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ABSTRACT 

 

The purpose of this study was to compare the effects of two different pacing 

strategies during a 6 min exercise performance on average power output, VO2 kinetics, 

deoxygenation in the vastus lateralis muscle, energy system contribution, average power 

output and blood lactate concentration. Eight young, healthy, male subjects (age 24 ± 3) 

completed two 6 min pacing strategies on a cycle ergometer; one bout was paced at a 

calculated fatigue threshold (FT) and the other began with a 12 s sprint and was paced 5 

% below FT pace (5%<FT). Both strategies allowed individuals to use an incremental 

sprint over the last 90 s of the test to measure performance. The FT strategy yielded a 

significantly higher average work rate than 5%<FT (305 ± 41 W and 281 ± 423 W, 

respectively) for the duration (0-360 s) of the pacing trials (p<0.05). During the 90 s 

sprint performance, the FT strategy exhibited an increased VO2, work rate, anaerobic 

energy system contribution and energy consumption (p<0.05). No difference of post 

exercise blood lactate was observed between pacing strategies. In conclusion, the FT 

pacing strategy utilizing an even start protocol may be a more suitable strategy for a 6 

min exercise performance.  
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Chapter1 

 

Review of Literature 

Pacing, or pacing strategy, refers to the athlete’s distribution of energy and work 

throughout a race. The manner an athlete paces oneself can have a tremendous impact on 

their performance. Differing pacing strategies adopted by athletes is dependent on event 

duration (1). Some have suggested that performances lasting less than three minutes will 

receive greater benefit from an all-out pacing strategy (7, 16, 26), whereas events greater 

than 3 minutes in duration may benefit most from an even paced strategy (1, 21, 22, 46). 

Elite rowers have adopted a parabolic shape profile strategy for 2 km races. The athlete(s) 

start the first quarter of the race with an all-out strategy, level off their speed for the next 

two quarters of the race, and for the last quarter of the race the athletes utilize a gradual 

sprint until the race is completed. This particular pacing strategy involves a variation of 

velocity through the exercise performance (45). Nevertheless, it has been suggested in 

research studies that any variation of velocity either above or below one’s calculated 

average speed (fatigue threshold pace) may decrease overall performance (27). During 

the 2000 Summer Olympics, in Sydney, Australia, analysis of rowers performance that 

placed higher in the rankings yielded the least amount of boat velocity variation, 

regardless of: gender, boat type, or number of athletes in the boat (42).   

The purpose of this investigation is to compare two different pacing strategies on a 

cycle ergometer that mimic a 2 km (6 min) rowing performance. The first strategy is the 

traditional strategy (5%<FT), fast start (12 s), and then a pace 5% below the fatigue 

threshold pace for ≈ 4 min 18 s, followed by an attempted increase in speed to the finish 
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at 6 min. The second strategy involves an even paced strategy with the same attempted 

incremental increase in speed to the finish from 4 min 30 s to 6 min. Energy system 

contribution, change in deoxygenation in the vastus lateralis muscle, oxygen kinetics over 

the first 180 s, power output, oxygen consumption and blood lactate concentrations 

before and after both pacing strategies will be compared. 

  

1.1 Exercise Intensity Domains 

 Three exercise intensity domains can characterize the metabolic and gas exchange 

response to exercises: moderate, heavy and severe.  The moderate intensity domain refers 

to work rates below the lactate threshold (40).  The speed of O2 kinetics at moderate 

intensity is invariant with regards to work rate (40). However, it can be enhanced by 

training and slowed by chronic disease, inactivity and aging (11, 40). Heavy exercise 

refers to work rates above the lactate threshold and below one’s critical power (the 

highest sustainable aerobic power output). Exercise in the heavy intensity domain results 

in the presence of lactate in the blood. However, with time the rate of increase in the 

blood is matched by its rate of removal. The severe exercise domain comprises a power 

output above the critical power and below one’s VO2 max (40). During severe exercise, 

VO2 reaches its maximum and lactate rises inexorably until exercise is terminated due to 

fatigue (11). 

 

1.2 Energy Systems  

 There are two types of energy systems during exercise, the anaerobic and aerobic 

energy systems. The anaerobic system consists of two pathways, the alactic and the lactic 
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energy systems. The alactic system involves the splitting of stored phosphates from 

adenosine tri-phosphate (ATP) and phosphocreatine (PCr). This energy system is 

predominant in first 10 s of exercise. In the lactic energy system, lactic acid is a 

metabolic byproduct of the breakdown of glucose or glycogen to pyruvate in the presence 

of the lactate dehydrogenase (LDH) enzyme without the utilization of oxygen. H
+
 

dissociates immediately from the lactic acid forming lactate. The lactic anaerobic system 

is working at its highest rate when energy from the alactic energy system is declining (≈ 

10 s) and the exercise duration is too short for the aerobic system to adequately supply 

the working musculature with ATP (40). Together the anaerobic energy systems can 

generate ATP at high rates but is limited by its metabolic byproducts (lactate, H+, ADP, 

Pi) that are associated with fatigue (40). 

 The aerobic energy system utilizes the breakdown of fats and 

carbohydrates and relies ultimately on the consumption of O2 at the termination of the 

electron transport chain to complete this pathway. The aerobic energy has a great 

capacity to provide energy, but its rate of energy production is the slowest.  The aerobic 

energy system has a majority contribution at work intensities below critical power. Any 

work performed above that intensity requires a significant contribution from anaerobic 

energy system (40, 50). The by-product of the aerobic energy system is carbon dioxide 

and water and is limited by muscle glycogen content (40).  

During maximal exercise, the contribution of the aerobic and the anaerobic energy 

systems are dependent on the duration of the exercise bout (20, 21, 37). It has been 

suggested by that the 800,1500 and 3000 meter running events require 64/36%, 77/23 % 

and 86/14 % respectively for aerobic to anaerobic energy contribution for males (37, 38). 
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Duffield et al. (19, 20) also suggested that the 100, 200, and 400 meter running events 

require 21/79%, 28/72% and 41/59% respectively for aerobic to anaerobic energy 

contributes in male subjects. The majority of the running races up to 400 meters are 

predominantly anaerobic in nature (19, 20). The threshold between aerobic to anaerobic 

energy system contribution lies between 400-800 meters or 60-100 s (20, 37). 

  

1.3 Exercise Efficiency O2 gain 

 The VO2 / work rate reflects the O2 cost for a particular work rate, and has been 

utilized as a measure of efficiency (11). This relationship is affected by two factors: the 

O2 uptake required for a given power output and the rate of VO2 rise as a result of an 

increase in power output or the gain. The measurement can be taken at any point of time 

during exercise to measure the efficiency of aerobic metabolism A value of 10 

mlsO2/min/W reflects the usual amount of VO2 required at a work rate within the 

moderate intensity domain. An increased value reflects an increased amount of O2 for a 

particular work rate (1). 

Training may result in an increase in efficiency. Thus, a lower value for VO2 gain 

would yield more efficient work during exercise by requiring less stress on aerobic 

metabolism to accomplish a given work rate (1). 

