
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

1-22-2014

Oligonucleotide Design for Whole Genome Tiling Arrays Oligonucleotide Design for Whole Genome Tiling Arrays

Qin Dong, The University of Western Ontario

Supervisor: Lucian Ilie, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Qin Dong 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Bioinformatics Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Dong, Qin, "Oligonucleotide Design for Whole Genome Tiling Arrays" (2014). Electronic Thesis and
Dissertation Repository. 1875.
https://ir.lib.uwo.ca/etd/1875

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.lib.uwo.ca%2Fetd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1875?utm_source=ir.lib.uwo.ca%2Fetd%2F1875&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

OLIGONUCLEOTIDE DESIGN FOR WHOLE GENOME TILING

ARRAYS

(Thesis format: Monograph)

by

Qin Dong

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Qin Dong 2014

Abstract

Oligonucleotides are short, single-stranded fragments of DNA or RNA, designed to

readily bind with a unique part in the target sequence. They have many important

applications including PCR (polymerase chain reaction) amplification, microarrays,

or FISH (fluorescence in situ hybridization) probes.

While traditional microarrays are commonly used for measuring gene expression

levels by probing for sequences of known and predicted genes, high-density, whole

genome tiling arrays probe intensively for sequences that are known to exist in a

contiguous region.

Current programs for designing oligonucleotides for tiling arrays are not able to

produce results that are close to optimal since they allow oligonucleotides that are

too similar with non-targets, thus enabling unwanted cross-hybridization. We present

a new program, BOND-tile, that produces much better tiling arrays, as shown by

extensive comparison with leading programs.

Keywords: DNA, oligonucleotide, tiling arrays, microarrays

ii

Acknowlegements

First of all, I would like to take this opportunity to show my sincere gratitude to my

supervisor, Dr. Lucian Ilie. He has spent much time on helping me to improve my

paper, and has given me so much useful advices on my writing. Without his patience

and insightful guidance, I could not finish this thesis.

Secondly, I would like to express my gratitude to my parents and grandparents.

Thank you for your support and love.

Thirdly, I sincerely appreciate my boyfriend, Fang Han, for his encouragements

and understanding. My appreciation also goes to Di Yao. As my best friend, she is

my proud of my life.

Last but not the least, I’d like to thank all my lab-mates, especially Yiwei Li

and Ehsan Haghshenas, the good colleagues and friends who offered me support and

information a lot. Without Yiwei’s help, it would take me much more time to finish

my study.

iii

Contents

Abstract ii

Acknowlegements iii

List of Figures vii

List of Tables x

1 Introduction 1

2 Genome Tiling 3

2.1 Molecular biology primer . 3

2.1.1 Organisms and cells . 3

2.1.2 DNA, RNA, and proteins . 4

2.1.3 Genome, chromosome, and gene 6

2.1.4 Thermodynamics of DNA . 6

2.2 Oligonucleotides and applications . 8

2.2.1 Oligonucleotides . 8

2.2.2 Applications of oligonucleotides 9

2.3 Whole Genome Tiling . 10

2.4 Sequence alignments . 12

2.5 Text indexing . 13

2.6 FM-index . 14

2.6.1 Burrows-Wheeler transform 15

2.6.2 The FM-index . 16

2.7 Leading programs for genome tiling 17

iv

2.7.1 ArrayDesign . 18

Defining the uniqueness score 18

Computing minimum unique prefixes 18

Validating the uniqueness score 19

Probe selection algorithm . 19

2.7.2 OligoTiler . 21

Sequence similarity and single-copy tiling 21

Repeat identification and low-complexity filtering 22

Tiling resolution . 22

Thermodynamic properties of oligonucleotide probes 23

Additional Parameters . 24

3 BOND-tile 25

3.1 Problems with previous designs . 25

3.2 Spaced seeds . 26

3.3 The BOND-tile algorithm . 28

3.3.1 The outline of BOND-tile algorithm 29

Oligo placement . 29

Outline of BOND-tile . 30

3.3.2 DNA encoding . 30

3.3.3 GC content . 31

3.3.4 Melting temperature . 32

3.3.5 Similarity search . 33

Hash table construction . 34

Phase I: Fast elimination . 34

Phase II: Intensive search and elimination 35

Differrence between fast and intensive elimination 35

3.3.6 Oligonucleotide selection . 36

4 Evaluation 38

4.1 General setup . 38

v

4.2 Datasets . 39

4.3 Operation Environment . 40

4.4 Non-target similarity: good and bad oligos 41

4.5 Melting temperature . 48

4.6 GC content . 51

4.7 Distance between oligos . 54

4.8 Time and space . 57

5 Conclusion 58

Bibliography 59

Curriculum Vitae 61

vi

List of Figures

2.1 An eukaryotic cell. (from Wikipedia) 4

2.2 Structure of DNA and RNA. 5

2.3 Structure of proteins. 6

2.4 Relationship of genome, chromosome and genes 7

2.5 Double-stranded DNA. (from City University of New York) 8

2.6 Hydrogen bonds between AT and GC base pairs. (from Wikipedia) . 8

2.7 An example of oligos hybridized with their target DNA sequences. . 9

2.8 A typical DNA microarray co-hybridization (2 dye) experiment. . . . 10

2.9 Unbiased whole-genome tiling array designs [18]. 11

2.10 Whole-genome high-density tiling arrays provide a universal data cap-

ture platform for a variety of genomic information [18]. 11

2.11 Needleman-Wunsch alignment of two sequences; 12

2.12 Smith-Waterman alignment of two sequences; 13

2.13 The suffix tree for the string TCGTAACGACC; 14

2.14 The suffix array (SA) for the string TCGTAACGACC; 15

2.15 Burrows-Wheeler transform for the string “ˆBANANA|”. 16

2.16 FM-index table for the string “acaacg$” via the Burrows-Wheeler matrix 17

2.17 Steps to match the substring “aac” in the string “acaacg$” [13]. . . . 17

vii

2.18 Uniqueness scoring function [7] (exemplified by Mus musculus, chr17:3028401-

3028500). The minimum unique prefixes for each window are illus-

trated in the sequences shown. In each window of a fixed length,

counting the number of minimum unique substrings helps calculating

the uniqueness score. The minimum unique substrings, which are indi-

cated by stars, are used to add to the uniqueness score. The uniqueness

scores for the six windows shown are 7, 9, 7, 4, 1, 0, respectively. . . 19

2.19 Probe selection algorithm [7]. 20

2.20 The problem of sequence similarity in tiling genomic DNA [3]. 22

2.21 Multiple Feature Tiling [3]. Overlapping tiles using fractional offset

(e.g., one 25-mer probe placed every 5 nucleotides) and single-base

offset placement. 23

3.1 BLAST will extend the consecutive matches to find more similarities. 27

3.2 Comparison between non-spaced and spaced seeds. 27

3.3 Comparing sensitivity of space seed and BLAST seed [10]. 28

3.4 The overlap-allowed oligos and the non-overlapping oligos in a genome. 29

3.5 GC-content evaluation process. 31

3.6 The set of multiple spaced seeds used in the homology search phase. . 33

3.7 The process of similarity elimination. 35

3.8 The process of selecting oligonucleotides. 37

4.1 The set of multiple spaced seeds used in the closest non-target similar-

ity evaluation. 41

4.2 Closest non-target identity distribution for the Drosophila melanogaster

dataset. 43

4.3 Closest non-target identity distribution for the T.reesei dataset. . . . 44

4.4 Closest non-target identity distribution for the Mus musculus dataset. 45

4.5 Closest non-target identity distribution for the Drosophila melanogaster

dataset; the region of 75-100% identity. 46

viii

4.6 Closest non-target identity distribution for the T.reesei dataset; the

region of 75-100% identity. 46

4.7 Closest non-target identity distribution for the Mus musculus dataset;

the region of 75-100% identity. 46

4.8 Closest non-target identity distribution for the Drosophila melanogaster

dataset; all identity levels (left) and 75-100% identity (right). 47

4.9 Closest non-target identity distribution for the T.reesei dataset; all

identity levels (left) and 75-100% identity (right). 47

4.10 Closest non-target identity distribution for the Mus musculus dataset;

all identity levels (left) and 75-100% identity (right). 47

4.11 Melting temperature distribution for the Drosophila melanogaster dataset.

. 48

4.12 Melting temperature distribution for the T.reesei dataset. 49

4.13 Melting temperature distribution for the Mus musculus dataset. . . 50

4.14 GC content distribution for the Drosophila melanogaster dataset. . . 51

4.15 GC content distribution for the T.reesei dataset. 52

4.16 GC content distribution for the Mus musculus dataset. 53

4.17 Good Oligo Distance distribution for the Drosophila melanogaster dataset.

. 54

4.18 Good Oligo Distance distribution for the T.reesei dataset. 55

4.19 Good Oligo Distance distribution for the Mus musculus dataset. . . 56

ix

List of Tables

3.1 Encoding of genome sequence . 30

3.2 Nearest-Neighbor parameters for DNA/DNA duplexes (SantaLucia [23])

. 33

4.1 Commom factors for Evaluation. 39

4.2 Input data sets used for evaluation. 40

4.3 Good oligos comparison for Drosophila melanogaster. 42

4.4 Good oligos comparison for Trichoderma reesei. 42

4.5 Good oligos comparison for Mus musculus. 42

4.6 Time and memory for the Drosophila melanogaster dataset. 57

4.7 Time and Memory for the Trichoderma reesei dataset. 57

4.8 Time and Memory for the Mus musculus dataset. 57

x

Chapter 1

Introduction

Oligonucleotides are short, single-stranded fragments of DNA or RNA, designed to

readily bind with a unique part in the target sequence. They are labelled in a way

that allows identification, e.g., using fluorescence, thus permitting the detection of

their target. It is therefore essential that good oligos do not cross-hybridize with

non-target sequences. Oligonucleotides have many important applications including

PCR (polymerase chain reaction) amplification, microarrays, or FISH (fluorescence

in situ hybridization) probes.

