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ABSTRACT 

 
The thalamocortical network is responsible for the generation of spike-and-wave 

discharges (SWDs) in absence epilepsy.  Recent studies suggest a potential involvement 

of the hippocampus, which may explain the variability in the extent of cognitive deficits 

among patients with absence epilepsy.  I hypothesize that the hippocampus may become 

entrained in spike-and-wave discharges following thalamocortical activation.  The 

gamma-butyrolactone (GBL) rat model of absence seizures was used in this thesis.  

Following GBL injection, SWDs of 4 to 6 Hz developed in the spontaneous local field 

potentials (LFPs) recorded by depth electrodes in the thalamus, neocortex and 

hippocampus.  Synchronization of hippocampal, thalamic and neocortical SWDs was 

revealed by coherence analysis of the LFPs, and multiple unit activity of hippocampal 

neurons occurred within 250 msec prior to the negative peak of thalamic SWDs.  

Functional magnetic resonance imaging (fMRI) demonstrated functional connectivity 

between the hippocampus and the thalamocortical network.  Thus, electrophysiological 

and fMRI activity of the hippocampus were shown to be time-locked to the 

thalamocortical SWDs, suggesting functional connectivity of the hippocampus and 

thalamocortical network during GBL-induced absence seizures. 

 

 

 

 

Keywords: spike-and-wave discharges, absence epilepsy, gamma-butyrolactone, local 
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1.0 INTRODUCTION 

1.1 EPILEPSY & SEIZURES 

Epilepsy is a general classification of symptoms arising from abnormal brain 

function that affects up to 1% of the general population (Kadir & Chadwick, 1999).  

Seizures are the primary symptom of epilepsy, which are temporary disruptions of the 

brain with excessive, abnormal discharges synchronized throughout localized or 

distributed clusters of neurons.  It is important to recognize a seizure only as a symptom 

of brain dysfunction and not as its own neurological condition because the healthy brain 

can be made to generate a seizure through a variety of insults including the use of drugs 

or trauma to the head. The various symptoms of epilepsy are classified into epilepsy 

syndromes defined as chronic neurological disorders characterized by recurrent, 

unprovoked seizures (Engel, 2001), and may be accompanied by behavioural 

manifestations such as altered consciousness, automatisms and sometimes tonic-clonic 

movements (International League Against Epilepsy, 1989). Since epilepsy is marked by 

the presence of spontaneous seizures, this suggests that in addition to temporary 

processes that take place during a seizure, there are alterations in the brain that predispose 

it to seizures and potentially disturb normal brain function (Lothman, 1993). 

The vulnerability of the brain to seizure onset may be caused by a chronic 

pathological, structural or metabolic condition, and in many cases epilepsy is genetic 

(Berg et al., 2010; Berg & Scheffer, 2011).  A seizure may initiated by the imbalance of 

excitatory and inhibitory neurotransmitters.  Both increased excitation and decreased 

inhibition of neuronal activity can result in hyperexcitability of neuronal circuits.  

Perturbations at any of several levels of brain function may result in excessive neuronal 
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firing within networks of interconnected neurons.  This includes excessive or insufficient 

release of specific neurotransmitters or alterations in interactions with their receptors 

(Stafstrom, 1998). 

 

1.1.1 Classification of Seizures 

The International League Against Epilepsy broadly classifies epileptic seizures as 

focal or generalized, depending on the location of origin and pattern of spread throughout 

the brain.  The clinical manifestations of a seizure depend on the specific region and 

extent of brain involvement.  Focal seizures originate within networks limited to one 

hemisphere and are either discretely localized or more widely distributed, with clinical 

manifestations based on the area of brain involved and the extent to which the discharges 

spread from the focus (International League Against Epilepsy, 1981).  Generalized 

seizures originate at some point within the brain and rapidly engage bilaterally distributed 

networks, which may include cortical and subcortical structures, but may not necessarily 

include the entire cortex (International League Against Epilepsy, 1981).  Manifestations 

of a generalized seizure can range from brief loss of awareness, which is characteristic of 

absence seizures, to rhythmic jerking of the extremities accompanied by loss of posture 

and consciousness, which are classified as generalized tonic-clonic seizures (Berg et al., 

2010).   

 

1.1.2 Absence Seizures 

Absence epilepsies account for 15-30% of all epilepsy cases (Jallon & Latour, 

2005).  Absence seizures are generalized, are treated by specific antiepileptic drugs and 
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have a characteristic electroencephalographic (EEG) pattern.  They make up the primary 

seizure type in a number of different absence epilepsy syndromes, including childhood 

absence epilepsy (CAE) and juvenile absence epilepsy (JAE) (ILAE, 1989).  Absence 

seizures normally manifest between the ages of 4 years and adolescence, although they 

may occur at either ends of this age spectrum and roughly 65% of cases occur in females 

(Durá Travé & Yoldi Petri, 2006).  Characteristics of absence epilepsy types include 

abnormal interictal EEG, usually normal and developmental status (Khan et al., 2012), 

and multiple seizure types.  The primary seizure type is typical absence seizures, which 

occur with bilaterally synchronized 3 Hz spike-and-wave discharges (SWDs).  These 

SWDs consist of burst discharges during the spike interspersed with inhibition during the 

wave (Steriade et al., 1994).  Absence seizures are characterized by a brief loss of 

awareness with an abrupt onset and offset, with an average duration of two to ten 

seconds.  Atypical absence seizures are less common.  They occur with irregular spike-

and-wave complexes, are associated with a higher incidence of changes in postural tone 

(ILAE, 1981), may be experienced with automatisms and are more associated with severe 

cognitive impairment (Holmes et al., 1987). 

EEG is the primary means of recording electrical activity of the brain and for 

diagnosis of epilepsy, in which electrodes are strategically placed on the scalp of the 

patient to record neuronal activity.  Voltage changes generated in cortical neurons are 

recorded as waveforms of various frequencies and amplitudes.  Patterns vary according to 

the type of seizure and regions of the brain involved.  Whereas the frequency of the 

atypical absence seizure is slower than 2.5 Hz, the specific EEG frequency recorded in a 

patient experiencing a typical absence seizure is 3-4 Hz and is detected in bursts of 
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bilaterally synchronous SWDs on a normal EEG background (Gastaut, 1970).  Although 

slightly faster in frequency, SWDs can also be recorded from several animal models of 

absence seizures, including the monkey, rat and cat (Figure 1).  This EEG pattern reflects 

the hypersynchronous activity among interconnected neurons of the thalamocortical (TC) 

network. 

Absence seizures can be treated with ethosuximide, trimethadione, valproic acid 

or benzodiazepines (Vrielynck, 2013).  Valproic acid is usually the first choice for 

treatment because it can control myoclonic jerks and tonic clonic seizures, which are 

occasionally associated with absence seizures (Khan et al., 2012).  Some antiepileptic 

drugs actually exacerbate absence seizures, such as phenytoin, barbiturates and 

carbamazapine (Snead et al., 1999). Ethosuximide also has good efficacy and its 

anticonvulsant action is specific for absence epilepsy.  Although  poorly understood 

(Coulter et al., 1989), characterisation of the cellular mechanism of action is important 

for our understanding of the pathogenesis of absence seizures and can help in the 

development of other antiepileptic drugs.     

 

1.2 NEUROBIOLOGY OF THE THALAMOCORTICAL NETWORK 

1.2.1 Neurotransmitters 

Glutamate and gamma-aminobutyric acid (GABA) are two neurotransmitters that 

mediate excitatory post synaptic potentials (EPSP) and inhibitory postsynaptic potentials 

(IPSP), respectively.  EPSPs summate to depolarize the neuron and if there is a large 

enough depolarization, the cell generates an action potential.  IPSPs hyperpolarize the 

cell, which prevent the neuron from firing an action potential.   
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Figure 1. Traces of electroencephalographic spike-and-wave discharges in the human 

and feline.  (A.) Sample traces of electroencephalographic recording from two surface 

electrodes placed on the scalp of a 9-year-old boy with childhood absence epilepsy 

showing typical 3-4 Hz spike and wave discharges.  This brain pattern was accompanied 

by brief staring and behavioral arrest.  (B.) Following penicillin injection, the feline 

model of absence seizures also demonstrates similar electrographic recordings and 

behavioural episodes. (RF: right frontal cortex, RP: right parietal cortex) (Adapted from 

Blumenfeld, 2003).  

 

There are two types of excitatory glutamatergic receptors and activation of either 

of these leads to depolarization of the neuron as a result of positively charged ion influx.  

The N-methyl-D-aspartate (NMDA) receptors allow calcium, sodium and potassium ions 

to flow into the cell and require both the NMDA binding site and a glycine binding site to 

be occupied in order to activate the ion channel coupled to the receptor (Dingledine et al., 

1999).  Furthermore, the channel associated with the NMDA receptor is normally 

blocked by magnesium ions, which is only alleviated if the cell is sufficiently 

depolarized.  These receptors are strongly voltage-dependent, a property not shared by 

non-NMDA or GABA receptors.  When the ion channels coupled to the non-NMDA 
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receptors are activated, there is an influx of sodium and potassium ions, resulting in a 

depolarization of the cell.  If the depolarization is sufficient enough to remove the 

magnesium ion from the NMDA-associated channel, NMDA-channel opening would 

result in a larger depolarization of the cell (Lothman, 1993).    

GABA is the primary inhibitory neurotransmitter in the central nervous system.  It 

is capable of activating two major types of receptors, the ligand-gated GABAA receptor 

and G protein-coupled GABAB receptors.   GABAA receptors are ionotropic, ligand-gated 

ion channels and when GABA binds to GABAA receptors, associated ion channels enable 

negatively charged chloride ions to flow into the neuron.   They form a pentameric 

assembly out of a possible 19 subunits, generally as a combination of α, β and γ subunits 

as the core, providing different functional properties (Connelly et. al., 2013).  They 

induce a fast inhibitory IPSP that acts for 150 ms or less.  In comparison, GABAB 

receptors are metabotropic, heterodimeric, G-protein coupled receptors that are coupled 

to channels that permit positively charged potassium ions to flow out of the cell (Benke 

et. al., 2012).  GABAB receptors elicit IPSPs of 150-500 ms, which is relatively long in 

duration and therefore contribute to synaptic plasticity.  Activation of either receptor may 

result in hyperpolarization, which inhibits neuronal firing (Lothman, 1993).  However, it 

has been known that GABAA receptors may mediate depolarizing excitatory effects in 

immature neurons (Stein & Nicoll, 2003).   

GABAB receptors are known to be active in the pathogenesis of absence seizures 

(Crunelli & Leresche, 2002).  Studies have demonstrated that GABAB receptor agonists 

exacerbate absence seizures in experimental animal models and this exacerbation is much 

more potent than GABAA receptor agonists (Liu et al., 1992; Snead, 1992).  Furthermore, 
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GABAB receptor antagonists have been shown to block absence seizures (Banerjee & 

Snead, 1995; Hu et al., 2000; Snead et al., 1999) and the EEG features that manifest from 

the abnormal interconnected circuitry of the thalamocortical network.  

 

1.2.2 Principal Neurons of the Thalamocortical Network 

The thalamus is the major relay station for afferents to the cortex.  Messages from 

many different sources pass through the thalamus including messages from peripheral 

sense organs, other brain regions and the cortex itself (Sherman & Guillery, 2002).  The 

primary thalamic inputs originate from sensory receptors, the cerebellum and the basal 

ganglia.  Thalamic nuclei have strong reciprocal connections with the cortex (Deschênes 

et al., 1994), forming thalamo-cortico-thalamic circuits, which are responsible for 

specific systems such as auditory, somatic and visual systems. 

The basic thalamocortical network is composed of three principal types of 

neurons: thalamocortical relay neurons, corticothalamic neurons and thalamic reticular 

neurons.  The fundamental organization (Figure 2) consists of excitatory corticothalamic 

neurons with axons that project subcortically from pyramidal neurons of cortical layer VI 

into the thalamus and synapse onto both relay and reticular neurons (Blumenfeld, 2005).  

