91% of signal or else the negative
lobes of Gibb’s ringing artifact will be partly inverted in the image. Additionally,
if the plexiglas plate is not coplanar with the image slice, an error will occur in
the MTF because the plate angles through the slice, causing spatial variations in
the baseline. The magnitude image used in the appendix was produced from the
same data set used in the main body. However, the appendix used the ESF

produced by the transition between 12% partial/full volume pixels whereas the
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slice

phantom insert

Figure 2.A1. A schematic showing the geometry of the phantom, phantom insert
and slice orientation required for computing the MTF from magnitude images. The

partial volume offsets the ESF baseline such that the negative lobes of the Gibb’s

ringing artifact are not inverted by the magnitude operator.
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ESF in the main body of the paper used the zero/full volume transition caused by
the air/plexiglas/water interface. The C/N of the partial edge, computed as the
difference in signal between the upper and lower plateau divided by the average

of the noise in a background region free of artifacts, was 185.

Figure 2.A2 (solid line) is the MTF computed from a magnitude image of the
partial volume phantom, using the modified MTF calculation algorithm. Note that
only one side of the magnitude image MTF is displayed because the magnitude FT
of any real only LSF is guaranteed to be symmetric about f=0. In this particular
case, the magnitude image MTF is considered to be correct because it has the
same cutoff frequency and constant response as the correct MTF (Fig. 2.A2,
dashed line) derived from a complex image. Unfortunately, a magnitude image
MTF with the expected cutoff frequency and shape is not necessarily correct
because p(x) and LSF(x) can be infinitely varied by other mechanisms, such as
phantom induced susceptibility and reconstruction algorithms, yet produce the
same magnitude image LSF and MTF. For example, if all negative phase encode
lines in the data used for Fig. 2.A2 were multiplied by zero (simulating a Half
Fourier raw data set), the resultant magnitude image MTF would be almost
identical to the magnitude image MTF shown in Fig. 2.A2, but the correct
complex image MTF would be substantially different from the Fig. 2. A2 complex

image MTF.
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normal fashion. The magnitude image MTF is correct because it matches the
complex image MTF. The partial volume plexiglas plate was 4.5 mm thick and the

transverse slice was 4 mm thick.




CHAPTER 3

© 1993 Medical Physics. Reprinted, with permission, from Medical Physics; Vol.
20 #2, Part 1, 1993, pp. 469 - 473.

A COSINE MODULATION ARTIFACT IN
MODULATION TRANSFER FUNCTION
COMPUTATIONS CAUSED BY THE
MISREGISTRATION OF LINE SPREAD PROFILES

by

Michael C. Steckner, Dick J. Drost and Frank S. Prato

3.1 ABSTRACT

Modulation Transfer Functions (MTF) are used to analyze the spatial frequency
transfer characteristics of medical imaging systems. By definition, accurate MTF’s
should not include the effects of image noise and they should not be aliased.
Therefore many techniques used to compute MTF’s register and average together
multiple profiles to improve both Signal to Noise and/or eliminate aliasing. It is
demonstrated that improper registration of individual profiles can cause errors of
up to 100% in the MTF. Computer modelling shows that a maximum allowable

error of 2% in the MTF requires a registration precision of +1/9 of a pixel for

58
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each profile, if the profile was sampled at twice the cutoff frequency of the MTF.

One suggested registration method, demonstrated with experimental Magnetic

Resonance image data, is 1.5 times more accurate than the minimum requirement.

3.2 INTRODUCTION

Modulation Transfer Functions (MTF) have been routinely used in analyzing the
spatial resolution characteristics of medical imaging systems and their
subcomponents [1]. Many different MTF measurement techniques have been
developed for various imaging modalities. The Edge Spread Function (ESF)
method of Judy [2] is widely used to compute the MTF of digital x-ray imaging
devices where Signal to Noise (S/N) is high but the image is sparsely sampled. By
tilting the edge with respect to the image raster, many profiles at slightly different
locations along the edge are produced. These individual ESF are registered
according to the displacement caused by the tilted edge, and averaged together to
create a well sampled composite ESF. The MTF derived from any one of the
undersampled ESF would produce an erroneous, aliased MTF whereas the MTF
computed from the composite ESF would be an unaliased, useful MTF. Other
techniques [3, 4] have also been developed which attempt to compensate for the
sparse sampling. In MRI the converse situation holds; the image is well sampled,

but S/N may not be high. Therefore multiple ESF from one image are registered

and averaged to improve S/N. Although the reasons for, and experimental
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techniques to register ESF vary among imaging modalities, all such methods will
produce an erroneous MTF if the registration of the individual profiles is not
accurate. Although we will show that this effect can significantly alter the MTF,
its effect can go undetected. For example, the MTF error function due to
misregistration is similar in shape to many x-ray imaging MTF’s and is often not
detected since the error does not visibly alter the measured MTF from its expected
shape. However, the MTF of MR systems is rectangular in both the phase and
frequency encode directions and therefore the error function due to ESF
misregistration can noticeably alter the measured MTF. For these reasons we
choose examples from MRI to illustrate the misregistration effect in the
experimental model section. This paper also develops a simple mathematical model
of the registration error, suggests tolerance limits on registration accuracy and
demonstrates a highly effective experimental technique for ESF registration in

MRIL

3.3 MATHEMATICAL MODEL
If an ideal, noiseless, one dimensional imager is employed with unlimited

bandwidth and constant gain, the theoretically predicted MTF would be:

MTE(f) = 1, 3.1
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where the MTF is defined to be:

|FRLSF(x)}.,

where FT denotes Fourier Transform,
|| denotes magnitude,
f=0 indicates the MTF is normalized to the DC frequency term,

LSF(x) is the Line Spread Function.

Depending on the type of imaging system, it is sometimes more convenient to

image the ESF(x) and compute the LSF(x) from:

LSF(x)=%ESF(x). (3.3)

To produce the MTF described by Eqn. 3.1, the ESF(x) must be:

ESF(x) = H(x) =1, if x > 0, 3.4)
=0,ifx <0,

where H(x) is the Heaviside step function and,

LSF(x)=-%H(x)=6(x), (3.5)

I

where 6(x) 1,if x =0,

=0, ifx #0.
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A MTF assumes a noiseless system [5]; therefore to approximate this in practice,
several ESF,(x) can be averaged together. If the individual profiles are in perfect
registration, the final MTF should approach the noiseless expression given in Eqn.
3.1. If the profiles are misregistered, an error will result in the MTF. For
simplicity, consider the case of two noiseless ESF misregistered by +e and

averaged together:

ESF’(x) = X{ESF(x - ¢) + ESF(x + ¢)}. (3.6)

The MTF becomes:

MTF’(f) = cos@mef)MTE(f). 3.7)

The computed response is now cosine modulated [6] where the rate of the

modulation is a function of the misregistration ¢, between the two ESF.

A simple transformation [7] allows the resuits of Eqn. 3.7 to be applied to sampled

data:

MTF"[(¢v/N)] = cos[2me(v/N)]MTF|[(»/N)], (3.8)




where N is the total number of points in the discrete array,
v is the index into the discrete array where -N/2 < » < N/2,

(»/N) is the discrete form of frequency.

Note that there are no limitations on the form of the correct MTF in Eqn. 3.8, but
when dealing with sampled data the results are meaningful only if the MTF is not

aliased. We assume here that the Nyquist critical frequency equals the cutoff

frequency.