While traditional microarrays are commonly used for measuring gene expression

levels by probing for sequences of known and predicted genes, high-density, whole

genome tiling arrays probe intensively for sequences that are known to exist in a

contiguous region. Whole genome tiling arrays have many advantages such that the

high reproducibility among arrays, unbiased and complete genomic coverage, multiple

and potential overlaps, and probes representing transcription factor binding regions.

There are several programs for designing whole genome tiling oligonucleotide

probes, such as ArrayDesign [7] and OligoTiler [3]. The main procedure of the lead-

ing programs for detecting cross-hybridization is based on several derivative tools of

the suffix array [17] and BLAST (Basic Local Alignment Search Tool) [2]. For this

reason, they are not able to produce results that are close to optimal since they al-

low oligonucleotides that are too similar with non-targets, thus enabling unwanted

cross-hybridization. In addition, they can not produce the maximum number of good

1

Chapter 1. Introduction 2

oligonucleotides, thus not being able to detect every unique fragment.

In order to design better oligonucleotides, we present a new program, BOND-tile,

which uses the method of spaced seed-based similarity search and employs multiple

spaced seeds [15] computed by SpEED [9]. The proposed BOND-tile algorithm is

designed to search the non-overlapping unique oligonuleotide probes for whole genome

tiling, considering factors such as:

• Oligo placement

• Similarity between an oligonucleotide and its non-target sequences

• Melting temperature

• GC-content

• Heuristic oligo selection

The new BOND-tile program designs 100% good oligonucleotides without any

noisy output, and finds the largest number of unique oligonucleotides. It produces

significantly better oligonucleotides as shown by extensive comparison with leading

programs.

The thesis is organized as follows. After a brief introduction of the biological

background and computer science methods in Chapter 2, we describe completely

the new BOND-tile algorithm in Chapter 3, and perform the comparison against

ArrayDesign and OligoTiler in Chapter 4, concluding with a brief discussion of the

achievements in Chapter 5.

Chapter 2

Genome Tiling

In this chapter, we introduce the basic concepts and definitions. It includes three

sections. The first section introduces molecular biology terminology and concepts.

The second section explains the concept of oligonucleotides and their applications.

Finally, the central problem of the thesis, whole genome tiling, is introduced, together

with some of the leading programs for solving it.

2.1 Molecular biology primer

In order to understand the concepts of the thesis, we present a brief introduction to

basic biological background.

2.1.1 Organisms and cells

Every organism, a living system, is composed of cells. A cell is the functional unit

and basic structure of organisms. Organisms are classifed into unicellular and multi-

cellular. Cells have two types, eukaryotic and prokaryotic. Prokaryotic cells can live

independently, while eukaryotic cells are components of multicellular organisms. The

most important difference between eukaryotic and prokaryotic cells is that eukaryotic

cells include their organelles which are divided and wrapped by their membrane. The

organelles are the main site of occurring specific metabolic activities. Cells exchange

3

Chapter 2. Genome Tiling 4

information and make decisions through complex networks of chemical interaction

which are called pathways [1].

Figure 2.1: An eukaryotic cell. (from Wikipedia)

2.1.2 DNA, RNA, and proteins

DNA, deoxyribonucleic acid (Fig. 2.2), is a biological macromolecule that contains

the genetic instructions to guide biological development and vital functions. The four

bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T).

RNA, ribonucleic acid (Fig. 2.2), is also a biological macromolecule which is con-

structed from nucleotides and chemically similar to DNA. The four bases found in

RNA are adenine (A), cytosine (C), guanine (G), and uracil (U). In the cell, accord-

ing to the different structures and functions, RNA is classified into three categories,

namely tRNA, rRNA, and mRNA. mRNA is the template of protein synthesis based

on translation from a DNA sequence; tRNA identifies the genetic code on the mRNA

and is the amino acid transporter; rRNA is contained in the ribosome which is the

machinery of protein synthesis [1].

Chapter 2. Genome Tiling 5

Figure 2.2: Structure of DNA and RNA.
(http://chemistry.tutorvista.com/biochemistry/nucleic-acids.html)

Proteins are biological molecules composed of amino acids. They are the func-

tional molecules of the cell and can be classifed into groups such as structural proteins,

enzymes and transmembrane proteins. Biochemists often identify four distinct as-

pects of a protein’s structure (presented in Figure 2.3): primary structure, secondary

structure, tertiary structure, and quaternary structure.

Chapter 2. Genome Tiling 6

Figure 2.3: Structure of proteins.
(http://www.entrenandotualimentacion.es/2013/07/03/suplementacion-con-whey-

protein-en-ancianos/)

2.1.3 Genome, chromosome, and gene

The genome of an organism includes a complete set of DNA sequences. The DNA is

packaged into thread-like structures called chromosomes.

A gene is a piece of DNA that carries genetic information. The process of forming

proteins is guided by genetic information. Genes are the basic units of heredity to

control the characters of an organism.

The relationship between genome, chromosomes and genes is shown in Figure 2.4:

2.1.4 Thermodynamics of DNA

DNA is normally a double stranded macromolecule. The strands are held together by

hydrogen bonds (Fig. 2.5). Thus, the double-stranded structure of DNA is formed

Chapter 2. Genome Tiling 7

Figure 2.4: Relationship of genome, chromosome and genes
The genome (inside the cell) contains all of an organism’s genetic instructions.

(http://www.broadinstitute.org/blog/word-day-genome)

by binding two complementary DNA sequences together. This phenomenon is called

hybridization. Double-stranded DNA can be separated into two single strands by

heating. This process is called DNA melting. During the melting of DNA, hydro-

gen bonds between complementary bases will be broken. The melting temperature,

Tm, indicates the temperature at which the number of single-stranded molecules and

double-stranded molecules is the same.

In DNA, the pairs A=T have two hydrogen bonds, while C≡G have three hydrogen

bonds (Fig. 2.6). Therefore, C≡G is stronger than A=T. The GC content is the

percentage of C≡G pairs in DNA. Limits imposed on the GC content constrain the

range of melting temperature. Generally, sequences with a higher percentage of GC

base pairs have a higher Tm than AT-rich sequences do.

Several methods are available to calculate the melting temperature. The Nearest

Neighbour model is the most widely used approach [20, 23] which will be described

Chapter 2. Genome Tiling 8

Figure 2.5: Double-stranded DNA. (from City University of New York)
The 5’ end and the 3’ end refer to the two distinctive ends of DNA.

Figure 2.6: Hydrogen bonds between AT and GC base pairs. (from Wikipedia)

in detail in Chapter 3.

2.2 Oligonucleotides and applications

2.2.1 Oligonucleotides

A DNA oligonucleotide, abbreviated oligo, is a single-stranded chain of DNA that

is designed to bind uniquely to a target region (Fig. 2.7). A good oligo should not

cross-hybridize with non-target sequences.

Chapter 2. Genome Tiling 9

Figure 2.7: An example of oligos hybridized with their target DNA sequences.

2.2.2 Applications of oligonucleotides

Oligo have many important applications, some of the most important ones of which

are listed below:

• PCR (polymerase chain reaction) amplification; oligos are used as primers whose

sequence is complementary to the 5’ end of the sequence targeted for amplifi-

cation.

• Microarrays; these are collections of microscopic DNA spots attached to a solid

surface. The DNA sequences attached are the oligos. By specific target hy-

bridization, simultaneous measurement of the expression of large number of

genes is performed (Fig. 2.8).

• FISH (Fluorescence In Situ Hybridization) probes; oligos labelled with fluores-

cent dyes are used so that hybridization can be detected by fluorescence mi-

croscopy. This method can be used for detecting and localizing DNA or RNA

within cells and tissues.

Chapter 2. Genome Tiling 10

Figure 2.8: A typical DNA microarray co-hybridization (2 dye) experiment.
(http://bitesizebio.com/articles/introduction-to-dna-microarrays/)

2.3 Whole Genome Tiling

DNA microarrays are an effective technology commonly used for measuring gene

expression levels in biological and medical areas. Microarrays use one or several

probes for every gene. They probe for sequences of known and predicted genes.

Microarray chips have a branch referred to as tiling arrays. Instead of probing for

sequences of known or predicted genes that may be scattered throughout the genome,

whole-genome tiling arrays probe intensively for sequences that are known to exist

in a contiguous region (Fig. 2.9). In order to cover entire genomes, the density of

probes needs to be much higher than the traditional microarrays.

The significant advantages of tiling arrays over the traditional ones includes the

high reproducibility among arrays, unbiased and complete genomic coverage, multiple

and potential overlaps, and probes representing transcription factor binding regions

[18]. Therefore, whole-genome tiling arrays are a useful tool in genome-wide associa-

Chapter 2. Genome Tiling 11

Figure 2.9: Unbiased whole-genome tiling array designs [18].
Probes may be partially overlapping or nonoverlapping and tiled end to end.

tion studies for detection of genetic variants.

There are several approaches, presented in Figure 2.10, using whole-genome high-

density oligonucleotide tiling arrays for transcriptome characterization and genome

analysis.

Figure 2.10: Whole-genome high-density tiling arrays provide a universal data cap-
ture platform for a variety of genomic information [18].

Chapter 2. Genome Tiling 12

2.4 Sequence alignments

We present in the following sections two notions from computer science that are

necessary for understanding some of the whole genome tiling approaches. Sequence

alignment is a method widely used for comparing strings in order to find regions of

high similarity between them. Evolutionary related sequences have regions of high

similarity which show the structural and functional relationship between them.

Alignments are of two types: global and local. A global alignment is an alignment

in which every element in the two sequences is involved. A local alignment finds

similar regions (substrings) between the two sequences.

An earlier global alignment algorithm, based on dynamic programming, was de-

veloped by the Needleman and Wunsch [19]. An example is shown in Figure 2.11.