 

1.4 Muscle deoxygenation: Near Infrared Spectroscopy  (NIRS)  

Near Infrared Spectroscopy (NIRS) provides a measurement of oxygen bound to 

hemoglobin (Hb) and myoglobin (Mb) of the musculature over which the NIRS probe is 

placed. The concentrations of unbound to O2 (deoxygenated) and bound to O2 
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(oxygenated) Hb and Mb can be used to monitor the balance of the O2 delivery and O2 

utilization of the muscle under interrogation, i.e., muscle O2 extraction. Differences in 

dexoygenation are associated with the partial pressure of oxygen (PO2). By comparing 

the rate of adjustment between pulmonary oxygen upake with deoxyhemoglobin or level 

of muscle dexoygenation, the rate of O2 delivery to O2 utilization may be determined. 

The ratio of deoxyhemoglobin to pulmonary oxygen demonstrates how oxygen uptake at 

the cell is facilitated by blood flow and arterial oxygen content, thus O2 delivery. If blood 

flow is adequate to the muscle, then the level of deoxygenation should match pulmonary 

oxygen uptake under normal conditions. If the ratio of deoxyhemoglobin to pulmonary 

oxygen uptake were to rise during a period of increased metabolic demand or increased 

exercise intensity, this signifies there is a decrease in perfusion of oxygen to target 

muscle, in which a compensatory response increases oxygen extraction. This ratio is a 

valuable tool in deciphering the relationship between O2 delivery and utilization at the 

target muscle, specifically at a time point in which the aim is to accelerate the target 

muscle’s adjustment to O2 consumption (13).  

 

1.5 Oxygen Kinetics 

 The transition from rest to exercise results in an immediate change of 

energy requirements at the muscle cell (40). This immediate demand in energy by the 

muscle cell cannot be met entirely by oxidative metabolism. The initial requirement for 

ATP is met through anaerobic metabolism, and then aerobic metabolism (11, 40). 

Oxygen kinetics quantifies the rate of change in pulmonary O2 uptake at the muscle due 

to changes in metabolic demand, as a result of exercise and/or recovery from exercise 
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(40). A slow rate of adjustment to VO2 at the start of exercise increases the reliance of 

anaerobic metabolism to yield energy. The increased reliance on the anaerobic systems 

increase those metabolites associated with fatigue (ADP, H
+
, Pi, lactate. Thus, fast 

kinetics may be advantageous in the delay of fatigue during a race (11, 40). 

Oxygen kinetics is determined utilizing three distinct phases of the increase in 

VO2 at the onset of exercise. The first phase, representing the cardio dynamic phase, is 

associated with an sudden increase in VO2 due to the increased venous return caused by 

the muscle pump and increased right ventricular output, in which elevates pulmonary 

blood flow (11, 32, 40). A short period (~10-20 s) exists in which pulmonary oxygen 

uptake does not reflect actual muscle oxygen uptake. This delay leads to greater 

offloading of O2 in the muscle from Hb and the arrival of the same blood in the 

pulmonary vasculature (32). The second phase demonstrates a rapid increase in O2 

consumption. The O2 kinetics during phase II largely reflects the events occurring at the 

muscle and reflected at the lung. This phase is the most examined phase of oxygen 

kinetics, as Phase II reflects the rate of adjustment of O2 at the working muscle and the 

degree of mitochondrial oxidative phosphorylation. Oxygen uptake kinetics of this phase 

is measured as a time constant (τ), which represents the time required to reach 63% of the 

Phase II VO2 response. The eventual steady state condition is reached at the time 

equivalent of 4 τ. The greater the τ value, the greater the duration required to adjust to the 

steady state condition. The smaller the τ value, the less amount of time required adjusting 

to steady state conditions and vice versa. (6, 12, 17, 40, 47, 53) 

The third phase and following phase may have differing profiles. The VO2 profile 

of this stage is dependent on the intensity of exercise. If exercise intensity falls in the 
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moderate realm (below lactate threshold), then phase III corresponds to the point in 

which a steady state of O2 consumption is reached. The lactate threshold is the intensity 

in which a rise of blood lactate occurs. If work intensity continues to rise, an imbalance 

between pyruvate produced by glycolysis and its oxidation in the mitochondria of muscle 

cells is present. (40). Above the lactate threshold the VO2 slow component will 

eventually be observed. The VO2 slow component has been suggested to be the result of 

recruitment of the less efficient type II muscle fibers along with already active type 1 

muscle fibers (28, 40). During the slow component, VO2 rises above levels that would 

have been predicted by relationship of VO2 to work rate, below the lactate threshold. The 

use of type II muscle fibers requires a greater amount of ATP for force production and a 

greater amount O2 cost for oxidative phosphorylation (40). 

 

1.6 Fatigue 

 Fatigue is the inability to maintain the expected or necessary power output for a 

given exercise performance (4, 23). The primary site of fatigue lies in the muscle cell. 

The etiology of fatigue during exercise may depend on the intensity of exercise and 

environmental conditions (4, 22). Short term, high intensity exercise involves the 

recruitment of type I and type II muscle fibers, a high degree of anaerobic energy 

metabolism, and high muscle contraction frequency (24). This increased anaerobic 

energy system involvement leads to an increased level of intra-cellular hydrogen ions, 

and inorganic phosphates (Pi) (18, 24), which results in an increase in hydrogen ion 

accumulation and a decrease in cellular pH that has been associated with inhibition of 

peak force output (18, 24). A high muscle contraction frequency may also lead to 
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disturbances in excitation contraction coupling. Specifically a block of the action 

potentials to the muscle cell, or an inhibition of calcium release and reuptake from the 

sarcoplasmic reticulum (24). It has also been observed that a high concentration of 

inorganic phosphate may decrease the maximal force of muscle fibers, specifically, the 

type II muscle fibers (22). Furthermore, high inorganic phosphates levels contribute to 

fatigue by inhibiting thin actin filament activation and by slowing the aforementioned 

reuptake of calcium by the sarcoplasmic reticulum (22, 28). 

During prolonged sub maximal exercise, the causes of fatigue are much different 

(22, 35). Type I muscle fibers are primarily recruited in prolonged endurance exercise. 

The energy required for these fibers during sub maximal exercise is primarily from 

aerobic metabolism. The circulating levels of intracellular lactate, hydrogen ions, and 

inorganic phosphate levels remain stable (39, 41). The causes of fatigue are related to 

muscle glycogen depletion and low blood glucose (4, 14). It has also been suggested that 

depletion in muscle glycogen may trigger functional changes in the sarcoplasmic 

reticulum affecting Ca
+
 uptake and release. (4, 14, 22). Type II muscle fibers may be 

recruited during prolonged sub maximal exercise if the intensity reaches the severe 

domain (11, 40). During the severe exercise a VO2 slow component is observed, in which 

may result in the recruitment of less efficient type II muscle fibers. The slow component 

in the severe exercise domain fails to stabilize and rises until VO2 max is reached. The 

attainment of VO2 max may result in the termination of exercise (40, 53). 
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1.7 Critical Power  

Critical power (CP) is the maximal power output in which a steady state can be 

maintained in pulmonary gas exchange, blood lactate, and blood acid-base balance (58). 

Therefore, CP is the highest theoretical work rate that can be maintained without a 

continuous and progressive contribution from anaerobic energy systems (40, 50). In 

actuality, it has been reported that CP cannot be maintained beyond approximately 30 

min (10). Critical power also represents the boundary between the ‘heavy’ and ‘severe’ 

exercise intensities. The severe domain is between one’s CP and VO2 max (40, 58). 

A mathematical model utilizes critical power and the curvature constant (W’) to 

predict the time to exhaustion while working at a particular power output, and/or, can 

predict the specific power output that will elicit fatigue over a specific duration of a work 

rate that is above CP (44, 58). W’ is a measure of the finite amount of work that can be 

done above one’s CP (58).  

