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ABSTRACT

Under the petrographic microscope, most rocks in thin section appear as an
assemblage of tightly interlocked mineral grains, inclusions, pore spaces etc. The
geometrical characteristics of these features, including their apparent sises, shapes,
orientations and distributions, define the texture of a rock.

In this study the optical image from a petrographic microscope is processed
by a micro-computer. The image is converted into electrical signals by a Sony AVC-
D5 monochrome video camera. These signals are digitised by an analog to digital
converter in a Imaging Technology PCVISION plus frame grabber board which
stores and manipulates the resulting digital image in its frame memory. The image
is stored in 256-colour PCX format.

The extraction of geologica! information from the digital image requires ;hat
the features in the image be identified and their edges defined. Feature identifica-
tion is accomplished by manipulation of the digital image which is referred to as
image processing. This involves three sequential operations: digital filtering, image
segmentation and feature extraction. In the present study fourteen digital filters
are evaluated for their abilities to reduce normally distributed additive noise while
preserving linear features and image texture. The Sigma Filter is shown to be most
suitable for application to petrographic images. The edges of the features of inter-
est are extracted using zero-crossing edge finders with varying window sizes. The
sequential capturing of multiple images from one microscope field of view allows
a thin section to be analyzed in a manner analogous to the procedure followed in
manual petrography. Interactive manipulation of the image containing the detected

edges is possible using an image editor.




The feature extraction process identifies and selects features of interest from
the detected edges of the petrographic image. This information, the original grey
level image and the intermediate segmented edge image, are all used to provide data
which are not available from traditional petrography. Salient features of the image
processing system developed here are illustrated by application to selected geological
problems for which data obtained by conventional techniques are available.

Image processing can provide an initial step in expert systems developed to
solve specific petrographic problems. This could allow the processing to be auto-
mated using knowledge banks interactively at each stage of image analysis.

iv
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Chapter 1

Introduction

Image analysis refers to the digital techniques by which numerical information re-
garding the features of interest can be extracted from an image (Sklansky 1978). In
petrography, image analysis can be applied to examine rock thin sections under the
microscope to extract information about the constituent mineral grains and their
inclusions, and pore spaces. The geometrical characteristics and spatial distribution
of these features define the texture of a rock. Characterisation of rock textures may
require the analysis of hundreds of samples in any particular investigation, hence
the desirability of an automated system to obtain the necessary data. Such a system
also offers the possibility of obtaining objective and reproducible data, especially if

it is under appropriate computer control.

In computer-assisted petrography the microscope image is digitized and stored
in a computer as an array of numbers. Each number represents the grey level of
the image at the corresponding point and it is the numerical array which is used to
determine the different parameters of the rock texture. Petrographic image analysis
to date has been applied mainly either to the study of mineral grain morphology,
which provides data for interpretations of provenance, lithification and diagenesis,
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or to the study of pore spaces, which provides infoiination on porosity and perme-
ability. However, the lack of suitable imaging technology for rapid data acquisition
has hindered the efficient implementation of rigorous, quantitative methods in pet-
rography.

Recent improvements in both semiautomatic and automatic analyzing equip-
ment for image analysis and pattern recognition, suggest that we could be on the
verge of major advances in petrography. With the help of such equipment, features
can be detected, measured, and analyzed in real-time by an appropriate computer-
based system. These analyses and measurements can be automated for the aquisi-

tion of large amounts of data.

1.1 Petrographic Image Analysis : an Overview

There are few published accounts of image analysis systems in geology and these
are concerned with obtaining grain boundaries and pore spaces. Iraditionally grain
outlines have been digitised from‘photomicrogra.ph mosaics of rock thin sections
by tracing the grain boundaries with a digitizer (e.g. Fabbri 1984, Telford ei.al.
1987, Simigian and Starkey 1989). Some dedicated machines with greater analyti-
cal potential are also available (e.g. Zeiss Videoplan or Kontron Videoplan digital
analyser). These are semiautomatic and require that the grain outlines be provided

by an operator using a manually operated contour following device.

More sophisticated approaches have been reported which obtain grain size
and shape information from photomicrographs of rock thin sections using image

analysis. In these, the grain outlines are traced manually on a transparent over-

lay on the photomicrograph. The traced boundaries are digitized using either an
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Optronics International Photoscan System P-100 (Starkey and Simigian 1987) or
a monochrome video camera (Starkey and Simigian 1992). The output grey level
image is converted to a binary image by applying a simple thresholding to the grey
values, values equal to or above a selected value are set to 0, those below are set
to 1. The resulting binary image is processed by a computer program, IMAGE,
which recognises individual grain boundaries from the binary image and computes
the area, length of perimeter, aspect ratio, centroid and orientation of the long axis
of grains. Image analysis based on photomicrographs has also been reported by
Jansenn et.al. (1991). Here, the photomicrographs are digitised using a FEAG
drum scanner (Kombinat Carl Zeiss Jena) and the resulting digital data are evalu-
ated using the image processing system BVS A8472 (Kombinat Robotron Dresden).
The grain boundaries are extracted by a non-linear digital filtering of the image data
which consist of the following steps (Jansenn et.al. 1991): high-pass filtering of the
original image, thresholding of the grey values of the filtered image, inversion of the
grey values and skeletonization of the resulting stripe-like pattern. In this way the
original image is transformed into a line pattern representing the grain boundaries.

Dedicated image processing systems are also available which can be inter-
faced directly to a microscope, thus reducing the amount of operator’s interaction.
Examples of these include Quantimet, Magiscan and Intellect (Telford et.al. 1987).
However, these imaging systems operate as "black boxes” and in some cases obtain-

ing geologically significant data is impossible.

A more flexible system known as ARTHUR, has been developed for geological
use (Fico 1980). This consists of a microprocessor-controlled, microscope-mounted
video camera. The associated video digitizer (CAT-100) accepts the analog signal
from the video camera and generates a spatial array of picture elements, which
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record the grey level at the corresponding point on the image. Simple thresholding
of the grey values is used to find the first boundary point and follow the feature
boundary until a closure is obtained (Ehrlich and Full 1984). Similar systems have
also been reported by Lohmann (1983) and Lenth et.al. (1984). These systems
capture, digitize and store the image for subsequent data analysis on a main frame
computer. A similar system has been reported by Telford et.al. (1987) which make

use of an Apple II plus microcomputer thus making it a stand alone system.

Published computer-assisted petrographic analyses tend to be based on bi-
nary digital images. In some cases these are obtained by staining the thin section
prior to digitization (Pareschi et.al. 1990, Gerrad et.al. 1992). The requirement,
that the grey levels of the feature of interest be clearly differentiated from the back-
ground, renders these methods unsuitable for automatic, real-time application to
the analysis of petrographic rock thin sections which display a continuous range of
grey levels, often with low contrast.

Petrographers examining thin sections routinely change the microscope illu-
mination from plane polarized to cross polarized light in order to identify specific
features. Also they rotate the thin section on the microscope stage to create differ-
ences in the appearance of grains to observe diagnostic optical properties and grain
boundaries. The present study addresses these problems and simulates these tech-
niques for the real time analysis of the petrographic images. The imaging system
uses a video camera to digitize the petrographic images and a 80386DX computer
to identify and quantify the rock texture.
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1.2 Acquistion, Processing and Measurement of
Images

Petrographic image zualysis is performed by procuring a grey level image, enhancing
the feature boundaries to improve their detection, segmenting the grey level image
to delineate feature boundaries, selecting the features of interest and measuring
their parameters for subsequent analysis. The flow diagram for these steps, as
implemented in the present study, is shown in figure 1.1. As indicated in figure 1.1
some parameters are obtained directly from the grey scale image.

Image acquisition involves obtaining an image and storing it in a computer.
In computer-assisted petrography the sample is typically a standard petrographic
thin section. The section is examined through the petrographic microscope using
s magnification selected to obtain a statistically meaningful sample of the feature
of interest. Images from the microscope are captured by the video camera and
transmitted to a frame grabber board. Each image is composed of picture elements,
pixels, and each of these can assume a digital value proportional to the grey level
at the corresponding location in the image.

Image processing is required to obtain useful information from the acquired
image. For better discrimination of the mineral grains, the grey level image is
subjected to digital filtering which reduces variations of the grey levels displayed by
the mineral grains due to electronic noise, generated during the image acqusition

process, and to intrinsic optical inhomogeneities in the mineral.




interactive Control

—% |Feature Extraction

=

> | image Measurements

Cuman Uses> ———Suatistical Analysis

Figure 1.1 : An overview of the steps involved in computer-assisted,
petrographic image analysis.
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The filtered image displays different shades of grey or image texture for each
mineral, but it cannot be analysed until each mineral grain is separately identified.
Boundaries are detected by image segmentation which produces an edge image where
the interiors of grains have different intensities to their boundaries. Despite the
application of filtering and image segmentation not all the boundaries of the desired
features present in the image may be completely delineated. Further editing may
be required, this is performed mostly directly on the boundary image itself. Once
the boundaries of all the desired features are found, the features are extracted from
the boundary image for subsequent data analysis.

In addition to the feature boundary information derived from image process-
ing, as outlined above, the original grey level image and the intermediate segmented
image can provide information which permits the quantitative analysis of constituent
mineral grains and pore spaces in a rock. These measurements can be either global,
where the rock is characterized as a whole, or feature specific, where individual fea-
tures in the image are measured. Once the individual feature measurements such
as size, shape, orientation etc. are obtained they can be subjected to statistical

analysis to characterise the aggregate of features.




Chapter 2

Image Acquisition

Under the optical microscope, most rocks in thin section appear as an assemblage
of tightly interlocked mineral grains, inclusions, pore spaces etc. (figure 2.1). The
geometrical characteristics of these features, including their apparent shapes, orien-
tations and distributions, define the texture of the rock. For computer processing of
the microscope image it must be converted into a form that can be stored and ma-
nipulated in computer memory. This conversion is performed by an image digitizer,
which produces coded numbers that are a measure of light intensity. This process
is called digitization and the stored numerical representation of the original optical
image is called a digital image (figure 2.2).

A block diagram of the image digitizing system is shown in figure 2.3. The
optical sensor within a video camera converts the image from the microscope into
corresponding electrical signals. These signals are digitized by a frame grabber which
stores and manipulates the resulting digital image. The frame grabber includes a
display logic circuit, which converts the digital image to an analog video output
signal for display on an external monitor.
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The frame grabber is installed in a 80386 CPU based PC which executes

the software required to control the imaging system hardware and manipulate the
digital data. A Trident 8900 Super VGA graphics card is used to display the digital

image on the PC video monitor.

2.1 Video Camera

The video camera used in the imaging system is a Sony AVC-D§ monochrome video
camera, this has a C mount by which it is attached to the polarizing microscope.
The camera uses a CCD (charge-coupled device) as a light sensor. The camera
resolution is 512x480 pixels (picture elements) and the individual pixels have an
aspect ratio (height to width) of 4:5. The output of the camera conforms to the
RS-170 video standard.

2.2 Frame Grabber

The frame grabber used here is a PCVISION plus board. The frame grabber consists
of an analog to digital converter (digitizer), which converts the electrical signals from
the video camera into digital values, a frame memory, which stores the digital data,
and a display logic circuit, which converts the digital image to an analog output

signal for display on an external TV monitor.

2.2.1 Analog to Digital Converter

The analog image from the video camera is digitized by an analog-to-digital con-
verter which samples the image at discrete time intervals and converts each indi-
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vidual intensity level to a digital value in the range from 0 to 255. One complete

sampling of the image is called a ’frame grab’.

Flexibility in digitising the video source is provided by programmable gain
and offset control circuits present in the frame grabber board hardware. The gain
boosts or attenuates the incoming signal, it is an adjustable multiplier which can
be varied from 0.67 to 1.33 in 100 steps. The offset adds a constant voltage to the
signal, this is adjustable from -0.1 Volt to +0.1 Volt in 100 steps. In the present
study the defaults for the gain and offset were used, these are midscale in both cases,

i.e. gain multiplier 1 and offset 0 volts.

2.2.2 Frame Memory

The frame memory on the frame grabber board is organised as an array of 1024
by 512 eight-bit storage locations. This array is divided into two pages, each with
512 by 512 storage locations, which permits two images to be stored and displayed
independently. The coordinate system used to address the storage locations in the
frame memory is illustrated in figure 2.4. The external monitor displays a 512 by
480 image, therefore the lower 32 lines of frame memory occur in a hidden area.
Only one page of frame memory can be displayed at any one time, this constitutes

the active video window.

Each storage location in frame memory can store eight bits which can be
addressed separately thus providing eight different bit planes for the image. The
frame grabber board provides mask registers which permit write-protection of these
bit planes during video acquisition and host computer access. This allows data to

be written over the image during subsequent image processing and editing. Host
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mask registers are used to protect one or more of the low order bit planes and the

video acqusition mask registers are used to protect one or more of the high order

bit planes of frame memory.

The lag time between the acquisition and display of an image is 1/30t* second

which allows the image of a thin section to be scanned in real-time.

2.2.3 Display Logic Circuit

A display logic circuit on the frame grabber board transforms the contents of frame
memory into a form compatible with an external monitor. The output of the display
logic conforms to the RS-170 video standard which uses an interlaced image display.

The external monitor supports an eight-bit image display.

The image can be manipulated by converting individual input data values
into predefined output values. This mapping is accomplished using Look-Up Tables
(LUTs). The LUTs are located in a block of memory where an input pixel value is
used as an address, and the value in the memory block at that address is output as
the transformed pixel value. The LUTSs can be used to manipulate the contrast range
of a displayed image by setting up the tables with nonlinear transformations between
input and output grey values. The LUTs can also be used to convert any particular

grey value in the image to any arbitrarily chosen display colour (falsecolour).

On the PCVISION plus board, there is one group of input LUTs and three
groups of output LUTs, one group each for the red, green, and blue channels (figure
2.5). Each group consists of eight blocks of memory (banks) for a total of 32 LUTs,
each of which can hold 256 eight-bit values. The host computer can read from or

write to only one of the 32 LUTs at one time. To access a LUT, a group (RED,




LUT Groups

LUT RED GREEN BLUE INPUT
Banks (Channel 1) (Channel 2) (Channel 3)
0 LUTO LUTO LUTO LUTO
1 LUTH LUTH LUTH LUT1
2 LUT2 LUT2 LUT2 LUT2
3 LUT3 LUT3 LUT3 LUT3
4 LUT4 LUT4 LUT4 LUT4
5 LUTS LUTS LUTS LUTS
6 | LUT6 LUT6 LUT6 LUT6
7 | LUT7 LUT?7 LUT7 LUT7
L —

Figure 2.5 : Organization of the eight banks of LUTs of the frame 1grabber into
agroup of input LUTs and three groups (channels) of output LUTS.
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CREEN, BLUE or INPUT) ard its bank (0 to 7) must be specified.

Only one bank of LUTs (bank zero) is used in the present application. The
values stored in the active LUTs are illustrated in figure 2.6. As noted above, the
grey values from the digitizer are in the range from 0 to 255. The INPUT LUT maps
these grey values to a range from 0 to 127, this frees the most significant bit plane
(bit-plane 7) for subsequent use in image editing. The output grey values from the
INPUT LUT are remapped to a full range (i.e. 0 to 255) in the RED, GREEN, and
BLUE LUTs for display.

2.3 Nature of the Image

The resolution of the digitized image can be categorized in two ways; grey level
resolution, which describes how accurately the digital image represents differences
in intensity in the original image, and spatial resolution, which describes how well

the digital image represents the position of features in the original image.

The grey level resolution is determined by the number of bits used to store the
brightness information of the image. The present imaging system is a monochrome
eight-bit system which is capable of storing grey values ranging from 0 to 255 for
each pixel, each pixel therefore being represented by one byte. However, only the
first 128 (0 to 127) grey values are used to capture the petrographic images in order
that the most significant bit (bit-plane 7) remain available for subsequent image

editing.

The spatial resolution for the system is 512x480, i.e. the image consists of

480 lines of 512 pixels (for a total of 245,760 pixels). Since the image has a constant
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Figure 2.6 . Graphical representation of the configuration of the LUTs used
in the image digitizing system.

18




19

number of pixels, the area of the thin section represented by cach pixel depends on

the magnification of the microscope.

2.4 Image File Format

The maximum memory requirement for one image is 245,760 bytes, 240K bytes.
This is reduced by storing the captured images in 256-colour PCX format (the PC
Paintbrush IV file format by ZSoft). The PCX format compresses files by using run
length encoding in which successive identical pixel values are grouped and stored
in abbreviated form. PCX files carry a 128-byte header, the contents of which
are described in Table 2.1. The Scale factor and the Comment are not part of
the original ZSoft format, they have been added for the present study to obtain
meaningful geological data from the petrographic images. However, the addition
of these into the PCX header does not destroy compatibility with standard PCX

image files.
Table 2.1: Header format of 256-colour PCX files
Byte | Size Variable Description
(Bytes)
I I e

1 1 Manufacturer | Hexadecimal number, Ox0a designates
ZSoft PCX files.

2 1 Version Versions of PC Paintbrush. For version
3.0 or higher, this byte should contain
a value of 5. This byte is important in
identifying 256-colour PCX files.

Contd...
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3 |1 | Encoding The encoding byte should always con-
tain the value of one indicating that the
file has been com:pressed using the PCX
run length encoding scheme.

4 |1 | Bits per pixel Number of bits used to store data for 1
pixel from 1 plane.

5 |8 | Window dimensions | 4 words (2 bytes each) giving top left
and bottom right corners of display in
the order xmin, ymin, xmax, ymax.

13 | 2 | Horizontal Resolution | Horizontal resolution of display device
that created the image.

15 | 2 | Vertical Resolution Vertical resolution of display device
(lines) that created the image.

17 | 48 | Colour map Information on colour palette settings if
the image has 16 or fewer colours.

65]1 | Reserved

66 | 1 | Colour planes Number of colour planes in the original
image.

67 | 2 | Bytes per line Number of bytes per scan line in the
image.

69 { 2 | Palette type Palette type, 1 = colour\monochrome,
2 = greyscale

71 | 6 | Scale factor Scale of the image to real world. This is

a floating point value.

77 | 52 | Comment Description of the image, upto 52 ascii
characters.

A Trident 8900 Super VGA display adapter is used in the present imaging
system. This manipulates colours in a fashion similar to a standard VGA adapter.
The display adapter contains 256 palette registers which are used to display 256

different colours. Each palette register contains three colour registers for red, green,
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and blue. The colour registers contain six-bits, thus permitting 2°=64 shades of
each primary colour. To create the colour map, the colour registers (RGB values)
associated with the palette registers are used. As the RGB values in the palette
registers are six-bit values they are multiplied by four in order to store them in a

PCX file as an eight-bit byte.

