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ABSTRACT

Let M be a reductive linear algebraic monoid with unit group G and let the
derived group of G be simply connected. The purpose of this thesis is to study the
centralizer in M of a semisimple element of G. We call this set M,.

We use a combination of the theories of algebraic geometry, linear algebraic
groups and linear algebraic monoids in our study. One of our main tools is Renner's
analogue of the classical Bruhat decomposition for reductive algebraic monoids. Our
principal result establishes an analogue of the Bruhat decomposition for M,. This
is a more general result than Renner’s decomposition for the centralizer of a torus
on a reductive algebraic monoid.

Early research by M. S. Putcha and L. E. Renner presents the basic notation and
general theory of algebraic monoids and is mainly descriptive. Later interest centres
around the theory of reductive algebraic monoids which, by definition, are always
irreducible. In this thesis we tuvestigate the irreducibility of M. After proving
propositions about the structural properties of My, we give a characterization of
the irreducibility of M.

Finally, we give examples of algebraic monoids that have only irreducible cen-

tralizers and one in which the centralizer M is reducible.
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CHAPTER 1
INTRODUCTION

A linear algebraic monoid is an affine algebraic variety M, defined over the
algebraically closed field k, along with an associative morphism m : M x M — M
and a two sided identify 1 € M for m.

The theory of linear algebraic monoids owes its development largely to M. S.
Putcha and L. E. Renner. Early research presents the basic notation and general
theory of algebraic monoids and is mainly descriptive ([P1]-[P3] and [R1]). Later
interest centres around the theory of reductive algebraic monoids which are always
irreducible.

In this thesis we are concerned with the fixed point set of a semisimple element
on a reductive linear algebraic monoid. We find that this set is an algebraic monoid
that is not necessarily irreducible.

Throughout the dissertation M denotes a reductive linear algebraic monoid over
the algebraically closed field k, G its group of units, T a maximal torus of G and
B a Borel subgroup of G containing T. We assume that the derived group of G is
simply connected.

In Chapter 2 we summarize the background information from algebraic geom-
etry, linear algebraic groups and linear algebraic monoids that is needed in the
development of this thesis.

Chapter 3 is the main part of this work. In the first section we introduce Ren-
ner’s orbit monoid, R = Ng(T)/T, and several preliminary results relating to it.

1
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In particular, we note that Renner obtains an analogue of the classical Bruhat de-
composition for reductive algebraic monoids in [R3]. He also proves a Bruhat type
decomposition for the centralizer of a torus on a reductive algebraic monoid in [R5).
The principal result of this tlcsis establishes a similar decomposition for the fixed
point set of a semisimple element on a reductive algebraic monoid. To state our
result, which is more general than Renner’s, we need the following notation. Let

8 € G be semisimple. Let

My = {z € M|zs = sz} = Cpy(s),
By = {b € B|bs = sb} = Cp(s), and

Ro = {r € Ng(T)|(rT)o # 0}/T, where (rT)o = {rt € rTrts = srt}.

Theorem: My = . el.é oBorBo, and the union is disjoint.

In Chapter 4 we explore further the monoids Ry and M, that were presented in
the previous chapter. In particular we prove that R is a finite inverse monoid and
M, is a regular algebraic monoid. In addition we note that My = Cy(s) and Cg(s)
are not necessarily the same. Our final result in this section establishes conditions
for the equivalence of these two structures.

Finally, in Chapter 5 we illustrate our principal results with concrete examples.
In Example 5.1.1, in which M is the reductive linear algebraic monoid M;(k), we

use Theorem 4.2.1 to show that My = Cg(s). In Example 5.1.2, we let

Gi = {A®(A7")'|A € Shy(k)}

G = k*G; and M = kG; C Mq(k).
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Then M is a reductive linear algebraic monoid with group of units G. Although
M is a more complicated monoid than that in the first example, we are surprised
to find that the centralizer of each s in M is also an irreducible monoid. Finally,
Example 5.2.1 indicates that My = Cpy(s) is not necessarily an irreducible monoid.

In this case we let p : Sla(k)) x Sla(k) — Glg(k) be a representation defined by

wam=(A0E 2).

Let G, = p(Sly(k)x Sly(k)). Now Ty = {p(A, B)|A, B € D3(k), detA = detB =1}
is a maximal torus of G;. Let T = k*T; and G = k*C,. Then M = kG, C Ms(k)
is a reductive algebraic monoid with group of units G and T is a maximal torus of

G. To show that Cy(s) is not always irreducible, take s = (1, -1, —1,1,i, —i).




CHAPTER 2
BACKGROUND

This chapter provides a summary of the fundamental concepts and results from
algebraic geometry, algebraic groups and algebraic monoids that are required in this
thesis. Although we include some proofs, usually we give explicit references and no

proofs for known results.

2.1 ALGEBRAIC GEOMETRY

In this section we list the prerequisites from algebraic geometry. References for
this material include [Ho],[Hu],[N] and [Sp).

Let k be an algebraically closed field. The set k" is called affine n-space. A subset
X C k" is closed if it is the set of common zeros of a collection of polynomials in
klzy....,z,). Let k[X] = k[z1,...,24)/] where I = {f € k[z,,...,2,]|f(X) = 0}.

If I is any ideal in k[z,,...,z,], let V(I) be the set of its common zeros in k".
For a subset X C k", denote by I(X) the collection of all polynomials vanishing on
X. Recall that the radical T of an ideal I is {f € k[z,,...,z,]|f" € I for some

r>1}. VT is an ideal. A radical ideal is one that is equal to its radical.

Theorem 2.1.1 (Hilbert’s Nullstellensatz) [Sp; Theorem 1.1.2). If I is any

ideal in k[zy,...,z,], then VI = Z(V(I)).

Theorem 2.1.1 implies that there is a 1-1 correspondence between the radical

ideals in k[z,,...,z,) and the closed subsets of k".

4




S

The topology on k™ is called the Zariski topology. It has the properties that
points are closed and every open cover of X C k™ has a finite subcover.

A closed subset X of k™ is irreducsble if it cannot be written as the union of two
proper, non-empty, closed subsets.

Let X be a topological space. Suppose that for each non-empty open set U of
X, there is associated a subalgebra O(U) of the k-algebra of k-valued functions on
U, subject to the following conditions. (We agree that O(@) = {0}.)

(1) ¥ U and V are non-empty open sets with U C V and f € O(V), then
flv € O(U).

(2) If U is a non-empty open set with an open covering {Ua,a € A} and if there
is a function f : U — k for which fly, € O(U,) for all a € A, then f € O(U).

Then O = Ox is an example of a sheaf of functions on X. A pair (X,0x) of a

topological space and a sheaf of functions is called a ringed space.

Proposition 2.1.2. Let X C k™ be a closed set. For each non-empty open subset
UofX,let OU) = Ox(U) = {a : U — k| there exists an open cover {Uy} of
U such that aly, = f/g for some f,g € k[X] and g is non-zero on U,}. Then

X = (X, 0) is a ringed space.