A C T G A T T
0 -2 -4 -6 -8 -10 -12 -14

A -2 2 0 -2 -4 -6 -8 -10
C -4 0 4 2 0 -2 -4 -6
G -6 -2 2 1 4 2 0 -2
C -8 -4 0 -1 2 1 -1 -3
A -10 -6 -2 -3 0 4 2 0
T -12 -8 -4 0 -2 2 6 4

The alignment:
A C T G – A T T
A C – G C A T –

Figure 2.11: Needleman-Wunsch alignment of two sequences;
the dynamic programming matrix and the optimal alignment.

The Needleman-Wunsch algorithm may miss short but highly similar regions be-

cause the optimal global alignment may choose a path that outweighs them. There-

Chapter 2. Genome Tiling 13

fore, local alignments are often more useful for detecting the homology of sequences.

Smith and Waterman [25] developed an algorithm, also based on dynamic program-

ming, to find the substring pair with the maximum similarity score. An example is

given in Figure 2.12. The Smith-Waterman method finds the subsequence with the

highest score.

G C C C T A G C G
0 0 0 0 0 0 0 0 0 0

G 0 1 0 0 0 0 0 1 0 1
C 0 0 2 1 1 0 0 0 2 0
G 0 1 0 1 0 0 0 1 0 3
C 0 0 2 1 2 0 0 0 2 1
A 0 0 0 1 0 1 1 0 0 1
A 0 0 0 0 0 0 2 0 0 0

The alignment:
G C G
G C G

Figure 2.12: Smith-Waterman alignment of two sequences;
the dynamic programming matrix and the best local alignment.

2.5 Text indexing

Text indexing is the general procedure of constructing a data structure from a given

text such that certain operations can be performed efficiently. The best known text

indexes are the suffix tree [26] and the suffix array [17].

The suffix tree of a string is a tree whose edges are labelled with substrings such

that every suffix of the string corresponds to a unique path from the root to a leaf.

Suffix trees can do many string operations in linear time that otherwise are very

Chapter 2. Genome Tiling 14

difficult. An example of a suffix tree is shown in Figure 2.13.

Figure 2.13: The suffix tree for the string TCGTAACGACC;
the leaves are labelled by the starting positions of the corresponding suffixes.

The suffix array (SA) of a string is defined as an array of positions sorted in the

lexicographical order of the corresponding suffixes of the string. The longest common

prefix (LCP) of two consecutive suffixes in the suffix array stores the length of the

longest shared prefix. Figures 2.14 gives an example of a suffix array and a LCP

array.

2.6 FM-index

The FM-index [5] is a compressed full-text substring index referring to an opportunis-

tic data structure based on the Burrows-Wheeler transform.

Chapter 2. Genome Tiling 15

i SA[i] SuffixSA[i] LCP[i]
1 5 AACGACC 0
2 9 ACC 1
3 6 ACGACC 2
4 11 C 0
5 10 CC 1
6 7 CGACC 1
7 2 CGTAACGACC 2
8 8 GACC 0
9 3 GTAACGACC 1
10 4 TAACGACC 0
11 1 TCGTAACGACC 1

Figure 2.14: The suffix array (SA) for the string TCGTAACGACC;
the third column gives the suffixes and the last the LCP array.

2.6.1 Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) is an algorithm applied in data compression.

The algorithm was invented by Michael Burrows and David Wheeler [4]. It transforms

a string of characters into a permutation of similar characters. When using this

method to convert a string, the algorithm only changes the order of the characters in

the string without changing any value of its characters. If the original string contains

some substrings that appear several times, then there will be several continuously

repeated characters on the transformed string, which would benefit compression.

BWT includes the following steps in order to implement the transformation:

• Create a table whose rows are all possible rotations of the string.

• Sort all rows in lexicographical order.

• Extract the last column of the table as the output.

The output contains some consecutive repeated characters so that it is easier to

compress. In addition, this transformation can be reversed without any additional

data being stored. Therefore, the BWT improves the efficiency of text compression

algorithms. An example is given in Figure 2.15.

Chapter 2. Genome Tiling 16

Figure 2.15: Burrows-Wheeler transform for the string “ˆBANANA|”.
The string “ ˆBANANA |” is transformed into “BNN ˆAA | A” (the red vertical bar

indicates the ‘end of file’ pointer). (from Wikipedia)

2.6.2 The FM-index

The FM-index uses the Burrows-Wheeler transform along with the Suffix Array data

structure such that it allows compression of the input string, simultaneously permit-

ting fast substring queries. The most important advantage of the FM index is that

it uses significantly less space compared with the suffix array.

An example of how the FM-index finds the position of a substring without un-

compressing is shown in the following steps:

- Transforming the string “acaacg$” into the BWT string “gc$aaac” through

Burrows-Wheeler matrix of the string (the $ indicates the ‘end of file’ pointer),

synchronously recording the corresponding suffix array (Fig. 2.16).

- The substring “aac” is searched for using the BWT string and the alphabetical

order row. The pairs of continuing arrows indicate the region of the BWT

that includes all positions that correspond to the current suffix of the substring

searched for. The process is represented in Figure 2.17.

Chapter 2. Genome Tiling 17

- If the substring “aac” is found in at least one row, its positions are obtain by

the corresponding value of suffix array shown above (Fig. 2.16).

Thus, “aac” is located in the third position of the given string “acaacg$”.

Figure 2.16: FM-index table for the string “acaacg$” via the Burrows-Wheeler matrix
that contains all rotations of the string sorted lexicographically. The 7th column gives
the BWT output string and the last records the corresponding SA.

Figure 2.17: Steps to match the substring “aac” in the string “acaacg$” [13].

2.7 Leading programs for genome tiling

A significant amount of research has been performed for designing tiling oligonu-

cleotide probes. In this chapter, we present the top two current algorithms for whole

genome tiling arrays.

Chapter 2. Genome Tiling 18

2.7.1 ArrayDesign

ArrayDesign [7] constructs whole genome tiling arrays by defining a measure of qual-

ity for oligonucleotide probes named the uniqueness score (U). It is shown that U

is equivalent to the number of shortest unique substrings in the probe. A greedy

algorithm is given to design whole genome tiling arrays using probes that maximize

U. The outline of the ArrayDesign algorithm is as follows:

Defining the uniqueness score

To determine the uniqueness score, the minimum unique prefixes are computed at all

possible positions. This is reduced to a congruent relationship between the minimum

unique substrings and the distinct end positions of minimum unique prefixes (Fig.

2.18). The relationship is that counting the distinct end positions of minimum unique

prefixes helps computing the number of minimum unique substrings. In Figure 2.18,

the sequence of each minimum unique prefix in the windows is shown. Computing the

number of minimum unique substrings gives the uniqueness score for every window

of a fixed length.

Computing minimum unique prefixes

ArrayDesign uses an algorithm based on a simple technique to compute minimum

unique prefixes. The uniqueness problem involves the comparison of a huge number of

uniqueness queries against the same data set. A solution based on the FM-index was

developed. ArrayDesign first constructs the Burrows-Wheeler transform, then uses a

multiway merging procedure which synchronously reads all suffix arrays [17] from left

to right. After each merging step, the next suffix is acquired in the sorted order of

all suffixes and obtain the corresponding character of the Burrows-Wheeler transform

and the other related information. After the FM-index is stored, the uniqueness

problem can be solved.

Chapter 2. Genome Tiling 19

Figure 2.18: Uniqueness scoring function [7] (exemplified by Mus musculus,
chr17:3028401-3028500). The minimum unique prefixes for each window are illus-
trated in the sequences shown. In each window of a fixed length, counting the number
of minimum unique substrings helps calculating the uniqueness score. The minimum
unique substrings, which are indicated by stars, are used to add to the uniqueness
score. The uniqueness scores for the six windows shown are 7, 9, 7, 4, 1, 0, respec-
tively.

Validating the uniqueness score

A collection of 50-mer probes from the NimbleGen whole genome tiling array was

used to validate the uniqueness score. For each of these probes, the uniqueness score

is determined as explained above and the number of hybridization-quality alignments

for each probe to the genome is computed using BLAT [12] (BLAST-Like Alignment

Tool).

Probe selection algorithm

The optimal probes are calculated (as shown in Figure 2.18) using a greedy selec-

tion strategy, which considers also a number of additional restrictions on the probes.

Chapter 2. Genome Tiling 20

Figure 2.19 illustrates the process of the probe selection algorithm.

Figure 2.19: Probe selection algorithm [7].

The parameters that are considered in the probe selection step are:

• Ensuring that the uniqueness score is higher than a given U threshold.

Chapter 2. Genome Tiling 21

• Calculating the melting temperature using the following salt-adjusted approxi-

mation [22]:

Tm = 81.5 + 16.6× log(c(Na+)) + 0.41× fGC − 600/N (2.1)

where c(Na+) is the salt concentration, fGC is the frequency of GC’s, and N is

the overall number of nucleotides in the sequence.

• Making sure not to include any specific runs which produce unsatisfactory

oligonucleotides (e.g., more than 6 consecutive G’s).

• Checking that the fragment can only contain less than a pre-set percentage

of palindromic sequence to eliminate probes with significant self-hybridization

potential.

• Choosing the probes with less than a given maskless array synthesis (MAS)

manufacturing cycle limit.

2.7.2 OligoTiler

OligoTiler [3] determines the similarity degree of many oligonucleotide sequences from

large genomes. It gives two algorithms for finding an optimal tile path. The first,

implemented by a dynamic programming approach, finds the optimal tiling in linear

time and space and the second uses a heuristic search to decrease the space complex-

ity to satisfy a constant requirement. The main methods and considered factors of

OligoTiler are shown below.

Sequence similarity and single-copy tiling

This design of tiling arrays involves computing the degree of similarity of any given

oligonucleotide sequence in a large genome in order to generate a single-copy tile

path which is represented on the array (Fig. 2.20). This intends to identify and elim-

inate non-unique sequences to reduce the potential cross-hybridization of sequences

Chapter 2. Genome Tiling 22

elsewhere in the genome. Due to the problem of memory constraints and sequence

mismatches, OligoTiler uses a BLAST-like scheme.