256-colour PCX files use the same format to store palette information as that
used for standard 16-colour PCX files, but there is more information since the 256
colour palettes require three bytes per colour, for a total of 768 bytes. These are
appended at the end of the PCX file. The presence of this information is indicated by
setting the Version byte of the header to 5. The program reading the file, first reads
the Version byte and, if it detects a 5, it secks to the end of the file and counts back
769 bytes. At this location the file contains the value Ox0Oc (hexadecimal number),
indicating the start of the palette information, and the next 768 bytes represent the
palettes. The first three bytes of the palette information are the red, green, and
blue values respectively for the first colour, the next three are RGB values for the
second colour, and so on. After the palette information is read, the program reading
the file returns to the begining of the file to read the image data.

The Trident 8900 Super VGA card uses six-bit values for each of the colour
registers to display the image to the screen. Therefore, the eight-bit values used to

store the colour registers in the PCX file, noted above, are divided by four.

The imare data, which occur after the PCX header, are compressed. For an
eight-bit PCX image only one colour plane is used and each pixel value is represented
by one byte. The data in a PCX file can be considered as a series of packets
containing a key byte and a data byte. The key byte indicates how the data byte
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in the packet is to be processed and the data byte indicates what will be decoded
to make up the restored image. If the two high order bits of the key byte are set,
i.e. non zero, then the six low order bits contain an index indicating the number
of times the following data byte in the file is to be repeated. Because the index is
stored in six bits, it can indicate a maximum repetition of 63 bytes. Longer runs of
identical bytes require more than one packet. If the two high order bits of the key
byte are not set, then this byte is considered to be a data byte and is written to the
image "as is”. If the value in an isolated data is greater than 192, i.e. the two high

order bits are set, it must be processed by a key byte indicating a run length of one.

2.5 Interactive Image Acquistion

The use of a video camera and frame grabber board allows the microscope image
to be scanned with precision, speed and in real-time. Interactive image acquisition
allows instantaneous examination of the rock thin section in plane or cross polarized
light or using any variety of illumination techniques to bring out special features of
interest in the image. Depending on subsequent feature/data analysis the micro-
scope magnification is selected during image acquisition to generate an image with
appropriate resolution. The interactive image acquisition eases the task of subse-
quent image analysis/measurements required for extraction of geological information

from the microscope image.




Chapter 3

Image Processing

A digitized petrographic image is a numerical representation of a rock thin section.
The extraction of geological information from such a digital image requires that
features such as mineral grains, inclusions, pore spaces etc. be identified and that
their edges defined. The identification of features requires manipulation of the digital
images which is referred to as image processing. The extraction of meaningful

informaticn about the features in an image is termed image analysis.

Image processing usually involves three sequential operations: digital filter-
ing, image segmentation and feature extraction (Sklansky 1978, Inoué 1987). Digital
filtering removes unwanted frequencies, features etc. to prepare the raw image for
digital prccessing. Image segmentation is the partitioning of the grey level image
into a number of feature regions by defining their boundaries, this results in a seg-
mente: image. Feature extraction refers to the techniques used to select features of

interest from the segmented image for subsequent image analysis.

23
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3.1 Digital Filtering

The digitized petrographic images from rock thin sections show variations of grey
levels within individual mineral grains due to the inherent optical properties of the
minerals, such as undulose extinction etc. In addition, the grey levels incorporate
noise due to a variety of factors including uneven illumination of the thin section
during image acquistion, or due to random electronic noise. The random electronic
noise associated with the imaging system hardware used here has beeu determined
using the grey level distribution recorded for a uniform grey area, it has a standard

deviation of 1.5.

Digital filtering involves the use of mathematical transformations that re-
duce inherent grey level variations within mineral grains and the noise present in
the image. This also enhance the intensity/texture discontinuities between mineral
grains. The selection of an appropriate digital filter depends on the type of grey
level variation present in the image. The variations of grey levels within mineral
grains can be approximated as additive Gaussian noise (Starkey and Samantaray

1992). Figure 3.1 displays a quartz grain and the variation of grey levels within it.

Digital filtering techniques may be divided into two broad categories: frequency-
domain methods, which are based on modifying the Fourier transform of an image,
and spatial-domain methods, which are based on direct manipulation of the pixels
in an image (Gonzalez and Wintz 1987). Spatial domain methods are used in the

present study.

Spatial-domain filters, can be subdivided into global and local techniques. In

the former, the raw image is processed globally and the whole, or a large section,
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Figure 3.1 : (a) Microscope image of a quartz grain observed in plane
polarized light. The edges of the figure in x-direction represents 0.3
millimeter. (b) Frequency distribution of the grey levels present inside
the marked area of the image shown in (a).
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of the image is correlated to a mathematical function to obtain a smoothed image
(Rosenfeld and Kak 1976, Andrews and Haunt 1977). The local techniques use local
operators in which the filter output at a specific pixel is a function of the input values
of the pixels within a selected neighbourhood, for instance, the eight surrounding
nearest neighbours. These latter techniques tend to have shorter computation times,
since only a small number of input pixel values are considered for each output pixel.
Local filters are used in the present study. Most of these filters exist in the literature
only as theoretical models and the performances of these have been evaluated only
on artificial images (Mastin 1985; Wu, Wang, and Lu 1992). As a part of the
present study these local filters are evaluated on petrographic images (Starkey and
Samantaray 1992), the results are presented in Appendix 1. The suitability of the

filters for petrographic images are assessed using the following criteria:

1. Effectiveness in smoothing - meaning the ability to reduce the grey level varia-
tion resulting from noise and due to inherent variation in the optical properties

of the mineral grains.

2. Preservation of subtle details of clusters of several pixels and of I'near features

a few pixels wide.

3. Immunity from shape distortion - in particular the filter must not introduce

significant distortion in the shapes of image features.

4. Retention of intensity step and ramp edges between adjacent regions of uni-

form, but different, intensities.

5. Removal of sparsely distributed, sharp, spot noise consisting of one or two

pixels.
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6. Computational speed.

Both single and multi-level filters were evaluated. The single level filters
which appear most commonly in the literature are the Mean, Median, Nagao and
Matsuyama, Gradient Inverse, Lee-Additive, Sigma, K-Nearest Neighbour Average
(KAVE), Nearest Neighbour Median (NNM) and Weighted Median (WM) Filters.
The popularity of these filters may be attributed to several factors, including ease
of implementation and conceptual simplicity. Multilevel filters combine the output
of basic subfilters and include the Multistage Median, Max/Min Median, Finite
Impulse Reduction Median Hybrid (FMH), In Place Growing FMH (IPG-FMH) and
Morphological (Two Dimensional Closing Opening) Filters. Multilzvel filters have
received considerable attention recently because of their ability to smooth images

while preserving texture.

3.1.1 Single-level Filters

Single-level filters process the image data in a local neighbourhood, or window,
which is usually square and the sides of which are an odd number of pixels. The
window is moved over the entire image and the output from the filter at the central
pixel position is used to create the filtered image. The different filters vary in the
manner in which the neighbouring pixels are selected and in the statistical analysis

which is applied to the input values.

Mean Filter

With the Mean Filter the average of the pixel values within a square window becomes

the filter output at the central pixel position. This filter reduces the effect of noise
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by reducing the grey level variation in the image. However, the edges between image

regions become blurred.

Median Filters

Median filtering was first used by Tukey (1977) in time series analysis and later
applied to image smoothing by Pratt (1978). The central pixel value is replaced by
the median value within the window. The assumptions behind this filter are that a
constant neighbourhood is a region in which the majority of the grey levels represent
signal with zero noise and that an edge is a monotonically rising or falling sequence
of pixel values which separates two constant neighbourhoods. The Median Filter
can be applied repeatedly using the previously filtered image as input. In this case,
for a given window size, the filter values converge on to what has been termed the

root structure (Gallagher and Wise 1981).

The Recursive Median Filter is a modification of the Median Filter in which
the grey levels of the image a: -~ replaced by the output of the filter as the process
proceeds. Therefore, at any one time, approximately half the values within the win-
dow are previously filtered values and the remainder are the original grey levels. The
recursive operation determines the root structure of an image in a single pass. How-
ever, this root is different from that obtained by repeated passes of the nonrecursive

Median Filter although typically they are very similar (Arce et.al. 1986).

Median filters, which are typically based on square windows, are known to
cause edge shifts (Hodgson et.al 1985, Arce et.al. 1986). Further, the corners of
image regions may be rounded off and artifacts consisting of patches of pattern may

be produced in the filtered image. These artifacts persist even if the square win-
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dow is replaced by a circular, or near circular, approximation in which the pixel
values are weighted according to their distance from the central pixel. These prob-
lems are alleviated by the Separable Median Filter (Narendra 1981), which consists
of two one-dimensional filters, applied in a two-pass operation. The rows of the
two-dimensional image are filtered first by a horizontally oriented one-dimensional
median filter to produce an intermediate image. The columns of this image are then
filtered by a vertically oriented one-dimensional median filter. The Separable Me-
dian Filter can also be applied recursively. The root structure produced by a single
pass of the recursive filter is similar to, but different from, that of the nonrecursive
filter. The recursive filter has been shown to be better at noise suppression and edge
preservation (McLoughlin and Arce 1987) and is therefore evaluated in the present

study.

Nagao and Matsuyama Filter

Nagao and Matsuyama (1979) proposed a filter based on a 5 by 5 pixel window.
The central pixel value is replaced by the average grey level of the most homogenous
subregion from among nine subregions, see figure 3.2. A homogenous neighbourhood
is defined as one which does not contain a sharp edge. If an area contains a sharp
edge, the vaniance of the grey levels in that area will be large. Therefore, the variance
is used as a measure of the homogeneity of the subregions and the central pixel is
replaced by the mean of the subregion which has the minimum variance. This allows
noise to be reduced without blurring sharp edges since averaging is not applied to

a subregion which contains an edge.
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Fiﬂure 3.2 : The nine possible subregions for the Nagao and Matsuyama
Filter. (a) One example from each two sets of four subregions. (b{The
ninth subregion. The black circles indicate the values used to compute
the mean and standard deviation for each of the subregions shown.
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Gradient-Inverse Filter

The Gradient Inverse Filter proposed by Wang et.al. (1981) assumes that the varia-
tion of grey levels within a homogenous region of an image is less than that between
different regions, and that the edges between regions are sharply defined. The cen-
tral pixel value is replaced by the weighted average of all the grey levels inside the
window. The weighting coefficients are obtained by computing the inverse gradi-
ents between the center and its neighbouring pixel values and normalizing them by
dividing by the sum of the inverse gradients in the window. Therefore, pixel values
having a greater absolute difference from the central pixel have lower weighting co-
efficients and contribute less to the output central pixel value. For a square window,
where the leng.h of the side is 2n + 1, the output value at the central pixel, Y (1, ),
is identified by
n n
Y(i,j) = P;ﬂgnw(i +pi+@xX(i+pi+aq) (3-1)

Where either

. . 1
Wi+pita =3
forp=0and g=0or
-1
. . 1 . . . . -1
Wi+pi+a) =54 X (hipe)y o(iiip9) (3.2)
Viiidn
for pand ¢ = —n,....,0,....,+n; and p and ¢ not 0 simultaneously.

Vii.j)a denotes all the pixels within the window. o(i,7;p, q)~"' represents the

inverse of the absolute gradient of the neighbouring pixel with the grey value X (i, 5).
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Lee-Additive Filter

The Lee-Additive Filter (Lee 1980,1981) assumes that the correct value of the central
pixel is the mean of the values of all pixels within the window and that the departure
of the central pixel value from the mean is within the variance of all pixel values
within the window. The corrected image values can be obtained from the difference
between the mean and variance of the noise corrupted image and estimates of the
mean and variance of the noise alone. The grey value of a pixel X(i,7), in a noise

corrupted image, is given by the following equation,
X(i,5) = Y(i,5) + N(i,5) (3.3)

Where N(i, j) is the white random noise with zero mean and o? variance and Y'(%, j)

is the pixel value before degradation.

The estimated central pixel value, Y (1, 7), in the uncorrupted image is given

by
Y(i,5) = ¥(i,4) + kG, 5) {X (. 4) - (.4} (34)
Where Y(i,j) is the approximated uncorrupted image mean given by Y(i,j) =
X(i,7). The term k(i,j) is a gain factor which is used to smooth or enhance the

image and is defined by
Q(,J)
{QG,j) + o1}

k(i,j) = (3:5)

where
QGi.9) = E{{X(.7) - XG.7)}'} - o (3.6)

o2 is an estimate of the additive noise variance.

The application of this filter requires estimates of the mean and variance of

the pixel values within the window and of the global noise variance. In the present
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evaluation the global noise variance is derived from an arbitrarily selected sensibly

‘flat’ intensity region in the displayed image.

Sigma Filter

The Sigma Filter (Lee 1983) is suggested by the Gaussian distribution, and its
standard deviation, which provides an estimate of the probability of a grey value
falling within a certain multiple of the standard deviation from the mean, which is
the current value of the central pixel within a window. Here, the central pixel value
is replaced by the average of those pixel values inside the window which lie within
a fixed sigma range of the central pixel grey level. Assuming that the noise has a
Gaussian distribution and the a priori mean is the grey level of the central pixel then
95.5% of the pixel values will lie within two standard deviations(20) of the mean.
Pixel values outside this range are assumed to belong to a different population. The
algorithm consists of computing the two sigma range for a local neighbourhood, and
replacing the central pixel by the average of the values which are within that two
sigma range of the central pixel value. Alternatively, the median value may be used

in place of the average but the resulsing output image is almost identical.

The two sigma average does not smooth the sharp spot noise of one or two
pixels. In the present evaluation, the minimum number of pixels required to calculate
the two sigma average within a window is assumed to equal n for a square window
2n + 1 on a side. If the number of pixels within the intensity range of two sigma
is less than or equal to n, the two sigma average is replaced by the average of the

center pixel’s eight nearest neighbours.
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K-Nearest Neighbour Averaging Filter

The K-Nearest Neighbour Averaging Filter was suggested by Davis and Rosenfeld
(1978). This filter relies on the high correlation which must exist between the grey
levels of pixels belonging to the same population within a local area. The central
pixel value, Y, of the window is replaced by the average grey level of the k nearest
neighbours with grey levels closest to that of Y. This filter can be used iteratively,

changing the window size and value of k for successive iterations.

Nearest Neighbour Median Filter

The Nearest Neighbour Median Filter was first applied to image smoothing by Itoh
et.al. (1988). For a given window size of 2n <- 1 the pixel values in the window are
ranked in ascending order. A number of nearest neighbours, k, is selected equal to
2m + 1, where m<n. In the present evaluation, using a 5 by 5 window, k is chosen
as 11. Within the rank ordered array, R, the position of the central pixel value, ¢, is
located (Samantaray and Starkey 1993). The output of the NNM filter, Y (p), can
be defined as follows (Asano et.al. 1990) depending on the location of ¢:
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r 3
Center Pixel Value;

where{m + 1} <c< {(2n+1)—(m+1)+ 1}

R[m + 1};

Y(p) ={ wherel<e<(m +1) > 3.7)

R[(2n +1) — (2m + 1) + 1};

where {(2n + 1) — (m + 1) + 1} <e<{2n + 1}

Weighted Median Filter

The Weighted Median Filter was first applied to image smoothing by Brownrigg
(1984,1986). Non negative multipliers are applied to the pixel values in the window
and the median value is selected as the output. In this evaluation, using a 5 by 5
window, the multipliers are taken as unity except for that of the central pixel which

1s set at 15.

3.1.2 Multilevel Filters

Several multilevel filters based on the Median Filter have been proposed which
combine the output of basic subfilters to match the structure spanned by the filter’s
window (Nieminen et.al. 1987) . They involve the use of the 4 subwindows, Wis..4),

shown in figure 3.3. Such subwindows are unidirectional since the subwindows span
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Figure 3.3 : The four subwindows used by unidirectional multilevel filters.
Tgtq blaIc}(‘ l%:lrcles indicate the values considered by each individual unidir-
ectional filters.
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one direction only. For the application of unidirectional multilevel filters, the median
values, Z(, 4, of the subwindows are required (Arce and McLoughlin 1987). For a
recursive operation the grey levels of the image are replaced by the output of the

filter as the process proceeds.

Multilevel Median Filter

The output for the Multilevel Median Filter is defined as follows (Nieminen and

Neuvo 1988, Arce and Foster 1988)

Y(':J) = media“[le.wa(i,j)) sz.wt(i’ J):X(’r.’)] (38}
where
le.ws(i,j) = median[ZI’ Z31X(i1j)]; (39)
and
sz.wl(i,j) = medianlzzr Zl) X(iu‘i)]; (310)

where X (i, 7) is the central pixel value and Z(1).(a) are the median values in the four

subwindows (figure 3.3 and Arce and McLoughlin 1987). In the present evaluation

a recursive operation of the Multilevel Median Filter is used.
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Max/Min Median Filter

A modification of the Multilevel Median Filter was proposed by Wang and Wang
(1990) as the Max/Min Median Filter. The output for the filter is

Tl(i,j);
if | Th(3,7) — To(3,5) 12| T2(3, 5) — To(3, 5) |
Y(i,j) = ¢ k (3.11)
Tz(i,j);
lfI Tl(i,]) - To(i,J) l<| TZ(')j) - To(i:j) I

where To(3, ) is the median of all the pixel values within the window. Ti(i,j) and
T(i,j) are respectively the maximum and the minimum median values in all the
subwindows (cf. figure 3.3). In the present analysis a recursive Max/Min Median

Filter is used.

FIR-Median Hybrid (FMH) Filter

The output for the FMH Filter is defined as follows (Nieminen et.al.1987, Arce and
Foster 1988,1989)

Y(’! j) = median[?"ll,u’:’(i’j)r )—,‘lﬂ?.ﬂﬂ(ir J): X("v J)] (3] 2)

where

Yurwa(i, ) = median(Z,, Z3, X (4, j)}; (3.13)

and

Yuz.ua(i,7) = median[22,24,X(i,j)]; (3.14)
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where Z, = median(Z,a(i, 5), Zps(i, 7), X (3, 7)), 1 < p < 4, and where Z,, and Z,, are
the averages of the values in each of the two parts of the subwindow Wy, separated
by the center pixel (cf. figure 3.3). X(3,7) is the central pixel value. In the present
evaluation the filter is applied recursively by replacing Z,, by the filter output from

the previous window operation.