 

1.8 How is Critical Power and W’ measured? 

Both CP and W’ can be determined by a single, 3-min, all out test on cycle 

ergometer, in which power output can be measured for the duration of the test. The 

advantage to using a single bout critical power test is that it requires only one visit to the 

laboratory and the power profiles do not require linear or nonlinear regression analysis to 

determine this critical power output. Critical power is derived from the eventual plateau 

or leveling out of the power output. The last 30 s of the 3 min test is used to determine 

CP (W) (57). W’ refers to the sum of the work that was done above critical power and 
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over the duration of the entire three min maximal test (58). These parameters are utilized 

to predict one’s Fatigue Threshold (FT), using equations 1, and 2 (58): 

Equation 1: Time = W’ / (P - CP) 

Equation 2: P = W’/Time + CP 

Where, “T” is time to exhaustion and “W’ is the total work that can be done 

above one’s critical power (Joules) J. “P” represents the calculated fatigue threshold pace, 

measured in watts (W).  

 

1.9 Pacing Strategies 

The term pacing strategy refers to an athlete’s work, speed and pattern of energy 

distribution during an exercise bout (1). Variations in pacing strategies can have a 

tremendous impact on exercise performance (25). Short duration events lasting up to 2 

min may benefit most for an all-out pacing strategy (56). Whereas events greater than 2 

min in duration may benefit from a pacing strategy where energy is distributed more 

evenly through the exercise bout (16). 

 Differing pacing strategies have been used. Negative pacing refers to a strategy 

that utilizes a negative split, or a strategy in which the athlete increases their velocity 

throughout the race and the latter part of the race is faster than the initial portion (1). This 

strategy may reduce the accumulation of fatigue-related metabolites, (hydrogen ions, 

inorganic phosphate and blood lactate) early on in the performance (2). This type of 

strategy has been observed to be successful in middle distance events that are >2 min 

(25). The lower initial power output may yield successful performance outcomes in these 

events due to the increased utilization of the anaerobic energy systems available towards 
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the end of the exercise bout (25). In other words, if one can manipulate another athlete 

away from their optimal pace, an individual with a greater anaerobic capacity may out 

sprint a superior aerobically conditioned opponent in the latter stages of the race.  

Positive pacing refers to a strategy whereby an athlete gradually decreases 

velocity throughout the duration of the event (fast start) (1). Positive pacing may result 

reaching VO2 max sooner, and a faster accumulation of fatigue metabolites and an 

increased rate of perceived exertion. In essence, this is opposite to a negative pacing 

strategy (55). There are two main objectives for utilizing a positive pacing strategy 1) 

Athletes gain a lead on their competitors so one can adjust to any advances from their 

opposition (2, 11), 2) and faster VO2 kinetics of the working musculature. The advantages 

of faster oxygen kinetics are outlined later in this review.  

The even pacing strategy involves utilizing a constant pace throughout the 

exercise bout (1). Thompson et al. suggest (55), for events greater than 2 min, (rowing, 

swimming, running) an even paced protocol is the best (55). Fukuba and Whipp support 

this model by utilizing CP to determine a participants fatigue threshold pace (27). Both 

CP and Fatigue Threshold are outlined later in this review.  

Parabolic shaped pacing strategy exhibits a parabolic shaped profile in which 

participants begin the performance at a fast initial velocity, then decrease velocity in the 

mid portion of the race and then conclude the race at a faster velocity (30). 

 The most common pacing strategy for a two-kilometer rowing performance 

follows this parabolic shaped profile (52). Garland (30) studied the velocity of 2000 m 

rowing performances in elite rowers in the 2000 Olympic games, the 2000 and 2001 

World Championships, and the 2000 and 2001 British Indoor Championships. He found 
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that rowers completed the first 500 m on average, 5.1 s faster than subsequent sections. 

The next 1000 m or the middle portion of the race was found to be the slowest portion. 

The last 500 m up to conclusion of the race was the second fastest component. These 

results were consistent among different crews (individual vs. team), positioning or rank, 

and gender. The fast initial start was also consistent in off the water rowing ergometer 

competitions (30, 52). 

1.10 The Optimal Pacing strategy for 2 km (6 min) Rowing Performance  

The even paced pacing method may provide a better strategy for pacing in the elite 

rowers for their 2 km rowing performance. Fukuba and Whipp (27) examined the ability 

to make up lost time in endurance activity in a 5 km running performance. They theorized 

that high intensity running is reliant on performing at one’s  “fatigue threshold” (FT). 

They defined the FT as the tolerable power output for a specific time frame. They suggest 

that participants who ran below the FT pace at any time during the performance could not 

make up for the lost time. Participants who ran a faster pace than the FT pace could not 

maintain the velocity and would experience greater deceleration and lose time. They 

suggest that endurance exercise of >120 s may benefit the most by maintaining this 

constant pace at the fatigue threshold (27). Furthermore, fluid resistance is greater in 

water sports, such as, swimming and rowing, than on land sports (1), and as such, leads to 

an increased energy cost that results from these fluctuations in velocity (27). Thus, any 

decelerations or accelerations in boat speed may hinder exercise performances (54). An 

even paced strategy utilizing the fatigue threshold concept may be more suitable for an 

elite rower performing a 2 km race performance. 
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Chapter 2: The effect of pacing strategies on oxygen kinetics and muscle hemoglobin 

status and energy system contribution in a 6 min exercise performance 

 

2.1 Introduction 

  Pacing may play a crucial role in achieving an optimal exercise performance. 

Rowing is a sport that involves a closed loop design. A closed loop design is an exercise 

performance in which the objective of exercise is to finish the race in the shortest 

possible time (1). The rowing shell with the shortest duration over a 2000 m distance 

wins the race. 

The most common pacing strategy for a two-kilometer rowing performance 

follows parabolic shaped profile. Garland (30) studied the velocity of 2000 m rowing 

performances in elite rowers in the 2000 Olympic games, the 2000 and 2001 World 

Championships, and the 2000 and 2001 British Indoor ergometer Championships. They 

found that rowers completed the first 500 m, on average, 5.1 s faster than subsequent 

sections. The next 1000 m of the race was found to be the slowest portion. The last 500 

m, up to conclusion of the race, was the second fastest phase. These results were 

consistent among different crews (individual vs. team), positioning or rank, gender or 

using an off the water rowing simulator (e.g. Concept 2 Rowing ergometer) (30). 

The first 500 m may be completed at the fastest rate due to two factors. The first 

is to allow participants to gain the lead position, which will allow the participants to react 

to and adjust to any advances made by opponents. This may not be as advantageous for 

rowing performances completed on a rowing ergometer where opponents may be 

competing at another location. The second purpose for a faster initial work rate is to 

speed oxygen kinetics (30). The advantage of faster oxygen kinetics is that there is a 
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smaller O2 deficit. A smaller O2 deficit indicates a decreased degree of intracellular 

perturbation (lactic acid formation, decreased PCr). Conversely slower oxygen kinetics 

may predispose one to a reduced exercise tolerance later in performance (40). 

It has been suggested (7) that in race performances up to 180 s the fast initial start 

may be the most beneficial. It has also been suggested that the fast initial start elicits 

faster VO2 kinetics. This may spare the W’ (anaerobic capacity) reserves and allow for 

additional non-oxidative energy to be used for a sprint phase at the end of the race. It has 

been suggested that this would allow for greater total work output for race performances 

up to 180 s (7). 

