
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-16-2013 12:00 AM 

On the Interoperability of Programming Languages based on the On the Interoperability of Programming Languages based on the 

Fork-Join Parallelism Model Fork-Join Parallelism Model 

Sushek Shekar, The University of Western Ontario 

Supervisor: Dr.Marc Moreno Maza, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Sushek Shekar 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Computer and Systems Architecture Commons, Programming Languages and Compilers 

Commons, and the Software Engineering Commons 

Recommended Citation Recommended Citation 
Shekar, Sushek, "On the Interoperability of Programming Languages based on the Fork-Join Parallelism 
Model" (2013). Electronic Thesis and Dissertation Repository. 1848. 
https://ir.lib.uwo.ca/etd/1848 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1848?utm_source=ir.lib.uwo.ca%2Fetd%2F1848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


On the Interoperability of Programming Languages based on the

Fork-Join Parallelism Model

(Thesis format: Monograph)

by

Sushek Shekar

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© S.S 2013



Abstract

This thesis describes the implementation of MetaFork, a meta-language for con-

currency platforms targeting multicore architectures. First of all, MetaFork is

a multithreaded language based on the fork-join model of concurrency: it allows

the programmer to express parallel algorithms assuming that tasks are dynamically

scheduled at run-time. While MetaFork makes no assumption about the run-time

system, it formally defines the serial C-elision of a MetaFork program.

In addition, MetaFork is a suite of source-to-source compilers permitting the au-

tomatic translation of multithreaded programs between programming languages based

on the fork-join model. Currently, this compilation framework supports the OpenMP

and CilkPlus concurrency platforms. The implementation of those compilers ex-

plicitly manages parallelism according to the directives specified in MetaFork,

OpenMP and CilkPlus.

We evaluate experimentally the benefits of MetaFork. First, we show that this

framework can be used to perform comparative implementation of a given multi-

threaded algorithm so as to narrow performance bottlenecks in one implementation

of this algorithm. Secondly, we show that the translation of hand written and highly

optimized code within MetaFork generally produces code with similar performance

as the original.

Keywords. Multicore architectures, concurrency platforms, fork-join model,

CilkPlus, OpenMP, source-to-source compilation, performance.

ii



Acknowledgments

Firstly, I would like to thank my thesis supervisor Dr. Marc Moreno Maza in the

Department of Computer Science at The University of Western Ontario. His helping

hands toward the completion of this research work were always extended for me. He

consistently helped me on the way of this thesis and guided me in the right direction

whenever he thought I needed it. I am grateful to him for his excellent support to

me in all the steps of successful completion of this research.

Secondly, I would like to thank Xiaohui Chen in the Department of Computer

Science at The University of Western Ontario for working along with me and helping

me successfully complete this research work. I am also grateful to our colleagues

Priya Unnikrishnan and Abdoul-Kader Keita (IBM Toronto Labs) for their advice

and technical support.

Thirdly, all my sincere thanks and appreciation go to all the members from our

Ontario Research Centre for Computer Algebra (ORCCA) lab, Computer Science De-

partment for their invaluable teaching support as well as all kinds of other assistance,

and all the members of my thesis examination committee.

Finally, I would like to thank all of my friends around me for their consistent en-

couragement and would like to show my heartiest gratefulness to my family members

for their continued support.

iii



Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

1 Introduction 1

2 Background 4

2.1 Fork-join model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The work law . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 The span law . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Performance bounds . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.5 Work, span and parallelism of classical algorithms . . . . . . . 7

2.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 OpenMP directives . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The task directive . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Task scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Synchronization constructs . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Data-Sharing attribute clauses . . . . . . . . . . . . . . . . . . 16

2.3 CilkPlus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 CilkPlus scheduling . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 CilkPlus keywords . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Compilation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Source-to-source compiler . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Basic block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Lex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Lex theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



2.4.5 YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.6 YACC theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.7 Lvalues and Rvalues . . . . . . . . . . . . . . . . . . . . . . . 27

3 MetaFork: A metalanguage for concurrency platforms targeting

multicores 28

3.1 Basic principles and execution model . . . . . . . . . . . . . . . . . . 29

3.2 Parallel constructs of MetaFork . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Spawning a function call or a block with meta fork . . . . . . 30

3.2.2 Parallel for-loops with meta for . . . . . . . . . . . . . . . . . 32

3.2.3 Synchronization point with meta join . . . . . . . . . . . . . 33

3.3 Data attribute rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Data attribute rules of meta fork . . . . . . . . . . . . . . . 35

3.3.3 Data attribute rules of meta for . . . . . . . . . . . . . . . . 35

3.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Semantics of the parallel constructs in MetaFork . . . . . . . . . . 38

3.5 Translating code from CilkPlus to MetaFork . . . . . . . . . . . 38

3.6 Translating code from MetaFork to CilkPlus . . . . . . . . . . . 42

3.7 Translation from OpenMP to MetaFork: examples . . . . . . . . . 43

3.7.1 Examples covering different cases of OpenMP Tasks . . . . 43

3.7.2 Translation from OpenMP Parallel for loop to MetaFork . 43

3.7.3 Translation from OpenMP sections to MetaFork . . . . . . 45

3.8 Translation from MetaFork to OpenMP: examples . . . . . . . . . 47

3.8.1 Translation from MetaFork to OpenMP Task . . . . . . . . 47

3.8.2 Translation from MetaFork parallel for loops to OpenMP . 48

4 Implementation of the translators between MetaFork and OpenMP 49

4.1 Translation strategy from OpenMP to MetaFork . . . . . . . . . . 49

4.1.1 OpenMP directives supported by the translators . . . . . . . 50

4.1.2 Translating OpenMP’s omp tasks to MetaFork . . . . . . 51

4.1.3 Translating OpenMP’s omp for to MetaFork . . . . . . . . 64

4.1.4 Translating OpenMP’s omp sections to MetaFork . . . . 67

4.2 Translation strategy from MetaFork to OpenMP . . . . . . . . . . 69

4.2.1 Translating from MetaFork’s meta fork to OpenMP . . . . 69

4.2.2 Translating from MetaFork’s meta for to OpenMP . . . . . 74

v



5 Experimental evaluation 75

5.1 Experimentation set up . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Comparing hand-written codes . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Matrix transpose . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.4 Naive matrix multiplication . . . . . . . . . . . . . . . . . . . 80

5.3 Automatic translation of highly optimized code . . . . . . . . . . . . 81

5.3.1 Fibonacci number computation . . . . . . . . . . . . . . . . . 81

5.3.2 Divide-and-conquer matrix multiplication . . . . . . . . . . . 81

5.3.3 Parallel prefix sum . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.4 Quick sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.5 Mandelbrot set . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.6 Linear system solving (dense method) . . . . . . . . . . . . . 84

5.3.7 FFT (FSU version) . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.8 Barcelona OpenMP Tasks Suite . . . . . . . . . . . . . . . . . 87

5.3.9 Protein alignment . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.10 FFT (BOTS version) . . . . . . . . . . . . . . . . . . . . . . 87

5.3.11 Merge sort (BOTS version) . . . . . . . . . . . . . . . . . . . 88

5.3.12 Sparse LU matrix factorization . . . . . . . . . . . . . . . . . 88

5.3.13 Strassen matrix multiplication . . . . . . . . . . . . . . . . . 90

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Curriculum Vitae 96

6.0.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.0.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.0.3 Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.0.4 Computer Skills . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.0.5 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Leadership Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Academic

Honors and Achievements . . . . . . . . . . . . . . . . . . . . 98

6.1.2 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



Chapter 1

Introduction

In the past decade the pervasive ubiquitous of multicore processors has stimulated

a constantly increasing effort in the development of concurrency platforms (such as

CilkPlus, OpenMP, Intel TBB) targeting those architectures. While those pro-

gramming languages are all based on the fork-join parallelism model, they largely

differ on their way of expressing parallel algorithms and scheduling the correspond-

ing tasks. Therefore, developing programs involving libraries written with several of

those languages is a challenge.

Nevertheless there is a real need for facilitating interoperability between con-

currency platforms. Consider for instance the field of symbolic computation. The

DMPMC library (from the TRIP project www.imcce.fr/trip developed at the Ob-

servatoire de Paris) provides sparse polynomial arithmetic and is entirely written in

OpenMP meanwhile the BPAS library (from the Basic Polynomial Algebra Subpro-

grams www.bpaslib.org developed at the University of Western Ontario) provides

dense polynomial arithmetic and entirely written in CilkPlus. Polynomial system

solvers require both sparse and dense polynomial arithmetic and thus could take

advantage of a combination of the DMPMC and BPAS libraries. Unfortunately, the

run-time systems of CilkPlus and OpenMP cannot cooperate since their schedulers

are based on different strategies, namely work stealing and work sharing, respectively.

Therefore, an automatic translation mechanism is needed between CilkPlus and

OpenMP.

Another motivation for such software tools is comparative implementation, with

the objective of narrowing performance bottlenecks. The underlying observation is

that the same multithreaded algorithm, based on the fork-join parallelism model,

implemented with two different concurrency platforms, say CilkPlus and OpenMP,

could result in very different performance and this performance is often very hard to

1

www.imcce.fr/trip
www.bpaslib.org


analyze and compare. If one code scales well while the other does not, one may

suspect an efficient implementation of the latter as well as other possible causes such

as higher parallelism overheads. Translating the inefficient code to the other language

can help narrowing the problem. Indeed, if the translated code still does not scale one

can suspect an implementation issue (say the programmer missed to parallelize one

portion of the algorithm) whereas if it does scale, then one can suspect a parallelism

overhead issue in the original code (say the grain-size of the parallel for-loop is too

small).

In this thesis, we propose MetaFork, a metalanguage for multithreaded algo-

rithms based on the fork-join parallelism model [18] and targeting multicore architec-

tures. By its parallel programming constructs, this language is currently a super-set

of CilkPlus [20, 34, 38] and OpenMP Tasks [13]. However, this language does

not compromise itself in any scheduling strategies (work stealing [19], work sharing,

etc.) Thus, it does not make any assumptions about the run-time system.

Based on the motivations stated above, a driving application of MetaFork is to

facilitate automatic translations of programs between the above mentioned concur-

rency platforms. To date, our experimental framework includes translators between

CilkPlus and MetaFork (both ways) and, between OpenMP and MetaFork

(both ways). Hence, through MetaFork, we are able to perform program transla-

tions between CilkPlus and OpenMP (both ways). Adding Intel TBB to this

framework is work in progress. As a consequence, the MetaFork program examples

given in this thesis were obtained either from original CilkPlus programs or from

original OpenMP programs.

The original contributions of this work are presented in Chapter 3, 4 and 5. They

are a joint work with Xiaohui Chen and Dr.Marc Moreno Maza.

In Chapter 3, we specify the syntax and semantics of the parallel constructs of

MetaFork. Indeed, MetaFork differs only from the C language by its parallel

constructs. Hence, it is sufficient to define MetaFork’s parallel constructs in order

to define the entire language. As we shall see, the main difficulty is to define the

serial C-elision of a given MetaFork program M, that is the program C written in

the C language and which computes exactly the same thing asM. As a byproduct of

this definition, we obtain a strategy for translating MetaFork code to CilkPlus.

Since CilkPlus is a subset of MetaFork, translating in the other direction is easy.

In Chapter 4, we propose algorithms for translating programs between

OpenMP Tasks and MetaFork. Since data attribute rules are not the same in

both languages, great care is required. These algorithms have been implemented to-

2



gether with those presented in Chapter 3. They form the a suite of four language

translators: MetaFork to CilkPlus, CilkPlus to MetaFork, MetaFork to

OpenMP Tasks, OpenMP Tasks to MetaFork. As a byproduct one can trans-

late CilkPlus code to OpenMP Tasks and vice-versa.

In Chapter 5, we report on our experimentation with our language translators:

CilkPlus to OpenMP Tasks and OpenMP Tasks to CilkPlus. This actually

includes two sets of experiences corresponding respectively to the above motivations

For this experimentation to be meaningful, it is essential to ensure that each translated

program computes the same thing as its original counterpart. To do this, we proceed

as follows with most test cases. The original program, say P , contains both a parallel

code and its serial elision (manually written). When program P is executed, both

codes run and compare their results. Let us call Q the translated version of P .

Since serial elisions are unchanged by translation, then Q can be verified by the same

process used for program P .

Our experimentation suggest that MetaFork can, indeed, be used to narrow

performance bottlenecks. More precisely, for each of our test cases, the overall trend

of the performance results can be used to narrow causes for low performance. In

addition, MetaFork can be used to translate large projects written with one con-

currency platform to another, as we did with the entire BOTS test suite [26]. This

application was the initial motivation of this work. Finally, this translation process

seems not to add any overheads on the tested examples.

3



Chapter 2

Background

This section gathers background materials which are used throughout this thesis.

Section 2.1 describes the parallelism model used in MetaFork which is the fork-join

model. Section 2.2 is a brief introduction to the history of the OpenMP standard; it

also describes its API and runtime support. Section 2.3 is a brief introduction to the

history of CilkPlus, its API and runtime support. Section 2.4 gives a brief overview

to compilation theory, steps involved in compilation and source-to-source compilers.

In particular, Sections 2.4.3 and Section 2.4.5 present the Lex and YACC software

tools for lexical and semantic analyzes.

2.1 Fork-join model

The fork-join execution model is a model of computations where a parent task gives

birth to child tasks, all tasks (parent and children) execute code paths concurrently

and synchronize at the point where the child tasks terminate. On a single core, a

child task preempts its parent which resumes its execution when the child terminates.

In particular, the fork-join parallelism model is a simple theoretical model of mul-

tithreading for parallel computation. This model represents the execution of a mul-

tithreaded program as a set of non-blocking threads denoted by the vertices of a dag

(direct acyclic graph), where the dag edges indicate dependencies between instruc-

tions. See Figure 2.1.

A correct execution of a program which uses fork-join parallelism model must

meet all the dependencies in the dag, that is, a thread cannot be executed until all

the depending treads have completed. The order in which these dependent threads

will be executed on the processors is determined by the scheduler.

From a theoretical viewpoint, there are two natural measures that allow us to

4



Figure 2.1: A directed acyclic graph (dag) representing the execution of a multi-
threaded program. Each vertex represents an instruction while each edge represents
a dependency between instructions.

define parallelism precisely, as well as to provide important bounds on performance

and speedup which are discussed in the following subsections.

2.1.1 The work law

The first important measure is the work which is defined as the total amount of time

required to execute all the instructions of a given program. For instance, if each

instruction requires a unit amount of time to execute, then the work for the example

dag shown in Figure 2.1 is 18.

Let TP be the fastest possible execution time of the application on P processors.

Therefore, we denote the work by T1 as it corresponds to the execution time on 1

processor. Moreover, we have the following relation

Tp ≥ T1/P (2.1)

which is referred as the work law. In our simple theoretical model, the justification of

this relation is easy: each processor executes at most 1 instruction per unit time and

5



therefore P processors can execute at most P instructions per unit time. Therefore,

the speedup on P processors is at most P since we have

T1/TP ≤ P. (2.2)

2.1.2 The span law

The second important measure is based on the program’s critical-path length denoted

by T∞. This is actually the execution time of the application on an infinite number

of processors or, equivalently, the time needed to execute threads along the longest

path of dependency. As a result, we have the following relation, called the span law:

TP ≥ T∞. (2.3)

2.1.3 Parallelism

In the fork-join parallelism model, parallelism is defined as the ratio of work to span,

or T1/T∞. Thus, it can be considered as the average amount of work along each point

of the critical path. Specifically, the speedup for any number of processors cannot be

greater than T1/T∞. Indeed, Equations 2.2 and 2.3 imply that speedup satisfies

T1/TP ≤ T1/T∞ ≤ P.

As an example, the parallelism of the dag shown in Figure 2.1 is 18/9 = 2. This means

that there is little chance for improving the parallelism on more than 2 processors,

since additional processors will often starve for work and remain idle.

