
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-13-2013 12:00 AM 

Methods for Fabricating Printed Electronics with High Methods for Fabricating Printed Electronics with High 

Conductivity and High Resolution Conductivity and High Resolution 

Tengyuan Zhang, The University of Western Ontario 

Supervisor: Jun Yang, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Mechanical and Materials Engineering 

© Tengyuan Zhang 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Manufacturing Commons 

Recommended Citation Recommended Citation 
Zhang, Tengyuan, "Methods for Fabricating Printed Electronics with High Conductivity and High 
Resolution" (2013). Electronic Thesis and Dissertation Repository. 1842. 
https://ir.lib.uwo.ca/etd/1842 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=ir.lib.uwo.ca%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1842?utm_source=ir.lib.uwo.ca%2Fetd%2F1842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


METHODS FOR FABRICATING PRINTED ELECTRONICS WITH HIGH 
CONDUCTIVITY AND HIGH RESOLUTION 

 
 

(Thesis format: Integrated Article) 
 
 

by 
 
 
 

Tengyuan Zhang 
 
 
 
 

Graduate Program in Mechanical & Materials Engineering 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Master of Engineering Science 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Tengyuan Zhang 2014 

 



 

Abstract 

Flexible and printable electronics are attractive techniques which are believed to be 

widespread and occupy huge market. However, low conductivity, nozzle clog because of 

the accumulation of nano-particles and relative high cost (expensive silver/copper 

nanoparticle inks) limit its appeal. In this thesis, two new effective and convenient 

methods of fabricating copper patterns with high conductivity and strong adhesion on 

flexible photopaper and polymer substrates (PET) are demonstrated, solving all those 

problems. Functional photopaper and PET substrate was prepared with inkjet printing of 

a palladium salt solution and hyperthermal hydrogen induced cross-linking (HHIC) 

polyelectrolytes onto its surface respectively, followed by electroless deposition of 

copper, creating high quality flexible copper patterns on different substrates. The 

developed technique was successfully applied for fabricating functional flexible circuits 

such as radio frequency identification devices (RFID) antenna, micro-inductive coil and 

complex circuit board.  

 

Keywords 

Printed electronics, electroless deposition, inkjet printing, screen printing, flexible 

circuits, low-cost fabrication, high conductivity copper circuits, hyperthermal hydrogen 

induced cross-linking (HHIC) 
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Chapter 1  

1 Introduction 

1.1 Research motivation 
Flexible electronics/devices, which can maintain functionality when subject to a large 

deformation or stress, represent an important direction of future electronics 

manufacturing and mechanical engineering. Wearable, rollable and foldable displays, 

sensors, solar cells, batteries and other flexible electronics/devices will bring us 

completely different user experience and even change our daily life. For example, 

wearable or implantable biomedical devices can be the next generation tools for heath 

monitoring, disease diagnostics and treatment. Several strategies have been developed to 

make flexible and stretchable electronics/devices. For example, one approach is to use 

organic conductive or semiconducting materials, or inorganic thin films or one-

dimensional nanomaterial that can flex. Another approach is to integrate conventional 

high-performance silicon based electronic components with optimized structural 

configurations such as wavy shapes that can absorb the induced deformation. A lot of 

effort has also been focused on the fabrication of flexible electrical circuits that can be 

stretched, twisted or compressed. When functional components such as light emitting 

diodes (LEDs) connected and powered by such circuit are bended, twisted and 

compressed the circuits deform to offer the flexibility allowance of the whole device 

while the central functioning components are in fact subject to very small stress.  

However many of these studies are still in infancy and mostly rely on sophisticated and 

expensive nano/micro fabrication processes and facilities, and involve high processing 
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temperatures and toxic wastes. It is therefore highly desirable, yet extremely challenging, 

to develop low-cost and scalable facile methods that can operate at low processing 

temperatures and use inexpensive materials to make integratable, flexible or even 

stretchable electronics and devices. 

Recently, several printing techniques, including inkjet printing, nanoimprinting and 

screen printing, have emerged as a very promising technical trend to produce flexible and 

stretchable electronics/devices. Especially for the material or inkjet printing as an 

additive manufacturing method, it has proved to be very versatile and cost-effective for 

making flexible and stretchable electronics via a direct writing manner with merits of 

high efficiency, low material consumption and programmable control. However 

challenges remain in low conductivity of printed circuits, instable printing due to nozzle 

clog and misdirection jetting, weak adhesion between the printed materials and the 

substrates, low resolution, limited choices of substrate materials, and relatively high cost 

due to the use of Ag or Au nanoparticle based conductive inks. Particularly the low 

conductivity and instable printing problems directly affect the quality control during the 

manufacturing, and performance and lifetime of the devices, causing fatal functional 

failure of the printed circuits or devices. If the printing resolution can be improved, cost 

and material consumption will be reduced, throughput will be further increased, and 

many more applications will become available.  

There is increasing demand for high quality and low  cost  electronic  components  such  

as  RFID  tags, thin film transistor, super capacitor,  flexible  sensor  and  devices,  which  

require innovative  fabrication techniques that are faster but cheaper compared to 

traditional production methods. [1-3] It is also predicted that the market of flexible 
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organic and printed electronics will exceed $300 billion by 2028. [4] So a new generation 

technique of fabricating flexible printed electronics which can overcome all those 

problems mentioned above in badly need.  

This thesis presents a new developed ultra-low-cost method of inkjet printing combined 

with electroless deposition (ELD) process to prepare high-resolution high-conductivity 

copper patterns on flexible photopaper substrate, overcoming almost all the problems that 

the industry of printed electronics is facing today 

1.2 Background and literature review 
It has been demonstrated that flexible or stretchable printed electronics/devices are 

opening up many exciting opportunities, [5, 6] such as wearable electronics, [7] skin 

sensors [8, 9] and biological actuators etc. [10] The key to realize flexibility or 

stretchability of electronics/devices is the integration of excellent mechanical robustness 

with electrical/electronic performance. Rigid materials like silicon may exhibit good 

electrical/electronic performance and stability, but have poor mechanical ductility. On the 

other hand, soft materials show excellent mechanical deformability while having 

unsatisfactory electrical and electronic properties. And it is almost impossible for the 

conventional manufacturing process to fabricate electronics on flexible or stretchable 

substrate such as PET, PI, photopaper and PDMS. 

Several strategies have been suggested to address the challenges. For example, one can 

configure conductive thin films or ribbons into in-plane waves or out-of-plane buckles 

and then bond onto polymeric substrates to realize flexible electronics/devices. Various 

flexible electronic devices have been developed by using the buckled, serpentine 
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structures of silicon or metals as interconnects or electrodes. [11-13] Although flexibility 

and even stretchability up to 70% strain have been achieved, the drawback of this 

strategy is the complicated micro/nanofabrication processes. Another strategy, filling 

polymeric or rubbery matrix with conductive materials, is a less-costly method to make 

flexible and stretchable conductive composites. The conductive materials can be metals, 

[14, 15] conductive polymers [16] and carbon materials. [17-21] Although this strategy 

can easily yield flexible conductors and electronics, the disadvantages are also obvious 

including low conductivity and the change of conductivity under stress. The normal trend 

is that the conductivity decreases under bending. However non-monotonic piezoresistive 

behavior, which is counter-intuitive, has also been observed in many conductive polymer 

nanocomposites. [22-24] Under stretching or other types of mechanical deformation, the 

conductive fillers behave differently from the polymer phase in terms of mechanical 

responses. This induces re-distribution and/or re-orientation of nanofiller, deboning or 

rebonding at nanofiller-polymer interfaces. Consequently, electron transport mechanisms, 

including conducting path mechanism and electron hopping or tunneling effect, are 

significantly changed, leading to the change of the conductive properties of the 

nanocomposites. This mechanism is complex and has not yet been fully understood. 

Therefore the quality control becomes difficult if the electronics/devices are made based 

on this strategy. 

Conventional electronic fabrication systems are mostly based on photolithography,  a  

complex  and  time-consuming  process  that involves  large  volumes  of  hazardous  

waste  and  expensive facilities, what' more, it cannot be used for fabricating electronics 

on various substrate especially those flexible, easy corrosion but environmental friendly 
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substrates. In this regard, the strategy of coating conductive materials onto polymers or 

elastomers, has emerged as a very promising method, which enables fabrication of 

flexible or stretchable electronics in a low-cost and scalable manner. [25-28] Various 

technologies have been emerged as promising technical trends to produce flexible 

electronics and devices including spray coating, [25] physical deposition, [26, 27] 

chemical deposition, inkjet printing, [29] non-vacuum  deposition, [30] screen  printing 

etc. [31] Among these, inkjet printing technology has gained more and more attention in 

recent years for its appeal of low-cost, non-contact, scale-up capability, low material and 

energy consumption, programmable control and maskless additive manufacturing. 

Various flexible and stretchable electronics have been inkjet printed in a laboratory 

setting using carbon nanomaterial, [32, 33] conductive polymers, [34] metal 

nanoparticles [35] and liquid metals. [36] Due to its versatility and cost-effectiveness, 

inkjet printing has become one of the most promising methods for fabrication of flexible 

and stretchable electronics.  