Proof. 1t is clear that O(U) is a subalgebra of k-valued functions. Suppose U and
V are non-empty open sets with U C V and a € O(V'). Then we have a|y € O(U).
Next let U be a non-empty open set with an open covering {Uqs,a € A}, and let
B : U — k be a function with 8|y, € O(Ua,). For each a, we have an open covering

Uay and Blu,, = f/g9. The set of all Uy,'s is an open covering of U and B|v,, =




(Blv.)u.., = f/g, proving the proposition. O

The ringed spaces (X, Ox) of Proposition 2.1.2 are the affine algebraic varieties

over k.

Proposition 2.1.3 [Hu; Section 1.5], [Sp; Proposition 1.3.3). Let X be an
affine variety. There is a bijection between the points of X and the maximal ideals
of k[ X]).

Theorem 2.1.4 [Sp; Theorem 1.4.5). Let X = (X,0Ox) be an affine algebraic

variety. There is an isomorphism ¢ : k[X] — Ox(X), namely the identity map on

functions.

We call k[X] the affine algebrs of X. If X and Y are varieties then a morphism
of affine varieties from X to Y is a map ¢ : X — Y such that for every open set V
of Y and f € k[V], U = ¢~(V) is open in X and f o ¢ € k[U].

Lemma 2.1.5 [Sp; Section 1.4.7]. A morphism ¢ : X — Y of affine varieties
induces a homomorphism ¢* : k[Y] — k[X] defined by ¢*(f) = f o ¢. Conversely, if
¥ : k[Y] = k(X] is an algebra homomorphism, there exists a morphism¢' : X —» Y
with (¢')* = ¢.

Theorem 2.1.8 [N; Section 2.6, Theorem 21). Let X and Y be affine vari-

eties. There is a natura! bijection between the morphisms ¢ : X — Y and the

homomorphisms ¢* : k[Y] — k[X] of k-algebras.

We say that ¢ is an isomorphism of X onto Y ifit isa bijectionand ¢~ : Y = X

is also a morphism.
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Proposition 2.1.7 [Sp; p.12]). A morphism of varieties ¢ : X — Y is an isomor-

phism if and only if the algebra homomorphism ¢* : k[Y] — k[X] is an isomorphism.

Proposition 2.1.8 [Ho; Chapter IX, Proposition 2.2], [Sp; Section 1.5),
[Hu: Proposition 2.4]. Let X and Y be affine varieties. Then X xY is an affine

varicty and k[X x Y] = k[X]®.: k[Y].

Proposition 2.1.9 [Ho; Chapter IX, Proposition 2.1], [Hu; p.23]. If X and
Y are varieties and ¢,% : X — Y are morphisms, then the set of points x in X such

that ¢(z) = ¢(z) is closed in X.

Proposition 2.1.10 [Sp; Lemma 1.9.1). Let X and Y be affine varieties and let

¢:X — Y be a morphism. If X is irreducible, then ¢(X) is also irreducible.

Proposition 2.1.11 [Ho; p.16}, [N; Section 3.1, Theorem 2]. Let X be an

irreducible variety. If U is a non-empty open subset of X, then U = X.

Proposition 2.1.12 [Ho; p.125-126], [N; Section 3.2, Theorem 16]. Let X

and Y be irreducible affine varieties. Then X x Y is an irreducible variety.

2.2 LINEAR ALGEBRAIC GROUPS

The basic reference for the theory of algebraic groups is [Hu]. (See also [B],[N],[Sp]
and [St).)

A linear algebraic group is an affine algebraic variety G along with morphisms
m: G x C — G, where m(¢g,h)=gh, and i : G — G, where i(g)=¢g~}!, such that G
is also a group with respect to m and i. We denote the identity element of G by

1. H H C G, then Ng(H)={g € Glg~'Hg=H} is the normalizer of H in G and




8
Ce(H)={g € Glgh==hg for all h € H} is the ceniralizer of H in G. Two subsets A
and B of G are conjugate if g~ Ag = B for some g € G. A connected (irreducible)
group G is an algebraic group whose underlying variety is irreducible. G is unipotent
if it is isomorphic to a closed subgroup of U(n), the set of matrices of Gla(k) with
a;j =0if{ > j and a;; = 1. G is reductive if it is connected and every unipotent
normal subgroup of G is trivial. A closed connected subgroup T of G is a torus if it
is isomorphic to D}, (k) for some n. A maximal, closed, connected solvable subgroup

B of G is called a Borel subgroup.

Theorem 2.2.1 [Hu; Section 12.1}, [Sp; Section 5.2]. Let H be a closed
normal subgroup of the linear algebraic group G. Then
(1) G/H is a linear algebraic group.

(2) There is a canonical morphism 7 : G — G/H.

Theorem 2.2.2 [Hu; Theorem 21.3 and Corollary 21.3A]. Let G be a con-

nected algebraic group and let B be any Borel subgroup of G. Then

(1) All other Borel subgroups of G are conjugate to B.
(2) The :naximal tori of G are the maximal tori of the Borel subgroups of G,

and they are all conjugate.

Proposition 2.2.3 [Hu; Corollary 21.3C], [Sp; Corollary 7.2.7). Let T be a
torus in the algebraic group G. Then the image of T under any morphism is also a

torus.

Proposition 2.2.4 [Hu; Section 7.6]), [N; Section 5.3]). The additive group
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of k, denoted by G,, has affine algebra k[G.] = k[X], the polynomial ring in one
variable. The group G? has k|G?] = k[X,,...,X,)], the polynomial ring in n vari-
ables. The multiplicative group of k,k*, sometimes denoted by G, has affine
algebra k[G ] = k[Y,Y ~!], where Y denotes an indeterminate. The group G2, has
k[GR) = k[N, YL 2, Y7L, Y, Y Y], where 14, Y52, ., Y, are distinct indeter-

minates.

Theorem 2.2.5 (Lie-Kolchin) [Hu; Theorem 17.6], [Sp; Theorem 6.7). If
G is a closed connected solvable subgroup of Gl.(k), then G is conjugate to a
subgroup of T} (k), where T;:(k)={A € M,(k)|A is upper triangular and det A # 0}.
If G is a torus in Gla,(k), then it is conjugate to a subgroup of D, (k), where

D (k)={A € M,(k)|A is diagonal and det A # 0}.

Let z € End(V), where V is a finite dimensional vector space over the alge-
braically closed field k. Then z is nilpotent if z® = 0 for some n. If z € GI(V), we

say that z is unipotent if it is the sum of the identity and a nilpotent endomorphism.

Theorem 2.2.6 [B; Chapter 111, Theorem 10.6]), [Hu; Theorem 19.3]. Let

G be a connected solvable algebraic group and let U = G, ={g € Glg is unipotent}.
Then

(1) U is a closed connected normal subgroup of G.

(2) KT is a maximal torus of G, then G = TU.

Let G be a connected algebraic group and let T' be a maximal torus of G. Then

W = W(G) = Ng(T)/Cqg(T) is the Weyl group of G.
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Theorem 2.2.7 [B; Chapter IV, Section 11.18]. Let T be a maximal torus of

the connected algebraic group G. Then W is a finite group.

Theorem 2.2.8 [Hu; Corollary 26.2A). Let T be a maximal torus of the reduc-

tive algebraic group G. Then W = Ng(T)/T.

