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Abstract

This thesis proposes an optimization-based algorithm for detecting lines of text in im-

ages taken by hand-held cameras. The majority of existing methods for this problem assume

alphabet-based texts (e.g. in Latin or Greek) and they use heuristics specific to such texts:

proximity between letters within one line, larger distance between separate lines, etc. We are

interested in a more challenging problem where images combine alphabet and logographic

characters from multiple languages where typographic rules vary a lot (e.g. English, Korean,

and Chinese). Significantly higher complexity of fitting multiple lines of text in different lan-

guages calls for an energy-based formulation combining a data fidelity term and a regulariza-

tion prior. Our data cost combines geometric errors and likelihoods given by a classifier trained

to low-level features in each language. Our regularization term encourages sparsity based on

label costs. Our energy can be efficiently minimized by fusion moves. The algorithm was eval-

uated on a database of images from the subway of metropolitan area of Seoul and was shown

to be robust.

Keywords: Object Detection, Applications of Computer Vision, Discrete optimization
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Chapter 1

Introduction

Over the centuries, people in different parts of the world developed various writing systems.

The most common writing systems are Latin, Cyrillic, Arabic, Logographic Chineese char-

acters, such as Hanzi, Haja and Kanji (in use in China, Korea, and Japan respectively), and

alphabet based Hangul (Korea), Kitakana and Hiragana (both Japan). Most people compre-

hend text in one or at most two writing systems. Thus, it is extremely helpful to dedicate

reading functions to a computing device. Significant progress in text detection and recognition

was made in the scope of printed documents. Recently, researchers focus on more challenging

tasks, such as text detection in video, web, and camera captured images [8, 20, 22, 39], which

is also the main focus of this work.

For a single line of text (e.g. in on-line handwriting recognition) or when multiple lines are

easy to detect (e.g. in printed documents) the problem of text recognition can be solved with

well established techniques such as the Hidden Markov Model (HMM) and Recurrent Neural

Networks (RNN) [10]. The input for these algorithms is an image segment corresponding to

one line of text. In particular, this segment does not need to be split into isolated characters.

In the context of camera captured images, e.g. Fig.1.1, detection of text lines is an ad-

ditional challenging problem that must be solved before image segments containing separate

lines can be sent to the recognizer. Accurate partitioning of multiple text lines is critical for

1



2 Chapter 1. Introduction

Figure 1.1: Signboard in three languages. Korean and English text lines are marked with boxes.
Two Korean character form one word. There is a significant gap between them, which makes
the text detection problem challenging.

the success of the recognizer. This paper focuses specifically on the task of individual text line

recognition, which is particularly challenging in presence of multiple languages, see Fig.1.2(c).

Most of the prior work on text line detection deals with scripts in Latin characters printed

according to one standard set of typographical rules. In Asia, however, signboards on streets, in

subways stations, railway platforms and bus terminals can have text in two or more languages

at once. We aim to detect multiple lines of text from an image, e.g. Fig.1.1, that has characters

in several languages arranged according to different typographical regulations.

For example, English typography includes letters in upper and lower cases, some characters

also have descenders and ascenders. English letters can cross the median and the baseline. One

common convention is that English letters sit close to each other within each line of text, which

makes text line detection relatively easy.

In contrast, Korean typographical rules make it harder to detect lines of text for two rea-

sons. The first one is illustrated in Fig.1.1 where two green boxes mark Korean characters

(or syllabuses) belonging to the same word. The gap between these characters is significantly
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greater than the distance between the first Korean character and the English line below it. Such

large inter-character gaps are very common in Korean typography.

The second difficulty is that multiple Korean letters can sit on top of each other within a

single text line. For example, each green box in Fig.1.1 corresponds to a syllabus containing 3

letters. As shown in Fig.1.2(b), it is easy to incorrectly group individual Korean letters in the

same syllabus into multiple lines. Fig.1.2(c) shows the correct segmentation.

Similarly to Korean, Chinese characters often disperse into pieces. Thus, it could be hard

to determine if one piece (a detected blob) corresponds to a character or a part of a character.

Another similarity between Chinese and Korean characters distinguishing them from English

letters is their fairly consistent aspect ratio, typically around one.

Multilingual text detection in camera-captured images represents a particular case of scene

understanding over a small set of object classes (languages). The general scene understanding

problem (e.g. on PASCAL data) is commonly solved by partitioning an image into segments

of different classes, e.g.[14]. However, most methods do not separate distinct object instances

within one class1. The technical challenge of our multilingual text detection problem is that

we have to segment an image into individual instances of objects (text lines) from multiple

categories (languages). We formulate this as a multi-model fitting problem based on label cost

regularization [6]. The original image is represented by a set of detected blobs, which are

assigned different models/labels. Each model (text line) is described by geometric parameters2

and an additional category parameter - language. This category defines how the data fitting

errors are computed accounting for typographical differences between the languages.