In-Place Growing FMH (IPG-FMH) Filter

The IPG-FMH filter was first applied to one dimensional signals by Wichman et.al.
(1990). In the present study the filter has been adapted as a IPG-FMH Filter for

application to two dimensional images as follows :

Yk(ir .7) = median[}_’h(wl.w:i)(i: J): }.,lc(wz.uﬂ)(i) j)r Y.h-l(i: j)]) (315)
where
Y,h(wl.wa)(i’ J) = media'nlzly 23: n—ll; (316)
and
Yfk(w?,uﬂ)(i, ]) = media.n[Zz, Z“‘, ),';_1]; (3.17)

where Z, = median[Z,.(i, ), Zw(i,7), Ya-1(i,7)],1 < p < 4, and where Z,, and
Zy are the averages of the values in each of the two parts of the subwindow W,
separated by the center pixel (cf. figure 3.3). The number of growth cycles performed

at each location is indicated by k.

The filtered value Y (1, j) = Yi=m(2,7), where k = 1,....,m. Where k = 1 then
Yi-1(4,7) = X(i,7)- The size of the subwindow increases with k. For a recursive
operation of the filter Z, is replaced by the filter output from the previous window

operation.
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In the present analysis a nonrecursive IPG-FMH filter is used and m is set to
2. The window sizes used are 5 by 5 and 7 by 7 with k equal to 1 and 2 respectively.

The output from eq. 3.15, is as follows
Y(’v]) = media’n[YZ(wl.w:!)(i»j)' E(w2.w4)(ivj)!“(i:j)]’

where

Yl("’ J) = media“[}-’l(ml.ws)(ir J): 1—/l(wz.m()(i) J)i X("a])]

Two Dimensional Close-Open Filter

The Two Dimensional Close-Open Filter is closely related to ranked-order based
filters (Maragos and Schafer 1987). For a window with side length 2n + 1, each
subwindow W, is partitioned into n + 1 = k overlapping subsets, S;, of n + 1
consecutive elements. For a 5 by 5 window there are therefore 3 subsets derived
from each of the 4 subwindows for a total of 12. Grey scale opening is performed
by replacing the central pixel value in the window by the maximum value among
the minima in the subsets. This generates an intermediate image on which grey
scale closing is performed by replacing the central pixel value in the window by the
minimum value among the maxima in the subsets. This filter is known to preserve

image geometry and image details.

3.1.3 Evaluation of the Filters

The filters described above are applied to computer simulated images and real images
from rock thin sections (Starkey and Samantaray 1992). The filters are applied both

as single pass and multiple pass filters using a 5 by 5 pixel window. For single pass

operation, all the single level filters except the Nagao and Matsuyama, NNM and
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WM Filters are also applied with varying window sizes. Multiple passes consisted
of three iterations. For the KAVE Filter the value of 'k’ represents approximately
75%, 50%, and 25% of the neighbourhood elements in successive iterations. The
successive passes of the Sigma Filter are applied with intensity intervals 20, o, o/2.

The results of the evaluation are presented in Appendix 1 and summarized below:

For a single pass operation the RSM Filter most effectively reduces the noise
variance in a uniform grey region and retains edges between adjacent image regions.
This filter also does not create any significant distortion in the shape of an image
region and it effectively smooths sharp spot noise. Thus the RSM Filter meets most
of the desirable criteria identified previously. However, it does not sharpen ramp
edges, it eliminates small linear features (i.e. those with a breadth less than half the
window width), destroys image texture and, since it is a recursive filter, the output
depends on the direction in which it is applied. Increasing the window size does
not improve the performance of the RSM Filter, the data presented in Appendix 1
suggest that a 5 by 5 pixel window is optimum. The Nagao and Matsuyama Filter

is best in sharpening ramp edges with a single pass.

For the preservation of image detail and texture multiple pass applications
of the IPG-FMH and Sigma Filter perform best. Not only do they reduce noise
in uniform grey areas and retain the edges between adjacent grey areas as well as
the RSM Filter, they also preserve linear features and image texture. However, the
computation time required for the iterative operation of these filters is significantly

greater than that required for the single pass RSM Filter. The Sigma Filter is used

here to process the petrographic images because of its superior performance.
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3.2 Image Segmentation

The filtered image must be segmented to identify regions that have the same proper-
ties and to separate dissimilar regions. Image segmentation usually involves the iden-
tification of the boundaries in an image that separate one image area from another.
The two main approaches to image segmentation of an image are region formation,
in which the properties of areas are analyzed to determine whether to merge or split
them into regions, and boundary formation, where the boundaries which delimit a
feature region are found (Riseman and Arbib 1977). Segmentation algorithms for
both approaches are based on one of the two basic properties of the grey values,
namely, their similarity and discontinuity (Gonzalez and Wintz 1987). Approaches
based on the similarity of grey values include thresholding (Sahoo, Soltani, Wong,
and Chen 1988; Tsai and Chen 1992) and region growing (Haralick and Shapiro
1985). Approaches based on the discontinuity of grey values include the detection
of boundaries in the image areas across which there are abrupt changes in the image
properties. In the present study these latter edge detection techniques are used for

segmenting the images.

Edges in petrographic images can be categorized as either intensity edges or
texture edges (figure 3.4). Intensity edges arise from abrupt changes in the grey
level between adjacent regions. Texture edges are boundaries between regions of
the image with different patterns which are represented in the digitized image by
different grey level statistics. In addition to the fundamental property that edges
separate dissimilar regions, they should also display the following characteristics

(Venkatesh and Kitchen 1992):

Localization : An edge should lie in the position which partitions the dissimilar




Figure 3.4 : Microscope image showing an intensity edge between two
adjacent quartz grains, which show same texture, and a texture edge
between a quartz grain and a grain of microcline, which show different

textures.
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regions in the "best” possible way. An edge is best localized when it coincides

with the boundary that results in the maximum degree of dissimilarity.

Thinness : Since edges are boundaries, they should form thin lines in the image.

Ideally they should be one-pixel wide.

Continuity : Since most feature boundaries are continuous in nature, edges should
similarly exhibit continuity. It is inevitable that some edge contours will be
located in digital images that do not form closed boundaries. Hence, the
constraint that edges form closed boundaries should not be imposed on the
identification of edges and edges which are discontinuous should be recognized

as being fragmented.

Edge detection techniques can be classified on the basis of the edge operators
used as either gradient operators, or zero crossing operators (Venkatesh and Kitchen
1992). In either case the filtering operation is performed by a convolution operation

using spatial masks to deiect edges.

A convolution operation on an image involves a point-for-point multiplication
of selected pixel values of the input image with the corresponding values in a second
image known as a convolution mask or kernel. Convolution masks usually contain
an odd number of rows and columns. The convolution operation involves three
sequential operations, an example is illustrated in figure 3.5. In the first step, the
convolution mask is overlain on the original image in such a way that the central
pixel of the mask is matched with the single pixel location to be convolved in the
input image, called the target pixel. Second, each pixel value in the original image
is multiplied by the corresponding value in the overlying mask. Finally, the grey

value of the target pixel is replaced by the sum of the products determined in the
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Figure 3.5 : A convolution operation.
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second step. To perform a convolution on an entire image, this operation must
be repeated for each pixel in the original image. The example shown in figure 3.5

illustrates a Laplacian convolution using a 3 by 3 mask.

3.2.1 Gradient Operators

Gradient operators are based on the assumption that edges correspond to intensity
changes and therefore they compute the gradient of the intensity changes (Abdou
and Pratt 1979). These operators involve computation over small windows, typically
3x3 or 5x5. The use of such operators provides an edge strength (gradient) and
direction to each pixel in the image. The gradient of an image at pixel location

(z,y) is defined as the two-dimensional vector

G. 2
G(f(=,y)] = = (3.18)
G, o

The magnitude of the vector G is referred to as the gradient of the edge and is
denoted by G [(z,y)], where G|[(z,y)} = [G: + G:] The direction of the gradient
vector is calculated as a (z,y) = tan~!(G,/G,), the angle a is measured with

respect to the z axis.

Figure 3.6.1 and 3.6.I1 shows two pairs of masks used to compute G, and G at
the center pixel of a 3 by 3 window. These masks are referred to as the Sobel (Sobel
1970) and the Prewitt (Prewitt 1970) operators respectively. These operators have
been recognized to perform well at preserving edge orientation (Abdou and Pratt
1979, Kitchen and Malin 1989) and are widely used in image processing applications.

Figure 3.7 displays an image of a rock thin section in plane polarized light, the Sobel

edges detected in this image, using the masks shown in figure 3.6.1, are shown in
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Figure 3.6 : The masks used for Sobel and Prewitt operators.




Figure 3.7 : Microscope image of a thin section showing quartz grains
ob;slerved in plane polarized light. The edge of the figure represents one
millimeter

18
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figure 3.8.

The edge strength and direction can also be computed by using multiple edge
templates in a local window. The masks for one such operator due to Kirsch (1971)
are shown in figure 3.9. The Kirsch operator performs the derivative operation in
each of four directions and the output is as follows :

G(z,y) = max | M; | and D(z,y) = { i | such that M; is max }.

Where G(z,y) is the estimate of the gradient of the edge at every pixel location (z,y)
and D(z,y) is the direction quantized to 45° intervals. If the pixel at (z.y) is within
a uniform area, G(z,y) = 0 and the orientation of an edge is meaningless. Figure
3.10 shows the edges detected by applying the Kirsch operator with the unweighted

mask illustrated in figure 3.9 to the image shown in figure 3.7.

All three gradient operators discussed above, the Sobel, Prewitt and Kirsch,
have been shown to yield similar results when used to detect edges (Abdou and
Pratt 1979). They produce an edge image where each edge pixel is represented
by a grey level, indicaiing the edge strength at that pixel, and an edge direction.
Ideally, gradient operators should identify only pixels which lie on the boundaries
of the features. However, the detected edge pixels seldom characterize a boundary
completely because of noise, breaks in the boundary, and other effects that introduce

spurious intensity discontinuities (see figures 3.8 and 3.10).

The original grey level image may have ramp edges in place of step edges,
due in part to normally distributed noise (see figure 3.11.a and b). In some cases the
application of local area operators produces .nultiple edges instead of a single one
(figure 3.11.c). Such edge detectors do not satisfy the criteria noted previously as

suitable for implementation in automated analysis. Figure 3.11.d shows the intensity




Figure 3.8 . Image showing the edges detected using the Sobel uperator
illustrated in tigure 3 6 | on the microscope image shov/in i figure 3 7
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Figure 3.9 : The four separate templates of a Kirsch operator. The value of
w varies depending on the type of weighting required. For unweighted w=
1, for weighted w= 2, and for isotropic w= sqrt(2).




Figure 3.10 : Image showing the edges detected using a Kirsch operator
with an unwel?hted mask illustrated ir figure 3 9 on the microscope im-
age shown in figure 3 7




Figure 3 11 (a) Microscope image of a rock thin section observed in plane
polarized light (b) Intensity profile along the marked scan line in (a). The
arrows indicate the ramp edges. (c) The result of edge detection using the
Sobel operator onthe image shown in (a) (d) Intensity profile along the
marked scan line in (¢)
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profile along a line through the intensity edges shown in figure 3.11.c. For subsequent
analysis, single-pixel wide edges must be selected from the edges detected by the

edge operators.

Desirable edges can be s_iected by applying a fixed or an adaptive threshold
to calculated edge strengths. When a fixed threshold is used, all pixels characterized
by an edge strength less than the chosen threshold are discarded. Figure 3.12 shows
the edge image extracted from the image shown in figure 3.8 after thresholding at
a value of 32. In adaptive thresholding the distribution of the grey levels of the
edge image is considered, and the threshold is selected automatically based on some
chosen criteria (Russ 1990). Figure 3.13 shows the edge image extracted from the
grey level image shown in figure 3.8 after thresholding at a value of 16, which is the

mode of the frequency distribution of the grey levels present in the edge image.

3.2.2 Edge Thinning and Following

The operation of digital edge detection and thresholding does not necessarily yield
one-pixel wide boundaries, therefore a procedure is required to thin the detected
edges. A simple technique for thinning the edges is to retain only those edges
whose magnitude is a local maximum along the gradient direction of the edge. This
sometimes produces undesirable results, such as deletion of the pixel at the junction
of two edge contours. An example of such an undesirable result is shown in figure
3.14. The intensity values of the pixels in a section of grey level image are shown in
figure 3.14.a, The gradient directions and magnitudes computed for the pixels using

the Kirsch operator with an unweighted mask are shown in figure 3.14.b and ¢ and

the pixels which contain local maxima are framed in figure 3.14.d. The result




Figure 3 12 . The edges extracted from the image shown in figure 3.8 after
applying a fixed threshold value of 32 to the edge strength

S5



Figure 3.13 : The edges extracted from the image shown in figure 3.8 atter
applying an adaptive threshold (i.e. the mode of the grey level frequency
distribution, 16 in this case) to the edge strength.
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Figure 3.14 : Example of undesirable resuits from edge thinning on part ot

an image. (a) The intensity values of the pixels. (b) The gradient directions

of the pixels, indicated by arrows. (¢} Gradient magnitudes of the pixels co-
mputed using a Kirsch operator with an unweighted mask as illustrated in

figure 3.9. (dg The framed pixels indicate the Iccal maxima of the gradient
magnitudes (see text). The central pixel, highlighted in (a), is eliminated as

an edge pixel by edge thinning process.
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is that the central pixel, highlighted in figure 3.14.a, is eliminated as an edge pixel by
the edge thinning process. Few algorithms have been proposed to thin the detected
edges and assemble those remaining into a meaningful set of feature boundaries

(Nevatia and Babu 1980, Gonzalez and Wintz 1987, Lacroix 1988, Shu 1989).

In the present study the nonmaximum deletion algorithm proposed by Lacroix
(1988) is applied to the edges obtained by a Kirsch operator. This algorithin assigns
the likelihood of each edge pixel being an edge (LBE) as follows: Each pixel in the
edge image is assigned two counters, v and m. A 3 by 1 window is moved over the
edge image and centered on each edge pixel so that it is alligned along the gradient
direction. The v counter of the three pixels within the window are incremented
and the m counter of the pixel, or pixels, with the maximum grad’~nt magnitude is
incremented. Figure 3.15 shows how the v z=nd m counters are incremented when
the window is placed over the central pixel of figure 3.14, it also indicates when the
v and m counters of the central pixel at (z,y) are incremented during the complete
image scan. After the image is processed, the LBE of each edge pixel is evaluated as
m/v. Pixels with LBE = 0 are eliminated as edge pixels. Pixels with LBE = 1 are
ccnsidered as definite edge elements. Pixels that are some times, but not always a
local maximum, will have 0 < LBE < 1, and their status is considered subsequently
with contextual information during contour following, see below. The thinned edge
contours are converted into a binary edge image for subsequent analysis. At this
point it is not uncommon to find edge segments that do not form a continuous

outline around a feature.

Discontinuous edge segments which remain are connected into continuous

boundaries using Kunt’s (1982) contour following technique. T'he binary edge image

is scanned using 3 by 3 window until a pixel is located with an LBE - 1. The matrix
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Figure 3.15 : The manipulation of the v and m counters in the 3 by 1 window
used in Lacroix’s edge thinning algorithm, (a) the 3 bg 1 window at the centr-
al pixel of the image section shown in figure 3.14.c, (b) vand m counters of

the pixels inside the window are incremented when the window is located over
the central pixel, (c) the vand m counter of the central pixel are incremented

when the window is centered over each of the pixels indicated by black circles,
(d) LBE is evaluated as m/v.
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containing the gradient directions is referenced, and left and right contours are
started at right angles to the gradient direction of this pixel, This pixel is flagged
as a boundary pixel at this time (cf. figure 3.16). The left and right contours are
followed in turn according to the following rules. Pixels are identified as p, u and d,
signifying perpendicular, up and down relative to the gradient direction (see figure
3.16). For either contour directions, left or right, let maz be the maximum of the
LBEs of p, u and d. Assuming maz#0, the contour is traced according to the

following criteria.

1. Where the LBE of p = maz, p is the next pixel of the contour and it is flagged

as the next pixel along the contour.

2. Where the LBE of p = maz and the LBE of u and/or d is also maz, p is
flagged as the next pixel along the contour and the LBEs of u and/or d are
changed to a value less than the LBE of p but not zero, this prevents the
starting of a contour at u or d but allows a contour to continue through that

pixel.

3. Where either u or d has LBE = maz, the one with LBE = maz is the next

pixel of the contour and it is flagged.

4. Where both u and d has LBE = maz, the current pixel location is identified
as a junction pixel and the one with the closest edge strength is chosen as the
next pixel on the same physical edge which is flagged. The LBE of the other

is changed to one to ensure that it wiil be selected subsequently as the start

of a new contour.
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Figure 3.16 : The 3 by 3 window required to determine the four possible
contour following directions in Kunt's algorithm. Left and right indicates
the contour following directions. p, u and d identify the pixels which are
gerpendicular, up and down relative to the gradient directions indicated

y the arrows.
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The contour following process is applied recursively from the last pixel flagged
as long as the contour can not be continued further. The success of the technique
depends on the choice of a threshold for the edge strength. Figure 3.17 shows
the edges extracted from the image shown in figure 3.10 with the threshold set to
8. Here, the edge contours which are at least 10 pixels long are subjected to the

contour following process.

3.2.3 Zero-crossing Operators

Zero-crossing operators constitute the second group of edge detectors noted above.
These operators locate edges at the zero-crossing where the second order derivative
of the image value becomes zero (Russ 1990, p. 74, figure 4-4). The zero-crossing
operators were specially designed to mimic the way in which the human visual
system works, based on physiological studies. Marr and Hildreth (1980) proposed
that the detection of intensity changes can be simplified by dealing with the image
separately at different scales. Marr and his co-workers (1980, 1983) found that the
eye uses smoothing techniques in which the area over which smoothing is applied
(equivalent to the kernel size) varies. It is roughly equal to the maximum size of
the features to be ignored. The edges are detected based on the finite differences
of image intensities (Marr and Hildreth 1980, Hildreth 1983, Canny 1986, Fleck
1992a,b). By forming several different smoothed images, using different windows,

edges of differently sized structures can be extracted from the original image.

The zero-crossing operators are applied to grey level images which have been

smoothed using a 2D-Gaussian mask of the standard form (Marr and Hildreth 1980):

G(r) = (%nz) exp (—5’;-,) (3.19)
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Figure 3.17 : The edges, shown in red, detected by applying Lacroix's
edge strategy to the edges located by the Kirsch operator from the mi-
croscope image shown in figure 3 7
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where 7 is the distance from the center of the operator and o is the space constant. In
the present study, two separable 1D-Gaussian masks are used for increassd ease and
speed of implementation (Starkey and Samantaray, in press). The rows of the two-
dimensional image are smoothed first by a horizontally oriented 1D-Gaussian mask
to produce an intermediate image. The columns of this image are then smoothed by
a vertically oriented 1D-Gaussian mask. The 1D-Gaussian mask is of the standard

form:

oo = [ ] o (- 23) am)

The value of o determines the degree of smoothing of the input image and
the size of the Gaussian kernel is dependent on the value of . The Gaussian kernel
trails off towards zero at both ends (see figure 3.18), for the present study it s
truncated when G(z) falls below 1% of its central value. The size of the kernel is
chosen 2n + 1, where n equals three times o. The value of ¢ is selected depending

on the size of the features to be extracted.