If the two ESF in Eqn. 3.6 1re separated by one pixel (¢ = '), the first zero
crossing of the cosine modulation in Eqn. 3.8 occurs at the cutoff frequency (¢#/N)
= (.5. A separation of one pixel, or +0.5 pixels, from the true location,
represents the worst possible error if edge registration is done to the nearest
integral pixel. Assuming the ESF position can be accurately determined, an error
of >0.5 pixels can be reduced to an error of <0.5 pixels by shifting the entire

ESF a unit pixel in the appropriate directior.

Using Eqn. 3.8 when (¢/N) = 0.5, edges must be registered to within +1/16 ¢i
a pixel to achieve an arbitrarily chosen maximum allowable error of 2% at the
cutoff frequency. If it is not possible to register the ESF to within 1/16 of a pixel,

the ESF must be oversampled by a factor of 8, reducing pixel size by a factor of
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8, and registered to within the nearest pixel. This is equivalent to sampling at 16
times the cutoff frequency of t! e imaging system because the Nyquist critical
frequency equals one half the sampling frequency. Therefore, a combination of

oversampling and improved registration can also achieve the necessary accuracy.

The mathematical model outlined is very basic ar« does not account for the
number of profiles used, or noise. Tie medel can be expanded to account for n

misregistered, noiscless ESF profiles.

n

ESF'(x)=~ ¥ ESF(x-¢), (3.9)
-1

where «, refers to the offset from the true position for the ith ESF and,

n indicates the total number of profiles averaged together.

Such ofisets ran occur due to various equipment defects: an imperfect
experimental edge, imperfect registration of the edge with the raster of the

sampling grid, or the imaging device introduces some local geometric distortions.

A stinple calculatiop can be made which will determine the maximun 2rror
possibie in the limit of an infinite number of noiseless, perfect ESF which are

spaced at random displacemenits (random uniform dev.ates computed by ran3 (8})
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within +A pixels of a reference point. Since there are an infinite number of edge
profiles to be used, it is assumed that all profiles of separation a from the
reference point can be paired off with an identical profile at distance -«. Therefore
the expected worst case errci, which always occurs at the cutoff frequency (¥/N)

= (.5, is a function of allowed pixel registration error A:

1 nA (3.10)
e(A)=1 ————f cos(n0)d(n0),
T30

sin(wA) (3.11)

=1-
e(B) A

If A = 0.5, Eqn. 3.11 predicts an error of 36.3%, but if A = 1/9, the error is
only 2%. This requirement can also be niet by oversampling by a factor of 4.5,
or sampling at 9 times the cur ‘f frequency of the imaging system. Therefore using
many ESF profiles relaxes the registration accuracy requirement by almost a factor
of 2 for the case of 2% allowable error, assuming the distribution of errors is
described by random uniform deviates. Although Eqn. 3.11 relaxes the registration
alignment requirements relative to Eqn. 3.8, the assumption 'nat the distribution
of registration error is constant within predefined limits is unrealistic. In practice,
the distribution will probably be Gaussian, in which case the registration accuracy
requirements are further reduced because the error distribution is centrally
weighted. Increased central weighting results in fewer profiles with large

registration error, therefore, tae error duc to misregistration is reduced.
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None of the mathematical models accounts for the problems associated with noise.

The following section outlines a computer model which accounts for noise.

3.4 COMPUTER MODEL

The computer model adds white noise to the ESF and allows for random placement
of the ESF. The white noise level was chosen to be 2% because the S/N of the
experimental data described below was 83:1 [9]. The random misregistration of
noisy edge profiles was accomplished with the same white noise random number

generator used to add noise to the ESF profile.

The ESF used was determined by the required characteristics of the MTF:

1) the MTI could not be aliased,
2) to show the effects of the cosine modulation, the theoretical MTF used in the

computer model was a constant for all frequencies.

One such st nle MTF is:

MTF[(»/N)] = 1, if |(¢/N)| < 0.5

=0, if |(#/N)! > 0.5

= [I[(¢/N)]. (3.12)
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Note that all positive and negative frequencies below the Nyquist critical frequency

are included. The following LSF and ESF will result in the discrete MTF

described by Eqn. 3.12, after sampling:

LSF(x) = sin(#x) / (7wXx), (3.13)
= sinc(wx),
ESF(x) = | sinc(wx)dx = LSF(x) * H(x), (3.14)

where * denotes convolution.

The computer model generated one ideal ESF from which n different noisy
profiles, with random offsets, were averaged together. The MTF was then

calculated with the same technique used to compute the MTF of experimental data.

3.5 ESF REGISTRATION ALGORITHM

A simple technique was developed to register the individual complex domain ESF
generated by both the computer model and the experimental data. The amount of
shift required to register the ESF was actually computed from the associated

LSF?(x) function by computing the centre of gravity. Only the central 33 points

around the actual peak in the LSF were used. Using more points causes a greater
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registration error because of the poor S/N in the tail of the LSF. Fewer points also
increased the error because the LSF was not sufficiently sampled. The power of
two was used to reduce the effect of noise and increase the weighting of the central
terms in the LSF. Tests have shown that this algorithm centred noiseless ESF
generated by the computer model described above to within 0.004 pixels (worst
case, 500 trials, standard deviation = 0.002) of the true location and ESF with 2%
white noise to within 0.11 pixels (worst case, 500 trials, standard deviation=
0.038) of the correct location. Note that the achieved alignment accuracy just
fulfils the alignment precision recommended by the mathematical model. However
the registration ~lgorithm has an error distribution which is approximately
Gaussian instead of the constant response assumed in Eqn. 3.11. Therefore, the
registration accuracy with noisy ESF is approximately 1.5 times better than what

is necessary to achieve a maximum error of 2% in the MTF.

3.6 EXPERIMENTAL MODEL

The experimental data were collected on a 1.5T Siemens Helicon (Erlangen,
Germany) MR unit using the standard Siemens head coil and a loading ring. The
phantom used was a tap water filled plexiglass cube of dimension 9 cm with a
T1/T2 of 2700/1700 ms. A spin echo sequence was used with TE= 15 ms., TR
= 2000 ms., 256 phase encode lines of 256 frequency eiicoded points, each phasc

encode line acquired once. During image reconstruction, the raw data matrix was
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zero padded to 512*512 to cause sinc iaterpolation of the ESF in the image domain
[10]. The S/N of the image was approximately 83:1 and was derived by computing
the average of the signal within the cube phantom divided by the average of the
noise in a background region of the magnitude reconstructed image [9]. The
MTEF’s shown in the results section are computed in the phase direction where the
expected MTF is of the form II(f). Since no filtering was applied in the phase
encode direction, the shape of the MTF is expected to be a constant up to the
cutoff frequency, which is determined by the number of phase encode lines
acquired. Since MR data are collected in the complex domain and the image
domain is the FT of the raw data domain, the ESF and LSF are in the complex
domain. The use of complex LSF’s [11] can result in MTF’s which are
asymmetric about the O spatial frequency term, unli*-e all other LSF’s from other
imaging modalities which are always in the real domain and produce symmetric

MTF’s. The meaning of the MTF is unchanged, but the presentation of the MTF

must be altered.