Theorem 2.2.9 (The Bruhat Decomposition) [Hu; Theorem 28.3]. Let G
be a reductive algebraic group, T a maximal torus of G and let B be a Borel

subgroup of G containing T. Then G = éJWBaB, and the union is disjoint.
[ -4

A homomorphism x : G — k* is called a character of the algebraic group G.
Let X(G) denote the set of characters of G. Assume G is reductive and let T C B,
where T is a maximal torus of G and B is a Borel subgroup of G containing T.
If p: G — GI(V) is a rational representation, then x € X(T) is a weight of p if
Vx={v € Vl]p(t)v = x(t)v for all t € T} # {0}, and we call V, the weight space
of x. Recall that the tangent space of G at the identity forms a Lie algebra g.
Let Ad : G — Gl(g) be the adjoint representation [Hu; Chapter III]. The nonzero
weights of Ad : G — Gli(g) are called the roots of G and we denote them by ®. Then
Ad|T determines a direct sum decomposition g = h & ]é].g.,, where dim g, = 1, for
each a € & C X(T) [Hu; Corollary 26.2B]. A base Aag & is a basis of R ® X(T)
suzh that for all B € §, f=Y_m,a, where the m, are integers all of the same sign.
Bases exist and there is a 1-1 correspondence between bases and Borel subgroups

containing T' [Hu; Section 27.3].

Theorem 2.2.10 [Hu; Theorem 26.3). Let G be a reductive algebraic group, T
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a maximal torus of G and B D T a Borel subgroup of G. Let a € ®. Then
(1) There is a unique connected T-stable subgroup U, of G with Lie algebra
Ba:
(2) There exists an isomorphism ¢, : Gg — U, such that forallt € T, z € G,,
tea(2)t™! = eo(a(t) - ) and dim U, = 1.

(3) G is generated by the groups Us(a € $) and T'.
We define the positive roots &+ to be those roots a € ¢ for which U, C B.

Proposition 2.2.11 [Sp; Proposition 10.1.1]). Let G be a reductive algebraic
group, T a maximal torus of G and B D T a Borel subgroup of G. Let U = B, =

{b € B|b is unipotent }. Then U is generated by th> U, with a € ®*.

We say that an algebraic group H is directly spanned by its closed subgroups
H;,...,H, in the given order if the product morphism ¢ : H; x --- x H, —+ H is
bijective.

Proposition 2.2.12 [Hu; Proposition 28.1). Suppose G is a reductive algebraic
group, T a maximal torus of G and B D T a Borel subgroup of G. Let U = B,. Let
H be a closed, T-stable subgroup of U. Then H is connected and directly spanned

by those U, ’s it contains (in any order).

Let V be a finite dimensional vector space over the algebraically closed field k.

We call z € End(V') semisimple if z is diagonalizable over k.

Proposition 2.2.13 [Hu; Sections 19.3 and 22.2). Let G be a connected alge-

braic group. Then each semisimple element of G lies in a maximal torus.
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Proposition 2.2.14 [Hu; p.125]. Let G be a connected solvable group. Let s € G

be semisimple. Then Cg(s) is connected.

We call a connected algebraic group of positive dimension semisimple if every
closed connected abelian normal subgroup is trivial. A semisimple algebraic group

G is said to be simply connected if the fundamental group of G is trivial.

Theorem 2.2.15 [St; Theorem 8.1]. Let G be a simply connected semisimple
algebraic group. Let o be a semisimple automorphism of G and G, its group of

fixed points. Then G, is connected and reductive.

Corollary 2.2.168 [St; Corollary 8.5 and Remark 8.3(c)). Let G be a simply
connected semisimple algebraic group. The centralizer of a semisimple element of

G is connected and reductive.

Remark £.2.17. Although Corollary 2.2.16 is stated for simply connected semisimple
algebraic groups, it is also valid for reductive algebraic groups, provided that G',

the derived group of G, is simply connected.

Proof:. Let G be a reductive algebraic group and let G' = (G, G), the derived group
of G, be simply connected. By [B; Chapter IV, Proposition 14.2], G’ is a semisimple
algebraic group and G is the product of G’ and Z(G)°, the identity component of
Z(G). Suppose s € G is semisimple. Then s = Sy for some § € Z(G)°, y € G'.
Thus, Cg(s) = Cs(y) since B € Z(G)°. By Corollary 2.2.16, Ce(y) is connected
and Cg(y) is the product of Z(G)° and Cq(y). Therefore, by Proposition 2.1.12

Ca(y) is connected.
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2.3 LINEAR ALGEBRAIC MONOIDS

The recent development of the theory of linear algebraic monoids is due mainly
to Putcha [P1-P6] and Renner [R1-R5]. We use the definitions and notation of
Renner.

A linesr algebraic monosd is an affine algebraic variety M, defined over the
algebraically closed field k, along with an associative morphismm : M x M — M
and a two-sided identity 1 € M for m. If z,y € M, then y is an snverse of z if
zyz = z and yzy = y. An element z € M is regular if r has an inverse in M. We
call an element z € M a unit if z has a unique inverse, denoted z~!, in M such
that zz7! = z='z = 1. G = G(M)={z € M|z~ € M} is called the group of
units of M. E(M) = {e € M|e? = ¢} is the set of idempoients of M. An algebraic
monoid M is irreducible if the underlying closed set is an irreducible variety. An
irreducible algebraic monoid M is reductive if G = G(M) is a reductive group. A
monoid M is von Neumann regular if for each z € M there exists a € M such that
zaz = z. M is unit regular if for each z € M there exists g € G = G(M) such that
z = zgz. A monoid M is called an inverse monoid if for all z € M there exists a

unique z* € M such that zz°z = z,2°z2* = z*, and (2*)* = z.

Remark 2.3.1. Putcha shows that G, the group of units of M, is an affine algebraic

group [P2; p. 458), [P3; p. 472).

Theorem 2.3.2 [DG; II, §2, Theorem 3.3], [P1; Theorem 3.15]). Let M be

a linear algebraic monoid. Then M is isomorphic to a closed submonoid of M,(k)

for somen € Z+.
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Corollary 2.3.3 [DG; 11, §2, Corollary 3.6}, [P3; Corollary 1.2]. Let M be
an algebraic monoid which is not a group. Then the nonunits of M form a closed

prime ideal of M.

Therefore, we see that G C M is an open subset in the Zariski topology [P4; p.
Proposition 2.3.4 follows from Proposition 2.1.11 and the fact that the group of
units G is open in M.
Proposition 2.3.4 [P4; p. 668). If an algebraic monoid M is irreducible, M = G,

where G C M is the group of units of M.

Theorem 2.3.5 [P5; Theorem 13(5)]. Let M be an irreducible monoid with
group of units G, and let z € M be regular. Then there exists u € G such that

zuz = z.
The following theorem follows from Theorem 2.3.5.

Theorem: 2.3.8. Let M be an irreducible algebraic monoid. Then the following
conditions are equivalent.

(1) M is von Neumann regular.

(2) M is unit regular.

(3) Forallz € M, there exists g € G = G(M) and e € E(M) such that z = ge.

Theorem 2.3.7 [R2; Theorem 3.1). Reductive algebraic monoids are von Neu-

mann regular.
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We define an element z in an irreducible algebraic monoid M to be semisimple

if p(z) is diagonalizable for every rational representation p : M — M, (k).

Proposition 2.3.8 [R4; Theorem 3.5]). Suppose that M is a reductive algebraic
monoid, G C M the group of units of M and let z € M. Then the following are
equivalent.