Relay neurons are also excitatory and their axons project to cortical layers III-IV as well 

as to dendrites of layer V-VI pyramidal cells.  Relay neurons vary significantly in size, 

which is correlated with the depth to which they project into the cortex.  These neurons 

are limited in their outputs and seem to only connect to the cortical layers and the 

reticular neurons.  Reticular neurons however, are highly interconnected and have their 

own intrinsic oscillatory properties (Cavdar et al., 2008).  They are GABAergic and are 
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capable of inhibiting thalamocortical activity via their direct connections with the relay 

neurons.  The balanced inhibitory and excitatory effects of neurotransmitter release 

between thalamocortical neurons is of fundamental importance in controlling states of 

arousal, however altered neurotransmitter regulation can contribute to the development of 

absence seizures. 

The thalamus is capable of initiating network oscillations yet the intrathalamic 

network is considerably more intricate than simple neuron-to-neuron inhibitory and 

excitatory communication.  An important mechanism for producing inhibitory shaping of 

excitatory communication from thalamocortical and corticothalamic neurons is through a 

pattern of inhibitory connections that mediates feed forward inhibition (Crandall & Cox, 

2013).  The corticothalamic neuron synapses onto the dendrites of both reticular and relay 

neurons and generates EPSPs, however the reticular neuron has an inhibitory 

dendrodendritic synapse onto the relay neuron.  Therefore the cortex excites the reticular 

neuron, which inhibits the thalamic relay cells via feed-forward inhibition.  By restricting 

the excitation of relay neurons, this serves to enhance sensitivity to changing stimulation 

to perform temporal differentiation on changing sensory states (Koch & Ullman, 1985).   

 

1.2.3 Reticular Thalamic Nucleus 

The reticular thalamic nucleus is positioned between the thalamus and cortex and 

its individual neurons mediate selective attention under the influence of corticothalamic 

inputs.  It forms a shell that surrounds much of the dorsal and lateral extent of the 

thalamus and is uniquely situated to influence the flow of information by controlling 

neural oscillations (Pinault, 2004).  Oscillations within the TC network rely on the  
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Figure 2. Schematic diagram of the principal neurons of the thalamocortical network.  

Shown is a coronal section through the right hemisphere of the rat brain.  An example of 

a fundamental circuit in the thalamocortical network is demonstrated.  The pyramidal 

cells of the cortex (green triangle) project subcortically into the thalamus onto the 

reticular thalamic nucleus (Rt, red circle) and onto principle relay nuclei (green circle).  

The ventroposterior (VP) complex is the example principal thalamic relay nucleus used 

here.  Relay neurons project back up into the cortex as well as onto reticular thalamic 

neurons, which have reciprocal projections back onto relay neurons.  Red neurons are 

GABAergic, green neurons are glutamatergic.  

 

 

intrinsic oscillatory properties of the reticular neurons which regulate states of arousal 

(Steriade & Llinás, 1988).  Tonic firing of the reticular neurons allows for faithful signal 

transmission from the external environment to the cortex (Deleuze et al., 2012) during 
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wakefulness and manifests as desynchronized EEG.  Conversely, rhythmic burst firing of 

the reticular neurons dampens communication to the cortex during altered states of 

consciousness (Cheong & Shin, 2013) and manifests as highly synchronized neuronal 

activity on EEG recordings.  These response modes depend on the status and distribution 

of specific ion channels within thalamic neurons. 

 

1.2.4 T-Type Calcium Ion Channels  

Ion channels differ with respect to their structure, the number of subunits they are 

composed of and the way in which they are regulated.  A major function is to  control the 

flow of ions across the neuronal membrane to establish a resting membrane potential, 

which shapes action potentials and ultimately communication between neuronal networks 

of the brain (Jones, 2007).  Most generalized epilepsies have complex inheritance 

patterns, however a few have a Mendelian inheritance pattern associated with single-gene 

mutations found in ion-channel proteins (Chang & Lowenstein, 2003).  One of the 

primary ion channels of interest in the study of absence seizures and the thalamocortical 

network is the calcium ion channel.  Calcium ions have a dual role in neurons, as 

modulators of neuronal firing pattern and as intermediates in cellular activities such as 

neurotransmitter release or enzyme metabolism.  They are unique because calcium acts as 

a second messenger, so when it enters the cell it will influence numerous physiological 

functions such as gene expression and neurotransmitter release (Fliegert et al., 2007). 

Most calcium channels are activated when the membrane potential is more 

positive than -40mV and are termed high-voltage activated (HVA).  These include the 

currents IL, IN, IP, IQ, and IR.  The HVA currents are important to allow calcium ions to 
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enter the cell in order to activate calcium-dependent potassium currents.  The activation 

of these currents then modifies action potentials generated in the cell (Sah & Faber, 

2002).  Low-threshold calcium currents are activated at near the resting membrane 

potential (Andersen and Sears, 1964) and are termed low-voltage activated (LVA).  The 

discovery in thalamic neurons of specific T-type calcium ion channel currents (IT) 

(Deschênes et al., 1984) made basic research on absence seizures shift to focus on the 

role of the thalamus.   The T-type calcium current is involved in the generation of 

rhythmic burst firing and is characterized by a threshold of activation at -65 mV (Talley 

et al., 2000), which is below the threshold of typical sodium-potassium dependent action 

potentials around -55 mV.  

Influenced by reticular neurons and their mode of firing, relay neurons possess T-

type calcium channels and therefore also possess a unique ability to switch their mode of 

responsiveness in a way as to contribute to network oscillations (Talley et al., 1999).  

When neurons are depolarized, T-channels are inactivated.  GABA from reticular 

neurons activates GABAA and GABAB receptors on relay neurons, generating an IPSP.  

IPSPs can result in membrane hyperpolarization, which may be just enough to remove 

inactivation (de-inactivation) of the T-type calcium channels, generating bursts of action 

potentials as a form of post-inhibitory rebound and is termed a calcium-dependent low-

threshold spike (LTS) (Perez-Reyes et al., 1998). De-inactivation of T-type calcium 

channels ensures that the bursting output of relay neurons is transmitted to the cortex and 

directly to the reticular neuron as synaptic excitation, thus renewing the continuous 

communication among the principle neurons of the thalamocortical network (Huguenard 

& Prince, 1994).  This network oscillation thus depends on reciprocal connectivity 
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between excitatory and inhibitory neurons and an LTS generated by T-type calcium ion 

channels. 

 

1.3 THE ROLE OF THE THALAMOCORTICAL NETWORK IN ABSENCE 

SEIZURES 

All thalamic relay cells respond to excitatory inputs in two distinct ways, which 

are burst and tonic firing, and these response modes reflect the status of IT (Destexhe et 

al., 1998).  These responses allow the thalamus to provide relay that affects the nature and 

format of information reaching the cortex, which is why the thalamus is considered to be 

the gateway of information processing in the brain.  The active waking state with eyes 

open is more associated with a maintained depolarization of thalamic relay cells resulting 

in the inactivation of low-threshold calcium currents and the tonic firing mode.  This is 

associated with a desynchronized EEG pattern, which allows for faithful signal 

transmission from the external environment through the thalamus and to the cortex 

(Sherman, 2001). 

The burst firing mode is characterized by synchronization across populations of 

relay neurons.  During slow-wave sleep (Steriade et al., 1993), the membrane potential of 

these neurons is hyperpolarized, resulting in the removal of inactivation of the low-

threshold calcium current.  This allows these cells to generate bursts of two to five action 

potentials (Figure 3).  The large population of relay neurons that burst at the same time 

gives rise to synchronized activity in the form of sleep spindles that can be recorded from 

the scalp using EEG.  This system can be altered resulting in the development of SWDs 

of absence seizures, which are heavily dependent on specific GABA receptor activation.   
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Figure 3. Thalamocortical neurons generate two distinct firing response modes, which 

depend on T-type calcium ion channels.  Shown are two recordings from a thalamic relay 

neuron.  Depolarization of thalamic relay neurons, and thereby inactivation of IT, results 

in the generation of a train of action potentials if the membrane potential is more positive 

to -65 mV (left).  When the membrane potential is at or negative to -75mV (right), IT is 

de-inactivated, resulting in the generation of bursts of action potentials (calcium-

dependent low-threshold spike).  Changes in these modes can regulate synchrony in such 

a way as to switch to burst firing mode under pathological conditions associated with 

absence epilepsy.  (Adapted from Zhan et al., 1999;  McCormick & Pape, 1990) 

 

 

GABA can activate GABAA and GABAB receptors, both present within the 

thalamocortical network.  Countering the synchronizing influences is an inhibitory effect 

by interneurons of the reticular thalamic nucleus, termed collateral inhibition (Bal et al., 

1995).  This inhibition is mediated by an isoform of GABAA receptors composed of α3,  

β3 and γ2 subunits.  The activation of anti-oscillatory GABAA receptors appears to 

prevent the development of uncontrolled hypersynchronous oscillations by inhibiting the  

excitation of surrounding reticular neurons (Huguenard & Prince, 1994).  In comparison, 

pro-oscillatory communication between reticular neurons and relay neurons is mediated 

by GABAA receptors composed of α1, β2 and γ2 subunits (Sohal et al., 2003).  Activation 
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of pro-oscillatory GABAA receptors maintains synchronized neural activity by activating 

T-type calcium channels in relay neurons essential for feedback to reticular neurons.  

The differential activation of GABAA and GABAB receptors is responsible for the 

ability to switch between thalamocortical states, and is also an important determinant of 

the hypersynchronous neural activity involved in absence seizures (Huguenard & 

McCormick, 2007).  Using thalamic slices in the ferret (Figure 4), it was demonstrated 

that GABAA antagonists block normal 6-10 Hz oscillations, producing spike-and-wave-

like 3 Hz oscillations and suggesting that the thalamocortical neurons may become 

vulnerable to seizure-like activity in the absence of normal GABAA receptor function 

(Blumenfeld & McCormick, 2000).  In comparison to the 100 ms IPSPs generated by 

GABAA receptors, those generated by GABAB receptors have a longer duration of 300 

ms and larger hyperpolarization, which may enhance the de-inactivation of T-type 

calcium channels in relay neurons, thereby resulting in large rebound bursts of action 

potentials (Bal et al., 1995).  The same study demonstrated that the blockade of GABAB 

receptor activation during various intensities of artificial cortical input leads only to the 

generation of normal 6-10 Hz spindle oscillations and prevents the 3 Hz spike-and-wave- 

like discharges.   These findings suggest that enhanced cortical firing onto the thalamus 

generates slow IPSPs and spike-and-wave-like activity by promoting GABAB receptor 

activation.   

In summary, in the presence of enhanced cortical input, reticular neurons release 

GABA, which induces slow GABAB receptor mediated IPSPs resulting in 

hyperpolarization of the relay neuron.  This hyperpolarization de-inactivates T-type 

calcium channels, causing rebound bursts of action potentials to contribute to  
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Figure 4. Differential GABAA and GABAB receptor activation play a role in 

thalamocortical oscillations.  A stimulator was set to deliver either one shock or brief 

200 Hz bursts of six shocks simulating the cortical input onto ferret thalamic slices.  

Stimulus pulses are represented by tick marks below each trace. Extracellular (top traces) 

and intracellular (bottom traces) recordings from thalamic relay neurons are shown in the 

presence of one or six shocks.  Expanded traces of the intracellular recordings are shown 

to the right. (A.) With cortical stimulation of one shock, the network generated 6-10 Hz 

oscillations with fast IPSPs and brief rebound bursts in thalamocortical cells that 

resemble normal rhythms. With higher frequency cortical stimulation, the network 

transformed to 3-4 Hz activity, with slow IPSPs and rebound burst firing as demonstrated 

in the trace to the right.  (B.) Local application of the GABAB receptor antagonist CGP 

35348 had no effect on the 6-10 Hz oscillation and only produces fast IPSPs and brief 

rebound bursts in the thalamocortical cells under one shock stimulation.  However, 

application of CGP 35348 eliminated the 3-4 Hz activity in the presence of six shock 

stimulations and also produced fast IPSPs.  (C.)   The GABAA receptor antagonist 

picrotoxin blocked 6-10 Hz oscillations and fast IPSPs under one shock stimulation, and 

now only elicited slow IPSPs, large rebound bursts and 3-4 Hz oscillations.  Using six 

shocks, picrotoxin elicited no change in the thalamocortical neuron.  This study is 

important because it demonstrates that enhanced cortical input to the thalamus causes 3-4 

Hz oscillations via GABAB receptor activation. (Adapted from Blumenfeld & 

McCormick, 2000) 
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hypersynchronized thalamocortical oscillations, which may manifest as SWDs.  It is 

probable that the differential activation of GABAA and GABAB receptors, the activation 

of T-type calcium channels and the ability of principle thalamocortical neurons to switch 

mode of firing, all contribute to the shift from normal to paroxysmal discharges of 

absence seizures.  Although absence epilepsy is known to be GABAB dependent, it is 

unknown whether or not cortical input to the thalamus is solely responsible for GABAB 

activation and how cortical firing becomes enhanced in the first place.  Dynamic changes 

within the circuitry can regulate synchrony in such a way as to allow thalamocortical 

circuits to be used under pathological conditions such that they instead generate 

hypersynchronous epileptic discharges associated with generalized absence epilepsy. 