3.7 RESULTS

The results presented show the theoretically expected, noiseless ideal ESF and
MTF (Fig. 3.1a,b) and the theoretical worst case model when ¢ = +0.5 (Fig.
3.2a,b). Results from the cor-Huter model are also shown when 100 profiles are

used (Figs. 3.3a,b; 3.4a,b). Figure 3.3a,b shows the effect of random placement
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Figures 3.1-3.4. Figure 3.1a,b is the ideal case; no noise and one profile. Figure
3.2a,b shows the worst case; no noise and two profiles misaligned by +0.5 pixels.
Figure 3.3a,b shows how using many randomly misregistered profiles (100 noiseless
profiles, maximum registration error - 0.5 pixels) reduces the error in the MTF.
Figure 3.4a,b shows that the addition of 2% white 10ise to the profiles of Fig. 3.3a

does not alter the MTF significantly.
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errors not exceeding A = 0.5 pixels using noiseless ESF. Figures 3.4a,b repeats
Fig. 3.3a,b except 2% noise was added to the individual profiles before averaging.
For the purposes of this paper, the ESF was oversampled by a factor of two to
simulate the zero padding used during image reconstruction of the experimentai
data, but the registration error was doubled to compensate for the smaller pixels.
The scale of the frequency axis on the MTF was arbitrarily changed to match the

frequency axis on the experimentally derived MTF.

Figure 3.5a, 3.5b are the ESF and MTF respectively, in the phase encoded
direction, derived from experimental MRI data using 100 profiles. Since the
images were sinc interpolated to 512*512, the profiles were registered to the
nearest second pixel. This is equivalent to registering profiles to the nearest pixel
if the image was not sinc interpolated. Figure 3.6a, 3.6b are the ESF and MTF
respectiveiy, in the phase encoded direction, derived from experimental MRI data

using 100 profiles using the egistration technique described.

3.8 DISCUSSION

Figure 3.1a,b represent the ideal bandlimited ESF and MTF in the phase encode
direction. In MR, since raw (k-space) data is truncated, Gibbs ringing artifact is
expected in the image domain [12] and can be seen in Fig. 3.1a. This ripple is
observed, to varying degrees, in all the ESF shown here. Theoretically, the ringing

artifact peak amplitude is found in the first lobe beside the edge, on either side,
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Figures 3.5,3.6 show experimentally generated ESF and MTF. Figure 3.5 shows
the error introduced when edge registration accuracy is limited to the nearest
integral pixel. Figure 3.6 shows the improvement caused by registering profiles

to subpixel accuracy using the registration algorithm outlined in the paper.
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and is approximately 9% of the step size. The 9% amplitude is found in Fig. 3.1a,

but the ringing artifact is almost eliminated in Fig. 3.2a because the two ESF are
improperly registered. Neither the case of placement error (Fig. 3.3a) or
placement error with 2% noise (Fig. 3.4a) reduces the ripple artifact significantly.
The presence of the ringing artifact is a rough indicator of the precision of the
cumulative registration of the individual ESF averaged together. This is to be
differentiated from the small ripple seen in the MTF (Fig. 3.1b, 3.2b, 3.3b) which
is caused by the truncation of the LSF before the MTF is computed. The ringing
artifact in the MTF is not nearly as noticeable as in the computed ESF because the

LSF is windowed with the Hanning function before the MTF is computed [13].

Figure 3.2b shows the MTF as predicted by the worst case theoretical model and
also shows the form of the cosine modulation. The error is quite significant and
unacceptable. Since many MTF curves produced by x-ray equipment are very
similar in basic shape to the cosine modulation error, it is possible to overlook this
error when examining results. This error is much more visible in MR data where

the MTF is normally a constant up to the cutoff frequency.

Figure 3.3a shows the ESF when 100 of the ideal noiseless ESF, randomly
positioned within 0.5 pixel of the correct location, are averaged together. The
resultant distortion to the MTF is not nearly as severe as that shown in Fig. 3.2b

because there is a distribution of edges around the reference edge location and the
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MTF is an average of this range of errors. The maximum error, found at the
cutoif frequency in Fig. 3.3b, is approximately 35%, which is in close agreement

with the theoretically predicted error of 36.3%.

Dealing with noiseless ESF is unrealistic, and Fig. 3.4a shows the effect of adding
2% noise to each ESF before averaging. Comparing the MTF in Fig. 3.4b to Fig.
3.3b shows that the addition of noise in the ESF creates a noisier MTF curve, but

that the underlying error caused by ESF misregistration remains unchanged.

Figures 3.5a, 3.6a and Figs. 3.5b, 3.6b are the ESF and MTF respectively from
experimentally collected MR data in the phase encode direction. The profiles in
Fig. 3.5a were registered to the nearest second pixel, to account for the reduced
pixel size cavsed by sinc interpolation in the image domain, whereas care was
taken to register the individual ESF shown in Fig. 3.6a as accurately as possible
using the registration technique described above. Figure 3.5b shows the
characteristic response degradation caused by misregistered profiles. The error at
the cutoff frequency is approximately 30%, which is in reasonable agreement with
the theoretically derived degradation of 36 %. The essentially uniform response for
all frequencies in the MTF shown in Fig. 3.6b confirms that the ESF were
registered accurately. The variability seen in Figs. 3.5b, 3.6b due to image domain

noise is comparable to the variability seen in Fig. 3.4b.
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3.9 CONCLUSIONS

A mathematical model of ESF misregistration during the MTF computation
process has been developed which shows that large systematic errors of up to
100% can be introduced in the MTF. This error is described by a cosine function
which is dependent on the registration accuracy. It can be easily overlooked in
cases where the underlying MTF is a smoothly varying function of similar form.
We suggest that all ESF be registered to within + 1/9 of a pixel relative to some
common location to reduce the maximum error in the MTF to 2%. This suggestion
is based on a mathematical model developed for ESF sampled at the minimum rate
to guarantee no aliasing in the MTF and was confirmed by a computer mcdel
which included the effects of white noise. A technique proposed to register the
edges by computing the centre of gravity location of the associated LSF’s is shown

to be sufficient when applied to experimental MR data.
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CHAPTER 4

Submitted to Medical Physics, July 1993.

A PROFILE REGISTRATION INSENSITIVE
TECHNIQUE FOR MODULATION TRANSFER
FUNCTION CALCULATIONS

by

Michael C. Steckner, Dick J. Drost and Frank S. Prato

4.1 ABSTRACT

The Modulation Transfer Function (MTF) has been routinely used to describe the
resolution characteristics of devices which are linear and shift invariant. Many
techniques developed to compute the MTF require multiple accurately registered
profiles, averaged together, to approximate the noiseless system transfer function.
This paper presents a new method which bypasses all errors associated with profile
misregistration but sacrifices the Phase Transfer Function (PTF) as a consequence.
This technique is applicable to systems which meet the Nyquist sampling
requirement in the image domain and produces us¢ful MTFs when the ratio
(standard deviation of MTF estimates)/(correct system MTF) does not exceed 0.4
An experimental comparison between two known registration techniques and the
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proposed method, vsing Magnetic Resonance (MR) data, confirms the theoretically

predicted results.