(1) =z is semisimple.

(2) z €T, the Zariski closure of some maximal torus T of G.

Let M be an algebraic monoid, ¢ € E(M), and let H, = {z € M|3y € M such
that zy = yz = ¢, ez = zre = z and ey = ye = y}. We say that M is completely
regular if M is the union of the H, as e varies over all idempotents of M. (We
note that H, is the group of units of eMe and so H, is an algebraic group. f M is

irreducible, then so is H, [P3; Lemma 1.1) and H,. = eMe by Proposition 2.3.4.)

Proposition 2.3.9 [P3; Section 3], [P6; Theorem 2.1). Let M be a reductive
algebraic monoid, G the group of units of M and T C G a maximal torus. Then T

is completely regular.




CHAPTER 3
CENTRALIZERS OF SEMISIMPLE ELEMENTS

In this chapter we establish an analogue of the Bruhat decomposition for the cen-
tralizer of a semisimple element on # reductive algebraic monoid. Renner ascertains
a similar result for the centralizer of a torus on a reductive algebraic monoid in [R5;

Lemma 6.1]. Our result is more general than Renner’s since the centralizer of a
torus coincides with the centralizer of some element of that torus [Hu; Proposition

16.4).

3.1 NOTATION AND PRELIMINARY RESULTS

Throughout this chapter let M be a reductive linear algebraic monoid with group

of units G. Fix a maximal torus T of G and let B C G be a Borel subgroup with

T C B. Let R=Ng(T) C M. (Zariski closure)

Proposition 3.1.1 [P1; Proposition 11.1]. R=Ng(T) is a unit regular inverse

monoid with group of units Ng(T') and idempotent set E(T).
Proposition 3.1.2 [P1; Theorem 11.12(ii)}. R={z € M|Tz=zT}.

Remark 3.1.3 [R3;p.309]. Renner showed that R=R/T has the unique structure of
a monoid such that = : R — R, with x(z)=zT, is a morphism of monoids.

Let E(R) be the set of idempotents of ® and let R* denote the set of units of R.

Proposition 3.1.4 [R3; Theorem 3.2.1]. R is a finite inverse monoid with group
of units R* = W = Ng(T)/T and E(R) = E(T).

16
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Renner proves an analogue of the Bruhat decomposition for reductive algebraic
monoids in the following theorem. In his computation, the Weyl group W is replaced

by the finite inverse monoid R, with unit group W.
Theorem 3.1.5 [R3; Corollary 5.8]. M = rguBrB, and the union is disjoint.
Remark 3.1.6. The most familiar example of a reductive linear algebraic monoid is
M = M, (k). In this case,

M = Mu(k), G=Gl.(k)C M,

B = {(ai;) € Gla;; =0if i > j},

T = {(ai;) € Glay; = 0 if i # j),

T = {(aij) € Mla;; = 0if i # j}.

Then

R= NG(T) = {(a,'j) € Mla.-,-a.-,, =0 lf] # k and a;ay; = 0if: # I},
R = Ng(T)/T 2 {(a;;) € Rla;j =0 or 1 for all 1,5},

E(R) = E(T) = {(aij) € Tla;; = 0 or 1 for all i, j}.
3.2 AN ANALOGUE OF THE BRUHAT DECOMPOSITION

As mentioned at the beginning of this chapter, Renner extends the Bruhat de-
composition for algebraic groups to the centralizer of a torus on a reductive algebraic

monoid in the following theorem.

Theorem 3.2.1 [R5; Lemma 6.1]. Let M be a reductive algebraic monoid with

unit group G. Let H be a torus of G and let My = Cyy(H). Then My = EU’t ByrB,,
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where By = Cp(H) and R = {r € R|rt = tr fort € H}/T. (Here T is a maximal

torus of G and B C G is a Borel subgroup with T C B.)

The principal result of this thesis generalizes the Bruhat decomposition to the
centralizer of a semisimple element on a reductive algebraic monoid. Throughout

this work we will use the following notation.

Notation. Let M be a reductive linear algebraic monoid with group of units G,
where G' = (G, G) is simply connected, and let s € G be semisimple. By Theorem
2.2.2 and Proposition 2.2.13, we may assume s € T C B, where T is a maximal

torus of G and B is a Borel subgroup of G containing T. Consider
R = Ng(T) and R = Ng(T)/T. Let
Ro = {r € R|(rT)o # 0}/T, where (rT)o = {rt € rT|rts = srt},
By = {b € B|bs = sb} = Cpg(s),
Go = {g € Glgs = sg} = Cq(s), and
My = {z € M|zs = sz} = Cp(s).
The restriction that G’ be simply connected is requirad so that G, is connected.
Note that B, is connected by Proposition 2.2.14 and G, is connected and reductive

by Corollary 2.2.16 and Remark 2.2.17.

This notation will be used throughout the thesis.
Statement of the Main Theorem.

My = U BorBy, and the union is disjoint.
r€Ro

To obtain this result, this author proves a series of lemmas and propositions.




Lemm 3.2.2- Let r E R. If(rT)o # 0, tben (rT)u = rT.

Proof. Assume that (rT)y # 0. Then srts~! = rt for some t € T. Hence, sr =

rtst=! and so srt's~! = rtst~1t's™! = rt' for all ¢’ € T since T is commutative.
Lemma 3.2.3. Let r € R. Then BrB 2 rT x k®, for some a > 0.

Proof. Let V={u € UjurB C rB}, where U is the unipotent part of B. To prove
that V is a closed subgroup of U, we' show that V = V;, where V] is the closed
subgroup of U defined by V; = {u € U|urB C rB} ([Hu; Proposition 8.2] and [R1;
Corollary 2.2.2]). Clearly V C V;. On the other hand, let u € V;. Since V; is
a group, u~! € V; and so u~'rB C rB. Hence, uu~'vrB C urB or rB C urB.
Therefore, V; = {u € UlurB = rB}. Now urB = rB implies that urB = rB, since
urBNrB # @ and two B-orbits are either equal or disjoint. Hence, V; C V. Thus
we have proved that V is a closed subgroup of U and V = {u € UlurB = rB}. To

show T C Ng(V),let t e T and u € V. Then

tut~'rB = turB, since Tr = rT by Proposition 3.1.2
=trB, becauseu €V

=rB, since Tr = rT.

Thus, T € Ng(V'). Since V is a closed subgroup of U that is normalized by T,

by Proposition 2.2.12, V = [] U,, where the U,’s are the connected T-stable
UaCV

subgroups of G defined in Theorem 2.2.10. Let X = [] U,. Now X x V = U,
UagV




defined by (z,v) = zv, is an isomorphism. Then

BrB = UTrB, since B = UT by Theorem 2.2.6(2)
=UrTB (rT=Tr)
=UrB (TB = B)
= XVrB, since XV =U

= XrB, since VrB = rB.

Define ¢ : X x rB — BrB by ¢(z,rb) = zrb. We prove ¢ is injective. Suppose
zrby = yrby. Then rb; = 2~ 'yrb,, and we have rB = r~'yrB. Hence, z7'y € V
andsoz"'y=veEVory=2zv. SoyV =zV. Now X x V — U is an isomorphism

with

(2,v) = zv,

(y,1)~» yand y = zv.

Therefore, z = y and ¢ is bijective. Thus,

1) X xrB = BrB.