2.1.4 Performance bounds

For an application running on a parallel machine with P processors with work T1 and

span T∞, the CilkPlus work-stealing scheduler achieves an expected running time

as follows:

TP = T1/P + O(T∞), (2.4)

under the following three hypotheses:

• each strand executes in unit time,

• for almost all parallel steps there are at least p strands to run,

• each processor is either working or stealing.

6



See [30] for details.

If the parallelism T1/T∞ is so large that it sufficiently exceeds P , that is T1/T∞ �
P , or equivalently T1/P � T∞, then from Equation (2.4) we have TP ≈ T1/P . From

this, we easily observe that the work-stealing scheduler achieves a nearly perfect linear

speedup of T1/TP ≈ P .

2.1.5 Work, span and parallelism of classical algorithms

The work, span and parallelism of some of the classical algorithms [22] in the fork-join

parallelism model is shown in Table 2.1.

Algorithm Work Span parallelism

Merge sort Θ(n log2(n)) Θ(log2(n)3) Θ( n
log2(n)

2 )

Matrix multiplication Θ(n3) Θ(log2(n)) Θ( n3

log2(n)
)

Strassen Θ(nlog2(7)) Θ(log2(n)2) Θ( nlog2(7)

log2(n)
2 )

LU-decomposition Θ(n3) Θ(n log2(n)) Θ( n2

log2(n)
)

Tableau construction Θ(n2) Ω(nlog2(3)) Θ(n0.415)

FFT Θ(n log2(n)) Θ(log2(n)2) Θ( n
log2(n)

)

Table 2.1: Work, span and parallelism of classical algorithms.

2.2 OpenMP

OpenMP [4] (Open Multi-Processing) is an API that supports shared memory mul-

tiprocessing programming in C, C++ and FORTRAN, on most processor architectures

and operating systems. It consists of a set of compiler directives, library routines

and environment variables that influence run-time behavior. It supports both task

parallelism and data parallelism.

It is an implementation of multithreading, a method of parallelizing whereby a

master thread forks a specified number of slave threads and a task is divided among

them. The threads then run concurrently, with the runtime environment allocating

threads to different processors.

The section of code that is meant to run in parallel is marked accordingly, with

a preprocessor directive that will cause the threads to form before the section is

7



executed. After the execution of the parallelized code, the threads join back into the

master thread, which continues onward to the end of the program.

The OpenMP Architecture Review Board (ARB) published its first API speci-

fications, OpenMP for FORTRAN 1.0 [10], in October 1997. The following year they

released the C/C++ standard [5]. 2000 saw version 2.0 [11] of the FORTRAN specifications

with version 2.0 [6] of the C/C++ specifications being released in 2002. Version 2.5 [12]

is a combined C/C++/FORTRAN specification that was released in 2005. OpenMP con-

tinues to evolve, with new constructs and features being added over time. In May

2008, version 3.0 [7] was published with the new concept of tasks. Version 3.1 [8]

was released in July 2011. The latest version 4.0 [9] which was released in July 2013

improving some of its compiler directives along with SIMD support and FORTRAN 2003

support.

In order to illustrate the OpenMP standard, a sample C program is used to show

the parallelization methodology of the OpenMP directives in Example 1.

The following sections describe in detail the syntax and functionality of the

OpenMP directives, runtime library routines and environment variables. The

#pragma directive is the method specified by the C standard for providing addi-

tional information to the compiler, beyond what is conveyed in the language itself.

To be recognized as an OpenMP directive, the #pragma directive is to be followed by

the following sentinel : omp. After this sentinel is the type of the directive that is

encountered (e.g parallel,tasks,for,sections).

2.2.1 OpenMP directives

The OpenMP directives in C/C++ has the following format.

#pragma omp directive_name [clause,...]

The following sections describe the type and functionality of the OpenMP directives.

2.2.1.1 The parallel directive

A parallel region is a block of code that will be executed by multiple threads. This

is the fundamental OpenMP parallel construct that starts parallel execution. These

directives have the following format:

#pragma omp parallel [clause ...] newline

8



When a thread reaches a parallel directive, it creates a team of threads and

becomes the master of the team. The master thread has the thread number 0. The

code is duplicated and all threads will execute that code defined in the parallel region.

There is an implicit barrier at the end of a parallel section provided by the OpenMP

compiler. Only the master thread continues execution past this point. If any thread

terminates within a parallel region, all threads in the team will terminate, and the

work done up until that point is undefined.

The parallel directive has eight optional clauses that take one or more ar-

guments: private, shared, default, firstprivate, reduction, if, copyin and

num threads. These clauses are also called data-sharing attribute clauses. These

clauses are used to explicitly define how variables should be scoped. They provide

the ability to control the data environment during execution of parallel constructs.

They define how and which data variables in the serial section of the program are

transferred to the parallel sections of the program. They define which variables will

be visible to all threads in the parallel sections and which variables will be privately

allocated to all threads. for format and description of these clauses, see Section 2.2.5.

2.2.1.2 The for directive

The for directive specifies that the iterations of the loop immediately following it

must be executed in parallel by the team. This assumes a parallel region has already

been initiated, otherwise it executes serially. The for directive has the following

format:

#pragma omp for [clause ...] newline

The for directive has nine optional clauses that take one or more argu-

ments: private, shared, firstprivate, reduction, schedule, ordered, collapse,

nowait. The format and description of these clauses, see Section 2.2.5.

The way iterations of the loop are divided among the threads in the team are

defined by schedule clause. The default schedule is implementation dependent. The

schedule format is shown below:

#pragma omp for schedule (type [,chunk])

There are five types of scheduling options in the schedule clause: static, dynamic,

guided, runtime and auto. In static, loop iterations are divided into pieces of size

chunk and then statically assigned to threads. If chunk is not specified, the iterations

9



are evenly (if possible) divided contiguously among the threads. In dynamic, loop

iterations are divided into pieces of size chunk, and dynamically scheduled among the

threads; when a thread finishes one chunk, it is dynamically assigned another. The

default chunk size is 1. In guided, loop iterations are dynamically assigned to threads

in blocks as threads request them until no blocks remain to be assigned. Similar to

dynamic except that the block size decreases each time a parcel of work is given to a

thread. The size of the initial block is proportional to:

number_of_iterations / number_of_threads

Subsequent blocks are proportional to:

number_of_iterations_remaining / number_of_threads

The chunk parameter defines the minimum block size. The default chunk size is

1. In runtime, the scheduling decision is deferred until runtime by the environment

variable omp schedule. It is illegal to specify a chunk size for this clause. In auto,

the scheduling decision is delegated to the compiler and/or runtime system.

If nowait clause is specified, then threads do not synchronize at the end of the

parallel loop. The ordered clause specifies that the iterations of the loop must be

executed as they would be in a serial program. The collapse clause specifies how

many loops in a nested loop should be collapsed into one large iteration space and

divided according to the schedule clause. The sequential execution of the iterations

in all associated loops determines the order of the iterations in the collapsed iteration

space. Example 1 gives an idea of OpenMP for loops.

Example 1. main () {

int i, chunk, CHUNKSIZE = 10, N = 100;

float a[N], b[N], c[N];

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp for private(i) schedule(static,chunk)

{

for (i=0; i < n; i++)

c[i] = a[i] + b[i];

}

}

10



2.2.1.3 The sections directive

The sections directive is a non-iterative work-sharing construct. It specifies that

the enclosed section/sections of code are to be divided among the threads in the

team. Independent section directives are nested within a sections directive. Each

section is executed once by a thread in the team. Different sections may be executed

by different threads. It is possible for a thread to execute more than one section if it

is quick enough and the implementation permits such. The format of this directive is

as follows:

#pragma omp sections [clause ...] newline

{

#pragma omp section newline

structured_block

#pragma omp section newline

structured_block

}

There are five clauses: private, firstprivate, lastprivate, reduction, nowait.

There is an implied barrier at the end of a sections directive, unless the nowait

clause is used. for format and description of these clauses, see Section 2.2.5. Exam-

ple 2 gives an example of OpenMP sections.

Example 2.

main () {

int i,N = 100;

float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {

a[i] = i * 1.5;

b[i] = i + 22.35;

}

#pragma omp parallel

{

11



#pragma omp sections

{

#pragma omp section

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=0; i < N; i++)

d[i] = a[i] * b[i];

} /* end of sections */

} /* end of parallel section */

}

2.2.1.4 The single directive

The single directive specifies that the enclosed code is to be executed by only one

thread in the team. This directive is useful when dealing with sections of code that

are not thread safe. Threads in the team that do not execute the single directive,

wait at the end of the enclosed code block, unless a nowait clause is specified. The

format of this directive is as follows:

#pragma omp single [clause ...] newline

This directive has two clauses: private and firstprivate. For the format and

description of these clauses, see Section 2.2.5.

2.2.2 The task directive

This is a new construct with OpenMP version 3.0. The task construct defines an

explicit task, which may be executed by the encountering thread, or deferred for

execution by any other thread in the team. The data environment of the task is

determined by the data sharing attribute clauses. The execution of task is subject to

task scheduling. The format of this directive is as follows:

#pragma omp task [clause[[,] clause] ...] newline

task directive has six clauses: if, untied, default, private, firstprivate and

shared. For the format and description of these clauses, see Section 2.2.5.

12



When a thread encounters a task construct, a task is generated from the code for

the associated structured block. The data environment of the task is created according

to the data-sharing attribute clauses on the task construct and any defaults that apply.

The encountering thread may immediately execute the task, or defer its execution.

In the latter case, any thread in the team may be assigned the task. Completion of

the task can be guaranteed using task synchronization constructs. A task construct

may be nested inside an outer task, but the task region of the inner task is not a part

of the task region of the outer task. A thread that encounters a task scheduling point

within the task region may temporarily suspend the task region. By default, a task

is tied and its suspended task region can only be resumed by the thread that started

its execution. If the untied clause is present on a task construct, any thread in the

team can resume the task region after a suspension. For the format and description

of these clauses, see Section 2.2.5. Example 3 gives an idea on OpenMP tasks.

Example 3. main () {

int x;

#pragma omp parallel

#pragma omp task

{

x = some_func();

}

#pragma omp taskwait

}

2.2.3 Task scheduling

Whenever a thread reaches a task scheduling point, the implementation may cause it

to perform a task switch, beginning or resuming execution of a different task bound to

the current team. Task scheduling points are implied at a point immediately following

the generation of an explicit task or after the last instruction of a task region or in

taskwait 2.2.4.4 regions or in implicit and explicit barrier 2.2.4.3 regions.

When a thread encounters a task scheduling point it might begin execution of a

tied task bound to the current team or resume any suspended task region, bound to

the current team, to which it is tied or begin execution of an untied task bound to

the current team or resume any suspended untied task region bound to the current

team.

13



2.2.4 Synchronization constructs

2.2.4.1 The master Directive

The master directive specifies a region that is to be executed only by the master

thread of the team. All other threads on the team skip this section of code. There

is no implied barrier associated with this directive. The format of this diretive is as

follows:

#pragma omp master newline

structured_block

2.2.4.2 The critical directive

The critical directive specifies a region of code that must be executed by only one

thread at a time. If a thread is currently executing inside a critical region and

another thread reaches that critical region and attempts to execute it, it will block

until the first thread exits that critical region. The format of this directive is as

follows:

#pragma omp critical [ name ] newline

structured_block

The optional name enables multiple different critical regions to exist.

2.2.4.3 The barrier directive

The barrier directive synchronizes all threads in the team. When a barrier directive

is reached, a thread will wait at that point until all other threads have reached that

barrier. All threads then resume executing in parallel the code that follows the barrier.

All threads in a team (or none) must execute the barrier region. The format of this

directive is as follows:

#pragma omp barrier newline

14



2.2.4.4 The taskwait directive

This directive is new with OpenMP version 3.0. The taskwait construct specifies

a wait on the completion of child tasks generated since the beginning of the current

task. The format of this directive is as follows:

#pragma omp taskwait newline

2.2.4.5 The atomic directive

The atomic directive specifies that a specific memory location must be updated atom-

ically, rather than letting multiple threads attempt to write to it.The directive applies

only to a single, immediately following statement. The format of this directive is as

follows:

#pragma omp taskwait newline

statement_expression

2.2.4.6 The flush directive

The flush directive identifies a synchronization point at which the implementation

must provide a consistent view of memory. Thread-visible variables are written back

to memory at this point.

#pragma omp flush (list) newline

2.2.4.7 The ordered directive

The ordered directive specifies that iterations of the enclosed loop will be executed

in the same order as if they were executed on a serial processor. Threads will need to

wait before executing their chunk of iterations if previous iterations haven’t completed

yet. It is used within a for loop with an ordered clause. Only one thread is allowed

in an ordered section at any time. An iteration of a loop must not execute the same

ordered directive more than once, and it must not execute more than one ordered

directive. The format of this directive is as follows:

#pragma omp for ordered [clauses...]

(loop region)

15



#pragma omp ordered newline

structured_block

(endo of loop region)

2.2.4.8 The threadprivate directive

The threadprivate directive is used to make global file scope variables (C/C++) or

common blocks (fortran) local and persistent to a thread through the execution of

multiple parallel regions. The format of this directive is as follows:

#pragma omp threadprivate (list)

2.2.5 Data-Sharing attribute clauses

Some directives accept clauses that follow a user to control the scope attributes of

variables for the duration of the construct. Not all of the following clauses are allowed

on all directives, but the clauses that are valid on a particular directive are included

with the description of the directive. The following sections describe the data scope

attribute clauses.

2.2.5.1 The private clause

The private clause declares variables in its list to be private to each thread. This

clause has the following format:

private (list)

2.2.5.2 The shared clause

The shared clause declares variables in its list to be shared among all threads in the

team. This clause has the following format:

shared (list)

16



2.2.5.3 The default clause

The default clause allows the user to specify a default scope for all variables in the

lexical extent of any parallel region. This clause has the following format:

default (shared | none)

2.2.5.4 The firstprivate clause

The firstprivate clause combines the behavior of the private clause with automatic

initialization of the variables in its list. This clause has the following format:

firstprivate (list)

2.2.5.5 The lastprivate clause

The lastprivate clause combines the behavior of the private clause with a copy

from the last loop iteration or section to the original variable object. This clause has

the following format:

lastprivate (list)

2.2.5.6 The copyin clause

The copyin clause provides a means for assigning the same value to threadprivate

variables for all threads in the team. This clause has the following format:

copyin (list)

2.2.5.7 The copyprivate clause

The copyprivate clause can be used to broadcast values acquired by a single thread

directly to all instances of the private variables in the other threads. This clause has

the following format:

copyprivate (list)

17



2.2.5.8 The reduction clause

The reduction clause performs a reduction on the variables that appear in its list.

A private copy for each list variable is created for each thread. At the end of the

reduction, the reduction variable is applied to all private copies of the shared variable,

and the final result is written to the global shared variable. This clause has the

following format:

reduction (operator : list)

For the OpenMP runtime routines and environment variables, see references [7,

8, 9] .

2.3 CilkPlus

Cilk [23] has been developed since 1994 at the MIT Laboratory for Computer Science

by Prof. Charles E. Leiserson and his group, in particular by Matteo Frigo. Over the

years, the implementations of Cilk have run on computers ranging from networks of

Linux laptops to an 1824-nodes Intel Paragon. From 2007 to 2009 Cilk has lead to

Cilk++, developed by Cilk Arts, an MIT spin-off, which was acquired by Intel in July

2009 and became CilkPlus.

CilkPlus [24, 17, 30, 33, 28] is a small set of linguistic extensions to C and

C++ supporting fork-join parallelism. It has a provably efficient work-stealing sched-

uler. It provides a hyperobject library for parallelizing code with global variables and

performing reduction for data aggregation. CilkPlus includes the Cilkscreen race

detector and the Cilkview performance analyzer.