 

1.3.1 Competing theories on the pathophysiology of absence seizures 

In 1941, Herbert Jasper analyzed EEG of patients with absence seizures.  No 

evidence was found for a cortical origin, so it was proposed that seizures had a 

subcortical origin (Jasper & Kershman, 1941).  Later, Jasper established the first 

experimental model of a spike-wave pattern by stimulating the thalamus, providing 

support for the existence of a subcortical involvement.  Behavioural arrest of human 

absence seizures could be mimicked in cats by 3 Hz intralaminar thalamic stimulation 

(Hunter & Jasper, 1949).  The thalamus became referred to as the central pacemaker for 

generalized discharges, however debate began as to whether the thalamus or the cortex 

was the driver of discharges.  According to several investigators, the expression of 

generalized seizures was due to a cortical focus, which then spreads to involve the 

thalamus (Luders et al., 1984).  Using the feline penicillin model of human absence 
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epilepsy, it was demonstrated that phase-locked firing started a few cycles earlier in the 

cortex as opposed to the thalamus, suggesting that the paroxysmal oscillation is initiated 

in the cortex which then entrains the thalamus (Avoli & Gloor, 1981; Avoli et al., 1983).  

This is known as the corticoreticular theory, which is the most widely accepted of the 

absence theories today, however there is still debate as to the relationship between the 

thalamus and cortex.   

To elucidate these neural networks, thalamic and cortical lesions were conducted in 

epileptic WAG/Rij rats, which demonstrated that an intact cortex is required for spike-

and-wave generation and that the intrathalamic circuitry alone is not sufficient for the 

generation of spike-and-wave discharges (Meeren et al., 2002).  In studies recording 

simultaneous local field potentials (LFPs) in the cortex and thalamus, nonlinear 

association analysis of spike-wave discharges showed a consistent cortical focus in the 

perioral region of the somatosensory cortex throughout the seizure (Pijn et al., 1990).  

SWDs recorded in other cortical sites lagged behind this focus with time delays that 

increased with electrode distance.  Furthermore, the first 500 ms of the seizure was led by 

the cortex and then followed by its thalamic counterpart.  This suggested that once the 

oscillation has been set in motion by the cortex, the cortex and thalamus form an 

oscillatory network in which both structures drive each other, thereby maintaining 

rhythmic discharges.  This cortical focus theory bridges both cortical and thalamic 

theories (Meeren et al., 2005). 

For years, animal models of absence epilepsy have been extremely useful in 

understanding the generation of SWDs, cortical and thalamic involvement, and 

pharmacological properties.  Animal models are still very useful, especially with the 
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development of neuroimaging techniques, including functional magnetic resonance 

imaging (fMRI).  These developments not only allow investigators to look at the 

thalamocortical interactions, but now permit the investigation of all structures of the brain 

involved in absence seizures. 

 

1.4 RODENT MODEL OF TYPICAL ABSENCE SEIZURES 

With the advent of a number of animal models of generalized absence seizures, 

the controversy between which structure – the cortex, the thalamus, or both - controls the 

bilaterally synchronous SWDs has been challenged.  However, the availability of these 

models has advanced our understanding of the basic mechanisms of absence seizures.  To 

be a valid investigative tool, an animal model of absence seizures should reflect clinical 

and pharmacological characteristics of the disorder.  These criteria include 

reproducibility and predictability for experimental purposes.  The EEG patterns and 

behaviour should be analogous to those of human absence seizures.  Therefore there 

should be bilaterally synchronous SWDs associated with behavioural arrest with or 

without head drop and nystagmus.  Further criteria, and perhaps most important, include 

attenuation of the SWDs by anti-epileptic drugs commonly used to treat human absence 

seizures (Snead 1999). 

A commonly used acute model of absence seizures that meets the above criteria 

(Snead, 1988), and the one used in this thesis, is the gamma-hydroxybutyric acid (GHB) 

rat model (Snead et al., 1976; Godschalk et al., 1977).  GHB is a natural metabolite of the 

brain where it is derived from the conversion of its parent neurotransmitter, GABA 

(Snead, 1989). It has been found in rat, cat, guinea pig and bovine brain at concentrations 
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of 1-4 nmol/g (Roth & Giarman, 1970) and is present in highest concentrations in the 

hippocampus, midbrain, diencephalon and cerebellum (Roth, 1970).  GHB opposes the 

process of inducing endocytosis of the GABAB receptor thus prolonging the functionality 

of the receptor on the cell surface and accounts for the 30-40 minute half-life of the drug 

(Schep et al., 2012).   

Evidence suggests that the GHB receptor is presynaptic and G-protein-coupled, 

however most of the physiologic and pharmacologic effects of systemically administered 

GHB are mediated by the GABAB receptor (Snead, 2000).   GHB may act both directly 

as a GABAB receptor agonist and indirectly on the GABAB receptor through GHB-

derived GABA.  The supraphysiologic (millimolar) concentrations of GHB that result 

from systemic administration have been found to compete for binding sites at the GABAB 

receptor and have an electrophysiological effect that is blocked by a specific GABAB 

receptor antagonist and not by a GHB receptor antagonist (Gervasi et al., 2003).  The idea 

that GABAB receptor-mediated mechanisms are operative in the pathogenesis of absence 

seizures is also supported by the observation that a specific GABAB receptor antagonist 

blocks absence seizures in four different experimental models of absence seizures, 

including the GHB model (Hu et al., 2000).  Conversely, the GABAB receptor agonist (-) 

baclofen, causes a marked exacerbation of absence seizures in the GHB model (Banerjee 

& Snead, 1995; Snead, 1992), to the point of absence status epilepticus which may last 

for hours. 

GHB is a GABAB receptor agonist that initiates the cascade of events that lead to 

hypersynchronous oscillations in the thalamocortical network.  When administered, GHB 

produces a predictable sequence of electrographic and behavioural events that resemble 
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that of human absence seizures (Snead et al., 1976).  The GHB-treated animal shows an 

arrest of motor activity with fixed staring and occasional twitching of the vibrissae and 

facial muscles.  Concomitant with these behavioural abnormalities, a 4-6 Hz spike-and-

wave pattern is produced on the electroencephalograph, sometimes reported at 7-9 Hz 

(Snead et al., 1999). This model is also pharmacologically unique because it responds 

well to the common antiepileptic drugs used to treat human absence seizures (Snead, 

1996) and does not respond well to phenytoin and carbamazepine, which are known to 

exacerbate human absence seizures (Liu et al., 2006). 

The GHB model has a unique developmental profile which reflects the propensity 

of the developing brain for the occurrence of bilaterally synchronous SWDs.  The 

developmental profile of human absence seizures is mirrored in the GHB rat model 

where the GHB-induced seizures are most pronounced at postnatal age of 3 to 4 weeks  

(Snead, 1992, 1995), indicating that maturation of the thalamocortical network is 

necessary for absence seizure activity.  Furthermore, the ontogeny of the thalamocortical 

network in the rat parallels the responsiveness of the GHB model to antiepileptic drugs 

such as ethosuximide and these observations are consistent with the finding that rhythmic 

thalamocortical responses do not begin to develop in rats until postnatal day 12 and are 

not fully developed until the fourth postnatal week (Snead, 1994, 1995). 

The use of gamma-butyrolactone (GBL), a prodrug of GHB, has been shown to 

enhance reproducibility and predictability of the GHB model and so GBL is used because 

of its consistency and rapidity of onset (Guidotti & Ballotti, 1970).  GBL has no known 

pharmacological activity of its own (Giarman & Roth, 1964), so it must be cleaved by a 

lactonase present in the plasma and liver (Guidotti & Ballotti, 1970), which can then be 
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taken up from the blood by the brain as GHB (Roth & Giarman, 1966). When GBL is 

injected intraventricularly in the brain, there is no pharmacological action because the 

brain does not have the lactonase to hydrolyze it to GHB (Roth, 1970; Snead, 1991).  

GBL is administered intraperitoneally, particularly for use as a model of absence 

seizures. 

  The frequency and pattern of the SWDs observed in this model are quite similar 

to those of the genetic rodent models of absence seizures, WAG/Rij rats (van Luijtelaar 

& Coenen, 1986)  and Genetic Absence Epilepsy in Rats from Strasbourg (GAERS) 

(Vergnes et al., 1982).  Therefore the GBL model meets all criteria which have been put 

forth for experimental absence seizures.  It is a useful experimental model for studying 

the mechanisms of bilaterally synchronous SWDs, the thalamocortical interactions and 

other networks involved in absence seizures. 

 

1.5 CURRENT STUDY  

The primary goal of absence epilepsy research is to understand the neuronal 

mechanisms that underlie synchronous oscillatory activity within interconnected 

thalamocortical networks.  Imaging techniques have made it possible to study absence 

epilepsy at the network level while electrophysiology has provided insight into potential 

causes including perturbations in neurotransmitters and their receptors, as well as in 

various ion channels.  However when investigating the basic mechanisms involved in 

absence seizures, it is important to remember that the thalamus and the cortex are widely 

interconnected with other neural networks.  Imaging studies have demonstrated that brain 
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regions beyond the thalamocortical network are participating in some aspects of these 

seizures (Gotman, 2008).   

The current study focuses on the potential involvement of the hippocampus.  

Although very few studies have investigated a role for the hippocampus, recent 

observations in models have pointed to a possibly important link between absence seizure 

mechanisms and limbic structures (Onat et al., 2013).  The motivation to explore the 

hippocampus stems from the fact that, although not characteristic of all patients, some 

present with severe cognitive impairment and memory loss (Caplan et al., 2008).  

Furthermore the hippocampus receives prominent projections from the thalamus.  The 

reticular thalamic nucleus serves as a gateway between specific thalamic nuclei and the 

hippocampus (Cavdar et al., 2008) in a similar manner it serves between the thalamus and 

the cortex.   

The primary objective of the current study was to use electrophysiological 

techniques and functional imaging to investigate interactions between the thalamocortical 

network and the hippocampus in a model of absence seizures induced by GBL in rats.  In 

the first series of experiments, local field potentials were recorded simultaneously in 

different brain areas, and analyzed by means of power and coherence spectral analysis.  

In the second experiment, multiple unit recordings were made at the hippocampal CA1 

pyramidal cell layer to study the temporal relationship between hippocampal neuronal 

unit activity and GBL-induced SWDs.  In a third experiment, fMRI during GBL-induced 

absence seizures was used to look at possible changes in the global alterations in 

functional connectivity amongst the thalamus, cortex and the hippocampus.  This 

technique offers the advantage of studying functional connectivity between our regions of 
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interest with the rest of the brain.  We hypothesized that the hippocampus may become 

entrained by thalamocortical SWDs.   
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2.0 MATERIALS & METHODS 

2.1 Animals 

Adult male Long-Evans rats (Charles River Laboratories) weighing 250-400 

grams were used in these experiments.  Rats were housed in standard cages in a 

temperature regulated environment in a 12:12hour light/dark cycle starting at 7 am with 

food and water freely available. All experiments were conducted during the day between 

9 am and 7 pm. All experiments were carried out in accordance with the guidelines 

established by the Canadian Council on Animal Care and approved by the Animal Use 

Committee of Western University. 

 

2.2 LOCAL FIELD POTENTIALS & NEURONAL UNIT EXPERIMENTS 

2.2.1 Surgery & Electrode Implantation: Local Field Potentials & Behaviour 

Recording electrodes were constructed out of stainless steel wire, 0.005 inches in 

diameter and were insulated with Teflon except at the cut tips.  Eight rats were initially 

anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneal (i.p.)) and secured in a 

stereotaxic frame.  The skull was exposed with lambda and bregma in a horizontal plane.  

