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Abstract

Insurance companies typically face multiple sources (types) of claims. There-

fore, modeling dependencies among different types of risks is extremely important

for evaluating the aggregate claims of an insurer. In the first part of this thesis,

we consider three classes of bivariate counting distributions and the corresponding

compound distributions introduced in a 1996 paper by Hesselager. We implement

the recursive methods for computing the joint probability functions derived by Hes-

selager and then compare the results with those obtained from fast Fourier transform

(FFT) methods. In applying the FFT methods, we extend the concept of exponen-

tial tilting for univariate FFT proposed by Grübel and Hermesmeier to the bivariate

case. Our numerical results show that although the recursive methods yield the ex-

act compound distributions if the floating-point representation error is ignored, they

generally consume more computation time than the FFT methods. On the other

hand, although FFT methods are in general very fast, they suffer from the so called

alias error. However, the alias error can be effectively reduced via the introduced

exponential tilting. Therefore, the FFT methods constitute viable alternatives to the

recursive methods for computing the joint probabilities. In the second part of the

thesis, we introduce a multivariate aggregate claims model, which allows dependen-

cies among claim numbers as well as dependencies among claim sizes. This model

makes practical sense because insurance companies typically write multi lines (types)

of insurance policies and the claims from different lines of businesses are usually de-

pendent. For example, in auto insurance, insurance companies have to pay claims

due to property damages and bodily injuries. The numbers of claims from property

damages and bodily injuries are typically dependent. In addition, one would expect

that the sizes of the two types of claims are dependent because some accidents cause

two types of claims simultaneously. For this proposed model, we derive recursive

formulas for the joint probability functions of different types of claims. In addition,

we show that the concepts of exponential tilting in the multivariate FFT can be ap-
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plied to compute the joint probability functions of the various types of claims in the

introduced multivariate aggregate claims model. Numerical examples are provided to

compare the accuracy and efficiency of the two computation methods. In the third

part of the thesis, we apply a moment-based technique to approximate the distribu-

tion of univariate and bivariate aggregate claims. The numerical examples presented

herein indicate that the proposed approximation method constitutes another viable

alternative to the recursive and FFT methods.

Key words: Bivariate counting distributions, compound distributions, recursions,

fast Fourier transform, aliasing error, exponential tilting, Panjer’s recursion, multi-

variate aggregate claims.
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Chapter 1

Introduction

Numerical evaluation of compound distributions is an important task in insurance

mathematics and quantitative risk management. In classical risk theory, the aggregate

claims of an insurance company during a time period are modeled by the compound

random variable

X =
N∑
i=1

Ui, (1.1)

where X = 0 when N = 0, N denotes the number of claims occurring within the time

period, and {Ui}i≥1 are independent and identically distributed claim size random

variables, independent of N . Panjer (1981) presented a recursive formula for com-

puting the distribution of X for positive integer-valued Uis, when the distribution of

N belongs to the R1(a, b) class whose probability function q satisfies the recursion

q(n) =

(
a+

b

n

)
q(n− 1), n ≥ 1,

for some constants a and b. Sundt (1981) proved that only the binomial distribution,

the Poisson distribution and the negative binomial distribution belong to this class of

distributions, with each distribution being characterized by a different sign of a. Since

then, the recursive method has been studied extensively in the risk theory literature

and many extensions of it exist. For example, Sundt and Jewell (1981) extended

Panjer’s formula to the case when the claim sizes are non-negative; Sundt (1992)
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generalized the (a, b, 0) class to the class Rk, in which

q(n) =
k∑

i=1

(
αi +

βi

n

)
q(n− i), n = 1, 2, 3, . . . ,

for suitable constants αi and βi, and recursive algorithm for the distribution of X with

this more general claim number distribution was obtained; Panjer and Wang (1993)

analyzed the stability of the recursive method; Willmot (1993) derived recursive for-

mulas for compound mixed Poisson probabilities. For a comprehensive review of the

recursive method, one is referred to the recent book by Sundt and Vernic (2009).

In modern insurance industry, insurers typically face multiple sources (types) of

claims. Therefore, it is extremely important to model the inter-dependence among

the different sources of risk. This thesis focuses on the developments in multivariate

aggregate claims models. In this aspect, Hesselager (1996a) introduced and derived

recursive formulas for the joint distribution of the bivariate aggregate claims random

variables

(X, Y ) =

(
N∑
i=1

Ui,

M∑
j=1

Vj

)
, (1.2)

where X = 0 when N = 0, and Y = 0 when M = 0. The number of claims (N,M) are

dependent but all the claim sizes Ui and Vj are mutually independent non-negative

integer-valued random variables and are independent of (N,M). An application of

this model could be in, for example, earthquake insurance, where insurance companies

need to evaluate the costs of both property damages and business interruptions. For

this case, N and M could represent the numbers of claims from property damages

and business interruptions respectively. Obviously they should be dependent. Three

types of dependencies between (N,M) were discussed in Hesselager (1996a). For some

other models of dependencies among claim numbers, see for example, Wang (1998)

and Vernic (1999).

Sundt (1999) and Ambagaspitiya (1999) derived independently multivariate Pan-
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jer recursion formulas for the joint distribution of the multivariate aggregate claims

(X1, · · · , Xm) =
N∑
i=1

(Ui1, · · · , Uim), (1.3)

where the claim number N is one-dimensional and its distribution belongs to the

R1(a, b) class. However, each claim is a m-dimensional random vector and these

claim vectors are mutually independent and identically distributed, and they are

independent of the number of claims. For possible connections between the models

in Hesselager (1996a) and in Sundt (1999), one is referred to Section 14.6 in Sundt

and Vernic (2009).

In practice, both recursive methods as well as transformed based techniques like

FFT are widely used. The FFT is an algorithm that can be used for inverting

characteristic functions to obtain densities of discrete random variables. The FFT

comes from the fields of signal processing. It is explained in detail with applications

to aggregate claims calculations by Robertson (1992).

In addition, approximating the aggregate claims distribution using various meth-

ods such as the normal approximation and the Esscher approximation was crucially

important historically when more accurate methods such as recursions or FFTs were

computationally infeasible. Today, approximation methods are still useful where full

individual claim numbers or claim sizes information is not available, they could used to

provide quick and relatively straightforward methods for estimating aggregate claims

probabilities and as a check on more accurate approaches. For a detailed review, the

reader is referred to Hardy (2007).

The remainder of this thesis is organized as follows. Chapter 2 considers three

classes of bivariate counting distributions and the corresponding compound distri-

butions introduced in Hesselager (1996a). We implement the recursive methods for

computing the joint probability functions of the bivariate compound random variables

and then compare the results with those obtained from FFT methods. In Chapter

3, a new multivariate aggregate claims model is introduced, this model allows depen-
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dencies among claim numbers as well as dependencies among claim sizes. For this

proposed model, the recursive formulas is derived for the joint probability functions

of different types of claims. In addition, we use multivariate FFT method to com-

pute the joint probability functions of the various types of claims, and the results are

compared with results from the derived recursive formulas for accuracy and efficiency.

Chapter 4 presents a unified moment-based approach to approximate the densities

of univariate and bivariate aggregate claims. The numerical examples show this ap-

proximation method is fairly accurate and it is quite useful when the information is

not available on claim numbers and individual claim sizes.

4



Chapter 2

Evaluations of certain bivariate

compound distributions

2.1 Introduction

Hesselager (1996a) introduced and derived recursive formulas for the joint distribution

of the bivariate aggregate claims random variables:

(X,Y ) =

(
N∑
i=0

Ui,
M∑
i=0

Vi

)
, (2.1)

where (N,M) has a probability function

p(n,m) = Pr(N = n,M = m),

and all the claim sizes Ui and Vi are mutually independent and are independent of

(N,M). Their probability functions are denoted by

f1(u) = Pr(Ui = u), f2(v) = Pr(Vi = v), (2.2)

on the non-negative integers.

One may also use inverse transformation to compute the joint distribution of

bivariate aggregate claims random variables. Previous work on computing compound

5



distributions via FFT may be found in, for example, Heckman and Meyers (1983) and

Bühlmann (1984) for univariate cases, and Clark and Homer (2003) for a bivariate

case. Embrechts and Frei (2009) compared the recursive and the inverse tranform

methods in detail and concluded that the inverse transform method offers tremendous

timing advantage and is a viable alternative to the recursive method.

A detailed comparison of FFT and recursive methods for computing bivariate

distribution functions does not exist in the literature. Therefore, in this chapter, we

consider the three bivariate aggregate claims models introduced in Hesselager (1996a).

We compare the proposed recursive algorithms in the paper with the bivariate FFT

methods for computing the bivariate distributions. In particular, we extend the tilt-

ing method for reducing the alias error associated with FFT method (Grübel and

Hermesmeier (1999)) to two–dimensional. We conclude that with tilting, the FFT

method is essentially as accurate as the recursive methods, but consumes much less

computer time.

The chapter is organized as follows. Section 2.2 briefly reviews the three bivariate

models in Hesselager (1996a) and the corresponding recursive formulas; Section 2.3

illustrates the FFT method and its tilting; Section 2.4 provides numerical examples

to compare the accuracy and computation speed of the two methods; Section 2.5

concludes this chapter.

2.2 Three bivariate models and the corresponding

recursive methods

In this section, we briefly review the three bivariate compound distributions and the

corresponding recursive formulas introduced in Hesselager (1996a). For insurance

applications of the three types of correlation structures, please refer to Hesselager

(1996a).

6



2.2.1 Model A

Let K ∼ R1(a, b), where the symbol “∼” denotes “has the distribution”, and assume

that K = N +M . The conditional distribution of N given K is binomial, that is:

Pr(N = n|K = k) =

(
k

n

)
pn1p

k−n
2 , p1 + p2 = 1.

Let PK(s) = E[sK ] and PN,M(s, t) = E[sN tM ] denote the probability generating

functions (PGFs) ofK and (N,M) respectively. Then as shown in Hesselager (1996a),

PN,M(s, t) = PK(p1s+ p2t) (2.3)

The recursive formulas for computing the joint distribution of (X,Y ) were ob-

tained in Hesselager (1996a). They are listed in Appendix A for completeness. We

note that, to compute g(x, y) = Pr(X = x, Y = y), using the recursive methods the

number of floating point operations involved is of order O
(
xy(x+ y)

)
.

2.2.2 Model B

Let N = Z0+Z1 and let M = Z0+Z2, where Z0, Z1 and Z2 are mutually independent

and Zj ∼ R1(aj, bj) for j = 0, 1, 2.

The PGF of (N,M) in this case is:

PN,M(s, t) = P0(st)P1(s)P2(t), (2.4)

where Pj denotes the PGF of Zj. The recursive formulas developed in Hesselager

(1996a) for this case are listed in Appendix A. The number of floating point operations

needed to compute g(x, y) is of order O(x2y2).

2.2.3 Model C

Let Θ be a random variable on the support [σ1, σ2], where 0 ≤ σ1 < σ2 ≤ ∞. Assume

that Θ has a probability density function u that satisfies

d

dθ
logu(θ) =

∑k
i=0 aiθ

i∑k
i=0 biθ

i
,

7



for suitable constants ai and bi, and

k∑
i=0

biθ
iu(θ) → 0, when θ → σ1, σ2.

One commonly used distribution that satisfies the above property is the Gamma

distribution with shape parameter α and scale parameter s, which is denoted by

Gamma(α, s) and has density function

u(θ) =
θα−1e−θ/s

sαΓ(α)
, for θ ≥ 0 and α, s > 0. (2.5)

In this case,
d

dθ
logu(θ) =

(α− 1)− 1
s
θ

θ
=

∑1
i=0 aiθ

i∑1
i=0 biθ

i
,

where a0 = α− 1, a1 = −1
s
, b0 = 0, and b1 = 1.

Given Θ = θ, N and M are conditionally independent Poisson random variables

with parameters θλ1 and θλ2 respectively. The Poisson distribution with parameter

µ, denoted by Poisson(µ), has probability function

p(n) =
e−µµn

n!
, n ≥ 0 and µ > 0.

Then the PGF of (N,M) is given by

PN,M(s, t) =

∫ σ2

σ1

eθ[λ1(s−1)+λ2(t−1)]u(θ)dθ. (2.6)

The recursive formulas derived in Hesselager(1996a) are listed in Appendix A. The

number of floating point operations needed to compute g(x, y) is of orderO
(
xy(x+y)

)
.

A remark is necessary here for the recursive method. In the univariate case,

Panjer and Wang (1993) showed that for Poisson and negative binomial claim number

distributions, the recursive formula is stable, producing relative errors that do not

grow fast. For the compound binomial distribution, the negative terms in the formula

can cause the successive values to blow up with alternating signs, but it does not

happen frequently in practice. These results apply to the bivariate cases discussed in

this chapter.
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Another problem needs to be dealt with in practice is underflow/overflow, which

occurs when the starting probability is smaller than the smallest number that can be

represented on a computer. Panjer and Willmot (1986) suggested several different

ways to overcome the problem. Their methods are applicable to the bivariate case as

well.