2.3.1 CilkPlus scheduling

The CilkPlus randomized work-stealing scheduler [30] load-balances the compu-

tation at run-time. Each processor maintains a ready deque. A ready deque is a

double ended queue, where each entry is a procedure instance that is ready to exe-

cute. Adding a procedure instance to the bottom of the deque represents a procedure

call being spawned. A procedure instance being deleted from the bottom of the deque

represents the processor beginning/resuming execution on that procedure. Deletion

from the top of the deque corresponds to that procedure instance being stolen.

18



2.3.2 CilkPlus keywords

The following are the CilkPlus keywords.

1. cilk for

2. cilk spawn

3. cilk sync

2.3.2.1 cilk for

A cilk for loop is a replacement for the normal C/C++ for loop that permits loop

iterations to run in parallel. The general cilk for syntax is:

cilk_for (declaration and initialization;

conditional expression;

increment expression)

body

Since the loop body is executed in parallel, it must not modify the control variable

nor should it modify a non-local variable, as that would cause a data race. A reducer

can often be used to prevent a race. The cilk for statement divides the loop into

chunks containing one or more loop iterations. Each chunk is executed serially, and

is spawned as a chunk during the execution of the loop. The maximum number of

iterations in each chunk is the grain size. The pragma used to specify the grain size

for one cilk for loop is:

#pragma cilk grainsize = expression

Example 4 gives an example for CilkPlus for loops.

Example 4. void function() {

int i = 0, j = 0;

cilk_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

19



u[i][j] = unew[i][j];

}

}

}

2.3.2.2 cilk spawn

The cilk spawn keyword modifies a function call statement to tell the runtime system

that the function may (but is not required to) run in parallel with the caller. This

can take one of the following forms:

1. var = cilk_spawn func(args); // func() returns a value

2. cilk_spawn func(args); // func() may return void

“func” is the name of a function which may run in parallel with the current strand.

A strand is a serial sequence of instructions without any parallel control. The code

following the cilk spawn in the current routine can execute in parallel with func.

“var” is a variable that can be initialized or assigned from the return value of func.

args are the arguments to the function being spawned. These arguments are evaluated

before the spawn takes effect. Example 5 gives an idea on spawning a function in

CilkPlus.

Example 5. void test() {

int x, y;

x = cilk_spawn test1();

y = cilk_spawn test2();

cilk_sync;

}

2.3.2.3 cilk sync

This specifies that all spawned calls in a function must complete before execution

continues. There is an implied cilk sync at the end of every function that contains

a cilk spawn. In other words, it indicates that the current function cannot continue

in parallel with its spawned children. After the children all complete, the current

function can continue. The syntax is as follows:

cilk_sync;

cilk sync only syncs with children spawned by this function. Children of other

functions are not affected.

20



2.4 Compilation theory

A compiler [2, 35] is a program that can read a program in one language which is

called the source language and translate it into an equivalent program in another

language called the target language. For example, a C compiler translates a program

written in C language into a program in assembly language.

The compilation process [2, 35] can be divided in two parts: analysis part and

synthesis part. In the analysis part, the source program is analyzed for its syntactical

and semantic correctness and transformed into an intermediate representation (IR).

In the synthesis part, the IR is used to do optimizations and generate the target

program. The analysis part is also called the front end of the compiler, while the

synthesis part is called the back end of the compiler.

To give more details, the compilation process [2, 35] can also be further divided

into several phases. The input of each phase is the output of the previous phase. The

initial input is the text of a program which is to be compiled. The internal output

of each phase is a form of Intermediate Representation (IR) such as Abstract Syntax

Tree (AST). The final output is the translated program that is written in another

language.

Usually, the compilation process is divided into the following phases. A brief

introduction about the functionality of each phase is given below. Refer [2, 35] for

more detailed information.

• Lexical analysis : The input of the lexical analysis is the stream of characters

of a program written in the source language. The output is a stream of tokens.

• Syntax analysis : The input of syntax analysis is the stream of tokens. The

output is the IR of the program in the form of an AST.

• Semantic analysis : The semantic analysis phase checks the semantic cor-

rectness regarding to the language definition by analyzing the IR.

• Intermediate code generation : After semantic analysis, a compiler usually

generates a lower level IR of the program from the higher level IR such as AST.

There could be several layers of IR, such as high-level IR, middle-level IR and

low-level IR.

• Code optimization : The optimization phase performs different kinds of op-

timizations at the suitable layer of IR.

21



• Code generation : In the code generation phase, the input is the IR. The

output is the code that is generated from the IR using the target language.

2.4.1 Source-to-source compiler

A source-to-source compiler refers to translating a program written in one program-

ming language to another programming language that are both at approximately the

same abstraction level. For example, unoptimized C++ to optimized C++ [25], C++

to CUDA [1, 31] (Compute Unified Device Architecture) etc. The traditional compiler

usually translates from a high level programming language to a low level program-

ming language that are at different abstraction levels, for example, from C/C++ to

assembly language.

A main difference between a traditional compiler and a source to source compiler

is the IR. In a traditional compiler, the higher level IR is transformed down to sev-

eral lower level IRs until it is suitable to generate the target code. In a source to

source compiler, since both the source language and target language are at the same

abstraction level, the difficulty is to find the best level of IR that could be used to

translate from source language to target language. Using the lowest level IR or the

assembly language style IR, is possible for source to source translation. However, the

generated target program is likely to look very different from the source program and

to be difficult to understand.

2.4.2 Basic block

A basic block is a portion of the code within a program with only one entry point and

only one exit point. This makes a basic block highly amenable to analysis. Compilers

usually decompose programs into their basic blocks as a first step in the analysis

process. Thus the code in a basic block has:

- one entry point, meaning no code within it is the destination of a jump instruc-

tion anywhere in the program,

- one exit point, meaning only the last instruction can cause the program to begin

executing code in a different basic block.

2.4.3 Lex

Lex [2, 35] is a program that generates lexical analyzers and is written by Eric Schmidt

and Mike Lesk. Lex is commonly used with the YACC (Yet Another Compiler

22



Compiler) [32] parser generator. It reads an input stream specifying the lexical

analyzer and outputs source code implementing the lexer in the C programming

language. The structure of a Lex file is divided into three sections, separated by lines

that contain only two percent signs, as follows:

Definition section

%%

Rules section

%%

C code section

• The definition section defines macros and imports header files written in C. It

is also possible to write any C code here, which will be copied verbatim into the

generated source file.

• The rules section associates regular expression patterns with C statements.

When the lexer sees text in the input matching a given pattern, it will exe-

cute the associated C code.

• The C code section contains C statements and functions that are copied ver-

batim to the generated source file. These statements presumably contain code

called by the rules in the rules section. In large programs it is more convenient

to place this code in a separate file linked in at compile time.

2.4.4 Lex theory

During the first phase, the compiler reads the input and converts strings in the source

to tokens. With regular expressions we can specify patterns to Lex so it can generate

code that will allow it to scan and match strings in the input. Each pattern in the

input to Lex has an associated action. Typically an action returns a token that

represents the matched string for subsequent use by the parser. Initially we will

simply print the matched string rather than return a token value.

The following represents a simple pattern, composed of a regular expression, that

scans for identifiers. Lex will read this pattern and produce C code for a lexical

analyzer that scans for identifiers.

letter(letter|digit)*

23



Figure 2.2: Finite state automaton represented using states.

This pattern matches a string of characters that begins with a single letter followed

by zero or more letters or digits. This example nicely illustrates operations allowed

in regular expressions:

• Repetition, expressed by the “*” operator

• Alternation, expressed by the “—” operator

• Concatenation

Any regular expression expressions may be expressed as a finite state

automaton (FSA). We can represent FSA using states, and transitions between states.

There is one start state and one or more final or accepting states.

In the above figure, state 0 is the start state and state 2 is the accepting state.

As characters are read we make a transition from one state to another. When the

first letter is read we transition to state 1. We remain in state 1 as more letters or

digits are read. When we read a character other than a letter or digit we transition to

accepting state 2. Any FSA may be expressed as a computer program. for example,

our 3-state machine is easily programmed:

start: goto state0

state0: read c

if c = letter goto state1

goto state0

state1: read c

if c = letter goto state1

if c = digit goto state1

goto state2

state2: accept string

24



This is the technique used by Lex. Regular expressions are translated by Lex to a

computer program that mimics an FSA. Using the next input character and current

state the next state is easily determined by indexing into a computer-generated state

table.

2.4.5 YACC

YACC is an acronym for Yet Another Compiler Compiler. YACC [2, 35, 32] reads

the grammar and generate C code for a parser . It’s grammars written in Backus

Naur form (BNF). BNF grammar are used to express context-free languages. The

structure of a YACC file is similar to Lex and is divided into three sections, separated

by lines that contain only two percent signs, as follows:

Definition section

%%

Rules section

%%

C code section

2.4.6 YACC theory

Grammars for YACC are described using a variant of Backus Naur form (BNF).

A BNF grammar can be used to express context-free languages. Most constructs

in modern programming languages can be represented in BNF. For example, the

grammar for an expression that multiplies and adds numbers is:

1 E -> E + E

2 E -> E * E

3 E -> id

Three productions have been specified. Terms that appear on the left-hand side

(lhs) of a production, such as E, are nonterminals. Terms such as id (identifier) are

terminals (tokens returned by Lex) and only appear on the right-hand side (rhs)

of a production. This grammar specifies that an expression may be the sum of two

expressions, the product of two expressions, or an identifier. We can use this grammar

to generate expressions:

E -> E * E (r2)

-> E * z (r3)

25



-> E + E * z (r1)

-> E + y * z (r3)

-> x + y * z (r3)

At each step we expanded a term and replace the lhs of a production with the

corresponding rhs. The numbers on the right indicate which rule applied. To parse

an expression we a need to do the reverse operation. Instead of starting with a single

nonterminal (start symbol) and generating an expression from a grammar we need to

reduce an expression to a single nonterminal. This is known as bottom-up or shift-

reduce parsing and uses a stack for storing terms. Here is the same derivation but in

reverse order:

1 . x + y * z shift

2 x . + y * z reduce(r3)

3 E . + y * z shift

4 E + . y * z shift

5 E + y . * z reduce(r3)

6 E + E . * z shift

7 E + E * . z shift

8 E + E * z . reduce(r3)

9 E + E * E . reduce(r2) emit multiply

10 E + E . reduce(r1) emit add

11 E . accept

Terms to the left of the dot are on the stack while remaining input is to the right

of the dot. We start by shifting tokens onto the stack. When the top of the stack

matches the rhs of a production we replace the matched tokens on the stack with the

lhs of the production.The matched tokens are known as a handle and we are reducing

the handle to the lhs of the production. This process continues until we have shifted

all input to the stack and only the starting nonterminal remains on the stack.

In step 1 we shift the x to the stack. Step 2 applies rule r3 to the stack to

change x to E. We continue shifting and reducing until a single nonterminal, the start

symbol, remains in the stack. In step 9, when we reduce rule r2, we emit the multiply

instruction. Similarly the add instruction is emitted in step 10. Consequently multiply

has a higher precedence than addition.

Consider the shift at step 6. Instead of shifting we could have reduced and applied

rule r1. This would result in addition having a higher precedence than multiplication.

26



This is known as a shift-reduce conflict. Our grammar is ambiguous because there is

more than one possible derivation that will yield the expression. In this case operator

precedence is affected. As another example, associativity in the rule:

E -> E + E

is ambiguous, for we may recurse on the left or the right. To remedy the situation,

we could rewrite the grammar or supply YACC with directives that indicate which

operator has precedence.

The following grammar has a reduce-reduce conflict. With an id on the stack we

may reduce to T or E.

E -> T

E -> id

T -> id

YACC takes a default action when there is a conflict. For shift-reduce conflicts

YACC will shift. For reduce-reduce conflicts it will use the first rule in the listing.

It also issues a warning message whenever a conflict exists. The warnings may be

suppressed by making the grammar unambiguous.

2.4.7 Lvalues and Rvalues

An object is a region of storage that can be examined and stored into. An lvalue is

an expression that refers to such an object. An lvalue does not necessarily permit

modification of the object it designates. For example, a const object is an lvalue that

cannot be modified. The term modifiable lvalue is used to emphasize that the lvalue

allows the designated object to be changed as well as examined.

The term rvalue refers to a data value that is stored at some address in memory.

Typical rvalues are function calls or arithmetic expressions. An rvalue is an expression

that cannot have a value assigned to it. Both a literal constant and a variable can

serve as an rvalue. When an lvalue appears in a context that requires an rvalue,

the lvalue is implicitly converted to an rvalue. The reverse, however, is not true: an

rvalue cannot be converted to an lvalue. Rvalues always have complete types or the

void type.

27



Chapter 3

MetaFork: A metalanguage for

concurrency platforms targeting

multicores

This chapter focuses on specifying the syntax and semantics of the parallel constructs

of MetaFork. Indeed, MetaFork differs only from the C language by its parallel

constructs. Specifying the semantics of the parallel constructs of MetaFork is

equivalent to define the serial C elision of a MetaFork program. That is, given a

program M written in MetaFork define a program C written in the C language

and such that M and C compute exactly the same thing.

While defining the serial C elision of a CilkPlus program is easy, this is much

harder in the case of a MetaFork program. This difficulty is caused by the spawning

of parallel regions that are not function calls. As far as we know, and after verifying

with OpenMP developers, no formal definition of the serial C elision of OpenMP

was ever given in the literature.

The algorithms that we state in Section 3.4 define the serial C elision of

a MetaFork program. Consequently, they define the serial C elision of an

OpenMP Tasks program, since MetaFork is a super-set of Tasks flavor in

OpenMP.

To help the reader understanding those algorithms and the related notions, Sec-

tions 3.5, 3.6, 4.1.1 and 3.8 provide various examples of code translation between

CilkPlus, OpenMP and MetaFork.

This chapter is a joint work with Xiaohui Chen and Dr.Marc Moreno Maza.

28



3.1 Basic principles and execution model

We summarize in this section a few principles that guided the design of MetaFork.

First of all, MetaFork is an extension of the C language and a multithreaded

language based on the fork-join parallelism model. Thus, concurrent execution is

obtained by a parent thread creating and launching one or more child threads so

that, the parent and its children execute a so-called parallel region. An important

example of parallel regions are for-loop bodies. MetaFork has the following natural

requirement regarding parallel regions: control flow cannot branche into or out of a

parallel region.

Similarly to CilkPlus, the parallel constructs of MetaFork grant permission

for concurrent execution but do not command it. Hence, a MetaFork program can

execute on a single core machine.

As mentioned above, MetaFork does not make any assumptions about the run-

time system, in particular about task scheduling. Another design intention is to

encourage a programming style limiting thread communication to a minimum so as

to

- prevent data-races while preserving a satisfactory level of expressiveness and,

- minimize parallelism overheads.

This principle is similar to one of CUDA’s principles [37] which states that the exe-

cution of a given kernel should be independent of the order in which its thread blocks

are executed.

To understand the implication of that idea in MetaFork, let us return to our con-

currency platforms targeting multicore architectures: OpenMP offers several clauses

which can be used to exchange information between threads (like threadprivate,

copyin and copyprivate) while no such mechanism exists in CilkPlus. Of course,

this difference follows from the fact that, in CilkPlus, one can only fork a func-

tion call while OpenMP allows other code regions to be executed concurrently.

MetaFork has both types of parallel constructs. But, for the latter, MetaFork

does not offer counterparts to the above OpenMP data attribute clauses. Data

attributes in MetaFork are discussed in Section 3.3.

3.2 Parallel constructs of MetaFork

MetaFork has four parallel constructs: function call spawn, block spawn, parallel

for-loop and synchronization barrier. The first two use the keyword meta fork while

29



the other two use respectively the keywords meta for and meta join. We stress

the fact that meta fork allows the programmer to spawn a function call (like in

CilkPlus) as well as a block (like in OpenMP).