There is a lot of prior work on geometric model fitting in vision. RANSAC is the most com-

mon method for data supporting a single model. It is known for its robustness to outliers. Multi-

model problems are often addressed by procedurally-defined clustering heuristics greedily

maximizing inliers, e.g. Mutli-RANSAC [41], Hough space mode selection, or j-linkeage [33].

These methods often fail on difficult examples with weak data in the presence of much noise or

1Some methods use object detectors to count object instances [15]
2Due to perspective distortion we represent base- and mean lines.
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Figure 1.2: Korean characters introduce ambiguity to text line detection. a) Boxes show iso-
lated blobs detected in the image. b) Blobs are split into text lines incorrectly: two Korean
words in the center are cut. c) Correct text lines: one line on the left and two lines on the right.

outliers [12]. The practical challenges of multilingual multi-line text detection motivates more

powerful approaches based on optimization of a clearly defined objective function, in particu-

lar, MDL criteria [6, 34]. Many previous MDL methods fit geometric models of the same class,

e.g. lines. Some techniques fit a hierarchy of geometric models like points→lines→cubes [28]

or points→lines→vanishing points [7]. We approach the multilingual text line detection prob-

lem by fitting geometric models (lines) from independent appearance-based categories (lan-

guage) that can be interpreted as a hierarchy blobs→lines→languages.

Our contributions are summarized below:

• We propose a new challenging application for computer vision: multilingual text line de-

tection over languages with different typography rules. Our database of camera-captured

multilingual text images with ground truth will be made publicly available.
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• We propose a hierarchical MDL energy for multilingual text detection (6.5). Our sparsity-

based (label cost) regularization is applicable to a wider range of typographies compared

to smoothness-based approaches [24, 32] assuming proximity between letters. Our en-

ergy can be efficiently optimized by fusion moves [7].

• In contrast to many standard techniques for scene understanding, our method simulta-

neously segments an image into multiple classes (languages) and into individual object

instances (text lines) within each class.

• We propose a color based energy minimization approach for blob detection in sign-

boards. Our method is robust in cases when camera failed to focus properly. Moreover,

it works well in image contains artifacts such as reflections, glare, and shadows.

The rest of the thesis is organized as follows. Chapter 2 discusses related prior work on text

detection and model fitting including energy minimization model fitting framework. Chapter

3 briefly describes our overall algorithm for text line detection. Chapter 4 contains overview

of blob detection methods and our novel color-based energy minimization approach. Chapter

5 describes the classifier and features used in our current work. Chapter 6 presents our new

hierarchical MDL formulation of the multilingual generalization of this problem. We also

overview standard fusion moves [7] applicable to efficient optimization of such energies. Our

camera-captured text image database and experimental evaluation of our algorithm is presented

in Chapter 7.



Chapter 2

Related work

2.1 Text detection

Interest in text detection has increased since 2003 when the ICDAR database and competition

was formed. After that, ICDAR 2011, Street View Text(SVT) and private publicly unavailable

databases were collected. All mentioned databases include text in Latin script. A number of

text detection algorithms were proposed and evaluated on these image collections.

In general, a text detection algorithm combines the following parts: text candidate detec-

tion, text candidate filtering and line fitting. For a given input image the algorithm produces a

set of rectangles either horizon-oriented or rotated.

There are three major groups of text candidate detection methods: sliding window [4, 8,

13, 20, 24, 25, 40], edge based [26, 27, 32], and color based[21, 22] algorithms.

Sliding window algorithms, originally proposed for face detection, denote an exhaustive

search. Features are computed for each position and scale of the sliding window.

Edge based methods retrieve an edge map (Sobel, Canny, Laplace) and then perform con-

nected component (CC) analysis and outputs blobs. Moreover, Stroke width transform (SWT)

[8, 39]also aims to find blobs that have consistent width of stroke. Color based methods, such

as MSER and ER (inspired by MSER) assume that a text character’s color is homogeneous.

6



2.2. Model fitting 7

MSER was used by the ”ICDAR 2011 robust reading competition” winner.

After text candidates are detected non-text blobs must be filtered out. The decision whether

a blob represents text is done by classification. Popular classifiers are: support vector machine

(SVM) [19, 21, 26] , AdaBoost [16, 30] or their cascades. Popular features for classification

are: color based (histogram of intensities, moment of intensity) edge based (histogram of ori-

ented gradients (HOG), Gabor filter) geometrical features (width, height, aspect ration, number

of holes, convex hull, area of background/foreground).