Burr holes were drilled for implantation using coordinates from a rat brain atlas (Paxinos 

and Watson, 2009).  Rats were chronically implanted with depth electrodes at the 

following coordinates relative to bregma: right frontal cortex layer IV/V (anterior 1.4 

mm, lateral 2 mm, ventral 1.5 mm), right ventrolateral thalamic nucleus (posterior 2.4 

mm, lateral 2.2 mm, ventral 6.0 mm), right visual cortex layer IV/V (posterior 7.0 mm, 

lateral 3.0 mm, ventral 1.5 mm) and a depth electrode was positioned in the left CA1 

region of the hippocampus (posterior 3.2 mm, lateral 2.2 mm, ventral 3.0 mm) and 
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another in the parietal cortex layer IV/V (posterior 3.2 mm, lateral 2.2 mm, ventral 1.5 

mm).  A jeweller’s screw was secured over the left frontal cortex and over the left 

cerebellum to serve as recording grounds in all rats.  The electrodes were fixed by 

creating a head cap made of acrylic cement.  Experiments did not commence until at least 

a week within surgery for recovery.    

 

2.2.2 Surgery & Electrode Implantation: Neuronal Unit Recordings in Relation to 

SWDs 

Recording electrodes for the CA1 pyramidal cell layer were constructed out of 

stainless steel wire, 0.003 inches in diameter and were insulated with Teflon except at the 

cut tips.  The thalamic electrodes were made of stainless steel wire of 0.005 inches in 

diameter.  Six rats were initially anesthetized with sodium pentobarbital (60 mg/kg, i.p.) 

and secured in a stereotaxic frame.  The skull was exposed with lambda and bregma in a 

horizontal plane.  Burr holes were drilled for implantation using coordinates from a rat 

brain atlas (Paxinos and Watson, 2009).  Rats were chronically implanted with a depth 

electrode in the right ventrolateral thalamic nucleus (posterior 2.4 mm, lateral 2.2 mm, 

ventral 6.0 mm) and bi-polar depth electrodes were implanted bi-laterally in the CA1 

pyramidal cell layer of the hippocampus (posterior 3.2 mm, lateral 2.2 mm, ventral ~2.5 

mm) using electrophysiological criteria (Leung, 1979).  The individual stainless steel 

wires of the left bipolar electrode were cut at the same length and the wires of the right 

bipolar electrode were cut with a difference of 0.5 mm.  A jeweller’s screw was secured 

over the left frontal cortex and over the left cerebellum to serve as recording grounds in 
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all rats.  The electrodes were fixed by creating a head cap made of acrylic cement.  

Experiments did not commence until at least a week from surgery for recovery.    

 

2.2.3 Local Field Potential Recordings 

Bench-top experiments were conducted to characterize the GBL model of absence 

seizures in freely moving rats.  Each day for 1 week following surgery, rats were placed 

in a Plexiglas cage for 1-2 hours to become accustomed to the recording environment.  

On the day of the experiment, each electrode was connected to a Grass 

Electroencephalograph Model 8-10 system for EEG recordings.  EEG was filtered 

between 0.3-70 Hz and sampled at 200 Hz by custom made software (Data Acquisition 

Software DAS 2.1, 1998), using a UEI WIN-30DS (United Electronic Industries, 

Watertown, MA) 16-channel data acquisition board.  Once the rats habituated to the 

recording condition, baseline recordings were collected for 30 minutes during awake 

immobility.  GBL (200 mg/kg) was then injected intraperitoneally and EEG was 

continuously recorded for 2 hours following injection. 

 

2.2.4 Neuronal Unit Recordings in relation to Spike-and-wave Discharges 

 Activity in the CA1 pyramidal cell layer was recorded to characterize 

hippocampal neuronal unit activity in relation to the SWDs induced by GBL in the rat.  

Each day for 1 week following surgery, rats were placed in a Plexiglas cage for 1-2 hours 

to become accustomed to the recording environment.  On the day of the experiment, each 

electrode was connected to a Grass 7P511 preamplifier.  The hippocampal and thalamic 

EEG recording channels were filtered between 0.03 Hz and 3 kHz (first order bandpass 
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filter).  For neuronal unit recordings, the hippocampal signal was further amplified by 

500-1000 times and highpass filtered at 250 Hz (second order filter).  EEG and unit 

signals were then fed into a Data Translation D303 analogue-to-digital converter and 

sampled and stored at 10 kHz by SciWorks 7 (DataWave Technologies, Loveland, CO, 

USA).  Data acquisition and analyses were done by custom-made scripts written in 

SciWorks 7.  Once the rats habituated to the recording condition, baseline recordings 

were collected for 30 minutes during awake immobility.  GBL (200 mg/kg) was then 

injected intraperitoneally and EEG and neuronal units were recorded in 3 minute time 

intervals, continuously for 2 hours.  During unit acquisition, the detection threshold of a 

neuronal unit was set to at least twice the amplitude of the background, which allowed 

the waveform (0.6 ms before and 0.6 ms after the detected peak) of all detected units to 

be stored during acquisition.  Thresholds were kept constant for recordings in each rat.   

 

2.2.5 Perfusion, Histology and Staining 

 Following experiments, rats were euthanized with 1 ml of sodium pentobarbital 

(60 mg/kg i.p.).  The rats were intracardially perfused with 60 ml (x2) of saline followed 

by 60 ml (x2) of 4% formaldehyde solution.  The brain was extracted from the cranium 

and placed in 4% formaldehyde solution until ready for sectioning.  Brains were frozen 

and sliced on a Leitz 1320 freezing sledge in 60 µm coronal sections.  Brain slices were 

mounted onto slides and later stained with thionin.  The electrode placements for LFPs 

(Figure 5) and neuronal unit recording experiments (Figure 6) were identified and 

confirmed using a light microscope. 
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Figure 5. Coronal rat brain slices indicating electrode placements for LFP and 

behavioural experiments.  Locations were based on coordinates taken from Paxinos and 

Watson (2009).  Schematic slices on the left illustrate placements of recording electrodes 

(solid black line) and examples of corresponding placements (black arrows) in thionin 

stained sections are on the right.  (A) Placement in the left frontal cortex (A1.4, L2, 

V1.5), (B) the left ventrolateral nucleus of the thalamus (P2.4, L2.2, V6.0), (C) two 

electrodes placed in the right CA1 region of the hippocampus (P3.2, L2.2, V3.0) and 

right parietal cortex (P3.2, L2.2, Ventral 1.5), and (D) the visual cortex (P7.0, L3.0, 

V1.5).  
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Figure 6. Coronal rat brain slice indicating electrode placement for hippocampal 

neuronal unit recordings.  Locations were based on coordinates (CA1 pyramidal cell 

layer P3.2, L2.2, ~V2.4) taken from Paxinos and Watson (2009).  Schematic slice on the 

left illustrates placements of the right hemisphere of bi-polar recording electrodes (solid 

black lines) and an example of corresponding placements (lower black arrow – CA1 

pyramidal cell layer, upper black arrow – alveus) in a thionin stained section is on the 

right.   

 

2.2.6 Data Analysis: Local Field Potentials & Behaviour 

 All EEG recordings were visually inspected for SWDs using a custom made 

program, Analysis Software Package 6.1.14.  The first sign of SWDs following GBL  

injection was identified as the onset and this stage was identified as bursting SWDs 

because SWDs appeared in bursts on a normal EEG background.  The second stage was 

identified as continuous SWDs and was characterized by the disappearance of both 

bursting SWDs and normal EEG background.  Only high amplitude, continuous SWDs 

were present in this stage.  Onset times were averaged using all 8 rats.  EEG data were 

analyzed by a Matlab 7.0 program.  Each EEG spectrum was constructed by averaging 6 

or more segments of EEG, with each segment being 1024 points, or 5.12 s with 200 Hz 

sampling (Leung et al., 1982).  Each segment was tapered (10% of segment at each end) 

by a cosine bell function, and the auto- and cross-power (coherence and phase spectra) 
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were obtained by Fast Fourier Transform and smoothed across 5 adjacent frequency bins, 

by an elliptical function.  Each spectrum had a frequency resolution of 0.19 Hz (1/5.12 s), 

and statistically independent values were separated by 5 bins, or 0.95 Hz, but with more 

than 60 degrees of freedom.  Peak power and coherence values and frequencies were 

obtained from the power and coherence spectra during bursting and continuous stages of 

SWDs.  Statistical tests were performed In GraphPad Prism 4.  Statistics were conducted 

on the average of these values using nonparametric Mann-Whitney U tests.  The power in 

each placement was averaged between 2-6.5 Hz during baseline and stages of SWDs.  

Statistics were conducted on the integrated power using nonparametric Kruskal-Wallis 

tests and Dunns Multiple Comparison post-tests.  Maximum coherence values were 

identified between 2-9 Hz after comparing coherence values for all possible pairs (10) of 

brain regions.  Non-parametric Kruskal-Wallis tests and Dunns Multiple Comparison 

post-tests were conducted to determine significance. 

 

2.2.7 Data Analysis: Neuronal Unit Recordings in relation to Spike-and-wave 

Discharges 

All EEG and neuronal unit recordings were visually inspected for SWDs, and 

analyzed using a custom made program, written with SciWorks 7.  One 3 minute file was 

chosen for each of baseline, bursting SWDs and continuous SWDs per rat.  The file 

chosen for bursting SWDs and continuous SWDs were identified using the EEG patterns 

characterized in the behavioural studies.  To identify the temporal relationship between 

hippocampal unit firing and thalamic SWDs, a threshold was set in the thalamic EEG 

recording to detect the negative peak of the SWD.  Since the amplitude threshold was 
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fixed (Event Detection in SciWorks 7), the detection could occur on the rising phase of 

the peaks, and only the SWDs of near maximal peak amplitudes were detected.  Files 

were replayed in SciWorks 7 to construct peri-event time histograms of the detected 

hippocampal neuronal units, the averaged EEG signals for thalamic and hippocampal 

SWDs and power spectra of the EEG.  Power spectra were constructed based on Fast 

Fourier Transform of a 1 s segment of the EEG signals, and more than 20 segments were 

averaged to give an average spectrum.  The resolution of the power spectra was 1 Hz, 

with Nyquist frequency of 500 Hz.  The negative peak of the thalamic SWD was used as 

the event trigger (time zero), and 500 ms before and 500 ms after the event was the time 

period of the time histogram and averaged EEG signals.  All data was exported to Excel 

for further analysis and plotting.   

Time histograms of unit firing were constructed using 20-msec time bins.  Each 

histogram was normalized by the total number of units detected throughout the 3 minute 

interval, to give a probability of discharge per bin.  The 1000 ms histogram was divided 

into 4 intervals – T1 (-500 to -250 msec), T2 (-250 to 0 msec), T3 (0 to 250 msec), and 

T4 (250 to 500 msec).  Within each rat nonparametric Kruskal-Wallis and Dunn’s 

Multiple Comparison post-tests were conducted to test counts across all 4 segments and 

determine if neuronal firing was uniformly distributed across time.  Each time segment 

was then tested across stages of GBL-induced SWDs to identify significant changes in 

peak-related firing.  For group analysis, a 2-way ANOVA and Bonferroni post-tests were 

conducted to identify any interaction in the firing probabilities between the stages of 

GBL-induced seizure (bursting, continuous SWDs) and firing time intervals (T1 to T4).  

All statistics were performed in GraphPad Prism 4.  



32 

 

 
 

2.3 FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) 

Prior to imaging, studies were performed using four rats to characterize the GBL 

model under isoflurane ranging from 0.75%-2% and ketamine/xylazine (80/10 mg/kg, 

i.p.).  Following GBL injection, EEG suppression was evident using isoflurane in all 

electrodes and the complete opposite was found under ketamine/xylazine, so it was 

decided  the use of anesthetics was not appropriate for imaging the pharmacological 

model.  Although previous studies in our lab demonstrate the preservation of resting-state 

networks in the rat under anesthesia (Hutchison, et. al., 2010), this is likely not the case 

with our chosen pharmacological model to investigate absence seizures.  We therefore 

obtained data collected from Tenney et al., 2003 to analyze functional connectivity 

between the hippocampus and thalamocortical network. 