2 = {u € UlrTu =rT), where r = ge, 0 € W, e € E(T)

= {u € Uleu = e}.




To prove T C Ng(Z), let t € T, u € Z. Then,

rTtut™! = rTut™?,
=rTt™!, sinceue Z

= rT.

So T C Ng(Z). Since Z is a closed subgroup of U and T C Ng(Z), by Proposi-

tion 22.12, Z = ][] U,. Let Y = [] U,. The morphism Z x Y — U, defined
UaC2 U.g2z

by (z,y) + 2y, is an isomorphism. Then

rB = rTU, since B = TU by Theorem 2.2.6(2)
=rTeZY (ZY =U and rT =Tr =Tre =rTe)
=rTeY (Z={u€Uleu=c¢e})

=rT7Y.

Define v : rTxY — rB by v(rt,y) = rty. To show 7 is injective, we let rtz = rty.
Then rt =rtyz~! andyz=' € Z. Soyz™! =z € Z and y = zz. Thus, Zy = Z=.

Now Z xY — U is an isomorphism with

(2y2) = 2z,

(1,y)~y and y = zz.

Therefore, z = y and v is injective. Hence,

) rTxY 2rB.




Thus, we have

XxrTxY = X x rB by (2),

& BrB by (1).

The isomorphism is given by (z,a,y) — zay. Since Uy = k, X = [] Ua, where
aEA
A={ajU, € V}and Y = [] Uy, where C = {a|U, € Z}, we have X = k™,
a€C

a; =|A| and Y = k*?, a; = |C|. Let a = a; + a3. Then

BrB2 X xrTxY

= rT x k°

for somea > 0. O
Lemma 3.2.4. Letr € R. Then rT 2 k* x --- x k* = (k*)® for some b > 0.

Proof. Let S={t € T|rt = r}. It is easily proved that § is a subgroup of T. That S
is closed in T follows from Proposition 2.1.9. Because S is a subgroup of the abelian
group T, S is a normal subgroup of T.

Thus, since S is a closed normal subgroup of T', by Theorem 2.2.1 we can form
the algebraic group T'/S and we have the canonical morphism, » : T — T'/S, given
by #(t) = [t] = tS. Clearly r is surjective. Therefore, since T is a torus in G and
#(T)=T/S,T/S is a torus by Proposition 2.2.3.

Define v : T/S — rT by 4([t]) = rt. The map + is a morphism of affine varieties.
Suppose rt; = rt;. Then rt,t;} =r and t,t; € S. Therefore, t,S = t,5 and 7 is

injective. Given rt € rT, we have v([t]) = rt. Hence, 7 is surjective. Thus, v is an
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isomorphism. The isomorphism v shows that rT is isomorphic, as a variety, to the

torus T/S. Therefore, rT = (k*)* for some b 2 0. O
Fixr € R. Let dim rT = b.

Lemma 3.2.5. Let H = k[BrB] be the coordinate ring of BrB and let H* =

k[BrB)* be the units of k[BrB). Then H* = k* x Z°.

Proof By Lemma 3.2.3 BrB = rT x k*, for some a > 0. Also, rT 2 (k*)* by

Lemma 3.2.4. Thus,
H = kfrT x k*]

= k[(k*)® x k%]

=k, Y. 0, Y7L X, X, by Proposition 2.2.4
Hence,

H* = (nY - Yo € Zn € )
>k x 2%

The isomorphism is given by n¥," - - Y™ s (n,(a3, -+ ,ap)). O
Lemma 3.2.8. Let H = k[BrB] and let H* be its units. Let k[H*] be the k-

algebra generated by H* as a subalgebra of H. There is an algebraic variety L such

that H 2 k[H*|=k[L). Then we get the commutative diagram

rT——.——»rT
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where i is the inclusion map, s denotes the unique isomorphism from L to L induced

by s : BrB — BrB and rT is isomorphic to L.

Proof. By Proposition 2.1.3 and Theorem 2.1.6, there is 3 morphism ¢ : BrB — L,
where L is identified with the set of maximal ideals of k[H*], Q(k[H*]). Now
k[H*)=k[Nh,... 13,170 ,Y;”!] by Proposition 2.2.4. If m is a8 maximal ideal of
k[H*), m = (Y; — ay,...,Ys = a3),a; # 0. We have a bijection between (k*)* and
Q(k[H*)), the set of maximal ideals of k[H*], given by m — (ay,...,a3).

Since BrB = rT x k°® by Lemma 3.2.3 and rT 2 (k*)* by Lemma 3.2.4, we have

the diagram
rT ———s T x k* ——s (k*)® x k°

I |

T — BB —— L

where p is the projection of the first factor, ¢ is the inclusion map and x and § are

isomorphisms. It follows that there is an isomorphism 4 from rT to L. Now

H = k[BrB]'
= Y Yn € Ko € 2)
= {f € HBrBI|f(B-B) #0)

> k* x 2°.

Let H}={x € H*|x(r) = 1}. H; is a subgroup of H*. If x,u € H;, then
(x#)(r) = x(r)u(r) = 1 and we have xu € H?. Also x~}(r) = x(r)"? =1"! = 1.
Thus, x~! € H? whenever x € H?. Let x € H*. Then x = tYo ... Y™ and x(r) =

8 € k*. Hence, (s~ x)(r) = 1 for some unique s=! € k*. So for x € H*, there exists
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a unique s € k* such that s™'x € H;. Also, H; = {Z{" - Z{"|a; € 2,Z; = 1Y,
for some n; € k*} and H is isomorphic to Z*. The isomorphism s~} : H* — Z? is
given by s~y +— (ay,-++ ,as). Similarly H, 2 Z* for all ¢. It follows that k[H*],
k[H}), k[HY), etc. yield the same subring of H = k[BrB].

Let s : BrB — BrB be defined by s(b;rb;) = sbrbs~!. Conjugation is a mor-
phism. The map s is an isomorphism with its inverse being s~! : BrB — BrB
given by s71(b;rb;) = s~ 'byrbys. By Lemma 2.1.5, there is a natural homomor-
phism s* : k[BrB] — k[BrB)]. By Proposition 2.1.7, s* is an isomorphism since
s: BrB — BrB is an isomorphism.

Thus, s* satisfies s*(H*) = H* where H* = k[BrB]*, and s*(k[H"]) = k[H"].
Therefore, we have

rT —— rT

L — L

where  is the inclusion map, s is the unique isomorphism from L to L induced by

3: BrB — BrB aad rT is isomorphic to L. O

Lemma 3.2.7. Let (BrB)o = {birb; € BrB|sbyrbys~! = byrb;}. Then
(BrB)o # 0 & (rT)o # 0.

Proof. Assume (BrB)y # 0. It follows that y((BrB)o) # #. By Lemma 3.2.6,
¥((BrB)o) C Lo. Therefore, Ly # 0. Since rT 2 L by Lemma 3.2.6, we have
(rT)o # 0.
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To prove the converse, suppose that (rT)y # 0. Then (rT)o = rT by Lemma
3.2.2. Because T' C By, By # 0. Hence, (BrB), 2 BorBy # 0. D

Proposition 3.2.8.
0,r¢Ro,

(BrB)o = {
BorBy,r € R.