Single text blobs must then be aggregated into text strings. Older approaches are based on

the Hough transform algorithm [3, 31]. More recent algorithms combine neighbours of blobs

into pairs and then fulfill clustering in N-dimensional space, where the following dimensions

are in use: stroke width, orientation of a pair, and geometrical size of blobs.

Text candidate filtering and line fitting could be done simultaneously with a complex ap-

proach based on a Markov random field (MRF) [20, 25] or a Conditional Random Field (CRF)

[23]. The neighbour map could be constructed by a minimal spanning tree algorithm. The

unary term reflects the likelihood of a blob to be text. The pairwise term describes how well

two blobs constitute a line (or a part of a line).

In [2, 3] the authors assume that text is located on a signboard. They try to locate physical

edges and corners of that signboard and perform signboard rectification.

2.2 Model fitting

Model fitting is the procedure of quantifying models, determining inliers for each model, and

estimating model parameters. In this thesis we use an energy-based formulation for multi-

model fitting that was previously applied to many types of geometric models: lines, line seg-

ments, circles, planar homographies, fundamental matrices, etc. We use the following notation.

Assume that I is the set of all data points i and L is a set of indexes enumerating all possible
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models. Let vector l denote indexes of models assigned to all data points i:

l = {li ∈ L|i ∈ I}. (2.1)

Vector θ defines parameters for all models.

θ = {θ j ∈ Θ| j ∈ L}, (2.2)

where Θ is the space of parameters for each model. For instance, in case of 2D line fitting the

parameter search space is θ j ∈ [0, π) × R≥0.

The objective function for multi-model fitting problems could be formulated as in [6, 12]

E(l, θ) =
∑
i∈I

Di(li|θ) +
∑
j∈L

C j · [∃li = j], (2.3)

where Di( j|θ) is the data fidelity/error term describing how well each data point i fits model j

Di( j|θ) = ||i − θ j|| (2.4)

for some error measure || · || and constant C j is a fixed penalty for each model in the solution.

Penalty C is incurred if there is at least one data point i assigned to model j. The second term

in (2.3), a.k.a. label cost, encourages sparsity. That is, it prefers solutions with fewer models.

Consider a simple model fitting example in Fig.2.1 where the models are lines (red and

green) and the data points are dots. The color of each dot i describes model assignment li.

Each 2D line model θ could be described by three homogeneous parameters

θ = (A, B,C). (2.5)
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Figure 2.1: Line fitting. The dots are data points. The red and the green lines are models. The
blue line shows data term (euclidean distance) from the point and the red line.)

The equation for line θ through point (x, y) is

Ax + By + C = 0. (2.6)

In this case data term (2.4) could be defined by Euclidean (or orthogonal) error measure || · ||

||i − θ j|| =
|A jxi + B jyi + C j|√

A2
j + B2

j

(2.7)

illustrated in multi-line fitting solution in Fig.2.1.

Different multi-model fitting cost functions like Eq. (2.3) were previously addressed with

a number of methods such as EM [34], quadratic pseudo-boolean optimization (QPBO) [7],

linear programming(LP) relaxation [17], greedy uncapacitated field location (UFL) [6] and

graph cut [6, 12].

Iscack et al. [12] used block-coordinate descent (BCD) for optimization of multi-model
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fitting energy (2.3)1

arg min
l,θ

E(l, θ) (2.8)

This is NP-hard mixed optimization problem combining integer- and real-valued parameters,

correspondingly l and θ. Nevertheless, in practice, block-coordinate descent for energy (2.3)

often converges to good solutions that are close to the global minimum.

The following Algorithm 1 is used in [12]. First, the algorithm generates a finite set of

models by randomly sampling data points. Next, BCD for energy (2.8) iterates two steps:

model assignment l optimization and model parameters θ tuning. The resulting set of models

is a local minimum of objective function (2.3) with respect to block-coordinate descent (BCD)

moves.

Algorithm 1: PEARL // energy-based model fitting algorithm
Input: data points // pixels, edges, blobs, etc.
Output: labeling // data points-to-model map

models // planes, lines, text lines
1 pool← RandomS ampleModels(data points);
2 for i← 0 to max iterations do
3 labeling← AssignModels(pool, data points);
4 pool← Re f itModels(pool, data points, labeling);

5 models← pool
6 return [models, labeling];

We use this general approach to multi-model fitting for two novel applications: signboard

fitting and text line detection.