 

2.3.1 Acclimation Procedure 

Data were provided by Dr. Jeff Tenney from data published in Tenney et al., 

2003, which only reported changes in the BOLD signal and not in functional 

connectivity.  The description of the acclimation procedure is therefore derived from 

Tenney et al., 2003.  This study used male Sprague Dawley rats weighing 200-300 grams.  

Prior to imaging experiments, animals were acclimated to a restrainer to prevent any head 

and body motion.  The restrainer consisted of a multiconcentric Plexiglas head and body 

holder with built-in radiofrequency dual coil electronics (Insight Neuroimaging Systems, 

LLC, Orcester, MA, U.S.A.).  Rats were anesthetized with medetomidine (Domitor), 

secured in the restrainer and awakened with Atipamezole (Antiseden), a medetomidine 

reversal agent.  The restraining unit was placed into a black opaque tube to serve as a 
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‘mock scanner’ and a tape-recording of an MRI pulse sequence was played for 90 

minutes to simulate the sounds within the bore of the magnet.  This procedure was 

repeated for 3-4 days.  This acclimation procedure has been shown to significantly reduce 

body temperature, motion, heart rate and plasma corticosterone levels by the third day of 

acclimation (King et al., 2005).   

 

2.3.2 fMRI Data Acquisition 

 All imaging experiments were conducted at the University of Massachusetts 

Medical School at the Center for Comparative Neuroimaging in Worcester, 

Massachusetts (Tenney et al., 2003).  The description of the acquisition protocol is 

therefore derived from Tenney et al., 2003.  Eight rats were anesthetized with 2 mg 

ketamine and 0.02 mg medetomidine, fixed with MR-compatible nonmagnetic epidural 

EEG electrodes, and implanted with an i.p. line for GBL injection.  Lidocaine gel was 

applied to ear canals and the bridge of the nose because these are pressure points in the 

restrainer.  The rats were secured into the restrainer with canines secured over a bite bar 

and ears positioned inside the head holder.  An adjustable surface coil built into the head 

holder was pressed firmly on the head and locked into place.  The body of the rat was 

placed into the restrainer and the head piece locked into a mounting post on the front of 

the chassis.  A volume coil was slid over the restrainer and locked into position. 

Antisedan was administered at the time the animal was placed into the head holder and 

imaging started 30 minutes later. 

 All images were acquired using a 4.7-T/40-cm (Oxford magnet Technology, 

Oxford, U.K.) horizontal magnet interfaced to a Paravision console (Bruker Medical 
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Instruments, Billerica, MA, U.S.A.).  High resolution anatomic data were acquired using 

a fast spin echo (RARE) sequence (TR= 2.5 s; TE= 56 ms; echo train length= 8; field of 

view= 3 x 3 cm; data matrix= 256 x 256; number of slices= 4; slice thickness= 1.0 mm).  

Functional images were acquired by a two-segment gradient echo planar imaging (EPI) 

sequence (TR= 1 s; TE= 25 ms; field of view= 3 x 3 cm; data matrix= 128 x 128; number 

of slices= 4; slice thickness= 1.0 mm).   

 Data acquisition followed a specific experimental paradigm (Figure 7).  EEG data 

were collected only during breaks in imaging  when the scanner was turned off because 

of the distortions in fMRI images caused by the EEG electrodes. Baseline functional 

images were collected for 3 minutes, followed by a saline injection and EEG collection 

for 2 minutes.  Functional image acquisition took place for another 2 minutes followed by 

EEG for 1 minute and then image acquisition for 2 minutes.  GBL (200 mg/kg i.p.) was 

injected, and EEG was recorded for 2 minutes before image acquisition for another 2 

minutes.  2 minutes of functional image acquisition was repeated 4 times with EEG wait 

times of 1 minute, 1 minute, 10 minutes and 30 minutes in between respectively.  SWDs 

were recorded in the EEG, which was reported in the original paper (Tenney et al., 2003), 

but only the imaging data are included in this thesis. 

 

2.3.3 Data Analysis: fMRI  

 Brains were extracted from whole brain functional data sets to eliminate non-

brain tissue.  This was done in FMRIB Software Library (FSL) (The Oxford Centre for 

Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University 

of Oxford, Oxford) by outlining (masking) the brain in each functional data set – 3  
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Figure 7. Specific EEG and functional magnetic resonance imaging experimental 

paradigm.  EEG data were collected (bottom time periods) during breaks in scanning 

because of the distortion in the magnet caused by scalp electrodes.  The scanner was 

turned on during time frames indicated at the top of the figure and red asterisks represent 

time periods (baseline, 5 minutes, 20 minutes, 50 minutes) used for functional 

connectivity analysis in this thesis. EEG data were not analyzed in this thesis. (adapted 

from Tenney et. al., 2003). 

 

minute scan for baseline and 2 minute scan for all other time points after injection.  All 

functional connectivity maps were created using Analysis of Functional Neuroimages 

(AFNI) (National Institute of Mental Health, Bethesda, MD, USA).  Data was smoothed 

(full-width at half maximum = 1 mm) and bandpass filtered between 0.01 and 0.1 Hz and 

applied to all voxel time courses on a voxel by voxel basis covering the 4 slices of the 

data sets.   

FMRI bold signals from a predefined brain region, called the seed region, was 

used as a reference to estimate functional connectivity (van den Heuvel & Hulshoff Pol, 

2010).  Using anatomical scans from the same rat and a rat brain atlas (Paxinos & 

Watson, 2009) for defining brain structures, seed regions (1 voxel in size – 0.2 x 0.2 mm) 

were carefully placed  in the right thalamus and right dorsal hippocampus of individual 

rats.  The extracted BOLD time course of each seed region was cross-correlated with the 

BOLD signals of all voxels within the brain to derive corresponding correlational 
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connectivity maps in baseline and time points (5 min, 20 min, 50 min) after following 

GBL injection.  

 

 

3.0 RESULTS 

3.1 Local Field Potentials and Behaviour 

The stages of seizure development were defined  by LFP and behavioural results 

(Fig 8A).  Baseline recordings exhibited low amplitude, fast frequency oscillations while 

rats were immobile and awake.  Approximately 4.0 minutes post-GBL injection, the rats 

experienced intermittent staring spells with simultaneous bursts of SWDs (Fig. 8B) of 

larger amplitude and rhythmic oscillations in all recording electrodes.  At 8.8 minutes 

post-injection, rats became completely immobile and experienced a vacant stare along 

with abrupt facial and vibrissae twitching.  At the same time, EEG displayed continuous 

SWDs (Fig. 8B)  in all recordings electrodes.  After an average of 52.3 minutes post-

injection, the rats experienced either an abrupt head shake or body jerk and continued to 

explore the Plexiglas cage, eat and drink.  At the time of the abrupt head shake, EEG 

returned to baseline with the disappearance of SWDs. 

Power spectra express the amplitude of the neural signal in the brain region as a 

function of frequency.  The peak frequency was analyzed from the power spectra of the 

LFPs in all rats during baseline, bursting SWDs and continuous SWDs (Fig. 9).  No 

significant peaks were identified during baseline recordings, however peaks were 

identified post-GBL injection.  The range of peak frequencies among all brain regions 

during the bursting SWDs was 4.98-5.24 Hz, whereas the range of peak frequencies 
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during the continuous stage decreased to 2.64-3.59 Hz (Table 1).  Nonparametric Mann 

Whitney U tests revealed a significant decrease in peak frequency from the bursting to 

the continuous stage of SWDs in the parietal cortex (U = 2, p < 0.0001), the hippocampus  

(U = 3.5, p < 0.01), the frontal cortex (U = 3, p < 0.01), the ventrolateral thalamus (U = 

0.5, p < 0.0001), and the visual cortex (U = 1, p < 0.0001).  Following GBL injection, 

there was a general increase in EEG power in the 2-6.5 Hz frequency range at all 

electrodes (Fig. 10), as compared to the EEG during immobility before injection.   Non-

parametric Kruskal-Wallis tests revealed a significant increase in 2-6.5 Hz EEG power in 

the parietal cortex (KW = 9.905, p < 0.005), the hippocampus (KW = 7.955, p < 0.1), the 

frontal cortex (KW = 14.74, p < 0.001), the ventrolateral thalamus (KW = 10.99, p < 

0.01) and the visual cortex (KW = 7.845, p < 0.05).  In the parietal cortex, Dunn’s 

Multiple Comparison test revealed a significant increase in power between baseline and 

the bursting stage (p < 0.05) and between baseline and the continuous stage (p < 0.05).  

There was no significant change in power between the bursting and continuous stage (p > 

0.05).  In the hippocampus, Dunn’s Multiple Comparison test revealed a significant 

increase only between baseline and the bursting stage (p < 0.05).  In the frontal cortex, 

Dunn’s Multiple Comparison test revealed a significant increase in power between 

baseline and bursting stage (p < 0.001) and between baseline and the continuous stage (p 

< 0.05).   In the ventrolateral thalamus and the visual cortex, Dunn’s Multiple 

Comparison test revealed a significant increase in power only between baseline and the 

bursting stage (p < 0.01 and p < 0.05 respectively).  No significant change in power was 

revealed between the bursting and continuous stages (p > 0.05). 
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Figure 8. Behaviour and local field potentials in the GBL rat model of absence seizures. 

The head cap was connected to the EEG recording system and baseline was recorded 

once the rats were completely immobile and awake.  Rats were injected with 200 mg/kg 

GBL (i.p.) and LFPs were recorded for 2 hours following injection.  (A) Stages of seizure 

development were characterized based on behavioural and EEG findings following GBL 

injection. Time (minutes) is presented as mean and standard deviation. (B) Example of 

electrographic recordings of a single rat in all five recording electrodes during the 

identified stages.  EEG was filtered between 0.3-70 Hz and sampled at 200 Hz. (SWDs: 

spike-and-wave discharges)  
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Figure 9. Power spectra and peak frequency in brain regions following GBL injection.  

The left column displays example power spectra of a representative rat in different brain 

regions. The right column displays the changes in peak frequency of the bursting and 

continuous stages of spike-and-wave discharges (SWDs) following i.p. injection of GBL 

in all rats (n=8) in the parietal cortex (A), hippocampal CA1 region (B), frontal cortex 

(C), ventrolateral thalamus (D) and visual cortex (E). Peak frequencies during each stage 

were identified in the power spectra generated by a Fast Fourier Transform. No peaks 

were identified in any of the baseline recordings, however peaks were identified  during 

the presence of SWDs. Mann-Whitney U tests were conducted on each brain region to 

determine any differences in peak frequency. A significant decrease was revealed from 

the bursting to the continuous stage of SWDs. The range of peak frequencies in all brain 

regions during the bursts of SWDs was 4.98-5.24 Hz.  The range of peak frequencies in 

all brain regions during the continuous stage of SWDs was 2.64-3.59 Hz. Results 

expressed as mean and SEM (*P<0.01, **P<0.001).  
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Table 1. Mean and standard deviation of the frequency of peak power (in Hz) in different 

brain regions during the bursting and continuous stages of absence seizure induced by 

GBL 

 

         Bursting SWDs   Continuous SWDs 

 

     Brain Region                       Average           Range            Average              Range  
 

Parietal Cortex             4.98 (0.73) 4.10-6.06 3.47 (0.52) 2.93-4.30 

Hippocampus   5.08 (0.64) 4.28-6.06 3.23 (1.0) 2.93-4.30 

Frontal Cortex   5.01 (0.57) 4.30-6.06 3.59 (0.58) 3.13-4.69 

Ventrolateral Thalamus 5.05 (0.54) 4.30-6.06 3.03 (1.0) 1.76-4.30 

Visual Cortex   5.24 (0.69) 4.10-6.25 2.64 (1.1) 1.17-4.30 

 (n=8) Values in parenthesis represent standard deviation. 

 

 

 
 

Figure 10. Local field potential power changes following GBL injection. EEG power was 

averaged in each rat (n=8) between 2-6.5 Hz to determine changes in power throughout 

seizure stages. Kruskal-Wallis tests were conducted on each brain region and revealed a 

significant increase (P-values<0.05) in power from baseline following GBL injection. 