2.3 Fast Fourier transforms

Given the joint PGF PN,M(s, t) of the claim numbers (N,M), because the claim sizes

U and V are assumed to be independent, the characteristic function of (X, Y ) is

simply

ϕXY (s, t) = PN,M

(
ϕU(s), ϕV (t)

)
, (2.7)

where ϕU(s) and ϕV (t) are the characteristic functions of claim sizes U and V . There-

fore, the distribution of (X,Y ) may be obtained by inverting the characteristic func-

tion. We next briefly introduce the bivariate FFT and the inverse fast Fourier trans-

form (IFFT).

Let f(x, y) denote a function defined on the integer values of x = 0, 1, . . . , n− 1,

and y = 0, 1, . . . ,m − 1. Let fn×m denotes the matrix∗ of probabilities with its ijth

element fij being f(i, j). Then its discrete Fourier transform f̃n×m has ijth element

f̃ij =
m−1∑
c=0

n−1∑
r=0

frc exp

(
2πi

n
ri

)
exp

(
2πi

m
cj

)
i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1.

 (2.8)

The inverse mapping is

fij =
1

mn

m−1∑
c=0

n−1∑
r=0

f̃rc exp

(
−2πi

n
ri

)
exp

(
−2πi

m
cj

)
i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1.

 (2.9)

∗For convenience, in this chapter we let the row and column indices of the matrix start from 0.
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As in the one–dimensional case, to take the speedy advantage of FFT, one needs

to choose n and m to be powers of 2. For our application, we may apply the following

steps to calculate the bivariate aggregate claims distribution:

1. Set truncation points n and m for the claim sizes U and V and obtain the

discretized claim size distributions:

f1 = {f1(0), f1(1), . . . , f1(n− 1)} and f2 = {f2(0), f2(1), . . . , f2(m− 1)},

where n = 2r1 and m = 2r2 for some integers r1 and r2. Notice that if one

or both of the claim size distributions have bounded supports, the vector of

probabilities can be appropriately padded with zeros in order to force m or n

to be the power of 2.

2. Apply one-dimensional FFT to the two vectors of claim size distributions to

obtain two vectors:

f̃1 = {f̃1(0), f̃1(1), . . . , f̃1(n− 1)} and f̃2 = {f̃2(0), f̃2(1), . . . , f̃2(m− 1)}.

3. Use formulas (2.3), (2.4),(2.6), and (2.7) to obtain the matrix ϕ̃XY with the ijth

element PN,M(f̃1(i), f̃2(j)) for i = 0, . . . , n− 1 and j = 0, . . . ,m− 1.

4. Apply the IFFT (2.9) to ϕ̃XY to obtain the probability function of (X, Y ).

As discussed in Grübel and Hermesmeier (1999), the truncation of claim size

distribution in the first step and the “wrap around” effect caused by the discrete

Fourier transform introduce an aliasing error, where the compound mass that lies

at the truncation point and beyond will be wrapped around and erroneously appears

below the truncation point. This problem may be alleviated by choosing large enough

truncation points n and m.

However, Grübel and Hermesmeier (1999) introduced a more efficient way to alle-

viate the problem. The authors showed that the aliasing errors can be eliminated for
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all practical purposes by a suitable change of measure, known as exponential tilting

to the claim size distribution, which forces its tail to decrease at an exponential rate.

In particular, let

Eθf = [e−θjf(j)]j=0,1,...,n−1,

where n is the truncation point and θ > 0 is the tilting parameter. Because the

operator Eθ commutes with convolutions, the distribution of the aggregate claims

may be obtained by applying the operation E−θ to the IFFT of PN(Ẽθf), where PN

is the PGF of the claim number N and Ẽθf denotes the FFT of Eθf .

The tilting method may be applied to the bivariate models discussed in this chap-

ter. This is due to the fact that the tilting operator commutes with convolutions, and

in all three models considered in the chapter, as in the univariate model, the joint

distribution of the aggregate claims is obtained through convolutions. That is,

g(x, y) =
∑
i≥0

∑
j≥0

p(i, j)f ∗i
1 (x)f ∗j

2 (y),

where f ∗k denote the kth convolution of f .

Therefore, when applying tilting, the distributions of the bivariate compound

random variables can be computed with the following steps:

1. Set truncation points n and m for the claim sizes U and V and obtain the

discretized claim size distributions:

f1 = {f1(0), f1(1), . . . , f1(n− 1)} and f2 = {f2(0), f2(1), . . . , f2(m− 1)},

where n = 2r1 and m = 2r2 for some integers r1 and r2.

2. Tilt these two sequences:

f1 7→ Eθ1f1 = [e−θ1jf1(j)]j=0,1,...,n−1,

f2 7→ Eθ2f2 = [e−θ2jf2(j)]j=0,1,...,m−1.
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Notice that in practice an excessively large tilting parameter θ may result in un-

derflow or overflow problems. As suggested in Grübel and Hermesmeier (1999),

choosing θ1 = 10/n and θ2 = 10/m generally do not lead to numerical difficulties

assuming that double precision (64 bit) calculations are used.

3. Apply FFT to the two sequences respectively, resulting in two sequences Ẽθ1f1

and Ẽθ2f2.

4. Use formulas (2.3), (2.4),(2.6), and (2.7) to obtain the characteristic function

of (X,Y ), resulting in the n×m matrix:
PN,M(Ẽθ1f1(0), Ẽθ2f2(0)) · · · PN,M(Ẽθ1f1(0), Ẽθ2f2(m− 1))

PN,M(Ẽθ1f1(1), Ẽθ2f2(0)) · · · PN,M(Ẽθ1f1(1), Ẽθ2f2(m− 1))
...

. . .
...

PN,M(Ẽθ1f1(n− 1), Ẽθ2f2(0)) · · · PN,M(Ẽθ1f1(n− 1), Ẽθ2f2(m− 1))

 .

5. Apply IFFT to the above matrix. Then untilt each column by applying E−θ1

and untilt each row by applying E−θ2 . For i ≥ 0 and j ≥ 0, the ijth element of

the resulting matrix gives gX,Y (i, j).

2.4 Numerical examples

In this section, in order to compare the accuracy and computation speed of the recur-

sive and FFT methods for computing the joint distribution of bivariate compound dis-

tributions, we present one numerical example for each of the three models introduced

in Section 2.2. In all examples, we assume that claim sizes are Pareto distributed.

Before applying the recursive/FFT methods, the distributions are discretized using

the standard rounding method (p. 233 in Klugman et al. 2008). Because both meth-

ods are subject to the same discretization errors, we can focus on the comparisons of

errors introduced by the recursive/FFT methods.
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The computations are carried out using the free software R. R function FFT is

used to carry out the Fourier transforms and their inverses. R function discretize()

in the actuar package is used to discretize the claim size distributions.

2.4.1 An example for model A

LetK ∼ Poisson(15), N |K = k ∼ Binomial(k, 0.3) where the distribution of Binomial(m, q)

has the probability function

p(n) =

(
m

n

)
qn(1− q)m−n, m = 0, 1, . . . , 0 ≤ n ≤ m and 0 ≤ q ≤ 1.

Let X ∼ Pareto(3, 5), Y ∼ Pareto(4, 3), where the density function of Pareto(a, b)

distribution is

f(x) =
aba

(x+ b)a+1
, x > 0, a, b > 0.

The joint probability mass function at some selected points is computed using the

recursive method, the FFT method with truncation points n = m = 210, the FFT

method with truncation points n = m = 212, and the FFT method with truncation

points n = m = 212 and tilting parameter θ = 10/n. Table 2.1 presents the result-

ing probabilities. Table 2.2 illustrates the accuracy improvements from exponential

tiltings by calculating the logarithms of the ratio of the values obtained by FFT

and those obtained by recursion. Table 2.3 reports the computation time of different

methods on a personal computer with Intel Core2 Quad CPU Q8200@2.33G and 8GB

memory.

(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 3.656681e-05 3.657364e-05 3.656684e-05 3.656681e-05
(400,100) 1.222787e-06 1.223075e-06 1.222788e-06 1.222787e-06
(400,300) 2.146102e-08 2.146606e-08 2.146104e-08 2.146102e-08
(600,300) 3.535786e-09 3.536731e-09 3.535790e-09 3.535786e-09
(600,600) 2.892395e-11 2.893176e-11 2.892399e-11 2.892395e-11

Table 2.1: Values of compound probabilities g(x, y).
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(x, y) FFT(210) FFT(212) FFT(tilting)
(100,100) 8.102916e-05 2.507947e-07 1.253626e-15
(400,100) 1.019978e-04 3.479440e-07 4.339474e-15
(400,300) 1.019077e-04 3.478247e-07 2.859231e-14
(600,300) 1.160764e-04 5.512267e-07 6.793205e-13
(600,600) 1.171996e-04 5.524577e-07 4.554824e-09

Table 2.2: Logarithms of the ratios of the values obtained from the two methods.

(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 1.00 1.28 20.86 19.39
(400,100) 4.63 1.28 20.86 19.39
(400,300) 15.04 1.28 20.86 19.39
(600,300) 25.03 1.28 20.86 19.39
(600,600) 53.91 1.28 20.86 19.39

Table 2.3: Computation times of the two methods (in seconds).

Since the recursion method obtains the exact values of the compound distribution

if the errors from the floating point representation are ignored, the differences between

the FFT and the recursion methods are essentially due to aliasing errors. From the

first two tables we can see that as the truncation points increases, the alias errors

decrease. Moreover, aliasing errors are reduced dramatically by applying tilting.

As reported in Embrechts and Frei (2009), the recursive method appears to require

more CPU time than the FFT method.

2.4.2 An example for model B

Let Z0 ∼ Poisson(2), Z1 ∼ Poisson(3), Z2 ∼ Poisson(5); X ∼ Pareto(3, 5), and

Y ∼ Pareto(4, 3). As for Model A, the values of probabilities, the logarithms of the

ratios of the probabilities calculated with the recursive and the FFT methods, and

the computational speeds are reported in Tables 2.4, 2.5 and 2.6 respectively.
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(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 2.545090e-05 2.545801e-05 2.545092e-05 2.545090e-05
(400,100) 1.225507e-06 1.225848e-06 1.225508e-06 1.225507e-06
(400,300) 9.833320e-09 9.836364e-09 9.833330e-09 9.833320e-09
(600,300) 1.590431e-09 1.590992e-09 1.590433e-09 1.590431e-09
(600,600) 1.941624e-11 1.942271e-11 1.941627e-11 1.941624e-11

Table 2.4: Values of compound probabilities g(x, y).

(x, y) FFT(210) FFT(212) FFT(tilting)
(100,100) 1.212200e-04 3.614823e-07 9.643275e-16
(400,100) 1.210978e-04 4.016661e-07 1.157193e-15
(400,300) 1.344243e-04 4.367114e-07 1.515923e-13
(600,300) 1.532655e-04 6.575989e-07 1.031059e-12
(600,600) 1.447259e-04 6.335427e-07 4.215072e-10

Table 2.5: Logarithms of the ratios of the values obtained from the two methods.

(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 38.69 1.79 30.17 28.14
(400,100) 673.1 1.79 30.17 28.14
(400,300) 2269.36 1.79 30.17 28.14
(600,300) 5467.79 1.79 30.17 28.14
(600,600) 12662.18 1.79 30.17 28.14

Table 2.6: Computation times of the two methods (in seconds).

2.4.3 An example for model C

Let Θ ∼ Gamma(3, 5), λ1 = 2, λ2 = 3, X ∼ Pareto(3, 5), and Y ∼ Pareto(4, 3). For

this model, the comparisons are shown in Tables 2.7, 2.8 and 2.9.
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(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 2.656440e-06 2.786862e-06 2.656454e-06 2.656440e-06
(400,100) 1.056183e-06 1.189863e-06 1.056186e-06 1.056183e-06
(400,300) 2.838312e-06 2.943274e-06 2.838359e-06 2.838312e-06
(600,300) 2.264384e-06 2.335480e-06 2.264409e-06 2.264384e-06
(600,600) 7.946966e-07 9.796661e-07 7.947693e-07 7.946966e-07

Table 2.7: Values of compound probabilities g(x, y).

(x, y) FFT(210) FFT(212) FFT(tilting)
(100,100) 2.081542e-02 2.290490e-06 6.268129e-15
(400,100) 5.175788e-02 1.318289e-06 4.821637e-15
(400,300) 1.577045e-02 7.208424e-06 1.880439e-14
(600,300) 1.342611e-02 4.766635e-06 1.446491e-14
(600,600) 9.087674e-02 3.973305e-05 8.900743e-14

Table 2.8: Logarithms of the ratios of the values obtained from the two methods.