3.2.1 Spawning a function call or a block with meta fork

As mentioned above, the meta fork keyword is used to express the fact that a function

call or a block is executed by a child thread, concurrently to the execution of the parent

thread. If the program is run by a single processor, the parent thread is suspended

during the execution of the child thread; when this latter terminates, the parent

thread resumes its execution after the function call (or block) spawn.

If the program is run by multiple processors, the parent thread may continue its

execution after the function call (or block) spawn, without being suspended, mean-

while the child thread is executing the function call (or block) spawn. In this latter

scenario, the parent thread waits for the completion of the execution of the child

thread, as soon as the parent thread reaches a synchronization point.

Spawning a function call, for the function f called on the argument sequence args

is done by

meta fork f(args)

The semantics is similar to those of the CilkPlus counterpart

cilk spawn f(args)

In particular, all the arguments in the argument sequence args are evaluated before

spawning the function call f(args). However, the execution of meta fork f(args)

differs from that of cilk spawn f(args) on one aspect: none of the return state-

ments of the function f assumes an implicit barrier. This design decision is motivated

by the fact that, in addition to fork-join parallelism, the MetaFork language may

be extended to other forms of parallelism such as parallel futures [39, 16].

Figure 3.1 illustrates how meta fork can be used to define a function spawn. The

underlying algorithm in this example is the classical divide and conquer quicksort

procedure.

The other usage of the meta fork construct is for spawning a basic block B, which

is done as follows:

meta fork { B }

30



#include <algorithm>

#include <iostream>

using namespace std;

void parallel_qsort(int * begin, int * end)

{

if (begin != end) {

--end; // Exclude last element (pivot) from partition

int * middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle); // move pivot to middle

meta_fork parallel_qsort(begin, middle);

parallel_qsort(++middle, ++end); // Exclude pivot and restore end

meta_join;

}

}

int main(int argc, char* argv[])

{

int n = 10;

int *a = (int *)malloc(sizeof(int)*n);

srand( (unsigned)time( NULL ) );

for (int i = 0; i < n; ++i)

a[i] = rand();

parallel_qsort(a, a + n);

return 0;

}

Figure 3.1: Example of a MetaFork program with a function spawn.

Note that if B consists of a single instruction, then the surrounding curly braces can

be omitted.

We also refer to the above as a parallel region. There is no equivalent in CilkPlus

while it is offered by OpenMP. Similarly to a function call spawn, no implicit barrier

is assumed at the end of the parallel region. Hence synchronization points have to be

added explicitly, using meta join; see the examples of Figure 3.2.

A variable v which is not local to B may be either shared by both the parent

and child threads; alternatively, the child thread may be granted a private copy of v.

Precise rules about data attributes, for both parallel regions and parallel for-loops,

are stated in Section 3.3.

Figure 3.2 below illustrates how meta fork can be used to define a parallel region.

31



long int parallel_scanup (long int x [], long int t [], int i, int j)

{

if (i == j) {

return x[i];

}

else{

int k = (i + j)/2;

int right;

meta_fork {

t[k] = parallel_scanup(x,t,i,k);

}

right = parallel_scanup (x,t, k+1, j);

meta_join;

return t[k] + right;}

}

Figure 3.2: Example of a MetaFork program with a parallel region.

The underlying algorithm is one of the two subroutines in the work-efficient parallel

prefix sum due to Guy Blelloch [15].

3.2.2 Parallel for-loops with meta for

Parallel for-loops in MetaFork have the following format

meta for (I, C, S) { B }

where I is the initialization expression of the loop, C is the condition expression of

the loop, S is the stride of the loop and B is the loop body. In addition:

- the initialization expression initializes a variable, called the control variable

which can be of type integer or pointer,

- the condition expression compares the control variable with a compatible ex-

pression, using one of the relational operators <, <=, >, >=, !=,

- the stride uses one the unary operators ++, --, +=, -+ (or a statement of the

form cv = cv + incr where incr evaluates to a compatible expression) in

order to increase or decrease the value of the control variable cv,

- if B consists of a single instruction, then the surrounding curly braces can be

omitted.

32



template<typename T> void multiply_iter_par(int ii, int jj, int kk, T* A, T* B,

T* C)

{

meta_for(int i = 0; i < ii; ++i)

for (int k = 0; k < kk; ++k)

for(int j = 0; j < jj; ++j)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];

}

Figure 3.3: Example of meta for loop.

An implicit synchronization point is assumed after the loop body, That is, the

execution of the parent thread is suspended when it reaches meta for and resumes

when all children threads (executing the loop body iterations) have completed their

execution.

As one can expect, the iterations of the parallel loop

meta for (I, C, S) B must execute independently from each other in

order to guarantee that this parallel loop is semantically equivalent to its serial

version for (I, C, S) B .

A variable v which is not local to B may be either shared by both the parent and

the children threads, or each child may be granted a private copy of v. Precise rules

about data attributes, for both parallel regions and parallel for-loops, are stated in

Section 3.3.

Figure 3.3 displays an example of meta for loop, where the underlying algorithm

is the naive (and cache-inefficient) matrix multiplication procedure.

3.2.3 Synchronization point with meta join

The construct meta join indicates a synchronization point (or barrier) for a parent

thread and its children tasks. More precisely, a parent thread reaching this point must

wait for the completion of the its children tasks but not for those of the subsequent

descendant tasks.

3.3 Data attribute rules

Let B be the block of a parallel region or the body of a parallel for-loop. We specify

hereafter the attribute rules for the variables that are non-local to B. We start by

reviewing a few standard definitions.

33



3.3.1 Terminology

3.3.1.1 Notions of shared and private variables

Consider a parallel region with block Y (resp. a parallel for-loop with loop body Y ).

We denote by X the immediate outer scope of Y . We say that X is the parent region

of Y and that Y is a child region of X.

A variable v which is defined in Y is said to be local to Y ; otherwise we call v a

non-local variable for Y . Let v be a non-local variable for Y . Assume v gives access

to a block of storage before reaching Y . (Thus, v cannot be a non-initialized pointer.)

We say that v is shared by X and Y if its name gives access to the same block of

storage in both X and Y ; otherwise we say that v is private to Y .

If Y is a parallel for-loop, we say that a local variable w is shared within Y

whenever the name of w gives access to the same block of storage in any loop iteration

of Y ; otherwise we say that w is private within Y .

3.3.1.2 Notions of value-type and reference-type variables

In the C programming language, a value-type variable contains its data directly as

opposed to a reference-type variable, which contains a reference to its data. Value-

type variables are either of primitive types (char, float, int, double and void) or

user-defined types (enum, struct and union). Reference-type variables are pointers,

arrays and functions.

3.3.1.3 Notions of static and const type variables

In the C programming language, a static variable is a variable that has been allocated

statically and whose lifetime extends across the entire run of the program. This is in

contrast to

- automatic variables (local variables are generally automatic), whose storage is

allocated and deallocated on the call stack and,

- other variables (such as objects) whose storage is dynamically allocated in heap

memory.

When a variable is declared with the qualifier const, the value of that variable cannot

typically be altered by the program during its execution.

34



3.3.2 Data attribute rules of meta fork

A non-local variable v which gives access to a block of storage before reaching Y is

shared between the parent X and the child Y whenever v is

(1) a global variable,

(2) a file scope variable,

(3) a reference-type variable,

(4) declared static or const,

(5) qualified shared.

In all other cases, the variable v is private to the child. In particular, value-type

variables (that are not declared static or const, or qualified shared and, that are

not global variables or file scope variables) are private to the child.

3.3.3 Data attribute rules of meta for

A non-local variable which gives access to a block of storage before reaching Y is

shared between parent and child.

A variable local to Y is shared within Y whenever it is declared static, otherwise

it is private within Y . In particular, loop control variables are private within Y .

3.3.4 Examples

In the example of Figure 3.4, the variables array, basecase, var and var1, are shared

by all threads while the variables i and j are private.

In the example of Figure 3.5, the variable n is private to fib parallel(n-1).

In Figure 3.6, we specify the variable x as shared and the variable n is still private.

Notice that the programs in Figures 3.5 and 3.6 are equivalent, in the sense that they

compute the same thing.

In Figure 3.7, the variables a, c, d, f and g are shared, meanwhile the variable b

and e are still private.

35



/* To illustrate file scope

variable, 3 files

(incl. a headerfile) are used.

This file is a.cpp */

#include<stdio.h>

extern int var;

void test(int *array)

{

int basecase = 100;

meta_for(int j = 0; j < 10; j++)

{

static int var1=0;

int i = array[j];

if( i < basecase )

array[j]+=var;

}

}

/* This file is b.cpp*/

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#include"a.h"

int var = 100;

int main(int argc, char **argv)

{

int *a=(int*)malloc(sizeof(int)*10);

srand((unsigned)time(NULL));

for(int i=0;i<10;i++)

a[i]=rand();

test(a);

return 0;

}

/* This file is a.h*/

void test(int *a);

Figure 3.4: Example of shared and private variables with meta for.

long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

x = meta_fork fib_parallel(n-1);

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 3.5: Example of private variables in a function spawn.

36



long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

meta_fork shared(x)

{

x = fib_parallel(n-1);

}

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 3.6: Example of a shared variable attribute in a parallel region.

#include<stdio.h>

#include<time.h>

#include<stdlib.h>

int a;

void subcall(int *a, int *b){

for(int i=0;i<10;i++)

printf("%d %d\n",a[i],b[i]);

}

long par_region(long n){

int b;

int *c = (int *)malloc(sizeof(int)*10);

int d[10];

const int f=0;

static int g=0;

meta_fork{

int e = b;

subcall(c,d);

}

}

int main(int argc, char **argv){

long n=10;

par_region(n);

return 0;

}

Figure 3.7: Example of various variable attributes in a parallel region.

37



3.4 Semantics of the parallel constructs in

MetaFork

The goal of this section is to formally define the semantics of each of the parallel con-

structs in MetaFork. To do so, we introduce the serial C-elision of a MetaFork

programM as a C program C whose semantics define those ofM. The program C is

obtained from the programM by a set of rewriting rules stated through Algorithm 1

to Algorithm 4.

As mentioned before, spawning a function call in MetaFork has the same seman-

tics as spawning a function call in CilkPlus. More precisely: meta fork f(args)

and cilk spawn f(args) are semantically equivalent.

Next, we specify the semantics of the spawning of a block in MetaFork. To this

end, we use Algorithms 2 and 3 which reduce the spawning of a block to that of a

function call:

- Algorithm 2 takes care of the case where the spawned block consists of a single

instruction, where a variable is assigned to the result of a function call,

- Algorithm 3 takes care of all other cases.

Note that, in the pseudo-code of those algorithms, the generate keyword is used

to indicate that a sequence of string literals and string variables is written to the

medium (file, screen, etc.) where the output program is being emitted.

A meta for loop allows iterations of the loop body to be executed in parallel.

By default, each iteration of the loop body is executed by a separate thread. How-

ever, using the grainsize compilation directive, one can specify the number of loop

iterations executed per thread

#pragma meta grainsize = expression

In order to obtain the serial C-elision a MetaFork for loops, it is sufficient to replace

meta for by for.

3.5 Translating code from CilkPlus to MetaFork

Translating code from CilkPlus to MetaFork is easy in principles since CilkPlus

is a subset of MetaFork. However, implicit CilkPlus barriers need to be explicitly

inserted in the target MetaFork code, see Figure 3.9. This implies that, during

translation, it is necessary to trace the structure of the CilkPlus parallel regions in

order to properly insert barriers in the generated MetaFork code.

38



Algorithm 1: Fork region(V , R)

Input: R is a statement of the form:

meta fork [shared(Z)] B

where Z is a sequence of variables, B is basic block of code, V is a list of all

variables occuring in the parent region of R and which are not local to

B.

Output: The serial C-elision of the above MetaFork statement.

1 L ← [Z] /* L is a list consisting of the items of the sequence Z

*/

2 if B consists of a single statement which is a function call without left-value

then

3 generate(B);

4 else if B consists of a single statement which is a function call with left-value

then

5 Function with lvalue(V , L, B);

6 else

7 Block call(V , L, B);

void function()

{

int i = 0, j = 0;

cilk_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

...

}

void function()

{

int i = 0, j = 0;

meta_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

...

}

Figure 3.8: Example of translating parallel for loop from CilkPlus to MetaFork

39



Algorithm 2: Function with lvalue(V , L, B)

Input: B is a statement of the form:

G = F(A);

where G is a left-value, A is an argument sequence, F is a function name and,

V, L are as in Algorithm 1.

Output: The serial C-elision of the MetaFork statement below:

meta fork [shared(Z)] G = F(A)

where L is [Z].

1 if (G not in L) and (G is a value-type variable) and (G is not declared static

or const) then

2 (E,H, P ) = Outlining region(V , L, B);

3 generate(E);

4 generate(H,” ( ”, P , ” ) ”);

5 else

6 generate(B);

Algorithm 3: Block call(V , L, B)

Input: V , L and B are as in Algorithm 1.

Output: The serial C function call of the above input.

1 (E,H, P ) = Outlining region(V , L, B);

2 generate(E);

3 generate(H,” ( ”, P , ” ) ”);

void test()

{

int x;

x = cilk_spawn test1();

}

void test()

{

int x;

x = meta_fork test1();

meta_join;

}

Figure 3.9: Example of inserting barrier from CilkPlus to MetaFork.

40



Algorithm 4: Outlining region(V , L, B)

Input: V , L and B are as in Algorithm 1.

Output: (E, H, P) where E is a function definition of the form

void H(T) {D}

H is a function name, T is a sequence of formal parameters, D is a function

body and P is a sequence of actual parameters such that H(P) is a valid

function call.

Note that the output is obtained in 2 passes: H(T) in Pass 1 and D in Pass 2.

1 let M be the subset of all variables in V that are value-type and declared static;

2 Initialize each of D, P , T to the empty string /* PASS 1 */

3 foreach variable v in V do

4 if v is redeclared in B and thus local to B then

5 do nothing

6 else if v is in L or in M then

7 append (“&” + v.name) to P

8 append (v.type + “ * “ + v.name) to T

9 else

10 append v.name to P

11 append (v.type + v.name) to T

12 Translate B verbatim except /* PASS 2 */

13 foreach right-value R within B do

14 if R is a function call G(A) then

15 Initialize A new to the empty list

16 foreach variable v in A do

17 if v in L or in M then

18 create a new variable name tmp

19 insert v.type tmp = v.value at the beginning of D

20 append tmp to A new

21 else

22 append v to A new

23 append G(A new) to D

24 else if R is in L or in M then

25 append (”*” + R.name) to D

26 else

27 append R to D
41



3.6 Translating code from MetaFork to CilkPlus

Since CilkPlus has no constructs for spawning a parallel region (which is not a

function call) we use the outlining technique (widely used in OpenMP) to wrap the

parallel region as a function, and then call that function concurrently. In fact, we

follow the algorithms of Section 3.4, that is Algorithms 1, 2, 3 and 4. Indeed, the

problem of translating code from MetaFork to CilkPlus is equivalent to that of

defining the serial elision of a MetaFork program.

void function()

{

int i, j;

meta_fork shared(i)

{

i++;

}

meta_fork shared(j)

{

j++;

}

meta_join;

}

void fork_func0(int* i)

{

(*i)++;

}

void fork_func1(int* j)

{

(*j)++;

}

void function()

{

int i, j;

cilk_spawn fork_func0(&i);

cilk_spawn fork_func1(&j);

cilk_sync;

}

Figure 3.10: Example of translating parallel region from MetaFork to CilkPlus.

void function()

{

int x;

meta_fork shared(x)

{

func1(x);

}

}

void function()

{

int x;

cilk_spawn func1(x);

}

Figure 3.11: Example of translating function spawn from MetaFork to CilkPlus.

42



void function()

{

int i = 0, j = 0;

meta_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

...

}

void function()

{

int i = 0, j = 0;

cilk_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

...