Dunn’s Multiple Comparison tests showed no significant change in power between the 

bursting and continuous stage of spike-and-wave discharges (SWDs) in all brain regions, 

but did reveal a significant increase when compared to baseline. Results are expressed as 

mean and SEM (*P<0.05, **P<0.01, ***P<0.001).  
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Coherence of the LFPs between all pairs of recording electrodes, for a total of 10 

pairs, was investigated.  The general trend among all pairs was an increase in coherence 

at the 2-9 Hz range (Fig. 11) following GBL injection, however the increase was found to 

be statistically significant in only five pairs (Fig. 11A).  The pairs that showed 

statistically significant increases in coherence, as analyzed by non-parametric Kruskal-

Wallis test, were: (1) parietal cortex-hippocampus, KW = 8.765, p < 0.05; (2) parietal 

cortex-ventrolateral thalamus, KW = 6.914, p < 0.05;  (3) hippocampus-frontal cortex, 

KW = 7.035, p < 0.05; (4) hippocampus-ventrolateral thalamus, KW = 7.955, p < 0.05; 

and (5) hippocampus-visual cortex, KW = 3, p < 0.05.  Each pair exhibited enhanced 

synchronization in a similar manner, indicated by increase in coherence, or positive 

slope, from baseline to bursting SWD stage (Fig. 11A).  Each pair exhibited a decrease in 

coherence from the bursting to the continuous SWD stage, but the coherence remained 

above baseline values throughout all SWD stages.  All pairs that included the 

hippocampus exhibited increases in coherence during the seizure stages.  Dunn’s 

Multiple Comparison tests showed no significant difference between coherence in 

baseline and continuous SWDs, but did show a significant increase in coherence from 

baseline to bursting SWDs for the parietal cortex and hippocampus pair (p < 0.05), the 

parietal cortex and ventrolateral thalamus pair (p < 0.05) and the hippocampus and visual 

cortex pair (p < 0.05).  There were no significant changes (Fig. 11B) in LFP coherence of 

the remaining pairs from different brain regions (p > 0.05). 
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3.2 Neuronal Unit Recordings  

The thalamic and hippocampal LFP exhibited changes in peak frequencies 

following GBL injection as expected from the previous experiments.  A peak frequency 

was identified between 4-6 Hz during bursting SWDs followed by a decrease to 2-4 Hz 

during continuous SWDs (Fig. 12).  No prominent peaks were identified at higher 

frequencies in the hippocampal power spectra, however there was an increase in power 

between 50-100 Hz in the thalamic signal following GBL injection (Fig. 12B).  This 

increase in 50-100 Hz thalamic power was not observed in the previous EEG analysis 

(Fig. 9-10) because of input filter cut off at 70 Hz. 

Overall there was a decrease in the average unit firing of hippocampal neurons 

following GBL injection and this was considerably reduced during continuous SWDs 

(consistent in 4 of 6 rats), and the most frequent firing was present within 250 msec prior 

to (consistent in 5 of 6 rats) thalamic SWD detection (Table 2).  A 2-way ANOVA 

identified a significant interaction between stage of GBL-induced seizure (baseline, 

bursting SWDs, continuous SWDs) and probability of hippocampal neuronal firing  (T1, 

T2, T3, T4) in relation to thalamic SWDs (F(6, 60) = 5.288, p = 0.0002) (Fig. 13). 

Bonferroni post-tests identified a significant increase in hippocampal neuronal firing in 

T2 from both baseline (t = 4.336, p < 0.001) and bursting SWDs (t = 3.667, p < 0.01) to 

continuous SWDs.  There was also a significant decrease in hippocampal neuronal firing 

in T1 from baseline to continuous SWDs (t = 2.708, p < 0.05). 
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Figure 11. Changes in coherence between brain regions following GBL injection. Highest coherence values were identified between 

2-9 Hz after comparing all possible pairs of recording electrodes using coherence spectral analysis (n=8). (A) Kruskal-Wallis tests 

revealed a significant increase (P-values<0.05) in coherence between pairs of recording electrodes. Dunn’s Multiple Comparison tests 

showed no significant difference between coherence in baseline and continuous spike-and-wave discharges (SWDs), but did show a 

significant increase in coherence from baseline to bursts of SWDs in three of the five significant pairs (*P<0.05). (B) Kruskal-Wallis 

tests revealed no change in coherence between pairs of recording electrodes.  Values are expressed as mean (SEM error bars are 

presented in Appendix A).
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In a representative rat, there was a decrease in firing following GBL injection.  The 

probability of firing in T1, T3 and T4 continued to decrease from baseline, however the 

frequency of firing in T2 increased from baseline.   Although baseline firing appeared 

uniform (Fig. 14), nonparametric Kruskal-Wallis tests and Dunn’s Multiple Comparison 

post-tests demonstrated a significant difference between T1 and T4 (KW = 12.76, p < 

0.01).  Unit firing in T2 and T3 was uniform throughout baseline, however as the relative 

firing in T2 increased and the relative firing in T3 decreased, there was a significant 

difference between these time intervals (KW = 10.77, p < 0.01)  in bursting SWDs (Fig. 

15).  As the relative unit firing increased in T2, all other time intervals exhibited a 

significant difference compared to T2 during continuous SWDs (Fig. 16).  The relative 

cell firing in T1 (KW = 17.96, p < 0.05) and T4 (KW = 9.997, p < 0.05) significantly 

decreased from the bursting and continuous stage of SWDs.   The relative cell firing in 

T1 (KW = 17.96, p < 0.001), T3 (KW = 15.52, p < 0.001) and T4 (KW = 9.997, p < 0.05) 

significantly decreased from baseline to the continuous SWDs. 
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Figure 12. Power spectra in the hippocampus (recorded at CA1 cell layer) and 

ventrolateral thalamus following GBL injection of neuronal unit recordings. Example 

average power spectra (duration of signal analyzed is 3 minutes and each second yields a 

power spectrum), generated by a Fast Fourier Transform, are of a representative rat in the 

hippocampus (A) and the thalamus (B).  The inset of each power spectrum (above) 

exhibit the characteristic peak frequency of 4-6 Hz during bursting spike-and-wave 

discharges (SWDs) and 2-4 Hz during continuous SWDs.  
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Table 2. Number of CA1 neuronal firing counts detected by thalamic spike-and-wave 

discharges (SWDs) in each subject during bursting and continuous stages of SWDs 

induced by GBL  

 

   T1  T2  T3  T4     Total 
 

Rat A 

Baseline             94             79             51               29      253     

Bursting SWDs           56             124             24               30      234 

Continuous SWDs       3             108             1               3        115                   
 

 Total   153  311  76  62 

 

Rat B 

Baseline             134             106             89               47      370     

Bursting SWDs           978             913             425               279      2595 

Continuous SWDs       4             71             3               7        85                  
  

Total    1116   1090   517  333 

 

Rat C 

Baseline             398             560             158               84      1200     

Bursting SWDs           89             107             100               19      315 

Continuous SWDs       366             324             88               28        806                   
 

 Total    853   991   346  131 

 

Rat D 

Baseline             255             383             150               1000      888    

Bursting SWDs           5             10             17               10      42 

Continuous SWDs       3             87             83               5        178                   
  

Total     263   480   250  115 

 

Rat E 

Baseline             986             1532             1446               327      4291     

Bursting SWDs           505             1002             271               215      1993 

Continuous SWDs       122             389             80               70        661                  
 

 Total     1613   2923   1797  612 

 

Rat F 

Baseline             458             412             233               110      1213  

Bursting SWDs           102             166             62               19      349 

Continuous SWDs       10             70             10               14        114                   
 Total     580     648    305  143 

 
T1: -500 ms to -250 ms, T2 : -250 ms to 0, T3 : 0 (event detection)  to 250 ms, T4 : 250 ms to 500 ms  
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Figure 13. Hippocampal neuronal firing in relation to GBL-induced thalamic SWDs. A threshold was set to detect the negative peak 

of the thalamic spike-and-wave discharges (SWDs).  Event detection was used to identify hippocampal neuronal unit firing 500 to 250 

msec prior (T1), 250 msec to event detection (T2), 250 msec after (T3) and 250 to 500 msec after event detection.  A 2-way ANOVA 

and Bonferroni post-tests identified a significant interaction between time intervals T1-T4 and stage of GBL-induced SWDs (F(6, 60) 

= 5.288, p = 0.0002). Results are expressed as average (n=8) probability of hippocampal unit firing. (*P<0.05 and **P<0.001 

compared to baseline, ¶P<0.01 compared to bursting SWDs) 
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Figure 14. Hippocampal neuronal firing in relation to thalamic local field potentials in 

baseline.  A threshold was set to detect the negative peak of the thalamic EEG (event 

detection indicated by red arrow).  Event detection (time 0 indicated by vertical dashed 

line) was used to identify hippocampal neuronal unit firing 500 msec before and 500 

msec after detection.  Examples are from a single representative rat.  Hippocampal and 

thalamic LFP traces were averaged after 40 event detections (upper traces) and 

hippocampal pyramidal cell firing count in relation to event detection is represented in 

the time histogram.  A Kruskal-Wallis test identified no significant differences in relative 

neuronal unit firing, except between T1 and T4.  The neuronal unit overlay to the right 

displays all 253 sweeps that contributed to the time histogram. (T1: -500 ms to -250 ms, 

T2 : -250 ms to 0, T3 : 0 to 250 ms, T4 : 250 ms to 500 ms, *P< 0.01) 
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Figure 15. Hippocampal neuronal firing in relation to the negative peak of thalamic 

SWDs in bursting SWDs. A threshold was set to detect the negative peak (red arrow) of 

the thalamic SWD (spike-and-wave discharge).  Event detection (time 0 indicated by 

vertical dashed line) was used to identify hippocampal neuronal unit firing 500 msec 

before and 500 msec after detection.  Examples are from a single representative rat.  

Hippocampal and thalamic EEG traces were averaged after 40 event detections (upper 

traces) and hippocampal neuronal firing count in relation to event detection is represented 

in the time histogram.  A Kruskal-Wallis test identified no significant differences in 

relative neuronal unit firing across the 1000 msec, except between T2 and T3.  The 

neuronal unit overlay to the right displays all 234 sweeps that contributed to the time 

histogram. (T1: -500 ms to -250 ms, T2 : -250 ms to 0, T3 : 0 to 250 ms, T4 : 250 ms to 

500 ms, *P< 0.01) 
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Figure 16. Hippocampal neuronal firing in relation to the negative peak of thalamic 

SWDs in continuous SWDs. A threshold was set to detect the negative peak (red arrow) of 

the thalamic SWD (spike-and-wave discharge).  Event detection (time 0 indicated by 

vertical dashed line) was used to identify hippocampal neuronal unit firing 500 msec 

before and 500 msec after detection.  Examples are from a single representative rat.  

Hippocampal and thalamic EEG traces were averaged after 40 event detections (upper 

traces) and hippocampal neuronal firing count in relation to event detection is represented 

in the time histogram.  Kruskal-Wallis and Dunn’s Multiple Comparison tests showed 

significant differences (P-values<0.05) in relative neuronal unit firing between T1 and 

T2, T2 and T3, and T2 and T4.  Kruskal-Wallis and Dunn’s Multiple Comparison tests 

identified significant decreases in relative neuronal unit firing from baseline (solid 

triangle) and from bursting SWDs (solid square). The neuronal unit overlay to the right 

displays all 115 sweeps that contributed to the time histogram. (T1: -500 ms to -250 ms, 

T2 : -250 ms to 0, T3 : 0 to 250 ms, T4 : 250 ms to 500 ms, **P< 0.01, ***P<0.001) 
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3.3 Functional Connectivity 

 The functional connectivity of the thalamus and hippocampus with the rest of the 

brain during the GBL-induced seizure was investigated using a seed-based approach 

(Hutchison et. al., 2010; 2011).  Functional connectivity maps of a representative rat are 

shown in Figure 17, in which a thalamic seed was placed as close to the ventrolateral 

thalamus (right hemisphere) as possible.  Baseline maps revealed bilateral activation in 

the thalamus and parts of the neocortex.  Seed-region analysis revealed synchronized 

BOLD signal after 5 minutes between the seed region and the hippocampus, the caudate 

putamen and the widespread regions of the neocortex.  The seed region was highly 

synchronized with the primary somatosensory cortex (barrel cortex).  Functional 

connectivity with the seed region decreased after 20 minutes and became more localized 

to regions of the thalamus and dispersed within the neocortex.  After 50 minutes, analysis 

revealed widespread synchronization of the BOLD signal between the thalamus and the 

neocortex.  Overall, the thalamus exhibited increased functional connectivity with 

different regions of the brain following GBL injection.  