(x, y) Recursion FFT(210) FFT(212) FFT(tilting)
(100,100) 2.72 1.18 19.70 17.63
(400,100) 12.62 1.18 19.70 17.63
(400,300) 40.70 1.18 19.70 17.63
(600,300) 66.44 1.18 19.70 17.63
(600,600) 150.13 1.18 19.70 17.63

Table 2.9: Computation times of the two methods (in seconds).

The results from model B and model C also show that the alias errors of the FFT

method decrease with higher truncation points and that the errors are essentially

eliminated through tilting.

2.5 Conclusions

As previously mentioned, the recursive method yields the exact compound distribu-

tion if the floating point representation error is ignored. In addition, contrary to the

FFT method, one can stop the recursion at any point of interest instead of calculating
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values on all the lattice points.

However, the recursive method can only be applied on certain claim number dis-

tributions, and it seems to be computationally expensive to obtain high quantiles of

the compound distributions. On the other hand, FFT method can deal with arbi-

trary claim number distributions as long as the joint pgf is known. In addition, it is

computationally very efficient. In particular, comparing the number of the floating

point operations required by the recursive and the FFT methods for the three models

discussed, we have O
(
xy(x+ y)

)
versus O

(
xy(log2x+ log2y)

)
in model A and model

C, and O(x2y2) versus O
(
xy(log2x+ log2y)

)
in model B. Further, the aliasing errors

suffered by the FFT methods can essentially be eliminated by exponential tilting.
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Chapter 3

Evaluations of a new bivariate

aggregate claims model

3.1 Introduction

In Chapter 1, two bivariate aggregate claims models from Hesselager (1996a) and

Sundt (1999) are introduced. Notice that in both models, either the claim numbers

or the claim sizes are dependent, but not both. However, in practice, as discussed in

Cummins and Wiltbank (1983), Frees and Valdez (2008) and Section 14.6 in Sundt

and Vernic (2009), both claim numbers and claim sizes can be dependent. For in-

stance, consider property damage and bodily injury claims in a portfolio of auto

insurance policies; because some accidents cause both types of claims, it is reasonable

to assume that the numbers of the two types of claims are dependent; in addition,

the sizes of the two types of claims are also dependent when an accident causes both

types of claims. To this end, we propose the following aggregate claims model

(X,Y ) =

(
N1∑
i=1

Ui +

N3∑
k=1

Lk,

N2∑
j=1

Vj +

N3∑
k=1

Qk

)
, (3.1)

where N1 denotes the number of accidents that cause only type one claims, N2 denotes

the number of accidents that cause only type two claims, and N3 denotes the number
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of accidents that cause both types of claims. The claim number vector (N1, N2, N3)

has probability function

p(n1, n2, n3) = Pr(N1 = n1, N2 = n2, N3 = n3). (3.2)

The claim sizes {Ui}i≥1 and {Vj}j≥1 are mutually independent and are independent

of the claim numbers (N1, N2, N3) and claim sizes {Lk, Qk}k≥1. Their probability

functions are denoted by

f1(u) = Pr(Ui = u) and f2(v) = Pr(Vj = v) (3.3)

on the non-negative integers. The claim size vectors {Lk, Qk}k≥1 are mutually inde-

pendent and identically distributed and independent of claim numbers (N1, N2, N3)

and claim sizes Ui and Vj. They have the same probability function

f3(l, q) = Pr(Lk = l, Qk = q), k ≥ 1, (3.4)

on the non-negative integers.

This chapter focuses on the computation of the probability function of the bivari-

ate aggregate claims (X, Y ) defined in (3.1), which is denoted by g(x, y).

Let PX1,...,Xd
(s1, . . . , sd) denote the PGF of a d-dimensional non-negative integer-

valued vector {X1, . . . , Xd}, that is

PX1,...,Xd
(s1, . . . , sd) = E

[
sX1
1 · · · sXd

d

]
. (3.5)

Then, for model (3.1), conditioning on the claim numbers, we have that

PX,Y (s, t) =
∞∑

x,y=0

g(x, y)sxty = E
[
s
∑N1

i=1 Ui+
∑N3

k=1 Lkt
∑N2

j=1 Vj+
∑N3

k=1 Qk

]
= E

[
E
[
s
∑N1

i=1 Ui+
∑N3

k=1 Lkt
∑N2

j=1 Vj+
∑N3

k=1 Qk

∣∣∣N1, N2, N3

] ]
= E

[(
E[sU1 ]

)N1
(
E[tV1 ]

)N2
(
E[sL1tQ1 ]

)N3
]

= PN1,N2,N3

(
PU(s), PV (t), PL,Q(s, t)

)
. (3.6)
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The remaining parts of the chapter focus on the computations of the joint dis-

tribution of the two types of claims X and Y . In Section 3.2, we derive recursive

formulas for calculating the joint distribution of (X, Y ). Recursive methods can give

accurate values of the joint distributions, however, the required computations can be

intensive. Therefore, in Section 3.3, we study the FFT method for computing the

joint distribution and we generalize the tilting method in Grübel and Hermesmeier

(1999) to our multi-dimensional aggregate claims model and show how to apply the

generalized tilting method to calculate the joint distribution of (X, Y ). In Section

3.4, we use numerical examples to compare the accuracy and computational speed of

the recursive formulas and the FFT methods. We conclude that FFT method con-

sumes much less computer time than recursive method, and the aliasing errors can be

reduced by exponential tilting. This result agrees with that obtained in Embrechts

and Frei (2009). To illustrate the actuarial applications of the model, we also use the

examples in Section 3.4 to demonstrate the interdependencies between the two types

of claims (X,Y ) and their effects on the risk of the total claims X + Y.

3.2 Recursive formulas

In this section, we present recursive formulas for the probability function g(x, y) of

the bivariate aggregate claims (X, Y ), for x, y ≥ 0, assuming that the dependency

structures of claim numbers (N1, N2, N3) follow those introduced in Models A, B and C

in Hesselager (1996a). Note that we assume the distributions of claim numbers belong

to theR1(a, b) class since this class of distribution is widely used for practical purposes,

however, the recursive formulas can be similarly derived for the more generalized Rk

class introduced in Chapter 1.

.The discrete claim size distributions f1(·), f2(·), f3(·, ·) have supports on non-

negative integers and may have any form, including those obtained by discretizations

of any continuous distributions.

20



3.2.1 Model A

Let K be the total number of accidents and assume that its distribution belongs to

the R1(a, b) class. Assume that K = N1 +N2 +N3 and given K = k, the conditional

distribution of (N1, N2, N3) is trinomial with parameters k and (p1, p2, p3), that is

Pr(N1 = n1, N2 = n2, N3 = n3|K = k) =
k!

n1!n2!n3!
pn1
1 pn2

2 pn3
3 , (3.7)

with n1 + n2 + n3 = k, p1 + p2 + p3 = 1 and 0 ≤ pi ≤ 1 for i = 1, 2, 3.

Then we have

PN1,N2,N3(s, t, u) = E
[
E[sN1tN2uN3 |K]

]
= E

[
(p1s+ p2t+ p3u)

K
]

= PK(p1s+ p2t+ p3u) (3.8)

and

PX,Y (s, t) = PN1,N2,N3

(
PU(s), PV (t), PL,Q(s, t)

)
= PK

(
p1PU(s) + p2PV (t) + p3PL,Q(s, t)

)
. (3.9)

Let I(·) denote an indicator function such that I(A) is equal to one if the event

A occurs and zero otherwise. Then we have the following theorem.

Theorem 3.1. Under the conditions in model A, the following starting value and

recursive formulas hold:

g(0, 0) = PK

(
p1f1(0) + p2f2(0) + p3f3(0, 0)

)
, (3.10)

g(x, y) =
1

1− a (p1f1(0) + p2f2(0) + p3f3(0, 0))

[
p1

x∑
u=1

(
a+

bu

x

)
f1(u)g(x− u, y)

+ ap2

y∑
v=1

f2(v)g(x, y − v)

+ p3

x∑
u=0

y∑
v=0

I(u+ v > 0)

(
a+

bu

x

)
f3(u, v)g(x− u, y − v)

]
, x ≥ 1, y ≥ 0,

(3.11)

21



g(x, y) =
1

1− a (p1f1(0) + p2f2(0) + p3f3(0, 0))

[
p2

y∑
v=1

(
a+

bv

y

)
f2(v)g(x, y − v)

+ ap1

x∑
u=1

f1(u)g(x− u, y)

+ p3

y∑
v=0

x∑
u=0

I(v + u > 0)

(
a+

bv

y

)
f3(u, v)g(x− u, y − v)

]
, x ≥ 0, y ≥ 1.

(3.12)

Proof. The initial value g(0, 0) is straightforwardly derived using the definition of

PGF.

In particular, based on (3.9), model A can be represented as

(X, Y ) =
K∑
i=1

(Ci, Di), (3.13)

where the pairs (Ci, Di) are independent and identically distributed with probability

function

f(u, v) = I(v = 0)p1f1(u) + I(u = 0)p2f2(v) + p3f3(u, v). (3.14)

For this situation, Sundt (1999, Section 4B) derived the following recursive formulas

g(x, y) =
x∑

u=0

(
a+

bu

x

) y∑
v=0

f(u, v)g(x− u, y − v), x ≥ 1, y ≥ 0, (3.15)

g(x, y) =

y∑
v=0

(
a+

bv

y

) x∑
u=0

f(u, v)g(x− u, y − v), x ≥ 0, y ≥ 1. (3.16)

By inserting the above (3.14) into formulas (3.15) and (3.16) and collecting all items

containing g(x, y) to the left-hand sides, the recursive formulas (3.11) and (3.12) in

the theorem are obtained.

To calculate g(x, y) for any (x, y), we can first use (3.10) and (3.12) for x = 0,

then use (3.11) for x ≥ 1.

In terms of computational intensity, the major difference between equation (3.11)

and the classical univariate recursive formula (see for example, equation 6.3 in Sundt
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and Jewell 1981) is that in the former bivariate case, a double summation (one with

respect to x and one to y) is involved to compute g(x, y), whereas in the latter

univariate case, a single summation with respect to x is needed to compute the

probability function of a univariate aggregate claims up to value x; the number of

floating point operations required to compute this single summation is of order O(x ·

x) = O(x2), see for example Klugman et al. (2008, p. 227). Therefore we may deduce

that the number of floating point operations needed to compute g(x, y) using (3.11)

is of order O(xy · xy) = O(x2y2).

3.2.2 Model B

Let N1 = Z1 + Z0, N2 = Z2 + Z0 and N3 = Z3 + Z0, where Z1, Z2, Z3 and Z0 are

mutually independent and Zj ∼ R1(aj, bj) for j = 0, 1, 2, 3. The PGF of (N1, N2, N3)

is

PN1,N2,N3(s, t, u) = E
[
sN1tN2uN3

]
= E

[
sZ1+Z0tZ2+Z0uZ3+Z0

]
= E

[
sZ1tZ2uZ3(stu)Z0

]
= PZ1(s)PZ2(t)PZ3(u)PZ0(stu). (3.17)

Then, by (3.6)

PX,Y (s, t) = PN1,N2,N3

(
PU(s), PV (t), PL,Q(s, t)

)
= PZ1

(
PU(s)

)
PZ2

(
PV (t)

)
PZ3

(
PL,Q(s, t)

)
PZ0

(
PU(s)PV (t)PL,Q(s, t)

)
.

(3.18)

Let f ∗2 denote the 2nd convolution of f , and define two constants C1 and C2 as

C1 =1− a1f1(0)− a3f3(0, 0) + a1a3f1(0)f3(0, 0)− a0f1(0)f2(0)f3(0, 0)

+ a0a1f
2
1 (0)f2(0)f3(0, 0)− a0a1a3f

2
1 (0)f2(0)f

2
3 (0, 0) + a0a3f1(0)f2(0)f

2
3 (0, 0),

C2 =1− a2f2(0)− a3f3(0, 0) + a2a3f2(0)f3(0, 0)− a0f2(0)f1(0)f3(0, 0)

+ a0a2f
2
2 (0)f1(0)f3(0, 0)− a0a2a3f

2
2 (0)f1(0)f

2
3 (0, 0) + a0a3f2(0)f1(0)f

2
3 (0, 0).