Figure 2.20: The problem of sequence similarity in tiling genomic DNA [3].
(A) Calculating the level of similarity (shown by the grey bars). The sequences
are eliminated from the tiling path when the sequence redundancy surpasses the
pre-set threshold (shown by the dashline). (B) Avoiding redundant or repetitive
sequence, simultaneously retaining sufficient sequence tiling. (C) With the minimum
tile connecting with their contiguous tile, the level of non-repetitive sequence coverage
decreases. (D) The tiling algorithms is enabled to involve a few redundant sequences
in an optimal fashion aiming at acquiring a higher percentage of non-repetitive DNA.

Repeat identification and low-complexity filtering

On a global scale, OligoTiler adopts libraries of known repeats identified in ge-

nomic DNA through comparison of sequences using BLAST [2] (Basic Local Align-

ment Search Tool). Using software such as RepeatMasker (http://ftp.genome.

washington.edu/RM/RepeatMasker.html) is the most convenient way to accomplish

it.

Tiling resolution

An important factor, tiling resolution, involves determining how to subdivide the re-

maining non-repetitive DNA segments and how densely oligonucleotides should rep-

http://ftp.genome.washington.edu/RM/ RepeatMasker.html
http://ftp.genome.washington.edu/RM/ RepeatMasker.html

Chapter 2. Genome Tiling 23

resent it. It makes use of shifting the starting position of each probe by a few nu-

cleotides so that the windows can overlap the previous oligonucleotides coordinates

(Fig. 2.21). In Figure 2.21, the strategy of using single-base offset placement provides

a finer-resolution sequence tiling. In addition, it can indicate more accurately where

hybridizing sequences are located on the chromosome.

Figure 2.21: Multiple Feature Tiling [3]. Overlapping tiles using fractional offset (e.g.,
one 25-mer probe placed every 5 nucleotides) and single-base offset placement.

Thermodynamic properties of oligonucleotide probes

One of the factors of OligoTiler in selecting oligonucleotide sequences for tiling arrays

is the predicted hybridization affinity [23]. For sequences over thirteen nucleotides,

hybridization affinity is almost the equivalent of calculating the melting temperature

using this formula:

Tm = 64.9 + 41× (nG + nC − 16.4)/(nA + nT + nG + nC) (2.2)

where n[A,C,G,T] denotes the number of each nucleotide in the DNA sequence.

For more precise calculations, OligoTiler uses a base-stacking approach for the exact

Chapter 2. Genome Tiling 24

sequence [21]:

Tm = [∆H(kcal/◦C ×Mol)/∆S + R× ln([oligo]/2)]− 273.15◦C (2.3)

In order to increase the consistency of Tm which corresponds to each probe, computing

the melting temperature helps shifting the replacement of oligonucleotide within every

non-repetitive region. OligoTiler selects the individual probe from each available

region such that its computed Tm is closer to the optimal temperature than the

unsatisfactory region. The universal set of oligos can be shifted all together so that

their aggregate Tm can be optimized.

Additional Parameters

Other parameters considered to create oligonucleotides can be set by the user:

• “IR region” considers how OligoTiler deals with the potential inverted repeats

at the two ends of an oligo. It gives a limit of how many characters at the two

ends should be checked in order to avoid inverted repeats.

• “IR require” considers the same parts as above. It means the number of match-

ing base pairs that must be checked within the “IR region” such that the start

position of the oligo will be shifted.

Chapter 3

BOND-tile

In this chapter, we describe our new program for whole genome oligo tiling: BOND-

tile. We explain first why the current approaches connot produce the best oligo sets.

Then, we introduce the notion of spaced seeds, that is central to our new design.

3.1 Problems with previous designs

Two leading programs for whole genome tiling arrays were described in the last section

of Chapter 2. We point out several problems with their design, common to all existing

tools, not just the two we have described.

The first, and most important problem, is hybridization with non-targets. DNA

hybridization happens between complementary sequences. However, the complemen-

tarity does not have to be perfect for strong hybridization to take place. Since oligos

are supposed to bind only to their targets, their complementary sequences must be

very different from any non-target sequence. The identity percentage denotes the

percentage of matches between two sequences. Usually, identity of 75% or lower is

required in order to prevent binding to non-targets [11]. Differently put, the identity

between the complement of the oligo and any non-target must be less than 75%.

The existing programs succeed only partially at achieving this goal. Some use

various heuristics, with limited success, others use BLAST [2] in order to find simi-

larities and eliminate them. BLAST however has limitations in finding similarities.

25

Chapter 3. BOND-tile 26

For instance, BLAST finds only 40% of the similarities of length 50 and identity 75%.

Its sensitivity is shown as the pink line in Figure 3.3.

The second problem is that the current programs do not find the highest possible

number of oligos, as it will be seen in our evaluation.

Third, the methods used in evaluating these programs suffer from the same prob-

lem of not being able to thoroughly look for similarities. For example, the survey [14]

uses BLAST which, as we indicated above, is inappropriate.

These problems appear also in programs designing traditional oligonucleotides

and they were corrected by the recent BOND program [10] (BOND stands for Basic

OligoNucleotide Design). Using the same method, of spaced seed-based similarity

search, we extend here the BOND program to solve the more difficult problem of

whole genome tiling. Our new program is called BOND-tile.

3.2 Spaced seeds

A full alignment procedure, the dynamic programming algorithm of Smith-Waterman,

was used before fast algorithms were developed. The Smith-Waterman algorithm has

perfect sensitivity but its quadratic time complexity makes it impossible to apply

for large sequences. Hence, heuristics approaches that can identify similarity fast are

needed. The Basic Local Alignment Search Tool [2], BLAST, became the most widely

used algorithm in searching similarities. It is assumed that high similarity implies

sharing a long substring which results in local alignment of the two sequences. The

development of BLAST was based on this idea. BLAST uses a consecutive seed

11111111111 to select 11 consecutive positions which are identical. A ’1’ denotes a

match. The 11 consecutive matches are called a hit. BLAST finds pairs of such

matching strings (hits) and then attempts to extend the similarity both ways (Fig.

3.1). Consecutive matches are easy to find, but BLAST may miss some high similarity

regions with a few mismatches. (As an example, one can imagine a similarity where

all positions match, except for every eleventh one. The similarity is about 91%, yet

it is undetected by BLAST.)

Chapter 3. BOND-tile 27

Figure 3.1: BLAST will extend the consecutive matches to find more similarities.

PatternHunter [16] presented a homology search algorithm by using an non-

consecutive spaced seed to check matches between sequences, which has a higher

sensitivity. PatternHunter’s seed is 111*1**1*1**11*111; a ‘1’ denotes a match and

‘*’ represents a “don’t care” position. In other words, it only checks the positions

directly corresponding to 1’s, while ignoring the positions corresponding to *’s. The

weight of a seed refers to the number of 1’s. The total number of 1’s and *’s is the

length of a seed. The probability of a hit depends only on the weight of the seed. So,

between non-spaced and spaced seeds with the same weight, the expected number of

hits is the same. Spaced matches have higher sensitivity because of less overlapping

between hits. Put another way, with the shifting of a seed, spaced seeds need more

matches to detect another hit. Therefore, consecutive seeds suffer from hit clustering

and thus spaced seeds can detect more similarities. Figure 3.2 illustrates the compar-

ison between non-spaced and spaced seeds.

Figure 3.2: Comparison between non-spaced and spaced seeds.
A hit of the contiguous seed (left) requires only one more match for another hit at the
next position, whereas for the spaced seed (right) six additional matches are needed.

In order to dramatically increase the sensitivity, a set of several seeds can be ap-

Chapter 3. BOND-tile 28

plied together for homology searching, which is called multiple spaced seeds. Using

multiple seeds can reach almost perfect sensitivity [15]. To design an efficient simi-

larity check, we need optimal multiple spaced seeds but they are hard to compute.

Several heuristic algorithms have been designed to calculate multiple spaced seeds,

but all of them have exponential time complexity except SpEED [9, 8]. This al-

gorithm calculates highly sensitive multiple spaced seeds and was used to compute

the seeds employed by BOND-tile. Figure 3.3 illustrate the comparison of BLAST’s

seed and multiple spaced seeds computed by SpEED which was used by the BOND

program for designing oligos.

Figure 3.3: Comparing sensitivity of space seed and BLAST seed [10].
The green line shows weight 6 multiple spaced seeds; the blue line shows weight 9
multiple spaced seeds; the pink line shows the BLAST seed;

3.3 The BOND-tile algorithm

In this section, we explain in detail the BOND-tile algorithm for designing oligonu-

cleotide probes for whole genome tiling arrays.

Chapter 3. BOND-tile 29

3.3.1 The outline of BOND-tile algorithm

Oligo placement

For whole genome tiling array, the genome is divided into a large number of contiguous

windows with fixed length. Every oligo is searched from each window of the whole

genome. There are two methods to search the oligos. One is searching overlap-

allowed oligos and another is searching non-overlapping oligos. Figure 3.4 shows the

two approaches. We choose the latter method to design BOND-tile as it produces

better results. The two methods are described below:

- The overlap-allowed oligos can start from every position of their window in the

whole genome such that the oligos in consecutive windows may overlap. Put

another way, the start position of an oligo may happen within the previous

oligo.

- The non-overlapping oligos are defined such that consecutive oligos have no

overlap. Every oligo is fully contained in its target window. This method is

named EasyCut.

Figure 3.4: The overlap-allowed oligos and the non-overlapping oligos in a genome.
Long dark lines denote the chromosomes, yellow boxes denote the windows in the
genome, and blue bars denote the oligos.

Chapter 3. BOND-tile 30

Outline of BOND-tile

The proposed BOND-tile algorithm is designed to search non-overlapping unique

oligonuleotide probes from each contiguous window (EasyCut).

BOND-tile marks every position in the genome as a possible candidate or not for

an oligo ending at that position. Every step deals only with candidate regions in the

genome. Once a position is marked as non-candidate, the remaining steps will not

consider it.