Races longer than 180 s may benefit from an even paced strategy compared to a 

faster initial start strategy (56). Bailey et al. (7) examined the effect of a fast initial start 

on oxygen kinetics in both three and six minute cycle ergometer performances. They 

observed that short exercise performances of 180 s benefited from the faster initial start.  

Fukuba and Whipp (27) theorized that high intensity running races would be more 

successful utilizing a constant power output at FT. They defined FT as the maximum 

tolerable work rate over a specific duration. They examined pacing strategies above and 

below one’s FT in a 5 km running performances. The participants who ran below the FT 

pace could not make up for the lost time. The participants that ran at an initial faster pace 

than the FT pace could not maintain the velocity and dropped to a pace below the FT 

pace and lost considerable time (27).  

The purpose of this investigation is to compare the effects two different pacing 

strategies, 6 min in duration, on a cycle ergometer. The first strategy mimics the 

traditional 2 km pacing strategy utilized by top coaches in Canada. Participants begin the 
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test with a 12 s all out sprint. The next phase (4 min 22 s) requires a reduced work rate 

that is 5% below each participant’s fatigue threshold (2 s below their average 500 m 

split). The final 90 s prescribes, if possible, an incremental increase in power output with 

the last 30 s of the 6 min being an all-out sprint. The second pacing strategy is a constant 

power, evenly paced strategy. Participants begin this exercise bout at their specific 

fatigue threshold work rate. This is continued to 4 min 30 s. The prescription for the final 

90s is identical to the traditional pacing strategy.  

 The current study will compare the effects of these two pacing strategies on VO2 

kinetics, deoxygenation in the vastus lateralis, energy system contribution, average power 

output and blood lactate concentration. The hypothesis being tested is: 1) The fatigue 

threshold pacing strategy will yield a higher average power output compared to the sprint 

start performance and 2) The “traditional” pacing strategy will have a faster VO2 and 

HHb kinetic response.  

 

2.2 Methods 

Participants 

Healthy male subjects (n = 8; age, 24 ± 3 yrs) VO2 max (4.31 ± 0.96 L/min) 

volunteered to participate in this study. All subjects participated in exercise at a club 

and/or intercollegiate level. All subjects were non-smokers with no known history of 

cardiovascular, respiratory, metabolic or musculoskeletal disease. All subjects were not 

on any medication that could have affected the physiological variables that were 

investigated. All subjects were informed of the procedures, risks, and potential benefits of 

the study prior to giving written consent to participate. Subjects were asked to arrive at 
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the laboratory in a rested state and to avoid strenuous exercise in the 24 hours preceding 

each exercise session. The Western University Health Sciences Research Ethics Board 

approved this study.  

 

Experimental Overview 

 The participants reported to the laboratory on four occasions over a two-week 

period with at least 48 hours rest between each visit. Upon completion of the incremental 

ramp test (visit 1) and the 3 min all out test (visit 2), subjects completed two randomly 

ordered pacing strategies in which pulmonary VO2, blood lactate, vastus lateralis muscle 

deoxygenation (HHb), and work rate (W) were recorded. 

 

Ramp VO2 max  Testing 

Prior to testing each subject was measured for appropriate seat, mouth piece and 

handle bar height. These adjustments were used for all four testing protocols. On the first 

laboratory visit, all subjects completed a ramp VO2 max test (25 W/min) to volitional 

fatigue on an electrically braked cycle ergometer (H-300-R Lode; Lode BV). This test 

was administered to determine the absolute VO2 max; gas exchange threshold (GET). 

GET was determined by gas exchange utilizing standard ventilatory indices. GET was 

defined as the VO2 consumption in which 1) pulmonary CO2 increased out of proportion 

to the increase in VO2, 2) a systematic rise occurred in the ventilatory equivalent (VE/ 

VO2), and 3) a systematic rise occurred in end-tidal PO2 with no simultaneous rise 

VE/VCO2 (33). VO2, define as gain was used to determine efficiency at max. The 

subjects initially performed three minutes of minimal load cycling (20 W) after which the 
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work rate increased to 25 W/min to volitional fatigue. The subjects cycled at a rate of 60-

90 rpm. VO2 was measured breath-by-breath and VO2 max was determined by the 

average VO2 over the last 15 s of the test. Fatigue was determined to occur when the 

subject was unable to maintain 60 rpm. 

 

Critical Power Test 

 On the second laboratory visit, all subjects completed a 3-min all-out critical power test 

(57). This test was used to determine the power duration parameters, W’ and CP. Before 

the start of the test, subjects completed 3 min of unloaded cycling. During the last 5 s of 

the unloaded load cycling the subjects were asked to increase their rpm to over 100 rpm. 

At 180 s the subjects began a 3-min maximal performance test. The cycle ergometer was 

set using the linear mode (linear factor = power/ cadence squared) at 4 W/pedal 

revolution. Verbal encouragement was provided throughout the test.  Subjects were not 

informed of the elapsed time to prevent pacing. The CP was determined to be the mean 

power output of the last 30 s of the test (57). W’ was calculated as the total work 

completed above the calculated CP (58). W’ is measured in joules. Watts can be 

converted in Joules by the following equation: 

Equation 3:  J = W × s 

 In the above equation, “J” relates to Joules, “W” refers to watts and “s” refers to 

time in seconds. The work rate for both 6 min pacing strategies was calculated using 

Equation 2 [P = (W’/Time) + CP]. 

A work rate that would yield a time to exhaustion of 360 s (6 min) for a subject with a W’ 

of 18 000 J and a CP of 220 W would be: (18000/360) + 220 = 270 W. 
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Total Work Completed: The total amount of work performed was measured over 

the entire duration of the test. The work performed was calculated as the sum of the 

power (W) at each second that was above their critical power pace.  These W were then 

converted to joules (see Equation 3).  

Anaerobic Contribution: The VO2 gain was recorded over the last 30 s of each 

incremental ramp test to fatigue. The VO2 gain was multiplied by the work rate (W) 

during each pacing protocol for every 5 s point from 0-360 s. This value would represent 

the highest possible VO2 for a particular work rate. The predicted maximal VO2 was then 

divided by the actual VO2 at that particular time and multiplied by 100 % to yield a 

percentage of aerobic contribution. Anaerobic was calculated by subtracting the aerobic 

contribution from 100 %.  

 

Pacing Strategies 

 The two 6 min pacing strategies tests were administered in random order. Both trials 

were preceded by 3 min of 20 W cycling. During the last 5 s of the 20 W cycling subjects 

were asked to increase their rpm to over 100 rpm, similar to the critical power test.  

1) Pacing at 5 %<FT: Following the 3-minute 20 W exercise, subjects performed a 12 s 

all out sprint against the fixed linear mode resistance (4 watts/pedal revolution). This was 

followed by 4:18 s in which the power output (W) was set at 5 % below the subject’s 

calculated 6-minute FT pace. During the last 90 s of both pacing strategies the subjects 

pedaled against the same linear resistance mode (4 W/Rev) as the resistance during the 3 

min all out test. Participants were instructed to complete a progressive sprint over the last 

90 s to the finish of each trial. The specific instructions were “with 90 s to 60 s remaining 
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go at a pace that was “faster” than their previous pace. Over the next 30-s interval, go 

faster than the previous 30 s. The last 30 s interval is to be an all-out sprint to the finish. 