4.2 INTRODUCTION

The performance of medical imaging devices can be quantified, in part, by how
accurately the input signal is preserved as it passes through the various stages of
the system. There are various techniques by which signal fidelity can be
quantificd. One commonly used method is the Optical Transfer Function (OTF)
[1] and its two constituents: the Modulation Transfer Function (MTF) and Phase
Transfer Function (PTF). The OTF describes how the output signal magnitude
(MTF) and phase (PTF) vary with respect to the input signal, as a function of
frequency for any linear, shift invariant, noiseless system. The application of the
MTF to determine resolution characteristics is well understood and easily
interpreted, whereas the PTF, which describes asymmetric distortions in the output
[2], is not well understood or easily interpreted [3] and therefore rarely used.
Many techniques developed to compute the MTF require multiple accurately
registered profiles, averaged together, to approximate the noiseless system transfer
function. This paper presents a new method which bypasses all errors associated
with profile misregistration but sacrifices the Phase Transfer Function (PTF) as a
consequence. This technique is applicable to systems which meet the Nyquist

sampling requirement in the image domain and produces useful MTFs when the
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ratio (standard deviation of MTF estimates)/(correct system MTF) does not exceed
0.4. An experimental comparison between two known registration techniques and
the proposed method, using Magnetic Resonance (MR) data, confirms the

theoretically predicted results.

4.3 THEORY
Although MTFs can be calculated using a number of methods, we shall assume
that all MTFs are calculated from Edge Spread Functions (ESF) and that the OTF

is defined to be:

(4.1)
oTF(-— FTUSF@)
|[FT(LSF()|,,
where FT denotes Fourier Transform,

f=0 specifies the OTF is normalized to the DC frequency term,

LSF(x) is the Line Spread Function derived from the ESF:

LSF(x)= de*{ ESF(x)}.
In which case, the MTF is defined as:

MTF(f) = |OTF(D],
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where || denotes magnitude, and the PTF is defined as:

PTF(f)=¢{ OTF(f)}=tan"! {im[(FT{LSF(x)})] } 4.3)

re[(FT{LSF(x)})]

where ¢ denotes the phase of the function.

A MTF assumes a noiseless system [1]; thus, to approximate this in practice,
several ESF,(x) aie usually averaged together before the LSF(x) is computed. If
the individual profiles are in perfect registration, the final MTF would be identical
to a MTF derived from a single noiseless LSF. If the profiles are misregistered,
an error will result in the MTF [4]. For simplicity, consider the case of two
noiseless LSFs misregistered by +¢ and averaged together:

LSF’(x) = " {LSF(x - ¢) + LSF(x + ¢)}. 4.4)
The MTF becomes:

MTF’(f) = cos(met)MTE(f), (4.5)

because the Shift Theorem [5],

FT{LSF(x-¢)} = FT{LSF(x)}e?™, 4.6)
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shows that a relative misregistration in one domain causes a first order phase
change in the FT domain. As a result. the MTF is cosine modulated [4] according

to the degree of misregistration e.

It can be shown mathematically that LSF registration is unnecessary:

1 & |FT{LSF(x-¢p)}|

MTF(f) = = , 4.7)
nES1 |FTILSFG-€),.
n . -2mief
1 |FT{LSF (x)}-e | | ’ @.8)
"k=1 |FT{LSF(}ye ™|,
1 n
=_E MTF (), 4.9
M=1

where ¢, refers to the offset from the true position for the kth LSF,
le—ZﬂefI _ 1 and’

n indicates the total number of profiles averaged together.

If the PTF is not required, eqns. 4.8 and 4.9 show that the first order phase

response produced by each misregistered LSF can be removed by computing the

MTF of each individual LSF, then averaging all the MTFs together. The
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elimination of phase information at the earliest possible stage removes any further

effect of misregistration and destroys the PTF information.

This registration insensitive method will work only if eac* rofile is sufficiently
sampled to produce an unaliased MTF. Therefore this technique is not compatible
with techniques, such as the tilted edge method of Judy (6], which require

registration information to build an aggregate, well sampled LSF.

4.4 METHODS, RESULTS AND DISCUSSION

The registration insensitive MTF calculation algorithm is compared with the MTFs
produced by two different registration methods using two data sets collected on a
Siemens 1.5 Tesla Helicon system. The ESF profiles were generated by a thin wall
plexiglas cube filled with distilled water [7]. Both data sets contain 256 phase
encode lines of 256 frequency encode points and produce images with a 256 mm
square Field of View (FOV) and 5 mm slice thickness. The signal to noise (S/N),
computed from the magnitude image as the signal average within the phantom
divided by the signal average in a background region free of artifacts [8], is 32

(Fig. 4.1, TR/TE = 1000/20 ms.) and 146 (Fig. 4.2, TR/TE = 5000/20 ms.).

The three MTFs in both figures were computed from complex domain images [7]

using the following profile registration methods:
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Figure 4.1. Three two-sided MTFs, derived from one experimental low S/N (32:1)
complex domain MR image, which show that the registration insensitive MTF
(solid line) best matches the expected results whereas the two registration
techniques (centre of gravity, iong dashed line and linear edge fit, short dashed
line) suffer a small cosine modulation error. However, the standard deviation (dot-
dash line) of the registration insensitive MTF shows that the quality of the results
is marginal and causes a slight frequency dependent increase of approximately 2-

3% at the cutoff frequency of the registration insensitive MTF.
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Figure 4.2. Three two-sided MTFs, dcrived from one experimental high S/N
(146:1) complex domain MR image, which show that the results produced by the
two registration methods and the registration insensitive technique converge when
high S/N (standard deviation of registration insensitive MTF; dot-dash line)

permits accurate registration. The high S/N has also eliminated the anomalous,

frequency dependent, rise in the registration insensitive MTF.




1) registration insensitive technique (solid line),

2) the centre of gravity (cg) alignment technique described in |7] (long dashes),
3) a linear fit of the entire edge using the centre of gravity information from each

individual ESF (short dashes).

The expected MTF for the pulse sequences used is a constant to the cutoff
frequency and is ideal for revealing cosine modulation errors which increase to a
maximum at the cutoff frequency. In Fig. 4.1, the registration insensitive MTF
(solid line) agrees with the theoretically predicted MTF whereas both of the other
techniques show some degree of cosine modulation error. The MTF computed
with the cg alignment method suffers from cosine modulation errors (long dashed
line, Fig. 4.1) because the image noise level was deliberately chosen to be too high
tur the registration algorithm. The MTF computed from the linear fit of edge
position shows a smaller misregistration error (short dashed line, Fig. 4.1). A
smaller error is expected because all the available information was used to locate
the entire edge. However, if the field of view is geometrically distorted. ie static
field inhomogeneities in MRI or poor linearity correction in a nuclear medicine
scintillation camera, a linear edge fit can produce less accurate results because the

linear fit cannot account for local spatial distortions.

The slightly concave shape of the registration insensitive MTF shown in Fig. 4.1
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is caused by poor S/N. If S/N is poor, the variability between estimates at a given
point in the OTF may be so high that the OTF from some profiles becomes
negative as the PTF changes sign. Usually a negative OTF value is indicative of
spurious resolution [1], but in this case it is indicative of a very poor estimate.
Since the MTF discards all phase information and forces all values to be positive,
the distribution and mean of the MTF estimates become slightly skewed. The
standard deviation, as a function of spatial frequency, of each point in the
registration insensitive MTF (Fig. 4.1, dot-dashed line) shows a maximum of
approximately 0.4 at the cutoff frequency. Therefore approximately 1.2% of all
profiles will produce OTF estimates at the cutoff frequency which are below 0 (1-
2.50) or above 2 (1+2.50), if a normal distribution is assumed. This error
theoretically adds approximately 3% to the MTF value at the cutoff frequency.
This suggests that the registration insensitive method should not be used when the
ratio of the standard deviation versus the correct system MTF, as a function of
frequency, exceeds 0.4. Due to the noise of the MTFs shown in Fig. 4.1, it is

difficult to estimate the experimental error due to noise.