}

Figure 3.12: Example of translating parallel for loop from MetaFork to CilkPlus

3.7 Translation from OpenMP to MetaFork: ex-

amples

Algorithms translating OpenMP code to MetaFork will be presented in Chapter 4.

This section simply collects various translation examples.

3.7.1 Examples covering different cases of OpenMP Tasks

The following examples cover different scenarios of OpenMP Tasks when translating

OpenMP code to MetaFork code.

- There are no shared variables (see Figure 3.13).

- Array is a local variable and used inside the task region (see Figure 3.14).

- Variable x stores the value of the function func1 (see Figure 3.15).

- Variable x is passed as an argument to func1 (see Figure 3.16).

- Translating a block of a task (see Figure 3.17).

3.7.2 Translation from OpenMP Parallel for loop to

MetaFork

The scheduling strategies that are in OpenMP parallel for loops are ignored in

MetaFork.

43



void function()

{

int x;

#pragma omp task

{

x = func1();

}

#pragma omp task:

{

func2();

}

#pragma omp taskwait

}

void function()

{

int x;

meta_fork

{

x = func1();

}

meta_fork func2();

meta_join;

}

Figure 3.13: Example of translating task directive from OpenMP to MetaFork
without shared variable

void function()

{

int x[10];

#pragma omp task

{

func1(x);

}

...

#pragma omp taskwait

}

void function()

{

int x[10];

int temp[10];

memcpy(temp,x,sizeof(x));

meta_fork func1(temp);

...

meta_join;

}

Figure 3.14: Example of translating task directive from OpenMP to MetaFork
with private array

void function()

{

int x;

#pragma omp task shared(x)

{

x = func1();

}

...

#pragma omp taskwait

}

void function()

{

int x;

x = meta_fork func1();

...

meta_join;

}

Figure 3.15: Example of translating task directive from OpenMP tp MetaFork
with shared lvalue

44



void function()

{

int x;

#pragma omp task shared(x)

{

func1(x);

}

...

#pragma omp taskwait

}

void function()

{

int x;

meta_fork func1(x);

...

meta_join;

}

Figure 3.16: Example of translating task directive from OpenMP to MetaFork
with shared variable as parameter

void function()

{

int x;

char y;

#pragma omp task

{

x = 10;

y = ’c’;

func1(x);

}

...

#pragma omp taskwait

}

void function()

{

int x;

char y;

meta_fork

{

x = 10;

y = ’c’;

func1(x);

}

...

meta_join;

}

Figure 3.17: Example of translating task directive from OpenMP to MetaFork
with shared variable as parameter

The loop control variable is initialized inside the loop. Those variables that are de-

clared as private are reinitialized inside the parallel for loop region in MetaFork

(see Figure 3.18).

3.7.3 Translation from OpenMP sections to MetaFork

OpenMP allows us to spawn a particular region. This is also supported in

MetaFork. Since there is an implied barrier at the end of sections (unless there is

a nowait clause specified), a barrier at the end of the translated MetaFork code is

provided (see Figure 3.19).

45



void function()

{

int i = 0, j = 0;

#pragma omp parallel

{

#pragma omp for private(i, j)

for ( j = 0; j < ny; j++ )

{

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

}

...

}

void function()

{

int i = 0, j = 0;

meta_for ( int j = 0; j < ny; j++ )

{

int i;

for ( i = 0; i < nx; i++ )

{

u[i][j] = unew[i][j];

}

}

...

}

Figure 3.18: Example of translating parallel for loop from OpenMP to MetaFork

void function()

{

int i = 0, j = 0;

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

{

i++;

}

#pragma omp section

{

j++;

}

}

}

void function()

{

int i = 0, j = 0;

meta_fork shared(i)

{

i++;

}

meta_fork shared(j)

{

j++;

}

meta_join;

}

Figure 3.19: Example of translating sections from OpenMP to MetaFork

46



3.8 Translation from MetaFork to OpenMP: ex-

amples

Algorithms translating MetaFork code to OpenMP will be presented in Chapter 4.

This section simply collects various translation examples.

3.8.1 Translation from MetaFork to OpenMP Task

The meta fork statement can have the following forms:

- var = meta_fork function();

- meta_fork function();

- meta_fork [shared(var)]

block

In Figure 3.20 there is an example which shows how the above forms are translated

to OpenMP tasks.

void function()

{

int x = 0, i = 0;

x = meta_fork y();

meta_fork z();

meta_fork shared(i)

{

i++;

}

meta_join;

}

void function()

{

int x = 0, i = 0;

#pragma omp task shared(x)

{

x = y();

}

#pragma omp task

z();

#pragma omp task shared(i)

{

i++;

}

#pragma omp taskwait

}

Figure 3.20: Example of translating meta fork from MetaFork to OpenMP.

47



3.8.2 Translation from MetaFork parallel for loops to

OpenMP

This translation is straightforward and simple as shown in Figure 3.21.

void main()

{

int n = 10, j = 0;

meta_for(int i = 0; i < n; i++)

{

j = j+1;

}

}

void main()

{

int n = 10, j = 0;

#pragma omp parallel

{

#pragma omp for

for(int i = 0; i < n; i++)

{

j = j+1;

}

}

}

Figure 3.21: Example of translating parallel for loop from MetaFork to OpenMP.

48



Chapter 4

Implementation of the translators

between MetaFork and OpenMP

This chapter provides implementation details of our MetaFork source-to-source

compiler. More precisely this chapter deals with the translation from OpenMP to

MetaFork and vice-versa. Section 4.1 describes the implementation of the compiler

while translating from OpenMP to MetaFork. Section 4.2 describes the implemen-

tation of the compiler while translating from MetaFork to OpenMP. As stated

before in Section 3.2, MetaFork allows the programmer to spawn a function call

(like in Cilk) as well as a block (like in OpenMP). Recall that Section 3.4 defines

algorithms for translating code from Cilk to MetaFork and vice versa.

4.1 Translation strategy from OpenMP to

MetaFork

To translate parallel constructs from OpenMP to MetaFork, the translator’s scan-

ner rules have been implemented so as to accept the OpenMP directives that we

support (see Section 4.1.1). For the OpenMP directives that are not supported

in MetaFork, the translator reports an error. Most OpenMP directives that we

support allow for optional clauses (e.g: private,shared etc.) that specify the func-

tionality of the directives in a detailed manner. When the scanner encounters such an

optional clause, associated operations with respect to those clauses will be executed

accordingly. Token definitions that represent different OpenMP directives along with

optional clauses have been added in the scanner as rules. Depending on the type of

49



the directive, it is matched by its rule and associated operations take place. So, while

translating, the following steps are perfomed:

- The OpenMP parallel directives and their associated bodies are translated as

per the specifications of MetaFork and the translation takes place in two

passes.

- Header files necessary to OpenMP are removed.

- Everything else is copied verbatim.

As stated above, the translation from OpenMP to MetaFork takes place in

two passes:

1. In the first pass: (1) the source file(s) are scanned, (2) necessary information

(e.g. local variables, global variables etc ..) required for translation is stored

and (3) an intermediate file is generated. This is shown in Algorithm 5

2. In the second pass: the generated intermediate file becomes the parsed input

file and the target file is generated. In this pass, we only take care of the parallel

directives. Algorithms 6 to 14 describe this second pass.

4.1.1 OpenMP directives supported by the translators

OpenMP directives that we support and translate are given below:

1. Task directive as shown below:

#pragma omp task

The optional task directive clauses supported are shared, private and

firstprivate.

2. Parallel for directive as shown below:

#pragma omp for

The optional for directive clause supported is private

3. Sections directive as shown below:

#pragma omp sections

#pragma omp section

50



We only support the default variable attribute in sections.

4. Single directive as shown below:

#pragma omp single

None of the optional clauses are supported in single directive.

5. The synchronization constructs that we support are master, barrier and

taskwait directives which is shown below as well.

1. #pragma omp master

2. #pragma omp barrier

3. #pragma omp taskwait

4.1.2 Translating OpenMP’s omp tasks to MetaFork

In OpenMP, the task construct defines an explicit task, which may be executed by

the encountering thread, or deferred for execution by any other thread in the team.

When a thread encounters a task construct, a task is generated from the code for the

associated structured block. The data environment of the task is created according to

the data-sharing attribute clauses on the task construct and any defaults that apply.

The encountering thread may immediately execute the task, or defer its execution. A

task construct may be nested inside an outer task, but the task region of the inner

task is not a part of the task region of the outer task.

There are different cases listed below that have to be considered while translating

from OpenMP’s omp tasks to MetaFork’s meta fork. This case distinction is

about the block of code associated with the task directive:

1. the associated block contains only a statement which is a function call and does

not have the shared clause.

2. the associated block contains only a statement which is a function call and has

the shared clause.

3. the associated block contains only a statement which (1) is not a function call

or, (2) contains more than one statements (and thus might contain function

calls and other statements). In addition, this task might contain a shared

clause.

4. Tasks nested inside a task.

51



Below are the notations used in the algorithms listed in this chapter.

Notation 1. TASK: This denotes OpenMP task directive which is given below:

#pragma omp task

OPENMP FOR: This denotes OpenMP for directive which is given below:

#pragma omp for

OPENMP SECTIONS: This denotes OpenMP for directive which is given below:

#pragma omp sections

#pragma omp section

As in Section 3, our algorithms use the keyword generate to indicate that a

sequence of string literals and string variables is written to the medium (file, screen,

etc.) where the output program is being emitted.

Below are the list of algorithms which form the translation scheme from

OpenMP Tasks to MetaFork.

1. Algorithm 5 is the first pass in the translation. Example 6 illustrates Algo-

rithm 5.

2. Algorithm 6 is a high level algorithm used to convert OpenMP task to

MetaFork. Example 7 illustrates Algorithm 6.

3. Algorithms 7 and 8 state translation from OpenMP Tasks to MetaFork

with task’s body containing only a statement which is function call and with-

out shared clause. Examples 8 and 9 illustrate Algorithm 7 and Algorithm 8

respectively.

4. Algorithms 9 and 10 state translations from OpenMP Tasks to MetaFork

with task’s body containing only a statement which is function call with a

shared clause. Examples 10 and 11 illustrate Algorithm 9 and Algorithm 10

respectively.

5. Algorithm 11 states the translations from OpenMP Tasks to MetaFork

with task’s body containing either only a statement which is not a function

call or more than one statements (that might contain function and non-function

calls). This task might also have a shared clause. Example 12 illustrates

Algorithm 11.

52



Algorithm 5: first pass(F)

Input: F where F is a function definition.

Output: (A, W , E) where

- A is a list of the variables declared in F but not within a parallel construct,

- W is a list of the variables of A that: (1) are array variables used within an

OpenMP task region and, (2) not declared static and not qualified shared,

- E is a list of the variables of A that are present in the private clause of an

OpenMP for loop.

1 let M be a list of the local variables to F that are (1) array variables and, (2)

not declared static and not qualified shared.

2 Initialize A to empty list

3 Initialize W to empty list

4 Initialize E to empty list

5 foreach statement S in the body of F do

6 if S is not a parallel construct then

7 append to A every variable declared in R

8 if S is an OpenMP task then

9 foreach variable v in M used inside the task do

10 append v to W

11 if S is an OpenMP for directive then

12 if the private clause is present then

13 append all the variables present in the private clause to E

14 if S is an OpenMP sections then

15 do nothing

16 if S is any other OpenMP directive, thus not currently supported then

17 error (“Not supported yet”)

53



Algorithm 6: task translate(I)

Input: I is the OpenMP task statement of the form:

TASK [shared(Z)]

B

where

- TASK is the OpenMP task directive,

- Z is a sequence of variables,

- W as in Algorithm 5 and

- B is a basic block of code that contains only a single statement.

Output: A MetaFork statement semantically equivalent to the input

OpenMP statement.

1 Initialize N to empty list

2 foreach occurrence of variable v in list W do

3 create a tmp variable of type v

4 copy the blocks of storage accessible by v to tmp

5 append tmp to N

6 generate (N)

7 if there is no shared variables list Z in the TASK directive then

8 if there exists a function F in B and F has no left-value then

9 no shared no lvalue(I)

10 else if there exists a function F in B and F has left-value then

11 no shared with lvalue(I)

12 else if there is shared variables list Z in the TASK directive then

13 if there exists a function F in B and F has no left-value then

14 with shared no lvalue(I)

15 else if there exists a function F in B and F has left-value then

16 with shared and lvalue(I)

17 else

18 block call(I)

54



Algorithm 7: no shared no lvalue(I)

Input: I is the OpenMP task statement of the form:

TASK

F(P)

where

- TASK, N as in Algorithm 6,

- W as in Algorithm 5,

- F(P) is a function call where F is a function name and P is the argument

sequence.

Output: A MetaFork statement semantically equivalent to the input

OpenMP statement

1 foreach variable v common to list W and argument sequence P do

2 overwrite v in P by it’s corresponding variable tmp from N

3 generate (”meta fork”, F, “(”, P, “)”)

6. Nested tasks (i.e. tasks inside another task) In the case of nested tasks, the

inner-most task is processed first using Algorithm 6. The bodies of the outer

tasks must then be considered as block spawns.

Below are examples which explain all the above algorithms from Algorithm 5 to

Algorithm 11.

Example 6. Input is the below program:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

#pragma omp task

b = test1();

#pragma omp task

c = test2();

#pragma omp parallel

#pragma omp for

for(int i = 0; i < a; i++)

55



Algorithm 8: no shared with lvalue(I)

Input: I is the OpenMP task statement of the form:

TASK

Y = F(P)

Output: A MetaFork statement of one the following forms:

Y = meta fork F(P) or meta fork { Y = F(P) }

where

- TASK, meta fork, N as in Algorithm 6,

- W as in Algorithm 5,

- Y = F(P) is a function call where Y is the left-value F is a function name and

P is the argument sequence.

1 foreach variable v common to list W and argument sequence P do

2 overwrite v in P by it’s corresponding variable tmp from N

3 if left-value Y is in list W then

4 overwrite left-value Y by its corresponding variable tmp from N

5 generate (Y, “= meta fork”, F,“(”, P “)”)

6 else if left-value Y is in list A which are value-type and not declared static

then

7 generate (“meta fork {”, Y,“=”, F, “(”, P, “)”})

8 else

9 generate (Y, “= meta fork”, F,“(”, P “)”)

56



Algorithm 9: with shared no lvalue(I)

Input: I is the OpenMP task statement of the form:

TASK shared(Z)

F(P)

Output: A MetaFork statement of one of the following forms:

meta fork F(P) or meta fork shared(Z) F(P)

where

- TASK, meta fork, N as in Algorithm 6,

- Z is the sequence of shared variables.

- W as in Algorithm 5,

- F(P) is a function call where F is a function name and P is the argument

sequence.

1 if all the array variables in P are either qualified static or present in shared

variables Z then

2 generate (”meta fork”, F, “(”, P, “)”)

3 else

4 foreach array variable v in argument sequence P do

5 if variable v is either not qualified static or not present in shared

variables Z then

6 overwrite v in P by it’s corresponding variable tmp from N

7 generate (“meta fork shared”, “(”, Z, “) {”, F, “(”, P, “) }”)

57



Algorithm 10: with shared and lvalue(I)

Input: I is the OpenMP task statement of the form:

TASK shared(Z)

Y = F(P)

Output: A MetaFork statement of one of the following forms:

Y = meta fork F(P) or meta fork {Y = F(P)}

- TASK, meta fork, N as in Algorithm 6,

- Z is the sequence of shared variables.

- W as in Algorithm 5,

- Y = F(P) is a function call where Y is the left-value F is a function name and

P is the argument sequence.