Proof. If r ¢ Ro, then (rT)y = @ by definition and so (BrB)s = @ by Lemma 3.2.7.

Now let r € R;. We must show that (BrB)y = BorB,. Clearly, ByrBy C

(BrB)o. By the proof of Lemma 3.2.3, BrB = X xrTxY,where X = [[ U C B
v.gv

andY = [] U. CB. So
v.gz
(BrB)o 2 (X x rT x Y)q

2 Xo x (rT)o x Yo, since sXs™ ' = X,sYs ' =Y, srTs ! =rT.

The isomorphism is given by s(z,a,y)s™! = (szs~?,sas™?,sys~?). Its inverse is

s73(z',a',y')s = (s~ 2's,5™ a's,5~1y/s). Since (+T)o = rT,

(BrB)o =2 Xo xrT x Yy
C BorTBy, since X CBandY CB

= ByrB, (B = TB).

This proves the proposition. O
We are now able to complete the proof of the main theorem.

Theorem 3.2.9. My = GU' BorB, and the union is disjoint.
reR,
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Proof. By Theorem 3.1.5,

M, = ('g.BrB)o and the union is disjoint
= ,EQ(B'B)“’ since sBrBs~! = BrB

= U BorB, by Proposition 3.2.8. O
rER,




CHAPTER 4
IRREDUCIBILITY OF CENTRALIZERS

In this chapter we examine in more detail the structures R, and M, that were

introduced in Chapter 3. In particular, we observe that the set R is a finite inverse
monoid. Also, we note that the set Mp is a regular algebraic monoid that is not
necessarily irreducible and we give a characterization of My when M) is irreducible.

Let M be a reductive linear algebraic monoid with group of units G, where G’ is
simply connected, and let s € G be semisimple. By Theorem 2.2.2 and Proposition
2.2.13, we may assume that s € T C B, where T is a maximal torus of G and B is
a Borel subgroup of G containing T. We recall and use the notation of Chapter 3.

Thus, we have

R = Ng(T) = {z € M|Tz = 2T}, % = No(T)/T,
Ro = {r € R|(rT)o # 0)}/T, where(rT)y = {rt € rT|rts = srt},
Ry = {z € R|zs = sz} = Cg(s),
Bo = {b € Blbs = sb} = Cp(s),
Go = {9 € Glgs = sg} = Cg(s), and

My = {z € M|zs = sz} = Cu(s).

4.1 STRUCTURAL PROPERTIES OF M,

In Section 4.1 the author establishes two significant structure propositions for

M,.




Proposition 4.1.1. R, is a finite inverse monoid.

Proof. Since R is a finite monoid by Proposition 3.1.4, Ry C R is finite. Because
st=tsforallt € T,(1-T)y#0Pandsol € Ry. Also, if z,y € R, then zy € R
since szy = zsy = zys. Hence, Ry is a finite monoid.

By the above, Ry is nonempty. Let r € $,. By Proposition 3.1.4, we may let r*
be the unique inverse of r in R. Since r € R, (rT)o # 0 and srts~! = rt for some
t€T. So(srts™1)~! = (rt)~! or st~r*s~! = t~}r*. Thus, (Tr*)o = (r*T)o # 0,

proving that r* € R,. O

Proposition 4.1.2. M, is a regular algebraic monoid.

Proof. By Theorem 3.2.9 we have

Mo = {z € M|sz = zs}
= {z € Mlszs~! =z}

= re%.B"rBo' disjoint union .

It is clear that M, is a monoid since 1 € M, and if z,y € My, then szy = zsy = zys
implies that zy € M. Also, f : M — M defined by f(z) =szs"' andg: M - M
defined by g(z) = z are morphisms. Thus M, is a closed set by Proposition 2.1.9.
Therefore, My is a closed submonoid of the algebraic monoid M. Hence, M is an
algebraic monoid.

Let z € My. Then by Theorem 3.2.9, z = b rb;, where b;,b; € By and r € Ro.

Let a = b;'r*b;!, where b;,b;! € By, and r* is the unique inverse of r in R.




Therefore, by Proposition 4.1.1, r* € 8. Then a € Mo. Hence,

zaz = byrbyby ' rob; birdy

=brrrh
= byrb,
=z

and aza = b r*b by rhaby rob;
= b lrtrrody!
=b3'r*b;
=a.

Thus, for each z € M,, there exists an element a € My such that zar = z and

aza = a. Therefore, M) is a regular algebraic monoid. O

4.2 IRPFDUCIBILITY OF My

The most important result the author obtains in Chapter 4 is the following

characterization of the irreducibility of Mp.
Theorem 4.2.1. The following conditions are equivalent.
(1) My is irreducible.
(2) For all r € Ry, there exists 0 € Nc,(,)(T) and e € E(T) such that r = eo.

(3) Ry is unit regular.

Proof. (1) = (2). Assume that M, is irreducible. Therefore, My = Cg(s) by

Proposition 2.3.4. Let r € Rp. Then rT = Tr by Proposition 3.1.2. Also, we have
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r € Mo = Cg(s). Hence, r € N, (,)(T). Since Ncg(,)(T)/T is a finite group,

Nco(o)(T) = Neg(o(T)T
= Nca(.)(T)TE(T), by Proposition 2.3.9
= Neg(o)(T)E(T), since T C Nego)(T)

= E(T)Nco(o)(T)-

Therefore, r € Nc,(o)(T) implies that r = eo for some e € E(T),0 € Ncg(o)(T)-
(2) = (1). Assume that for all r € Ry there exists ¢ € Nc,(,)(T) and e € E(T)
su " that r = ec. We prove that M, is irreducible by showing that M, = Cc¢(s).

Clearly Cg(s) C Mo. We show Mo C Cc(a). Let z € My. Then

z=birby, b;,b; € Bo,r € Ro, by Theorem 3.2.9

= bjeabs, e € E(T),0 € Ncy(,)(T), by assumption .

Now o € Cg(s),by,b; € Cg(s) and e € T implies that ¢ € Ca(s). Hence, z € Cq(s)
and we have My C Cg(s). Therefore, My = Cg(s), proving that M is irreducible.

(2) = (3). Assume that for all r € Ry, there exists ¢ € Nc,(,)(T).e € E(T)
such that r = eg. We prove Ry is unit regular.

We claim that E(T) = E{R,). Clearly, E(Ry) C E(R) and E(R) = E(T) by
Proposition 3.1.1. Let e € E(T) = E(R). Then e € T, which is commutative. Since
24 €T, we have e € Ry. Thus, e € E(Ry) and E(T) C E(Ry).

Let r € Ry. By assumption r = eo for some ¢ € Nc,y(,)(T),e € E(T). Since
E(R,) = E(T), we have r = eo for some 0 € Nc,(4)(T), e € E(Ro). Therefore, Ry
is unit regular.
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(3) = (2). Assume Ry is unit regular. Let r € Ry. Then r = eo for some
e € E(Ry),0 € Ngy(,)(T). Since E(Ry) = E(T) by the above claim, we have

r = eo for 0 € Ncg(4)(T), ¢ € E(T) and the proof of the theorem is complete. O




CHAPTER 5
EXAMPLES

In this chapter we present examples to illustrate the centralizer of a semisimple
element on a reductive linear algebraic monoid.