The 5%<FT strategy was based on a Canadian national rowing coaches’ preferred 

strategy for a 2 km performance.  

2) Pacing at Fatigue Threshold: The performed their predicted 6-minute fatigue threshold 

work rate up to 4 min 30 s. After 4:30 s subjects performed the final 90 s with the 

identical instructions given before the 5% below FT trial.  

 

Data Collection 

Gas exchange was measured measurements were similar to those previously 

described (5). The inspired and expired flow rates were analyzed by a low dead space 

(90mL) bidirectional turbine. (Alpha Technologies VMM 110). The turbine was 

calibrated before each test using a 3 L syringe. Inspired and expired gases were 

monitored at the mouth and analyzed for concentrations of O2, CO2 and N2 by a mass 

spectrometer (Innovision, Amis 2000, Lindvedvej, Denmark). Each subject wore a nose 

clip to cut off nasal airflow. The delay between volume and gas concentration was 

accounted for by measuring by the time delay for a square wave bolus of gas to travel 

from the turbine transducers through a capillary line to analysis by the mass spectrometer. 

Flow volume data and gas concentration data were then transmitted to the lab computer. 

The lab computer built a profile of each breath by aligning the gas concentration 

information with the inspiratory and expiratory volume recordings. Breath by breath gas 

exchange was determined from the algorithms developed by Beaver et al. (8).   
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 Muscle deoxygenation of the vastus lateralis muscle was monitored continuously, 

during all trials, using frequency-domain multi-distance NIRS system (Oxiplex TS, 

Model 95205, ISS, Champaign, IL, USA). The NIRS machine was calibrated before each 

trial commenced; the probe was turned on 20 min period prior to each test to allow the 

system to stabilize. The NIRS probe was placed on the flexed vastus lateralis muscle with 

the left knee completely extended and with the heel resting on a level surface. The probe 

was placed between the lateral epicondyle and the greater trochanter of the left leg. An 

elastic strap was tightened completely around the left thigh in order to prevent movement 

and ensure the probe was securely attached. A black vinyl sheet was securely placed on 

top of the probe to prevent loss of Near-Infrared light and any intrusion of external light.  

 The NIRS system was made up of a single channel with eight laser diodes that 

operated at two wavelengths (λ = 690 and 828 nm, four at each wavelength) which were 

pulsed at 110 MHz and utilized a photomultiplier tube. The NIRS probe was connected to 

the photomultiplier tube and the laser diodes. The NIRS probe contained one detector 

fiber bundle and two parallel rows of light emitting fibers. For both wavelengths, the 

source-detector separations of the NIRS probe was 2.0, 2.5, and 3.5 cm. Data were stored 

and collected at an output frequency of 25 Hz, however, were reduced to 1 s. bins for 

analysis within this study.  

 Power Output data was inputted into the Lode workload programmer box and 

recorded using the breath M program. Power output data was measured following each 

breath.  

 Blood lactate data was measured prior to testing and exactly 2 min after every 

trial. Blood was drawn using ACCU-CHEK Safe-T-Pro Plus sterile, single use lancing 
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device and was measured by SensLab GmbH Lactate SCOUT blood lactate analyzer. 

Prior to the use of the lancet, a rubbing alcohol swab was used to sterilize the left index 

finger. 

 

Data Analysis 

 Gas exchange data were edited by the removal of deviant data points that lied 

outside of 4 standard deviation points of the mean. The VO2 data for each trial was 

interpolated to 1 s intervals. The VO2 data were then time aligned so that time zero 

represented the completion of the 3-min load less exercise and the start of each trial. The 

VO2 data was also averaged to 5 s intervals for the critical power and two pacing 

strategies in order to provide a single average time response for each subject. The rate of 

oxygen uptake was measured in 30 s increments up to 180 s, as opposed to calculating 

the τ value.  

The HHb data (obtained from the NIRS probe) was time aligned and averaged to 5 s for 

each pacing protocol. The Baseline HHb and VO2 values for all trials were determined by 

the mean value 60 s before the start of test during load less cycling.  

 

HHb/VO2 

 The HHb and VO2 data was recorded and normalized for each subject (0 % 

represented the 20 W baseline value and 100 % represented the maximum HHb and VO2 

data point recorded for each test) (46, 48). The data was averaged to 5 s bins to assess the 

rate of adjustment for HHb and VO2 (53).  

Work Rate 
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 Work rate data was recorded over the entire duration of the pacing trials, 

incremental ramp test, and critical power test. Work rates for all tests were recorded at 

each breath taken by the participant. The work rate of the pacing trials and critical power 

test were then interpolated to 1 s intervals. The work rate over the final 30 s for the 3 min 

all out test was averaged to determine each participant’s critical power work rate. The 

pacing trial work rate data was averaged to 5 s for each subject and each pacing trial.   

 

Statistical Analysis  

 Statistical analysis was performed using Sigma Plot 11. Differences between both 

pacing strategies from the beginning to the conclusion of trial were compared on the basis 

of NIRS (HHb), work rate, VO2 consumption, work output (J) and percentage anaerobic 

contribution. The data were analyzed using two way repeated measures ANOVA. The 

pacing strategies were compared between each other for every 30 s interval (NIRS, work 

rate, MVO2) and 5 s interval. (% Anaerobic contribution, energy consumption) The 

Holman-Sidak method was used for pairwise multiple comparisons for each interval. 

Glantz (31) describes the Holman Sidak as the recommended multiple comparison test to 

use after an ANOVA. Data collected for post-exercise blood lactates were compared 

between each pacing strategy and analyzed using a paired t-test.  

 

2.3 Results 

Subject’s physical characteristics and aerobic parameters (derived from the 

incremental ramp test to fatigue) are presented in Table 1. Power output data derived 
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from the 3 min all-out-test including: critical power, W’, and the calculated power 

outputs for both pacing strategies are also included in Table 1.  

Work Rate 

Work rate was recorded throughout both pacing strategies (see Figure 1). Work 

rate was then calculated similar to both VO2, and HHb in 5 and 30 s increments from 0-

360s, following baseline exercise. The work rate over the first 30 s of 5%<FT was higher 

than the same duration of the FT strategy (396 ± 200 W compared to 295 ± 5 W 

respectively (p<0.05)). There was no statistically significant difference from 30s to 300s 

between pacing strategies. The work rate of the FT strategy was higher than the 5%<FT 

from 300 – 330 s and 330-60 s (284 ± 22 W compared to 272 W ±12 and 339 ± 29 

compared to  272 ± 10  watts (p<0.05)). Finally, mean work rate over the total 360 s 

exercise duration was higher in FT compared to 5%<FT (305 ± 41 W compared to 282 ± 

43 W). 

 

V02 

VO2 data are presented in Figure 2 as group means for every 5 s increments (0-

360 s) for both pacing strategies. There was no statistically significant difference 

observed in the baseline VO2 for both pacing trials. Mean VO2 over the first two 30 s 

intervals was greater (p<0.05) during the 5% below pacing strategy compared to the 

fatigue threshold  (2.40 ± 0.62 L/min compared to 2.06 ± 0.32 L/min for the first 30 s and 

3.30 ± 0.08 L/min, compared to 2.70 ± 0.20 L/min from 30 – 60 s). Over the last 90 s of 

VO2 was higher in the FT strategy (P<0.05); (FT pacing strategy; 4.22 ± 0.10 L/min, 4.55 

± 0.17, 4.70 ± 0.14 for 270-300 s, 300-330 s, 330-360 s; 5%<FT was; 4.07 ± 0.07 L/min, 
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4.33 ± 0.06, 4.28 ± 0.56 for 270-300 s, 300-330 s, 330-360 s. There was no significant 

difference in VO2 between 60 s - 270 s between pacing strategies.  The rate of oxygen 

uptake was measured in Table 2 as group means for every 30 s increment up to 180 s for 

both pacing strategies. The 5%<FT strategy was significantly higher at 30 s and 60 s 

compared to the FT strategy (14.5 and 17.80 L/min, compared to 11.06 and 14.50 L/min). 