Then main steps of BOND-tile are presented below.

• Encoding the input sequences

• Fast elimination of high-similarity (spaced seed-based)

• GC-content management

• Melting temperature evaluation

• Intensive elimination by homology search (spaced seed-based)

• Final oligo extraction

Every step of the algorithm is explained in detail in the following subsections.

3.3.2 DNA encoding

BOND-tile encodes the input sequences in binary code, using two bits per nucleotide

(see Table 3.1).

Table 3.1: Encoding of genome sequence

Nucleotide base Binary encoding
A 00
C 01
G 10
T 11

Chapter 3. BOND-tile 31

Then, each chromosome sequence is stored in an array of unsigned 8-bit integers;

each value in the array will encode four consecutive nucleotides. Since an oligo is

searched for in any window of a fixed length, each chromosome sequence is divided

into these interval, which determine the available range for each potential oligo.

The data encoding in the algorithm has two advantages. The main one is to

enable the use of bitwise operations. Instead of comparing the nucleotide bases one

by one, we can consider the genome sequences as chunks of 64 bits corresponding to

32 nucleotide bases each time.

Also, it saves three quarters of the memory usage. Encoding each base requires

only two bits, while, in regular storage, every nucleotide base needs one byte due to

the character data type. This is helpful and efficient in managing large genomes.

3.3.3 GC content

GC-content refers to the proportion of G (guanine) and C (cytosine) in a DNA se-

quence. The genome of one organism, or specific segments of DNA and RNA, has

specific GC-content. To evaluate the GC-content, we developed an algorithm which

determines the thresholds of the minimum and maximum GC-content through a user-

defined schema. In the proposed algorithm, the default values are set as 30% and

70% respectively. It can be reset by the user.

Figure 3.5: GC-content evaluation process.

Chapter 3. BOND-tile 32

It can be seen from Figure 3.5 that the management of GC-content is conducted

from the right end of the encoded genome, screening to the left end. Among the whole

procedure, the percentage of guanine and cytosine will be examined; meanwhile some

oligo candidate positions whose GC-content percentage is outside the predefined range

will be eliminated. Every end position of eliminated subsequences will be marked as

non-candidate.

3.3.4 Melting temperature

The melting temperature, Tm, is one of the key parameters for designing the oligo

probes. To maximise uniformity for the obtained oligonucleotide set, melting temper-

atures of oligonucleotides need to differ only slightly. The Nearest Neighbour model

is the most widely used approach to calculate the melting temperature by applying

it with the parameters from SantaLucia [23] or Rychlik [20]. BOND-tile uses this

approach to compute the Tm[6, 24]:

Tm =
∆H

Rln(C/4) + ∆S
− 273.15 + 12log[Na+] (3.1)

where ∆H, enthalpy(k.cal/mol), denotes the total energy exchange between the sys-

tem and its surrounding environment, the ideal gas constant is denoted by R =

1.987 (cal/mol.K), C denotes the molar concentration of oligo sequence, ∆S, en-

tropy(cal/mol.K), is the energy spent to achieve self-organization by the system, and

[Na+] represents the molar concentration of salt. The values of ∆H and ∆S are

presented in Table 3.2.

The melting temperature of the candidate at every position will be computed

and stored. The ones falling outside the user defined range are considered as non-

candidates. The range of melting temperatures is set by the user.

Chapter 3. BOND-tile 33

Table 3.2: Nearest-Neighbor parameters for DNA/DNA duplexes (SantaLucia [23])

Stack (5’3’/3’5’) ∆H (
kcal

mol
) ∆S (

cal

mol.K
)

AA/TT -7.9 -22.2
AT/TA -7.2 -20.4
TA/AT -7.2 -21.3
CA/GT -8.5 -22.7
GT/CA -8.4 -22.4
CT/GA -7.8 -21.0
GA/CT -8.2 -22.2
CG/GC -10.6 -27.2
GC/CG -9.8 -24.4
GG/CC -8.0 -19.9
Init. w/term. G/C 0.1 -2.8
Init. w/term. 2.3 4.1
A/T Symmetry correction 0 -1.4

3.3.5 Similarity search

The spaced seed-based similarity search involves finding and investigating all hits

corresponding to all spaced seeds. This can be a time consuming task and, in order

to speed up the process, we shall perform the search in two phases. In the first phase,

for each seed, only one position of each hit is considered. This helps eliminating

vary fast large regions of high similarity. In the second phase, all possible hits are

considered, thus using the full power of the seeds.

BOND-tile employs the set of eight multiple spaced seeds of weight 10 shown in

Figure 3.6. These seeds are selected by SpEED [9, 8].

111*1**11*1*111
11**1*1**1***1***11*11
1111***1***1****11*1*1
11**11****1*1***1*11*1
111**1***1**1**1****111
11*1**1*******1*1**1***111
11*1***1****1*****1***1**111
11*1*1*****1*****1*****11*11

Figure 3.6: The set of multiple spaced seeds used in the homology search phase.

Chapter 3. BOND-tile 34

Hash table construction

Given a spaced seed s, an s-mer is a sequence of symbols that contains nucleotides

for the 1-positions and zeros for the ∗-positions. For example, if s = 11*1**1, then an

example of an s-mer is AC0G00T. The don’t care positions ‘∗’ are ignored by having

0’s in those places. A hit is given by a pair of identical s-mers. Therefore, we store

all s-mers of each seed in a hash table. Since the nucleotides are encoded in binary,

the s-mers are simply sequences of bits. To enable fast computation, we use a bitwise

AND between the seed and the DNA sequences. The seed is suitably encoded by 1

→ 11, ∗ → 00.

A hash table is created for each of the eight spaced seeds. Linear probing is used

for handling hash collisions. The algorithm checks the bases starting from the right

end of the encoded genome and slides to the left end. The s-mer’s integer value of

each position in the genome will be searched by using the seed model. If found, a hit

is discovered and investigated for potential similarity.

Phase I: Fast elimination

In the fast elimination phase, BOND-tile looks quickly for the potentially unsatisfac-

tory oligo positions, and eliminates them after finding high-similarity regions.

BOND-tile calculates the s-mer integer value of each position in the genome, then

searches the hash table for its hash value. If the corresponding hash value does not

exist in the hash table, the BOND-tile algorithm uses this hash value to be the hash

key and inserts the related position into the hash table. In the case that the hash

value already exists in the hash table, that means a ‘hit’ is found.

After finding a hit, BOND-tile extends the matches corresponding to the hit both

left and right as long as the similarity level of the two regions is above the user-

specified threshold. BOND-tile eliminates positions of the two regions by marking

them as non-candidates. Figure 3.7 shows how the extension works. The default

value of similarity threshold is 75%. It can be reset by the user.

Chapter 3. BOND-tile 35

Figure 3.7: The process of similarity elimination.

Phase II: Intensive search and elimination

In the intensive elimination phase, BOND-tile first calculates the s-mer integer value

of each position, and inserts this integer value as a hash key and synchronously input

all the related positions into the hash table. In case the obtained integer value can

be found as a hash key, only the related position will be put into the position array

which corresponds to this hash key.

After all the hash tables are completely created, the algorithm will scan every

candidate position in each window using a heuristic that tried the more likely ones

first (details in Section 3.3.6). For each position considered, all hits of all s-mers

corresponding to all eight seeds are investigated. That is why this phase is called

intensive.

Differrence between fast and intensive elimination

To clarify, in the fast searching stage, only one position for each corresponding hash

key is recorded in hashtable, which is the last checked position compared with the

Chapter 3. BOND-tile 36

last occurrence of the corresponding hit. In the intensive elimination, all candidate

positions and their corresponding hash values are kept in the hash table to be prepared

for similarity check. In addition, in every oligo candidate, the s-mer integer of every

position will be used to search for similarity.

3.3.6 Oligonucleotide selection

In the selection phase, BOND-tile subdivides the genome into a large number of

contiguous windows of a fixed length. The purpose is to select non-overlapping

(EasyCut) unique oligonuleotide probes from each window. BOND-tile checks

each tiling window to eliminate all unsatisfactory sequences and select the unique

oligonuleotide probes.

Recall that BOND-tile stores every position in the genome, whether it is a candi-

date or not. To obtain the maximum number of unique oligo probes, the algorithm

will execute all steps by checking every possible position in each tiling window. In ad-

dition, to maintain high quality of oligo probes as well as good speed, before running

the search step of intensive elimination, BOND-tile chooses the middle position of a

region of consecutive candidates, since it is expected to have the lowest similarity with

any other region. For example, if the length of one region of consecutive candidates

is l and the end position of this region is j, the priority selected position is j - l/2.

The process is shown in Figure 3.8.

As shown in the upper part of Figure 3.8, there are several candidate sequences

(green lines) and non-candidate sequences (red lines). The end positions of those

sequences are marked as green ticks and red crosses. The longest region of consecutive

green ticks, which means the longest region of consecutive candidates, is chosen to

be considered. In the lower part, the end position of the considered region is j and

the length of the region is l. Then the first picked candidate we try is shown in the

green box. Its end position is j - l/2. After selecting the preferred candidate, we use

intensive elimination phase to verify that it is a good oligo. When an oligo is found

in one window, it is added to output and that window no longer investigated.

Chapter 3. BOND-tile 37

Figure 3.8: The process of selecting oligonucleotides.

Chapter 4

Evaluation

This chapter presents the evaluation of experimental results. We compare the per-

formance of the BOND-tile algorithm with two leading programs for designing whole

genome tiling arrays, ArrayDesign [7] and OligoTiler [3].

4.1 General setup

After implementing the whole genome tiling program, BOND-tile, several evaluation

programs focusing on assessing the performance of BOND-tile were written as well.

In this chapter we evaluate the computational results of ArrayDesign, OligoTiler and

BOND-tile by comparing them according to the following factors:

- Identity with closest non-target (similarity check),

- Melting temperature,

- GC-content,

- Distance between consecutive oligos,

- Time,

- Space.