1If the number of models is fixed to K instead of imposing a soft sparsity constraint, i.e. the label cost term in
(2.3), then BCD for the data term in (2.8) is equivalent to K-means clustering.



Chapter 3

Overview of our approach

The algorithm work flow is shown in Fig. 3.1. First, in the input image blobs are detected.

Next, AdaBoost classifiers provides the likelihood that each blob belongs to one of the five cat-

egories (English, Korean, Chinese, Digit, Non-text). Finally, text line aggregation is performed.

During the last step all blobs participate in text line aggregation. Classification likelihood is

used as an additional parameter, which describes how close a certain text candidate is to be

assigned to a particular text line.

We use energy-based model fitting Algorithm 1 for two particular problems: blob detection

(Section 6.1.1) and text line aggregation (Chapter 6). The current blob detector is described in

Section 4.1.1. We plan to integrate the novel blob detection method in future work.

Figure 3.1: Text line detection algorithm.

11



Chapter 4

Blob detection

4.1 Overview and related work

4.1.1 Edge-based approach

Signboards are designed to have high contract between text and background. Edge-based

method creates edge map, thresholds the result with some fixed level, and then run connected-

component analysis.

Edge maps can be obtained by applying the Laplace or Sobel filters, estimating Difference

of Gaussians (DoG) or Laplacian of Gaussian (LoG). In order to detect blobs that stand close

to each other and the Canny or a ridge detector can be applied.

Currently, we use an edge based blob detector to produce text candidates. At first, an input

image is converted to gray-scale and downscaled for performance reasons. Next, horizontal and

vertical Sobel filters are applied. Two resulting images are combined. The result represents an

edge map (Fig. 4.1). Finally, connected component analysis run resulting character candidates

(blobs) (Fig. 4.2).

Unlike a color based blob algorithm, an edge based method does not have foreground-

background ambiguity, where the algorithm must be run twice for dark text on a bright back-

ground or vice versa.

12
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Sobel edge maps. White pixels represent strong edge. Black pixel show weak edge.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Blob detection from sobel maps. The result is shown as color contours. A contour
in one color represents one blob.
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4.1.2 Color-based approach

The color-based approach assume that the text is significantly brighter than its the background

or vice versa. The color-based approach takes in an image, runs thresholding (binarization),

and then performs connected component analysis.

Adaptive thresholding methods are commonly used for text binarization in printed docu-

ments [11]. The algorithms work as following. For each pixel, the mean intensity µ and the

standard deviation of intensities σ, are estimated inside a window of a fixed size around that

pixel. Next, the decision whether the pixel belongs to the background or text is made by bina-

rization is performed while threshold level is calculated according to Eq. 4.1 (Niblack method)

or Eq. A.5 (Sauvola method). Fig. 4.3 shows an example of adaptive thresholding.

T = µ + kσ (4.1)

T = µ
(
1 − k

(
1 −

σ

R

))
, (4.2)

where µ is mean, σ is standard deviation of the intensities scale level inside a window around a

pixel, R is a coefficient (usually equals to 128), and k is a predefined coefficient and is selected

according to text color. If the text color is darker than background than k has a negative value,

otherwise it is positive.

Adaptive thresholding can be effectively implemented by integral images (see more details

in Appendix A.2). In such case algorithms’ complexity does not depend on the window size

and is constant. Unlike an edge-based approach, adaptive binarization calculates the threshold

for each pixel.

The method has to be run twice, assuming the text is brighter than the background and vice

versa. It is not clear, a-priori, what coefficient k, and, what window size would give the best

results.
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(a) (b)

Figure 4.3: Example of adaptive thresholding. a) Niblack thresholding b) Sauvola thresholding.

4.2 Our approach. Signboard fitting

We propose a color-based energy minimization method for blob detection. The goal is to fit a

signboard model onto image. Knowing models and labeling thresholding becomes simple.

We use the following notation. Assume that I is the set of all pixels i in the image and L

is a set of indexes enumerating all possible signboard models. Let vector l denote indexes of

signboard models assigned to all the pixels Eq (2.1). Vector θ defines parameters for all models

Eq (2.2).

4.2.1 Objective function

The objective function for signboard multi-model fitting problems could be formulated as

E(l, θ) = −
∑
i∈I

ln(Pr(i|li, θ)) +
∑
j∈L

C j · [∃li = j], (4.3)

where Pr(i|li, θ), is the probability of observed pixel i belonging to a signboard model li, C

penalizes the number of signboards in the solution.

A signboard model li consist of three planes λ = (λL, λa, λb) - one for each channel in the
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Lab color space and three standard deviations σ = (σL, σa, σb).