 

HHb 

HHb data (Figure 3) was measured as a percentage of the baseline value to the 

maximum HHb recorded value (averaged over 5s intervals) throughout both pacing 

strategies. The values were also analyzed, similar to the VO2 data, in 30s increments (0-

360s.).  HHb was higher over the first 30 s of 5%<FT (5%<FT 65.61 ± 25.3%, FT 48.9 ± 

23.4 %; p<0.05).  

 

HHb/VO2 

 VO2 was expressed in the same fashion as HHb (outlined above) and recorded in 

5 s increments. The HHb/VO2 ratio can be observed in Figure 4, the ratio was 

significantly higher for the 5%<FT strategy from 0-20 s of exercise. The ratio compared 

at 5 s, 10 s, 15 s and 20 s of 5%<FT to FT strategy was: 3.7 % ± 1  % compared to 1.5 % 

± 0.5 %, 3.5 % ± 0.8 compared to 2.2 % ± 0.6, 3.3 % ± 0.5 % compared to 2.2% ± 0.3 %, 

3.0 % ± 0.4 % compared to 2.3 % ± 0.2 %, respectively. Thus, the level of muscle 

deoxygenation to accomplish a given VO2 during this period of time was greater than 

later in exercise. The ratio of 1.0 indicates a steady state HHb/VO2 ratio has been reached 

(46).  
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Energy (W’) Consumption 

The mean W’ available for both pacing conditions was 15700 J ± 5239 J. The 

quantity of the total W’ utilized over the first 30 s for the 5%<FT and FT was 5239 J ± 

1119 J. and 1256 J ± 202 J (p<0.05) respectively. The quantity of the total W’ utilized 

from 30 to 300 s for the 5%<FT and FT was 7342.3 J ± 3845.5 J 11700.5 J ± 3204.9 J 

respectively. The quantity of the total W’ utilized from 300-360 s for 5 %<FT and FT 

was 2296 J ± 3597 J and 5705 J ± 4642 J (p<0.05). Expressed as percentages of the total 

W’ the first 30 s of 5 %<FT was 33% ± 6%, compared to 8% ± 2% for FT.   From 30 to 

300 s the percentages were 46% ± 21% for 5 %<FT compared to 74% ± 16% for FT and 

for the final 60 s, the 5 %<FT strategy was utilized approximately 14.6% ± 20%, 

compared to 36% ± 24% for the FT strategy (P<0.05).  

 

Blood Lactate 

Blood lactate was measured prior to testing and two minutes post-test. There was 

no significant difference observed between pre-exercise and post exercise blood lactate 

levels between the pacing strategies (p=0.225) (see Table 1).  

 

Anaerobic Energy System Contribution  

 The anaerobic energy system contribution (see Fig. 5.) was significantly higher in 

the 5%<FT strategy during the first 10 s of exercise, 100 % ± 5.5, compared to 72% ± 

13% the FT strategy (p<0.05). The FT strategy yielded a higher anaerobic contribution 

from 25 s – 45 s, (50 % ± 8.5) compared to 26 % ± 16 % (p<0.05) for the 5%<FT. The 

FT strategy was also significantly higher than the 5%<FT traditional strategy at 80, 95, 
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260 s: 30 ± 6.2 %, 28 ± 9%, 5.9 ± 11% compared to, 9% ± 23.5%, 9% ± 21%, 0% 

respectively. During the final 90s incremental sprint, the FT strategy was significantly 

higher than the traditional strategy at 305, 315, 355, 360 s.: 6 % ± 19 %, -13 % ± 33, 3 % 

± 24, 15.5% ± 14 %, 17% ± 24, compared to 0 % for 305, 315, 355, 360 s for the 5%<FT 

strategy (see Fig 6). 

 

 

 

Table 1. Physical characteristics, response to incremental ramp test and critical power  

test. Values are expressed individually and as a mean ± SD for:  Height, Weight, VO2 

Max, Gas Exchange Threshold, Critical Power, W’, FT Pace, 5%<FT Pace.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject  

 

Height 

cm 

Weight 

Kg. 

V02 Max 

(L•min
-1

) 

GET  

(L•min
1
) 

CP 

(Watts) 

W’ 

(Joules) 

FT Pace 

(Watts) 

5%<FT 

(Watts)  

1 190  96 5.07  2.43 207 18200 257 244 

2 177 86 4.88 2.31 272 19123 325 309 

3 185 104 4.43 2.34 264 19907 319 304 

4 178 69 3.52 2.01 180 13976 219 209 

5 183 101 3.49 1.93 217 15736 261 248 

6 180 95 4.42 2.51 282 11022 312 296 

7 190 98 5.35 2.50 290 15306 333 316 

8 188 77 3.43 2.52 216 12334 250 238 

Mean 

SD 

184 

± 5 

90 

±1 2 

4.32 

± 0.76 

2.31 

± 0.2 

241 

± 41 

15700 

± 3207 

284 

± 43 

270  

± 40 
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Table 2 – Mean VO2 response from 0-180 s for both pacing protocols, measured in 30 s 

increments. Values are represented as group means for each pacing protocol and the 

difference between pacing strategies (p<0.05). 

 

Time   FT(VO2 l/min) 5%< (VO2 l/min) % Difference 

0-30 s     l1.06   14.5   24 * 

31- 60 s  14.50   17.80  19 * 

61- 90 s 17.16   19.76  13 

91- 120 s  18.50   20.69    11 

121 – 150 s  18.51   21.2   13 

151 – 180 s  20.7  22.3 7 

* 
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Figure 1: Mean power outputs of the two pacing (FT and 5%<FT) strategies, in 30 s 

increments. The mean power output over the duration of each test was significantly 

higher in the FT strategy compared to the 5%<FT strategy  (305 ± 41 W vs 282 ± 43 W) 

(p<0.05).  
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Figure 2: Mean VO2 response from baseline cycling to end of exercise. Open circles 

represent FT strategy, closed circles represent 5%<FT strategy. Solid line represents the 

mean VO2 max for all participants (4.32 ± 0.76 L•min
-1 

)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3: Mean HHb response from base

increments. Open circles represent 5%<FT 

5%<FT strategy was significantly

 

 

 

 

 

 

 

 

 

 

 

 

 

30 

 

response from baseline cycling to end of exercise, measured in 5 

increments. Open circles represent 5%<FT strategy, closed circles represent FT

significantly higher during first 30 s and from 120-230 s (p

 

* 

end of exercise, measured in 5 s 

represent FT strategy. 