The most common zero-crossing operctors are the Marr-lildreth and Canny
operators (Fleck 1992a,b). The Marr-Hildreth algorithm (Marr and Hildreth 1980)
computes the second derivative of a Gaussian smoothed image and the zero-crossings
of the image indicates the edges present in the image (see figure 3.19). A Laplacian
operator is moved over the Gaussian smoothed image. This is known as LOG or a
Laplacian of Gaussian operator The Laplacian is equal to the sum of the directional
second differences in all directions. The present implementation computes this using

the following mask (Fleck 1992a)




G(X)

001‘

0.12 4

0.1

0.08 1

0.06 1

0.04 -

0.02 1

™

65

&
un
-
~
20

g -8-7-6-5-4-3-2-101 2 3

X

Figure 3.18 : The Gaussian kernel used to smooth the input image before
Sﬁ\l}g&g mtge zsero-crossmg operators. The kerniel is derived irom eq. 3.20




66

Figure 3.1S : The edges, shown in red. detected by the Marr-Hildreth
operator from the microscope image shown in figure 3 7
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The Canny algorithm (Canny 1986) improves on the Marr-Hildreth algorithm
and has been recognized to operate well (Fleck 1992b). Canny’s algorithm marks
edges at maxima in the magnitude of the image gradient in the direction of the
gradient of a Gaussian-smoothed image. The magnitude of the gradient, G, is
calculated as G = \/ (gf)z + (ﬂ)z, where %’E and %5 are the first order differences

By
computed using the mask [—1,0,1] in the horizontal and vertical directions. A

suitable threshold is chosen to select the meaningful edges in the image.

Canny’s algorithin determines the location of edges by computing the one-
dimensional, second order derivative in the direction of the gradient vector, n. For

a two-dimensional image this can be approximated as follows (see Appendices 2 and
4):
dn? " | 9z? \ Bz Ozdy 8z 8y Oy? \ Oy

where the second order derivatives, g—:é and —g%;, are computed using the mask

N [é’_{ (ﬂ) L O BFOF 8 (ez) ] —0  (321)

[1,~2,1] in both the horizontal end vertical directions. —f—a‘g 5 15 approximated by
TUY
| ]

~1 1

applying the mask 0 . The first order differences are gf and %ﬁ as

1 -1

before. Figure 3.20 shows the edge pixels obtained from the image shown in figure

3.7, edges are located at the zero crossing.
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Figure 3.20 : The edges. shown in red, detected by the Canny
operator from the microscope image shown in figure 3 7
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The Canny algorithm satisfies most of the criteria recognized as desirable for
an edge detector by locating one-pixel wide edges at the zero-crossing. By changing
the value of sigma, edges for different size features present in the image can be
extracted. Further, by applying a suitable threshold to the gradient magnitude,
undesirable edges can be eliminated. Consequently, the Canny edge finding operator

is used in the present image analyzing system.

3.2.4 Segmentation of Sequential Images

The detection of boundaries in digital images obtained from a polarizing microscope
requires special techniques beyond the usual filtering and edge segmentation of im-
ages which have been discussed above. This is because of the nature of petrographic
images in which observations in both plane and cross polarized light may be nec-
essary to identify the features of interest. Further, in plane polarized light, many
minerals are colourless and only some of those which are coloured show variations of
colour due to pleochroism and therefore show boundaries where they are in contact.
Similarly, between crossed polarizers, the interference colours displayed by adjacent
mineral grains may be similar at some orientations of the thin section relative to
the planes of polarization of the microscope. Thus, to aid in the identification of
boundaries, thin sections must be examined at different orientations relative to the
plane of polarization of the light in the microscope. In petrography this is normally
accomplished by examining the thin section alternately in plane polarized and cross
polarized light and by rotating the thin section on the microscope stage. For com-
puter based petrography the same effect is achieved by capturing a sequence of
images in which the illumination and orientation of the polarizers is changed while

the thin section remains stationary (Starkey and Samantaray, in press). Examples




70

of two such images are shown in figure 3.21.

The two storage pages available in the frame memory are used to process
a sequence of images captured from the thin section. For each image the config-
uration of the polarizers can be changed so that images are obtained in plane or
cross polarized light and with different orientations of the planes of polarization.
Registration between the individual images is preserved because the thin section is
not rotated. The sequential images are captured on the first page of frame memory
and segmented by applying Canny’s algorithm (see figure 3.22). The resulting edge
images are accumulated into a composite image on the second page of frame mem-
ory which represents a synoptic image of all grain boundaries detected (figure 3.23,
note that all visually apparent edges are not present on this synoptic image, more

images must be accumulated for all edges to be detected).

The speed of acquisition of the sequential images by the frame grabber allows
examination of thin sections in real-time. The technique is flexible enough to permit
the use of the variety of illuminations required to bring out special features of interest
in the image. Further, where a; individual image shows both intensity and texture
edges, different edge detectors may be applied to the same, or different, images to
extract the different edge types separately and these can be accumulated on the

synoptic image.




Figure 3.21 Two images captured from one microscope field of view of
a quartzite between crossed polanizers The orientations of the planes of
polarization differ by 45 degrees in the two image. The arrows indicate
boundaries which are not pronminent at one or the other of the polarizer
orientations
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Figure 3.22 : Images Jf the edges obtained by applying the Canny uperator
to the two images shown in figure 3 21
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Figure 3.23 . Composite grain boundary image obtained by combining both
of the edge rmages shown in figure 3 22.
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3.3 Binary Image Editing

Despite the application of filtering and edge segmentation techniques the edges of all
the features of interest present in the image may still not be completely delineated.
Further editing may be required and most of the editing operations are performed
directly on the edge image itself. In the present study, an image editor was developed
which allows the superimposition of the binary edge image on the original grey level
image. The editor allows the user to write values to or delete values from pixels
in the edge image using a mouse, it also includes tools to highlight breaks in edge

contours and to fill regions enclosed by edge contours.

Implementation of these editing tools uses the two pages of frame memory,
the external monitor of the imaging system and the video display of the micro-
computer. As noted earlier, the eight bits of the individual storage locations in the
frame memory can be organized in eight different planes which cover the image (see
figure 3.24). The original grey level image is displayed using only the lower six bit
planes of the first page of frame memory, thus the upper two bit planes are free. The
binary edge image, derived from the grey level image, is displayed on bit-plane 7 of
the second page of frame memory, bit-plane 6 of the second page is used for filling
closed contour regions and highlighting the ends of edge contours. The binary edge
image and the editing information stored on page two can be superimposed on the
grey level image by copying bit-planes 6 and 7 of the second page onto bit-planes 6
and 7 of the first page. This is accomplished using the host mask register provided
by the frame grabber board which protects the low order bit planes containing the
grey level image. To re-display the grey level image alone the data on the upper

two bit planes of page one are set to zero.
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Figure 3 24 : The organization of the eight bit planes of trame memory used
for image editing The original grey level image uses the lower six bit-planes
(0..5) for display The binary edge image uses bit-plane 7 for display. Bit-
plane 61s used for region filling and highlighting the end points of the edge

fragments
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3.3.1 Manual Editing

A mouse style pointing device is used to edit the image. The vixels in the binary
edge image (i.e. bit-plane 7) can be set to ON or OFF as desired, when set to
ON the pixel displays a selected colour (red). Therefore, the mouse can be used
to connect edge segments or delete unwanted ones. Sometimes manual tracing of
the feature boundaries is required. These operations are straight forward, since the
mouse generates video coordinates in frame memory and a cursor is displayed on
the image to show its current location. The software tracks the motions of the
mouse and turns on pixels along its path either by joining those discretely marked

by pressing the mouse button or continuously as the mouse is moved.

Another feature incorporated in the editor is a mode of drawing to help select
features manually. This is generally called flooding or filling and consists of turning
ON the pixels in bit-plane 6 to display a selected color (green) which starts at the
current location of the cursor and grows outwards in all directions until a boundary
pixel (i.e. one which is ON in bit-plane 6 and therefore displaying red) is met. This
fills any closed shape, however intricate. The fill can be removed from any feature
by placing the cursor anywhere inside the feature and flooding with OFF (i.e. by
turning the bits of bit-plane 6 off). Filling a feature provides confirmation that a
feature is completely surrounded by a boundary. Also, filling is used to eliminate
features from further consideration because filled features are ignored by the feature

extraction algorithm.

When confronted by a complex image containing many discontinuous edges,
N
it is often advantageous to be able to identify the discontinuous edge contours au-

tomatically. The ends of the broken contours can be located L a contour following
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method, however, this is time consuming. An algorithm developed here uses a 3
by 3 pixel window in a raster fashion to locate the ends of edge contours in the
binary edge image. Where the end of an edge contour occurs in the center of a 3
by 3 pixel window the possible configurations of pixels in the window are as shown
in figure 3.25. The blackened pixels in the figure correspond to edge pixels and the
white pixels correspond to non-edge pixels. The algorithm presented in Appendix
3 recognizes the coufigurations of pixels disnlayed in figure 3.25 and identifies the
central pixel in thi window as an "End” pixel. Figure 3.26 shows the binary edge
image of the grey level image shown in figure 3.7, with the end of discontinuous edge

contours identified and highlighted in red.

3.4 Feature Extraction

At this point the edges exist only as pixels which are turned on in the video display.
Feature extraction is necessary to correlate these pixels with individual features and
to define their boundaries for subsequent analysis (Pavlidis 1978, Russ 1990). The
third operation of image analysis, feature extraction, selects and groups the detected
edges from the edge image into the feature boundaries which are required to describe

the image for further analysis.
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Figyre 3.25: The pose o'~ configurations of pixels ina 3 by 3 window in
which the central pixel is e end of an edge contour. Black indicates edge
pixels and white indicates non-edge pixels.
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Since most feature boundaries are continuous in nature, edges should simi-
larly exhibit continuity (i.e. closed boundaries). A simple technique to extract these
closed boundaries is to follow their edge contours. Several contour tracing algorithms
have been proposed to extract boundaries from the segmented edge images (Pavlidis
1978, Cai 1988, Ali and Burge 1988, Chang and Leu 1990, Xie and Thonnat 1992).
In most such algorithms, the boundary of a feature region is considered to consist
of pixels with at least one neighbour which does not belong to the interior of the
feature. The result is that the common boundary between two adjacent regions is
not recognized, instead a double boundary results with a space in between (Starkey
and Simigian 1987). A solution to this problem was recently proposed by Liow
(1991) using a contour tracing algorithm. However, contour tracing algorithms have
been found to be prone to yield ambiguous results in petrographic images due to
the inherent inhomogeneity within the feature regions. In the present study an al-
gorithm is presented which takes a segmented edge image as input and extracts the
closed edge contours which represent the boundaries of feature regions by scanning
the image in a raster fashion (Samantaray and Starkey, in press). Figure 3.27 shows

an edge image and the closed contours extracted from it using this algorithm.

In an edge image an edge contour coansists of a string of pixels delimited by
their end pixels (head and tail). A closed contour is an edge contour in which the
end pixels are connected. On an individual row of the matrix representing an edge
image a sequence of non-edge pixels bounded by edge pixels at both ends represents
a line segment and the (z, y) coordinates of the bounding edge pixels are refered to

as the coordinates of the boundary points. A feature region can be defined as a set

of four connected line segments which is completely surrounded by edge pixels.




Figure 3.27 ‘a) Bma image produced by the application of edge seg-
mentation to figure 3 . (b) Output image produced from (a} using feat-
ure extraction algonthm described in the text.
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The edge image is processed in a raster fashion row by row, starting from
the top. As each feature region is located it is assigned an index. Index 1 is used
to identify those regions which intersect the boundary of the imuge and which are
subsequently discarded. The features of interest are indexed consecutively, starting
with the index 2, this index acts as a reference to a list of (z, y) coordinates of
the boundary points of that feature region. Sometimes two or more regions iden-
tified on previous scans combine on a subseyuent scan. When this happens, the
different parts of the region previously identified are assigned the lowest index and
the corresponding data structures are reindexed accordingly. For a region with a
shape analogous to an inverted U, "N”, the same index is applied to both arms
automatically. After obtaining the boundary points of a feature region, they are
sorted according to the Freeman chain coding scheme (Freeman 1970, figure 3.28)
to obtain a contiguous array of pixel coordinates for subsequent shape analysis. The

algorithm which performs these operations is described below.

The basic task of the algorithm is to connect line segments and to locate
their boundary points. The algorithm requires that three scans of an image to be
stored in a 3xN matrix, in computer memory, at any given time, where N is the
length of the scan. The matrix is continuously updated as the image is processed
by copying the rows two and three of the matrix into rows one and two respectively
and storing a new scan in row three. The matrix is processed from left to right, the
z coordinate of a pixel is the column number of the matrix and the y coordinate is
the scan number of the image. Initially, when row one contains the data from the
first scan of the image, all the line segments in that row are indexed with the value
1, indicating that the features to which the line segments belong extend outside the

image area. Subsequent processing of the matrix consists of locating four-connected




3 2 1
4 0
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Figure 3.28 : The Freeman chain codes used to identify the orientation of the
gight nearest neighbours relative to the central pixel.
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line segments on the second row and indexing them by comparison with the first

according to the following five criteria, the letters refer to figure 3.29.

(a) :

(b) :

(d)

Where the pixels in the line segment [e to {] in row two are all adjacent to
edge pixels in row one the line segment [e to f] is the begining of a new feature
region and it is assigne. a new index. The (z, y) coordinates of the edge
pixels immediately to the left and right of the line segment, (e-1) and (f+1),
and those directly above the line segment [e to f] in row one are stored as

boundary points for this new region.

Where the line segment [e to f] in row two overlaps a line segment [a to b)
in row one the two line segments belong to the same region and the index
previously assigned to line segment [a to b] is assigned to line segment [e to 1.
The (z, y) coordinates of the edge pixels (e-1) and (f+1) in row two are stored

as boundary points for this region.

: Where, in the line segment [e to f], pixel e is the first pixel in row two the line

segment is assigned the index 1, indicating that this feature extends outside
the image area. At this point the index previously assigned to the line segment
(a to b], which overlaps [e to 1], is recognized as belong to a feature which is to
be eliminated and thus any line segments with this index are reindexed with

the value 1 and the associated z, y coordinates are discarded.

An analogous situation occurs where fis the last pixel in row two.

: Where the pixels in the line segment [e to {] are all adjacent to edge pixels in

row three the (z, y) coordinates of the edge pixels (e-1) and (f+1) in row two
and those directly below the line segment [e to f] in row three are stored as

boundary points and assigned the same index as line segment [e to f).




(b) e

(c) f
|
(d) ) f
(2) e f
. Edge pixel Non-edge pixel

Figure 3.29 : The possible configuration of line segments in three conse-
cutive scans of a raster scanned image (see text).




86

(e) : Where the line segment [e to f] overlaps two line segments [a to b] and [c
to d|, two feature regions, which were previously identified as separate and
assigned different indices, have merged. Therefore all line segments and the z,
y coordinates identified with the higher index are reassigned the lower index.
If the new index is a 1 then the data are discarded. Otherwise the (z, y)
coordinates of the edge pixels (e-1) and (f+1) in row two are stored as boundary

points for this region.

Where the regions which merge are previously separated by a single pixel
boundary, duplicate z, y coordinates of boundary points will occur. The dupli-
cations are identified by comparing the two lists of boundary coordinates for

the previously separate features and the data in one are eliminated.

Combinations of the above criteria may apply to any particular region as the
image scans are processed. A feature is recognized as having terminated when its
index exists in row one but not in row two. The (z, y) coordinates of the boundary
points of terminated regions are sorted and stored in a contiguous array of pixel

coordinates.

3.4.1 Sorting Boundary Pixel Coordinates

After the image has been scanned, as described above, and the features identified and
selected the z, y coordinates of the boundary segments of the individual recognized
features are contained in a list of boundary coordinates. In addition, the list may
contain the coordinates of isolated edge contours within the feature, the coordinates
of edge contours within the feature which are attached to the boundary at one

end or the coordinates of closed contours around inclusions. These are removed by
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the sorting process which produces an output array containing the contiguous z, y

coordinates, or the chain code of only the feature boundary pixels.

Because the imsge is processed scan by scan the first pair of z,y coordinates
in the list of boundary coordinates for each feature always pertain to a pixel on the
boundary of a feature region and the second pixel will always be in the direction 0 or
7 (see figure 3.28). Thus the initial direction for tracing the boundary is established.
Each pixel is considered in turn as the central pizelin a 3 by 3 neighbourhood within
which the next edge pixel is selected following the Freeman chain code sequence.
Once an edge pixel is identified it is eliminated from the list of boundary coordinates.
Where there is only one neighbouring edge pixel in successive neighbourhoods the
sorting continues until it returns to the starting pixel and the feature boundary is
defined. Where there are more than one neighbouring edge pixels in the neighbour-
hood the central pizel is flagged and processing continues by proceeding with the
neighbouring boundary pixel having the lowest chain code. If the subsequent suc-
cession of pixels leads back to the starting pixel then the boundary has been defined
and processing ceases. If a point is reached beyond which there are no edge pixels
then the string of pixels followed from the previoasly flagged pixel, represents an
open edge contour attached to the feature boundary. The z, y coordinates of this
string are eliminated from the output array and processing returns to the flagged
pixel and recommences with the neighbouring pixel with the next highest code. This

procedure is applied recursively for multibranching line segments.

This algorithm generates an ordered list of boundary coordinates for each of

the features present in the image.




88

3.5 Nature of the Information

The final result of applying the digital filtering, edge detection and feature extraction
to the original petrographic image is an ordered list of (z,y) coordinates of the
boundary points of the features recognized in the image. These houndary points
can also be described using the Freeman chain code sequence. Figure 3.30 shows

examples of both kinds of feature boundary description. These data are required

for the subsequent calculation of the parameters which describe the features.
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Chapter 4

Image Measurement

This chapter discusses some of the measurements which can be made using the
image analysis described here. In this regard it is important to realize that in
addition to the boundary information derived from image processing described in
the last chapter the original grey level imagz and the intermediate edge image are
also available for analysis. Together the data from these images provide a wealth
of information which is not available in traditional petrography. In addition, the
fact that the boundary data are available as pixel (z,y) coordinates and chain codes,
facilitates some of the calculation which are best accomplished in one form of data
representation rather than the other. In some instances, as noted below, a pixel
representation of the features is required. In a pixel representation, the image area

inside the feature boundary is filled with an index which identifies the feature.