Then we have the following theorem.
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Theorem 3.2. Under the conditions in model B, the following starting value and

recursive formulas hold:

g(0, 0) = PZ1

(
f1(0)

)
PZ2

(
f2(0)

)
PZ3

(
f3(0, 0)

)
PZ0

(
f1(0)f2(0)f3(0, 0)

)
, (3.19)

g(x, y) =
1

C1

{
x∑

u=1

(
a1 +

b1u

x

)
f1(u)g(x− u, y)

+
x∑

u=0

y∑
v=0

I(u+ v > 0)

(
a3 +

b3u

x

)
f3(u, v)g(x− u, y − v)

−
x∑

u=1

[
u∑

i=0

y∑
v=0

I(i+ v + x− u > 0)
a1(a3u+ b3i)

x
f3(i, v)g(u− i, y − v)

]
f1(x− u)

+
x∑

u=1

y∑
v=0

[
u∑

i=0

( v∑
j=0

I(i+ j + x+ y − u− v > 0)
a0(u− i)

x
[f1(i)− a1f

∗2
1 (i)]×

f2(j)g(u− i, v − j)− a3(a1 + b1)i

x
f1(i)g(u− i, v)

)]
f3(x− u, y − v)

+
x∑

u=1

y∑
v=0

[
u∑

i=0

v∑
j=0

(
(a0 + b0)u

x
f1(i)−

2a1(a0 + b0)u+ (a0b1 − a1b0)i

2x
f ∗2
1 (i)

)
×

f2(j)f3(u− i, v − j)

]
g(x− u, y − v)

+
x∑

u=1

y∑
v=0

[
u∑

i=0

v∑
j=0

I(i+ j + x+ y − u− v > 0)

(
2a0a1a3u+ a3(a0b1 + a1b0)i

2x
×

f ∗2
1 (i)− a3(a0u+ b0i)

x
f1(i)

)
f2(j)g(u− i, v − j)

]
f ∗2
3 (x− u, y − v)

+ (2a0a3 + a0b3 + a3b0)
x∑

m=1

y∑
n=0

[
m∑

u=1

n∑
v=0

[ u∑
i=0

v∑
j=0

u− i

x
[a1f

∗2
1 (i)− f1(i)]×

f2(j)f3(u− i, v − j)

]
g(m− u, n− v)

]
f3(x−m, y − n)

}
, x ≥ 1, y ≥ 0,

(3.20)

g(x, y) =
1

C2

{
y∑

v=1

(
a2 +

b2v

y

)
f2(v)g(x, y − v)
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+

y∑
v=0

x∑
u=0

I(v + u > 0)

(
a3 +

b3v

y

)
f3(u, v)g(x− u, y − v)

−
y∑

v=1

[
v∑

j=0

x∑
u=0

I(j + u+ y − v > 0)
a2(a3v + b3j)

y
f3(u, j)g(x− u, v − j)

]
f2(y − v)

+

y∑
v=1

x∑
u=0

[
v∑

j=0

( u∑
i=0

I(j + i+ y + x− v − u > 0)
a0(v − j)

y
[f2(j)− a2f

∗2
2 (j)]×

f1(i)g(u− i, v − j)− a3(a2 + b2)j

y
f2(j)g(u, v − j)

)]
f3(x− u, y − v)

+

y∑
v=1

x∑
u=0

[
v∑

j=0

u∑
i=0

(
(a0 + b0)v

y
f2(j)−

2a2(a0 + b0)v + (a0b2 − a2b0)j

2y
f ∗2
2 (j)

)
×

f1(i)f3(u− i, v − j)

]
g(x− u, y − v)

+

y∑
v=1

x∑
u=0

[
v∑

j=0

u∑
i=0

I(j + i+ y + x− v − u > 0)

(
2a0a2a3v + a3(a0b2 + a2b0)j

2y
×

f ∗2
2 (j)− a3(a0v + b0j)

y
f2(j)

)
f1(i)g(u− i, v − j)

]
f ∗2
3 (x− u, y − v)

+ (2a0a3 + a0b3 + a3b0)

y∑
n=1

x∑
m=0

[
n∑

v=1

m∑
u=0

[ v∑
j=0

u∑
i=0

v − j

y
[a2f

∗2
2 (j)− f2(j)]×

f1(i)f3(u− i, v − j)

]
g(m− u, n− v)

]
f3(x−m, y − n)

}
, x ≥ 0, y ≥ 1.

(3.21)

Proof. Similar to the proof of Theorem 3.1, the initial value g(0, 0) is obtained by

setting s, t = 0 in (3.18).

Differentiating (3.18) with respect to s and using the identity for Zj ∼ R1(aj, bj),

j = 0, 1, 2, 3,

(1− ajs)P
′

Zj
(s) = (aj + bj)PZj

(s),

one obtains

∂PX,Y (s, t)

∂s
=PX,Y (s, t)

(a1 + b1)P
′
U(s)

1− a1PU(s)
+ PX,Y (s, t)

(a3 + b3)
∂PL,Q(s,t)

∂s

1− a3PL,Q(s, t)
+
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PX,Y (s, t)
(a0 + b0)PV (t)

[
P

′
U(s)PL,Q(s, t) + PU(s)

∂PL,Q(s,t)

∂s

]
1− a0PU(s)PV (t)PL,Q(s, t)

.

Rearranging terms in the above equation results in

∂PX,Y (s, t)

∂s
=(a1 + b1)P

′

U(s)PX,Y (s, t)

− (2a0a1 + a0b1 + a1b0)P
′

U(s)PU(s)PV (t)PL,Q(s, t)PX,Y (s, t)

− a3(a1 + b1)P
′

U(s)PL,Q(s, t)PX,Y (s, t)

+ (2a3a0a1 + a3a0b1 + a3a1b0)P
′

U(s)PU(s)PV (t)P
2
L,Q(s, t)PX,Y (s, t)

+ (a3 + b3)
∂PL,Q(s, t)

∂s
PX,Y (s, t)

− (2a0a3 + a0b3 + a3b0)PU(s)PV (t)
∂PL,Q(s, t)

∂s
PL,Q(s, t)PX,Y (s, t)

− a1(a3 + b3)PU(s)
∂PL,Q(s, t)

∂s
PX,Y (s, t)

+ (2a1a0a3 + a1a0b3 + a1a3b0)P
2
U(s)PV (t)

∂PL,Q(s, t)

∂s
PL,Q(s, t)PX,Y (s, t)

+ (a0 + b0)P
′

U(s)PV (t)PL,Q(s, t)PX,Y (s, t)

− a3(a0 + b0)P
′

U(s)PV (t)P
2
L,Q(s, t)PX,Y (s, t)

+ (a0 + b0)PU(s)PV (t)
∂PL,Q(s, t)

∂s
PX,Y (s, t)

− a1(a0 + b0)P
2
U(s)PV (t)

∂PL,Q(s, t)

∂s
PX,Y (s, t)

+ a3PL,Q(s, t)
∂PX,Y (s, t)

∂s
+ a1PU(s)

∂PX,Y (s, t)

∂s

− a1a3PU(s)PL,Q(s, t)
∂PX,Y (s, t)

∂s
+ a0PU(s)PV (t)PL,Q(s, t)

∂PX,Y (s, t)

∂s

− a0a3PU(s)PV (t)P
2
L,Q(s, t)

∂PX,Y (s, t)

∂s

− a0a1P
2
U(s)PV (t)PL,Q(s, t)

∂PX,Y (s, t)

∂s

+ a0a1a3P
2
U(s)PV (t)P

2
L,Q(s, t)

∂PX,Y (s, t)

∂s
.

Equating the coefficients of sx−1ty on both sides of above equation and collecting all

items containing g(x, y) to the left-hand side yields (3.20). Equation (3.21) follows

by symmetry.
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Although the formulas look formidable, they are actually easy to be translated

into a computer program. In terms of computational intensity, a six-fold summation

(three with respect to x and three to y) is needed to compute g(x, y). Using similar

rationale for determining the computational intensity for equation (3.11), because of

the recursive nature of the formula, using equation (3.20), the number of floating

point operations needed to compute g(x, y) is of order O(x3y3 · xy) = O(x4y4).

Notice that in the trivariate Poisson case where aj = 0 and bj = λj, the formulas

in Theorem 3.2 simplify dramatically, yielding for x ≥ 1, y ≥ 0,

g(x, y) =
λ1

x

x∑
u=1

uf1(u)g(x− u, y) +
λ3

x

x∑
u=1

y∑
v=0

uf3(u, v)g(x− u, y − v)

+
λ0

x

x∑
u=1

y∑
v=0

[
u∑

i=0

v∑
j=0

uf1(i)f2(j)f3(u− i, v − j)

]
g(x− u, y − v), (3.22)

and for x ≥ 0, y ≥ 1,

g(x, y) =
λ2

y

y∑
v=1

vf2(v)g(x, y − v) +
λ3

y

y∑
v=1

x∑
u=0

vf3(u, v)g(x− u, y − v)

+
λ0

y

y∑
v=1

x∑
u=0

[
v∑

j=0

u∑
i=0

vf2(j)f1(i)f3(u− i, v − j)

]
g(x− u, y − v). (3.23)

3.2.3 Model C

Let Θ be a random variable on the support [σ1, σ2], where 0 ≤ σ1 < σ2 ≤ ∞. Assume

that Θ has a probability density function u that satisfies

d

dθ
logu(θ) =

∑k
i=0 aiθ

i∑k
i=0 biθ

i
(3.24)

for suitable constants ai and bi, and

k∑
i=0

biθ
iu(θ) → 0, when θ → σ1, σ2. (3.25)

Many distributions also have density functions satisfying these properties. For

example, Hesselager (1996b) introduced a generalized inverse Gaussian distribution,
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which is denoted by GIG(µ, β, α), and has density function

u(θ) =
µ−α

2Kα(µ/β)
θα−1exp

{
−θ2 + µ2

2βθ

}
, for θ > 0 and µ, β > 0, α ∈ R, (3.26)

where Kα(·) is the modified Bessel function of the third kind. This density function

satisfies
d

dθ
logu(θ) =

µ2 + 2β(α− 1)θ − θ2

2βθ2
=

∑2
i=0 aiθ

i∑2
i=0 biθ

i
,

where a0 = µ2, a1 = 2β(α− 1), a2 = −1, and b0 = b1 = 0, b2 = 2β.

Another commonly used distribution that satisfies the above properties is the

Gamma distribution, as we mentioned in Section 2.2.3. Note that the above conditions

are satisfied by any finite mixture of Erlang distributions whose density function is

u(θ) =
m∑
k=1

qk ek(s), m = 1, 2, . . . ,

where ek(s) is the gamma density function with shape parameter k and a constant

scale parameter, and the set of mixing weights {qk: k = 1, 2, . . . ,m} are nonnegative

and sum up to one. Under the choice of a gamma mixing distribution, a simpler

recursion than the recursion of Theorem 3.3 is presented in Subsection 7.4 of Sundt

and Vernic (2004) and Section 20.3 of Sundt and Vernic (2009).

We assume that conditional on Θ = θ, N1, N2 and N3 are independent and follow

Poisson distributions with parameters θλ1, θλ2 and θλ3 respectively. Then the PGF

of (N1, N2, N3) is given by

PN1,N2,N3(s, t, u) =

∫ σ2

σ1

eθ[λ1(s−1)+λ2(t−1)+λ3(u−1)]u(θ)dθ, (3.27)

and the PGF of (X, Y ) is given by

PX,Y (s, t) =

∫ σ2

σ1

eθ[λ1(PU (s)−1)+λ2(PV (t)−1)+λ3(PL,Q(s,t)−1)]u(θ)dθ (3.28)

=

∫ σ2

σ1

PX,Y |θ(s, t)u(θ)dθ, (3.29)

where

PX,Y |θ(s, t) = E
[
sXtY |Θ = θ

]
= eθ[λ1(PU (s)−1)+λ2(PV (t)−1)+λ3(PL,Q(s,t)−1)] (3.30)
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is the conditional PGF of (X, Y ) given Θ = θ.

To set up the recursions for the probability function of (X, Y ), we need an auxiliary

function

hi(x, y) =

∫ σ2

σ1

θigθ(x, y)u(θ)dθ, (3.31)

where gθ(x, y) is the conditional probability of (X, Y ) given θ. Notice that our target

quantity is g(x, y) = h0(x, y).

Theorem 3.3. Under the conditions in model C, the following starting value and

recursive formulas hold:

hi(0, 0) =

∫ σ2

σ1

θie−λ[1−f̃(0)]θu(θ)dθ, (3.32)

where λ = λ1 + λ2 + λ3 and f̃(0) = λ1f1(0)+λ2f2(0)+λ3f3(0,0)
λ

.

For i = 0, 1, . . . , k − 1 and x ≥ 1, y ≥ 0,

hi(x, y) =
λ1

x

x∑
u=1

uf1(u)hi+1(x− u, y) +
λ3

x

x∑
u=1

y∑
v=0

uf3(u, v)hi+1(x− u, y − v).

(3.33)

For i = 0, 1, . . . , k − 1 and x ≥ 0, y ≥ 1,

hi(x, y) =
λ2

y

y∑
v=1

vf2(v)hi+1(x, y − v) +
λ3

y

y∑
v=1

x∑
u=0

vf3(u, v)hi+1(x− u, y − v).