1 foreach array variable v in argument sequence P do

2 if array variable v is either not qualified static or not present in shared

variables Z then

3 overwrite v in P by it’s corresponding variable tmp from N

4 if left-value Y is in list W then

5 overwrite left-value Y by corresponding variable from N

6 generate (Y, “= meta fork”, F,“(”, P “)”)

7 else if left-value Y is in list A which are value-type and not declared static

then

8 generate (“meta fork {”, Y,“=”, F, “(”, P, “)”})

9 else

10 generate (Y, “= meta fork”, F,“(”, P “)”)

58



Algorithm 11: block call(I)

Input: I is the OpenMP task statement of the form:

TASK [shared](Z)

B

where

- TASK, N , B as in Algorithm 6,

- Z is the sequence of shared variables.

- W as in Algorithm 5.

Output: A MetaFork statement semantically equivalent to the input

OpenMP statement

1 foreach variable v in B do

2 if variable v is in list W then

3 overwrite v by corresponding variable tmp from N

4 generate (“meta fork shared(”, Z “) {”,B}”)

{ a = d + i; }

#pragma omp parallel

#pragma omp for private(d)

for(int i = 0; i < a; i++)

{ a = a + i; }

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

{ i++; }

}

}

Output:

- List A will have variables a,b,c,d,

- List W will have variable b,

- List E will have variable d.

Example 7. Input is the below program:

59



void test() {

int a = 5;

int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task

test1();

#pragma omp task

c = test2();

#pragma omp task shared(d)

test1();

#pragma omp task shared(d)

c = test2();

}

Output:

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

#pragma omp task /* Algorithm 7 will be called */

test1();

#pragma omp task /* Algorithm 8 will be called */

c = test2();

#pragma omp task shared(d) /* Algorithm 9 will be called */

test3(d);

#pragma omp task shared(d) /* Algorithm 10 will be called */

c = test4(d);

#pragma omp task

b = a;

}

Example 8. Input is the below program:

void test() {

int a = 5;

60



int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task

test1(b)

#pragma omp task

test2(a);

}

Output:

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

meta_fork test1(temp); /* "b" is replaced by "temp" */

meta_fork test(a);

}

Example 9. Input is the below program:

int e = 10;

void test() {

int a = 5;

int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task

b = test1(b);

#pragma omp task

b = test2(a);

#pragma omp task

a = test3(a);

#pragma omp task

e = test4();

}

Output:

61



int e = 10;

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

temp = meta_fork test1(temp); /* "b" is replaced by "temp" */

temp = meta_fork test2(a);

meta_fork { a = test3(a); }

e = meta_fork test4(); /* "e" is a global variable

}

Example 10. Input is the below program:

void test() {

int a = 5;

int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task shared(b)

test1(b);

#pragma omp task shared(a)

test2(a,b);

}

Output:

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

meta_fork test1(temp); /* "b" is replaced by "temp" */

meta_fork shared(temp) { test2(a,temp); }

}

62



Example 11. Input is the below program:

int e = 10;

void test() {

int a = 5;

int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task shared(b)

b = test1(a);

#pragma omp task

a = test2();

#pragma omp task

e = test3();

}

Output:

int e = 10;

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

temp = meta_fork test1(a); /* "b" is replaced by "temp" */

meta_fork { a = test2(a); }

e = meta_fork test4(); /* "e" is a global variable

}

Example 12. Input is the below program:

void test() {

int a = 5;

int b[1] = {0,1}

static int c[10];

float d = 0;

#pragma omp task

b = a;

}

63



Output:

void test() {

int a = 5;

int b[1] = {0,1}

int temp[10]; /* new variable "temp" of type "b" is created

memcpy(temp,b,sizeof(b)); and the contents of "b" is copied to "temp".*/

static int c[10];

float d = 0;

meta_fork { temp = a; } /* "b" is replaced by "temp" */

}

4.1.3 Translating OpenMP’s omp for to MetaFork

The OpenMP for directive specifies that the iterations of the loop immediately

following it must be executed in parallel by the team. This assumes a parallel region

has already been initiated, otherwise it executes serially.

The scheduling strategies that are in OpenMP parallel for loops are ignored in

MetaFork. The loop initialization variable is initialized inside the loop. Those

variables that are declared as private in OpenMP are reinitialized inside the for

loop body in MetaFork.

There will be two changes that occur while translating from OpenMP for loop

to MetaFork for loop.

• The private clause variables specified in an OpenMP for loop are initialized

inside the body of the MetaFork for loop,

• The stride part in the MetaFork for loop accepts one of the unary operators

++, –, +=, -+ (or a statement of the form cv += incr where incr evaluates to a

compatible expression) in order to increase or decrease the value of the control

variable cv. But OpenMP accepts stride of the form cv = cv + incr. So, we

change the representation of stride part while translating from OpenMP for

loop to MetaFork for loop.

Note that we only support private clause of an OpenMP for directive.

Below are the algorithms that shows the translation of OpenMP for loops to

MetaFork for loops.

1. Algorithm 12 shows the translation from OpenMP for loops to MetaFork

for loops without private clause variables. Example 13 depicts Algorithm 12.

64



2. Algorithm 13 shows the translation from OpenMP for loops to MetaFork

for loops with private clause variables. Example 14 depicts Algorithm 13.

Algorithm 12: For loops without private clause variables

Input: A OpenMP for statement of the form:

OPENMP FOR

for (I ; C ; S) { B }

where

- OPENMP FOR is the OpenMP for loops directive,

- for() is a parallel for loop,

- I is the initialization expression,

- C is the condition expression,

- S is the stride of the loop,

- B is the body of the loop.

Output: A MetaFork statement semantically equivalent to the input

OpenMP statement

1 let N be a pattern of the form cv = cv + incr where cv is the control variable

and incr evaluates to a compatible expression

2 let A be a pattern of the form cv+ = incr where cv is the control variable and

incr evaluates to a compatible expression

3 if S admits the sub-expression matching the pattern N then

4 replace sub-expression S by pattern A

5 generate ( “meta for”, “(”,I, “;”, C, “;”, A, “)”, “{”, B, “}”)

6 else

7 generate ( “meta for”, “(”,I, “;”, C, “;”, S, “)”, “{”, B, “}”)

Below are examples which explain the algorithms Algorithm 12 to Algorithm 13.

Example 13. Input is the below program:

void test() {

int a = 5;

int b[10];

static int c[10];

65



Algorithm 13: For loops with private clause variables

Input: A OpenMP for statement of the form:

OPENMP FOR private(Z)

for (I ; C ; S) { B }

where

- OPENMP FOR, meta for, for(), I, C, S as in Algorithm 12

- Z is a sequence of private variables.

Output: A MetaFork statement semantically equivalent to the input

OpenMP statement

1 let N be a pattern of the form cv = cv + incr where cv is the control variable

and incr evaluates to a compatible expression

2 let A be a pattern of the form cv+ = incr where cv is the control variable and

incr evaluates to a compatible expression

3 if S admits the sub-expression matching the pattern N then

4 replace sub-expression S by pattern A

5 generate ( “meta for for”, “(”,I, “;”, C, “;”, A, “)”, “{” Z , B, “}”)

6 else

7 generate ( “meta for”, “(”,I, “;”, C, “;”, S, “)”, “{”, Z , B, “}”)

float d = 0;

#pragma omp parallel

#pragma omp for

for(int i = 0; i < a; i++)

{ a = a + i; }

}

Output:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

meta_for(int i = 0; i < a; i++)

{ a = a + i; }

66



}

Example 14. Input is the below program:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

#pragma omp parallel

#pragma omp for private(d)

for(int i = 0; i < a; i++)

{ a = d + i; }

}

Output:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

meta_for(int i = 0; i < a; i++)

{ float d = 0;

a = d + i; }

}

4.1.4 Translating OpenMP’s omp sections to MetaFork

The sections directive is a non-iterative work-sharing construct. Independent

section directives are nested within a sections directive. OpenMP allows us to

spawn a particular region. This is also supported in MetaFork. Since there is

an implied barrier at the end of sections directive (unless there is a nowait clause

specified), a barrier at the end of sections directive in MetaFork is provided.

Algorithm 14 shows the translation from OpenMP sections to MetaFork.

Example 15 depicts Algorithm 14.

Example 15. Input is the below program:

void test() {

int a = 5;

67



Algorithm 14: OpenMP sections to MetaFork’s meta fork

Input: The OpenMP sections statement of the form:

OPENMP SECTIONS { B }

Output: A MetaFork fork statement of the form:

meta fork { B } or meta fork shared(A) { B }

where

- OPENMP SECTIONS is the OpenMP sections directive,

- meta fork is the MetaFork keyword for spawning a region,

- B is a basic block of code,

- A is a sequence of shared variables.

1 Initialize A to empty list

2 foreach variable v in B do

3 if variable v is a non-local variable to B then

4 if variable v is not declared static in the parent region on B then

5 append variable v to list A

6 if A is non-empty then

7 generate (“meta fork shared”, “(”, A, “)”, B)

8 else

9 generate (“meta fork”, B)

int b[10];

static int c[10];

float d = 0;

int i = 1;

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

{ i++; }

}

}

68



Output:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

int i = 1;

meta_fork shared(i)

{ i++; }

}

4.2 Translation strategy from MetaFork to

OpenMP

MetaFork does not make any assumptions about the run-time system, in particular

about task scheduling. It has four parallel constructs: function call spawn, block

spawn, parallel for-loop and synchronization barrier. The first two use the keyword

meta fork while the other two use respectively the keywords meta for and meta join.

We stress the fact that MetaFork allows the programmer to spawn a function call

(like in Cilk) as well as a block (like in OpenMP).

4.2.1 Translating from MetaFork’s meta fork to OpenMP

1. Algorithm 15 is a higher level algorithm that tells the translator whether it’s a

function spawn or a block spawn.

2. Algorithms 16 to 18 show the translations from MetaFork’s meta fork function

spawn to OpenMP Tasks. Examples 16 to 18 depicts Algorithm 16 to 18

3. Translating from MetaFork’s meta fork block spawn to OpenMP task. This

is a straightforward case and translation is simple and elegant. MetaFork

keyword with/without shared qualifier is simply replaced by OpenMP directive

with/without shared clause respectively.

Example 16. Input is the below program:

void test() {

int i = 1;

69



Algorithm 15: meta high level(I)

Input: I is the MetaFork fork statement of the form:

meta fork B

where

- meta fork is MetaFork keyword,

- B is a basic block of code that contains only a single statement.

Output: An OpenMP statement semantically equivalent to the input

MetaFork statement.

1 if there exists a function F in B then

2 if function F has no left-value then

3 meta without lvalue(I)

4 else if there exists a function F in B then

5 if function F has left-value then

6 meta with lvalue(I)

7 else

8 meta block call(I)

meta_fork test1(i);

meta_fork shared(i) { test2(i); }

}

Output:

void test() {

int i = 1;

#pragma omp task

test1(i);

#pragma omp task shared(i)

{ test2(i); }

}

Example 17. Input is the below program:

void test() {

70



Algorithm 16: meta without lvalue(I)

Input: The MetaFork fork statement of the form:

meta fork F(P)

where

- F(P) is a function call where F is the function name, P is the argument

sequence,

- meta fork as in Algorithm 15.

Output: An OpenMP statement semantically equivalent to the input

MetaFork statement

1 let A be a list of the local variables to F that are (1) array variables and, (2)

not declared static.

2 let S be initialized to empty list

3 foreach variable v in list A do

4 if v is in argument sequence P then

5 append v to list S

6 if list S is non-empty then

7 generate (TASK, “shared(”, S, “)\n”)

8 generate (F, “(”, P, “)”)

9 else

10 generate (TASK, “\n”)

11 generate (F, “(”, P, “)”)

int i = 1;

int b[1] = {0,1};

b = meta_fork test1(b,i);

i = meta_fork { test2(i); }

i = meta_fork test1(b);

}

Output:

void test() {

int i = 1;

int b[1] = {0,1};

#pragma omp task shared(b)

71



Algorithm 17: meta with lvalue(I)

Input: A MetaFork fork statement of the form:

Y = meta fork F(P)

where

- Y = F(P) is a function call where Y is the left-value F is the function name, P

is the argument sequence,

- meta fork and TASK as in Algorithm 15.

Output: An OpenMP statement semantically equivalent to the input

MetaFork.

1 let A be a list of the local variables to F that are (1) array variables and, (2)

not declared static.

2 let S be initialized to empty list

3 foreach variable v in list A do

4 if variable v is in argument sequence P then

5 append variable v to list S

6 if left-value Y is in list A then

7 if list S is non-empty then

8 generate (TASK, “shared(”, Y , S“)\n”)

9 generate(Y, “=”, F ,“(”,P“)”)

10 else

11 generate (TASK, “shared(”, Y “)\n”)

12 generate(Y, “=”, F ,“(”,P“)”)

13 else if list S is non-empty then

14 generate (TASK, “shared(”S“)\n”)

15 generate(Y, “=”, F ,“(”,P“)”)

16 else

17 generate (TASK)

18 generate (Y, “=”, F ,“(”,P“)”)

72



Algorithm 18: meta block call(I)

Input: A MetaFork fork statement of the form:

meta fork B

where

- meta fork as in Algorithm 15,

- B is the basic block of code.

Output: An OpenMP statement semantically equivalent to the input

MetaFork statement

1 Initialize S to empty list

2 foreach variable v in B do

3 if v is an array variable then

4 append v to list S

5 if list S is non-empty then

6 generate (TASK, “shared(”, S“)\n”)

7 generate(B)

8 else

9 generate (TASK “\n”)

10 generate(B)

b = test1(i);

#pragma omp task shared(i)

{ test2(i); }

#pragma omp task shared(b)

i = test1(b);

}

Example 18. Input is the below program:

void test() {

int b[0];

int a = 5;

meta_fork

{ b[0] = a; }

}

73



Output:

void test()

{

int b[0];

int a = 5;

#pragma omp task shared(b)

{ b[0] = a; }

}

4.2.2 Translating from MetaFork’s meta for to OpenMP

The MetaFork keyword for the for loop is replaced by OpenMP parallel for loop

directive. Example 19 shows how MetaFork for loop is translated to OpenMP for

loop.

Example 19. Input is the below program:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

meta_for(int i = 0; i < a; i++)

{ float d = 0;

a = d + i; }

}

Output:

void test() {

int a = 5;

int b[10];

static int c[10];

float d = 0;

#pragma omp parallel

#pragma omp for

for(int i = 0; i < a; i++)

{ float d = 0;

a = d + i; }

}

74



Chapter 5

Experimental evaluation

The work reported in this chapter evaluates the correctness, performance and use-

fulness of the four MetaFork translators (MetaFork to CilkPlus, CilkPlus

to MetaFork, MetaFork to OpenMP, OpenMP to MetaFork) introduced in

Chapter 3. To this end, we run these translates on various input programs written

either in CilkPlus or OpenMP, or both. Two series of experiences are conducted:

their set up is described in Section 5.1 meanwhile the results appear in Sections 5.2

and 5.3 respectively.

We stress the fact that our purpose is not to compare the performance of the

CilkPlus or OpenMP run-time systems and programming environments. The

reader should notice that the codes used in this experimental study were written

by different persons with different levels of expertise. In addition, the reported ex-

perimentation is essentially limited to one architecture (Intel Xeon) and one compiler

(GCC). Therefore, it is delicate to draw any clear conclusions that would compare

CilkPlus or OpenMP. For this reason, this questions is not addressed in this thesis

And, once again, this is not the purpose of this work.

5.1 Experimentation set up

We conducted two experiments. In the first one, we compared the performance of

hand-written codes. The motivation, recalled from the introduction, is compara-

tive implementation. The underlying observation is that the same multithreaded

algorithm, based on the fork-join parallelism model, implemented with two different

concurrency platforms, say CilkPlus and OpenMP, could result in very different

performance, often very hard to analyze and compare. If one code scales well while

the other does not, one may suspect an efficient implementation of the latter as well

75



as other possible causes such as higher parallelism overheads. Translating the inef-

ficient code to the other language can help narrowing the problem. Indeed, if the

translated code still does not scale one can suspect an implementation issue (say the

programmer missed to parallelize one portion of the algorithm) whereas if it does

scale, then one can suspect a parallelism overhead issue in the original code (say the

grain-size of the parallel for-loop is too small).