Figure 4.2 shows the results produced by the same three MTF techniques when
the image S/N is high. The MTFs produced by all three methods are essentially
identical, confirming that the registration insensitive MTF technique will produce

results which agree with standard methods. Since the standard deviation curve
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maximum in Fig. 4.2 is 1/3 he recommended allowable limit, the registration

insensitive MTF is not distorted by noise.

4.5 CONCLUSION

A simple technique for computing MTFs has been demonstrated which is
insensitive to the cosine modulation errors produced when many poorly registered
ESF or LSF profiles are averaged together. Therefore, the results produced by this
method are at least as accurate as MTFs produced by techniques which require
profile registration. However, each individual profile must meet Nyquist sampling
requirements to avoid aliasing in the MTF. The gain in MTF accuracy is realized
at the loss of PTF information; a reasonable compromise because the PTF is not
used as frequently as the MTF. This work also shows that this technique is limited

to cases in which the ratio of standard deviation in the MTF to correct system

MTF does not exceed 0.4.
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CHAPTER §
A MTF ANALYSIS OF THE
SIEMENS TURBO SPIN ECHO SEQUENCE

This research was done using the Turbo Spin Echo (TSE) package on the Siemens
MRI unit at the Department of Nuclear Medicine and Magnetic Resonance at St.
Joseph’s Health Centre. The TSE package is a modified spii echo (SE) sequence
which completes k-space in a fraction of the time normally required by spin echo
sequences, at the expense of image quality and the number of acquired slices. This
chapter presents a short MTF analysis of the TSE pulse sequence. The first part
of this chapter briefly describes the pulse sequence, the second part presents the
analysis of experiments designed to study the sequence and the third and last part
summarizes the results. This analysis demonstrates one application for the MTF
analysis technique presented in this thesis. The MTF analysis of the TSE sequence

revealed an unexpected response due to an imperfect tip angle.

S.1 THE TURBO SPIN ECHO SEQUENCE

The Turbo Spin Echo (TSE) sequence is a modified Spin Echo (SE) sequence
which optimizes the use of time available for data acquisition such that SE images
are produced quickly, at the expense of the number of slices acquired. The timing

properties of the TSE sequence are best described by considering the standard SE
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Figure 5.1. A schematic timing diagram of a spin echo sequence. The initial 90°
tip, applied in the presence of the z gradient, defines a slice and is followed by y
gradient phase encoding. The slice selective 18(0° refocussing pulse, which permits
multi-slice acquisition, produces the spin echo at time TE. The system then relaxes

until the next excitation. The entire process is repeated every TR milliseconds.
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sequence. A typical spin echo sequence (Fig. 5.1) excites the sample about once
a second (TR) and collects one phase encode line of data approximately 10-100
ms. (TE) after excitation. Such pulse sequences use the available time inefficiently
because nothing happens after data acquisition while the excited nuclei in the
sample return to equilibrium. Occasionally a second image is produced with
different contrast characteristics, by allowing the signal to decay for ~100 ms.
after the spin echo before applying a second refocussing pulse. Although such
double spin echo sequences provide extra information, the efficiency with which
the available time is utilized to collect data is still poor. It was recognized in the
early stages of MRI development that it was possible to time multiplex data
acquisition and use all of the available time by exciting well spaced slices at
wastinct frequencies [1]. Although time multiplexing improves the efficiency of SE
sequences when many slices are required, SE sequences are inefficient if only a

few slices are collected.

More recently [2] the spin echo sequence was further modified to produce many
individually phase encoded echoes per excitation (Fig. 5.2) such that one image
could be produced in a fraction of the time required to produce a standard spin
echo image. The initial implementation of the Rapid Acquisition with Relaxation
Enhancement (RARE) sequence [2] showed that it was possible to collect an entire

128*128 data set, for a single slice, in one excitation. The TSE sequence was




93

o , ;10 R B
) e T | s T
; | i L i §
xgrad [T T4 S s s IO DO
i 5 rewind . rewind; i
Y — | | === 1 geistimbamn !
yorad =1 | =l e il mkd =—— Lo i
zgrad | —} L __,,m_-i*ﬂ_h__ I T S
5 3 ; signal decay . : ;
signal | . & T et Th )
A | = A repeat n times |
- - -TEn- . !
5--:: k] S erseis.lz- - o=olm _-a TR .- - - Lz - :v--z::-:;;‘::-,::—z-»s

Figure 5.2. A schematic timing diagram of a turbo spin echo sequence. The TSE
sequence is initially identical to the spin echo sequence, but after the first spin
echo the phase encoding is rewound to zero before starting the timing loop which
applies the next phase encoding step, next refocussing pulse, acquires the next
phase encode line and rewinds the phase encoding. The entire time period TR can
be filled with extra loops or fewer echoes can be collected, and several slices

acquired.
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developed to collect a few phase encoded echoes per excitation, as demonstrated
by the RARE sequence, and collect a few slices as typically done with SE
sequences. For example, the TSE sequence used to produce the experimental
results shown in this chapter acquired four phase encoded echoes per excitation.

Multislice, double spin echo TSE sequence have also been developed.

The major shortcoming of the TSE sequence arises from signal decay during data
acquisition (Fig. 5.2). Since TE, is different for each phase encode line, the
amount of signal decay varies and causes blurring in the image. The Siemens pulse
programming language has k-space acquisition order maps which determines how
k-space is filled by TSE sequences. The k-space acquisition order map chosen for
all the TSE work described here (Fig. 5.3) places the first echo (echo a) in the
central 1/4 of k-space and each successive ocho increments, or decrements,
through k-space 32 lines at a time. Since the central region of k-space dominates
image characteristics like contrast and S/N, the first echo, which has the largest
magnitude and best S/N, is placed in the central region of k-space. The weighting
factor, or MTF, which is directly controlled by the k-space acquisition order map
and sample T2, should be similar to the profile shown in Fig. 5.4. Since all
experiments presented in this chapter used TR~5TI1, Egn. 5.1 was used to

determine the signal magnitude of the phase encode lines shown in Fig. 5.4:
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Figure 5.3. This k-space acquisition order diagram, for the TSE sequence used in
this chapter, shows the phase encoded line acquired (y axis) as a function of the
order of acquisition (x axis). Each successive echo of the four (a,b,c,d) acquired
per excitation moves through k-space in steps of 32 phase encode lines. Each pulse
of the same letter is separated in time by TR (seconds), but each pulse in the set

(a,b,c,d) is separated by approximately 20 ms.
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Figure 5.4. The expected theoretical MTF from a TSE sequence in the phase
encode direction, assuming sample T2 =400 ms. and echo times (a,b,c,d) = (22.8,

45.6, 68.4, 91.2 ms.) after the 90° tip. The first echo was normalized to 1.
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Signal (t) =e t/T2, .1)

5.2 A MTF ANALYSIS OF THE TURBO SPIN ECHO SEQUENCE
Figure 5.5 shows a MTF in the phase encode direction, as produced by the TSE

sequence (solid line) described in the previous section, and the theoretically

expected MTF (dashed line). It is apparent that the TSE sequence implemented on
our Siemens imager has some unique characteristics which produce MTF’s
significantly different from the theoretically predicted MTF shown in Fig. 5.4. The
phantom used to produce the MTF shown in Fig. 5.5 was the cube phantom
described in Chapter 2 filled with distilled water doped with Gd-DTPA (T2 = 400
ms.). The T2 was chosen deliberately to produce a definite step-like shape to

emphasize the signal decay problem of TSE sequences.