(3.34)

For x ≥ 1, y ≥ 0 or x ≥ 0, y ≥ 1,

ckhk(x, y) =λ1

x∑
u=1

f1(u)
k∑

i=0

bihi(x− u, y) + λ2

y∑
v=1

f2(v)
k∑

i=0

bihi(x, y − v)

+ λ3

y∑
v=1

f3(0, v)
k∑

i=0

bihi(x, y − v) + λ3

x∑
u=1

y∑
v=0

f3(u, v)
k∑

i=0

bihi(x− u, y − v)

+
k−1∑
i=0

[(i+ 1)bi+1 − ci]hi(x, y), (3.35)

where ci = λ
[
1− f̃(0)

]
bi − ai.
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Proof. Obviously,

gθ(0, 0) = eθ[λ1(f1(0)−1)+λ2(f2(0)−1)+λ3(f3(0,0)−1)],

that is

gθ(0, 0) = e−λ[1−f̃(0)]θ. (3.36)

Multiplying both sides of (3.36) by θiu(θ) and integrating over θ yields (3.32).

Differentiating (3.30) with respect to s results in

∂PX,Y |θ(s, t)

∂s
= θλ1PX,Y |θ(s, t)P

′

U(s) + θλ3PX,Y |θ(s, t)
∂PL,Q(s, t)

∂s
. (3.37)

Expanding both sides of (3.37) polynomially and then comparing the coefficients of

sx−1ty for x ≥ 1, we obtain

xgθ(x, y) = θλ1

x∑
u=1

uf1(u)gθ(x− u, y) + θλ3

x∑
u=1

y∑
v=0

uf3(u, v)gθ(x− u, y − v). (3.38)

Multiplying both sides of (3.38) by θiu(θ), integrating over θ, and then dividing by

x, one obtains (3.33). Equation (3.34) follows by symmetry.

Rewriting (3.24) as u(θ)
∑k

i=0 aiθ
i = u

′
(θ)
∑k

i=0 biθ
i, multiplying both sides by

PX,Y |θ(s, t), and then integrating over θ, we obtain∫ σ2

σ1

k∑
i=0

aiθ
iPX,Y |θ(s, t)u(θ)dθ =

∫ σ2

σ1

k∑
i=0

biθ
iPX,Y |θ(s, t)u

′
(θ)dθ

=

[
k∑

i=0

biθ
iPX,Y |θ(s, t)u(θ)

] ∣∣∣∣∣
σ2

σ1

−
∫ σ2

σ1

k∑
i=1

iθi−1biu(θ)PX,Y |θ(s, t)dθ

−
∫ σ2

σ1

k∑
i=0

biθ
iu(θ)

dPX,Y |θ(s, t)

dθ
dθ. (3.39)

Following from (3.30),

dPX,Y |θ(s, t)

dθ
= PX,Y |θ(s, t) [λ1PU(s) + λ2PV (t) + λ3PL,Q(s, t)− λ] , (3.40)

applying (3.25) and (3.40), equation (3.39) gives∫ σ2

σ1

k∑
i=0

aiθ
iPX,Y |θ(s, t)u(θ)dθ = −

∫ σ2

σ1

k−1∑
i=0

(i+ 1)θibi+1u(θ)PX,Y |θ(s, t)dθ
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−
∫ σ2

σ1

k∑
i=0

biθ
iu(θ)PX,Y |θ(s, t) [λ1PU(s) + λ2PV (t) + λ3PL,Q(s, t)− λ] dθ. (3.41)

After comparing the coefficients of sxty on both sides of (3.41) and rearranging terms,

we obtain equation (3.35).

Remark 1: Notice that (3.28) can be written as

PX,Y (s, t) =

∫ σ2

σ1

eλθ[
1
λ(λ1PU (s)+λ2PV (t)+λ3PL,Q(s,t))−1]u(θ)dθ, (3.42)

which shows that model C can be represented as

(X, Y ) =
N∑
i=1

(Ci, Di), (3.43)

where conditional on Θ = θ, N follows the Poisson(λθ) distribution, and the pairs

(Ci, Di) are independent and identically distributed with probability function

f(u, v) =
1

λ

(
I(v = 0)λ1f1(u) + I(u = 0)λ2f2(v) + λ3f3(u, v)

)
. (3.44)

For this situation, Sundt and Vernic (2004, Section 4A and 4C) and Sundt and Vernic

(2009, Section 20.4.1 and 20.4.2) showed that

hi(0, 0) =

∫ σ2

σ1

θie−λθ(1−f(0,0))u(θ)dθ, i ≥ 0, (3.45)

hi(x, y) =
λ

x

x∑
u=1

y∑
v=0

uf(u, v)hi+1(x− u, y − v), x ≥ 1, y ≥ 0, i ≥ 0, (3.46)

hi(x, y) =
λ

y

y∑
v=1

x∑
u=0

vf(u, v)hi+1(x− u, y − v), x ≥ 0, y ≥ 1, i ≥ 0, (3.47)

ckhk(x, y) =λ
x∑

u=1

y∑
v=0

f(u, v)
k∑

i=0

bihi(x− u, y − v) + λ

y∑
v=1

f(0, v)
k∑

i=0

bihi(x, y − v)

−
k−1∑
i=0

[ci − (i+ 1)bi+1]hi(x, y), x ≥ 1, y ≥ 0 or x ≥ 0, y ≥ 1. (3.48)
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Inserting (3.44) into formulas (3.45), (3.46), (3.47) and (3.48) yields (3.32), (3.33),

(3.34) and (3.35) respectively.

Remark 2: Notice that, as (3.33) and (3.34) actually hold for all i ≥ 0, one can

just use these two equations to compute the joint probabilities, but when the values

of x or y get large, the computation intensity increases tremendously. Using equation

(3.35) allows us to limit i to the maximum value k. This reduces computation time

dramatically. Similar to Model A, the number of floating point operations needed to

compute g(x, y) is of order O(x2y2), because a double summation (one with respect

to x and one to y) is involved.

3.3 Fast Fourier transforms

In this section, we discuss the use of the bivariate FFT and its IFFT to compute the

joint probability functions of the aggregate claims.

For our application, the characteristic function of (X, Y ) is given by

ϕX,Y (s, t) = E
[
eis(

∑N1
i=1 Ui+

∑N3
k=1 Lk)+it(

∑N2
j=1 Vj+

∑N3
k=1 Qk)

]
= PN1,N2,N3 (ϕU(s), ϕV (t), ϕL,Q(s, t)) , (3.49)

where ϕU(s), ϕV (t) and ϕL,Q(s, t) are the characteristic functions of claim sizes U ,

V and (L,Q). Then the distribution of (X,Y ) may be obtained by the following

procedure 1.

Procedure 1:

1. Set truncation points for the claim sizes U , V , and (L,Q) to r, w and (r, w)

respectively to obtain the truncated claim size distributions

f1 = {f1(0), f1(1), . . . , f1(r − 1)}, f2 = {f2(0), f2(1), . . . , f2(w − 1)},

and
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f3 =


f3(0, 0) · · · f3(0, w − 1)

f3(1, 0) · · · f3(1, w − 1)
...

. . .
...

f3(r − 1, 0) · · · f3(r − 1, w − 1)

 ,

where r = 2r1 and w = 2r2 for some positive integers r1 and r2. Notice that if

the claim size distributions have bounded supports, the vector or the matrix of

probabilities can be appropriately padded with zeros in order to force r or w to

be powers of two.

2. Apply one-dimensional FFT to f1 and f2 to obtain two vectors f̃1 and f̃2. And

apply two-dimensional FFT to the claim size matrix f3 to get

f̃3 =


f̃3(0, 0) · · · f̃3(0, w − 1)

f̃3(1, 0) · · · f̃3(1, w − 1)
...

. . .
...

f̃3(r − 1, 0) · · · f̃3(r − 1, w − 1)

 .

3. Use formula (3.49) to obtain the matrix ϕ̃X,Y with the ijth element

PN1,N2,N3

(
f̃1(i), f̃2(j), f̃3(i, j)

)
for i = 0, . . . , r − 1 and j = 0, . . . , w − 1.

4. Apply the IFFT (2.9) to ϕ̃X,Y to obtain the probability function of (X, Y ).

As mentioned in Section 2.3, Grübel and Hermesmeier (1999) introduced a more

efficient way known as exponential tilting to alleviate the problem associated with the

aliasing errors. We next show that the tilting method may be applied to the multi-

variate model presented in this chapter by properly choosing the tilting parameters.

To do this, we need some notations as defined in Grübel and Hermesmeier (1999).

First, we define the convolution product c = a ∗ b of two sequences a = (ar)r∈N0 ,

b = (br)r∈N0 as

cr =
r∑

i=0

aibr−i for all r ∈ N0.
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Then because for all r ≥ 0,

(
(Eθa) ∗ (Eθb)

)
r
=

r∑
i=0

(Eθa)i(Eθb)r−i = e−θr

r∑
i=0

aibr−i =
(
Eθ(a ∗ b)

)
r
,

we have Eθ(a) ∗ Eθ(b) = Eθ(a ∗ b).

Similarly, define the convolution product C = A∗B of two matrices A = (aij)i,j∈N0 ,

B = (bij)i,j∈N0 by

cij =
i∑

r=0

j∑
w=0

ar,wbi−r,j−w for all i, j ∈ N0,

and then define the tilting operator Eθ1,θ2 by

(Eθ1,θ2A)ij = e−θ1ie−θ2jaij and (Eθ1,θ2B)ij = e−θ1ie−θ2jbij for all i, j ∈ N0.

Then we have

(
(Eθ1,θ2A) ∗ (Eθ1,θ2B)

)
ij
=

i∑
r=0

j∑
w=0

(Eθ1,θ2A)r,w(Eθ1,θ2B)i−r,j−w

= e−θ1ie−θ2j

i∑
r=0

j∑
w=0

ar,wbi−r,j−w

=
(
Eθ1,θ2(A ∗ B)

)
ij
,

which means (Eθ1,θ2A) ∗ (Eθ1,θ2B) = Eθ1,θ2(A ∗ B).

For the multivariate model in this chapter, we can express the joint probability as

g(x, y) =
∑
n1≥0

∑
n2≥0

∑
n3≥0

p(n1, n2, n3)
x∑

i=0

y∑
j=0

f ∗n1
1 (i)f ∗n2

2 (j)f ∗n3
3 (x− i, y − j), (3.50)

where f ∗k denotes the kth convolution of f . If we tilt f1 and f2 with tilting parameters

θ1 and θ2 to get Eθ1f1 and Eθ2f2, and tilt f3 with tilting parameters θ3, θ4 to get

Eθ3,θ4f3, and denote the resulting aggregate claims distribution by ḡ(x, y), then

ḡ(x, y) =
∑
n1≥0

∑
n2≥0

∑
n3≥0

p(n1, n2, n3)×
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x∑
i=0

y∑
j=0

(Eθ1f1)
∗n1(i)(Eθ2f2)

∗n2(j)(Eθ3,θ4f3)
∗n3(x− i, y − j)

=
∑
n1≥0

∑
n2≥0

∑
n3≥0

p(n1, n2, n3)×

x∑
i=0

y∑
j=0

e−θ1if ∗n1
1 (i)e−θ2jf ∗n2

2 (j)e−θ3(x−i)e−θ4(y−j)f ∗n3
3 (x− i, y − j). (3.51)

It is obvious that to make the tilting commute with convolutions, one needs to set θ3 =

θ1 and θ4 = θ2. This yields ḡ(x, y) = e−θ1xe−θ2yg(x, y) and so g(x, y) = E−θ1,−θ2 ḡ(x, y).

Therefore, when applying exponential tilting, we can use the following steps to

compute the joint distribution of (X,Y ).

Procedure 2:

1. Same as step 1 in procedure 1.

2. Tilt the two sequences f1, f2 and the matrix f3,

f1 7→ Eθ1f1 = [e−θ1jf1(j)]j=0,1,...,r−1,

f2 7→ Eθ2f2 = [e−θ2jf2(j)]j=0,1,...,w−1,

f3 7→ Eθ1,θ2f3 = [e−θ1ie−θ2jf3(i, j)]i=0,1,...,r−1;j=0,1,...,w−1.

To avoid the problems of underflow or overflow, Grübel and Hermesmeier (1999)

suggested choosing θ = 20/r in univariate case. For our bivariate case, we choose

θ1 = 10/r and θ2 = 10/w.

3. Apply FFT to the two sequences and the matrix, resulting in two sequences

Ẽθ1f1 , Ẽθ2f2 and one matrix Ẽθ1,θ2f3.