We use the notation established in Chapter 3 throughout the discussion of these
examples. Thus, we let M be a reductive linear algebraic monoid with unit group G,
where G', the derived group, is simply connected, and we let s € G be semisimple.

We may assume that s € T C B, where T is a maximal torus of G and B is a Borel

subgroup of G containing T. We have R = Ng(T),R = Ng(T)/T and W = R* =
Ng(T)/T, the Weyl group of G. Also My = Cpm(s), Ry = Cr(8) = {r € R|sr = rs}
and Ry = {r € R|(rT)o # 0}/T, where (rT)y = {rt € rT|srt = rts}. Recall that
(rTYo =rT if (rT)o # 0.

In Examples 5.1.1 and 5.1.2 we observe that each My = Cp(s) is an irreducible
monoid by Theorem 4.2.1. However, in Example 5.2.1 we note that My = Cp(3) is

not necessarily irreducible, although Cg(s) is always a connected group by Theorem

2.2.16.

5.1 IRREDUCIBLE CENTRALIZERS

Example 8.1.1. Let M = M;(k),G = Gl3(k),T = {(ai;) € Gla;; = 0if i # j},
and T = {(ai;) € Mla;j =0if i # j}. Then T C G is a maximal torus and E(T) =
{0,1} U {e;l¢ = 1,2,...,6}, where ¢; = diag(1,0,0),e; = diag (0,1,0),e5 =
diag (0,0,1),e4 = diag (1,1,0),e5 = diag(1,0,1) and e = diag (0,1,1). We
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have W = {w,,wy,...,ws}, where w; = diag (1,1,1),

010 010 1 00
wy = 1 00 y Wy = 0 01 y Wy = 0 01 ’
0 01 1 00 010
0 01 0 01
ws=|10 0]}, and wg=|[0 1 0).
010 1 00

Let s € T be a s misimple element of G. Then s = diag (a, 8,7), where a, 3,7 €
k*. We wish to find Ry. If z € R, then z = we for some w € W and = € E(T). From
easy calculations we obtain all relations on the coordinates of s = diag (a,8,7) €T
that lead to maximal proper subsets of  of the form Ry. The list follows.

Case 1. Suppose a = 8 =+. Then R = R.

Case 2. Suppose a = § # +. Then Ry = E(T)Uw,E(T). The cases a = v # § and
B = v # a give sets that are conjugate to Ry by some w € W.

Case 8. Suppose o # B # v,a # 4. Then R, = E(T).

In all three cases, we note that each z € Ry can be expressed as z = o'¢’ for
some o' € Ncg,(,)(T)/T,¢' € E(T). Since Ry = Ry/T, for all y € Ry there exist
0 € Ncg(s)(T),e € E(T) such that y = eo. Therefore, Mo = Cum(s) is irreducible

by Theorem 4.2.1. Hence, My = Cg(s) by Proposition 2.3.4.

Example 5.1.2. Let Gy = {A® (A™)%A € Sly(k)}, and let

T, = {A®(A~1)'|A € D3(k), det A =1}

= { diag (a, 8, '8"!,a”1,87,apB)|a,B € k*}.

Clearly, T} is a maximal torus of G;. Let T = k*T},G = k*G; and M = kG, C




35
Mg(k). Then M is a reductive algebraic monoid with group of units G and T is
a maximal torus of G. Putcha shows [P1; Example 8.6 that the idempotents of
T.E(T) = {0,1} U {h: @ hjli,j = 1,2,3,i # j} U {hi ®0li =1,2,3} U {0 @ hili =

1,2,3}, where h, = diag (1,0,0),h; = diag (0,1,0), and ks = diag (0,0,1). Let

e; = diag (1,0,0,0,1,0),¢; = diag (0,1,0,1,0,0),es = diag (1,0,0,0,0,1),
e« = diag (0,0,1,1,0,0),¢5 = diag (0,1,0,0,0,1),¢s = diag (0,0,1,0,1,0),
e; = diag(1,0,0,0,0,0),¢s = diag(0,1,0,0,0,0),e = diag (0,0,1,0,0,0),

€10 = diag (0,0,0, 1,0,0),611 = diag (0,0,0,0, 1,0),612 = diag (0,0,0,0,0,1)-

It follows that the partially ordered set of all regular J-classes of M,U(M) =

{0, Ji, 02, J3, G} with J3 > J,,J; > J2. Also,

E(J3) = {e € E(T)| rank(e) = 2},
E(J2)={e€ E(T)|rank (¢) =1and e = h; §0,i = 1,2,3}, and

E(J;) = {e € E(T)| rank (¢) =1 and e = 0 @ h;,i = 1,2, 3}.

The Weyl group is W = {w;,w,,. ..,we}, where w; = diag (1,1,1,1,1, 1),

100000\ 010000
001000 1 00000
wp=]0 10000 w0 01000
0 00100} “ 000O0T1O0]|°
00000O0:°1 000100
0000 1 0/ \0 0 00 0 1/
010000 001000\
001000 100000
we=]100000 we=]0 10000
‘4 0 00 010]® s 0 0000O0 1)
0 00001 0 00100
000100} 0000101



and

We =

COO=O0O
COO0O-=O
OO0 0O -
L — I — I — I Y
O=O0O00O0
[— - — I — ]

Let s € T C G be semisimple. Then s = a diag (a,8,a"!'8"1,a™?, 871, aB),
where a,a,8 € k*. We calculate Ry. Let z € R. Then z = we for some w € W
and e € E(T). f ¢ = 0, then z = 0 and s € T commutes with 0. If w =
w1,z =we=¢ €T and s € T commutes with e. Thus, we consider the cases
when ¢ # 0 and w # w;. We obtain all relations on the coordinates of s =
a diag (a,8,a"'8"1,a"?,87,af) € T that lead to maximal proper subsets of R
of the form R,.

A summary of the results follows.

Case 1. Suppose a = 8 = a~'8~!. This is the case a = 8 = 1,w or &, where w is

a solution to z2 + 7 + 1 = 0 and & is the complex conjugate of w. Then Ry = R.

Case 8. Suppose a = B # a~'8~). This is the case a = f,a # 1,w,@. Then
Ro = E(T) U ws E(T).
The cases a = a~!8~! # B and a # 8 = a~! 3! gives sets that are conjugate

to o by some w € W.
Case 3. Suppose a # B # a~18~),a # a~'4~!. Then R, = E(T).

In all cases we see that each z € Ry can be expressed as z = o'e’ for some
o' € Nco(o)(T)/T,¢' € E(T). Since Ry = Ro/T, for all y € Ry there exist o €

Ncao)(T),e € E(T) such that y = eo. Therefore, My = Cp(s) is irreducible by
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Theorem 4.2.1. Hence, by Proposition 2.3.4 My = Cg(s) and we unexpectedly find
that each centralizer of s in M is completely determined by the centralizer of s in

G.

Some Calculations. For completeness we include calculations used to determine
the subsets Ry in Example 5.1.2. We observe that swiejs™! = swis~le; since

ej,s ' eT.

We see that wze; € R for all a, 8 if j = 7 or 10, and that wae; € Ro

for all j if a=! = 2.

af™?

0
0
0
0
B-
0

Note that wse; € Ry for all a, 8 if j = 9 or 12, and that wie; € Ry
for all j if a = 8.