230 s (p<0.05).  
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Figure 4: Mean HHb/VO2 response from exercise onset to 360 s, measured in 5 s 

increments. Open circles represent 5%<FT strategy, closed circles represent FT strategy 

HHb/VO2 was significantly higher during the first 30 s of exercise for 5%<FT (p<0.05). 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5: Mean anaerobic contribution from 

increments. Open circles represent 5%<FT strategy, closed circles represent FT strategy

Anaerobic contribution was significantly higher during first 30 s for 5%<FT but was 

significantly higher at: 25-45

boundary between anaerobic and aerobic energy contribution. 
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: Mean anaerobic contribution from exercise onset to 360 s, measure

Open circles represent 5%<FT strategy, closed circles represent FT strategy

contribution was significantly higher during first 30 s for 5%<FT but was 

45 s, 80, 95, 260, and 305-360 s (p<0.05). Solid line represents 

boundary between anaerobic and aerobic energy contribution.  

s, measured in 5 s 

Open circles represent 5%<FT strategy, closed circles represent FT strategy 

contribution was significantly higher during first 30 s for 5%<FT but was 

Solid line represents 
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Figure 6: Mean energy consumption (W’) from exercise onset to 360 s, measured in 5 s 

increments. Open circles represent 5%<FT strategy, closed circles represent FT strategy 

Anaerobic contribution was significantly higher during first 15 s for 5%<FT but was 

significantly higher significantly in the FT strategy from 270-360 s (p<0.05). 
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2.3 Discussion 

The purpose of the investigation was to compare two different pacing strategies 

on a six-minute cycle performance. Comparisons of VO2, power output, muscle 

deoxygenation, and energy system contribution were made. The 5%<FT mimicked a 

parabolic shaped pacing strategy that is adopted by elite rowers (30). The FT utilized an 

even paced protocol at one’s calculated fatigue threshold power output. The major 

findings of the present study are: 1) The mean work rate throughout the entire pacing 

strategy (0-360 s) was significantly higher in FT compared to 5%<FT and 2) VO2 was 

higher during the first 180 s for 5%<FT, whereas VO2 was higher in FT during the last 90 

s of the 6 minute test.  3 

Performance 

 The mean work rate for the entire duration of the pacing strategies was higher in 

the FT strategy (FT; 305.1W ± 41.1W, compared to the 5%<FT 281.89W ± 42.8W 

[P<.05]). The Concept 2 watts-to-pace calculator was utilized to determine the average 

500-meter pace (W) for both strategies. The average pace for the FT strategy was 1:44.7s, 

compared to 1:47.5s for the 5%<FT strategy. The average time to complete a 2 km 

rowing ergometer performance with these 500 m splits would be 6:58.8s (418.8 s) for the 

FT strategy compared to 7:10s (430 s) for the 5%<FT strategy. This means the FT group 

would finish the race 11.2 s faster than the 5%<FT group. The mean velocity of the FT 

strategy was 4.77 m/s versus the 5%<FT 4.65m/s and as such, the FT pacing strategy 

“boat” would finish some 52 m ahead of the 5%<FT strategy boat. 

These findings are consistent with Fukuba and Whipp (27) who compared pacing 

strategies for a 5000m running performance. They split the race duration into two equal 
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distances. They concluded that running at a pace above one’s FT for the first phase would 

eventually consume all of one’s W’. This would cause the athlete to regress to a power 

output well below one’s FT pace, and despite the early advantage, would be unable to 

sustain that advantage over the remainder of the race. They also concluded that an initial 

pace below one’s FT pace would also be detrimental to performance, as the athlete would 

be unable to make up for the lost time. The athlete would run at a velocity that would 

deplete the W’ at such a high rate, that the precursors of fatigue would be accelerated to a 

point where they would be unable to sustain that pace for the remaining distance (27). 

Our results concur with Fukuba and Whipp (27) as it seems that the initial 12s sprint, 

which introduces variability of velocity away from the predicted FT pace, has hindered 

exercise performance in the 5%<FT strategy (27). 

Bailey et al (7) observed that in a 6 min performance there was no significant 

difference between a fast start strategy and an even paced strategy although they did see 

improvements when utilizing a fast start strategy during a 3 min exercise bout (7). The 

current study differs from the study conducted by Bailey at al., as the fast start procedure 

in the current study is a 12 s all out sprint, compared to a start that was 10% above one’s 

FT pace then leveled off over the 180 s to a pace that is 10% below one’s FT pace. The 

next 120 s was at the subjects calculated FT pace, followed by a 60 s sprint to the finish.  

The Fast start examined by Bailey et al. (7) mimics more of a positive pacing strategy (1) 

as opposed to an initial sprint start strategy in the current study. Thus, the fast start pacing 

strategy proposed by Bailey et al. may not have resulted in the reduction of W’ of the 

5%<FT in this present study.  Additionally, the amount of W’ utilized during the last 60s 

of exercise by the protocol suggest by Bailey et al. should theoretically be significantly 
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different during the fast start protocol. The current study observed a significantly higher 

amount of energy consumed in the FT compared to the 5%<FT (19352.7 J ± 4438.7 J 

compared to 16552.7 J ± 4172.7 J). Whereas, the total joules generates in the study by 

Bailey et al yielded 20100 J ± 4900 J for the fast start strategy and 20100J ± 4600J for the 

even start strategy, there was no difference between pacing protocols. However, in the 

current study there was a significant difference in total energy (J) consumed between 

pacing protocols. Thus, an increased amount of energy (J) remained for the fast start 

strategy in the study conducted by Bailey at al.  

The decline in energy available in the later stages of the 5%<FT strategy versus 

the FT may be due to the increased Phosphocreatine (PCr) degradation as a result of the 

12s all out sprint. The concentration of the intramuscular stores of PCr in a rested state is 

approximately 75-85 mmol/kg. The turnover rate of PCr during maximal exercise is 

approximately 7-9 mmol/kg/sec. Maximal sprinting results in a severe reduction in PCr 

stores (15, 29). After a 6s all out sprint, PCr stores can drop to 35-55% of their resting 

values (29). After 30s, PCr may decline to approximately 5-10% of its resting values 

(24). Previous work (9) from this lab utilizing a similar intensity exercise as the middle 

portion of the 5%<FT observed  an ≈ 45% drop in PCr after 120 s with a continued 

reduction in PCr over the following  3 min. This, coupled with the already dramatically 

reduced PCr elicited by the 10 s sprint, suggests that despite the work rate being set at 5% 

below FT start there was no recovery of PCr observed over the final minutes of the 

5%<FT performance.  Therefore, there was little PCr available for use in the final 90 s of 

the 6 min performance. It has also been reported by Dawson et al. that the greater the PCr 

degradation, the greater the time that is required for the resynthesis of PCr (15, 40). 
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Furthermore, the resynthesis of PCr is dependent on the availability of energy oxidative 

phosphorylation over and above that required for the work performed (34).  This decrease 

in PCr also results in a stoichiometric increase in Pi. It has been suggested that this 

increase in Pi causes decreased force generation in the exercising musculature (22) which 

may, in part,  explain the inability of the 5%<FT group to accelerate in the final 90 s. 

It would seem that the 5%<FT power output was too high to enable any 

significant recovery to occur from the initial sprint of 5%<FT. Whether a further 

reduction over the middle portion of the race would elicit a different result requires 

further study, but appears unlikely. 