However delamination or peeling-off is always a concern because the conductive 

materials are typically deposited on the top of substrates only. The possibility of failure 

under repeated mechanical loading limits its applications in areas where reliability and 

stability are important. In addition, unsatisfactory conductivity of printed materials that is 

far below that of the bulk material is another major problem. Applied  to  printed  

electronics  based  on  inkjet printing,  most  of  the  research  efforts  are  focused  on  

direct printing of metal nanoparticles or conductive polymer, followed by sintering to  

make  them  conductive.  Copper or silver nanoparticle based inks were commonly 

printed on a treated PET/PI substrate, with a nozzle size of larger than 15 µm, and 
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dimension of the final resulted metal  pattern  is  normally  around  10-20  µm,  five times  

better than the current resolution of screen printing. However, clogging is always a 

common critical issue for micron size nozzles due to the accumulation of nanoparticles at 

the nozzle opening caused by interactive force. Other critical issues reside in the 

oxidization and sedimentation  stability  of  the  corresponding  inks,  generally requiring 

large amounts of stabling and decoration agent and is thus in a very low concentration of 

metal particles which consequently leads to a high resistance of the printed patterns.  [37, 

38] Extensive research and development are required to overcome these technical hurdles 

to advance the material printing technology to the state of the art manufacturing process. 

For example, how to improve conductivity and resolution of printed circuits, improve 

adhesion between the printed materials and the substrates, further reduce the cost, and 

enrich choices of substrate materials, are all key issues that remain to be solved. Thus it’s 

strategically important to develop robust, high-resolution, high-performance and low-cost 

material printing technologies, which enable a broader variety of substrate materials, 

good electrical and electronic performance close to conventional electronics, and the use 

of inexpensive metals like copper. 

1.3 Research objectives 
The main purpose of our research is to develop new techniques that present competitive 

advantages over nowadays printed electronics fabrication technologies in terms of 

conductivity, resolution, material-substrate adhesion and variety of choices of substrates. 

We are aiming at pushing forward the board of the printed electronics industry, solving 

the problems of printed electronics fabrication that we are facing today. We believe that 

the printed electronics will completely replace conventional PCB fabrication technology 
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if some of the technical issues were solved. So we started this work, trying to make our 

own contributions to the development of human technology. 

1.3.1 Objective 1: Developing a new method to fabricate printed 
electronics solving several critical issues  

The most common printed electronics fabrication technology is to inkjet print Ag-

nanoparticle or Cu-nanoparticle based inks, where the nozzle size is typically larger than 

10 µm, and the line and space dimension is normally around 10 µm and 20 µm, 

respectively. The nozzle size is one of key factors that determine the resolution of inkjet 

printing. Ideally the smaller the nozzle size, the higher the printing resolution. However 

clogging is always a common issue for micron size nozzles due to accumulation of 

nanoparticles at the nozzle opening. Ag inks are popular mainly because they are stable 

and sintering of Ag nanoparticles can take place at low temperature around 150 ºC. 

However Ag is still relatively expensive compared to Cu. Our goal is to print inexpensive 

metals like Cu with good conductivity and with high printing resolution. Here we propose 

to print catalyst (noble-metal-containing salt) solution instead of conductive inks which 

are a complex mixture of nanoparticles, stabling agent, solvent and other additives. 

Printing pure catalyst noble-metal-containing salt solution eliminates the issue of nozzle 

blocking and allows us to use smaller and even nanometer scale printer head nozzle to 

greatly improve the printing resolution. Therefore the new approach offers a promise to 

achieve a breakthrough printing resolution. After printing catalyst, the substrate is 

immersed in Cu salt solution and electroless deposition will occur to deposit Cu 

nanoparticles on the substrate according to the printed patterns.  
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Effects of concentration of the palladium salt on the viscosity and surface tension of the 

ink, effects of ELD time on the surface morphology and conductivity will be 

investigated. Jetting program of material printers like the voltage control waveform, 

jetting frequency, meniscus vacuum level, printing height, temperature of the printhead 

and substrate etc. will be optimized according to achieve a reliable, high resolution 

printing. Scanning electron microscope (SEM), XRD (X-ray Diffraction) and Atomic 

force microscope (AFM) will be used to conduct material/chemical/surface analyses for 

each step of this new printing process.  

1.3.2 Objective 2: Fabricate flexible copper patterns on polymer 
based substrate (PET) 

We achieved objective 1 through efforts, functional copper patterns with high resolution 

and high conductivity were successfully fabricated on flexible photopaper substrate.  But 

the photopaper substrate still has many limitations, for example it is easy to be torn, burn 

and corroded. What’s more, we believe the relative rough surface of the photopaper limit 

the conductivity of deposited copper. So we decided to push the board of printed 

electronics forward and set our goal to make high conductivity copper patterns on PET 

substrate, a stable, smooth and transparent polymer based substrate.  

While for the photopaper, it is relative easy to plant functional groups on its surface using 

a surface treatment method and this kind of surface treatment technique is mature in the 

industry. But for some other polymer based substrate such as PET/PI, the conventional 

wet chemical polyelectrolyte treatment process doesn’t work well, since such substrate is 

chemically inert and you need to put lots of effort to make it active. What’s more, 

conventional wet chemical surface treatment techniques create lots of chemical waste and 
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most of them is hazardous and harmful to human body. So we tried to propose another 

surface treatment process to form metallic circuits on hydrocarbon polymers using a 

unique hyperthermal hydrogen induced cross-linking (HHIC) technology to graft 

polyelectrolyte on polymers which is an environmental friendly, chemical-free method to 

achieve a strong adhesion between the deposited materials and the substrate. [39-42] 

After HHIC, the printed solution will bond together with the substrate, creating high 

conductivity copper patterns which have a very strong adhesion with the PET substrate 

after ELD process. 

The proof-of-concept work was demonstrated in Chapter 3. The feasibility and merit of 

this printing process is that the grafted polyelectrolyte will act as an effective linker layer 

connecting the polymer substrate with the metal layer, resulting in a very strong adhesion 

between the deposited copper and the PET or PDMS substrate. The methodology will be 

also applied to other commercially available polymeric materials such as PC 

(polycarbonate), PE (Polyethylene), PVC (Polyvinyl chloride) and PI (Polyimide).   
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Chapter 2  

2 Fabrication of flexible high resolution copper patterns 
on photopaper 
Almost all the printed electronics fabrication techniques are based on directly inkjet 

printing nanoparticle. As we mentioned in chapter 1, high cost (silver nanoparticle is 

expensive), low conductivity and unreliable printing (nozzle often got clogged because of 

the accumulation of nanoparticle) are three critical issues for today’s printed electronics 

fabricating industry. What we tried to achieve in this project was reducing the cost, 

enabling reliable high resolution printing and creating copper patterns with high 

conductivity. So in this chapter, a new method of fabricating copper circuits on flexible 

photopaper with high resolution and high conductivity will be demonstrated, solving all 

the problems mentions above. 

2.1 Introduction 
Printed flexible electronics and devices which can maintain functionality when subject to 

a large deformation and stress are highly desirable in nowadays high-tech industry and 

daily life. Conventional electronic fabrication systems are mostly based on 

photolithography, a complex and time-consuming process that involves large volumes of 

hazardous waste and expensive facilities. [1] The emerging nanotechnology is also 

evolved in fabricating electronics such as solar cell and super capacitor, however, its high 

cost and requirement for high-end facilities limit its appeal. [2] There is increasing 

demand for high quality and low cost electronic components such as RFID tags, 

supercapacitor, flexible sensor and devices, which require innovative fabrication 

techniques that are faster but cheaper compared to traditional production methods. [3-5] 
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It is predicted that the market of flexible organic and printed electronics will exceed $300 

billion by 2028. [6] In this regard, techniques such as inkjet printing, [7] non-vacuum 

deposition [8] and screen printing [9] have emerged as promising technical trends to 

produce flexible electronics and devices. Among these, inkjet printing technology has 

gained more and more attention in recent years for its appeal of low-cost, non-contact, 

low material consumption, maskless and additive printing procedure.  

Inkjet printing, which is widely used in home and office, has also been employed 

extensively as a low cost tool to explore various aspects of printed electronics in a 

laboratory setting, [10, 11] such as ITO free polymer solar cell, functional polymer films, 

[12] complex heterogeneous tissue constructs [13] and thin film transistors. [14] Applied 

to printed electronics based on inkjet printing, most of the research efforts are focused on 

direct printing of metal nanoparticles or conductive polymer, followed by sintering to 

make them conductive. Cu- or Ag-nanoparticle based inks were commonly printed on a 

treated PET/PI substrate, with a nozzle size of larger than 10 µm, and dimension of the 

final resulted metal pattern is normally around 10-20 µm, five times better than the 

current resolution of screen printing. However, clogging is always a common critical 

issue for micron size nozzles due to the accumulation of nanoparticles at the nozzle 

opening. Other critical issues reside in the oxidization and sedimentation stability of the 

corresponding inks, generally requiring large amounts of stabling and decoration agent 

and is in a very low concentration of metal particles [15, 16] which consequently leads to 

a high resistance of the printed patterns. So in our method, we choose to print pure 

catalyst noble-metal-containing salt solution to overcome the issue of nozzle blocking 

and enables greater printing resolution. 
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In this project, we have developed a convenient, ultra-low-cost method of inkjet printing 

combined with electroless deposition (ELD) process to prepare high-resolution metal 

patterns. [17-20] ELD is an auto-catalytic technique used to deposit metals (copper, 

nickel, etc.) on various substrate such as paper, plastic, aluminum oxide, and even yarns. 

[21-23] The mechanism of ELD was thoroughly studied these years, making it a 

convincing technique for making metal coating and high resolution patterns. [24] 

Abundant metal ions in the ELD bath can create patterns with dense surface, which in 

turn results in good conductivity close to bulk metals. This absolute advantage drives us 

to involve this technique in the fabrication of flexible electronics.  