For this experience, we use a series of test-cases consisting of a pair of programs,

one hand-written OpenMP program and one, hand-written CilkPlus program.

We observe that one program (written by a student) has a performance bottleneck

while its counterpart (written by an expert programmer) does not. We translate

the inefficient program to the other language, then check whether the performance

bottleneck remains or not, so as to narrow the performance bottleneck in the inefficient

program.

Our second experience, also motivated in the introduction, is dedicated to auto-

matic translation of highly optimized code. Now, for each test-case, we have either

a hand-written-and-optimized CilkPlus program or a hand-written-and-optimized

OpenMP. Our goal is to determine whether or not the translated programs have

similar serial and parallel running times as their hand-written-and-optimized coun-

terparts.

For both experiences, apart from student’s code, the code that we use comes from

the following the sources:

- John Burkardt’s Home Page (Florida State University)

http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html

- Barcelona OpenMP Tasks Suite (BOTS) [26]

- CilkPlus distribution examples http://sourceforge.net/projects/cilk/

The source code of those test case was compiled as follows:

- CilkPlus code with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus

- CilkPlus code with GCC 4.8 using -O2 -g -fopenmp

All our compiled programs were tested on

- AMD Opteron 6168 48core nodes with 256GB RAM and 12MB L3

- Intel Xeon 2.66GHz/6.4GT with 12 physical cores and hyper-threading,

The two main quantities that we measure are:

- scalability by running our compiled OpenMP and CilkPlus programs on p =

1, 2, 4, 6, 8, . . . processors; speedup curves data are shown in Figures 5.4, 5.3,

5.2, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16 and 5.17 is

76

http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://sourceforge.net/projects/cilk/


mainly collected on Intel Xeon’s nodes (for convenience) and repeated/verified

on AMD Opteron nodes.

- parallelism overheads by running our compiled OpenMP and CilkPlus pro-

grams on p = 1 against their serial elisions. This is shown in Table 5.1

As mentioned in the introduction, validating the correctness of our translators

was a major requirement of our work. Depending on the test-case, we could use one

or the other following strategy.

- Assume that the original program, say P , contains both a parallel code and

its serial elision (manually written). When program P is executed, both codes

run and compare their results. Let us call Q the translated version of P . Since

serial elisions are unchanged by our translation procedures, then Q can be

verified by the same process used for program P . This first strategy applies

to the Cilk++ distribution examples and the BOTS (Barcelona OpenMP Tasks

Suite) examples

- If the original program P does not include a serial elision of the parallel code,

then the translated program Q is verified by comparing the output of P and Q.

This second strategy had to be applied to the FSU (Florida State University)

examples.

5.2 Comparing hand-written codes

5.2.1 Matrix transpose

In this example, the two original parallel programs are based on different algorithms

for matrix transposition which is a challenging operation on multi-core architectures.

Without doing complexity analysis, discovering that the OpenMP code (written by

a student) runs in O(n2 log(n)) bit operations instead of O(n2) as the CilkPlus

(written by Matteo Frigo) is very subtle.

Figure 5.1 shows code snippet for the matrix transpose program for both original

CilkPlus and translated OpenMP. Figure 5.2 shows the running time of both the

original OpenMP and the translated OpenMP code from the original CilkPlus

code and it suggests that the code translated from CilkPlus to OpenMP is more

appropriate for fork-join multi-threaded languages targeting multicores because of the

algorithm used in CilkPlus code.

77



/*---------------Original CilkPlus code-------------*/

template <typename T>

void transpose(T *A, int lda, T *B, int ldb,

int i0, int i1, int j0, int j1)

{

tail:

int di = i1 - i0, dj = j1 - j0;

if (di >= dj && di > THRESHOLD) {

int im = (i0 + i1) / 2;

cilk_spawn transpose(A, lda, B, ldb, i0, im, j0, j1);

i0 = im; goto tail;

} else if (dj > THRESHOLD) {

int jm = (j0 + j1) / 2;

cilk_spawn transpose(A, lda, B, ldb, i0, i1, j0, jm);

j0 = jm; goto tail;

} else {

for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

B[j * ldb + i] = A[i * lda + j];

}

}

/*---------------Translated OpenMP code-------------*/

template <typename T>

void transpose(T *A, int lda, T *B, int ldb,

int i0, int i1, int j0, int j1)

{

tail:

int di = i1 - i0, dj = j1 - j0;

if (di >= dj && di > THRESHOLD) {

int im =(i0 + i1) / 2;

#pragma omp task

transpose(A, lda, B, ldb, i0, im, j0, j1);

i0 = im; goto tail;

} else if (dj > THRESHOLD) {

int jm =(j0 + j1) / 2;

#pragma omp task

transpose(A, lda, B, ldb, i0, i1, j0, jm);

j0 = jm; goto tail;

} else {

for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j)

B[j * ldb + i] = A[i * lda + j];

}

#pragma omp taskwait

}

Figure 5.1: Code snippet for the matrix transpose program

78



Figure 5.2: Matrix transpose : n = 32768

Figure 5.3: Matrix inversion : n = 4096

5.2.2 Matrix inversion

In this example, the two original parallel programs are based on different serial algo-

rithms for matrix inversion. The original OpenMP code uses Gauss-Jordan elimina-

tion algorithm while the original CilkPlus code uses a divide-and-conquer approach

based on Schur’s complement. Figure 5.3 shows the running time of both the original

OpenMP and the translated OpenMP code from the original CilkPlus code.

As in the previous example, the translation narrows the algorithmic issue in this

example as well.

79



Figure 5.4: Mergesort (Student’s code) : n = 5 · 108

5.2.3 Mergesort

There are two different versions of this example. The original OpenMP code (writ-

ten by a student) misses to parallelize the merge phase and simply spawns the two

recursive calls whereas the original CilkPlus code (written by an expert) does both.

Figure 5.4 shows the running time of both the original OpenMP and the translated

OpenMP code from the original CilkPlus code.

As you can see in Figure 5.4 the speedup curve of the translated OpenMP code

is as theoretically expected while the speedup curve of the original OpenMP code

shows a limited scalability.

Hence, the translated OpenMP (and the original CilkPlus program) exposes

more parallelism, thus narrowing the performance bottleneck in the original OpenMP

code.

5.2.4 Naive matrix multiplication

This is the naive three-nested-loops matrix multiplication algorithm, where two loops

have been parallelized. The parallelism is O(n2) as for DnC MM. However, the ratio

work-to-memory-access is essentially equal to 2, which is much less that for DnC

MM. This limits the ability to scale and reduces performance overall on multicore

processors. Figure 5.5 shows the speed-up curve for naive matrix multiplication.

As you can see from Figure 5.5 both CilkPlus and OpenMP scale poorly be-

cause of algorithmic issues.

80



Figure 5.5: Naive Matrix Multiplication : n = 4096

5.3 Automatic translation of highly optimized

code

5.3.1 Fibonacci number computation

In this example, we have translated the original CilkPlus code to OpenMP. The

algorithm used in this example has high parallelism and no data traversal. The speed-

up curve for computing Fibonacci with inputs 45 and 50 are shown in Figure 5.6(a)

and Figure 5.6(b) respectively.

As you can see from Figure 5.6 CilkPlus (original) and OpenMP (translated)

codes scale well.

5.3.2 Divide-and-conquer matrix multiplication

In this example, we have translated the original CilkPlus code to OpenMP code.

The divide-and-conquer algorithm of [29] is used to compute matrix multiplication.

This algorithm has high parallelism and optimal cache complexity. It is also data-

and-compute-intensive. The speed-up curve after computing matrix multiplication

with inputs 4096 and 8192 are shown in Figure 5.7(a) and Figure 5.7(b) respectively.

As you can see from Figure 5.7 CilkPlus (original) and OpenMP (translated)

codes scale well.

81



(a) Fibonacci : 45 (b) Fibonacci : 50

Figure 5.6: Speedup curve on Intel node

(a) DnC MM : 4096 (b) DnC MM : 8192

Figure 5.7: Speedup curve on intel node

82



(a) Prefix sum : n = 5 · 108 (b) Prefix sum : n = 109

Figure 5.8: Speedup curve on Intel node

5.3.3 Parallel prefix sum

In this example, we have translated the original CilkPlus code to OpenMP code.

The algorithm [15] used in this example has high parallelism, low work-to-memory-

access ratio which is (O(log(n)) traversals for a O(n) work. The speed-up curves with

inputs 5 · 108 and 109 are shown in Figure 5.8(a) and Figure 5.8(b) respectively.

As you can see from Figure 5.7 CilkPlus (original) and OpenMP (translated)

codes scale well at almost the same rate.

5.3.4 Quick sort

This is the classical quick-sort where the division phase has not been parallelized, on

purpose. Consequently, the theoretical parallelism drops to (log(n)). The ratio of

work-to-memory-access is constant. The speed-up curve for quick sort is shown in

Figure 5.9(a) and Figure 5.9(b).

As you can see from Figure 5.9 CilkPlus (original) and OpenMP (translated)

codes scale at almost the same rate.

83



(a) Quick Sort: n = 2 · 108 (b) Quick Sort: n = 5 · 108

Figure 5.9: Speedup curve on Intel node

5.3.5 Mandelbrot set

The Mandelbrot set 1 is a mathematical set of points whose boundary is a distinctive

and easily recognizable two-dimensional fractal shape.

Mandelbrot set images are made by sampling complex numbers and determining

for each whether the result tends towards infinity when a particular mathematical

operation is iterated on it. Treating the real and imaginary parts of each number as

image coordinates, pixels are colored according to how rapidly the sequence diverges,

if at all.

In this example, algorithm is compute-intensive and does not traverse large data.

The running time after computing the Mandelbrot set with grid size of 500x500 and

2000 iterations is shown in Figure 5.10.

As you can see from Figure 5.10 the speed-up is close to linear since this application

is embarrassingly parallel. Both OpenMP (original) and CilkPlus (translated)

codes scale at almost the same rate.

5.3.6 Linear system solving (dense method)

In this example, different methods of solving the linear system A*x=b are compared.

In this example there is a standard sequential code and slightly modified sequential

1http://en.wikipedia.org/wiki/Mandelbrot_set

84

http://en.wikipedia.org/wiki/Mandelbrot_set


Figure 5.10: Mandelbrot set for a 500× 500 grid and 2000 iterations.

Figure 5.11: Linear system solving (dense method)

code to take advantage of OpenMP. The algorithm in this example uses Gaussian

elimination.

This algorithm has lots of parallelism. However, minimizing parallelism overheads

and memory traffic is a challenge for this operation. The running time of this example

is shown in Figure 5.11.

As you can see from the Figure 5.11 both OpenMP (original) and CilkPlus

(translated) codes scale well up to 12 cores. Note that that we are experimenting on

a Xeon node with 12 physical cores with hyper-threading turned on.

85



Figure 5.12: FFT (FSU) over the complex in size 225.

Test input size CilkPlus OpenMP

Serial T1 serial T1

FFT (BOTS) 33554432 7.50 8.12 7.54 7.82

MergeSort (BOTS) 33554432 3.55 3.56 3.57 3.54

Strassen 4096 17.08 17.18 16.94 17.11

SparseLU 128 568.07 566.10 568.79 568.16

Table 5.1: Running times on Intel Xeon 12-physical-core nodes (with hyperthreading
turned on).

5.3.7 FFT (FSU version)

This example demonstrates the computation of a Fast Fourier Transform in parallel.

The algorithm used in this example has low work-to-memory-access ratio which is

challenging to implement efficiently on multi-cores. The running time of this example

is shown in Figure 5.12.

As you can see from the Figure 5.12 both OpenMP (original) and CilkPlus

(translated) codes scale well up to 8 cores.

Table 5.1 shows the running time of the serial version v/s single core for some of

the examples.

86



Figure 5.13: Protein alignment - 100 Proteins.

5.3.8 Barcelona OpenMP Tasks Suite

Barcelona OpenMP Tasks Suite (BOTS) project [26] is a set of applications exploiting

regular and irregular parallelism, based on OpenMP tasks.

5.3.9 Protein alignment

Alignment application aligns all protein sequences from an input file against every

other sequence using the Myers and Miller [36] algorithm.

The alignments are scored and the best score for each pair is provided as a result.

The scoring method is a full dynamic programming algorithm. It uses a weight

matrix to score mismatches, and assigns penalties for opening and extending gaps.

The output is the best score for each pair of them. The speed-up curve for this

example is shown in Figure 5.13.

This algorithm is compute-intensive and has few coarse grained tasks which is a

challenge for the implementation to avoid load balance situations. As you can see

from the Figure 5.13 both OpenMP (original) and CilkPlus (translated) codes

scale almost same up to 8 cores.

5.3.10 FFT (BOTS version)

In this example, FFT computes the one-dimensional Fast Fourier Transform of a

vector of n complex values using the Cooley-Tukey [21] algorithm. It’s a divide and

87



Figure 5.14: FFT (BOTS).

conquer algorithm that recursively breaks down a Discrete Fourier Transform (DFT)

into many smaller DFTs. The speed-up curve for this example is shown in Figure 5.14.

5.3.11 Merge sort (BOTS version)

Sort example sorts a random permutation of n 32-bit numbers with a fast parallel

sorting variation [3] of the ordinary merge sort. First, it divides an array of elements

in two halves, sorting each half recursively, and then merging the sorted halves with

a parallel divide-and-conquer method rather than the conventional serial merge. The

speed-up curve for this example is shown in Figure 5.15.

Hence, the translated CilkPlus (and the original OpenMP program) exposes

more parallelism, thus narrowing the performance bottleneck in the original OpenMP

code.

5.3.12 Sparse LU matrix factorization

Sparse LU computes an LU matrix factorization over sparse matrices. A first level

matrix is composed by pointers to small submatrices that may not be allocated. Due

to the sparseness of the matrix, a lot of imbalance exists.

Matrix size and submatrix size can be set at execution time which can reduce the

imbalance, a solution with tasks parallelism seems to obtain better results [14]. The

speed-up curve for this example is shown in Figure 5.16

This algorithm is compute-intensive and has few coarse grained tasks which is a

88



Figure 5.15: Mergesort (BOTS).

Figure 5.16: Sparse LU matrix factorization.

89



Figure 5.17: Strassen matrix multiplication.

challenge for the implementation to avoid load balance situations. As you can see

from the Figure 5.16 both OpenMP (original) and CilkPlus (translated) codes

scale almost same. Note that that we are experimenting on a Xeon node with 12

physical cores with hyperthreading turned on.

5.3.13 Strassen matrix multiplication

Strassen algorithm 2 uses hierarchical decomposition of a matrix for multiplication of

large dense matrices [27]. Decomposition is done by dividing each dimension of the

matrix into two sections of equal size. The speed-up curve for this example is shown

in Figure 5.17

As you can see from the Figure 5.17 both OpenMP (original) and CilkPlus

(translated) codes scale almost same.

5.4 Concluding remarks

Examples in Section 5.2 suggest that our translators can be used to narrow perfor-

mance bottlenecks. By translating a parallel program with low performance, we could

suspect the cause of inefficiency whether this cause was a poor implementation (in

the case of mergesort, where not enough parallelism was exposed) or an algorithm

2http://en.wikipedia.org/wiki/Strassen_algorithm

90

http://en.wikipedia.org/wiki/Strassen_algorithm


inefficient in terms of data locality (in the case of matrix inversion) or an algorithm

inefficient in terms of work (in the case of matrix transposition).

For Section 5.3, we observe that, in most cases, the speed-up curves of the orig-

inal and translated codes either match or have similar shape. Nevertheless in some

cases, either the original or the translated program outperforms its counterpart. For

instance the original CilkPlus programs for Fibonacci and the divide-and-conquer

matrix multiplication perform better than their translated OpenMP counterparts,

see Figure 5.6 and Figure 5.7 respectively.