 

Anaerobic Energy System Contribution 

From exercise onset to 10 s of work, the 5%<FT yielded a higher anaerobic 

energy system contribution than FT (p<0.05). For the remainder of the 6 min 

performance, the opposite was true (see Figure 5). Gaitanos et al. (29) has reported that 

during a 6 s sprint exercise the contribution of anaerobic glycolytic and PCr to total ATP 

production was 44% and 50 % respectively (29). This glycolytic phosphorylation 

contribution was reflected by the 28 mmol muscle lactate, in that 6 s (29). The 

simultaneous increase in hydrogen ion accumulation, which decreases cellular pH, may 

inhibit peak force output (18, 24). Peak force output is inhibited as a decreased cellular 

pH reduces the troponins affinity for Ca
+
(23). Over this 12 s sprint in the 5%<FT strategy 

one would expect a similar or perhaps greater accumulation of these fatigue metabolites, 

thus inducing a further reduction of force generation in the latter stages of the 6 min 

5%<FT performance. 
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Blood Lactate 

There was no significant difference between the pacing strategies in regard to pre 

and post-exercise blood lactate levels. This is consistent with previous studies examining 

pacing strategies (3, 26, 36). We speculate that the similarities in post-blood lactate 

concentration may be attributed to the initial accumulation due to the sprint of the 5%<FT 

versus the final increased power output and anaerobic contribution over the last 60 s of 

FT.  

 

The Depletion of W’ 

 Almost one third of the total W’ was utilized in the first 30 s of exercise of the 

5%<FT, 33% compared to 8% for the FT strategy. The percentage of W’ utilized during 

middle portion (30-300 s) for the 5 %<FT was 46% ± 21%, compared to the FT, which 

was 74% ± 16%. Thus, during the pacing period, the FT strategy used up ¾ of its 

anaerobic energy store, compared to the 5 %<FT, which used almost half of its anaerobic 

energy stores. During the final 60 s of the FT performance, 36% of W’ was utilized 

whereas only 14% was utilized over this same period during the 5%<FT strategy. 

Burnley and Jones (11) suggest that severe or sprint exercise may expend one’s anaerobic 

capacity so that benefits of faster O2 kinetics may not be realized as the anaerobic 

capacity is expended before the end of an exercise bout (11). In the present study, this 

may have been the case in the 5%<FT strategy. 

 

 

 



39 

 

VO2 Consumption 

 It is reasonable to suggest that the initial speeding in VO2 kinetics for the 5%<FT 

pacing strategy was a function of the initial 12 s all out sprint, as seen in Table 2. It has 

been suggested (11, 40, 51) that faster VO2 kinetics are beneficial to performance as the 

oxygen deficit is decreased, and thus, the anaerobic contribution from exercise onset is 

reduced. Furthermore, it has been suggested that faster VO2 kinetics reduces the rate of 

depletion of high-energy phosphate (phosphocreatine), while simultaneously reducing the 

flux through anaerobic glycolysis reducing the accumulation of fatigue metabolites, ADP, 

Pi and H
+
 ions (40). Presumably, this is not the case in the 12 s sprint of the 5%<FT 

where, as previously stated, the sprint phase would accelerate the accumulation of these 

fatigue metabolites.  

The VO2 slow component was evident in both pacing protocols. The VO2 slow 

component represents a continuous rise in VO2 following phase II of oxygen kinetics, 

which is only evident in heavy and severe exercise intensity. The current study utilized 

power outputs that were in the severe intensity domain. The tolerable duration of exercise 

in this domain is dependent on the interaction between the anaerobic contribution, the 

amplitude of the VO2 slow component and one’s VO2 max (40). While exercising in the 

severe domain, the VO2 slow component fails to stabilize and continues to increase until 

VO2 max is achieved. The attainment of VO2 max may signal the termination of exercise. 

The FT protocol seems to delay the onset of the slow component and extend the time 

before one’s VO2 max is reached.  

 The slow component is a precursor to fatigue as the simultaneous decline in pH 

may impair the contractile function of the type I fibers (49). The decline in pH is due the 
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type II muscle fibers that are selectively recruited to further assist in force generation. 

Recruitment of these less efficient type II fibers may have a limiting capacity as they 

generate ATP from primarily anaerobic pathways which generate high volumes of fatigue 

metabolites that can further impair the contractile abilities of the muscle (28). Rossiter et 

al observed that PCr concentrations fall in synchrony to a rising VO2 slow component 

(51).  It is suggested that the earlier onset of the slow component observed in 5%<FT 

may further deplete W’ (11).  

It also has been suggested that the increased work rate during the last 90 s of 

exercise of the FT strategy can attribute to a combination of the higher VO2 observed and 

the increased contribution from W’ compared to the 5%<FT.  The FT strategy was able to 

work at a higher efficiency than 5%<FT over the 90 s incremental sprint.  The advantage 

of a high mechanical efficiency is a decreased energy cost at a given work rate and 

increased the power output at which VO2 max is reached (11). For example, Athlete A 

and Athlete B may have a VO2 of 4.8 L/min. Athlete A may reach VO2 max at 320 watts, 

whereas Athlete B may reach VO2 max at 350 watts. Since Athlete B reached VO2 max at 

a higher power output, they have a higher VO2 / work rate or metabolic efficiency.  

 

HHb 

 In the current study, there was greater deoxygenation over the first 30 s of the 

5%<FT strategy. This increase in deoxygenation may be attributed to the 12 s sprint, in 

which caused a much higher ATP demand at the vastus lateralis muscle. Thus there was a 

greater initial dexoygentation observed. It is suggested that the 12 s sprint was associated 

with a greater impedance to local blood flow as a result of the increased pressure from 
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forceful contractions (9, 43). Thus, muscle blood flow, O2 delivery, and blood flow 

distribution may have been impaired in the 5%<FT strategy. There was also an increase 

in HHb, compared to the 5%<FT from 120-220 s (see Figure 3). The concurrent lower 

power output and greater HHb during this middle period of the 5%<FT versus FT 

suggests that muscle blood flow distribution was blunted during this middle portion of 

the 6 min performance due to possible O2 delivery limitations. 

 

HHb/VO2 

This ratio provides a sense of how the balance between O2 delivery and changes in 

muscle blood flow distribution. The ratio of 1.0 indicates a steady state HHb/VO2 ratio 

has been reached. A ratio above 1.0 suggests that an under-perfusion of the active muscle 

is being compensated for by increased fractional O2 extraction (46).  

The 5%<FT strategy yielded a significantly higher HHb/VO2 ratio during the first 

30s of exercise (P=<0.05). Additionally, the 5%<FT was higher than the FT strategy 

from 120-230 s of the 6 min performance. The increase observed in the 5%<FT during 

the sprint and middle portion of the pacing phase suggests a poorer matching of O2 

delivery to O2 utilization, therefore a higher reliance on O2 extraction as a result of an 

reduced O2 delivery (43). 
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Conclusion 

 The purpose of the current study was to compare two different pacing strategies 

on a cycle ergometer that mimicked a 2 km rowing performance. The traditional strategy 

(5%<FT) encompasses a fast all out 12 s start, accompanied by pacing at 5% below one’s 

fatigue threshold. The even paced (FT) encompasses pacing at one’s fatigue threshold up 

until the 90 s incremental sprint to the finish.  

Despite faster VO2 and HHb kinetics, it is suggested that there were several 

detrimental effects as a result of the 12 s all out sprint, which include:  a reduction in 

overall power output, a decreased utilization of anaerobic energy store (lower anaerobic 

energy system contribution), and a reduction in O2 delivery (blood flow distribution) to 

the exercising musculature. In conclusion, the FT pacing strategy utilizing a even start 

protocol may be a more suitable strategy for a 2km (6 min) rowing performance.  
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