In all plots shown in this chapter, blue parts denote the results of ArrayDesign,

purple (light or dark) parts denote OligoTiler’s and green denote BOND-tile’s.

38

Chapter 4. Evaluation 39

For a meaningful comparison, all candidate programs have to be run with the

same parameters. Since we could not control some parameters for OligoTiler (it is

available through a website interface), those parameters had no limits imposed. The

parameters are set as shown in Table 4.1:

Table 4.1: Commom factors for Evaluation.

Defined Value
Parameters ArrayDesign OligoTiler BOND-tile
Oligo length 60bp 60bp 60bp
Window size 150bp 150bp 150bp
Overlapping allowed No(EasyCut) Very little (default, web) No(EasyCut)
GC content No Limit N/A No Limit
Melting temp No Limit N/A No Limit
Secondary structure No Limit IRregion=0 IRrequire=0 Turned Off
Everything else Default Values Default Values Default Values

4.2 Datasets

We use the following data sets as our input files. The FASTA file of Drosophila

melanogaster DNA chromosome 2L is downloaded from the pdf site: ftp://ftp.

ensembl.org/pub/release-67/fasta/drosophila_melanogaster/dna. The unmasked

FASTA file of Trichoderma reesei genome v.2.0 is downloaded from the Depart-

ment of Energy Joint Genome Institute website (JGI): http://genome.jgi-psf.

org/Trire2/Trire2.home.html. We also use NCBI Build 36 of the Mus musculus

DNA chromosome 17 downloaded from release 40 of Ensembl (ftp://ftp.ensembl.

org/pub/release-40/mus_musculus_40_36a/data/fasta/dna/). The information

concerning the input data sets used in the experiments is given in Table 4.2.

ftp://ftp.ensembl.org/pub/release-67/fasta/drosophila_melanogaster/dna
ftp://ftp.ensembl.org/pub/release-67/fasta/drosophila_melanogaster/dna
http://genome.jgi-psf.org/Trire2/Trire2.home.html
http://genome.jgi-psf.org/Trire2/Trire2.home.html
ftp://ftp.ensembl.org/pub/release-40/mus_musculus_40_36a/data/fasta/dna/
ftp://ftp.ensembl.org/pub/release-40/mus_musculus_40_36a/data/fasta/dna/

Chapter 4. Evaluation 40

Table 4.2: Input data sets used for evaluation.

Species model Genome size Chromosome Description
Drosophila
melanogaster

23011544 bp 2L Drosophila
melanogaster
BDGP5 67 dna
chromosome 2L

Trichoderma
reesei

33454791 bp All Trichoderma
reeseiV2 Assem-
bledScaffolds

Mus musculus 95177420 bp 17 Mus musculus
NCBIM36 40
dna chromosome
17

4.3 Operation Environment

The proposed algorithm is implemented in C++, and parallelized using openMP.

All computations were performed on the SHARCNET (Shared Hierarchical Aca-

demic Research Computing Network) which is a high performance computing con-

sortium. We used some nodes of the “shadowfax” cluster whose characteristics are

given below:

• Processor: Intel Xeon E6-2620 @ 2.0GHz, 2 sockets, 12 cores

• RAM: 256GB

• Operating System: Linux version CentOS 6.3

• Compiler: gcc version 4.8.1

Chapter 4. Evaluation 41

4.4 Non-target similarity: good and bad oligos

The most important property, and the most difficult to achieve, of the oligos is low

similarity with non-targets. The input file of the evaluation program is the set of

the oligo probes produced by each algorithm. The output is the maximum similarity

level with non-targets, for each oligo. The evaluation program is very similar with the

similarity search phase of BOND-tile, except that we use much more sensitive seeds

(see Fig. 4.1). The seeds were also computed using SpEED [9]. Their sensitivity is

shown by the green curve in Figure 3.3.

111*1*11
11**1**111
11*1*****1*11
1*1***1****111
1*1**1**1***1*1
11***1****1**1*1
11*1******1***1*1
11******1****1**11

Figure 4.1: The set of multiple spaced seeds used in the closest non-target similarity
evaluation.

If an oligo probe has more than 75% similarity with non-target regions, we mark

it as a bad oligo, otherwise it is considered good. The evaluation program runs fairly

slow because we use the multiple spaced seeds of weight six so that the evaluation

program has high sensitivity, which results in a large number of hits.

The experimental results are shown in Tables 4.3-4.5. The percentage of good

oligos computed by BOND-tile is 100%, while for the others, it varies between 70%

and 97%. In addition, BOND-tile always obtains more good oligos than the other two

programs. The difference is particularly big for the largest dataset where BOND-tile

found almost 30% more good oligos than OligoTiler and 24% more than ArrayDesign.

Chapter 4. Evaluation 42

Table 4.3: Good oligos comparison for Drosophila melanogaster.

Algorithm Total Oligos Good Oligos % of Good Oligos
ArrayDesign 153409 143260 93.38
OligoTiler 153410 142457 92.86
BOND-Tile 144707 144707 100.00

Table 4.4: Good oligos comparison for Trichoderma reesei.

Algorithm Total Oligos Good Oligos % of Good Oligos
ArrayDesign 222721 216736 97.31
OligoTiler 222793 215724 96.83
BOND-Tile 218319 218319 100.00

Table 4.5: Good oligos comparison for Mus musculus.

Algorithm Total Oligos Good Oligos % of Good Oligos
ArrayDesign 608461 462396 75.99
OligoTiler 608397 430023 70.68
BOND-Tile 499396 499396 100.00

The comparison for non-target similarity evaluation of ArrayDesign, OligoTiler

and BOND-tile is illustrated in Figures 4.2-4.10.

Figure 4.2-4.4 show the distribution of the oligos computed by the three programs

with respect to the percentages identity with the closest non-target. We show both

histograms and box-and-whiskers plots. BOND-tile has no oligos at identity higher

than 75%. For the largest dataset, the distribution of the oligos of BOND-tile is

significantly better than both the other programs (see Fig. 4.4, bottom). Also,

ArrayDesign is slightly better than OligoTiler.

Chapter 4. Evaluation 43

0
10

00
0

20
00

0
30

00
0

40
00

0
Closest non−target identity of ArrayDesign oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

53 56 60 63 66 70 73 76 80 83 86 90 93 96 100

0
10

00
0

20
00

0
30

00
0

40
00

0

Closest non−target identity of OligoTiler oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

53 56 60 63 66 70 73 76 80 83 86 90 93 96 100

0
10

00
0

20
00

0
30

00
0

40
00

0

Closest non−target identity of BOND−tile oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

53 56 60 63 66 70 73

ArrayDesign OligoTiler BOND−tile

50
60

70
80

90
10

0

Algorithms

%
Id

en
tit

y

Closest non−target identity of oligos (Drosophila Mel. dataset)

Figure 4.2: Closest non-target identity distribution for the Drosophila melanogaster
dataset.

Chapter 4. Evaluation 44

0
20

00
0

40
00

0
60

00
0

Closest non−target identity of ArrayDesign oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

55 58 61 65 68 71 75 78 81 85 88 91 95 98

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Closest non−target identity of OligoTiler oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

55 58 61 65 68 71 75 78 81 85 88 91 95 98

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Closest non−target identity of BOND−tile oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

55 58 61 65 68 71 75

ArrayDesign OligoTiler BOND−tile

50
60

70
80

90
10

0

Algorithms

%
Id

en
tit

y

Closest non−target identity of oligos (T.reeseiV2 dataset)

Figure 4.3: Closest non-target identity distribution for the T.reesei dataset.

Chapter 4. Evaluation 45

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

Closest non−target identity of ArrayDesign oligos (Mus_musculus dataset)

%Identity

O
lig

os

55 58 61 65 68 71 75 78 81 85 88 91 95 98
0

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

Closest non−target identity of OligoTiler oligos (Mus_musculus dataset)

%Identity

O
lig

os
55 58 61 65 68 71 75 78 81 85 88 91 95 98

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Closest non−target identity of BOND−tile oligos (Mus_musculus dataset)

%Identity

O
lig

os

55 58 61 65 68 71 75

ArrayDesign OligoTiler BOND−tile

50
60

70
80

90
10

0

Algorithms

%
Id

en
tit

y

Closest non−target identity of oligos (Mus_musculus dataset)

Figure 4.4: Closest non-target identity distribution for the Mus musculus dataset.

The histograms for the identity between 75-100% are shown in Figures 4.5-4.7.

The same information is presented in the form of line graphs in Figures 4.8-4.10, this

time with all three programs on the same graph for better comparison.

Chapter 4. Evaluation 46

0
20

00
40

00
60

00
80

00

Closest non−target identity of ArrayDesign oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
20

00
40

00
60

00
80

00

Closest non−target identity of OligoTiler oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
20

00
40

00
60

00
80

00

Closest non−target identity of BOND−tile oligos (Drosophila Mel. dataset)

%Identity

O
lig

os

75

Figure 4.5: Closest non-target identity distribution for the Drosophila melanogaster
dataset; the region of 75-100% identity.

0
20

0
40

0
60

0
80

0
10

00

Closest non−target identity of ArrayDesign oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
20

0
40

0
60

0
80

0
10

00

Closest non−target identity of OligoTiler oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
20

0
40

0
60

0
80

0
10

00

Closest non−target identity of BOND−tile oligos (T.reeseiV2 dataset)

%Identity

O
lig

os

75

Figure 4.6: Closest non-target identity distribution for the T.reesei dataset; the
region of 75-100% identity.

0
10

00
0

20
00

0
30

00
0

40
00

0

Closest non−target identity of ArrayDesign oligos (Mus_musculus dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
10

00
0

20
00

0
30

00
0

40
00

0

Closest non−target identity of OligoTiler oligos (Mus_musculus dataset)

%Identity

O
lig

os

75 78 80 83 85 88 90 93 95 98 100

0
10

00
0

20
00

0
30

00
0

40
00

0

Closest non−target identity of BOND−tile oligos (Mus_musculus dataset)

%Identity

O
lig

os

75

Figure 4.7: Closest non-target identity distribution for the Mus musculus dataset;
the region of 75-100% identity.