A plane is defined by four parameters λ = (A, B,C,D):

Ax + By + Cz + D = 0, (4.4)

where x, y is pixel’s location and z is value of a certain channel.

The data term of energy Eq. (4.3) is:

−ln(Pr(p| j, θ)) =

||p − λL
j ||

2

2(σL
j )2

+ ln(σL
j )+

||p − λa||2

2(σa
j)2 + ln(σa

j)+

||p − λb||2

2(σb
j)2

+ ln(σb
j), (4.5)

where ||p − λ|| is the Euclidean distance from a pixel p = (x, y, z) to a plane λ = (A, B,C,D):

||p − λ|| =
|Ax + By + Cz + D|
√

A2 + B2 + C2
. (4.6)

A signboard model can describe a surface with a slant. For instance, a signboard can have

one side significantly brighter than the other (Fig. 4.4 a), upper signboard).

4.2.2 Optimization details

Signboard fitting Algorithm’s 1 input is an image pixels (data point) in Lab color space. The

Algorithm 1 outputs the set of signboard (models) and labeling. Labeling is a map that links

image pixels and signboard models.

Signboard models are proposed as following. First, super pixels are found in the original

image by an algorithm [9]. Next, each super pixel produces a model. All three planes in L,a

and b channels are fit by linear least squares (LS) giving three sets of A, B,C,D coefficients and
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σ’s (See more details on LS algorithm in Appendix A.1). The model assignment is performed

by Greedy-UFL algorithm [6].

On the model refit step the labeling is fixed. One signboard is fit to the cloud of pixels

assigned to that model in the same manner as during the model proposal step. After this step

all model’s coefficients, including σ, are updated.

The results of signboard fitting are shown in Fig. 4.4 and Fig. 4.5 - Korean subway sign-

board, Fig. 4.6 - signboard with reflection artifacts, Fig. 4.7 - Japanese railway station sign-

board, and Fig. 4.8 shopping mall signboards. In the experiments all tunable parameters are

fixed.

Like adaptive thresholding’s µ, a plane equation represents set of individual µ’s for a group

of pixels. Fig. 4.9 shows comparison of edge-based blob detection and our approach. The

camera failed to focus correctly on the signboard, and so image is blurry. The edges of text are

weak and were not detected (Fig. 4.9 b). Energy-based signboard fitting enables correct blob

detection in this challenging example (Fig. 4.9 c).

4.2.3 Blob proposals

After text candidates are found, there are Korean and some Chinese characters that are over-

segmented. It is necessary to propose more text candidates to cover such characters. An exam-

ple is shown in Fig. 4.10. Two or three blobs produce a new blob if they stand close to each

other, cover resulting area well and the resulting aspect ratio is close to one.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Signboard fitting. Example 1. a) input image, b) image in Lab color space, c) super
pixels, d) first iteration of signboard fitting, e) intermediate iteration and f) final result.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Signboard fitting. Example 1. con’t. a), c), e) separate signboards, and b, d), f)
corresponding blob detection results.



4.2. Our approach. Signboard fitting 21

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Signboard fitting. Example 2. a) input image, b) image in Lab color space, c) super
pixels, d) first iteration of signboard fitting, e) intermediate iteration and f) final result.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Signboard fitting. Example 3. a) input image, b) image in Lab color space, c) super
pixels, d) first iteration of signboard fitting, e) intermediate iteration and f) final result.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Signboard fitting. Example 4. a) input image, b) image in Lab color space, c) super
pixels, d) first iteration of signboard fitting, e) intermediate iteration and f) final result.
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(a)

(b) (c)

Figure 4.9: Edge-based vs. Color-based blob detection. a) Input image. b) Result of edge-
based blob detection. Text blobs are missed due to weak edges. c) Result of color-based
detection. All text blobs are found.
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(a) (b)

Figure 4.10: Blob proposals. a) Blobs detected in the image. b) Artificial blobs added.
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Classification

5.1 Classifier

AdaBoost have become a popular choice for text vs. not-text recognition. AdaBoost is a

machine learning algorithm that builds a strong classifier out of weak ones. In our problem

we use a multi-class AdaBoost, which is trained on the following categories: English, Korean,

Chinese, Digit, Non-Text. Decision trees are commonly used as a weak classifier. It is possible

to scale the classifier according to the complexity of the problem by adjusting the depth and

the quantity of the trees.

A blob that is marked as “text“ must cover part of a text line of a certain language. If it

covers two or more lines (case of under-segmentation) or a part of a character (case of over-

segmentation), then it is treated as non-text.