Initially three possible sources of error were considered:
1) receiver problems,
2) even/odd effect,

3) stimulated echoes.

Receiver problems were considered because some of the initial MR data sets used

for TSE MTF analysis showed definite signs of quadrature imbalance [3]. It was
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Figure 5.5. The phase encode direction MTT of a TSE sequence computed from
experimental data (solid line). The dotted line represents the theoretically expected
MTF assuming a monoexponential decay (T2 =400 ms., Gd-DTPA doped distilled

water) and four spin echoes 22.8, 45.6, 68.4, 91.2 ms. after the 90° tip.
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determined that the receiver gain on the real and imaginary channels were not
identical and the quadrature angle was not 90°. The quadrature imbalance was
eliminated by replacing two receiver circuit boards, but the anomalous MTF

remained.

The even/odd effect [4] was another possible explanation for the anomalous MTF
shape. A simple way to visualize the even/odd effect is to consider a series of 180°
refocussing pulses whose axis of rotation is perpendicular to the 90° tip axis of
rotation. If the refocussing pulse is perfect, the echo will be formed in the xy
plane and each successive echo will be reduced in magnitude due to signal decay.
If the refocussing pulse is not exactly 180° the magnetization will form a plane at
an angle to the xy plane and the detected echo will be the vector component in the
xy plane. The relative signal magnitude produced by the inclined plane of

magnetization upon rephasing is, to first order:

cos(a/2), (5.2)

where « is the tip angle error. Since the next refocussing pulse will have the same

tip angle imperfection, but rotates in the opposite direction, the magnetization will

be back in the xy plane and produce an echo with the expected magnitude.
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Consequently, all odd numbered echoes have anomalously low signal magnitude
and the even numbered echoes produce the correct signal magnitude. This
even/odd pattern is found in Fig. 5.5 but cannot be the complete explanation for
the anomalous MTF shape because if the even and odd echoes are considered
separately, no signal decay is found within the odd echoes and the even numbered

echoes decay at a rate greater than expected.

The dominant mechanism causing the unusual results is probably stimulated echoes
{5]. Stimulated echoes can be formed by a sequence of at least three rf pulses. The

standard description [5} consists of three 90° pulses:

90° - t1 - 90° - 12 - 90° - t1(stimulated echo),

but stimulated echoes can be formed by any combination of three pulses with any
tip angle. For the example shown above, a portion of the transverse magnetization,
which exists at the end of t1, is rotated back along the z axis, for storage, by the
second rf pulse, to be recalled by the last rf pulse. In the ideal TSE, a perfect slice
profile would not provide any opportunity for magnetization storage leading to
later recall and signal enhancement, as the initial 90° tip would place all
magnetization in the transverse plane and all subsequent 180° tips would retain all

magnetization in the transverse plane. However, in the case of actual TSE
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sequences, imperfect slice profiles provide an opportunity for magnetization to be
recalled via the stimulated echo {[6] because of the distribution of tip angles
through a slice. The shape of the slice profile is determined, to lowest order, by
the FT of a finite rf excitation envelope and the profile can be approximated as a
rectangle convolved with a sinc function. The stimulated echoes occur at the same
time the spin echo is formed, and contribute to the net signal. Comparison of the
theoretical and experimental MTF in Fig. 5.5 clearly shows an anomalous signal
enhancement for the 2nd, 3rd, and 4th spin echo (or 3rd, 4th, and Sth rf pulse).
Note that the added contribution from stimulated echoes can only occur after the

3rd and subsequent rf pulses.

To gain an understanding of which mechanisms created the error seen in Fig. 5.5,
a new phantom was constructed and a series of experiments were performed. As
the observed error was possibly due to a combination of factors, a method had to
be developed to eliminate tip angle imperfections due to the slice profile. Rather
than modify the pulse sequence to improve the slice profile, a new phantom was
designed which would produce a nearly ideal profile in conjunction with the pulse
sequence when a thick slice was centred around the phantom. Four plexiglas plates
(100 x 100 x 3 mm) werc mounted coplanar, but perpendicular to another
plexiglas plate of identical dimension. A gap of 4.5 mm was created between the

middle two plates and a gap of 3 mm was created between each of the outer two
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plates. By filling the central chamber and using a wide 20 mm slice profile, only
the central region of the slice profile was excited. This produced a nearly

homogeneous region of tip angles. The purpose of the outer jackets will be

described later in this chapter.

The first experiment attempted to examine imperfect tip angles by varying the
reference parameter used to defin. the 90° and 180° tips. The Siemens imager
algorithm [7] determined the appropriate reference parameter to be 67.6 volts. By
varying the reference parameter until a2 maximum in the received signal voltage
was achieved, it was determined that the optimal reference was approximately 83.0
volts. This indicated that the expected 180° tip was only 147° in practice. This
18% error agreed with a reported 17% error estimate [8] and implied an even/odd

signal variation, to first order (Eqn. 5.2), of approximately 4%.

Figures 5.6 and 5.7 are the MTF’s produced when the reference voltage was
changed from 67.6 volts to 83.0 volts. Comparison of the two graphs shows that
increasing the tip angles produced a MTF which matches the theoretical MTF.
Although a significant even/odd pattern of approximately 14% is observed in Fig.
5.6 between echoes 2,3, the step size is only 10% between 2,3 and 3% between
3,4. This increase in step size, when compared to the predicted 4% for even/odd

effects, may be due to stimulated echoes because the tip angle is uniformly
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Figure 5.6. The phase encoded direction MTF (solid line) from a TSE sequence
showing an even/odd pattern symptomatic of undertipping 180° refocussing pulses.
The experimental results do not match theory (dotted line). The even/odd pattern
is greater than expected, possibly due to stimulated echoes formed as a result of
the imperfect 90° and 180° tip. The MTF data were produced by a 4.5 mm thick
phantom filled with Gd-DTPA doped distilled water (T2 = 370 ms.) and centred

within a 20 mm slice.
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Figure 5.7. The phase encoded direction MTF (solid line) from a TSE sequence
when the slice profile is nearly ideal and the tip angles are properly tuned. The
experimental data fits theory (dotted line) closely. The MTF data were produced
by a 4.5 mm thick phantom filled with Gd-DTPA doped distilled water (T2 = 370

ms.) and centred within a 20 mm slice.
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incorrect throughout the entire sample volume. Unfortunately it was not possible
to completely separate even/odd effects and stimulated echoes because both share
a common tip angle imperfection mechanism. From the results shown in Figs. 5.6
and 5.7 and Eqn. 5.2, it was concluded that the error introduced in Fig. 5.5 by the

even/odd effect was minor.