 Functional connectivity maps of the same rat are shown in Figure 18, in which a 

hippocampal seed was placed as close to the CA1 region (right hemisphere) as possible.  

Baseline maps revealed bilateral activation in parts of the neocortex and the 

hippocampus.  With the progression of time, the seed region sustained synchronization 

with the thalamus, neocortex and the caudate putamen.  Overall, the hippocampus 

exhibited the highest connectivity with the cortex as represented in the connectivity 

maps. 
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Figure 17. Pharmacological resting-state functional connectivity of GBL-induced 

absence seizures in a representative rat using thalamic seed-region analysis.  Correlation 

coefficient maps were calculated by correlating the time course of all voxels with the 

average time course of the seed placed in the thalamus (green circle). Coronal anatomical 

images are displayed in the top panel with the distance of each slice posterior to bregma.  

Coronal functional images are displayed in the bottom panel with 0 minutes used as time 

of GBL injection.  The threshold used for all images was a correlation coefficient of 0.8 

as indicated by the colour bar.   
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Figure 18. Pharmacological resting-state functional connectivity of GBL-induced 

absence seizures in a representative rat using hippocampal seed-region analysis.  

Correlation coefficient maps were calculated by correlating the time course of all voxels 

with the average time course of the seed placed in the hippocampus (green circle). 

Coronal anatomical images are displayed in the top panel with the distance of each slice 

posterior to bregma.  Coronal functional images are displayed in the bottom panel with 0 

minutes used as time of GBL injection.  The threshold used for all images was a 

correlation coefficient of 0.8 as indicated by the colour bar.   
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4.0 DISCUSSION 

 The primary goal of this thesis was to investigate whether or not the hippocampus 

becomes entrained in SWDs following thalamocortical activation using a 

pharmacological rat model of absence seizures.  Although none of the major theories 

include a role for the hippocampus, our motivation was to understand how and why there 

is great variation among patients with absence epilepsy that present with severe cognitive 

impairment and memory loss (Caplan et al., 2008).  We investigated hippocampal 

activation using local field potentials, coherence analysis, neuronal unit firing recordings 

and functional magnetic resonance imaging.  We hypothesized that the hippocampus may 

become entrained in SWDs following thalamocortical activation.   

 

4.1 Coherence of Hippocampal, Thalamic and Neocortical Local Field Potentials 

The local field potential and behavioural results following GBL injection corroborate 

early findings since the discovery of the GBL rat model of absence seizures.  Four to 6 

Hz SWDs, behavioural arrest and facial twitching were observed in these experiments 

and are characteristic of several absence seizure models.  Following GBL injection, the 

first observed change in EEG was a brief period of synchronous bursts of SWDs in all 

recorded regions of the brain, including the hippocampus.  Shortly after, there was a 

progression into a continuous stage of hypersynchronization associated with complete 

immobility, blank stares and some facial and vibrissae twitching.  One of the only studies 

to report this continuous stage in the GBL model also looked at similar brain areas 

(Banerjee et al., 1993).  Using GHB autoradiography, this study demonstrated that 

increases in GHB binding in the reticular thalamic nucleus peaked at the onset of SWDs 
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and gradually declined throughout the duration of the seizure.  This supports the critical 

role of this thalamic nucleus in the generation of GHB-induced SWDs. There was also an 

increase in GHB binding in the neocortex, which explains the presence of SWDs in the 

frontal cortex, visual cortex, parietal cortex and the thalamus in this model.  Interestingly, 

the same study found that the hippocampus has the highest density of GHB binding sites, 

but failed to record any SWDs.  This is contradictory to our findings perhaps because 

they recorded from the CA3 region, whereas we recorded SWDs in the hippocampal CA1 

region.  

There are inconsistencies among animal models of absence seizures surrounding the 

primary thalamic nuclei that contribute to the generation of SWDs, however there is some 

agreement that it is either the ventrolateral (VL) or ventroposteromedial (VPM) nucleus.  

The VPM is a good candidate because there are clusters of cell bodies in layer IV of the 

rat somatosensory cortex that receive somatotopically organized projections from VPM 

(Agmon & Connors, 1991).  These cell bodies are considered to be the functional units 

that receive information from single vibrissae.  Although we did not record from the 

VPM, its involvement would explain the sudden twitching of the vibrissae and the facial 

muscles of the rat during the seizure.  The reason we chose to record from VL is because 

projections from VL terminate in the superficial layers of the rat motor cortex 

(Herkenham, 1980), where there are high densities of GHB binding sites (Banerjee et al., 

1993). VL in the rat is considered the primary relay motor nucleus which receives 

afferents from several extrathalamic motor regions including the basal ganglia 

(Lukhanina, 1994).  Based on the motor arrest of the rat during GBL-induced absence 

seizures, VL is expected to play a role in SWDs and indeed, SWDs were present in both 
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VL and the parietal cortex (Fig 8B.), to which VL projects.  It is not likely however, that 

a single thalamic nucleus acts alone to generate SWDs.  A more plausible explanation 

would be that several relay nuclei participate in SWDs simultaneously.  The reticular 

thalamic nucleus has reciprocal projections with all relay nuclei, so VL and VPM may 

both be active during the generation of SWDs.  There are other thalamic nuclei that may 

also be potential candidates, which is discussed below. 

As demonstrated in Figure 9, all recorded brain regions displayed a peak frequency 

between 4-6 Hz during bursting SWDs and this peak frequency decreased during 

continuous SWDs to between 2.5-4 Hz.  The GBL-induced bursting stage of SWDs 

resembles that of the common human absence seizure lasting no longer than 20 seconds 

(International League Against Epilepsy, 1981), and the continuous stage and reduction in 

peak frequency is rare but also characteristic in humans and is referred to as absence 

status epilepticus (Baykan et. al., 2002).  This stage in the rat model may also be a result 

of the drug itself and the fact that GBL can be taken up from the blood following 

injection.  GBL is lipid-soluble, so  lean muscle can sequester a large portion, which may 

slow down its metabolism and prolong its transport to the brain (Roth & Giarman, 1966).  

Regardless, it is not surprising that peak frequencies changed concurrently among all 

recorded regions during a generalized seizure.  Additionally, it is not surprising that the 

respective power dominated across the frequency spectrum in Figure 10.   

By definition, the term generalized seizure implies that many parts of the brain 

become involved almost synchronously during a generalized seizure.  However, it is 

becoming more and more apparent that there may be selective thalamocortical 

involvement, and that some brain structures participate more than others and some not at 
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all (Holmes et al., 2004).  We therefore analyzed coherence of LFPs among implanted 

depth electrodes.  If generalized seizures were truly generalized, we would expect to find 

coherence among all regions to a similar magnitude.  This was not the case however, as 

evident in Figure 11.  The results indicate that coherence was not uniform among 

different pairs of brain regions.  Out of the 10 pairs of regions analyzed, only 5 

demonstrated significant changes in coherence with different stages of SWDs.  The 

synchronization between the VL and parietal cortex is representative of the 

thalamocortical circuit and its involvement is supported by direct projections from VL 

into the parietal cortex (motor cortex) of the rat brain.  The novel finding is that all 

remaining pairs with significant changes in coherence included the hippocampus. During 

bursting SWDs, the CA1 region of the hippocampus exhibited enhanced neural coherence 

with the parietal, frontal, and visual cortex and the thalamus.  

Local field potentials reflect synchronous postsynaptic potentials in a local population 

of neurons (Leung, 2010).  The increased power at 4-6 Hz in the LFPs at each brain site 

(thalamus, neocortex or hippocampus) is indicative of increased number of participating 

neurons and increased synchronization among neurons.  However, coherence of field 

potentials between two distant brain areas suggests common connections between the two 

regions (e.g., hippocampus and thalamus).  The latter could be interpreted as an increase 

in direct connection between the thalamus and the hippocampus.  However, the 

involvement of multi-synaptic connections between the thalamus and the hippocampus is 

possible, in particular in relation to synchrony of a relatively slow event of 4-6 Hz, e.g., 

delays of 20 ms will represent only 10% of the period of a 5-Hz rhythm, and many 

synapses can be involved with a 20 ms delay.  In addition, if a third brain area projects 
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common inputs to both regions (hippocampus and thalamus), the signals in the two 

regions can be coherent as well, without having direct or indirect connections with each 

other.  Also important is that hippocampal SWDs were not independent of cortical and 

thalamic SWDs but were concomitant, which suggests that they are being driven by the 

same pacemaker, whether it be the cortex or the thalamus.  The identification of SWDs in 

the hippocampus and its coherence with the cortex and the thalamus suggest an important 

relationship between hippocampal activity and absence seizures.  To elucidate the nature 

of this relationship we assessed hippocampal neuronal activity during GBL-induced 

absence seizures by recording from the CA1 pyramidal cell layer. 

 

4.2 Time-locked Hippocampal Neuronal Firing  

In our next experiments, we implanted depth electrodes into the CA1 pyramidal cell 

layer of the hippocampus and the thalamus with the goal of characterizing the temporal 

relationship of hippocampal neuronal firing in relation to SWDs.  We predicted an 

increase in CA1 neuronal unit firing after GBL injection.  After setting a threshold to 

detect the negative peak of thalamic SWDs, the most frequent hippocampal firing was 

consistently found within 250 msec preceding the thalamic SWD.  Although there were 

no evident peaks at higher frequencies in the power spectrum, Figure 12 demonstrates an 

increase in 50-100 Hz power in the thalamus, which may likely correspond to the high 

frequency oscillation evident on the thalamic wave 250 msec preceding detection in 

Figure 15.  The time-locked firing of hippocampal unit activity is evidence that the 

hippocampus influences thalamocortical SWDs, perhaps by driving activation of specific 

thalamic nuclei either directly or via the reticular thalamic nucleus (Cavdar et al., 2008).  
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The hippocampus is perhaps involved in maintenance and regulating SWDs.  While the 

hippocampus influences thalamocortical SWDs by maintaining its time-locked firing 

~250 msec prior to the thalamic SWD, it is also apparent that after prolonged exposure of 

the brain to hypersynchronous activation, the hippocampus begins to progressively  

decrease in activity.  Important to keep in mind is that the hippocampus is active during 

both bursting and continuous SWDs, which are both reminiscent in human absence 

seizures and that this activity is time-locked with thalamic SWDs. 

 

4.3 Functional Connectivity between the Hippocampus and Thalamocortical 

Network 

We have thus far demonstrated time-locked firing of the hippocampus during SWDs 

and synchronization of hippocampal LFPs with those in the thalamus and neocortex. 

However, the spatial resolution of EEG is constrained to tens or hundreds of neurons, 

placing a lower limit on the effective spatial resolution in relation to the rest of the brain 

(Keogh & Cordes, 2007; Mirsattari et. al., 2007).  As an additional measure we used 

pharmacological resting-state fMRI to study the functional connectivity between the 

hippocampus and the rest of the brain, including the thalamus and neocortex.   

The functional connectivity of the brain can be measured by the temporal relationship 

of the blood-oxygen-level dependent (BOLD) signals (Ogawa et al., 1990) in two regions 

of the brain.  Functional connectivity represents a novel approach to fMRI which allows 

the investigation of active regions even when they are anatomically distant (Aertsen et 

al., 1989).  Areas of the brain that exhibit BOLD signal fluctuations correlated in time are 

assumed to be functionally connected and therefore demonstrate a level of co-activation.  
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The BOLD time-course correlation analysis can produce functional connectivity maps 

showing which areas are connected with the given seed region and to what extent 

(Rosazza & Minati, 2011).  The seed voxel or region is identified as an area of interest in 

the brain found or believed to be active during a specific task, or in our studies, believed 

to be involved in spike-and-wave discharges.  Therefore our seed regions are the 

thalamus and hippocampus. 