5.2 Features

The following groups of features are used for AdaBoost classifier training: color, gradient and

geometry based features.

A bounding box that contains text has normally two Gaussians in a histogram of intensities;

one for foreground and one for background. Non-text blobs do not have such consistency. For

26
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(a) (b) (c) (d)

(e) (f)

Figure 5.1: Color histograms and histograms of oriented gradients. Detected blob, HOG fea-
ture visualization and intensity histogram for Chinese character a) b) and e) and non-text blob
c) d) and f) respectively.

instance, in Fig. 5.2 histogram of intensities of a Chinese character a) has two peaks, histogram

of a non-text blob c) - one peak f). Histogram of intensities descriptor is computed as in [16].

Text of a different language could be diversified according to stroke density and number of

strokes in a particular direction. We use the histogram of oriented gradients (HOG)[18] and

Gabor fiter to describe such properties. For more details about Gabor filter see Appendix A.3.

Geometrical features of a blob are width, height and width-to-height ratio.

An example of text classification is shown in Fig. 5.3. Boxes in red, green, yellow and cyan

denote English, Korean, Chinese characters and digits respectively. Non-text blobs are hidden

for readability.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.2: Gabor features. a), e) i) Characters in Korean, Chinese and English. b)-d), f)-h),
j)-l) Gabor filtering in various orientations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Text candidate classification results. Non-text blobs are hidden. Red, green, yellow
and cyan rectangle denote English, Korean, Chinese characters and digits respectively.
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Text line fitting

6.1 Objective function and optimization details

Assume that I is the set of all blobs i in the image, L is a set of indexes enumerating all

possible text line models, andV is a set of indexes enumerating all possible languages. Vector

l defines indexes of models assigned to all data points Eq (2.1). Vector θ defines parameters

for all models Eq (2.2). Text line model parameters θ are language marks and parameters of

two non-parallel lines.

6.1.1 Objective function

The hierarchical objective function for text line detection could be formulated as

E(l, θ) =
∑
i∈I

Di(li|θ) +
∑
j∈L

C j · [∃li = j] +
∑
v∈V

Cv · [∃vli = v], (6.1)

where Di( j|θ) is the data error term describing how well each blob i fits text line j

Di( j|θ) = −lnPr(i|language j) + distlang( j)(i, lines j). (6.2)

30
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It consist of two values: the AdaBoost classification score and geometrical error. The geomet-

rical error is scaled according to the language of the model. The outlier cost Di(∅) = const,

Constants C j and is Cv a fixed penalties for each text line and each language in the solution

respectively. Penalty C j is incurred if there is at least one blob i assigned to text line j. In the

same manner, penalty Cv is incurred if there is at least one blob i assigned to language v. The

energy Eq. (6.1) describes the following hierarchical levels: blobs→lines→languages.

A text line fitting Algorithm’s 1 input is a set of text candidates (blobs). The algorithm

outputs the set of text line models and labeling. Labeling is a map that links the text candidates

and the text lines.

A text line model is a pair of lines and a fixed language mark. Lines from one model are

not necessarily parallel. The model can describe perspectively distorted or arbitrary rotated

text lines of a certain language.

The Algorithm’s 1 subroutines in application to the text line detection problem are define

below. We propose the initial set of models as following. First, a neighborhood map is build

by Delaunay triangulation. Next, blobs that have a common edge produce a model. Unlike

k-nearest neighbor, such an approach enables a pair of blobs to produce a text line model,

regardless of the distance between the blobs. One blob has a chance to produce text line

models going in any directions in the rage of [0, 2π). An example of model proposal for a page

of printed text is shown in Fig. 6.1.

The model assignment links each blob to a model from the pool. On the model refit step

the labeling is fixed. One model is fit to the blobs that have same label. In other words, only the

data term of the energy Eq. (6.1) is minimized. The top and the bottom lines of a single model

are refit by linear least squares (LS) (See more details on LS algorithm in Appendix A.1).