Fig. 1 schematically shows the entire process of our method, which typically includes 

three steps, inkjet printing noble-metal-containing salt solution onto polyelectrolytes 

modified substrate, ELD of copper and thermal sintering. Loading of noble-metal 

moieties onto substrates involved a typical chemistry reaction of ion exchange, i.e., the 

noble-metal moieties like PdCl4
2- take places of anions of Br- because of their higher 

affinity to quaternary ammonium in the chain of polyelectrolytes. [25] As a proof-of-

concept, (NH4)2PdCl4 and Epson photopaper with polyelectrolytes modification were 

chosen to demonstrate the process. Influence of printing parameters was thoroughly 

studied and the optimum parameters such as jetting voltage control waveform, drop 

space, jetting frequency and meniscus vacuum were obtained. As a result, functional 

copper patterns with conductivity up to 3.9 x 107 S/m (65% of bulk copper) and a feature 

dimension down to 50 μm were successfully fabricated. No extreme condition was 

needed and all processing steps were conducted under regular laboratory conditions. 
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Figure 1: Schematic illustration of paper-based metal patterns with high resolution 

and conductivity via printing catalyst and subsequent ELD process. 

2.2 Theory 

2.2.1 Inkjet printing 

Inkjet printing is a kind of technology that used for creating patterns or images by 

propelling ink droplets onto different substrate, such as paper, photopaper, PET, PI, 

PDMS films, etc. The idea of inkjet printing is very old and originated in the 19th century, 

but was not commercialized at that time. Till 1970s, with the development of computer 

and digital image technology, inkjet printer started gaining their market. Companies such 

as Epson, HP, Xerox and Lexmark rose up by making inkjet printer for office use. 

Several technical revolution has taken place during the past 20 year and right now there 

are two main streams of printing technologies used in contemporary inkjet printer, one is 

call continuous printing (CIJ) and the other is called Drop-on-demand printing (DOD). 

The principle of continuous inkjet printer is shown in Fig. 2. [26] Printing ink is 

pressurized by a pump (the ink supply pump) and flow from the cartridge to the nozzles. 
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Very small ink droplets are then jetted through the nozzle at high speed. The ejected 

droplets then pass through a pair of charge electrode and are selectively charged 

according to the printed image data. Charged droplets then pass through a pair of 

deflection electrode where a high voltage is applied and are separated according to their 

charge. After that, the charged droplets hit the substrate from bottom to top. Either the 

substrate plate or the printing nozzle can move in X and Y directions, creating a two-

dimensional pattern with dot matrix on the substrate. Non-charged droplets will flow 

straight to the gutter and then return as ink to the ink cartridge. Inkjet printer based on 

this principle is losing its popularity these years, since it is expensive, hard to maintain 

and need high level operative skills --- you need to adjust the orifice-shape and fix the 

orifice in place manually sometimes.  

For the drop-on-demand inkjet printing technology, printers only eject droplets of ink 

when they are required by the system. So a deflection system with high voltage or ink 

recycling system is no longer needed. Fig. 3 shows the principle of a drop-on-demand 

inkjet printhead. One of the key component on the printhead is the jetting control system 

which can be divided into two kinds, the thermal inkjet and the piezoelectric inkjet. The 

thermal DOD inkjet printing utilizes a heating component inside the print head used for 

vaporizing some of the ink and creating a micro bubble. The formation of the bubble 

which increase its volume by heating forces a drop of ink out the nozzle, realizing the 

inkjet printing. While for the piezoelectric printhead, a piezoelectric membrane 

(reservoir) is placed upon a small ink chamber, the deformation of the piezoelectric 

membrane under different voltage will them force a drop of ink out the nozzle. By 
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controlling the jetting voltage value and jetting voltage waveform, the size of the droplets 

can be precisely controlled, enabling a robust high resolution printing. 

 

Figure 2: Principle of continuous inkjet printer. (Copy from [26]) 
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Figure 3: Principle of drop-on-demand inkjet printer. (Copy from [10]) 

Regarding all these pros and cons, we finally chose a DOD inkjet printer as our printing 

tool, for its ability of room temperature jetting, relative low cost and controllable jetting 

waveform. The model we used in this project is Dimatix DMP-2800 DOD materials 

printer, shown in Fig.4.  

 

Figure 4: Dimatix DMP-2800 DOD inkjet printer used for this project. 
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2.2.2 Electroless deposition 

Electroless deposition or electroless plating is an auto-catalytic chemical reaction used 

for depositing a layer of metal, usually copper and nickel, on a solid substrate such as 

metal or plastic. It is the most important process for through hole plating (THP) of printed 

circuit boards (PCBs) using the indirect-conventional method. The most important 

benefit of this technique is that it is not necessary to apply an electric filed/current 

through the solution to make the reaction occur and in most cases the electroless 

deposition can form a well deposited metal film on the substrate under room temperature. 

Electroless copper deposition was first reported by Narcus [27] and more than ten years 

later this technique was commercialized. [28, 29] In recent years modified formulations 

have rapidly developed enabling a higher plating rate, higher plating quality and 

extremely stable conditions under a wide range of plating conditions. [30-32]  

2.3 Materials and experiments set-up 

2.3.1 Materials 

The substrate used for printing was EPSON Ultra Premium Photopaper Glossy, treated 

with polyelectrolytes containing quaternary ammonium by Epson Company. Ammonium 

tetrachloropalladate (II) ((NH4)2PdCl4, 97%) and anhydrous glycerol (C3H5(OH)3, 99%) 

used for ink preparation were bought from SIGMA-ALDRICH and AMRESCO 

respectively. Chemicals used for ELD process were copper (II) sulfate pentahydrate 

(CuSO4•5H2O, 98%, SIGMA-ALDRICH), potassium sodium tartrate tetrahydrate 

(C4H4KNaO6.4H2O, 99%, SIGMA-ALDRICH), formaldehyde solution (HCHO, 36.5-

38% in H2O, SIGMA-ALDRICH) and Sodium Hydroxide (NaOH, 97%, CALEDON). 
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2.3.2 Preparation of the palladium salt ink 

A glycerol-water solution with viscosity of ~11 centipoise (cp) was achieved by mixing 

anhydrous glycerol and distilled water in the ratio 3:2 by volume. [33, 34] Ammonium 

tetrachloropalladate (II) was then added, followed by four minutes mixing in the VWR 

mixer (Fig.5) until a clear dark yellow solution was obtained. The optimum viscosity for 

inkjetable fluids in piezoelectric Drop-on-Demand (DOD) printhead reported in literature 

is 10-12 cp at room temperature. [35] Based on these, inkjet printable inks containing 

different concentration of palladium ions were prepared and viscosity was measured. To 

find the optimum ink for the following inkjet printing and ELD process, solutions with 

different Pd salt concentration (10-60 mM) were prepared in the same way. All prepared 

inks were degassed under a vacuum chamber of 2 psi for 1 hour to remove dissolved gas, 

followed by filtering with a 0.2 μm springe filter to get rid of undesired particles which 

inhibits jetting. The final viscosity was measured with a Gilmont GV-2100 (Fig.6) 

Falling Ball Viscometer to further confirm it was in a proper range. 

 

Figure 5: VWR mixer 
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Figure 6: Gilmont GV-2100 

2.3.3 Inkjet printing and parameters optimization 

Printing patterns were designed and drew with vector drawing software with colour 

values set to R=0, G=0, B=0 and exported as binary bmp format in bitmap colour model 

with a resolution of 1300 ppi. Inkjet printing was performed using a commercially 

available inkjet Dimatix DMP-2800 materials printer (FUJIFIL Dimatix, USA, Fig.4), 

equipped with a 1 PL piezoelectric DOD 16-jet cartridge that can deposit features as 

small as 20 μm. Two cameras were installed in the printer, the high speed side view 

camera was used for monitoring the droplets in real time and the top view camera was for 

checking the printed patterns and move the print head to the position where you want to 

start the printing. The stage is an X-Y two directions vacuum stage with small hole-arrays 

on it, enabling a vacuum absorption between the substrate and stage. Inkjet printing 

experiment set up is shown in Fig.7. 
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Figure 7: Inner structure of the inkjet printing system (Copy from [36]) 

Printing parameters such as jetting period, jetting voltage control waveform, meniscus 

vacuum, printhead temperature were dynamically adjusted according to the real-time 

droplets video generated by a built-in high frequency camera (side view camera in Fig.7). 

Epson Ultra-Premium Glossy photopaper was used as the substrate for printing and was 

cut into a 10 cm x 10 cm square to reduce deformation caused by heating and wetting. 

Prepared photopaper was placed on a vac-sorb substrate with temperature at 30°C and 

fixed by scotch tape.  Lines of the same width were printed with the drop space set to 20 

µm, 25 µm, 30 µm and 35 µm respectively and examined by microscope. Results showed 

a drop space of 25 µm giving the best pattern thus complex and functional patterns were 

then printed with optimum settings (maximum jetting frequency 20 kHz, drop space 25 

µm, meniscus vacuum 3.5 H2O, printhead temperature 30°C, printhead angle 3.6°, jetting 

period 41.792 µs, jetting voltage 23.60 ± 0.4 V, printing height 150 µm, cleaning cycle of 

1 s purging –1 s spitting –2 s blotting, tickle mode on with frequency 2 kHz). 
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2.3.4 ELD of copper and thermal sintering 

ELD process was conducted to apply copper pattern onto the printed feature. The detailed 

process of ELD can be found in former literatures. [18, 37, 38] Briefly, patterns printed 

with inks featuring Pd salt concentration of 10 mM, 20 mM, 30 mM, 35 mM, 40 mM, 45 

mM, 50 mM, 55 mM and 60 mM were put into a plating bath containing 1:1 mixture of 

freshly prepared solutions I and II. Solution I consists of 13 g/L CuSO4•5H2O, 12 g/L 

NaOH and 29 g/L KNaC4H4O6•4H2O which were added into distilled water in sequence. 