These data were analyzed from an experiment conducted in 2002 and published in 

2003 by Dr. Jeff Tenney.  The difference with their analysis was that they used 

neocortical and thalamic regions of interest for the purpose of assessing changes in 

BOLD signal intensity solely within those regions.  They predominantly found positive 

BOLD changes in the thalamus with mixed positive and negative BOLD changes in the 

neocortex and did not report any changes in the hippocampus.  However, changes in 

BOLD signals in one region tells us nothing about how it changes in relation to other 

regions of the brain, which is why we studied functional connectivity patterns using 

temporal correlation of the BOLD signal fluctuations. 

Based on the previous experiments, we predicted that the hippocampus would 

exhibit increased BOLD signal and become functionally connected with the thalamus and 

neocortex following GBL injection.  We found that the hippocampus becomes 

functionally connected with the neocortex and the thalamus during bursting SWDs (5 

minutes after injection) and this connectivity endures during the continuous SWD stage 

(20 and 50 minutes) as presented in Figure 18.  The fMRI connectivity maps using a seed 

in the ventrolateral nucleus confirm the strong connectivity with the hippocampus.  

Figure 17 demonstrates functional connectivity of the hippocampus and the thalamus 
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during bursting SWDs (5 minutes after injection) and then again in the late stage of 

continuous SWDs (50 minutes after injection).  Interestingly, correlations between 

regions are relatively high following GBL injection, evident in the fact that the threshold 

used to clearly visualize correlational changes was set to 0.8.  These functional 

connectivity maps complement the coherence analysis in our LFP experiments by 

providing higher spatial resolution of the entire brain during the development of SWDs.  

Typically, fMRI protocols have a low temporal resolution and our data was acquired by 

collecting volumes of data every 2.5 seconds (TR = 2.5).  This demonstrates why it was 

important to combine EEG data with good temporal resolution and fMRI data with good 

spatial resolution.  Using EEG, we are able to record individual SWDs, while using 

fMRI, we can follow the spread of hypersynchronous activity as a result of SWDs 

throughout the rest of the brain. These experiments therefore serve as a clear visual 

representation of neural synchronization and the hemodynamic response in the rat model 

of absence seizures.   

When determining where to place the seed region, we used both the rat atlas and 

the individual anatomical data sets to be as accurate as possible.  This is especially 

important when extracting the BOLD signal from brain regions as small as specific 

thalamic nuclei, such as the VL.  However, when conducting rat imaging, it is extremely 

difficult to be absolutely certain that we are capturing the BOLD signal solely from one 

thalamic nucleus.  The rat brain is relatively small, which requires small voxels, which 

affects the ability to create high-quality images.  In combination with working with a 

4.7T magnet, these images may not be adequate to investigate single thalamic nuclei 

within the functional data sets.  The variation of the BOLD signal and structures of the 
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brain itself between rats also complicates interpretations.  For this reason, we can 

conclude that there are changes in functional connectivity in the general regions of the 

thalamus and hippocampus, but are not able to identify which specific nuclei of the 

thalamus or regions of the hippocampal formation contribute to these changes.  

Furthermore, although the effects of GBL were similar in the rats, we were not able to 

conduct group analysis on the acquired data because the chosen software was not capable 

of registering the functional data to a template.  We believe that this is because a template 

normally comprises slices spanning the entire brain, however only 4 slices were collected 

in these experiments, so the software runs into issues when aligning key structures of the 

entire brain to the 4 slices.  Without group analysis, we cannot account for individual 

variability in the data to draw statistical conclusions about changes in the regions 

investigated.  It would be expected however that group analysis would reveal similar 

results, except with more discrete activation localized to specific regions of the thalamus, 

hippocampus and neocortex.  Further studies should include slices that cover the entire 

brain to investigate this prediction.  Overall, our analysis demonstrates that the 

hippocampus is functionally connected with the thalamocortical network in GBL-induced 

absence seizures.  Studies using other absence seizure models are warranted to 

substantiate hippocampal activation observed in the GBL model. 

 

4.4 Anatomical Connections between the Hippocampus, Thalamus and Neocortex 

Limbic structures are generally not included in any theory about the pathogenesis of 

absence seizures.  Early studies suggest that hippocampal neurons were not driven by the 

thalamocortical network during the 6-9 Hz SWDs (spontaneous high-voltage spike-and-
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wave activity) in rats without drugs (Kandel et al., 1996).  These resembled the 

spontaneous activity observed in a few of our rats during the baseline condition, when 

hippocampal activity was not time-locked to the SWD (Fig. 14).  GBL-induced SWDs 

showed time-locked increase in hippocampal activity in most rats, in particular during the 

continuous bursting phase.  Other studies also failed to record high amplitude SWD 

activity in the hippocampus during absence seizures (Snead et al., 1976; Vergnes et al., 

1990).  However, several models and newer techniques are beginning to demonstrate 

subtle alterations in the hippocampus that suggest its contribution to SWDs.  For 

example,  inflammatory cytokines have been found to be active during SWDs (Kovács et 

al., 2006) and macrophage migration inhibitory factor was found to be upregulated in the 

hippocampus and the thalamus in the GAERS model (Danış et al., 2011).  Furthermore, 

metabolic activity measured by glucose utilization, has been found to be significantly 

increased in regions of immature GAERS brains, including the hippocampus (Nehlig et 

al., 1998), which is in support of our imaging analysis.  WAG/Rij rats are also a valid 

genetic model of absence epilepsy and were found to have a low threshold for the spread 

of epileptic activity in the neocortex and limbic structures (Tolmacheva et al., 2004), 

which may be explained by an increased level of glutamate found in the hippocampus 

(Sirvanci et al., 2003).  Taken together, it is not surprising that enhanced GABAergic 

inhibition in the hippocampus suppresses absence seizures (Tolmacheva & van 

Luijtelaar, 2007).  Although the thalamocortical network is widely considered to be the 

generator of SWDs, these data, together with our findings, support a role for the 

hippocampus in the regulation of absence seizures and is therefore not as inactive as 
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research once suggested.  Further investigation must be conducted to determine if the 

hippocampus is essential for SWDs and to what extent it is involved.   

The functional connections must be taken into consideration, but research on 

anatomical connections with the hippocampus and the rest of the brain may help to 

uncover the network of neural connections responsible for absence seizures and 

ultimately cognitive impairment.  The vast majority of absence epilepsy research focuses 

on VL and its projections to the motor cortex or VPM and its projections to the 

somatosensory cortex.  However, another potential candidate is the nucleus reuniens (RE) 

of the midline thalamus which is the sole source of thalamic input to the hippocampus 

(Vertes et al., 2007).  RE selectively targets CA1, but avoids CA3 and the dentate gyrus 

(Bokor et al., 2002; Dolleman-Van Der Weel & Witter, 1996).  Importantly, neurons of 

RE that project to the CA1 also receive excitatory inputs from the medial prefrontal 

cortex (mPFC) and CA1 is the only hippocampal source of efferents to the mPFC (Carr 

& Sesack, 1996).  Studies fail to show that there are any return projections from the 

mPFC to the hippocampus (Vertes, 2006).  This suggests that RE may be a convergence 

point between the hippocampus (involved in storage of long-term memory) and the 

mPFC (involved in short-term memory) that may contribute to disrupted plasticity of 

cognitive processes resulting in memory and learning deficits in those with absence 

seizures.  In addition to working memory, attentional processes are regulated by the 

mPFC (Zikopoulos & Barbas, 2007), which may account for the momentary loss of 

awareness and staring spells of human absence seizures.   

Just as VL receives GABAergic projections from the reticular thalamic nucleus 

and glutamatergic projections from the primary motor cortex to complete the basic 



65 

 

 
 

thalamocortical circuit, RE also receives GABAergic inputs from the reticular thalamic 

nucleus (Van der Werf et al., 2002) and there are reciprocal glutamatergic connections 

with the mPFC.  The key difference is that RE is also the only relay nucleus capable of 

recruiting the hippocampus as part of the circuit, which may initiate activity between the 

hippocampus and mPFC (Rt  RE  CA1  mPFC  back to the thalamus).   

Although controversial, absence seizures can be categorized as typical or atypical.  

The model used in our experiments is an established model of typical absence seizures.  

Although bearing a considerable clinical, EEG and pharmacological resemblance to 

typical absence seizures, atypical absence seizures last longer, have irregular and slower 

SWDs and are more frequently associated with severe cognitive and neurological 

impairments (Markand, 2003).  One view on this classification is that typical and atypical 

absence seizures are two distinct entities (Panayiotopoulos, 2008) and it has been 

proposed that RE is only active in atypical absence seizures (Onat et al., 2013), whereas 

VL or VPM are active in typical absence seizures.  Based on our findings, we propose 

that it is a combination of both, which would support the view that they exist along a 

biological continuum and the factor that determines the degree of cognitive impairment is 

the extent of RE involvement and therefore hipppocampal recruitment.  Studies must be 

conducted to further investigate this, but it may potentially explain the variability of 

cognitive deficits among those with absence epilepsy. 

 

4.5 Conclusions 

  The GBL rat model is useful because we can control the onset of seizures, 

however it has several limitations.  In addition to temporary processes that take place 
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during a seizure, there are alterations in the brain that predispose it to seizure onset 

(Lothman, 1993).  These alterations cannot be studied in this model and can only be 

investigated using the genetic models or humans.  This makes it difficult to compare this 

model to genetic models of absence epilepsy to draw firm conclusions about the role of 

the hippocampus.  Perhaps it should generally be accepted that in some models, the 

hippocampus is involved in SWDs and in some it is not.  The fact that some and not all 

models exhibit hippocampal SWDs is indicative of the potential variation of the type and 

severity of seizures that may manifest in humans.   

The investigation of the hippocampus in absence epilepsy is still in its early stages 

and important questions remain.  First, it will be important to determine if the 

hippocampus is necessary for the maintenance or regulation of thalamocortical SWDs, 

which can be investigated using lesion studies in rats.  Second, if human studies confirm 

a role for the hippocampus in absence epilepsy, it may be involved in cognitive and 

memory deficits, but it will be important to identify all factors that potentially contribute.  

For example, is it a consequence of early age of onset or a long history of seizures, is it a 

consequence of treatment via antiepileptic drugs, or is it a consequence of the seizure 

itself?  Impaired function of attention networks has been demonstrated in several studies 

(Killory et. al., 2011; Kay et. al., 2013) and the hallmark of absence seizures is staring 

spells and a loss of responsiveness.  Therefore future studies must focus on understanding 

whether or not the memory deficit is due to a lack of awareness during the ictal 10 to 20 

seconds or if there is an actual impairment in the mechanisms for encoding memories, 

which may continue to play a role during the interictal periods.   
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In conclusion, our findings support our hypothesis that the hippocampus is active 

following thalamocortical activation in absence seizures.  SWDs were detected in all 

recorded brain regions, including the hippocampus.  Hippocampal CA1 cells fired 

consistently within the 250 msec prior to detection of thalamic SWDs and the rat brain 

revealed functional connectivity between the hippocampus, thalamus and neocortex 

following GBL injection.  Consistent with these findings, a study showed that injections 

of antiepileptic drugs into the hippocampus using a genetic model of absence seizures 

reduced the occurrence of SWDs generated within the thalamocortical network 

(Tolmacheva & van Luijtelaar, 2007).    Synchronization between the hippocampus and 

the thalamocortical network in absence seizures has implications for studies of the 

mechanisms in cognitive comorbidities.  Therefore, our findings suggest that the 

hippocampus does become involved in absence seizures following thalamocortical 

activation, which may have implications in the variability of cognitive and memory 

deficits in patients with absence epilepsy.   
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APPENDIX A 

 
 

Significant changes (Figure 11A) in coherence between brain regions following GBL 

injection. Displayed are only the pairs that demonstrated significant changes (Figure 

11A) in coherence following GBL injection and peak coherence is presented relative to 

each pair.  Pairs have been separated to eliminate overlap for better visual representation 

of error bars (SEM) and therefore the y-axis is not to scale.  Kruskal-Wallis tests revealed 

a significant increase (P-values<0.05) in coherence between pairs of recording electrodes. 

Dunn’s Multiple Comparison tests showed no significant difference between coherence 

in baseline and continuous spike-and-wave discharges (SWDs), but did show a 

significant increase in coherence from baseline to bursts of SWDs in three of the five 

significant pairs (*P<0.05).  
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