The application of image analysis to petrographic images provides both global
measurenients, which characterize the rock as a whole, and feature measurements,
which describe individual features. Simple analyses, such as the determination of
grain size and shape distributions, can be performed automatically using the bound-

ary data (z,y coordinates) of the selected features in the image. More complex
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analyses require user interaction to manipulate the images to obtain the necessary
data. Examples of such analyses are the determination of the percentage of inclu-
sions in host mineral grains, mineral abundances and associations, size distributions

of minerals and pore spaces and grain clustering analysis.

4.1 Global Measurements

The frequency distribution of grey values can be obtained from the grey level image
and if a particular grey level, or range of grey levels, can be correlated with partic-
ular phases, the frequency distribution of grey levels can be converted into a modal
analysis. This technique was applied to a study of the properties of grains and pore
space by Mainwaring (1989) and similar studies have beea conducted on porosity
in rocks by Gerard et al. (1992). In a less obvious application, Janssen et.al.(1991)
examined the variation of grey level distributions in photomicrographs taken be-
tween crossed polarizers of rhombohedral camphor grain aggregates deformed by
simple shear. They observed an increase in the uniformity of grey values with in-
creasing strain, which they used as an indicator of the progressive development of

crystallographic preferred orientation.

Determining the area occupied by inclusions in an individual mineral grain,
or in grains of a particular mineral species can be accomplished by measuring the
area of the host grain(s) and the inclusions separately. The areas of the host grain(s)
and the inclusions can be readily obtained from their boundary data. An example of
such a measurement is illustrated *~ figure 4.1, the area of the host mineral grain and

the inclusion are measured independently in two separate computer stored images.

Such analysis requires user interaction to select the grains and the inclusions in the
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image.

The number of features present in a given region of the image can be obtuined
by measuring the number of features per scan line and converting the results to the
number per square cm. (Russ 1990). Given the number of features and the total
area they represent, their mean size can be calculated. Alternatively, the mean size
can be estimated from the mean intercept length, the intercept length is the length

of a chord across a feature produced by any random line drawn on the image (figure

4.2) (Petruk 1989, Russ 1990).

The association between one mineral and its neighbours can be expressed as
the percentage of the mineral perimeter that is in contact with another mineral, or
the number of mineral grains that are in contact with another mineral in an image.
Such analysis requires that the boundary representation of features be re-converted
to pixel-based representation where the image area inside the boundary is filled
with an index which identifies the feature. One such filling algorithm is described
by Distante and Veneziani (1982). This can be solved by the technique illustrated in
figure 4.3. Two minerals, A and B, which share a common boundary are assigned
different indices. To obtain the common boundary between the two minerals, the
adjacency of the mineral regions must be determined by a neighbourhood search.
Because the grain boundaries determined by the present analysis are one-pixel wide,
the use of a 3 by 3 pixel window is sufficient for this purpose. The window is moved
over the image in a raster fashion to select the shared boundaries. Where a shared
boundary pixel occurs in the center of the 3 by 3 window, the image values in the

window should contain both of the indices which identify A and B.




lmercepf Lengith

Figure 4.2 . The determination of intercept lengths. Lengths of line
segments within and between features are measured.
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4.2 Feature Measurements

Parameters used to describe individual features can be divided into four groups:
(1) measures of size, (2) descriptions of feature location, (3) aspects of shape, (4)
texture. A variety of individual parameters which can be measured, or calculated

from this imaging system, are discussed below.

4.2.1 Measures of Size

The most obvious measures of the size of a feature in a two dimensional image
are its area and the length of its perimeter. The area is most readily obtained
from the pixel based representation of the image by simply counting the number of
pixels within the feature. However, the area can also be calculated from boundary
coordinates when the feature is identified by its boundary points. The coordinates
of the boundary points are considered to be the corners of a polygon in cartesian
(z,y) coordinates (Tough and Miles 1984, Russ 1990). By convention, the final
coordinate pair in the boundary list (z,,yn) is equal to the first (2o, y,) for a closed
feature. From the boundary coordinates the total area of the feature is calculated

as follows (Russ 1990):

1
Area = (ZaYr+1 — Zas1-Ua) (4.1)
0

1“
2k

The measured area is expressed in real units such as square microns, square mil-

limeters, etc.

To determine the length of the perimeter of a feature in a pixel-based repre-
sentation, an intermediate step using the boundary representation is required (Russ

1990). The perimeter is the sum of the Pythegoran distances between the discrete
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boundary points,

n-1
Perimeter = Y \/(:H, —zx)? + (41 — Wa)? (4.2)
k=0

Where the boundary is represented by chain code, the perimeter is the number
of orthogonal (0 or 90 degree) steps plus 1.414 times the number of diagonal (45
degree) steps. Table 4.1 lists the areas and perimeters of the grains shown in figure

4.4 for which the data provided by the image analysis consisted of boundary points.

Ancther commonly used size parameter is the length of a feature. This is
the maximum distance between any two points on the periphery. These perimeter

points are directly available from the boundary representation of the feature.

4.2.2 Descriptions of Feature Location

The position of a feature is determined by the £ and y coordinates of its centroid
(center of gravity) which is the point at which the central moment of the feature is
minimized. The centroid location is calculated by integrating the central moments
abcut the z and y axes and dividing by the area. These operations can be simplified
into the following expressions (Davis 1987):
n-11
Center X - Area = kz_% i (-‘B:H + ZTas1Ze + 32) (Yies1 — Ya) (4.3)
n-1

1
CenterY - Area = E I (y:n t Ykr1¥x + y:) (zx — Z&n1) (4.4)
k=0

The Area is obtained from the eq. 4.1. For a convex shaped feature the centroid will

lie within the feature boundary, but for a concave shape, or one containing internal

voids, the center may lie outside the boundary.
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Table 4.1: Area, Perimeter, and X & Y coordinates of the centroid (from top left
corner of the image) for grains shown in figure 4.4.

Grain Area | Perimeter | Centroid (in mm.)

(in mm.2) | (in mm.) | X Coord. { Y Coord.
1 0.051821 | 1.045 0.909 0.316
2 0.059812 | 1.086 0.629 0.308
3 0.067596 | 1.242 0.201 0.374
4 0.065866 | 1.165 0.395 0.451
5 0.057914 | 1.036 0.817 0.671
6 0.039880 | 0.870 0.448 0.746
7 0.034118 | 1.051 0.629 0.688

m
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Figure 4.4 : The boundaries of the mineral grains shown in figure 3.7
determined automatically by image analysis.
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The centroid location is an example of a parameter that can only be deter-
inined from a pixel-based representation of a feature. Attempting to calculate it
from the boundary coordinates in a boundary-coded representation produces a bi-
ased result in which the apparent point moves closer to the more irregular portion of
the boundary which is represented by more data points (figure 4.5). Table 4.1 lists
the (x,y) coordinates of the centroids of the grains shown in figure 4.4 calculated
from a pixel-based representation. The location of the centroids may be calculated
with respect to some global coordinate system or relative to other features. In this
example, the top left corner of the image is taken as the origin of the reference
coordinates and therefore, the feature positions only have significance within the

individual image.
4.2.3 Aspects of Shape

Shape is a concept which is widely understood yet difficult to define. This is an
extremely important property (Exner 1986) and is often a key factor in being able
to recognize or select features of interest. A shape parameter should possess several
desirable properties. Obviously, features with different shapes should yield different
measures, and similar shapes should yield similar values regardless of the size or
orientation of the feature. However, it has been proven mathematically that no single
measure can be unique to only one shape (Davis 1987, p.343). In most geological
applications, summary statistics, such as the mean and variance, are calculated for
the shape measurements from a collection of features, to describe the variation in
an aggregate. A wide variety of shape descriptors are available in the literature and

some those most commonly used in earth science are discussed here.
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The shape of a feature can be described by geometric forms. The two most
frequently used are the rectangle and ellipse (Simigian and Starkey 1986). Com-
monly an enveloping rectangle is obtained from the long dimension of a grain and
the maximum dimension at right angles to it. Figure 4.6 shows the long and short
axes (which define the enveloping rectangles) of the grains shown in figure 4.4. These
parameters yield the aspect ratio (long axis/short axis) and the orientation of the
grain in terms of the long axis. Table 4.2 lists the aspect ratios and orientation
angles obtained from the enveloping rectangles for the grains shown in figure 4.4.

The areas of the enveloping rectangles do not preserve the areas of the grains.

An ellipse can be fitted to a feature in a variety of ways. The best-fit ellipse
is calculated using eigenvalues such that it passes through the feature boundary so
that the sum of the squares of the distance between each point on the boundary
and the ellipse is minimized (Craig et.al. 1982). The boundary coordinates and the
centroid are used to calculate the second central moment and the eigenvector. The
long and short axes of the ellipse are calculated from the eigenvalues from which the
aspect ratio and the orientation of the long axis of the ellipse can be obtained, see

the data for the grains shown in figure 4.4 in Table 4.2.

Similarly, an area ellipse is calculated using the observed area and long axis
of the grain to derive the short axis, 2b, from the formula b = A/xa, where A is the
area of an ellipse and a is one half of the long axis (Simigian and Starkey 1986).
Both the best-fit ellipse and the area cllipse preserve the area of a feature. The
area - ._.pse emphasizes the long axis, which is the dimension commonly observed
subjectively, the best-fit ellipse is calculated statistically and may be a better choice

for shape analysis (Simigian and Starkey 1986). Figure 4.7 shows best-fit ellipses

calculated for the grains shown in figure 4.4.
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Table 4.2: Aspect ratios and orientation angles for the grains shown in figure 4.4
(measured from enveloping rectangles and best-fit ellipses). Orientation angle is
measured clockwise from the X-axis.

Env. Rectangle | Bestfit Ellipse

Grain | Aspect | Orient. | Aspect | Orient.

Ratio | Angle | Ratio | Angle

1 0T T
1 1.579 124.96 1.524 131.68

2 1.801 76.26 | 1.634 85.70
3 2.140 95.85 | 1.731 95.96
4 1.959 102.09 | 1.732 95.98
5 1.681 68.45 | 1.567 76.96
6 1.407 36.87 | 1.481 35.78

7 3.071 83.03 | 2.648 86.24
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Figure 4.6 . The long and short axes (in grey) of the grains identified in
figure 4.4. These axes define the sides of enveloping rectangles. see
texi.
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Figure 4.7 : The 'best-fit’ ellipses (in grey) for the grains identified in figure 4 4
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Probably the most widely used shape parameter is the shapefactor or the
Jormfactor. Although the definition of this parameter varies between researchers,
it is always calculated using perimeter and area measurements (Smith 1989, Russ
1990). For instance, one definition is 4w-Area/Perimeter? (Russ 1990). This defi-
nition yields a formfactor of 1.0 for a circle and 0.785 for a square. Any irregular
shape will have more perimeter for the same area, and the formfactor becomes much
smaller. A similar shape parameter, Roundness, is calculated as 4-Area/n-Length?
{Russ 1990). Roundness uses the long axis of the feature instead of perimeter. This
makes it more sensitive to how elongated the feature is rather than how irregular
its outline may be. The Roundness value is 1.0 for a circle. For illustration Table

4.3 lists the formfactor and the Roundness values for the grains shown in figure 4.4.

The shape of a feature can also be characterized by the number of corners
it posesses (Russ 1990). The difficulty with human interpretation of petrographic
images is in deciding what constitutes a ’corner’. Corners can be easily detected
from the chain-code representation of the feature boundary (Liu and Srinath 1990).
A chord is drawn between points in the chain that are some distance, n, apart. The
chord length can be made large enough to ignore local variations that are not to
be considered as 'real’ coiaers. As the position of the chord is advanced along the
chain, a frequency plot is made of some derived value such as the change in slope of
the lines (Freeman and Davis 1977), the length of the line, or the net area between
the line and the chain etc. (Russ 1990). These frequency plots vary somewhat in
their sensitivity to minor irregularities and in the computational effort required. In

the resulting graphs the peaks represent the corners of the feature.
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Table 4.3: Formfactor and Roundness parameters for the grains shown in figure 4.4
(for detail see text).

Grain | Formfactor | Roundness
1 0.59633 0.54171
2 0.63729 0.45974
3 0.55067 0.43855
4 0.60984 0.45146
5 0.67807 0.55960
6 0.66210 0.56044
7 0.38814 0.28560
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A very different approach is available to describe and recreate the shapes of
closed forms using amplitude spectra of a finite fourier series (Schwarcz and Shane
1969, Ehrlich and Weinberg 1970, Beddow et al. 1977, Clark 1981,1987, Flook 1982,
Mazzullo and Ehrlich 1983). The shape of a feature is estimated by an expansion
of periphery radius, R, as a function of angle about the feature’s center of gravity

by a Fourier series as follows (see figure 4.8) (Ehtlich and Weinberg 1970)

R(6) = Ro+ 3" Ry cos(nfl — ¢,) (4.5)

n=1

where 0 is the polar angle measured from a reference line. The first term in the series,
Ry, is equivalent to the average radius of the feature. For the remaining order of the
terms, n is the harmonic order, R, is the harmonic amplitude, and ¢, is the phase
angle. Each harmonic in the series represents the contribution of a specific shape
component to the total shape of the feature. For example, elongation is measured
from the second harmonic, triangularity from the third harmonic, quadrateness from
the fourth harmonic, and fine scaled features on the surface of the feature from the
higher harmonics. Depending on the complexity of the shape few boundary points
may be needed for this type of analysis (Ehrlich and Full 1984). This method has
certain limitations, the most conspicuous of which is that only single-valued outlines
can be analyzed; a radius drawn from the centroid must iniercept the perimeter only
once. Problems arise with outlines such as those of grains 3, 5, 6 and 7 of figure
4.4. To address this problem Evan et.al.(1985) demonstrated the use of parametric
cubic splines. Figure 4.8 shows the application of Evan’s method to the sampled
boundary points of grain 5 from figure 4.4. What is needed is a two-dimensional

spectral analysis.

In the calculation of any shape parameter the sampling of the boundary

points is readily automated as part of the image analysis system. Obtaining data
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manually could be difficult or impossible.

4.2.4 Texture

Under the optical microscope, most features, such as mineral grains, are identified
by their colour or texture. In a digitized petrographic image, the colour of a feature
is represented by a grey scale (or a range of grey scales), and the texture of the
feature is represented by the frequency distribution of the grey values inside the
feature. For example, figure 3.4 displays quartz and the microcline grains which can

be differentiated by their grey level and image texture respectively.

To quantify image texture a basic understanding of what constitute a tex-
tured region is necessary. Image texture depends on a number of basic ingredients
such as repetition of local image patterns, non-random arrangement of these local
image patterns etc. (Rosenfeld and Lipkin 1970, Hawkins 1970). These local image
pattern can be classified by the following properties: (a) grey level statistics (mean,
variance, grey level entropy, run lengths etc.), (b) spatial frequency, (c) local shape
measures (edges, lines, different specific shapes), (d) higher order measures (cal-
culated from the directly measured parameters). These can be correlated to the
optical characteristics of the minerals in the petrographic images. In the present

study this has not been implemented.




Chapter 5

Example Applications

In addition to the relatively straight forward location of grain boundaries in pet-
rographic images by accumulating synoptic images, illustrated in chapter 3, figures
3.21 to 3.23, some other geological applications are discussed here which illustrate
particular features of the system. In the first example, image analysis is used to
identify the grain boundaries in thin sections of beach sand and define shape fab-
rics. In the second example, image analysis is used to identify the grain boundaries
in a deformed oolitic limestone. Photomicrograph mosaic from the thin section are
used to analyze the finite strain from the shape of the oocid particles. Here, the
oolites had internal image texture which had to be considered during edge detec-
tion. In a third application, image analysis is applied to obtain the modal analysis

of minerals in a thin section of Saxony granulite. The results of these analyses are

compared with results obtained by traditional methods.
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5.1 Sedimentary Grain Shapes

In a study of the hydrodynamics of "storm beds”, Cheel (1991) collected data on
the grain shape fabrics of sandstones by mannally measuring the apparent long axes
from the images of grains on oriented thin sections. The images were projected onto
a digitizing tablet interfaced to a computer and the orientations of their longest axes
were measured by touching the two estimated end points of the long axis with a
pen sensor. The orientation, based on the grid coordinates of the ends of the axes,
were calculated automatically. Only grains with visually estimated length-to-width

ratios greater than 3:2 were measured.

Five of the thin sections used in the manual analysis were provided by Cheel
(Cheel 1991, and Personal Communication; sections 1, 2, 3, A and B). The thin
sections are prepared from epoxy-impregnated, unconsolidated sands; except sample
B which is a sandstone. The sections are cut perpendicular to bedding and parallel

to the direction of current flow.

The thin sections are examined using a petrographic microscope with the
magnification selected to ensure that the boundaries between adjacent mineral grains
displayed in the video image are at least few pixels wide, this yields approximately
40 mineral grains within the image. This required a 1x objective for all thin sections
except B for which a 2.5x objective was used. To obtain similar number of data
to that used by Cheel, 15 images are captured from each thin section within the
area marked by Cheel as indicating the locations of his sampled data. The images
are obtained using both plane and cross polarized illumination. One such image is

shown in figure 3.7.




113

The grains are defined by intensity edges and are easily detected by the
Canny operator (Starkey and Samantaray, in press). The extracted grain boundary
data are recorded as (z,y) coordinates. In a few instances, adjacent mineral grains
merged, with the result that the boundaries between the grains are not detected
automatically. In such cases the edge operator detects the boundaries of the aggre-
gated grains and not the internal, individual grain boundaries. These boundaries

are resolved by tracing with the help of the image editor.

The results of Cheel’s analyses are presented in figures 5.1 and 5.2 (Cheel
1991, and personal communication). The figures illustrate rose diagrams for the
angles between the long axes of the grains and the bedding, the imbrication angles.
The distributions illustrated by the rose diagrams from samples 1, 2, and 3, figure
5.1, are bimodal. These samples are from a lacustrine storm beach deposit, the
two modes of the distribution are interpreted in terms of the reversing of currents in
response to swash and backwash on the beach face (Cheel, personal communication).
Figure 5.2 shows the data obtained by Cheel from samples A and B. Sample B is
fzom a horizontally laminated sandstone that was deposited on an upper flow regime
plane bed (Cheel 1991). Sample A is experimentally produced to simulate upper
plane bed deposits with unidirectional flow. The rose diagrams from samples A and

B show unimodal distributions with modes for the imbrication angles of 35° and 15°

respectively.
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Sample 1

Sample 2

o x
Figure 5.1 : Rose diagrams showing the orientation of the longest apparent
axes of the sand grains in three samples of beach sands. The orientation

angles are measured with respect to the internal lamination. The values ind-
icate sample sizes.