Solution II is 9.5 mL/L HCHO in distilled water. Deposition time was controlled to 30 

min, 40 min, 60 min, 120 min, and 180 min for printed patterns under the same setting. 

Deposited copper lines were air dried and then put into a Fisher 1500 DEG Tube Furnace 

(Fig.8) for sintering. Nitrogen was flowing for 30 minutes before heating to ensure that 

no residual oxygen was in that tube. Sintering was kept for an hour under continuous 

nitrogen flow at 200°C and heating rate set to 15oC/min. [39, 40] 

 

Figure 7: Fisher 1500 DEG Tube Furnace 
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2.3.5 Characterization 

The viscosity of the inks was measured by a Gilmont GV-2100 Falling Ball Viscometer 

using a 316 stainless steel (SS) high-precision ball with a 7 mL of sample volume. Real 

time images of the droplets were captured with a CORRECT PL- 4x40 built-in camera. 

For studying the surface of electroless plated copper patterns before and after sintering, a 

GENTAUR NJF-120A metallurgical microscope and a NOVEL Optics HDCE-90D 

(3488X2616) CCD camera were used to obtain the image of the pattern. A Hitachi S-

4500 field emission scanning electron microscopy (SEM) was also used to observe the 

surface morphologies of the plated patterns. Atomic force microscope (AFM, Dimension 

V equipped with a Nanoscope controller V and Nanoscope software 7.30, Veeco) was 

used to obtain height information. Chemical composition information of the samples was 

obtained with a Kratos Axis Ultra spectrometer using a monochromatic A1 Kα radiation 

source. Adhesion was determined by the use of a cross scotch tape test, following ASTM 

D-3359 using 3M # 600 tape. [41] A four-probe method using M 2400 Keithley 

Multimeter was carried out to measure the sheet resistance, from which conductivity was 

calculated. X-ray diffraction analysis was done using Rigaku Ultima-IV XRD 

goniometer. 

2.4 Results and discussion 

2.4.1 Ink viscosity and stability 

Negatively charged tetrachloropalladate group (-PdCl42-) tends to form chemical bonds 

with the positively charged quaternary amine group (NR4
+-) on the photopaper. A 

bivalent tetrachloropalladate group will combine with two monovalent quaternary amine 

groups when the ink droplet is in contact with the photopaper substrate which results in a 
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strong adhesion between the palladium ions and the substrate. Rate of ELD of copper as 

well as the plated copper density are proportional to the concentration of catalyst 

(palladium ion in this case), thus a high concentration of the palladium salt is preferred. 

[42, 43] However, the number of quaternary amine groups on the surface of photopaper is 

limited, which means excessive palladium salt will result in unbonded palladium ions on 

the surface. Unbonded ions will disperse on the photopaper and dissolve in deposition 

solution during the process of ELD, causing serious losses in resolution (compared 

experimental results are showed in Section 2.4.3-ELD of Copper). Therefore, inks with 

concentrations ranging from 10 mM to 60 mM were prepared to find the optimal 

solution.  

Fig.8 shows that viscosity increases proportionally with concentration of ammonium 

tetrachloropalladate. Yet, all prepared inks were still in the range of the optimum 

requirement (10 ~ 12 cp) for printing.  In order to investigate the stability of the 

(NH4)2PdCl4 ink, four tubes of prepared solution (45 mM) were store in a constant 4°C 

refrigerator and another four tubes (also 45 mM) were stored in a dark cabinet at room 

temperature (22°C). Colour change of the inks was checked daily. UV/Vis spectrometer 

measurements were taken to characterize the status of the inks and the results are shown 

in Fig. 9.  For inks stored at room temperature, visible precipitation was clearly observed 

three days later and gradually increased with time. In order to rule out any effects of the 

sediment and get a reasonable result, we filtered the ink with a 0.2 µm syringe filer each 

time before the UV/Vis measurements (Fig. 9). 

To get rid of the influence of the light on the stability of the inks, all prepared inks were 

stored in dark. Both the fresh inks and the samples stored at 4 °C for 180 days exhibited 
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an absorption peak at ~390 nm originating from two transitions of the PdCl4
2-. [44] One 

day later at room temperature, the maximum absorption peak of the solution had shifted 

to ~375 nm and the absorptivity was also lightly reduced, indicating the decrement of the 

PdCl42- concentration and hydration to PdCl2(H2O)2  and [PdCl(H2O)3]+. Spectra of inks 

after three days showed an absorption peak at ~250 nm and a slight shift back to longer 

wavelengths in lower absorption values as time increased, attributing to the formation of 

[Pd(H2O)4]2+ and reduced palladium ion. The decrement of the palladium ion 

concentration and the increasingly forming precipitation is probably due to the self-

oxidation-reduction reaction of the Pd ion aquo-complex which results in the increment 

of relative chloride concentration, leading to the formation of [PdCl(H2O)3]+ and 

PdCl2(H2O)2. The palladium salt solutions after standing up to 180 days at 4°C showed 

no precipitation or deterioration. The colour of the ink is still dark yellow just as that of 

the initial solution. The ink remained stable under 4°C for more than 180 days without 

observation of sediment and also showed its capability of producing successful printing 

results. Inks stored under room temperature after 30 days still showed its ability to trigger 

the ELD process, but the ELD process was in a very low rate, usually taking more than 

three hours to complete and the deposited patterns were no longer uniform and 

continuous, indicating that such inks were no longer suitable for making a high resolution 

functional circuits. Thus, all the inks used for final printing were either fresh made or 

those stored at 4°C. 
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Figure 8: Viscosity of inks with different Pd salt concentration 
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Figure 9: UV/visible-spectra (fitted) results of freshly prepared palladium (II) salt 

ink (triangle facing down) and inks after storage at room temperature for 8 hours 

(triangle facing up), 3 days (round circle), 180 days (square) and 180 days stored 

under 4 °C (diamond) 
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2.4.2 Inkjet printing of salt solution 

The cartridge of ink jetting devices is always operated under negative pressure to keep 

the meniscus at the edge of the nozzle and prevent the ink from dripping under the action 

of gravity. The pressure difference between the inside and outside of the cartridge, which 

is also known as the meniscus vacuum, needs to be adjusted depending on the viscosity 

and surface tension of the ink. To obtain the optimum meniscus vacuum level, a built-in 

camera was used to monitor the formation of droplets in real time. Meniscus vacuum 

level was set to 3.2, 3.3, 3.5, 3.8 and 4.0 (inches of water) and under each level the 

printhead continuously worked for ten minutes. Results showed that a meniscus vacuum 

of 3.5 H2O gave the most stable and reliable ejected droplets. Leakage was observed on 

some of the nozzles when the vacuum level was lower than 3.5 H2O. Sate of the ink 

droplets under different jetting parameters is shown in Fig.10 ((a) Misdirected jetting 

caused by accumulated leaked ink around the nozzle. (b) Satellite droplets caused by 

relative high jetting voltage. (c) Droplets after applying the optimum parameters 

(meniscus vacuum: 3.5 H2O, jetting voltage peak ~24.30 V, single jetting duration: 

32.192 µs (phase 1: 9.792 µs, phase 2: 6.160 µs, phase 3: 8.496 µs, phase 4: 5.184 µs), 

maximum jetting frequency: 20 kHz)) The leaked ink attached and accumulated around 

the nozzle, causing misdirected jetting and blocked nozzle Fig. 10a. For the vacuum level 

higher than 3.5 H2O, a relative high voltage (~28 V) must be applied to the nozzle in 

order to overcome the excessive negative pressure to make it jet.  However, the increased 

voltage results in the breakup of the liquid ligament and large deformation of the piezo 

membrane which consequently leads to the generation of a primary drop and one or 

several satellite droplets (Fig. 10b). [21] Typically, the satellite droplets may cause 
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undesired patterns and a serious loss in resolution, and therefore should be avoided as 

much as possible.  For the piezoelectric printhead, the velocity of droplet ejected from the 

nozzle is a function of applied peak voltage. We observed that the distance (from the 

nozzle plate to the place where droplet fully formed) travelled by the droplet also 

increased with the applied voltage. Higher voltage results in a bigger dot diameter 

because of the increased ink droplet’s mass and velocity, which means a reduction in the 

printed resolution. By applying a meniscus vacuum of 3.5 H2O, the optimum jetting 

voltage peak for the palladium ink was found to be ~24.3 V using the same real-time 

monitoring method.  Fig. 10c shows the images of the perfect droplets ejected from the 

nozzle after applying the optimum parameters. 