For the original OpenMP programs from FSU, (Mandelbrot Set, Linear solving

system and FFT (FSU version) the speed-up curves of the original programs are close

to those of the translated CilkPlus programs. This is shown by Figures 5.10, 5.11

and 5.12 respectively.

The original OpenMP programs from BOTS offer different scenarios. First, for

the sparse LU and Strassen matrix multiplication examples, original and translated

programs scale in a similar way, see Figure 5.16 and Figure 5.17 respectively. Sec-

ondly, for the mergesort (BOTS) and FFT (BOTS) examples, translated programs

outperform their original counterparts., see Figure 5.15 and Figure 5.14 respectively.

For the protein alignment example, the scalability of the translated CilkPlus pro-

gram and the original OpenMP program are the same from 2 to 8 cores while after

8 cores the latter outperform the former, as shown in Figure 5.13.

91



Bibliography

[1] CUDA. http://www.nvidia.com/object/cuda home new.html.

[2] Ravi Sethi Aho, Alfred V. and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison-Wesley, Reading, Massachusetts, 2006.

[3] S. G. Akl and N. Santoro. Optimal parallel merging and sorting without memory

conflicts. IEEE Trans. Comput., 36(11):1367–1369, November 1987.

[4] OpenMP ARB. OpenMP. http://openmp.org/wp/.

[5] OpenMP ARB. OpenMP C/C++ 1.0. http://www.openmp.org/mp-documents/cspec10.pdf.

[6] OpenMP ARB. OpenMP C/C++ 2.0. http://www.openmp.org/mp-documents/cspec20.pdf.

[7] OpenMP ARB. OpenMP C/C++ 3.0. http://www.openmp.org/mp-documents/cspec30.pdf.

[8] OpenMP ARB. OpenMP C/C++ 3.1. http://www.openmp.org/mp-documents/OpenMP3.1.pdf.

[9] OpenMP ARB. OpenMP C/C++ 4.0. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[10] OpenMP ARB. OpenMP Fortran 1.0. http://www.openmp.org/mp-documents/fspec10.pdf.

[11] OpenMP ARB. OpenMP Fortran 2.0. http://www.openmp.org/mp-documents/fspec20.pdf.

[12] OpenMP ARB. OpenMP Fortran 2.5. http://www.openmp.org/mp-documents/fspec25.pdf.

[13] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin,

Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang.

The design of openmp tasks. IEEE Trans. Parallel Distrib. Syst., 20(3):404–418,

2009.

[14] Eduard Ayguadé, Alejandro Duran, Jay Hoeflinger, Federico Massaioli, and

Xavier Teruel. Languages and compilers for parallel computing. chapter An

Experimental Evaluation of the New OpenMP Tasking Model, pages 63–77.

Springer-Verlag, Berlin, Heidelberg, 2008.

92



[15] Guy E. Blelloch and James J. Little. Parallel solutions to geometric problems in

the scan model of computation. J. Comput. Syst. Sci., 48(1):90–115, 1994.

[16] Guy E. Blelloch and Margaret Reid-Miller. Pipelining with futures. Theory

Comput. Syst., 32(3):213–239, 1999.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by

Work Stealing. Foundations of Computer Science, Annual IEEE Symposium on,

0:356 – 368, 1994.

[18] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded

computations. SIAM J. Comput., 27(1):202–229, 1998.

[19] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[20] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPOPP ’95, pages 207–216,

New York, NY, USA, 1995. ACM.

[21] James Cooley and John Tukey. An algorithm for the machine calculation of

complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3. ed.). MIT Press, 2009.

[23] Intel corporation. Cilk++. http://www.cilk.com.

[24] Intel corporation. Cilk++. http://www.cilkplus.org.

[25] B. Philip D. J. Quinlan, M. Schordan and M. Kowarschik. The specification

of source-to-source transformations for the compile-time optimization of parallel

object-oriented scientific applications. In Proceedings of the 14th international

conference on Languages and compilers for parallel computing, LCPC’01, pages

383–394, Berlin, Heidelberg, 2003.

[26] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard

Ayguade. Barcelona openmp tasks suite: A set of benchmarks targeting the

93



exploitation of task parallelism in openmp. In Proceedings of the 2009 Interna-

tional Conference on Parallel Processing, ICPP ’09, pages 124–131, Washington,

DC, USA, 2009. IEEE Computer Society.

[27] Patrick C. Fischer and Robert L. Probert. Efficient procedures for using matrix

algorithms. In Jacques Loeckx, editor, ICALP, volume 14 of Lecture Notes in

Computer Science, pages 413–427. Springer, 1974.

[28] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and Other

Cilk++ Hyperobjects. In SPAA ’09: Proceedings of the Twenty-first Annual

Symposium on Parallelism in Algorithms and Architectures, pages 79–90, New

York, NY, USA, 2009. ACM.

[29] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS ’99, pages 285–297, New York, USA, October 1999.

[30] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5

Multithreaded Language. In ACM SIGPLAN, 1998.

[31] T. D. Han and T. S. Abdelrahman. ThiCUDA: a high-level directivebased lan-

guage for GPU programming. In Proceedings of 2nd Workshop on General Pur-

pose Processing on Graphics Processing Units,, GPGPU-2, pages 52–61, New

York, NY, USA, 2009.

[32] Stephen C. Johnson. Yacc: Yet Another Compiler Compiler. Computing Science

Technical Report No. 32, Bell Laboratories, Murray hill, New Jersey., 1975.

[33] C. E. Leiserson. The Cilk++ Concurrency Platform. In DAC ’09: Proceedings

of the 46th Annual Design Automation Conference, pages 522–527, New York,

NY, USA, 2009. ACM.

[34] Charles E. Leiserson. The cilk++ concurrency platform. The Journal of Super-

computing, 51(3):244–257, 2010.

[35] Tony Mason Levine, John R. and Doug Brown. Lex and YACC. OReilly &

Associates, Inc. Sebastopol, California., 1992.

[36] Gene Myers, Sanford Selznick, Zheng Zhang, and Webb Miller. Progressive mul-

tiple alignment with constraints. In Proceedings of the First Annual International

94



Conference on Computational Molecular Biology, RECOMB ’97, pages 220–225,

New York, NY, USA, 1997. ACM.

[37] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming

with CUDA. Queue, 6(2):40–53, 2008.

[38] Arch D Robison. Composable parallel patterns with Intel Cilk Plus. Computing

in Science & Engineering, 15(2):0066–71, 2013.

[39] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper.

Beyond nested parallelism: tight bounds on work-stealing overheads for parallel

futures. In Friedhelm Meyer auf der Heide and Michael A. Bender, editors,

SPAA, pages 91–100. ACM, 2009.

95



Chapter 6

Curriculum Vitae

Sushek Shekar

6.0.1 Summary

Worked as a research assistant on HPC(High Performance Computing), in particular

compilers and work on various industry oriented HPC projects from the renowned

ORCCA(Ontario Research Center for Computer Algebra) lab at Western University.

I am seeking oppurtunites in the software Industry. Strong ability to multi-task

under pressure with minimum supervision & reach goals within deadlines.

6.0.2 Education

M.Sc(Thesis) Computer Science, Western University. 2012-2013.

Grade Average : 90%

Bachelors of Engineering(B.E) in Computer Science, National Institute of

Engineering, Mysore. 2008-2012. Grade Average : 86%

6.0.3 Certifications

Advanced Diploma in Vfx and Animation, Image Multimedia, Mysore. 2007-

2008.

96



6.0.4 Computer Skills

Languages: C, C++, Java, Lex, YACC, CilkPlus, OpenMP, PHP,

HTML, CSS, SAT Solvers, Python and MySql.

6.0.5 Experience

Research Assistant, Western University, London, ON. 2012 – 2013

• Design and development of MetaFork compiler which is a source to source trans-

lator betweeen several concurrent programming platforms.

• To reduce overheads in parallel programming languages such as Intel CilkPlus

and Openmp. Developed some benchmarks and microbenchmarks for this pur-

pose.

• Algebraic structures and methods such as Polytope model Quantifier Elimina-

tion repectively are being introduced into MetaFork for automatic paralleliza-

tion.

Technical Lead, Smart Solutions. Fall 2012

• Responsible for a team that was involved in Web and App development.

Teaching Assistant, Western University, London, ON. Fall 2012 - Winter 2013.

• Introduction to Multimedia and Communications. Fall 2012

• Advanced topics in Multimedia and Communications. Winter 2013

• Introduction to Multimedia and Communications. Fall 2013

6.1 Leadership Activities

Recruitment Head, National Institute of Engineering, Mysore. 2011 – 2012

• Responsible for inviting 70 of the Top Fotune 500 companies for on campus

recruitments.

• Total management and responsibility for the recruitment of students.

• Made sure students got recruited based on thier merits.

97



6.1.1 Academic

Honors and Achievements

• Graduate Teaching Assitantship Scholarship.

• Research Grant Income Scholarship.

• Western Graduate Research Scholarship. $10000

• Graduate Student Scholarship.

• IBM CAS Research Project Fellowship

6.1.2 Projects

IBM CAS Research 2013 Project: Code Optimization Tools for Hardware

Acceleration Technologies, Toronto, Canada.

Sushek Shekar, Xioahui Chen and Marc Moreno Maza January 2013 – Present

• This project aims at developing new techniques that will help programmers

develop efficient algorithms and code targeting hardware acceleration technolo-

gies, in a more effective manner. Existing profilers and performance analysis

software tools can be of great help. However, establishing the leading cause of a

performance issue often remains a very challenging task in many practical situ-

ations. Indeed, low parallelism or high cache-complexity at the algorithm level,

ineffective implementation, hardware limitations, scheduling overheads are very

different possible causes of poor performance. We propose three research direc-

tions to help with this challenge.

MetaFork: A Metalanguage for Concurrency Platforms Targeting Mul-

ticores

Sushek Shekar, Xioahui Chen and Marc Moreno Maza August 2012 – Present

• MetaFork is an extension of C/C++ and a multithreaded language based on

the fork-join parallelism model. By its parallel programming constructs, this

language is currently a common denominator of CilkPlus and OpenMP. The

same multithreaded algorithm (say based on the fork-join parallelism model)

implemented with two different concurrency platforms could result in very dif-

ferent performance, often very hard to analyze and improve. This defines a

model for analyzing the overheads of various scheduling strategies, as it was

done for the randomized work-stealing scheduling strategy.

98



Applications of LLVM to HPC

Sushek Shekar, Summer 2013 – Present

• The LLVM system provides a state-of-the-art optimizing compiler infrastruc-

ture, supporting both static and dynamic compilation, that can be used for a

variety of production and research purposes in HPC. Implementations of lan-

guages used in HPC production such OpenMP, CilkPlus, CUDA and new ex-

perimental languages, or HPC interpreted languages, can make use of LLVM for

Optimizations. These optimizations can help to reduce parallelism overheads

and increase performance.

Making OpenMP an Efficient Compiler.

Sushek Shekar, Winter 2013.

• OpenMP was centered around expressing structured parallelism but later

started to exploit the concurrency in modern applications with the help of task

model. I personally believed that OpenMP compiler can be much more effi-

cient and have show it by comparing it with Intel’s work-stealing model. So I

presented a set of features that makes OpenMP much more efficient.

Comparing the efficiency of different SAT solvers with respect to dif-

ferent domains. Sushek Shekar, Fall 2012.

• Evaluating modern SAT solvers and comparison of different arbitrary solvers is

an important task in order to know which SAT solver performs better in which

domain. Relative performance of SAT solvers is usually assessed by running

them on a set of SAT instances and comparing the number of solved instances

and their running time. This approach is more reliable and statistically founded

methodologies that could discriminate better between good and bad solvers.

Parallel Arithmetic Encryption for High Bandwidth Communications

on Multicore/GPGPU platforms. Sushek Shekar, Fall 2012.

• Addressing the concept of high throughput, secure communication on machines

with CPU and General purpose Graphical Processing Units (GPGPU) through

10 Gb/s NIC cards which are now common in high performance devices. But

a secure connection is required for certain applications which require the data

to be encrypted before sending. Since encryption and decryption takes certain

time in processing, its not possible to send data at this rate and hence fail to

achieve high throughput. Multicore processors are not sufficient to achieve good

99



performance because of the bottleneck caused by encryption. Hence, GPGPU

are considered as an alternative and their performance is measured.

A Taint Mode for Cloud Computing Web Applications.

Sushek Shekar, Fall 2012.

• Cloud computing is generally understood as the distribution of data and com-

putations over the Internet. Over the past years, there has been a steep increase

in web sites using this technology. Unfortunately, those web sites are not ex-

empted from injection flaws and cross-site scripting, two of the most common

security risks in web applications. Taint analysis is an automatic approach to

detect vulnerabilities.

Optimized Constellate System For Server Load Balancing/Distribution.

Sushek Shekar, 2011 – 2012.

• Clusters are usually deployed to improve performance and/or availability over

that provided by a single computer. If server load is more than its capacity

the request is tunneled to another available server to handle requests. This

is done by the load balancer. An effective IP server clustering technique and

connection scheduling is realized to help in increasing the network scalability.

The virtualization server evaluates the client request according to its filtering

rules. It transparently stores data such that future requests for that data can

be served faster.

100


	On the Interoperability of Programming Languages based on the Fork-Join Parallelism Model
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Background
	Fork-join model
	The work law
	The span law
	Parallelism
	Performance bounds
	Work, span and parallelism of classical algorithms

	OpenMP
	OpenMP directives
	The task directive
	Task scheduling
	Synchronization constructs
	Data-Sharing attribute clauses

	CilkPlus
	CilkPlus scheduling
	CilkPlus keywords

	Compilation theory
	Source-to-source compiler
	Basic block
	Lex
	Lex theory
	YACC
	YACC theory
	Lvalues and Rvalues


	MetaFork: A metalanguage for concurrency platforms targeting multicores
	Basic principles and execution model
	Parallel constructs of MetaFork
	Spawning a function call or a block with meta_fork
	Parallel for-loops with meta_for
	Synchronization point with meta_join

	Data attribute rules
	Terminology
	Data attribute rules of meta_fork
	Data attribute rules of meta_for
	Examples

	Semantics of the parallel constructs in MetaFork
	Translating code from CilkPlus to MetaFork 
	Translating code from MetaFork to CilkPlus
	Translation from OpenMP to MetaFork: examples
	Examples covering different cases of OpenMP Tasks
	Translation from OpenMP Parallel for loop to MetaFork
	Translation from OpenMP sections to MetaFork

	Translation from MetaFork to OpenMP: examples
	Translation from MetaFork to OpenMP Task
	Translation from MetaFork parallel for loops to OpenMP


	Implementation of the translators between MetaFork and OpenMP
	Translation strategy from OpenMP to MetaFork
	OpenMP directives supported by the translators
	Translating OpenMP's omp tasks to MetaFork
	Translating OpenMP's omp for to MetaFork
	Translating OpenMP's omp sections to MetaFork

	Translation strategy from MetaFork to OpenMP
	Translating from MetaFork's meta_fork to OpenMP
	Translating from MetaFork's meta_for to OpenMP


	Experimental evaluation
	Experimentation set up
	Comparing hand-written codes
	 Matrix transpose
	 Matrix inversion
	 Mergesort
	 Naive matrix multiplication

	Automatic translation of highly optimized code
	 Fibonacci number computation
	 Divide-and-conquer matrix multiplication
	Parallel prefix sum
	 Quick sort
	 Mandelbrot set
	 Linear system solving (dense method)
	FFT (FSU version)
	Barcelona OpenMP Tasks Suite
	Protein alignment
	 FFT (BOTS version)
	 Merge sort (BOTS version)
	 Sparse LU matrix factorization
	 Strassen matrix multiplication

	Concluding remarks

	Curriculum Vitae
	Summary
	Education
	Certifications
	Computer Skills
	Experience

	Leadership Activities
	Academic  Honors and Achievements
	Projects