The model assignment Algorithm 2 is described as following. The models are fixed. A

blob must be assigned to one of the models. First, initial labeling is made. All blobs are

either assigned to the outlier label or the first model from the pool. The decision is made by

thresholding. Next, the current solution l0 is fused with labeling l1 that again has one model
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(a) (b) (c)

Figure 6.1: Text line proposal. a) input image b) Delaunay neighborhood map. c). Initial pool
of text line models.

and the outlier. The fusion is a binary optimization technique that merges two solutions l1 and

l0, while preserving the best qualities of each. The crossover operation is described by binary

vector x

x = {xi|i ∈ I}, (6.3)

where xi is a binary variable. A blob i can be assigned to the model from either labeling l0 or

labeling l1, i.e. x ∈ {0, 1}

li(xi) = (1 − xi)l0
i + xil1

i . (6.4)

When two labellings l0 and l1, and a pool of models with parameters θ are given Eq. (6.1)
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Algorithm 2: AssignModels
Input: blobs // text candidates

models // text lines
Output: labeling // blob-to-model map

1 l0 ← MakeLabeling(∅, pool[0], blobs);
2 for i← 1 to n models do
3 l1 ← MakeLabeling(∅, pool[i], blobs);
4 l0 ← FuseLabeling(l0, l1);

5 labeling← l0

6 return labeling;

becomes

E(x|l0, l1, θ) =
∑
i∈I

D0
i + (D1

i − D0
i )xi+∑

j∈L

C j · (1 − XP0
j
XP1

j
)+

∑
v∈V

Cv · (1 − XP0
v
XP1

v
), (6.5)

where XP0
i

is an algebraic expression. It works as a switch. The switch is ”on” (equals to 0) if

there is at least one blob p assigned to the text line i from labeling 0, XP1
i

is ”on” if there is at

least one blob p assigned to the text line i from labeling 1.

XP0
i

=
∏
p∈P0

i

xp = 0 ⇐⇒ ∃p ∈ P0
i (6.6)

XP1
i

=
∏
p∈P1

i

x̄p = 0 ⇐⇒ ∃p ∈ P1
i

XP0
v
XP1

v
is defined in alike manner.

Labeling fusion gives the optimal vector x, which minimizes energy 6.5. The fusion is done

by the graph cut algorithm[1].
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Figure 6.2: Labeling fusion. a) and b) show two labellings that will be fused. c) Graph, that
represents fusion. The cuts of that graph define which points will take a label from labeling 0
or labeling 1. Edges from and to points ##3,4,5,6, and 7 are hidden, the models are shown as
single lines for readability and d) Result of fusion. Point #7 is assigned to the outlier label.

6.2 Labeling fusion

An example of labeling fusion is shown in Fig. 6.2. There are eight blobs (circles). Labeling

Fig. 6.2 a) has three lines, marked with squares. Labeling Fig. 6.2 b) has one line. Labeling l0

Fig. 6.2 a) is:

l0 = {(1, en), (2, en),∅, (1, en), (2, en),∅, (3, kr), (3, kr)}, (6.7)



6.2. Labeling fusion 35

where points #3 and #6 are assigned to the outlier. Labeling l1(Fig. 6.2 b) is:

l1 = {∅,∅, (4, en),∅,∅, (4, en),∅, (4, en)}, (6.8)

where points ##1,2,4,5, and 7 are assigned to the oulier as well. Fig. 6.2 c) shows the graph

that is used for optimization. A point can take model from labeling 0 or 1. The assignment

of the point #1 to the model from labeling 0 will cost data term D1
0. The assignment of the

point #1 to the model from labeling 1 will cost a constant value - outlier cost. If a models is not

connected to any point, then its cost will not be reflected in the energy Eq. (6.5). The minimum

cut of the graph gives the vector x from Eq. (6.5). In our case x = (0, 0, 1, 0, 0, 1, 1, 1). Notice

that this vector turns off the third line model. In the resulting labeling no points are assigned to

this model and so (1 − XP0XP1) = (1 − x7 · x8) = (1 − 1) = 0. Line models 1,2 and 4 remain.

The fusion produces new labeling (Fig.6.2 d):

l = {(1, en), (2, en), (4, en), (1, en), (2, en), (4, en),∅, (4, en)}. (6.9)

In the graph, incoming and outgoing links from and to points ##2,3,4 and 5 are hidden. The

top half of the graph represents labeling 0, and the bottom half - labeling 1.

The following observations can be made about the energy formulation of the problem. One

blob, which stands alone and does not fit any line, is too expensive. It must be assigned to

the outlier label. A blob, which has a text likelihood score that is slightly lower than non-text

score, still has a chance to be assigned to a line. The outlier model is necessary. It exists in

each and every labeling and works as a garbage collector.
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Evaluation

7.1 Database

Our database of signboards from the Seoul subway consist of 500 images taken with a Samsung

Galaxy SII, Galaxy S, Apple iPhone 3GS, Canon EOS 450D. 400 images were used for training

and the remaining 100 for testing of both the AdaBoost classifier and the whole algorithm

evaluation.

7.2 Classifier evaluation

The confusion matrix for text candidate classification by AdaBoost is shown in Table 7.1. The

average recognition rate is 83.35 %.