Nozzle clog was observed sometimes during real-time monitor, which was unacceptable 

for a high resolution printing. Since all the inks were degased and filtered by a 0.2 µm 

syringe filter, clogging should not be caused by undesired large particles or bubbles in the 

ink. Thus, the great possibility may reside in the voltage waveform used for controlling 

the bimorph on each nozzle. The bimorph is slightly deflected so that the fluid chamber 

above the nozzle is depressed by a bias voltage. Typically, the voltage waveform is 

divided into four segments, and each segment has three properties: slew rate, duration 

and level. [45] The first segment is called the loading work during which a decreased 

voltage is applied to the bimorph at the beginning of the jetting, bringing the bimorph 

back to a relaxed position with the chamber at its maximum volume. However, for the 

palladium salt ink the loading work segment will lead to the generation of micro-bubbles 

in the nozzle, prohibiting formation of droplets since the nozzle works in a high jetting 

frequency up to 20 kHz. Effect of such micro-bubbles is magnified in a nozzle with a 
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diameter of only 10 micron. Thus, we reduced the decreased level of the first phase, and 

got the optimum jetting waveform shown in Fig. 11. A reduced level (~ 50% of the initial 

one) of jetting voltage was applied to phase one, so as a longer duration of 2.550 µs, to 

prevent the generation of micro-bubbles. A dampening segment was applied to phase 

four to prevent the nozzles from sucking air back in and get prepared for the next 

ejection. A video of the nozzles’ jetting with the optimum jetting waveform, meniscus 

vacuum value (3.5 H2O) and jetting voltage peak (~ 24.30 V) was take, showing a well 

alignment, stable jetting (please refer to the support information). No clog or misdirected 

jetting occurred during continuous working for one hour, revealing a robust and high-

resolution printing with ammonium tetrachloropalladate (II) solution was achieved. 
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Figure 10: Droplets pictures under different jetting conditions (a) Misdirected 

jetting caused by accumulated leaked ink around the nozzle. (b) Satellite droplets 

caused by relative high jetting voltage. (c) Droplets after applying the optimum 

parameters (meniscus vacuum: 3.5 H2O, jetting voltage peak ~24.30 V, single jetting 

duration: 32.192 µs (phase 1: 9.792 µs, phase 2: 6.160 µs, phase 3: 8.496 µs, phase 4: 

5.184 µs), maximum jetting frequency: 20 kHz). 
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Figure 11: Modified waveform for the ammonium tetrachloropalladate (II) ink 

2.4.3 ELD and conductivity 

ELD of copper was conducted under ambient environment, showing a satisfied 

deposition rate. Table 1 shows the deposition results of patterns printed with inks of 

different concentration. Patterns used for testing were 3 mm x 3 mm squares, printed 

under the same condition with inks at different concentration. 
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Table 1: ELD of copper results of patterns printed with different concentration 

(Scale bar: 1 cm) 

Sample No. 
PdCl42- 

Concentration Time Results 

1 10 mM 3 hours No copper 

2 20 mM 3 hours No copper 

·3 30 mM 2 hours  

4 35 mM 2 hours  

5 40 mM 1 hour  

6 45 mM 40 mins  

7 50 mM 40 mins  

8 55 mM 30 mins  

9 60 mM 30 mins  

Patterns were taken out of the deposition solution when no observable changes happened 

to their surfaces. Deposition time is 3~4 times longer than conventional ELD which 

usually happens on a PET or PI substrate. This may result from a smaller surface area of 

the reactive ions and a less active catalyst newly formed on the photopaper. The colour of 

the photopaper substrate after ELD process changed in different degrees, the longer the 

ELD process, the greater the colour changed. Two hours ELD made the colour of group 

#3, #4 changed from white to a little bit green, while for group #5 - #9 which the time of 

ELD process was controlled down to less than one hour, the photopaper still kept its 

white colour but became a little bit grey. No crack or damage was observed on the 

substrate of all ELD process time. Table 1 group #1 and #2 show that a concentration 

below 20 mM is not able to trigger the deposition, a relative long deposition time is 
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needed for patterns printed with ink concentration of ~30 - ~35 mM and copper plating 

will stop at a certain level of deposition resulting in an incomplete pattern. The half-

stopping deposition is caused by the reduced copper activity as time goes on. Palladium 

ions first initiate the copper reduction, the reduced copper then serves as catalysts to keep 

the reaction going. The deposition rate need to be kept in a certain level so that the 

freshly reduced copper can maintain its activity and continue its serving as catalyst. A 

slow deposition rate caused by the ink of low concentration leads to loss of the activity of 

the reduced copper, which gives explanation to the incomplete pattern of group #3 and 

#4. Serious dispersion was observed when the ink concentration was above 50 mM 

(Table.1 group #7, #8, #9) since the limited number of quaternary amine on the 

photopaper couldn’t form chemical bonds with the excessive amount of palladium salt. 

The unbonded palladium salt will then disperse in the photopaper and dissolve in the 

deposition solution, causing serious loss of resolution. The optimum concentration range 

was found to be around 40-45 mM and the dimension of the resulted copper patterns 

printed in this concentration were measured by an optical microscope, showing a slight 

increment in its width and length (~ 0.15 mm, ~4.5%) due to ink dispersion along the 

photopaper fibres. The ink with a concentration of 45 mM palladium salt was then 

adopted for the following complex and functional patterns printing.  

Our former work reveals that the thickness of the plated copper is also a function of 

deposition time, but the increment of thickness is not unlimited. [18, 20] The maximum 

thickness varies depending on the catalyst concentration, type of substrate and catalyst. 

Because of the fibre properties of photopaper, most of the PdCl42- infiltrated into the 

substrate with solvent, some of them remained on the surface and bonded with the 
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quaternary amine groups along the paper fibre. Thus the amount of effective catalyst 

(PdCl4
2--) for the following ELD process is actually small, making the copper deposition 

rate relatively slow. Newly reduced copper loses its activity quickly and because of the 

slow rate, the amount of active copper quickly decreases making this auto-catalyst 

reaction stop. For the patterns printed with a 45 mM concentration of palladium salt on 

the photopaper, the copper will stop growing when its thickness reaches ~350 nm. The 

SEM image of the plated copper layer after a three hours ELD is showed in Fig. 12, 

showing the maximum thickness of the copper layer. 

 

Figure 12: SEM image of the cross section of the ELD copper layer on photopaper 

We adopted the present method for manufacturing flexible integrated circuits and the 

results are shown in Fig. 13 and Fig. 14. Fig. 13 shows a high resolution flexible circuit 
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board on photopaper substrate, thin lines with high conductivity were successfully 

deposited on its surface. Fig. 14 is an integrated test pattern for the printed electronics, 

there are several essential circuits’ elements in this pattern such as micro antenna, thin 

film capacitors, straight lines with different width and connecting board. Fig. 15 and Fig. 

16 are the microscope images of the printed copper circuits. Fig. 15 is a part of the circuit 

board, we can see that the smallest feature size is almost down to ~50 microns. A part of 

a micro inductive coil is shown in Fig.16 with a feature size down to ~75 microns. Saw 

tooth can be observed in the image which is caused by little displace of the printhead in 

order to create a cure line instead of a straight line.  

A 3M # 600 tape was adopted to test the adhesion, no peeling off was observed after 

three times tearing down, indicating a very strong adhesion between the copper and the 

photopaper substrate. The tape test showed almost no influence on the conductivity 

(decrement rate less than 1%) of patterns before/after sintering. Patterns with a feature 

size up to ~50 µm is shown in Fig. 13, Fig. 14, revealing a well aligned high resolution 

copper circuit, presenting the functional integrated circuit fabricated by this method, 

which remains in function under deformation. 
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Figure 13: High resolution complex flexible circuit board on photopaper 

 

Figure 14: Integrated test pattern of the new printed electronics fabrication method 
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Figure 15: Microscope image of a part of the high resolution printed circuit board 

 

Figure 16: Microscope image of a part of micro inductive coil fabricated by the 

proposed method 
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Figure 17: Conductivity measurement results of patterns under different conditions 

by four-probe method (bending curvature 1 cm-1) 

Generally, a sintering process is needed for patterns fabricated by directly inkjet printing 

metal particles on substrates, to render the pattern and make it conductive. Because of the 

large surface area of the nanoparticles, the melting point becomes lower than bulk metal, 

thus usually ~200 oC will make the metal particles on the surface melt and connect with 

each other. While the patterns fabricated using our method have already showed a very 

good conductivity even before the sintering process, which means sintering is not that 

necessary. . But we still conducted the sintering experiments to see if there will be any 

improvement in conductivity or any other influence on the circuits. We also conducted 

the stability test of the copper patterns which were partly stored in open air for 120 days 

under room temperature and partly heated up to 120 oC for three hours also in open air. 

The conductivity was measured using a four-probe method and the results are all shown 
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in Fig. 17. For the bending conductivity test, we adopted the radius of curvature of 1 cm-1 

for both the inward and outward bending. We kept the bending for one hour and 

measured the conductivity in real time by a four-probe station. The results shown in 

Fig.17 is the average conductivity of the patterns under bending condition. Actually there 

was no obvious change in the conductivity during the one hour of bending test. From Fig. 

17 we can see that the copper lines have already shown good conductivity up to 3.6 x 107 

S/m before sintering. The high conductivity achieved here can be attributed to the 

abundant metal ions in the ELD copper plating bath, resulting in dense uniform copper 

layer with good conductivity.  

 

Figure 18: SEM image of un-sintered copper pattern on photopaper substrate 
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Figure 19: SEM image of sintered copper pattern on photopaper substrate 

SEM and AFM were also taken to observe the surface structure of both the sintered and 

un-sintered patterns (Fig. 18, Fig. 19). Clusters of copper particles can be clearly 

observed before sintering (Fig. 18). Fig. 19 is the surface of the pattern after taking one 

hour thermal sintering under nitrogen flow, in which no copper particles are observed, 

leading to an slightly increment (about 4%, Fig. 17) in the conductivity. We also tested 

the conductivity of the patterns under deformation, results showed that the inward 

bending has little impact on the conductivity while an outward bending can lead to a ~6% 

decrement on its conductivity, caused by some tiny cracking on the surface. The 

decrement is reversible, when the patterns restore to its original shape, the conductivity 

will then increase to ~95% of its initial value. To test the stability of the deposited copper, 

we put the sample on a hot plate heating up to 120 oC in air for 12 hours, and measured 

44 

 



 

its conductivity every 20 mins. Three hours later the conductivity tended to be stable and 

kept its level (~43.8%) for the rest of the time. We also measured several samples stored 

under room temperature for more than 180 days and results showed a ~10% decrement in 

its conductivity as shown in Fig.17, almost the same as the stable state of samples under 

120  oC. So the conductivity of copper pattern fabricated in this way will remain the same 

after a ~10% rapid decrement. We have to say that the thermal sintering doesn’t suit for 

the paper-based electronics, even though it does enhance the patterns’ conductivity. After 

a 200 ºC sintering, the paper substrate was carbonized as is shown in Fig.19 and thus 

showed no flexibility any more. Surface crack which may result in fatal failure of the 

functional circuits was also observed on the sintered patterns, limiting their application. 