The jackets on either side of the central chamber were then used to test for
stimulated ecio formation. After the data shown in Fig. 5.7 were collected, the
jackets were filled, in situ, ar ~ another data set were collected without modifying
any imaging or imager parameters. With the jackets filled, the signal producing
region of the phantom was 16.5 mm thick. Even though the phantom was narrower
than the 20 mm slice by approximately 15%, the stimulated echoes caused by slice
profile imperfections are already apparent in the last three spin echoes of Fig. 5.8.
The stimulated echo contribution to each acquired signal varied for several
reasons. The first stimulated echo, found in the second echo, was formed by a 90°-
180°-180° (nominal tip angle) sequence whereas all remaining stimulated echoes
were formed by a 180°-180°-180° (nominal tip angle) pulse sequence. Additionally,
each stimulated echo is acted on by all subsequent rulses and contributes in some
fashion to the remaining echoes. If many 180° (nominal) rf pulses are applied, a

steady state condition will form [6] and the MTF should stop oscillating.
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Figure 5.8. A phase encoded direction MTF from a TSE sequence showing signal
enhancement from stimulated echoes as a result of slice profile imperfections. All
parameters are identical to Fig. 5.7, but the outer two jackets of the phantom were
filled with the same Gd-DTPA doped distilled water (T2 = 370 ms.) filling the
inner chamber. The outer jackets are 3 mm thick and are separated from the

central chamber by a 3 mm thick plexiglas plate.
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5.3 SUMMARY

The results shown in Figs. 5.6, 5.7, and 5.8 indicate that the unusual MTF seen
in Fig. 5.5 was a result of imperfect tip angle. Although even/odd effects play a
minor role in creating the anomalous behaviour exhibited by TSE sequences, the
dominant error is due to stimulated echoes and their approach to a steady state
condition [6]. Our results show that the stimulated echoes are formed in the outer
regions of the slice profile by incorrect tip angles. The signal contribution from
the tail regions of the slice is greater than expected because the stimulated echoes
form preferentially in the tails of the slice profile. In the case of the data presented
here, the error caused by the slice profile was further compounded by a general
undertipping throughout the entire slice. Since the tails of the slice profile
contribute to the TSE MTF, a component of the MTF shown in Fig. 5.5 is
actually produced from regions outside the slice of interest. Consequently, the
experimental MTFs will differ from the theoretical MTFs predicted in [9] which

do not account for stimulated echoes.

In summary, this MTF analysis of the TSE sequence has shown how stimulated

echoes can alter the resolution characteristics of a pulse sequence.
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CHAPTER 6
FUTURE WORK AND SUMMARY

This chapter is composed of three sections: application of the MTF to MRI
hardware, application of the MTF to MRI software and a summary of the results

presented in this thesis.

6.1 APPLICATION OF THE MTF TO MRI HARDWARE

The MTF can analyze the total system performance of MRI hardware when
subjected to the demands of various pulse sequences. For example, pulse
sequences have been developed which scan k-space very quickly by demanding
large gradient amplitudes and fast gradient rise times. If neither of the gradient
requirements are met, the higher k-space frequencies will not be sampled, causing

a reduction in resolution.

It is likely that some information determined with the MTF can be derived more
efficiently by other methods which already exist. For example, the spatial linearity
of the gradients is one factor which controls image resolution. The MTF can test
the linearity of the gradients, but only in a localized region, whereas a pin cushion

phantom can test for spatially non-uniform gradients over the entire FOV.

109
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6.2 APPLICATION OF THE MTF TO MRI SOFTWARE

The MTF may be useful for testing pulse sequences, as demonstrated with TSE
sequences in Chapter 5. It is possible that MTF analysis of different pulse

sequences will find other unusual responses.

The MTF may also prove useful in the analysis of reconstruction algorithms
because the quality of the final image is determined, in part, by how the
reconstruction algorithm processes the collected data. There are, broadly speaking,
three categories of reconstruction algorithms, each optimized for a specific task.
The first category of reconstruction algorithms applies the 2DFT to the raw data.
The second category attempts to derive more information from the raw data, or
suppress undesired signals with special signal processing techniques, while the
third category estimates the magnitude and phase of uncollected data. The data
estimation algorithms can be further subdivided into two subclasses: completing
incomplete' data sets or expanding complete data sets. The ability to complete
data sets permits useful information to be retrieved from partly corrupted data sets,
reduce data acquisition time and possibly increase S/N [2]. The ability to expand
complete data sets improves resolution without the time penalty required to acquire

the extra data. It is hoped that the last two categories of reconstruction algorithms

'The word complete denotes data sets which symmetrically cover k-space about
the null gradient point.
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will benefit from MTF analysis during the design process. The third category of

reconstruction algorithms may even benefit from PTF analysis.

The proprietary tapers employed by some manufacturers during image
reconstruction are an example of the signal processing techniques implemented by
the second category of reconstruction algorithm. Various tapers, or windows, have
been used to reduce Gibb’s ringing artifact or improve image domain S/N and
cosmetic appearance at the expense of resolution. The MTF can determine the
shape of these tapers and quantify the resolution degradation in the same fashion
that [1] used noise analysis techniques to characterize the proprietary frequency

domain filter used during data sampling.

The Half Fourier reconstruction algorithm is an example of a data completion
reconstruction algorithm. The magnitude image MTF method has been applied to
the Siemens MRI unit Half Fourier reconstruction algorithm, since the
reconstruction algorithm only produces magnitude images, and the results are
indistinguishable from magnitude image MTF’s produced from complete data sets.
Phase Transfer Function analysis was not possible because only the magnitude

image was available.

The CORE (Constrained Reconstruction) [3] technique is an example of a data
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extension reconstruction algorithm. CORE models objects as a sum of boxes of

varying size and enhances image resolution by sharpening the edge of all boxes in
an iterative process. However, like other data extension algorithms, CORE may
not be amenable to MTF and PTF analysis because it is non-linear, adaptive and
iterative. In addition, the validity of the MTF produced from a CORE
reconstructed image is subject to speculation because the single cube phantom
MTF analysis method presented in this thesis is ideally suited for CORE

reconstruction.

6.3 SUMMARY

This thesis presented three different methods of computing the MTF:

1) The aligned complex ESF method which produces both the two-sided MTF and
two-sided PTF. This method requires the complex domain raw data so that the

complex domain image can be computed.
2) The unaligned complex ESF method which produces the two-sided MTF only.
It too requires the complex domain raw data so that the complex domain image can

be computed.

3) The aligned or unaligned partial volume ESF from magnitude images. This
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technique produces useful one-sided MTF’s in a limited range of applications and

does not require the raw data.

The two complex image techniques (#1,2) were shown to be necessary because the
magnitude operator routinely used to force complex domain images into the
positive real domain, for the convenience of image display, violates the linearity
requirement for computing MTF’s. As a consequence of using complex images,
it was shown that the output from MTF calculations are, in general, asymmetric
about the zero spatial frequency, thus requiring the use of two-sided MTF’s to

display all the information.

It was demonstrated that each of the three techniques has limitations. The first
technique requires good image S/N if the centre of gravity alignment technique is
used, otherwise the ESF estimates of position will be poor. The linear fit to edge
position is less susceptible to errors because all individual profile position estimates
are used to find the position of the entire edge, but a linear fit will fail if the main

field is inhomogeneous or the gradients are not linear.