Chapter 4. Evaluation 47

50 60 70 80 90 100

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

%Identity

O
lig

os

Closest non−target identity of oligos (Drosophila Mel. dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

75 80 85 90 95 100

0
20

00
40

00
60

00
80

00

%Identity

O
lig

os

Closest non−target identity of oligos (Drosophila Mel. dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

Figure 4.8: Closest non-target identity distribution for the Drosophila melanogaster
dataset; all identity levels (left) and 75-100% identity (right).

50 60 70 80 90 100

0
20

00
0

40
00

0
60

00
0

80
00

0

%Identity

O
lig

os

Closest non−target identity of oligos (T.reeseiV2 dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

75 80 85 90 95 100

0
20

0
40

0
60

0
80

0
10

00
12

00

%Identity

O
lig

os

Closest non−target identity of oligos (T.reeseiV2 dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

Figure 4.9: Closest non-target identity distribution for the T.reesei dataset; all
identity levels (left) and 75-100% identity (right).

50 60 70 80 90 100

0
50

00
0

10
00

00
15

00
00

%Identity

O
lig

os

Closest non−target identity of oligos (Mus_musculus dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

75 80 85 90 95 100

0
10

00
0

20
00

0
30

00
0

40
00

0

%Identity

O
lig

os

Closest non−target identity of oligos (Mus_musculus dataset)

Algorithm

BOND−tile
ArrayDesign
OligoTiler

Figure 4.10: Closest non-target identity distribution for the Mus musculus dataset;
all identity levels (left) and 75-100% identity (right).

Chapter 4. Evaluation 48

4.5 Melting temperature

As shown in Figures 4.11-4.13, the distribution of the melting temperature is fairly

similar among the three candidate programs.
0

50
10

0
15

0

Tm of ArrayDesign oligos (Drosophila Mel. dataset)

Tm(C degree)

O
lig

os

51.84 57.22 62 65.7 70 73.7 78 81.7 86 89.8

0
50

10
0

15
0

Tm of OligoTiler oligos (Drosophila Mel. dataset)

Tm(C degree)

O
lig

os

49.52 54.7 59 62.7 67 70.7 75 78.7 83 86.7 91.5

0
20

40
60

80
10

0
12

0
14

0

Tm of BOND−tile oligos (Drosophila Mel. dataset)

Tm(C degree)

O
lig

os

51.53 56.84 61 64.7 69 72.7 77 80.7 85 88.7

ArrayDesign OligoTiler BOND−tile

50
60

70
80

90
10

0

Algorithms

T
m

(C
 d

eg
re

e)

Melting temperature of oligos (Drosophila Mel. dataset)

Figure 4.11: Melting temperature distribution for the Drosophila melanogaster
dataset.

Chapter 4. Evaluation 49

0
50

10
0

15
0

20
0

25
0

Tm of ArrayDesign oligos (T.reeseiV2 dataset)

Tm(C degree)

O
lig

os

53.05 57 60 63 66 69 72 75 78 81 84 87 90 93.94

0
50

10
0

15
0

20
0

25
0

Tm of OligoTiler oligos (T.reeseiV2 dataset)

Tm(C degree)

O
lig

os

50.14 55.6 60 64 68 72 76 80 84 88 92.2

0
50

10
0

15
0

20
0

25
0

Tm of BOND−tile oligos (T.reeseiV2 dataset)

Tm(C degree)

O
lig

os

52.29 56.8 60.9 65 68 71 74 77 80 83 86 89 92

Figure 4.12: Melting temperature distribution for the T.reesei dataset.

Chapter 4. Evaluation 50

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Tm of ArrayDesign oligos (Mus_musculus dataset)

Tm(C degree)

O
lig

os

52.31 58.4 63 67 71 75 79 83 87 91 95.4

0
10

0
20

0
30

0
40

0
50

0
60

0

Tm of OligoTiler oligos (Mus_musculus dataset)

Tm(C degree)

O
lig

os

48.81 54 58 62 66 70 74 78 82 86 90 94 99.35

0
10

0
20

0
30

0
40

0
50

0

Tm of BOND−tile oligos (Mus_musculus dataset)

Tm(C degree)

O
lig

os

53.55 59 63 67 71 75 79 83 87 91 95.5

Figure 4.13: Melting temperature distribution for the Mus musculus dataset.

Chapter 4. Evaluation 51

4.6 GC content

Figures 4.14-4.16 present the comparison of GC content parameter, and, again there

is no significant difference among the three candidate programs. The range of Olig-

oTiler is slightly wider than the others.

0
20

00
40

00
60

00
80

00

GC content of ArrayDesign oligos (Drosophila Mel. dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83

0
20

00
40

00
60

00
80

00

GC content of OligoTiler oligos (Drosophila Mel. dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83

0
20

00
40

00
60

00
80

00

GC content of BOND−tile oligos (Drosophila Mel. dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83

ArrayDesign OligoTiler BOND−tile

0
20

40
60

80
10

0

Algorithms

G
C

 c
on

te
nt

(%
)

GC content of oligos (Drosophila Mel. dataset)

Figure 4.14: GC content distribution for the Drosophila melanogaster dataset.

Chapter 4. Evaluation 52

0
50

00
10

00
0

15
00

0

GC content of ArrayDesign oligos (T.reeseiV2 dataset)

GC content(%)

O
lig

os

0 5 10 16 22 28 34 40 46 53 60 66 73 80 86

0
50

00
10

00
0

15
00

0

GC content of OligoTiler oligos (T.reeseiV2 dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83

0
50

00
10

00
0

15
00

0

GC content of BOND−tile oligos (T.reeseiV2 dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83

ArrayDesign OligoTiler BOND−tile

0
20

40
60

80
10

0

Algorithms

G
C

 c
on

te
nt

(%
)

GC content of oligos (T.reeseiV2 dataset)

Figure 4.15: GC content distribution for the T.reesei dataset.

Chapter 4. Evaluation 53

0
10

00
0

20
00

0
30

00
0

40
00

0

GC content of ArrayDesign oligos (Mus_musculus dataset)

GC content(%)

O
lig

os

0 5 10 16 23 29 35 41 47 53 60 66 73 80 86 93

0
10

00
0

20
00

0
30

00
0

GC content of OligoTiler oligos (Mus_musculus dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83 90 96

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

GC content of BOND−tile oligos (Mus_musculus dataset)

GC content(%)

O
lig

os

0 5 10 16 23 30 36 43 50 56 63 70 76 83 90

ArrayDesign OligoTiler BOND−tile

0
20

40
60

80
10

0

Algorithms

G
C

 c
on

te
nt

(%
)

GC content of oligos (Mus_musculus dataset)

Figure 4.16: GC content distribution for the Mus musculus dataset.

Chapter 4. Evaluation 54

4.7 Distance between oligos

Figures 4.17-4.19 illustrate the distance, in base pairs, between the contiguous good

oligos. In other words, we eliminate all bad oligos produced by ArrayDesign and Olig-

oTiler before calculating the oligo distances. It can be seen that the oligo distance

parameter of BOND-tile is slightly better than OligoTiler and both are much better

than ArrayDesign.

0
50

0
10

00
15

00
20

00
25

00
30

00

Distance of ArrayDesign oligos (Drosophila Mel. dataset)

Distance between good oligos(base)

O
lig

os

60 91 145 245 414 701 1256 2400 4722 9041 18328 70045

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

Distance of OligoTiler oligos (Drosophila Mel. dataset)

Distance between good oligo(base)

O
lig

os

150 300 600 1050 1950 3750 6600 12300 70050
0

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00

Distance of BOND−tile oligos (Drosophila Mel. dataset)

Distance between good oligo(base)

O
lig

os

65 96 150 247 407 675 1176 2199 4181 7694 15511 36727

ArrayDesign OligoTiler BOND−tile

5e
+

01
5e

+
02

5e
+

03
5e

+
04

Algorithms

D
is

ta
nc

e
be

tw
ee

n
go

od
 o

lig
os

(b
as

e)

Distance of good oligos (Drosophila Mel. dataset)

Figure 4.17: Good Oligo Distance distribution for the Drosophila melanogaster
dataset.

Chapter 4. Evaluation 55

0
10

00
20

00
30

00
40

00

Distance of ArrayDesign oligos (T.reeseiV2 dataset)

Distance between good oligos(base)

O
lig

os

60 79 108 153 217 307 435 618 876 1293 1999 3060 4794 10431

0
50

00
0

10
00

00
15

00
00

20
00

00

Distance of OligoTiler oligos (T.reeseiV2 dataset)

Distance between good oligos(base)

O
lig

os

1 3 7 16 29 48 81 144 300 580 1171 2550 5700 17914

0
50

00
0

10
00

00
15

00
00

20
00

00

Distance of BOND−tile oligos (T.reeseiV2 dataset)

Distance between good oligos(base)

O
lig

os

62 80 108 150 209 291 405 563 784 1136 1733 2593 3897 6161 10414

ArrayDesign OligoTiler BOND−tile

1
10

10
0

10
00

10
00

0

Algorithms

D
is

ta
nc

e
be

tw
ee

n
go

od
 o

lig
os

(b
as

e)

Distance of good oligos (T.reeseiV2 dataset)

Figure 4.18: Good Oligo Distance distribution for the T.reesei dataset.

Chapter 4. Evaluation 56

0
20

00
40

00
60

00
80

00
10

00
0

Distance of ArrayDesign oligos (Mus_musculus dataset)

Distance between good oligos(base)

O
lig

os

60 93 152 264 458 794 1463 2867 5616 11750 26883 59761 231835

0e
+

00
1e

+
05

2e
+

05
3e

+
05

Distance of OligoTiler oligos (Mus_musculus dataset)

Distance between good oligos(base)

O
lig

os

12 150 298 579 1220 2725 6150 14850 41045 116646

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

Distance of BOND−tile oligos (Mus_musculus dataset)

Distance between good oligos(base)

O
lig

os

60 92 150 260 451 782 1440 2822 5533 11982 27326 65745 234564

Figure 4.19: Good Oligo Distance distribution for the Mus musculus dataset.