So at this moment we decided to realize our idea on a more stable, water resistant, 

transparent and flexible substrate, for example PET/PI which became our next project. 

Details of this will be further illustrated in Chapter 3. 

Roughness was measured using the AFM, the average roughness (Ra) of un-sintered 

copper pattern is ~50 nm while for the patterns after sintering, and the roughness reduces 

to only 1-2 nm, which gives explanation to the increased conductivity. The AFM 3D 

images (Fig. 20 and 21) show a sharp contrast between the copper layers before and after 

thermal sintering. Finally the copper patterns achieve a high conductivity up to 3.87 x 107 

S/m (65.1% of bulk copper), compared to conductivity data of inkjet-printed copper 

reported in literature, which typically ranges from 10% to 31% of bulk copper. [21, 46, 

47]  
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Figure 20: AFM 3D image of the copper surface (before sintering) 

 

Figure 21: AFM 3D image of the copper surface (after sintering) 
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Compared with those copper patterns deposited on plastic substrate (PET/PI) using ELD 

whose conductivity can reach up to ~90% bulk, [22] the 65.1% bulk conductivity is not 

that impressive and the barrier for higher conductivity may be due to the photopaper 

substrate. To find out the reason, we conducted the AFM profile scanning for the samples 

of the copper on photopaper, photopaper before and after ELD bath. The results of the 

height information are shown in Fig. 22 and Fig.23. Many raised areas can be observed in 

the picture of photopaper after ELD, these raised parts were caused by ELD bath. During 

the ELD process, the air in between the fibers of the photopaper resulted in these raised 

areas and thus limited the conductivity of the patterns.  These raised areas increased the 

roughness of the photopaper which in turn caused a relative rough surface on the bottom 

surface of the copper. In Fig. 23, we can see that compared with the photopaper substrate, 

the copper surface is much more smooth and steady, which means that the actual average 

thickness is less than that shown in Fig. 12. All these contributed to the loss of the 

conductivity. X-ray diffraction was conducted to study the crystalline structures of the 

resultant copper layer (under 40kV/40mA, X-Ray, continuous scanning mode, 2 deg./min. 

scan speed, 0.02 deg. step width, 5-90 deg. scan range, fixed monochord.) Fig. 24 shows 

the XRD patterns of copper patterns deposited on photopaper. For reference, the substrate 

photopaper was also conducted XRD measurement. Both the samples before and after 

sintering shows two characteristic peaks for metallic copper crystalline at 43o and 51o 

presenting for the Bragg’s reflection indices of (111) and (200) planes in FCC structure. 

Both of the characteristic peaks became higher and more narrow after sintering (Fig. 24), 

indicating a finer crystal structure of the deposited copper. 
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Figure 22: AFM height information images of copper (before sintering), photopaper 

after ELD bath and photopaper before ELD 

 

Figure 23: AFM Section profile of selected parts showing in Fig. 22 with white dash 

lines, corresponding to the copper, photopaper after ELD and photopaper before 

ELD one by one. 
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Figure 24: XRD patterns of photopaper, copper on photopaper after sintering and 

copper on photopaper before sintering 

2.5 Conclusion 
In this project, we’ve successfully developed a new method of fabricating flexible printed 

electronics. The new method was successfully adopted to fabricate high-resolution 

copper pattern with high conductivity and feature dimensions down to ~50 µm on 

photopaper substrate using inkjet printing and ELD techniques, solving many critical 

issues of the fabrication of the printed electronics. A stabilized palladium (II) solution in 

water/glycerol with optimized viscosity and concentration was prepared enabling strong 

chemical bonds between the quaternary ammonium groups on the photopaper and the 

palladium ions, leading to a strong copper adhesion. Cost-effective procedure and 
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chemicals were involved, eliminating issues generally associated with ink sediment, 

nozzle clog and stability, creating well sintered, defect free copper pattern with enhanced 

conductivity (65% of bulk). The feasible method based on inkjet printing is clearly 

demonstrated by fabricating complex functional circuits, providing a competitive 

manufacturing process for future printed electronics industry. 

We achieved objective 1 but we also found new problem. As is mentioned before, the 

photopaper substrate has many limitations and the fibre properties of the paper reduce the 

conductivity of the deposited copper in some extent. So we decided to make it on a 

polymer based substrate, for example PET. While for PET substrate, it’s hard to have it 

treated using conventional surface treating method because of its chemical inertness, and 

what’s more, to get it treated by conventional wet chemical method a lot of toxic and 

hazardous chemicals and solution will be involved. You may asked that why you need to 

get it treated? Well, if not, there is no possibility for the ink or deposited copper staying 

on the PET surface, which means the adhesion is very weak and metal layers on the 

surface will easily peel off. That is unacceptable for printed electronics. Thus, based on 

the same idea of fabricating printed electronics, we tried to develop a new surface 

treating method enabling a high conductivity, strong adhesion copper circuits on PET 

substrate. The method will be further illustrated in Chapter 3.  
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Chapter 3  

3 Fabrication of high conductivity flexible copper patterns 
on PET 
In this chapter, a method of fabricating high conductivity copper pattern on PET is 

demonstrated, corresponding to the objective 2. Polyelectrolytes were grafted to 

hydrocarbon surfaces by selective cleavage of C-H bonds using hyperthermal hydrogen 

with properly controlled kinetic energy to develop high quality metalized polymer 

patterns via electroless deposition, which presents excellent conductivity and adhesion 

between metal layer and substrate, pushing the board of the printed electronics forward 

again. 

3.1 Introduction 
Metallized polymer patterns further enrich the properties of light-weight, flexible 

polymers with additional properties that are usually associated with metals, such as 

electrical conductivity, reflectivity, abrasion resistance, etc., which are highly suitable for 

the printed circuit boards, microelectronics industry, and rising flexible and stretchable 

electronics. [1, 2] Electroless deposition (ELD) has recently emerged as a versatile and 

cost-effective tool to manufacture high quality metal structures. ELD can form metal 

films on surfaces in the presence of catalysts, usually surface-immobilized metal cations, 

via an autocatalytic redox reaction at room temperature. The abundant metal ions in the 

ELD solution result in dense and uniform deposited layer on the substrate with high 

conductivity. So we adopted this technique to fabricated high quality printed electronics, 

as is illustrated in Chapter 2. The ELD process is especially suitable for polymer 

substrates that could not survive at the high temperature required for vapor deposition 
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approaches. [3]  

Very recently, a strategy for catalyst immobilization by surface-grafted polyelectrolytes 

has attracted increasing interest due to its ability to produce metal structures with high 

spatial resolution. The key of this method is the polyelectrolyte anchoring layer for 

catalyst uptake, which can not only provide a large number of binding sites along the 

polymer chains for catalyst uptake, resulting in high ELD efficiency, but also 

dramatically enhance adhesion and mechanical stability by forming an interpenetrating 

network with the deposited metal particles in ELD. [4] Several surface grafting 

technologies, including wet chemistry methods and physical treatments, have been 

employed to graft polyelectrolytes onto polymeric substrates for ELD, such as surface-

initiated atom transfer polymerization, [5, 6] solution polymerization, [7-9] and UV-, 

radiation-, and plasma-induced polymerization. [10-12] However, for the wet chemistry 

methods, even the well-known SI-ATRP, which has been recognized as a green chemical 

approach for polymer synthesis, [13, 14] are time-consuming, produce low yields and, 

require inert protection during the synthetic process or chemical activation of the surfaces 

prior to use. What’s more, they are not environmentally friendly. Especially for those 

polymer based substrates such PET/PI which are chemically inert, conventional surface 

modification method doesn’t work very well. Thus, wet chemistry methods have low-

throughput and high-cost, which make it difficult for large scale production and are 

unacceptable in the field of printed electronics. While for various physical treatments, 

despite of their advantages of more cost-efficiency than wet chemistry methods and 

substrate independence, the hot electrons, ion, radicals, and plasma etc. could cause 

undesirable surface functionalities, surface charges, or partial surface destruction. A dry-
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process and chemical-free approach, named as hyperthermal hydrogen induced cross-

linking (HHIC), has been recently developed, offers another option for grafting polymer 

to hydrocarbon based substrates. [15-20]  

 

Figure 25: Schematic of polyelectrolyte molecules (PMETAC in this case) grafting 

to hydrocarbon surface by HHIC followed by ELD to create high quality copper 

patterns on PET substrate 

In this chapter, we demonstrate the application of HHIC for grafting of polyelectrolytes 

to polymeric surfaces for metalized polymer patterns via ELD, combined with the new 

method of fabricating high quality electronics that we proposed in Chapter 2, flexible 

copper patterns were successfully fabricated on PET substrate. Fig. 25 shows the 

schematic of the whole process. The hyperthermal hydrogen neutrals selectively cleave 

C-H bonds of the polyelectrolytes and hydrocarbon surface, generating numerous carbon 
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radicals, which results in cross-linking of polyelectrolytes and covalent bonding of 

polyelectrolytes to the surface. As a proof-of-concept, poly (2-(methacryloyloxy) ethyl 

trimethylammo-nium chloride) (PMETAC), PET film and screen printing technique were 

chosen to demonstrate the process.  