The second technique bypasses the problems of alignment found in #1, but S/N
limits this technique in a different way. Since the magnitude operator forces all

values positive, an erroneous bias will occur in the MTF. It was shown that the
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bias is less than 3% if the ratio of standard deviation:true MTF is less than 0.4 in

the frequency range concerned.

The third technique is limited to cases where the expected two-sided MTF is
mirror symmetric about the zero spatial frequency point. Unfortunately, this means
a two-sided MTF must be computed first, rendering the one-sided MTF from a
magnitude image redundant. It was found that if this technique is erroneously
applied to data which are asymmetric, the degree of asymmetry will be partially
masked by the frequency components which were collected properly. Further, it
would be impossible to determine which of the positive or negative frequency
components were collected improperly. The third technique will also suffer the

same S/N limitations of technique #1, if edge alignment is required.

Provided that the limitations of the various methods are observed, the
recommendation of this thesis is the aligned complex ESF method (#1), because
it provides both components of the OTF. If only the MTF is required and S/N
ensures that a bias will not be introduced, the unaligned complex ESF method (#2)
is recommended as it is accurate and simple to compute. The partial volume
technique (#3) is a convenient method, and perhaps the only method under certain

circumstances, but requires other independent tests to determine if the result is

correct, thus limiting its appeal.
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The techniques presented in this thesis are certainly not the only possible methods
by which the MTF can be computed. It is possible that line or slit type MTF
analysis techniques can be implemented, but S/N problems may be encountered
[4]. Other techniques might have to be developed for MR microscopy applications
where accurate phantom alignment might prove difficult. However, the primary
conclusion of this thesis is that the LSF used to compute the MTF must be in the

complex domain and the MTF must be presented in two-sided format.
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APPENDIX A

© 1992 Medical Physics. Reprinted, with permission, from Medical Physics; Vol.
19 #2, 1992, pp. 511 - 512.

COMMENTS ON: "TRANSFER FUNCTION
MEASUREMENTS AND ANALYSIS FOR A
MAGNETIC RESONANCE IMAGE," MOHAPATRA
ET AL. [MED. PHYS. 18, 1141 - 1144 (1991)]

by

Michael C. Steckner, Dick J. Drost, Frank S. Prato

The Modulation Transfer Function (MTF) is a widely used technique for
measuring the spatial resolution characteristics of medical imaging devices. Very
little work has been done on applying the MTF technique to MRI. A recent paper
[1] is the first paper which deals exclusively with the topic, although, to our

knowledge, it is not the first published work on the topic [2].

We have several concerns regarding the determination of the MTF presented in the

paper.

1) Although the spin echo sequence used is specified, the direction in which the
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MTF was computed is not identified. Since spin echo sequences use two unique
orthogonal spatial encoding techniques (phase and frequency encoding) with
different resolutions, proper MTF analysis requires two separate MTF’s. If the
MTF’s presented are in the phase encode direction, the MTF’s are expected to be
a constant (ie 1.0) for the range of spatial frequencies covered by phase encoding,
and O otherwise. If the MTF’s are in the frequency encode direction, the MTF’s
would be largely dependent on the filter stage used during data acquisition. Many
MR imagers use filters with a very steep frequency cutoff so that while that
bandwidth is minimized for optimal signal-to-noise characteristics, image

uniformity is preserved across the field of view in the frequency encode direction.

2) It is not stated explicitly what type of reconstruction algorithm was used. In this
letter, we assume magnitude reconstruction, but the last sentence in the abstract
suggests that some other processing was possibly involved, but not identified in the
paper. This is an important question because the MTF is valid only for linear, shift
invariant imaging systems and the magnitude operator is not linear. We have
shown [3] that serious artifacts in the MTF can result unless some method for
overcoming the non-linearity of the magnitude operator is found. Previous work
by our group [4] attempts to correct the effects of the magnitude operator by
filtering the raw data before reconstruction, and reversing the filter afterwards on

the MTF to preserve frequency response. Although the filter/compensating
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function process cancel in linear systems, the non-linear magnitude operator used
during image reconstruction ensures the two steps do not cancel out. The paper
by Mohapatra et. al., cites our work [4] and correctly identifies the MTF as
"anomalous". The filter compensation step was computed incorrectly. Correction
of this error does give the expected MTF in the phase encode direction.
Unfortunately, the filter compensation process requires large correction factors

which significantly expand the noise levels in the tail of the MTF.

3) Our major concern is the smoothing of the ERF as outlined in II.B. Data
collection and analysis. A (1,2,1) smoothing function, which we call the triangle

function [4]:

a(x) = 1-Ix| [x] <1

0 x| > 1

was used to convolve the ERF. Any filtering operation will change the form of the
MTF but there is no indication in this paper that the final MTF is compensated for

the smoothing done in the itnage domain. Mathematically, this can be shown:

ESF’(x) = ESF(x) * a(x)
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MTF'(f) = MTE(f) - FT{a(x)}

= MTF(f) - sinc’x

where * denotes convolution,
- denotes multiplication,
FT denotes Fourier Transform,

FT{a(x)} = sinc’x.

Mohapatra et. al. uses the identical filter as [4] but applies it in the image domain
by convolution atter the magnitude operator instead of the raw data domain by
multiplication. The effect is not identical, but similar. Our work [4] incorrectly
attempts to compensate for the filter, Mohapatra et. al. does not even attempt a

compensation.

4) Section II.B. Data collection and analysis also states that the ERF was
numerically differentiated, but does not explain how. Work by Cunningham [5]
shows that if the derivative was computed by the finite-element differentiation
operator, errors of up to 57% can be introduced into the MTF by the frequency
response of the derivative operator. The frequency response of the derivative

operator can be removed by scaling the MTF with [5]:




_ 1
()= sinc(nfi2f,)

where f_ denotes the cutoff frequency of the system.

We have reproduced Fig. 4 and added a curve which shows the envelope formed
by both the smoothing operator and the assumed derivative operator. The envelope
curve was scaled such that the cutoff frequency (16 cycles/cm) corresponded to the

first zero crossing of the combined functions. Note that this curve is almost

MTF

0 2 4 6 8 t0 12 14
Frequency (cycles/cm)

Fig. 4. Three replicate MTF curves for a pixel size of 0.3125 mm. These data

demonstrate the range of experimental variability.
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identical to the MTF presented in shape, and is approximately 6% higher in the

middle of the range, which is comparable to the error range shown in Fig. 4.
Since the plotted curve is an envelope, we do not expect any MTF computed with
the technique presented in the paper to produce an MTF which lies above the
envelope. The dominant feature in the MTF presented is not the transfer

characteristic of the imager, but the frequency response of the combined filtering

operations.

The paper states that the cutoff frequencies derived from their MTF’s were less
than what they theoretically predicted, based on the pixel size. We postulate that
the cutoff frequencies would match the theoretically predicted cutoff frequency if

the results presented in Fig. 4 were corrected for the filter effects listed above.

The need for accurate quantization of MR resolution characteristics is persuasively
stated by Mohapatra et. al. and the usefulness of the other metrics listed in the
paper are well documented in the references, but the requirement for all of the
metrics is an accurate MTF. We are presently finishing work on a method which
bypasses the errors introduced by the magnitude operator without the use of any
filtering process, and fully accounts for both positive and negative frequencies
required to deal with positive and negative phase encode lines and positive and

negative time relative to the spin echo peak.
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