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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Results of text line detection. Triplet of lines in one colour shows one line. Circles
mark centres of text blobs. Some blobs were misclassified in b),d),e) and f).



Chapter 8

Conclusion and future work

8.1 Summary

In this work we introduced a challenging new problem of the multilingual multi-line text de-

tection. We formulated the problem as a hierarchical MDL energy optimization and demon-

strated that a fusion based method efficiently obtains good quality solutions for this energy.

We obtained very promising results on our large database of images from the subway of the

metropolitan area of Seoul that we plan to make public for other researchers in computer vision.

Our energy for text line detection aims to describe the diversity of text candidates by the

smallest number of text lines and languages. A text line describes text candidates in one lan-

guage only. The last mentioned property makes the text recognition task simpler. Instead of

using one complex recognizer that has to deal with all various characters in all languages at

once, a set of unilingual recognizers could be used.

Moreover, we proposed a color-based energy minimization approach for signboard fitting

and blob detection. Unlike an edge-based blob detector, our method works well when the cam-

era failed to focus properly. Additionally, our method is more robust than existing algorithms

in images with artifacts, i.e. shadows, glare, and reflections.
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8.2 Future work

Our experiments showed that the bottle neck of our algorithm is the AdaBoost classifier per-

formance, which could be enhanced. We plan to enlarge our training database with artificial

samples and additional signboard images of the subway from the web. Extending our current

hierarchy blobs→lines→languages into blobs→ characters→lines→languages could further

improve the results.

We plan to replace currently used edge-based blob detector with our novel algorithm. The

resulting text line detector can be applied to a wide range of problems in navigation, text

translation, etc. It can be extended to other sets of languages, including Japanese, Russian,

German, French, Hebrew and Thai.
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Appendix A

Computer vision techniques

A.1 Least squares

The method of least squares is a standard approach to the finding the best-fitting line to a given

set of points by minimizing the sum of the squares of the offsets of the points from the line. In

other words, the goal of the least squares algorithm is for a given set of points x = {(x, y)} to

find a line parameters θ = (A, B,C) Eq. (A.1), so that sum of the squared Euclidean distances

from the points x to the line is minimal Eq. (A.2).

Ax + By + C = 0 (A.1)

E(θ) =
∑
i∈x

(
|Axi + Byi + C|
√

A2 + B2

)2

(A.2)

Principal component analysis (PCA) can be used for linear least squares [37]. PCA takes in

the vector x and outputs eigenvalues λ and eigenvectors v. In two dimensional case there are

two eigenvalues and two eigenvectors. The eigenvector associated with the biggest eigenvalue

is the first principal component (Fig. A.1). Knowing the first principal component (eigenvector

(vx, vy) and data’s mean µx and µy model parameters minimizing energy Eq. (A.2) are:
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Figure A.1: Linear least squares problem. The red dots are the data points, the red line is the
optimal line model. The blue line segments show euclidean distances from the data points to
the line. The green vector is the first principal component.

A = vx (A.3)

B = vy

C = −(A · µx + B · µy)

A.2 Integral image

A integral image is an algorithm for an effective sum of values in a rectangular subset of a

image [5, 36]. The value at any point (x, y) in the integral image is the summation of all the
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Figure A.2: Finding the sum of a rectangular area using integral image.

pixels above and to the left of (x, y), inclusive:

I(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) (A.4)

An integral image can be computed efficiently in a single pass over the image:

I(x, y) = i(x, y) + I(x − 1, y) + I(x, y − 1) − I(x − 1, y − 1), (A.5)

Once the integral image is computed, the task of evaluating any rectangle can be accom-

plished in constant time with four array references. The sum of intensities i(x,y) over the

rectangle spanned by A, B,C and D is:

∑
x0≤x≤x1
y0≤y≤y1

i(x, y) = I(C) + I(A) − I(B) − I(D), (A.6)

where A = (x0, y1), B = (x1, y1), C = (x1, y0) and D = (x0, y0) (Fig. A.2). After the integral

image is obtained the computation of µ ( mean intensity inside a window around a pixel (x, y))
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can be done in constant time:

µ =
I(C) + I(A) − I(B) − I(D)

(x1 − x0)(y1 − y0)
. (A.7)

A.3 Gabor filter

Gabor filter is a linear filter used for edge detection, data compression, face recognition, texture

analysis, handwriting recognition and other image processing problems [3, 35]. For a given

pixel (x1, y1) with intensity I(x1, y1) in an image, its Gabor feature is the result of convolution:

J(x1, y1) =

"
I(x1 − x, y1 − y) g(x, y; λ, θ, ψ, σ, γ) dxdy, (A.8)

where Gabor kenerl g(x, y; λ, θ, ψ, σ, γ) is :

g(x, y; λ, θ, ψ, σ, γ) = exp
(
−

x′2 + γ2y′2

2σ2

)
sin

(
2π

x′

λ
+ ψ

)
, (A.9)

x′ = x cos θ + y sin θ, (A.10)

y′ = −x sin θ + y cos θ, (A.11)

and σ is the deviation of the Gaussian envelope, ψ is the phase offset, γ is the spatial aspect

ratio, λ and θ are the wavelength and the orientation of the Gabor function respectively. Gabor

kernels in four orientations (0 , 45 , 90 , and 135 ) are shown in Fig. A.3.
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(a) (b)

(c) (d)

Figure A.3: Gabor filter kernels in four orientations: a) θ = 0◦, b) θ = 90◦, c) θ = 45◦ and d)
θ = 135◦
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