4. Use formulas (3.8), (3.17),(3.27), and (3.49) to obtain the tilted characteris-

tic function of (X,Y ), resulting in the r × w matrix with the ijth element

PN1,N2,N3

(
Ẽθ1f1(i), Ẽθ2f2(j), Ẽθ1,θ2f3(i, j)

)
for i = 0, . . . , r−1 and j = 0, . . . , w−

1.
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5. Apply IFFT to the above matrix. Untilting the obtained matrix by E−θ1,−θ2

yields gX,Y (i, j).

As introduced in Klugman et al. (2008, p. 242), the number of floating point

operations needed for FFT method on a vector with length n is of order O(nlog2n).

Thus for the computation of g(x, y), the number of floating point operations is of

order O(xylog2y + yxlog2x) = O (xy(log2x+ log2y)).

3.4 Numerical examples

In this section, we present numerical examples for models introduced in Section 3.2

to compare the accuracy and speed of the recursive and FFT methods for computing

the joint distribution of the multivariate compound distribution. All calculations are

done using the free statistical software R. We assume that the claim sizes U and

V follow Pareto distributions. Let the claim sizes (L,Q) follow a bivariate Pareto

distribution introduced by Lindley and Singpurwalla (1986). The bivariate Pareto

distribution, denoted by BiPareto(γ1, γ2, β), has density function

f(l, q) =
(β + 1)β

γ1γ2

(
l

γ1
+

q

γ2
+ 1

)−(β+2)

, l, q > 0 and γ1, γ2, β > 0. (3.52)

To apply the recursive and FFT methods, the distributions of U , V and (L,Q) are

discretized using the standard rounding method (Klugman et al. 2008, p. 233). R

function fft() is used to carry out the Fourier transforms and their inverses.

3.4.1 An example for model A

Let K ∼ Poisson(8), conditional on K = k, the distribution of (N1, N2, N3) is tri-

nomial with parameters k and (p1 = 0.2, p2 = 0.3, p3 = 0.5). Let U ∼ Pareto(3, 5),

V ∼ Pareto(4, 3), and (L,Q) ∼ BiPareto(2, 4, 3). The joint probability mass function

g(x, y) at some selected points are computed using the recursive method, the FFT
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method with truncation points r = w = 28, the FFT method with truncation points

r = w = 29, and the FFT method with truncation points r = w = 29 and tilting

parameters θ1 = θ2 = 10/r.

To illustrate the accuracy of different methods, we list in Table 3.1 some actual

probability values calculated with different methods and in Table 3.2 the number of

significant decimal digits agreed. Table 3.3 compares the computation time of the

different methods on a personal computer with Intel Core2 Quad CPU Q8200@2.33G

and 8GB memory. Since the recursion method obtains the exact values of the com-

pound distribution if the errors from the floating point representation are ignored,

the differences between the FFT and the recursion methods are essentially due to

aliasing errors. From the results we can see that, as the truncation points increase,

the alias errors decrease. Moreover, aliasing errors are reduced significantly by tilting.

As reported in Embrechts and Frei (2009), the recursive method appears to spend

more CPU time than the FFT method. We also note that each of the computation

times reported here is a result of average of those for 100 runs of the corresponding

computer program.

Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 4.7603012e-05 4.8705431e-05 4.7639162e-05 4.7603013e-05
g(20, 30) 7.9430590e-05 8.1122257e-05 7.9499398e-05 7.9430593e-05
g(30, 30) 7.2078212e-05 7.4164653e-05 7.2154758e-05 7.2078215e-05

Table 3.1: Model A: Some values of g(x, y).

Quantity FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 1 3 7
g(20, 30) 0 3 7
g(30, 30) 1 2 7

Table 3.2: Model A: Number of significant decimal digits agreed for g(x, y) computed
with recursive and FFT methods.

To illustrate the dependency betweenX and Y , we plot in Figure 3.1 a dependency
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Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 0.0915 0.0523 0.3660 0.4912
g(20, 30) 1.8157 0.0523 0.3660 0.4912
g(30, 30) 4.0479 0.0523 0.3660 0.4912

Table 3.3: Model A: Computation times of recursive and FFT methods (in seconds).

measure introduced by Coles, Heffernan and Tawn (2000) defined by χ(p) = Pr
(
X >

πp(X)|Y > πp(Y )
)
, where πp(X) and πp(Y ) represent the 100p% percentile of X and

Y respectively. The measure χ(p) > 1−p indicates positive dependencies. This figure

clearly shows the heavy dependency between the two types of risks.
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Fig. 3.1: Model A: Plot of a measure of dependence between X and Y .

To demonstrate the effect of dependency on the risk of aggregate claims X + Y ,

we plot the cumulative distribution functions (CDFs) for X + Y and X ′ + Y ′ where

X ′ and Y ′ have the same marginal distribution with X and Y but are independent.

The results are showed in Figure 3.2, it can be seen that the dependency between X
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and Y results in a heavier tail for the aggregate claims X + Y .
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Fig. 3.2: Model A: Plot of the CDFs of aggregate claims X + Y with and without
dependence between X and Y .

3.4.2 An example for model B

Let Z0 ∼ Poisson(3), Z1 ∼ Poisson(2), Z2 ∼ Poisson(4), Z3 ∼ Poisson(5), U ∼

Pareto(3, 5), V ∼ Pareto(4, 3), and (L,Q) ∼ BiPareto(2, 4, 3). For this example,

we provide three tables 3.4, 3.5, 3.6 and two figures 3.3, 3.4. They provide similar

information to those for example A.

Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 4.8156806e-07 9.2478228e-06 6.1918132e-07 4.8156811e-07
g(20, 30) 2.0814650e-06 9.5419547e-06 2.1958211e-06 2.0814654e-06
g(30, 30) 2.3532538e-06 9.4440615e-06 2.4617731e-06 2.3532543e-06

Table 3.4: Model B: Some values of g(x, y).
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Quantity FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 0 0 6
g(20, 30) 0 1 7
g(30, 30) 0 1 6

Table 3.5: Model B: Number of significant decimal digits agreed for g(x, y) computed
with recursive and FFT methods.

Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(10, 10) 0.9787 0.0581 0.3768 0.4875
g(20, 30) 82.4113 0.0581 0.3768 0.4875
g(30, 30) 254.9361 0.0581 0.3768 0.4875

Table 3.6: Model B: Computation times of recursive and FFT methods (in seconds).
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Fig. 3.3: Model B: Plot of a measure of dependence between X and Y .
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Fig. 3.4: Model B: Plot of the CDFs of aggregate claims X + Y with and without
dependence between X and Y .

3.4.3 An example for model C

Let: Θ ∼ GIG(2, 1, 2), λ1 = 1, λ2 = 2, λ3 = 0.5, U ∼ Pareto(3, 5), V ∼ Pareto(4, 3),

and (L,Q) ∼ BiPareto(2, 4, 3). For this model, the results are shown in tables 3.7,

3.8, 3.9 and figures 3.5, 3.6.

Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(20, 20) 3.4587685e-05 3.9388355e-05 3.4766397e-05 3.4587688e-05
g(25, 30) 3.5972251e-05 4.0773325e-05 3.6160165e-05 3.5972255e-05
g(40, 40) 3.2485592e-05 3.7264073e-05 3.2674854e-05 3.2485597e-05

Table 3.7: Model C: Some values of g(x, y).
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Quantity FFT(28) FFT(29) FFT(29 with tilting)
g(20, 20) 1 2 7
g(25, 30) 0 1 7
g(40, 40) 1 2 7

Table 3.8: Model C: Number of significant decimal digits agreed for g(x, y) computed
with recursive and FFT methods.

Quantity Recursion FFT(28) FFT(29) FFT(29 with tilting)
g(20, 20) 1.9588 2.0513 8.2618 8.3115
g(25, 30) 6.1082 2.0513 8.2618 8.3115
g(40, 40) 25.1801 2.0513 8.2618 8.3115

Table 3.9: Model C: Computation times of recursive and FFT methods (in seconds).
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Fig. 3.5: Model C: Plot of a measure of dependence between X and Y .

Results from model B and model C also show that the alias errors of the FFT

method decrease with higher truncation points and the errors are reduced through

tilting.
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Fig. 3.6: Model C: Plot of the CDFs of aggregate claims X + Y with and without
dependence between X and Y .

3.5 Conclusions

We proposed a new bivariate aggregate claims model and derived recursive formulas

for calculating the joint probabilities. The recursive formulas give exact joint prob-

abilities if the floating point representation error is ignored. The correctness of the

recursive formulas was verified by comparing the results from both recursive and FFT

methods. As showed in Chapter 2, the aliasing errors suffered by the FFT method can

be reduced effectively by exponential tilting. Comparing the numbers of the floating

point operations required by the recursive and the FFT methods for the discussed

three models, we have O
(
x2y2

)
vs. O

(
xy(log2x + log2y)

)
in model A and model C,

and O(x4y4) vs. O
(
xy(log2x+ log2y)

)
in model B.
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Chapter 4

Moment-based density

approximations of aggregate claims

4.1 Introduction

In this chapter, we apply a moment-based method introduced by Provost (2005)

to approximate the density functions of univariate and bivariate aggregate claims

random variables. We provide some illustrative examples where the approximate

distribution functions are compared with those obtained from the recursive method.

The resulting approximations turned out to be quite accurate. Since the methodology

only involves solving systems of linear equations, it is much less computer intensive

than the recursive or FFT methods. It should be pointed out that the proposed

approach can also be utilized in conjunction with observed data, in which case the

sample moments would be used in lieu of the exact moments. To our knowledge, this

constitutes, in the context of risk theory, the first attempt to approximate the density

function of bivariate aggregate claims random vectors.

The chapter is organized as follows. Section 4.2 introduces the proposed moment-

based density approximation method, explains how it can be applied to univariate

aggregate claims and presents some numerical examples. Section 4.3 extends the
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methodology to bivariate compound random variables and also includes illustrative

numerical examples. Section 4.4 contains some concluding remarks.

4.2 Approximating the distribution of univariate

aggregate claims

Provost (2005) proposed a unified approach to density approximation and showed

that the resulting approximants are mathematically equivalent to those obtained by

making use of orthogonal polynomials, such as the Legendre, Laguerre, Jacobi, and

Hermite polynomials, and their associated weight functions. This conceptually simple

semiparametric technique eliminates some of the complications associated with the

use of orthogonal polynomials while yielding identical density approximants. For

the purpose of approximating the distribution of univariate aggregate claims, the

methodology can be stated as follows.

Let fS(s) be the density function of a continuous random variable S defined on

(0,∞) and g(s) be a Gamma(α, θ) distributed base density function given by

g(s) =
sα−1e−s/θ

θαΓ(α)
, for s > 0 and α, θ > 0, (4.1)

where α is the shape parameter and θ is the scale parameter. Then, the exact density

function of S can be approximated by

f̃S,t(s) = g(s)
t∑

r=0

cr s
r, s > 0, (4.2)

where t is a suitably selected positive integer and the cr’s are real polynomial coeffi-

cients. Note that (4.2) gives a proper probability density function and the coefficients

cr, r = 1, . . . , t, do not have to be positive. As such, it belongs to a family of dis-

tributions that are generated by some combinations (more general than mixtures) of

gamma random variables. Since the moments of the random variable S can usually

be easily determined, one can obtain numerical values for the parameters α and θ in
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g(s) by matching the first two moments of the base gamma distribution to those of

S, that is,

αθ = µS(1) and α(α + 1)θ2 = µS(2), (4.3)

where µS(a) is the ath moment of S, so that

α =
µ2
S(1)

µS(2)− µ2
S(1)

and θ =
µS(2)− µ2

S(1)

µ2
S(1)

. (4.4)

Similarly, the coefficients cr’s can be determined by solving the system of linear equa-

tions resulting from matching the first t moments obtained from f̃S,t(s) to those of S,

that is,∫ ∞

0

saf̃S,t(s)ds =

∫ ∞

0

sa
(
g(s)

t∑
r=0

cr s
r
)
ds = µS(a), a = 0, 1, . . . , t. (4.5)

Equivalently, (4.5) can be written as

t∑
r=0

cr

∫ ∞

0

sa+rg(s)ds =
t∑

r=0

cr ma+r = µS(a), a = 0, 1, . . . , t, (4.6)

where ma+r = θa+rΓ(α + a+ r)/Γ(α) = θa+r(α+ a+ r − 1) · · ·α. Thus, one has
c0

c1
...

ct

 =


m0 · · · mt

m1 · · · mt+1

...
. . .

...

mt · · · m2t



−1
µS(0)

µS(1)
...