Chapter 4. Evaluation 57

4.8 Time and space

The running time and memory usage are presented in Tables 4.6-4.8. The space for

OligoTiler could not be obtained and the time is the response time on the web inter-

face. The space used by BOND-tile is between 2 and 4 times larger than ArrayDesign.

BOND-tile and OligoTiler have similar speed for the two smaller datasets, and

much faster than ArrayDesign. For the largest dataset, BOND tile becomes very

slow, probably due to the very simple collision resolving scheme. (We did not have

time to try something else.)

Considering the fact that designing of tiling oligos is not done very often, all times

and memory requirements are perfectly acceptable.

Table 4.6: Time and memory for the Drosophila melanogaster dataset.

Algorithm Time(s) Memory(Mb) Total Oligos Good Oligos
ArrayDesign 3212 763.4 153409 143260
OligoTiler about 60 (web) 153410 142457
BOND-Tile 56 1731 144707 144707

Table 4.7: Time and Memory for the Trichoderma reesei dataset.

Algorithm Time(s) Memory(Mb) Total Oligos Good Oligos
ArrayDesign 4687 846.5 222721 216736
OligoTiler about 120 (web) 222793 215724
BOND-Tile 94 2252 218319 218319

Table 4.8: Time and Memory for the Mus musculus dataset.

Algorithm Time(s) Memory(Mb) Total Oligos Good Oligos
ArrayDesign 13683 1343 608461 462396
OligoTiler about 900 (web) 608397 430023
BOND-Tile 32241s 5298 499396 499396

Chapter 5

Conclusion

In this thesis, we have considered the problem of designing oligonucleotides for whole

genome tiling. The results of previous methods are far from satisfactory since some of

the produced oligos have cross-hybridization with non-targets. The highest possible

number of oligos is not found. Also, the previous evaluations are not sensitive enough.

After pointing out the shortcomings of the existing programs, we have designed

a new one, BOND-tile, that produces significantly better oligonucleotides. Through

the evaluation, we have conducted a comprehensive analysis and comparison between

the existing programs and BOND-tile. BOND-tile shows its advantage in finding the

largest number of unique probes placed at equal distance between adjacent oligonu-

cleotide. The running time of BOND-tile seems to grow fast with the size of the input

but it is likely the increasing degree of repetition that causes the problem and which

will be solved by using double hashing.

In addition, our design can be customized in various ways, such as, for instance,

allowing oligos having identity with non-targets over 75%. Moreover, such oligos can

be computed in such a way as to minimize the identity with non-targets. Also, the

melting temperature interval can be automatically computed (assuming its size is

give by the user) such that the total number of oligos found is maximized.

58

Bibliography

[1] Bruce Alberts. Essential cell biology: an introduction to the molecular biology of

the cell, volume 1. Taylor & Francis, 1998.

[2] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J

Lipman. Basic local alignment search tool. Journal of Molecular Biology,

215(3):403–410, 1990.

[3] Paul Bertone, Valery Trifonov, Joel S Rozowsky, Falk Schubert, Olof Emanuels-

son, John Karro, Ming-Yang Kao, Michael Snyder, and Mark Gerstein. De-

sign optimization methods for genomic dna tiling arrays. Genome Research,

16(2):271–281, 2006.

[4] Michael Burrows and David J Wheeler. A block-sorting lossless data compression

algorithm. Digital Systems Research Center, Research Report 124, 1994.

[5] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-

plications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual

Symposium on, pages 390–398. IEEE, 2000.

[6] SM Freier, R Kierzek, JA Jaeger, N Sugimoto, MH Caruthers, T Neilson, and

DH Turner. Improved free-energy parameters for predictions of rna duplex sta-

bility. Proceedings of the National Academy of Sciences of the United States of

America, 83(24):9373, 1986.

59

BIBLIOGRAPHY 60

[7] Stefan Gräf, Fiona GG Nielsen, Stefan Kurtz, Martijn A Huynen, Ewan Birney,

Henk Stunnenberg, and Paul Flicek. Optimized design and assessment of whole

genome tiling arrays. Bioinformatics, 23(13):i195–i204, 2007.

[8] Lucian Ilie and Silvana Ilie. Multiple spaced seeds for homology search. Bioin-

formatics, 23(22):2969–2977, 2007.

[9] Lucian Ilie, Silvana Ilie, and Anahita Mansouri Bigvand. Speed: fast computa-

tion of sensitive spaced seeds. Bioinformatics, 27(17):2433–2434, 2011.

[10] Lucian Ilie, Hamid Mohamadi, Geoffrey Brian Golding, and William F Smyth.

Bond: Basic oligonucleotide design. BMC Bioinformatics, 14(1):1–8, 2013.

[11] Michael D Kane, Timothy A Jatkoe, Craig R Stumpf, Jia Lu, Jeffrey D Thomas,

and Steven J Madore. Assessment of the sensitivity and specificity of oligonu-

cleotide (50mer) microarrays. Nucleic Acids Research, 28(22):4552–4557, 2000.

[12] W James Kent. Blat the blast-like alignment tool. Genome Research, 12(4):656–

664, 2002.

[13] Benjamin Thomas Langmead. Highly Scalable Short Read Alignment with the

Burrows-Wheeler Transform and Cloud Computing. PhD thesis, 2009.

[14] Sophie Lemoine, Florence Combes, and Stéphane Le Crom. An evaluation of

custom microarray applications: the oligonucleotide design challenge. Nucleic

Acids Research, 37(6):1726–1739, 2009.

[15] Ming Li, Bin Ma, Derek Kisman, and John Tromp. PatternHunter II: Highly

sensitive and fast homology search. Journal of Bioinformatics and Computational

Biology, 2(03):417–439, 2004.

[16] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive

homology search. Bioinformatics, 18(3):440–445, 2002.

[17] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948, 1993.

BIBLIOGRAPHY 61

[18] Todd C Mockler and Joseph R Ecker. Applications of dna tiling arrays for

whole-genome analysis. Genomics, 85(1):1–15, 2005.

[19] Saul B Needleman and Christian D Wunsch. A general method applicable to

the search for similarities in the amino acid sequence of two proteins. Journal of

Molecular Biology, 48(3):443–453, 1970.

[20] W.J.S.W. Rychlik, W.J. Spencer, and R.E. Rhoads. Optimization of the an-

nealing temperature for dna amplification in vitro. Nucleic Acids Research,

18(21):6409–6412, 1990.

[21] Wojciech Rychlik and Robert E Rhoads. A computer program for choosing opti-

mal oligonudeotides for filter hybridization, sequencing and in vitro amplification

of dna. Nucleic Acids Research, 17(21):8543–8551, 1989.

[22] Joseph Sambrook, Edward F Fritsch, Thomas Maniatis, et al. Molecular cloning,

volume 2. Cold spring harbor laboratory press New York, 1989.

[23] John SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide

dna nearest-neighbor thermodynamics. Proceedings of the National Academy of

Sciences, 95(4):1460–1465, 1998.

[24] John SantaLucia, Hatim T Allawi, and P Ananda Seneviratne. Improved

nearest-neighbor parameters for predicting dna duplex stability. Biochemistry,

35(11):3555–3562, 1996.

[25] Temple F Smith and Michael S Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[26] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata

Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium

on, pages 1–11. IEEE, 1973.

Curriculum Vitae

Name: Qin Dong

Post-Secondary University of Western Ontario
Education and London, ON
Degrees: 2012 - present M.Sc. candidate

Tianjin University of Technology
Tianjin, China
2007 - 2011 B.Eng.

University of Qubec Chicoutimi
Chicoutimi, QC
2007 - 2011 B.Sc.A.

Honours and University people’s Scholarship
Awards: 2007-2010

Related Work Teaching Assistant
Experience: The University of Western Ontario

2012 - present

Research Assistant
The University of Western Ontario
2012 - present

Market Research Assistant
Internship in Hebei Tengruan China Information Technology Co., Ltd
2009

Software Developer Intern
Internship in Hebei Tengruan China Information Technology Co., Ltd
2010

62

	Oligonucleotide Design for Whole Genome Tiling Arrays
	Recommended Citation

	Abstract
	Acknowlegements
	List of Figures
	List of Tables
	Introduction
	Genome Tiling
	Molecular biology primer
	Organisms and cells
	DNA, RNA, and proteins
	Genome, chromosome, and gene
	Thermodynamics of DNA

	Oligonucleotides and applications
	Oligonucleotides
	Applications of oligonucleotides

	Whole Genome Tiling
	Sequence alignments
	Text indexing
	FM-index
	Burrows-Wheeler transform
	The FM-index

	Leading programs for genome tiling
	ArrayDesign
	Defining the uniqueness score
	Computing minimum unique prefixes
	Validating the uniqueness score
	Probe selection algorithm

	OligoTiler
	Sequence similarity and single-copy tiling
	Repeat identification and low-complexity filtering
	Tiling resolution
	Thermodynamic properties of oligonucleotide probes
	Additional Parameters

	BOND-tile
	Problems with previous designs
	Spaced seeds
	The BOND-tile algorithm
	The outline of BOND-tile algorithm
	Oligo placement
	Outline of BOND-tile

	DNA encoding
	GC content
	Melting temperature
	Similarity search
	Hash table construction
	Phase I: Fast elimination
	Phase II: Intensive search and elimination
	Differrence between fast and intensive elimination

	Oligonucleotide selection

	Evaluation
	General setup
	Datasets
	Operation Environment
	Non-target similarity: good and bad oligos
	Melting temperature
	GC content
	Distance between oligos
	Time and space

	Conclusion
	Bibliography
	Curriculum Vitae