3.2 Theory 

3.2.1 Hyperthermal hydrogen induced cross-linking (HHIC) 

The concept of HHIC is based on collision kinematics. Briefly, the kinetic energy of a 

lightweight hydrogen projectile can be transferred to the targets when it collides with the 

atoms of a hydrocarbon molecule. The principle of HHIC is shown in Fig. 26. According 

to the mass-dependent kinematic transfer mechanism, a hydrogen projectile can transfer 

~90% of its kinetic energy to a hydrogen atom but less than 50% to heavier atoms such as 

carbon and oxygen when they collide head-on. In principal, when considering the bond 

dissociation energy, such hydrogen projectiles with properly controlled kinetic energy 

can selectively cleave C-H bonds of hydrocarbon molecules without any other bond-

cleavages happening. The dissociative C-H bonds generate carbon radicals, which lead to 

the cross-linking of hydrocarbon molecules to each other and/or bonding to the 

hydrocarbon based surfaces.  

The HHIC technology, with no requirement of prior activation, additives, initiators, or 

solvents, makes it feasible to graft macromolecules to hydrocarbon surfaces in a fast, 

cost-effective, and harmless matter. Indeed, HHIC is a physical and therefore green 

method for molecular crosslinking. More importantly, compared to other surface 

treatment technologies like plasma and ATRP, HHIC technology leaves no surface 
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charges to the substrates after treatment, which is crucial for making high quality 

electronics particularly semiconductor devices. Thus, we chose this method for the 

substrate surface treatment. 

 

Figure 26: Schematic illustration of the mechanism of HHIC 

3.3 Experiments and discussion 

3.3.1 Procedure 

Figure 25 shows the procedure of this printing process, which includes these steps: 1) 

screen printing polyelectrolyte (e.g. PMETAC) solution, where PMETAC will be firstly 

dissolved in ethanol and glycerol and 1,3- propanediol will be added to adjust the 

viscosity and surface tension; 2) grafting polyelectrolyte to the polymer substrate by 

60 

 



 

HHIC; 3) loading catalyst through ion exchange, where the samples will be immersed in 

(NH4)2PdCl4 aqueous solution to load Pd moieties by ion exchange between the anions of 

polyelectrolyte and PdCl4
2-; 4) electroless deposition of metals (copper) on the surface 

after ion exchange. As a proof-of-concept study, PET (Polyethylene terephthalate) was 

used as the model substrate in this project, where a shadow-mask method (screen printing 

method) was utilized to assist PMETAC patterning. Fig. 27 shows the HHIC and ELD 

procedure on a micro level, indicating the mechanism of this technique at a molecular 

level. 

 

Figure 27: Schematic illustration of the proposed procedure in micro level 
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3.3.2 Materials 

All chemicals were purchased from Aldrich and used as received. PET films 100 µm 

thick were purchased from Transilwrap Inc. (Canada), which were cleaned using ethanol 

before use. Poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) 

was synthesized by solution polymerization of 2-(methacryloyloxy)ethyl-

trimethylammonium chloride in water at 50 wt. % concentration catalyzed by 1 wt % 

potassium persulfate at 75 oC, which was collected by precipitation in acetone and dried 

in vacuum at 60 oC. 

3.3.3 Fabrication of copper patterns on PET 

5 mg/mL of PMETAC solution in ethanol was screen printed on the pre-cleaned PET 

film and air dried for 30 s. Subsequently, the samples were exposed to hyperthermal 

hydrogen neutrals with an extraction current of 10 mA at the pressure of 8×10-4 Torr to 

yield PMETAC grafted PET film (PMETAC-PET). [19] The HHIC treatment time was 

fixed at 120 s, which is sufficient time to cross-link an organic film. [21] Next, the 

PMETAC grafted PET composite film was immersed in a 5 mM (NH4)2PdCl4 aqueous 

solution for 15 min to immobilize PdCl4
2- by ion exchange. (PdCl4)2- will then bond on 

the screen printed pattern as is shown in Fig. 25. Finally, samples were immersed in a 

freshly prepared Cu ELD plating bath for 30 min at room temperature, resulting in the Cu 

coated PET. The ELD bath we used in this project was the same as that we used in 

project 1 (Chapter 2). The plating bath contains a 1:1 mixture of freshly prepared 

solutions A and B. Solution A consists of 12 g/L NaOH, 13 g/L CuSO4•5H2O, and 29 g/L 

potassium sodium tartrate. Solution B is 9.5 mL/L HCHO in water. Please note that 
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copious rinses were carried out at the end of each step to avoid any physisorption of 

unattached chemicals. 

3.3.4 Characterization 

Chemical composition information about the samples was obtained by X-ray 

photoelectron spectroscopy (XPS). The measurement was carried out using a Kratos Axis 

Ultra spectrometer (shown in Fig. 28, copyright belongs to Surface Science Western, 

Western University) using a monochromatic Al Kα radiation source. The binding 

energies were referenced to the C 1s line at 284.8 eV from adventitious carbon. The 

morphology of copper coated PET was investigated using a Hitachi S-4500 field 

emission scanning electro-microscope (FESEM) using a 5 kV accelerating voltage. 

Atomic force microscopy (AFM) was performed on Nanoscope V (Veeco, Inc., Fig. 29) 

in tapping mode to characterize the surface morphology of the modified PETs and 

thickness of PMETAC coatings and copper films by scanning the edge of a scratch. 

Resistance measurements were carried out by a four-probe method using M 2400 

Keithley Multimeter (shown in Fig. 30). 
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Figure 28: Kratos AXIS Ultra and AXIS Nova (Copyright: Surface Science 

Western, Western University) 

 

Figure 29: Nanoscope V Atomic force microscopy (AFM) 
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Figure 30: Conductivity measurement setup: four-probe station (a) connected to M 

2400 Keithley Multimeter (b) 

3.3.5 Results and discussion 

The successful grafting of PMETAC to the PET film (PMETAC-PET) was confirmed by 

X-ray photoelectron spectroscopy (XPS). The XPS results of Cu-PET, Pd-loaded-PET, 

PMETAC-PET, and raw PET are shown in Fig. 31. The high resolution spectra of N 1s 

and Pd 3d are shown in Fig. 32 and Fig. 33 respectively. The raw PET film mainly 

composes of C and O (Fig. 31). After HHIC treatment, the presence of Cl and N are 

attributed to the formation of a PMETAC coating on PET (Fig. 32 and 33). While after 

ion exchange in (NH4)2PdCl4 aqueous solution, Pd 3d5/2 and 3d3/2 signals at 340.7 eV 

and 335.5 eV respectively (Fig. 33) confirm the successful loading of PdCl4
2- moieties 

because of their high affinity to quaternary ammonium of PMETAC. [22] The loaded Pd 

moieties act as effective catalytical sites for subsequent ELD on PET. [3, 5, 6] The 

appearance of Cu peaks at 932.2 eV, 123.0 eV, and 75.4 eV and the complete 
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disappearance of N, Cl, and Pd indicate the formation of a dense copper layer after ELD, 

showing a high quality copper film was formed on the PET substrate. 

 

Figure 31: XPS results of Cu-PET, Pd-loaded-PET, PMETAC-PET, and raw PET 

 

Figure 32: XPS high resolution spectra of N 1s 
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Figure 33: XPS high resolution spectra of Pd 3d 

The surface morphology of the as-made PMETAC-PET and Cu-PET was observed by 

atomic force microscopy (AFM) and SEM. As shown in Fig. 34 - 37, it is interesting to 

find that the initial PET roughness (Ra) of 5.1 nm became smoother after the dense and 

uniform PMETAC layer was grafted, resulting in a decreased roughness of 2.4 nm. We 

attribute this surface smoothing to the additive manner of HHIC modification technology 

to the surface, which does not erase organic materials like many other physical methods 

since it is well controlled in hydrogen projectiles’ kinetic energy. Such treatment only 

cleaves C-H bond, which consequently results in no increase in the roughness. [18, 19, 

23] While after ELD, the copper layer formed on PET has a roughness of 4.3 nm (Fig. 

36) and is composed of densely packed copper nanoparticles with c.a. 50-100 nm 

diameters (Fig. 37(a)). The dense Cu film, uniformly covered the entire PET surface, 

which is also confirmed by the scanning electron microscopy (Fig. 37(b)). These results 
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indicate that the present HHIC grafting technology yields uniform and defect-free 

PMETAC nano-coatings on the PET surface. The observed crack-free Cu layer should be 

a direct benefit of this uniform nano-coating. Importantly, no delamination of the as-

made Cu-PET composite was observed after repeated Scotch® tape adhesion test (Fig. 

S1), indicating outstanding adhesion of the metal film to the substrate, which is critical 

for applications in electronics. 

 

Figure 34: AFM height information of raw PET 
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Figure 35: AFM images of PMETAC-PET 

 

Figure 36: AFM images of Cu-PET 
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Figure 37: AFM images of Cu-PET (a), and SEM images of Cu-PET(b) in different 

scale 

 

Figure 38: Photos of Scotch tape test before (a) and after (b) three times peeling-off 
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Normally, HHIC cross-links propagate to a depth of several nanometers, but the exact 

depth really depends on the HHIC equipment. [16-20] In order to find out how the 

thickness affect the ELD process, we tested four PMETAC coatings with thickness of 9.9 

nm, 26.8 nm, 42.7 nm and 64.5 nm, which were obtained by spin coating solutions with 

concentration of 2.5 mg/mL, 5.0 mg/mL, 7.5 mg/mL, and 10.0 mg/mL, respectively. 