Sample A

Figure 5.2 : Rose diagrams showing the orientation of the longest apparent
axes of the sand grains in two samples of beach sands. The orientation an-
gles are measured with respect to the flow direction. The values indicate

sample sizes.
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The long axes measured by Cheel correpond to the long axes of the envelop-
ing rectangles around the grains (Simigian and Starkey 1986), consequently, the
enveloping rectangle was derived for each grain and the aspect ratio was calculated.
The grains with aspect ratio greater than 1.5 (length-to-width ratio 3:2) were se-
lected for comparision with Cheel’s samples. The imbrication angles are presented
as rosc diagrams in figures 5.3 and 5.4. The rose diagrams from samples 1, 2, and
3, figure 5.3, show bimodal distributions. Figure 5.4 shows the data obtained from
sample A and B, sample A shows a multimodal distribution and sample B shows a

unimodal distnnbution.

The rose diagrams for samples 1, 2, and 3 determined here and by Cheel are
similar and show bimodal distributions (cf. figures 5.1 and 5.3). However, the modes
of the distributions of the imbrication angles determined in the present analysis are
systematically less then those determined by Cheel. For sample A, Cheel reported a
unimodal distribution (figure 5.2). The distribution determined here is multimodal
(figure 5.4). However, both analyses reveal a wide range of imbrication angles. For
sample B both analyses show a similar unimodal distribution (cf. figures 5.2 and
5.4) but the present analysis indicates a higher angle of imbrication (the mode of

the distribution is 25%, compared to 15° reported by Cheel).

The possibility of error in the imaging system in the determination of the
orientation angles was checked using of ellipses of known orientation. The data were
processed by the imaging system and no systematic error was detected. A similar

test of Cheel’s procedure could not be performed because the equipment is no longer

operational (Cheel, personal communication).
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Sample 1

Sample 2

Sample 3

Fifgure 9.3 : Rose qia%rams showing the orientation of the longest axes
0 theI sand grains in three samples of beach sands. The values indicate
sample sizes.
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Sample A

Sample B

Figure 5.4 : Rose diagrams showing the orientation of the longest axes
of the| sand grains in two samples of beach sands. The values indicate
sample sizes.
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In manual digitization the selection of end points of the long axes is entirely
user dependent. It has been demonstrated that even for simple shapes the visible
long axis may not necessarily be the actual long axis of a grain (Russ 1990). Alvo, the
aspect ratio cutoff used by Cheel is applied arbitrarily, thus the results obtained from
such measurements can not be reproduced. The present system measures all the
grains without applying a threshold to the aspect ratio, thus enabling the analysis of
sub-samples with different ranges of aspect ratio. The results of analyses of subsets
of data for sample A, using different aspect ratio cut-offs are illustrated in figure
5.5. Comparison of figure 5.5 with figure 5.2 suggests that the rose diagram for the
grains with aspect ratio greater than 1.75 compares best with the results obtained by
Cheel, the modes are 45° and 45° respectively. In a personal communication Cheel
volunteered that "his aspect ratio is skewed to higher values, this is because of the
difficulty in determining the grain boundaries visually”. Therefore the apparent
differences in the results obtained here and by Cheel probably reflect differences in

technique. However, the results obtained here are objective and reproducible.

Computer-assisted microscopy yields more data than the manual measure-
ments conducted by Cheel. In particular, the z,y coordinates of the points along
the grain boundary are available and can be used to estimate a best-fit cllipse for
each grain. Rose diagrams for the orientation angles of the long axes of the best-fit

ellipses are presented in figures 5.6 and 5.7. It has been suggested that analyses

based on the ellipses are hydrodyr ~mically more meaningful.
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(a)

(b)

(c)

Figure 5.5 : Rose diagrams showinf the orientation of the long
axes of the three subsets of sample A. (a), (b) and gc) are the
data for the grains with aspect ratios greater than 1.25, 1.5 and
1.75 respectively.




Sample 1

Sample 2

Sample 3

Figure 5.6 : Rose diagrams showing the orientation of the long axes
of the best-fit ellipses fitted to the sand grains in three samples of be-
ach sands. The values indicate sample sizes.
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Sampie A

Sample B

Figure 5.7 : Rose diagrams showing the orientation of the long axes
of the best-fit ellipses fitted to the sand grains in two samples of bea-
ch sands. The values indicate sample sizes.
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5.2 Shapes of Deformed Oolites

In a study of the deformation of initially nearly spherical particles in natural rocks,
Borradaile and McArthur (1991) collected data from an experimentally deformed
sample of Ancaster oolitic limestone. Their study involved the measurment of finite
strain from the best-fit elliptical approximations of the ooid particles. The ooid par-
ticle boundaries were traced from a photomicrograph mosaic prepared with partial
cross-polarized light, using a Zeiss Videoplan digital analyzer system (Borradaile and
McArthur 1991). Ooid particles were carefully traced from the photomicrographs
onto a high resolution digitizing tablet. The ooid particle boundaries were deter-
mined by following the outermost concave boundary, usually distiguished by a thin
drusy cement layer between the dark concentric ring structure of the ooid and the
bright block cement matrix. The Zeiss system was used to compute the maximum
and minimum axes for the computer generated best-fit elliptical approximations to

the traced particles. The results were used to prepare 12, /¢ diagrams.

The photomicrograph mosaic used in the Zeiss Videoplan digital analyzer
was provided by McArthur (Borradaile and McArthur 1991). Two .nethods of im-
age analysis are applied to the photomicrograph. In the first, the data are collected
from the photomicrograph mosaic using image analysis techniques similar to those
reported by Starkey and Simigian (1987, 1992). A tracing is made from the pho-
tomicrograph on a transparent plastic sheet. The boundaries of the ooid particles
are determined in a way similar to the Zeiss method. The tracing is scanned as a bi-
nary image on a 300 dpi page scanner (this produces data similar to those produced
by the system used by Starkey and Simigian 1992). The binary image is processed

by IMAGE (Simigian and Starkey 1987) to compute the dimensional parameters for
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the best-fit elliptical approximations of the traced ooid particles.

In the second analysis, the photomicrograph is scanned as a grey level image
using the present imaging sytem. The ooid particle boundaries are detected using the
Canny edge operator. The particles display internal texture, particularly concentric
rings, therefore the Gaussian kernel for the Canny operator is chosen so as to ignore
the internal texture. Minimal manual editing is required to complete the gaps in
the particle boundaries where the edge operator cannot detect edges due to the
poor quality of the photomicrograph mosaic. In a few instances particles are in
contact and it is difficult for the edge operator to detect those boundaries because
the particles on both sides of the boundary display similar grey level characteristics
(See figure 5.8). However, by changing the window size of the edge operator it is

possible to fill in some of these missing boundaries.

Visually, most of the particles are readily identified because the eye follows
their convex, nearly elliptical outline and any breaks in the boundary are readily
"filled in” by visual extrapolation. Computationally this can be emulated by the
local fitting of mathematical functions such as polynomials to extend boundary lines
across gaps. In the present analysis the gaps in the grain boundaries are spanned
by a curved line based on a cubic spline interpolation which takes account of the
shape of the boundaries near the gap. It would also be possible in this case, where
the approximate shape of the particle is known a priori, to interpolate the edges by
using a Hough transform (Russ 1990), but this is not implemented in the present

study.




Figure 5.8 . Microscope image of a thin section showing oolites
observed in plane polarized light. The edges detected by the
Canny operator are shown in red.
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The results of the three analyses, that using Zeiss Videoplan, that based on a
tracing of the image and that using the imaging system developed here, are presented
in figures 5.9, 5.10 and 5.11 respectively. These figures are R;/¢ diagrams in which
individual data points represent the aspect ratio (R;) and the angular orientation of
the long axes (@) for individual particles. The orientation angles are measured from
the principal stress axis in the experiment and vary from -90° and 90°. All three
scatter diagrams are comparable. From the measured data, the mean ¢ angles and
the associated angular deviation can be calculated. Also an average strain ellipse
and associated error can be calculated using Robin’s method (Robin 1977). These

parameters are listed in Table 5.1, they are very similar for all three apalyses.

The results of all three analyses of the deformed oolitic limestone are es-
sentially the same. However, the time required for the analysis using the present
system is approximately 5 minutes, for the other two systems it is approximately 35
minutes for the same sample size. Further, application of the present system is less

labour intensive.
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Figure 5.9 : R4 plot of the deformed oolites in a sample of Ancaster
limestone. The data are obtained using a Zeiss Videoplan digital ana-
lyzer (see text).
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Figure 5.10 . R1/¢ plot of the deformed oolites in a sample of Ancaster
limestone. The data are obtained using the image analysis sytem based
on a tracing of the image (see text).
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Figure 5.11_: Rt/dplot of the deformed oolites in a sample of Ancaster
{ur:gstone. The data are obtained using the present imaging system (see
ext).
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Table 5.1: Robin’s strain, sitandard error, ¢-mean, and angular deviation measured
from the ooid particles in an experimentally deformed oolitic limestone by three
different methods of image analysis (see text).

Different Robin’s | Standard | ¢-mean | Angular

Techniques Strain Error Deviation

Ziess Videoplan 1.327 0.254 0.0° 11.70°

System using

Binary image 1.296 0.244 0.0° 14.00°
Present System 1.310 0.228 0.0° 9.47°

5.3 Modal Analysis

In a study of the interdependance of the degree of quartz preferred orientation and
the quartz content of deformed rocks, Starkey and Cutforth (1978) carried out a
modal analysis of a Saxony granulite from the straight limb of an isoclinal fold,
the plagioclase present was stained yellow to aid in its identification. The modal
analysis for a biotite rich layer was as follows: 51.9% biotite, 26.5% quartz, and
21.5% plagioclase. The thin section used in the manual analysis was provided by

Starkey and a modal analysis is carried out in the same region using image analysis.

Using plane polarized light, two images of the same field of view are obtained
in which the planes of polarization of the polarizer are mutually perpendicular. The

two images are shown in figure 5.12.a and b. Biotite is a pleochroic mineral, the

grain which are dark in one image are light in the other, and therefore comparing the
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two images to detect these grains which changed grey level allowed the biotite to be
identified. The two images compared pixel by pixel to get the absolute differences
and a threshold of 3 is applied to the matrix of differences to produce binary image

shown in figure 5.12.c, white represents biotite.

The remaining grains are quartz and feldspar. The quartz, which is not
stained, displays higher grey values. Therefore, a simple threshold separates the
grey levels corresponding to quartz from those corresponding to plagioclase. Figure
5.12.d shows a binary image where white represents the quartz. This is obtained
from the grey level image shown in figure 5.12.a after applying a threshold value of
70.

The resulting modal analysis from the present study is: 50% biotite and
24% quartz. The remaining 26% is attribu‘ed to plagioclase. Thus similar results
to those reported by Starkey and Cutforth (1978) are obtained but the analysis is

carried out much faster than traditional modal analysis.




Figure 5.12 : (a) and (b) Two images captured from one microscope field of
view of a thin section of Sax~ny granulite in plane polarized light. The orie-
ntations of the polarizer in the two images are mutually perpendicular. (c) Bi-
nary image obtained by thresholding the absolute difference between the im-
ages (a) and (b). White represents the biotite. (d) Binary image obtained
after applying a threshold of 70 to the grey values in (a). White represents

the quartz
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Computer-assisted petrographic image analysis provides information which cannot
be readily obtained by conventional petrography. Further, the petrographic images
can be analyzed automatically, this allows the user to accumulate the large amounts
of data required to conduct statistical studies. The quantitative data which are
obtained, permit the analysis of the constituent mineral grains and pore spaces and

thus provide a complete textural description of a rock.

The use of a video camera and frame grabber board allows the microscope
image to be scanned with great precision, speed and in real-time. The area of interest
in a thin section can be selected interactively and the image can be enhanced to
display specific features using the Look-Up Tables on the frame grabber board. The
image enhanced by manipulation of the grey levels in the image can be used to
improve the detection of feature boundaries and extraction of textural parameters

by the computer software.

133
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Digital filtering techniques, particularly the application of the Sigma Filter,
reduce the grey level variation due to the random electronic noise present in the im-
age and to the inherent variations in the image. This enhances the ir tensity/texture
discontinuities between feature regions which provides a basis for segmenting the im-

age to detect the boundaries between features of interest.

The sequential capturing of images from one microscope field of view, using
multiple pages of computer memory, allows a thin section to be observed in a manner
analogous to the procedure followed in manual petrography. This allows the familiar
techniques of petrography to be applied to the analysis. The implementation of this
facility, as in the present system, permits the real-time analysis of the rock thin

sections (see figures 3.21 to 3.23).

The feature extraction process identifies and selects the features from the seg-
mented image. They are described by either an ordered list of the z,y coordinates
of their boundary points or by using the eight-direction Freeman chain code. These
descriptions are required to obtain the geometrical characteristics of the features,
including their sizes, shapes, orientations and distributior. In addition to the fea-
ture boundary information, the original grey level image and the intermediate edge
image are also available for use in obtaining the spatial distribution and textural

descriptions of the features.

Petrographic image analysis provides objective and reproducible data far
more readily than can a human observer. Any variations which may exist in the
measurements are more or less direcily related to simple statistical patterns of fluc-

tuations, these errors can be predicted and in many cases controlled.

In addition to the analysis of images from a petrographic microscope, the
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present image processing system can be applied to any grey level iinages including
those produced by a scanning electron microscope (SEM), microprobe (MP), trans-
mission electron microscope (TEM), or macro images from photographs. Images
from the SEM, MP, and TEM can be input into the system directly via an SEM

interface. Other images can be input using a video camera or video casette recorder.

The petrographic image, the computed images and the extracted feature
information can be transmitted electronically, since they are all digital. The micro-
scope images are stored as PCX image files which can be read into many different

commercial software packages.

6.2 Future Work

Many investigators see the need for both rapid and objective quantitative petro-
graphic analysis but is computer processing of petrographic images really necessary?
Should we consider the present study as an isolated venture, destined to remain in
the records of methods searching for an application? A complete answer to such
questions cannot be provided by this study alone. Nevertheless, the applications pre-
sented here suggest that many quantitative petrographic problems can be addressed

by digital image analysis.

Digital image processing techniques can be applied to quantitative petro-
graphic measurements which are often not possible using conventional methods such
as fitting best-fit ellipses, deriving fourier descriptors of shapes, quantizing the min-
eral association parameters etc. Unfortunately, relatively few studies have been con-

ducted into tke application of image processing to quantitative petrography. This

can be attributed in part to the lack of understanding of image analysis and pattern
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recognition by geoscientists and in part to their desire for "all or nothing” strategies.
The ambitious goal of designing machines with human-like capabilities may take a
century to achieve (Trivedi and Resenfeld 1989, Pavlidis 1992). However, progress in
this area can only be achieved by investigating a variety of individual petrographic
problems and trying to solve them by specific image processing techniques. Figure
6.1 presents an overview of the probable future development of computer assisted
petrographic analysis based on image processing/analyzing techniques. The shaded

area in the figure indicates where further research is required.

It is generally assumed that edge detecting algorithms should always find
all the feature outlines in an image and they are often evaluated on how well they
accomplish this. Further, this evaluation is usually based on the assumption that
the features have a different brightness level to that of their background. This latter
assumption is only valid for images where features are detected simply by their grey
level intensity and the present study shows that the Canny edge detector did very
well in detecting such intensity edges present in an image. However, the human eye
identifies many features on the basis of texture differences, a geological example is
the identification of the outline of a complexly twinned microcline grain (see figure

3.4).

Texture is concerned with the spatial distribution of image intensities and
discrete tonal features. A discrete tonal feature in a digital image is a connected set
of pixels, all of which have the same, or almost the same, image intensity (Haralick
and Shapiro 1991). When a small area of the image shows little variation in discrete
tonal features, the dominant property of the area is a grey tone. When a small area

has wide variation of discrete tonal features, the dominant property of that area
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is texture. Texture can be classified according to the size of these small areas, the
relative sizes of the discrete tonal features and the number of distinguishable discrete

tonal features.

Textured regions in an image can be segmented using statistical measures
or structural descriptions. Statistical texture measures include the moments of the
grey levels of the given region, typically the variance, the skewness and the kurtosis
(de Souza 1983, Suk and Hong 1984). The texture statistics for a given region can
also be estimated by means of second-order probability density functions. These
functions compute an intermediate matrix of measures from the digitized image
and then define features using functions based on this intermediate matrix (Ballard
and Brown 1982). The intermediate matrices include the normalized grey level
dependence matrix, the neighbouring grey level difference matrix, the grey level
run-length matrix etc. (Weszka et.al. 1976, Ballard and Brown 1982, Lee, Lee
and Kim 1992). A structural texture description is given by a set of primitives and
placement rules which govern the stochastic spatial relation between them (Haralick
and Shapiro 1991). In view of the importance placed by geoscientists on texture
in their identification of minerals, e.g. microcline, plagioclase etc., texture based

feature segmentation of the petrographic images is necessary.

The human eye identifies many features not only on the basis of texture dif-
ferences, but also on the basis of geometrical parameters such as their size, shape
and orientation etc. For example, the ooid particles in figure 5.8 are identified not
only by their texture, but also by their near elliptical shape. Template matching
techniques can be used to simulate this digitally. A template sub-image can be de-
fined against which to test a window of the given test image for a match. The degree

of matching can be determined by translating the template sub-image over test im-
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age and, at each position, evaluating the cross-correlation or the sum of the squared
or absolute image intensity differences of correponding pixels. Similarily, parame-
ters such as area, orientation and shape can be used for segmenting features in an
image, this is called symbolic matching. In most matching techniques, the shapes
of the features to be recognized from an image are known and can be presented to
the imaging system via a knowledge bank (see figure 6.1). The knowledge bank can
be a part of an expert system, which include the system’s working knowledge, an
inference engine, which directs the processes of reasoning or interpretation, and a

user interface for segmenting and extracting features from the image (see figure 6.1).

The computer processing of petrographic images requires a layered approach.
First level processing includes image enhancement, noise smoothing, extraction and
analysis of edges and features. Second level processing includes characterization
of the texture, shading etc. Third level processing includes the matching, feature

recognition/classification etc.

Computer-assisted petrographic image analysis offers the possibilty of devel-
oping more rigorously quantized petrographic analysis. Automation will allow data

to be obtained rapidly and objectively, thus making it possible to accumulate the

large amounts of data required to conduct statistical studies.