µS(t)

 . (4.7)

To determine the degree of the adjustment, one may plot f̃S,t(s) for various values

of t and select t such that no significant differences are observed between f̃S,t(s) and

f̃S,t+1(s); alternatively, one could choose t such that∫ ∞

0

(
f̃S,t(s)− f̃S,t+△t(s)

)2
ds < ε,

where△t is a positive integer increment such as 2 or 3 and ε is a certain predetermined

tolerance level.
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Essentially, this approximation technique involves the determination of the param-

eters of a gamma base density and a suitable polynomial adjustment. Some previously

published results support the selection of a gamma distribution as an appropriate ini-

tial approximation. For example, Papush et al. (2001) made use of gamma, normal

and lognormal random variables to approximate certain aggregate claims distribu-

tions under seven scenarios when no separate information on the claim numbers and

sizes was available, and concluded that, in each case, the gamma distribution pro-

vides a much better fit than the normal or lognormal; moreover, Sundt (1982) showed

that, under some special conditions, the distribution of the aggregate claims behaves

asymptotically as a gamma-type distribution in its tail when the distribution of the

number of claims is negative binomial.

Furthermore, Tijms (1994, p. 163-164) showed that any positive continuous distri-

bution can be arbitrarily closely approximated by a mixture of gamma distributions

with integer shape parameters (sometimes called Erlang distributions). That is, the

density function of a positive continuous distribution can be expressed as

fS(s) =
∞∑
k=1

qk hk(s), (4.8)

where hk(s) is the gamma(k, θ) density function and the set of mixing weights {qk:

k = 1, 2, . . .} are nonnegative and sum up to one. However, in practice, it is difficult

to determine the values of the mixing weights and the scale parameter θ so that

the distribution of the mixture be sufficiently close to the target distribution. The

approximation method proposed in this chapter could be viewed as a variation of

Tijms’s theorem involving a finite mixture of gamma densities wherein the gamma

density parameters and polynomial coefficients are obtained by applying a moment

matching approach.
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4.2.1 Numerical examples

In this section, we approximate the density function of the aggregate claims random

variableX in (1.1) under two sets of distributional assumptions. Denoting by PN(z) =

E(zN) the probability generating function of N and, MU(k) = E(ekU) the moment

generating function of U , the moment generating function of X is given by

MX(k) = PN (MU(k)) . (4.9)

Then, the ath moment of X is obtained by differentiation as follows:

µX(a) =
daMX(k)

dka

∣∣∣∣
k=0

. (4.10)

Since our approximation method applies to continuous distributions while the distri-

bution of X contains a probability mass at 0, we shall approximate the distribution

of S, which is, in fact, that of X given X > 0. The density function of S is then

fS(s) =
fX(s)

τ
, s > 0, (4.11)

where τ = 1− Pr(X = 0) = 1− Pr(N = 0). In addition, µS(0) = µX(0) = 1, and

µS(a) =
µX(a)

τ
, a = 1, 2, . . . . (4.12)

The cumulative distribution function of X, that is, FX(x) = Pr(X ≤ x), x ≥ 0, can

thus be expressed as

FX(x) = τFS(x) + Pr(N = 0), (4.13)

where FS(x) is the distribution function of S.

In each example, the number of claims N is assumed to follow a Poisson distribu-

tion with parameter λ, denoted by Poisson(λ). In the first example, the individual

claim U is gamma distributed, while in the second one, U follows an inverse Gaussian

distribution, denoted by IG(µ, θ), with density function

fU(u) =

(
θ

2πu3

) 1
2

exp

(
−θ(u− µ)2

2µ2u

)
, for u > 0 and µ, θ > 0.
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According to Klugman et al. (2008, p. 220-221), when the individual claim distri-

butions are gamma or inverse Gaussian, both are closed under convolutions and an

analytic form of the density function fX(x), x > 0, is available. In the following sub-

sections, we compare graphically the approximate distributions obtained by applying

the proposed approach with their exact counterparts. Additionally, we generated

sample values of the aggregate claims by simulation and compared the plots of the

approximated distribution functions based on the sample moments of the underly-

ing distribution with the simulated empirical distribution functions. The calculations

were carried out by making use of the symbolic computational software packageMath-

ematica. The code is available from the authors upon request.

4.2.1.1 Example 1

Let N ∼ Poisson(3), U ∼ gamma(3, 2), and the order of the polynomial adjustment

be t = 15. The moment generating function of the aggregate claims being in this case

MX(k) = exp

[
3

(
1

(1− 2k)3
− 1

)]
, (4.14)

the moments µS(a), a = 1, 2, . . ., can be easily evaluated from (4.10) and (4.12). From

(4.4), the base density function is gamma(2.684349, 7.056877) distributed.

The plots of the exact and approximated density and distribution functions are

respectively presented in Figures 4.1 and 4.2. Figure 4.3 compares the approximated

distribution function obtained from an application of the proposed methodology in

conjunction with the sample moments calculated from simulated values on the basis

of 100, 500, 1,000 and 10,000 replications, with the empirical distribution function.

We selected t = 15 in this example, as increasing t to 16 did not produce a noticeable

improvement (graphically).
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Fig. 4.1: Exact and approximated (dashed line) density functions.
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Fig. 4.2: Exact and approximated (dashed line) distribution functions.
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Fig. 4.3: Empirical and approximated (dashed line) distribution functions obtained
on the basis of simulated values.

4.2.1.2 Example 2

Let N ∼ Poisson(15), U ∼ IG(3, 2) and t = 13. The plots of the exact and approx-

imated density and distribution functions are respectively presented in Figures 4.4

and 4.5. Figure 4.6 compares the approximated distribution function based on the

sample moments with the empirical distribution function.
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Fig. 4.4: Exact and approximated (dashed line) density functions.
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Fig. 4.5: Exact and approximated (dashed line) cumulative distribution functions.

It is seen from both examples that the proposed approximation methodology

proves very accurate. However, it should be pointed out that the proposed method-
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Fig. 4.6: Empirical and approximated (dashed line) distribution functions obtained
on the basis of simulated values.

ology would not be applicable when the target distribution has an extremely heavy

tail since then only a limited number of moments would be available.

4.3 Approximating the distribution of bivariate ag-

gregate claims

Let fS1,S2(s1, s2), s1, s2 > 0, be the joint density function of the continuous random

variables S1 and S2. In this section, we extend the technique introduced in Section

4.2 to approximate fS1,S2(s1, s2). The methodology can be described as follows.

First, a pair of uncorrelated random variables (V, Z) are produced from (S1, S2)

by applying the linear transformation,V

Z

 = C
− 1

2

S1

S2

 , (4.15)
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where C− 1
2 is the inverse of the symmetric square root of the covariance matrix of

(S1, S2), that is,

C
− 1

2 =

 Var(S1) Cov(S1, S2)

Cov(S1, S2) Var(S2)

− 1
2

≡

β11 β12

β21 β22

 . (4.16)

By setting the bivariate base density function as

g(v, z) = g1(v) g2(z) (4.17)

where g1(v) and g2(z) are the approximated marginal density functions of V and Z,

which are assumed to be gamma(α1, θ1) and gamma(α2, θ2) distributed respectively,

the density function of (V, Z) can be approximated by

f̃V,Z,t(v, z) = g(v, z)
∑
r+q≤t

cr,q v
rzq, v, z > 0, (4.18)

where r and q are nonnegative integers, t is an appropriately selected positive integer

and the cr,q’s are polynomial coefficients to be determined. One could also take

(0, . . . , t), as the range of each of the indices r and q, but it was observed that

for a given t, this did not result in a noticeable improvement in accuracy. Note

that by making use of (4.17), one assumes that the uncorrelated pair (V, Z) is also

independently distributed. In general, uncorrelation does not imply independence;

however the polynomial adjustment should address most of the remaining dependence

relationships between V and Z.

The parameters (α1, θ1) and (α2, θ2) of the components of the base gamma density

functions are obtained by matching the first two moments associated with g1(v) and

g2(z) to those of V and Z. Next, we once again apply a moment-matching technique

to assign numerical values to the cr,q’s. The joint moments of (V, Z) are determined

from those of (S1, S2), which are assumed to be known. In light of (4.15) and making

use of the notation introduced in (4.16), µV,Z(a, b), the joint moment of orders a and

b of (V, Z) can be expressed as

µV,Z(a, b) = E(V aZb) = E

[(
a∑

k=0

(
a

k

)
βk
11β

a−k
12 Sk

1S
a−k
2

)(
b∑

ℓ=0

(
b

ℓ

)
βℓ
21β

b−ℓ
22 Sℓ

1S
b−ℓ
2

)]
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=
a∑

k=0

b∑
ℓ=0

(
a

k

)(
b

ℓ

)
βk
11β

a+ℓ−k
12 βb−ℓ

22 µS1,S2(k + ℓ, a+ b− k − ℓ), (4.19)

where a and b are nonnegative integers. These joint moments of V and Z are equated

to those associated with the approximate density specified by (4.18):∫ ∞

0

∫ ∞

0

vazb
(
g(v, z)

∑
r+q≤t

cr,q v
rzq
)
dvdz = µV,Z(a, b), for a+ b ≤ t. (4.20)

This equation can be reexpressed as∑
r+q≤t

cr,q

∫ ∞

0

∫ ∞

0

vr+azq+bg(v, z)dvdz =
∑
r+q≤t

cr,q mr+a,q+b = µV,Z(a, b), for a+b ≤ t,

(4.21)

where

mr+a,q+b =
[
θr+a
1 (α1 + r + a− 1) · · ·α1

][
θq+b
2 (α2 + q + b− 1) · · ·α2

]
. (4.22)

The values of the coefficients cr,q are then determined by solving the system of linear

equations resulting from (4.21). The value of t can be selected in a manner similar

to that proposed for the univariate case in Section 4.2.

Finally, the approximated joint density function of (S1, S2) is obtained from that

of (V, Z) as follows:

f̃S1,S2,t(s1, s2) = |J | f̃V,Z,t(β11s1 + β12s2, β21s1 + β22s2), s1, s2 > 0, (4.23)

where

J =

∣∣∣∣∣∣ β11 β12

β21 β22

∣∣∣∣∣∣ (4.24)

is the Jacobian of the inverse transformation. In view of (4.18), the approximate

density function has the following representation:

f̃S1,S2,t(s1, s2) = |J | g1(β11s1 + β12s2) g2(β21s1 + β22s2)×∑
r+q≤t

cr,q(β11s1 + β12s2)
r(β21s1 + β22s2)

q, s1, s2 > 0. (4.25)

55



4.3.1 Numerical examples

First, some preliminary considerations are provided in connection with the proposed

methodology for approximating the joint distribution of bivariate aggregate claims as

specified by (2.1). Let PN,W (z1, z2) = E(zN1 zW2 ) be the probability generating function

of (N,W ); then the moment generating function of (X,Y ) is given by

MX,Y (k1, k2) = E(ek1X+k2Y ) = PN,W (MU(k1),MV (k2)) , (4.26)

and the joint moment of orders a and b of (X,Y ) is determined as follows:

µX,Y (a, b) =
∂a+bMX,Y (k1, k2)

∂ka
1∂k

b
2

∣∣∣∣
k1=0,k2=0

. (4.27)

As in the univariate case, the approximation methodology does not directly apply to

the distribution of aggregate claims as the method requires the target density function

to be continuous, while the bivariate aggregate claims (X,Y ) have point masses at

X = 0 and Y = 0. Accordingly, we first approximate the distribution of the random

vector (S1, S2), which is defined only for X,Y > 0. The joint density function of

(S1, S2) is then

fS1,S2(s1, s2) =
fX,Y (s1, s2)

κ
, s1, s2 > 0, (4.28)

where κ = 1−Pr(N = 0)−Pr(W = 0)+Pr(N = 0,W = 0). Thus, the joint moments

of (S1, S2) are

µS1,S2(a, b) =



µX,Y (a,b)

κ
if a, b = 1, 2, . . .

µX,Y (0,b)−Pr(N=0)µY |N=0(b)

κ
if a = 0, b = 1, 2, . . .

µX,Y (a,0)−Pr(W=0)µX|W=0(a)

κ
if a = 1, 2, . . . , b = 0

1 if a = 0, b = 0,

(4.29)

where µY |N=0(b) denotes the b
th conditional moment of Y given N = 0 and µX|W=0(a)

denotes the ath conditional moment ofX givenW = 0. Both µY |N=0(b) and µX|W=0(a)

may be conveniently computed when the correlation structure between N and W is

given.
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The joint cumulative distribution function of (X, Y ), that is, FX,Y (x, y) = Pr(X ≤

x, Y ≤ y), x, y ≥ 0, can then be expressed as

FX,Y (x, y) = κFS1,S2(x, y) + Pr(N = 0)FY |N=0(y) + Pr(W = 0)FX|W=0(x)

− Pr(N = 0,W = 0), (4.30)

where FS1,S2(x, y) is the distribution function of (S1, S2), FX|W=0(x) and FY |N=0(y)

are the conditional distribution function of X given W = 0 and the conditional

distribution function of Y given N = 0 respectively. Based on (4.29), whenever

x, y > 0, FS1,S2(x, y) can be determined by making use of the methodology described

in the introduction of this section, on the basis of the joint moments of (X, Y ).