After 120 s of HHIC exposure and 10 min of ELD, it was found that Cu films were 

formed on all these surfaces except that with the thickest PMETAC coating, 64.5 nm. In 

other word, it means that the PMETAC was not successfully grafted when the initial 

coating is 64.5 nm, but it was successful when the coating is 42.7 nm or less. For the 

coating of 64.5 nm, the grafting did not work even when the HHIC treatment time was 

increased to 600 s. That suggests that the cross-linking depth of PMETAC by HHIC 

cannot go deeper than 64.5 nm for the HHIC equipment in our lab. Thus, the initial 

PMETAC layer before HHIC exposure should not be thicker than 45 nm to ensure that 

the PMETAC is properly grafted to PET, this gives a very important reference to the 

printing process. While too thin a layer is not desirable either. As observed by AFM, 

when the initial PMETAC coating is 9.9 nm, the resultant PMETAC-PET is not as 

uniform (Fig. 39) compared with layers of 26.8 nm (Fig. 35) and 42.7 nm (Fig. 40). As 

Fig. 41 shows, after 10 min of ELD, the Cu film obtained on the thinnest PMETAC-PET 

surface has the biggest variation in thickness, indicating poor uniformity. Moreover, the 

thicker of the PMETAC coating before HHIC exposure, the thicker the resultant metal 

film after the same time of ELD, because the thicker PMETAC grafted on the surface 

offers more uptake of PdCl4
2- moieties, resulting in faster deposition of Cu on surface. 
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Figure 39: AFM image of PMETAC-PET obtained on 9.9 nm thick coating 

 

Figure 40: AFM image of PMETAC-PET obtained by HHIC exposure on 42.7 nm-

thick PMETAC coating. The Z-scale is 100 nm 
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Figure 41: Thickness of Cu films obtained at 10 min of ELD on PMETAC-PET 

surfaces based on PMETAC coating with initiate thickness of 9.9 nm, 26.8 nm, and 

42.7 nm before HHIC exposure 

Typically, for this polyelectrolytes grafted surface, longer ELD plating time results in 

thicker Cu films. As shown in Fig. 42, thickness of the resultant Cu film is proportional 

to the ELD time. 30 min of ELD plating results in c.a. 385 nm thick Cu film on PET with 

the deposition rate of ~13 nm per min, which agrees with that previous reported on 

polydimethylsiloxane (PDMS). This suggests that the polyelectrolyte grafted to PET by 

HHIC are as good as those grafted by the typical SI-ATRP for forming metal films by 

ELD. A four-probe method measurement showed that the sheet resistance of the Cu film 

obtained at 30 min of ELD is ~2 Ω. Its conductivity is ~4.2×107 S/mm, which is very 

close to the value of bulk copper. 

More importantly, this HHIC grafting technology is compatible with patterning 

technologies, which are crucial for electronics applications. As a proof-of-concept 
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demonstration, patterned Cu lines with width of ~800 µm and high spatial resolution 

were prepared on PET by using a shadow mask covering the surface when exposed to 

hyperthermal hydrogen, followed by ion exchange and 20 min of ELD (Fig. 43). To 

demonstrate the flexible electronics application, one of the patterned Cu lines was 

integrated into a simple circuit with a 9V battery to light a light-emitting diode (LED), as 

shown in Fig. 43 (b). The LED maintained illumination intensity even when the copper 

lines were bended. Moreover, the HHIC technology is principally capable of grafting 

polyelectrolytes onto various hydrocarbon substrates to get metallization via ELD. For 

example, patterned Cu lines were also obtained on PDMS film (Fig.44), implying that the 

present technology has potential in stretchable electronics. 

 

Figure 42: Thickness of Cu films as function of ELD time 
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Figure 43: Photos of patterned Cu lines on PET (a) and the integrated circuit 

operated under bending (b) 
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Figure 44: Patterned Cu lines on PDMS film 

 

3.4 Conclusion 
In summary, we have successfully demonstrated a physical, “green” and dry-process 

approach of grafting polyelectrolytes on the hydrocarbon surfaces to form metal coated 

polymer patterns subsequently by ELD, achieving a high quality copper patterns on PET 

and PDMS films. By properly controlling the hyperthermal hydrogen, PMETAC can be 

grafted to polymeric substrates in only a few minutes by selectively cleaving only C-H 

bonds to generate carbon centered radicals. Dense and uniform Cu films on various 

substrates were obtained by ELD catalyzed by Pd moieties loaded on the grafted 

polyelectrolytes. The Cu films had excellent adhesion to substrates and competitive 

conductivity close to bulk copper (70%). These results suggest that the present HHIC 

grafting technology is a promising approach for metalizing polymeric materials 
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containing C-H bonds, which could have potential applications in the emerging flexible 

and stretchable printed electronics industry.  
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Chapter 4  

4 Summary and future work 

4.1 Summary 
Motivation of this thesis work lies in pushing forward the board of the printed electronics 

by solving those critical issues which are preventing the development of the printed 

electronics industry. Printing technology for flexible electronics is a strategic topic 

globally. The majority of the market is growing rapidly enabled by the use of flexible or 

stretchable electronics. Electronic devices and system to be fabricated on flexible 

substrates are the subjects of growing attention within both the research and industrial 

community. Printed electronics is a technical trend to realize low-power, inexpensive in 

electronics industry. In addition, portable printing technology will become a popular 

method of making modular electronics, which is a growing tendency for electronics 

industry.  

In chapter 1, we proposed a new method of fabricating copper based printed electronics 

with high conductivity and high resolution on flexible photopaper substrate, successfully 

achieving objective 1. Instead of directly printing metal nano-particles (silver, copper, 

copper oxide, etc.), we used a palladium salt based ink as our deposition material, 

eliminating many critical issues such as nozzle clog and misdirected jetting which are 

caused by the accumulation of the nanoparticles at the nozzle opening. Thickness of the 

printed metal is also a critical problem in this area, since the single pulse jetting volume 

is limited (to keep a high printing resolution), it’s impossible for conventional inkjet 

printing technique to create metal layer with a satisfied thickness, which caused the low 
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conductivity of the printed pattern. Though they may have a conductivity value which is 

close to the bulk material (usually 30% in this area), the resistance is still huge since the 

metal layer is too thin. In our method, we printed the pattern with “seed” ink which 

served as the catalyst in the following ELD process. During the ELD process, copper ions 

in the solution were reduced on the surface of the pattern, forming a dense, thick, and 

uniform copper layer on the substrate with high conductivity and high resolution. 

However, photopaper is easy to be damaged, though it is environmentally friendly. For 

some applications, photopaper is absolutely qualified, such as RFID tag, smart label and 

circuits’ board which are not intended to work in the extreme condition. But for some 

other applications, such as flexible display, devices that work under water and solar panel 

which needs to work under the sunlight for a long time, a paper based electronics will 

never be the first choice. So we set our next goal --- making the high conductivity, high 

resolution copper based printed electronics on polymer based substrate, which is 

demonstrated in chapter 3. 

Different from paper which can easily “absorb” chemical solutions, the polymer based 

substrate is chemical inert. Conventional wet chemical surface treatment method takes 

long time and large amount of money to get such substrate well treated for strong 

adhesion printing. So in chapter 3 we focused on a new surface treatment method to graft 

polyelectrolyte onto the targeted substrate and a physical, “green” and dry-process 

approach of grafting polyelectrolytes on the hydrocarbon surfaces to form metal coated 

polymer patterns subsequently by ELD, achieving a high quality copper patterns on PET 

and PDMS films is developed. By properly controlling the hyperthermal hydrogen, 

PMETAC can be grafted to polymeric substrates in only a few minutes by selectively 
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cleaving only C-H bonds to generate carbon centered radicals. Copper patterns fabricated 

using this method a satisfied thickness (~380 nm) and a high conductivity (~70% bulk). 

Objective 2 was achieved and we pushed the board of the printed electronics forward 

again. 

4.2 Thesis contributions 
This thesis proposed a new method of fabricating copper based flexible printed 

electronics, overcoming many critical issues faced by nowadays printed electronics 

industry. The success of the project with high potential to be scaled to economically and 

industrially relevant production level, which will help the development of electronics 

manufacturing technologies and industry in Canada and all around the world. In order to 

accelerate the transfer of research results into industrial applications, the development of 

robust, high-resolution, high-performance and low-cost printing technologies will play a 

pivotal role. 

4.3 Future work 
Based on our established expertise and previous studies, our future work will focus on the 

following aspects: 

1. Fabrication of multi-layer metallic circuits on polyelectrolyte modified paper by 

printing noble-metal-containing salt solution (catalyst) followed by electroless 

deposition (ELD) of Cu or Ni; 

2. Fabrication of multi-layer metallic circuits on polymer films by printing 

polyelectrolyte on hydrocarbon polymeric films followed by grafting via 
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hyperthermal hydrogen induced cross-linking (HHIC) and electroless deposition 

of Cu or Ni; 

3. Fabrication of stretchable circuits by material printing conductive materials on 

fluorinated surface followed by a replication method; 

4. Study of the structure-property-function relationships of the printed flexible 

conductors on various substrate materials; 

5. Development of various applications of flexible and stretchable 

electronics/devices, including strain, pressure and touch sensors, paper based 

RFID, loudspeakers and power generators, built-in circuits, organic LED array, 

and all-organic thin film transistors.  

The long-term goal is to develop nanoscale printer head nozzles for high-resolution 

material printing, fabricate nanoscale printed electronics and integrate the new material 

printing processes to be developed in this project into industrial scale roll-to-roll 

processes for mass production. 
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