Appendix 1

Evaluation of Digital Filters
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Journal or Computer-Assisted Microscopy, Vol 3. No ¢4 (V9]

An Evaluation of Noise Reduction Filters, with
Particular Reference to Petrographic Images

John Starkey' and Abani Kanta Samantaray'

Fourteen digital filters are compared. These filters are differentiated as single level and mulu-
level filters and are evaluated using computer simulated images and real images obtatned
from a petrographic microscope. The computer simulated images consist of umform grey and
bar pattern images and a pattern of 16 square areas with constant grey levels. The filters are
applied both as single pass and muluple pass filters using a 5 by 5 pixel window Multple
passes of three 1erations are apphed to the uniform grey and bar pattern images The single
level filters are also evaluated for different window sizes and single pass operation on the
uniform grey image. The evaluation of the filters assesses their ability to reduce normally
distnibuted additive noise. preserve linear features and image texture, retan edges between
regions, preserve shapes of features, and remove spot noise. Computer processing time s also
a factor. The Recursive Separable Median Filter performs very well and better than most
of the other filters for a single pass operation. However, if the preservation of small
lincar features and image texture 15 crucial, then recursive apphication of the In-Place
Growing-FMH and Sigma Filter are to be preferred.

KEY WORDS: Polarizing microscopy; image processing; norse reduction, digital filters;
petrographic images.

INTRODUCTION

Recently published methods of digitizing grain bound-
aries from thin sections observed with the polarizing
microscope have been based either upon manually
traced line drawings of the boundaries (Starkey and
Simigian, 1992 Fabbri, 1984) or on grain boundaries
drawn on the image displayed on a video monitor.
The automatic digitization of grain boundaries
directly from video camera images obtained from the
polarizing microscope is hindered by the inherently
low contrast of the images obtaned from typical rock
specimens. To enhance the possibility of having the

! Depattment of Geology. University of Western Ontano. London,
Ontano N6A SB7. Canada
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computer recognize the grain boundanes in such an
image a digital filter must be applied to reducc the
nosse. At the same time, the operation of the filter
must not adversely effect any contrast that does exist
across the grain boundaries nor alter the grain shapes.
Launeau er al. (1990) addressed these problems by the
application of a low pass filter (eroncously referred
to as a high frequency filter) followed by contrast
enhancement. However, there 1s no discussion of the
efficacy of any of the digital filters.

The noise present in a video image can be con-
sidered as spatially uncorrelated and random Thas, in
images of a thin section obtained from a polanzng
microscope, Figs. 1a and 12, the image regions corre-
sponding to individual grains can be considered to be
the areas of constant grey level, corresponding to the
signal, on which random nosse 1s supenimposed. This
noise has the charactenstics of random addstive errors
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Fig. 1. (1) Photomcrogruph of the intenior of 4 Quartz grain tuken with a polanzing microscope using crossed polanizers. (b) Frequency
distnbution of the grey levels present in the image shown i (a)

where the noise level 1s independent of the underlying
average grey level. The noise levels can be assumed to
have a Gaussian distribution, with a mean of zero,
superimposed on the signal. Thus, the mean of the
distnbution of the grey levels within a grain is equal
to the mean grey level of the underlying grain, and the
range of grey levels are normally distributed about
the mean (Fig 1b) Filtenng 1s necessary to retrieve
the noisc free image from the observed image.

The inherent noise levels of the imaging system
used in the following apalyses have a standard
deviation of only 1.5. Therefore, the images were not
subjected to frame averaging dunng their capture.
This provides an opportunity to investigate the
efficacy of the filters on the raw image.

The techniques which have been proposed for
image noise reduction fall into two categories. In the
first, the nowsy image ts processed globally where the
whole, or a large section, of the image is correlated
to obtain a smoothed image (Rosenfeld and Kak.
1976, Andrews and Hunt, 1977). The second group of
techmques uses local operators. Here, the filter output
at a specific pixel 15 a function of the nput values
of the pixels within a selected neghborhood, for
instance. the eight surrounding nearest neighbors.
These latter techniques tend to have shorter computa-
tion time, since only a small number of input pixel
values are considered for each output pixel. They are
the 1opic of thss discussion.

NOISE REDUCTION FILTERS

The characteristics of a successful noise filter
must include the following: (1) effectiveness in noise
reduction- -this means an ability to reduce the
variance resulting from noise in a uniform image
region, (2) preservation of subtle details of clusters of
several pixels and linear features of a few pixels width,
{3) immunity from shape distortion—in particular,
the filter must not introduce significant distortion in
the shapes of the image regions, (4) retention of inten-
sity step 2 34 ramp edges between adjacent regions of
uniform, but different, intensities, (5) removal of
sparsely distributed, sharp, spot noise consisting of
one or two pixels, and (6) computational speed.

The filters chosen for this study include both
single and multi-level filters. The single level filters
which appear most commonly in the literature are the
Mean, Median. Nagao and Matsuyama. Gradient
Inverse, Lee-Additive. Sigma, K-Nearest Neighbor
Avcrage, Nearest Neighbor Median. and Weighted
Median Filters. The popularity of these filters may
be atiributed to several factors. including easec of
implementation and conceptual simplicity. Multilevel
filters combine the output of basic subfilters and
include the Multistage Median. Max, Min Median,
FIR-Median Hybrid (FMH). In-Place Growing
FMH (IPG-FMH), and Morphological (2DCO)
Filters. Multilevel filters have received considerable
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attention recently because of their abihity to smooth
images while preserving texture,

THE FILTERS

Single-Level Filters

Single-level filters process the data in a local
neighborhood, or window, which is usually square
and the sides of which are an odd number of pixels.
The window is moved over the entire image and the
output from the filter at the central pixel position 1s
used to create the filtered image.

Meaun Filter

With the Mean filter the pixel values within a
square window are used to compute an average value
which becomes the filter output at the central pixel
position. This filter reduces the effects of random noise
by reducing the grey level variation in the image.
However, the edges between image regions become
blurred.

Median Filters

Median filtering was first used by Tukey (1977)
in time scries analysis and later applied 10 image
smoothing by Pratt (1978). The central pixel value is
replaced by the median value within the window. The
assumptions behind this filter arc that a constant
neighborhood is a region in which the majority of the
grey levels represent sighal with 2ero noise and that
an cdge is a monotonically rising or fatling sequence
of pixel values which separates iwo constant
neighborhoods. The Median Filter can be applied
repeatedly using the previously filtered image as input.
In this case, for a given window size, the filter values
converge on 10 what has been termed the root
structure (Gallagher and Wise, 1981 ).

The Recursive Median Filter is 4 modification of
the Median Filter in which the grey levels of the image
are replaced by the output of the filter as the process
proceeds. Therefore, at any one time, approximately
half the values within the window are previously
filtered values and the remainder are the original grey
levels. The recursive operation determines the root
structure of an image on the first pass. However. this
root is different from that obtained by repeated passes
of the nonrecursive Median Filter although typically
they are very similar (Arce ef al., 1986).

Median filters, which are typically based on
square windows. are known to be anisotropic and

K10 3 4.2

173

cause edge shifts (Hodgson eral. 198S; Arce ¢t al,
1986). Further, the corners of image regions may be
rounded off and patches of pattern may be produced
n the filtered image. These artifacts persist even if the
square window s replaced by a arcular, or near
arcular, approximation tn which the pixel values are
weighted according to their distance from the central
pixel. These problems are alleviated by the Separable
Median Filter (Narendra, 1981), which consists of
two one-dimensional filters, applied in a two-pass
operation. The rows of the two-dimensional image
are filtered first by a horizontally onemted one-
dimensional median filter to produce an intermediate
image. The columns of this image are then filtered by
a vertically oriented one-dimensional median filter.

The Separable Median Filter can also be upplied
recursively. The root structure produced again Jiffers
from that of the nonrecursive filter but the recursive
filter has been shown to be better at noise suppression
and edge preservation { McLoughlin and Arce, 1987).
The Recursive Separable Median Filter (RSM) was
used in the present study.

Nagao und Matsuvama Filter

Nagao and Matsuyama (1979) proposed a filter
based on a 5 by 5 pixel window. The central pixel
value is replaced by the average grey level of the most
homogenous subregion from among the nine possible
subregions illustrated n Fig. 2. A homogenous
neighborhood 1s defined as one which does not con-
tain sharp edge. If an arca contains a sharp edge, the
variance of the grey levels in that arca 1s Jarge. There-
fore, the variance is used as a measure of homogenety
of the subregions and the central pixel 1s replaced by
the mean of the subregion which has the mmmmum
variance. This allows noise 0 be reduced without
blurring sharp edges since averaging 15 not applied to
a subregion which contains an edge.

Gradient-Inverse Filter

The Gradient Inverse Filter proposed by Wang
et al. (1981 ) assumes that the vanation of grey levels
within a2 homogenous region of an image s less than
that between different regions, and that the edges
between regions are sharply defined. The central pixel
value is replaced by the weighted average of all the
gray levels inside the window. The weighting coef-
ficients are obtained by computing the inverse
gradients between the center and 1is neighboring pixed
values and normalizing them by dividing by the sum
of the inverse gradients in the window. Therefore,
pixel values having a greater absolute difference from

143




174

119
IR PRR

Fig.2. The mine posubie subregions for the Nagao and Mat-
suyama Filter One exampie from each of two sets of four possible
subrepions are shown on the top The minth possibk subregion 1s
shown on the bottom

the central pixel have lower weighting coeflicients and
contnbute less to the output central pixel value.
Where the length of the side of the square window is
2N + | the filter has the following form,

b ] LY
Y. = S E Wa+p j+q)
pm- N g= A
xX(i4+p j+q) (n

Where either Wi+ p. j+ g)=iforp=0and g =0or

]
Wi+ p.i+ql=%{£ (n r;p.q)}

LT

xo(t 1 p.q) ' )
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for p and ¢g= —-N,..,0,... +N; and p and ¢ not 0
simultaneously. 1',, ,, denotes ail the pixels within the
window. a(i, j; p, q) ' represents the inverse of the
absolute gradient of the neighboring pixel with X(i, /).

Lee-Addiuve Filter

The Lee-Addiuve Filter (Lee. 1980, 1981)
assumes that the correct value of a pixel is the mean of
the values within the window and that the variation
from this value is the same as the variance of all pixel
values within the window. The a priori mean and
variance of the estimated image can be calculated as
the difference between the mean and variance of the
noise corrupted image and the mean and variance of
the noisc alone. The value of a pixel X(i, j). in a nois¢
corrupted image, is given by the following equation,

XU, ))=Y(. j)+ WG, j) 3)

Where Wi, j) is the white random noise with zero
mean and ¢° variance and Y(i, /) is the pixel value
before degradation.

The estimated pixel value., Y(i j). in the
uncorrupted image is given by

Y jy= YU, )Y+ kU, I XG ) — P, ) (4)

Where F(i, j}is the approximated uncorrupted image
mean given by F(i, /)= X(i, j). The gain factor k(i, j)
1s defined by

o1 J)

YU, )+ o3} )

kG, =

where
QU N=E{{ X, - XG, j))?}—al (6)

o7 is an estimate of the additive noise variance.

The application of this filter requires estimates of
the mean and variance of the pixel values within the
window and of a global noise variance. In the present
study. the global noise variance is derived from an
arbitrarily selected sensibly “flat™ intensity region in
the displayed image.

Sigma Filter

The Sigma Filter (Lee, 1983) is suggested by the
sigma probability of a Gaussian distnbution. Here.
the central pixel value is replaced by the average of
those pixel values inside the window which lie within
a fixed sigma range of the central pixel grey level
Assuming that the noise has Gaussian distnbution
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and the g priori mean is the grey level of the central
pixel then 95.5% of the pixel values will lie within two
standard deviations of the mean. Pixel values outside
this range are assumed to belong to a different popuia-
tion. The algorithm consists of computing the two
sigma range for a local neighborhood. and replacing
the central pixel by the average of the values which are
within that two sigma range.

The two sigma average does not smooth the
sharp spot noise of one or two pixels. In the present
study. the minimum number of pixels K™ required for
the two sigma average within a window is equal to
“N" for a square window 2N + 1 on a side. If the
number of pixels within the intensity range of two
sigma is less than or equal to “K.” the two sigma
average is replaced by the average of the center pixel's
eight nearest neighbors.

K-Nearest Neighbor Averaging ( KAVE) Filier

The K-Nearest Neighbor Averaging Filter, was
suggested by Davis and Rosenfeld (1978). This filter
relies on the high correlation which must exist
between the grey levels of pixels belonging to the same
population within a local area. The central pixel value
“X™ of the window is replaced by the avcrage grey
level of the K™ nearest neighbors with grey levels
closest 1o that of “X.” This filter can be used
iteratively, changing the window size and value of
“K " Davis and Rosenfeld (1978) suggested K =6 for
a 3 by 3 pixel window.

Nearest Neighbor Median { NNM ) Filter

The Nearest Neighbor Median Filter was first
applied to image smoothing by Itoh er al. (1988). For
a given window size of 2N + | the pixel values in the
window are ranked in ascending order. The number of
K-nearest neighbors are sclected equal to 2M + 1,
where M < N. In this analysis, using a 5 by $ window,
K is set to 11. Within the rank ordered array R, the
position of the central pixel value, ¢, is located. The
output of the NNMF, Y(P), can be defined as follows
(Asano et al.. 1990) depending on ¢:

Where {M+1]<c</QN+1)-(M+ 1)+ 1}
then Y(P)=Center Pixel Value. Where 1<c<
‘M+ 1) then Y(P)= R{M +1]). Where [(2N + 1) -
(M+1)}+1]<c<|{IN+ 1} then YIP)=R[(2N + 1) -
M+ 1)+1].

Weighted Median ( WM ) Filter

The Weighted Median Filter was first applied
to tmage smoothing by Brownngg (1984, 19¥6). Non-
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negative muluphiers ac apphied to the pixel values 1n
the window and the median value 1w selected as the
output. In this analysis. using a § by § window, the
mulupliers are taken as umty except for that of the
central pixel which s set at 1§

Multilevel Filters

Scveral mululevel filters based un the Median
Filter have been proposed (Niemmen ¢t al. 1987)
which combine the output of basic subfilters to match
the structure spanned by the filter’s window They
involve the use of the 4 subwandows, W', ,,. shown n
Fig. 3. Such subwindows arc umdirectional because
the subwindows span one direction only. For the
apphication of unudirectional mululevel filters. the
median values, Z,, 4,. of the subwindows are required
(Arce and McLoughlin, 1987) For a recursive
operation the grey levels of the smage are replaced
by the output of the filter as the provess proceeds

Multilevel Median Filter

The output for the Mululevel Median Filter 1
defined as follows (Neiminen and Neuvo, 1988; Arce
and Foster, 1988)

Y. pp=median[ Y., . . 10 Yoo oot )Xo 4] (7)

where
Yo i, )=median{Z,. Z,. X1, j)]

Y dup)=medianlZ, Z, X1, )}

(%)
9
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Fig. 3. Subwindows used by umdwection:| muitilevel filters
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where X(i, y) is the central pixel valueand Z,,, 4, arc
the median values 1n the four subwindows (Arce and
McLoughlin, 1987). For the present study a recursive
operation of the Multilevel Median Filter 1s used.

Max/Min Median Filter

A madification of the Multilevel Median Filter is
presented by Wang and Wang (1990) as the Max/Min
Median Filter. The output for the filter is cither

Y“v l’ = ’l.l"t I’v " ;TI(’G ,' - 1‘0“v IN
Z | Toli, - Tylic j) (10)
or
YU, =T, i of 1T 1) — Tk, j)i
<ATya, f)— Toki, i) (1
where 7°,(1, 7) 15 the median of all the pixel values
within the window. T (1, J} and T,(i. J) are. respec-
tively, the maximum and the minimum median values
in all the subwindows In the present analysis a
recursive Max/Min Median Filter 1s used.
FIR-Mcdian Hybrid ( FMH ; Filter

The output for the FMH Filter 15 defined as
follows (Niemnen ¢t al., 1987; Arce and Foster, 1988,
1989)

Y, p=medanf ¥, 000 ¥ i) X6 D)
(1

where
Foootin=median(Z,. Z..Xti. n] (13)
Fooodep=median[Z,. Z,. X(i. /)] (14)
where Z,=median[Z (1, ). Zplt 1. X))

1 < P« 4 and where Z,, and Z,, arc the averages of
the values in cach of the two parts of the subwindow
W' .. separated by the center pixel. X4, ) is the central
mxel value. For a recursive operation of the filter. Z,.,
»s replaced by the filter output from the previous
window operation. In the present analysis a recursive
operation of the FMH filter is used.

In-Place Growing FMH 1 IPG-FMH ) Filter

This 15 an extension of the FMH filter which was
first applied to one-dimensional signals by Wichman
et al (1990). The output for the filter 1s defined here
for a two-dimensional image as

Y. n=medan] ¥, .ot Fonsnatio
Yo o} (s
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where

Pior wn(to N=median[Z,. Z,, ¥, ,] (16)
Pinznafi- N=median{Z2,.Z,. ¥, ;1 (7)

where Z,=median[Z,(i. j}. Zqi. ). Y. U )]
1 €< P<4, and where Z,, and Z,, arc the averages of
the values in cach of the two parts of the subwindow
W,. separated by the center pixel. K is number of
growth cycles performed at each location.

Yimn)=Y,_ lm n) where k= 1.... M. Where
k=1 then Y, (m. n)=X(i j) The size of the sub-
window increases with k. For a recursive operation of
the filter Z,., is replaced by the filter output from the
previous window operation.

In the present analysis. a standard IPG-FMH
filter is used and M is set to 2. The window sizes used
are 5 by 5 and 7 by 7 with k equal to 1 and 2, respec-
tively. The output, using Eq. (15) is as follows

YG, jr=median[ P,y (e ik Fanz waite i) Y0 4]
where

Yo p=median( ¥, ua i 1) Froor watic i) X0 )]

Two Dimensional Close-Open ( 2DCO ) Filter

Morphological filters such as this have the ability
to preserve the details in images, they are closely
related to ranked-order based filters (Maragos and
Schalfer. 1987). For a window with side length 2V + 1,
cach subwindow M, 1s partitioned into N+ 1=k
overlapping subsets, S,,. of N+ 1 consecutive
elements. For a § by S window there are therefore 3
subsets derived from each of the 4 subwindows for a
total of 12. Grey scale opening is performed by replac-
ing the central pixel value in the moving window by
the maximum value among the mimima in the subsets.
This generates an intermediate image on which grey
scale closing is performed by replacing the central
pixel value in the moving window by the minimum
value among the maxima in the subsets. This is known
1o preserve the image geometry.