The distribution functions FX|W=0(x) and FY |N=0(y) can be readily obtained by the

method outlined in Section 4.2 for the univariate aggregate claims model.

In the following numerical examples, we utilize the model introduced in Hesselager

(1996a) in which N = N0+N1 and W = N0+N2, where N0, N1 and N2 are mutually

independent and Ni ∼ Poisson(λi) for i = 0, 1, 2, so that (W |N = 0) ∼ Poisson(λ2)

and (N |W = 0) ∼ Poisson(λ1). Hesselager (1996a) derived recursive formulas to

calculate the joint probabilities of (X, Y ) when the individual claim random variables

U and V are discretized to nonnegative integer values.

In both examples, we compare the approximated values of the distribution func-

tions with those obtained from the recursive method, in which the individual claims

are discretized using the standard rounding method (Klugman et al. (2008, p. 232)).

The discretization interval is taken small enough so that the error involved could be

ignored. In addition, we simulated 5,000 sample values of the bivariate aggregate

claims and then, compared selected values of the simulated empirical distribution

function with those of the approximated distribution function based on the sample

moments. Furthermore, to illustrate the dependence between X and Y , we plotted a

dependency measure calculated by utilizing both the recursive and the approximation

methods.

57



4.3.1.1 Example 1

Let N0 ∼ Poisson(7), N1 ∼ Poisson(8), N2 ∼ Poisson(9), U ∼ gamma(2, 2), V ∼

gamma(3, 1.5), and t = 8. Table 4.1 lists the values of FX,Y (x, y) obtained from the

recursive approach and the proposed method at given points of the distribution. Ta-

ble 4.2 lists the values of FX,Y (x, y) obtained from the empirical and approximated

distribution functions which were determined from samples of simulated values. Fig-

ure 4.7 shows plots of the dependency measure χ(p) against p, evaluated by making

use of the recursive and approximation methods, the dotted line representing the

reference line for the relationship between p and Pr
(
X > πp(X)

)
=1− p. This figure

clearly indicates the presence of a strong dependency between X and Y , which is well

captured by both methodologies.

Quantity Recursion Approximation Quantity Recursion Approximation
FX,Y (52, 54) 0.106406 0.104420 FX,Y (89, 85) 0.708083 0.705525
FX,Y (62, 59) 0.201156 0.201456 FX,Y (92, 93) 0.807833 0.802099
FX,Y (67, 65) 0.304023 0.307647 FX,Y (101, 103) 0.905475 0.902043
FX,Y (74, 69) 0.401565 0.404960 FX,Y (112, 110) 0.950726 0.950726
FX,Y (75, 76) 0.512051 0.515397 FX,Y (130, 127) 0.990449 0.992031
FX,Y (81, 80) 0.604866 0.604980 FX,Y (150, 150) 0.999286 0.999013

Table 4.1: Some values of FX,Y (x, y) calculated from the recursive approach and the
proposed method.

Quantity Empirical Approximated Quantity Empirical Approximated
FX,Y (52, 54) 0.110800 0.110579 FX,Y (89, 85) 0.700200 0.700284
FX,Y (62, 59) 0.201800 0.203602 FX,Y (92, 93) 0.804600 0.798009
FX,Y (67, 65) 0.300600 0.304419 FX,Y (101, 103) 0.898800 0.898436
FX,Y (74, 69) 0.394000 0.398631 FX,Y (112, 110) 0.948400 0.947691
FX,Y (75, 76) 0.508800 0.507593 FX,Y (130, 127) 0.989200 0.990421
FX,Y (81, 80) 0.600200 0.597797 FX,Y (150, 150) 0.999400 0.999201

Table 4.2: Some values of FX,Y (x, y) calculated from the empirical and the approxi-
mated distribution functions obtained on the basis of simulated values.
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Fig. 4.7: Exact and approximated (dashed line) dependency measures between X and
Y .

4.3.1.2 Example 2

Let N0 ∼ Poisson(8), N1 ∼ Poisson(9), N2 ∼ Poisson(10), U ∼ IG(3, 4), V ∼

IG(4, 5), and t = 8. For this case, the results are presented in Tables 4.3 and 4.4 as

well as in Figure 4.8.

Quantity Recursion Approximation Quantity Recursion Approximation
FX,Y (48, 50) 0.103833 0.102490 FX,Y (80, 85) 0.708307 0.708275
FX,Y (58, 56) 0.204674 0.202657 FX,Y (98, 91) 0.802741 0.803056
FX,Y (62, 62) 0.301747 0.300674 FX,Y (108, 103) 0.903843 0.902583
FX,Y (68, 67) 0.402988 0.402674 FX,Y (115, 113) 0.951134 0.950217
FX,Y (71, 73) 0.508339 0.508959 FX,Y (140, 134) 0.990466 0.990828
FX,Y (78, 78) 0.607973 0.609034 FX,Y (155, 160) 0.999064 0.999090

Table 4.3: Some values of FX,Y (x, y) calculated from the recursive approach and the
proposed method.
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Quantity Empirical Approximated Quantity Empirical Approximated
FX,Y (48, 50) 0.103200 0.103436 FX,Y (80, 85) 0.713000 0.713866
FX,Y (58, 56) 0.199800 0.203058 FX,Y (98, 91) 0.804800 0.809291
FX,Y (62, 62) 0.304200 0.301513 FX,Y (108, 103) 0.908200 0.908783
FX,Y (68, 67) 0.406000 0.404530 FX,Y (115, 113) 0.956800 0.955374
FX,Y (71, 73) 0.511800 0.511497 FX,Y (140, 134) 0.993000 0.992575
FX,Y (78, 78) 0.613400 0.613464 FX,Y (155, 160) 0.999200 0.998926

Table 4.4: Some values of FX,Y (x, y) calculated from the empirical and the approxi-
mated distribution functions obtained on the basis of simulated values.
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Fig. 4.8: Exact and approximated (dashed line) dependency measures between X and
Y .

Moreover, upper quantiles of the bivariate compound distributions are readily

evaluated by integration of the approximate density function. It is seen from both

examples that, overall, the proposed approximation method can provide quite accu-

rate values for the distribution of bivariate aggregate claims.
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4.4 Conclusions

We applied a moment-based density approximation method to model the distribu-

tions of univariate and bivariate aggregate claims. The examples indicate that this

methodology is reliable. Not only the proposed technique is conceptually simple and

computationally efficient, but it also produces approximation results that are rather

accurate. This approach can therefore be utilized for evaluating right tail quantiles of

aggregate claims distributions. Additionally, given a set of observed aggregate claims,

the method advocated herein can readily be applied in conjunction with the sample

moments for modeling purposes.
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Chapter 5

Concluding Remarks

In this thesis we first introduce three bivariate aggregate claims models in Hesselager

(1996a) with the corresponding recursive formulas for calculating the joint probabil-

ities of two types of aggregate claims. Then we show how to use FFT method with

exponential tilting to compute the joint probabilities, a detailed comparison of the

FFT method and the recursive method for computing bivariate distribution functions

is provided using numerical examples. Next, we introduce a new bivariate aggregate

claims model in which both claim numbers and claim sizes are dependent. We derive

the recursive formulas for the joint probabilities of the bivariate aggregate claims for

three types of correlation structures. In the numerical examples, the results from

the recursive formulas are compared with the results from FFT method with tilt-

ing to verify the correctness of the derived recursive formulas. After that, we apply

a moment-based method introduced by Provost (2005) to approximate the density

functions of univariate and bivariate aggregate claims random variables. Using the

bivariate model in Hesselager (1996a), we test this approximation method by compar-

ing the value of joint distribution function calculating from the approximated joint

density, with the results calculating from both theoretical formulas and simulations.

It shows that this moment-based approximation method works very effectively.

As shown in this thesis, the recursive method provides exact joint probabilities
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if the floating point representation error is ignored. Note that when the claim size

random variables are continuous, the recursive approach is also an approximation in

the sense that the continuous distribution is approximated using a discrete distribu-

tion, however, we can take the discretization interval small enough so that the error

involved could be ignored. The recursive method could be useful when we need the-

oretical values of probabilities and use it to calibrate other approximation methods.

The drawbacks of the recursive method are intensive computational time and limi-

tations on the claim number distributions. In this aspect, FFT and moment-based

density approximation methods could be viable alternatives to the recursive meth-

ods. The FFT method can deal with arbitrary claim number distributions as long

as the joint PGF is known; the moment-based density approximation method only

need some joint moments of the aggregate claims and is particularly useful when no

separate information on claim numbers and individual claim sizes is available. In

conclusion, the three methods discussed in this thesis have their own pros and cons,

the choice of the methods depends on the different factors in different scenarios.
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Appendix A

Recursive formulas for three

models in Hesselager (1996a)

A.1 Recursive formulas for model A

Under the conditions in Model A, it holds that

g(0, 0) = PK

(
p1f1(0) + p2f2(0)

)
. (A.1)

For x ≥ 1,

g(x, y) =
1

1− ap1f1(0)− ap2f2(0)
×[

p1

x∑
u=1

(
a+

bu

x

)
f1(u)g(x− u, y) + ap2

y∑
v=1

f2(v)g(x, y − v)

]
, (A.2)

and for y ≥ 1,

g(x, y) =
1

1− ap1f1(0)− ap2f2(0)
×[

p2

y∑
v=1

(
a+

bv

y

)
f2(v)g(x, y − v) + ap1

x∑
u=1

f1(u)g(x− u, y)

]
. (A.3)
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A.2 Recursive formulas for model B

Assume that the conditions in Model B hold true. Then

g(0, 0) = PZ0

(
f1(0)f2(0)

)
PZ1

(
f1(0)

)
PZ2

(
f2(0)

)
. (A.4)

For x ≥ 1,

g(x, y) =
1

1− a1f1(0)− a0f1(0)f2(0) + a0a1f ∗2
1 (0)f2(0)

×[
x∑

u=1

(
a1 +

b1u

x

)
f1(u)g(x− u, y) +

y∑
v=1

a0f1(0)f2(v)g(x, y − v)

+
x∑

u=1

y∑
v=0

(
a0 +

b0u

x

)
f1(u)f2(v)g(x− u, y − v)

−
y∑

v=1

a0a1f
∗2
1 (0)f2(v)g(x, y − v)

−
x∑

u=1

y∑
v=0

(
a0a1 +

(a0b1 + b0a1)u

2x

)
f ∗2
1 (u)f2(v)g(x− u, y − v)

]
, (A.5)

and for y ≥ 1,

g(x, y) =
1

1− a2f2(0)− a0f2(0)f1(0) + a0a2f ∗2
2 (0)f1(0)

×[
y∑

v=1

(
a2 +

b2v

y

)
f2(v)g(x, y − v) +

x∑
u=1

a0f2(0)f1(u)g(x− u, y)

+

y∑
v=1

x∑
u=0

(
a0 +

b0v

y

)
f2(v)f1(u)g(x− u, y − v)

−
x∑

u=1

a0a2f
∗2
2 (0)f1(u)g(x− u, y)

−
y∑

v=1

x∑
u=0

(
a0a2 +

(a0b2 + b0a2)v

2y

)
f ∗2
2 (v)f1(u)g(x− u, y − v)

]
. (A.6)
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A.3 Recursive formulas for model C

For j = 1, 2, let

g
(j)
θ (x) =

∞∑
n=0

(θλj)
n

n!
e−θλjf ∗n

j (x)

denote the conditional probability functions of X and Y and let

gθ(x, y) =
∞∑

n,m=0

pθ(n,m)f ∗n
1 (x)f ∗m

2 (y) = g
(1)
θ (x)g

(2)
θ (y)

denote the joint conditional probability function of (X, Y ). Define the auxiliary func-

tions

hi(x, y) =

∫ σ2

σ1

θigθ(x, y)u(θ)dθ,

then g(x, y) = h0(x, y).

Under the conditions in Model C, it holds that

hi(0, 0) =

∫ σ2

σ1

θie−λ.
(
1−f̃(0)

)
θu(θ)dθ, (A.7)

with λ. = λ1 + λ2, and

f̃(0) =
λ1f1(0) + λ2f2(0)

λ1 + λ2

.

For i = 0, . . . , k − 1,

hi(x, y) = λ1

x∑
u=1

u

x
f1(u)hi+1(x− u, y), x ≥ 1, (A.8)

hi(x, y) = λ2

y∑
v=1

v

y
f2(v)hi+1(x, y − v), y ≥ 1, (A.9)

and

ckhk(x, y) =λ1

x∑
u=1

f1(u)
k∑

i=0

bihi(x− u, y) + λ2

y∑
v=1

f2(v)
k∑

i=0

bihi(x, y − v)

+
k−1∑
i=0

hi(x, y)[(i+ 1)bi+1 − ci], (A.10)

where ci = λ.
(
1− f̃(0)

)
bi − ai.
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