(a=f,57 =8,11

a”l= ﬂﬁ'j =9,12
B '=a?ji=1,10
Here ,wse; € Ry if ¢

a=fand 7' =a?j=1,2

a=fanda™! =92 ;=56

(A '=a’anda~' = 42,j = 3,4.

(a=8,7=17,10

al=4% ;=811
B =a? ;=912
We see that wse; € Ry if ¢

a=fandf1=a? ;=34

a=fanda?=4%j=12

| ' =a’and o™ = 42, = 5,6,

0
0
.sw,.s"= a™p

0

0

1 0
a~ ‘8~

0 1
0 0
0 0

Then wge; € Ry for all @, 4 if j = 8 or 11 and wee; € Ro if 4~! = o? for all j,
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Relations Observed and The Corresponding Fixed Points. The following
is a list of the points in R fixed by s € T C G for all possible relations on the
coordinates of s.
(1) a = B. Since wyey = wyes,wye;; = wiey;,wsey = wzer and wgeyp =
wseo, we have z € Ry if z € Wy E(T).
(2) a™! = B2 Here z € Ry ifz € w2 E(T), since wieg = waeq,wiey; =
wzeyz, wgey = wyes and wseyy = waey;.
(3) B! = a®. Then z € Ry if z € weE(T), since weer = weer, weey0 =
wWee10,Wsey = Weeg and wyey; = weeyz.
(4) o is not related to 8. Now z € R, if z € E(T) since wyer = er,wzey0 =
€10, Waey = €g, W31z = €12, Weeg = € and wee = €11.
(5 a = Band B! = a?®. (Here a = f = l,wor@.) In this case z €

Ro if 2 = wyey, wyer, wsez or wseqy.

6) a = fanda™! = B2 (a = f = l,worw) Thenz € Roif r
tWwyes, Wyetg, Wse; Or W2,
(NP '=ac’anda?! =02 (a=P =1lworw) Thenz € Ryifz =

Wye3, Wyely, W55 O WsC6.

5.2 REDUCIBLE CENTRALIZERS
Example 5.2.1. Let p : Sl;(k) x Sl3(k) — Glg(k) be a representation defined by
_(A®B7)Y 0
p(A,B) = ( 0 B

Let Gy = p(Sly(k) x Sly(k)). Now Ty = {p(A,B)|A,B € Di(k), det A =

det B = 1} is a maximal torus of G;. Let T = k*Ty and G = k*G:. Then
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M = kG; C Mg(k) is a reductive algebraic monoid with group of units G and
T is a maximal torus of G. Clearly, T = { diag (w, z,y, 2,7, 8)|wz = zy = rs,r? =
z2,8® = wy,w,z,y,2,7,3 € k*}. Hence, it is easily proved that E(T) = {0,1} U

{e;li = 1,2,. . ,8}, where

er = diag (1,0,0,0,0,0),e, = diag (0,1,0,0,0,0),es = diag (0,0,1,0,0,0),
e = diag (0,0,0,1,0,0),e5 = diag (1,1,0,0,0,0),es = diag (0,0,1,1,0,0),

er = diag (1,0,1,0,0,1) and es = diag (0,1,0,1,1,0).

It follows that the partially ordered set of all regular 7-classes of M,U(M) =

{0, J1, J2, -,3, G} with J; > Ji,J2 > b Also,

E(Js) = {e € E(T)| rank (e) = 3},
E(J;) = {e € E(T)| rank (¢) = 2} and

E(J1) = {e € E(T)| rank (e) = 1}.

The Weyl group of G is W = {w,, w;,w;3,w}, where w, = diag (1,1,1,1,1,1),

wea((3 (4 9)-

cooolo
cocoo -
L
coor~OO
c~ocooo

QO =000
[
OOO_QO
QOO OO -
O= OO0
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Let s € T C G be semisimple. Then s = ap(u,v) where u = diag (a,a7!),v =

diag (8,87!) and a,a, 8 € k*. Now, s = a diag (af~?,a8,a”'871,a"18,8,87").

We wish to find Ry. Let z € R. Then z = we for some w € W,e € E(T). If e =0,

then z = 0 and s € T commutes with 0. fw =w),z=wie=e€T ands €T
commutes with e. Hence, we must consider the cases when ¢ # 0 and v # w;. In
order to obtain R, we need to find the z = w;e;,i = 2,3,4,5 = 1,2,...,8 and the
case ¢; = 1, for which sw;e;s™! = w;e;. We note that sw;ejs~! = sw;s~'e; since
ej,s ' €T

Examples of calculations follow:

We discover that, for each j, swye;js™! = we; if and only if § = 1.

0 0 o> 0 00

0 0 0 o®> 0 0

R G 0 0 00
0 —@*')? 0 0 00

0 0 0 0 10

0 0 0 0 01

We find that, for each j,swse;s~! = wqe; if and only if a = +1.




Using this matrix we obtain the following results.

swye;s”! =wye; @ (a7’ =16 B = ta.
swyers”! =wyey & —(a” 18712 =18 f=2a7).
swyeys”! = wyes & —(af)? = -1 f=+a"L.

swye s~ = wye, © (af 1) =10 B =+a.

swiess™ =wzes @ (a”'f)¥ =1and - (a”'f7') = -1

& f=+aand §=+a"!

@ pf=a==%1,xior f=~a and a = 11,+1.
swiess™! = wyes & ~(af)? =-1and (af~?)? =1

§ﬁ=:l:aandﬂ=:!:a"

& f=a==%1,+i0or = -aand a = +1, .
swyers ! =wyer & (a”'f)’ =1and —(af)’=-1and f* =1

& f=2aand §=2a"!and §=+1

&f=a=+=], orf = —a and a = £1.
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swyegs™! =w3es & —(a”' 87 =-1,(af7')? =1and - (')’ = -1
& f=2a"',2a and f = +1
Sa=f==lorf=~aand a==l.
swys !l =wy & f=%a,f=%2a"1,f'=41land f =1
Sa=f=%lorf=—-aand a==l.
The following is a summary of the results.
Case 1. Suppose 8 = +a and a = +1. Then Ry = R.
Case 2. Suppose f = +a and a = +i. Then R = E(T)U {wsejlj = 1,2,...,6}.
Case S. Suppose § = +a and a # +1,+i. Then Ry = E(T)U {wse;,wie ).
The case 8 = +a™!,a # %1, +i gives a set conjugate to Ry in case 3.
Case 4. Suppose 8 # *a,a = +1. Then Ro = E(T) U w E(T).

The case 8 # ta,f = £1 gives a set conjugate to Ry in case 4 .

Case 5. Suppose B # ta,f # +a™',a # 11,8 # £1. Then R, = E(T).

In cases 1, 4 and 5 we observe that each z € Ry can be expressed as z = o'¢’
for some o' € Ncg(o)(T)/T,e' € E(T). Thus each r € Ro can be written as
r = oe for some ¢ € Ncy(,)(T),e € E(T). Hence, by Theorem 4.2.1 we have
M, = Cum(s) = Cg(s) in these cases. However, w3 € Ncy(s)(T)/T if and only if
B = a and a = %1. Hence, by Theorem 4.2.1 M, is not irreducible in cases 2

and 3. Thus we have illustrated the fact that Cax(s) is not always an irreducible

monoid, although M is irreducible and Cg(s) is always a connected group.
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