EVALUATION OF THE FILTERS

For the purpose of evaluation the filters are
divided into two groups. The single level filters except
the NNM and WM Filters are evaluated for their
abihty to reduce image noise and to preserve linear
i -tures and the grain boundaries. The NNM and
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77

Fig. 4 (2) Computer generated flat grev area, grey level = 80 (b) The smuage shown in (a) with the addition of
normally distibuted random notse with a standard deviatson of 10 () (1) Filtered images denved lrom (h) usng
Mcan, Recursive Separable Median, Nagao and Matsuyama Giradient Inverse, Lee Additive. - agma and KAVE

Hilters. respectively

WM filters. together with the multlevel filters. are
also evaluated for their abibty to preserve mmage
detauls for which they were designed. The grey levels in
all the images are between U and 127. The Filters were
applied both as single pass and multiple pass filters
using a S by S pixel window. Multiple passes consisted
of three iterations. For the KAVE Filter the value of
“K” represented approxamately 75%q. 50%4, and 25%,
of the neighborhood elements 1n successive sterations
The successive passes of the Sigma Filter were applied
with intensity intervals 2a. 0. and o 2

The ability of the filters to reduce the nosse n
a “flat” grey region was tested using a computcer
generated uniform image ficld with a grey leve! of 80
{Fig. 4a). This was corrupted by addmmg random
numbers generated 10 conform with g Gaussian
distribution wath & mean of zero and a standard devia-
tion of 10 (Fig. 4b).

The images denived from a single pass of cach of
the single level filters over the nowse corrupted unform
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Fig. 8. Frequency distributions of the grey levels in the images of Fig 4
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grev field are shown wn Fig d4c-i. The frequency
distributions of the grey levels obtained by each of
the filters. and of the original images. are presented
in Fig 5, the mean grey levels and the associated
standard deviations are histed 1n Table 1a. The data
obtained by the RSM Filter show the least dispersion
sbout the target value. closely followed by the Mean
and Lee-Additive Filters. Profiles through the images
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w. l l J
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m

Fig. 6. Intensuty profiles aiong a horizontal scan hine in each of the
images of Fig 4

A

O
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of Fig 4. shown in Fig 6, sinularly suggest that the
Mean. RSM. and Lee-Additive Falters are the most
successful i reducing the nmse and recovenng the
onginal intensity value of 0 Table Ib hists the results
from the apphication of detail preserving filters over
the uniform grev field tmage. They do not perform as
well as the single level fitters

For the iterative processing test. a second
uniform grey image was created with a grey level of 8t
corrupted with Gausstan noise of zero mean and a
standard deviation of 20 The measured mean and
standard deviation of this image were 79 61 and 19 32,
respectively. The mcreased standard deviation of the
noise served to accentuate the differences wn the
reduction of the standard deviation of the noise with
successive passes of the filters. Table 11 hsts the results
from the application of multiple passes of the filters
over this uniform grey ficld image The RSM Filter
vields a stable frequency distnibution of grey devels
with the smallest standard deviauon after one iera-
tion. The outputs of the other filters either stabilize
with a higher standard deviation or converge more
slowly onto stable distributions Among the detal
preserving filters the IPG-FMH kilter showed the
best performance

The effects of different window sizes for the single
leve: fitters was also studied Al except the Nagao and
Matsuvama. WM, NNM Hiliers were applied with a
single pass to a umforin grey region with i value of 80
with added normally distributed noise with zero mean
«nd a standard deviation of 20 Window sizes were set
to 3 by 3. Sby 5.7 by 7.and 9 by 9 The results, histed
in Table 111, indicate that generally the wignal s more
sharply defined as the window size mcreases  Ths
s particularly nouceable with the RSM Filter The
Gradient Inverse and KAVE Filter seem to perform
better with smaller window sives

To investigate the abibity of a filter to preserve
linear features and 1o smooth nowe along edges
while still preserving them g second test pattern was
generated consisting of bars with widths of 1, 2, 4.4,
¥. 10, and 12 pixels (Fig 7a) The pixel viadues of each
bar were set to 100 and of the background 1o 20 The
image was corrupted by adding normally distributed
random numbers with zero meian and & standard
deviation of 10 (Fig 7bi The images denved from
filtening the noise corrupted image using a0 S hy S
window and a single pass of the vngle level filter, are
presented 1n Fags 70 1 Profiles through the amape
shown in Fig 7 are lustrated i Fig 8 Eeoand boand
Hla- g These figures ilustrate the fotlowing  The Mean
Filter redutes step edpes 1o ramp edges, thereby
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Table 1I. form Grey Field Smoothing on lterative Processing”
One nteration Two iterations Three tterations

Filter type Mean sSD Mecan D Mean D

Mean 911 102 863 296 RN 206
RS median 79.63 i3 970 10X mn TR
Nagao %003 848 8025 687 8031 660
Grad. inv. 1969 1481 9.7 1216 7974 tot?
Lee-add. 1959 498 79 58 106 ™87 n
Sigma 915 %36 7874 47 A %7
KAVE 1939 805 7900 671 78 o) 670
NN median 717 1024 76.73 90 7672 94
W micdran 7973 10.71 79 41 9 6l) % 3 983
Mult median 7987 12.14 99 1184 7992 174
Max.min med 8001 1404 1984 1328 7998 1292
MH 79.65 1387 1967 1279 7970 1282
1PG-FMH 7959 1229 7943 1014 7928 Y24
2DCO 7975 1292 1978 1292 7978 1292

“ Simulated ncisy image. mean =79 61 and SD = 1932

smoothing linear features. The RSM Filter eliminates
linear features which have a width less than half the
window width, however, step edges are maintained,
although, if the two adjacent image regions are noisy,
slight blurring does occur. The Nagao and Mat-
suyama Filter similarly eliminates any feature with a
width of three pixels or less. In the case of the KAVE
Filter, the preservation of linear features depends on
the chosen value of “K.” The Sigma and Lee-Additive
Filters are effective in preserving linear features and
maintaining the sharpness of edges.

The images derived from filtering the noise
corrupted image using a 5 by 5 window and a single
pass of the detail preserving filters are presented in
Figs. 9c-i. In the case of the WM and NNM Filter, the
preservation of linear features depends on the chosen
value of the weighting factor and the K nearest
neighbors, respectively. The WM Filter showed the
worst performance. The bar with a width of 4 pixels
was climinated using the Max/Min Median Filter
with a window size of 5 by 5, however the same bar

The RS Median and the Nagao and Matsuyama
Filters display similar abihities in retanmung the edges
The Lee-Additive Filter ¢with an unchanged global
noise variance) blury _dges and gives a simular inten-
sity profile to that obtained using the Mein Fidter
To test the performance of the single level filters
on noisy, non-edge image regions and on edges with
different contrasts across them a third test image was
generated consisting of 16 square areas with constant
grey levels of 30, 34, 3K, 40, 45, 48, 54, 58, 64, 70, 9,
84, 94, 100, 110, and 120 (Fig. 10a). This image was
corrupted by adding random numbers generated o
have a Gaussian distribution with zero mean and a

Table 1. Uniform Grey Ficld Smoothing with Diffesent
Window Size Alter une Filtenng ltecation®

Windows

Jby3 Shy$ Thy 7 Yhy 9

is partially preserved using the Recursive Max/Min Filtertype  Mean 3D Mean 5D Mean SD Mean 5D

Median Filter (Fig. 9d). The remaining multilevel

filters preserve the hinear feature well. Mcan 7904 667 1911 402 790K 295 T4 215
; A i RSmedian 797 721 7963 331 BUAKT 166 7998 (27

. Figure 8 [fa-g illustrates the profiles through the Grad v 7977 1427 7969 14K1 7972 1502 7953 1506

images produced by an iterative application of the Lec-add 7962 K35 TYSH S19 W) 1N TYST QUK

single level filters. These profiles suggest that the
Sigma Filter best retains edge information and lincar
features. The Mean Filter increases the width of the
ramp edges generated by the previous pass of the filter.

Sigma 791% 1053 7915 K36 7919 THT 1905 T1%
KAVE 7914 667 T34 991 7932 1219 1915 1159

* Simulated nony image mean 7961 and S - 1932
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standard devistion of 3 (Fig 10b). The images denved
from the nowse corrupled image by the single level
filters are shown in Figs. Hoc 1. Inspectuion of these
tmages reveals that the Gradient Inverse, Sigma, Lee-
Addiuve, and RSM Filters produce the least shape
distortion as indicated by the preservation of the
corners of the squares. Companson of profiles
through the images (Fig 11)indicates that none of the

Starkey and Samantaray

filters retain the sharpness or location of an edge when
the standard deviation of the noise on the two sides of
the boundary exceeds the edge gradient.

Several petrographic images were also studied to
evaluate the performance of the single level filters for
noise reduction and edge retention on real images.
One of these images 15 illustrated in Fig. 12a. 1t shows
five quartz grains which display different grey levels.

Kx)

Lt ;

kig. 8. (D) Intenuts profiles along 4 honzontal scan ine through Figs 7a and b (1) Intenssty profiles along a horizontal scan hine through
the tmages of He 1+ Note These data pertun 10 single passes of each of the filters using a $ by § window size (111 Intensity profiles along
a honzontal scan line through the images obtained by filtering the image of 4b using three passes of the Mean. Recursive Scparable
Median, Nagao and Matsuvama. Gradient Inverse. Lee-Addutine. Sigma and KAVE Filters. respectively. The window size 15 5 by &
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184 Starkey and Samantaray

Fig. 18. (a) Computer generated patiern of 16 squares, for the grey levels see text. (b) The image
shown in (a) with the addition of normally distributed random noise with a standard deviation
ol 3 (c}-01) Filtered images denived from (h) using Mean, Recursive Separable Median, Nagao
and Matsuyama, Gradient Inverse, Lec-Additive, Sigma and KAVE Filters, respectively.

* a b c d e f g h i

127

rrrrrrrrnl

Fig 11, (1) Intensity profiles along 4 honzontal scan hine through the top row of squares shown in kg 10 The imtial computer gencrated
grey lovcis of these sauarcs ase W. 34, o4, 84 (see Fig 10a) (1D Intensity profiles along a honzontal scan hiac through the first column
of squares shown i big 10 The imtal computer generated grey fescls of these squares are 30. 38, 40, 45 (see g 10a)
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The filtered petrographic images obtained by applica-
non of single passes of the filters are presented in
Figs. 12b h where the effects of the filters on bound-
arics with different orientations may be observed.
The filtered images. and the profiles along a scan line
through them, shown in Fig. 13, confirm the observa-
tions of the computer simulated images. In parucular,
the Nagao and Matsuyama Filter most successfully
sharpens ramp edges.

The filtered petrographic images of Fig. 12 also
allowed an evaluation of the effectiveness of the filters
at removing spot noise by attenuating the associated
high spaual frequencies. The RSM, Sigma, and Nagao
and Matsuyama Filters effectively remove spot noise,
although the latter two filters require more than one
pass. The Lee-Additive Filter can be well suited for the
removal of spot noise provided the global noise
vanance 1s selected appropnately by the operator.

Several textured images (images having a wide
variation in grey level over small areas) were also
studied to evaluate the performance of the detail
preserving filters at noise reduction and texture reten-
tion. One of these images is illustrated in Fig. 14a,
which shows a rock texture in thin section between
crossed polarizers. The filtered textured images
obtaincd by application of single passes of the RSM,
Multilevel. NNM, and WM Filters are presented in
Figs. 14b-i. Figure 14 illustrates that the RSM Filter

Fig. 13. Intensity profiles along a honzontal scan line through the
photomscrographs shown in fig 12
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Table IV, Computation Times Required to Filter a 50
by 50 Pixel Image, Using One Filtering lteration and § by
$ Window. Executed on a 80386CPU Running at 20 MHz

Filter type Time (sec)
Mecan 0.33
Recursive scparable median 066
Nagao and Matsuyama 6.10
Gradient inverse 7.69
Leec-additave 296
Sigma 083
KAVE 1.54
N neighbor median 1.21
Weighted median 038
Mululevel median 197
Max/nun median 228
FIR-median hybnd 1.24
In-place growing FMH 269
DCe 916

destroys much of the image texture. The IPG-FMH
Filter is the best at preserving the details in texture
while attenuating the noise, followed by the Multilevel
Median Filter. The Sigma Filter can also preserve the
image texture, depending on the chosen value of two
sigma. Comparative processing times of these filters
are listed in Table IV.

SUMMARY AND CONCLUSIONS

Fourteen noise reduction filters have been
applied to computer simulated images and real images
from rock thin secticas. The filters were applied both
as single pass and multiple pass filters using a 5 by §
pixel window. For single pass operation, all the single
level filters except the Nagao and Matsuyama, NNM,
and WM Filters were also applied with varying
window sizes.

For a single pass operation, the RSM Filter most
effectively reduces the noise variance in a uniform grey
region and retains edges between adjacent image
regions. This filter also does not create any significant
distortion in the shape of an image region and it
effectively smooths sharp spot noise. Thus, the RSM
Filter meets most of the criteria identified previously.
However, it does not sharpen ramp edges, it
eliminates small linear features (i, those with a
breadth less than half the window width), destroys
image texture and, as noted above, the output from
such recursive filters depends on the direction in which
they are applied. Increasing the window size does not
improve the performance of the RSM Filter, the data
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presented here suggest that a 5 by S pixel window is
opumum. The Nagao and Matsuyama Filter is best in
sharpening ramp edges with a single pass.

For the preservation of image detatl and texture
multiple pass apphcations of the IPG-FMH and
Sigma Filter perform best. Not only do they reduce
noise in uniform grey areas and retain the edges
between adjacent grey areas, they also preserve linear
features and image texture. However. the computation
time required for the iterative operation of these filters
15 greater than that required for the single pass RSM
Filter.
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Appendix 2

Computational Masks for the
Canny algorithm

Many of the edge detectors which have been proposed recently are based on finite
differences of image intensities or derivatives using finite differences. One such edge
detector is due to Canny (1986). Canny’s algorithm marks boundaries at maxima
in the magnitude of the image gradient in the direction of the gradient. At a local
maximum the second order derivative of the image value becomes zero (Russ 1990,
p. 74, figure 4-4), and therefore the zero crossing indicates the edge. In the present
study the convolution masks required to implement the Canny algorithm is derived

as follows (Starkey and Samantaray, in press):

The input image is convolved with an operator G,, which is the first derivative

of a two-dimensional Gaussian G in some direction n, i.e.

-
G = exp (—— 26:’)

and

8G
G, =22 =n-VG (2.1)

Ideally, n should be oriented normal to the direction of an edge to be detected,
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and although this direction is not known a priori, a good estimate of it can be derived

from the smoothed gradient direction

V(G=I)

P=IVGD) (22)

where « denotes convolution. This is a good estimator for the edge normal direction

of steps, since a smoothed step has a strong gradient normal to the edge.

An edge point is defined to be a local maximum (in the direction n) of the

operator G, applied to the image I. At a local maximum

]
5 Cn*1=0 (2.3)

and substituting for G,, from eq.2.1 and associating Gaussian convolution, the above

becomes

az
5;1-;6 I =0 (2.4)

Let f = G = I then the second derivative of f in the direction n of the local
gradient can be given by the following derivation (Lipkin and Rosenfeld 1970, p.

111)
pr B () 2 e B (3 g
on? ﬂ)2+ (2[)’ (2.5)
8= 8y

The denominator is always positive and therefore does not change the sign

of the 8 f/0n?, eq.2.5 can be written as

8f 8f (8f\* . &f ofdf  &f (of\?
gni = 827 ('52) * 2520y D=0y T By (5) (2.6)

where the second order derivatives, -g%{ and ?’#, are computed using the mask

[1,-2,1] in both the horizontal and vertical directions. The first order differences

&L and gf, are computed using the mask [—1,0,1) in the horizontal and vertical

directions. 5‘1—,81-” is approximated by applying the mask shown below:



This has been implemented in the present imaging system (see figure 3.20 for results)

and is discussed in chapter 3.




Appendix 3

Locating Ends of Edge Contours

The following algorithm, presented in pseuao code, recognizes the configurations
of pixels displayed in figure 3.25 and identifies that the central ” Edge” pixel as an

"End” pixel. Pixels containing the value characteristic of an edge are considered to

be "on”.

Algorithm FindEndPoint.

If the CentralPixel is an EdgePixel then

1. Initialize CheckSequentialPixelsOn, TwoSequentialEdgePixels,
ThreeSequential EdgePixels, Not EndPoint to FALSE;

PixelsOn to 1; Subscript to 0.

2. /ssign subscripts to the pixels surrounding the central pixel, p,

as shown below:

162




163

3. Set Pixel[9] to Pixel[1] to assure a continuous loop.

4. Identify the presence of two consecutive edge pixels corresponding to

configurations 9 to 20 of figure 3.25 by the following steps (a)-(c).
(a) Increment Subscript.
(b) If Pixel{Subscript] is an EdgePixel then do steps i-iii.

i. Increment PixelsOn.

ii. If CheckSequentialPixelsOn is TRUE then

set TwoSequential EdgePixels = TRUE.
iii. Set CheckSequentialPixelsOn = TRUE.
else Set CheckSequentialPixelsOn = FALSE.
(c) If TwoSequentialEdgePixels = TRUE OR Subscript = 9

then goto step 5 else goto step .(a).

5. Identify the presence of three consecutive edge pixels corresponding

to configurations 17 to 20 of figure 3.25 by the following step.
(a) If TwoSequentialEdgePixels is TRUE AND Subscript < 6 then
do steps i-i1.
1. Increment Subscript.
ii. If Pixel[Subscript] is an EdgePixel then do steps A-B.

A. Increment PixelsOn.
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B. If Subscript is an ODD number

then set ThreeSequentialEdgePixels = TRUE.
6. Count the remaining number of edge pixels by the following step.

(a) While Subscript < 9 Do steps i-ii.

1. Increment Subscript.

1i. If Pixel{Subscript] is an EdgePixel then increment PixelsOn.

7. If Pixel[l} is an EdgePixel then decrement PixelsOn

(Remove duplicated first pixel).
8. If PixelsOn > 2 then set NotEndPoint = TRUE.
9. If PixelsOn = 3 then set NotEndPoint = NOT TwoSequentialEdgePixels.

10. If PixelsOn = 4 then set NotEndPoint = NOT ThreeSequentialEdgePixels.

11. If NotEndPoint is FALSE then set CentraiPixel as an EndPixel.




Appendix 4

Pascal code for the IMAGING
SYSTEM

This appendix contains the Pascal source code for the IMAGING SYSTEM. The
source code is written in Turbo Pascal V.6.0. The code is written for use with a
80386,/80486 cpu, a 80387 numeric processor, a Microsoft compatible mouse, and
requires DOS V.5.0 or higher with the EMS expanded memory manager. The pro-
gram is designed for use with Imaging Technology’s PCVISION plus Frame Grabber
and a Sony AVC-D5 monochrome CCD video camera. The graphics routines are

written for a Trident Super VGA 8900 (or VESA compatible) graphics card.
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