XXXXXXXXXXXXActual
Predicted

E
ng

lis
h

K
or

ea
n

C
hi

ne
se

D
ig

it

N
on

Te
xt

English 902 10 16 10 45
Korean 52 815 63 6 40
Chinese 27 14 172 0 11
Digit 19 1 0 121 5
NonText 482 305 188 144 5278

Table 7.1: Confusion matrix for classification.

36
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7.3 Blob detector and line fitting evaluation

We want to test all three steps of the algorithm in an isolated fashion. However, it is not

straightforward to check how well blobs that cover text are detected. Instead, we compare final

detected line segments, found in one image, to two ground truths - one contains only blobs

that were detected by the first stage of the algorithm (Artificial base), the second contains all

text blobs placed there by a human (Real base). The difference between accuracy of these two

experiments reflects the quality of the blob detector.

We estimated recall and precision metrics Eq. (7.1) and Eq. (7.2) that are commonly used

for text detection evaluation [30, 38]. When a solution and a ground truth have more than one

text line the following method is applied. Precision and recall are estimated for a line in the

solution and all lines in the ground truth. Maximum precision and recall are selected. Both

metrics represent interactions area of blobs from ground truth and text line are. Precision is

normalized by the area of blobs from the solutions, recall - by the area of blobs from the ground

truth. In other words precision tells what percentage of the text line are from ground truth was

found, recall - what area of the found text line does not exist in the ground truth.

Precision =
{ground truth blobs} ∩ { f ound blobs}

{ f ound blobs}
(7.1)

Recall =
{ground truth blobs} ∩ { f ound blobs}

{ground truth blobs}
. (7.2)

The performance of the text line detection is shown in Table 7.2.

Ground truth Recall (%) Precision (%) F (%)
Real base 71 84 76

Artificial base 76 84 79

Table 7.2: Text line detection accuracy.

Examples of text line detection are shown in Fig. 7.1. A triplet of lines in one colour shows

one line. Circles mark centres of text blobs.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Results of text line detection. Triplet of lines in one colour shows one line. Circles
mark centres of text blobs. Some blobs were misclassified in b),d),e) and f).
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Conclusion and future work

8.1 Summary

In this work we introduced a challenging new problem of the multilingual multi-line text de-

tection. We formulated the problem as a hierarchical MDL energy optimization and demon-

strated that a fusion based method efficiently obtains good quality solutions for this energy.

We obtained very promising results on our large database of images from the subway of the

metropolitan area of Seoul that we plan to make public for other researchers in computer vision.

Our energy for text line detection aims to describe the diversity of text candidates by the

smallest number of text lines and languages. A text line describes text candidates in one lan-

guage only. The last mentioned property makes the text recognition task simpler. Instead of

using one complex recognizer that has to deal with all various characters in all languages at

once, a set of unilingual recognizers could be used.

Moreover, we proposed a color-based energy minimization approach for signboard fitting

and blob detection. Unlike an edge-based blob detector, our method works well when the cam-

era failed to focus properly. Additionally, our method is more robust than existing algorithms

in images with artifacts, i.e. shadows, glare, and reflections.

39
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8.2 Future work

Our experiments showed that the bottle neck of our algorithm is the AdaBoost classifier per-

formance, which could be enhanced. We plan to enlarge our training database with artificial

samples and additional signboard images of the subway from the web. Extending our current

hierarchy blobs→lines→languages into blobs→ characters→lines→languages could further

improve the results.

We plan to replace currently used edge-based blob detector with our novel algorithm. The

resulting text line detector can be applied to a wide range of problems in navigation, text

translation, etc. It can be extended to other sets of languages, including Japanese, Russian,

German, French, Hebrew and Thai.
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Appendix A

Computer vision techniques

A.1 Least squares

The method of least squares is a standard approach to the finding the best-fitting line to a given

set of points by minimizing the sum of the squares of the offsets of the points from the line. In

other words, the goal of the least squares algorithm is for a given set of points x = {(x, y)} to

find a line parameters θ = (A, B,C) Eq. (A.1), so that sum of the squared Euclidean distances

from the points x to the line is minimal Eq. (A.2).

Ax + By + C = 0 (A.1)

E(θ) =
∑
i∈x

(
|Axi + Byi + C|
√

A2 + B2

)2

(A.2)

Principal component analysis (PCA) can be used for linear least squares [37]. PCA takes in

the vector x and outputs eigenvalues λ and eigenvectors v. In two dimensional case there are

two eigenvalues and two eigenvectors. The eigenvector associated with the biggest eigenvalue

is the first principal component (Fig. A.1). Knowing the first principal component (eigenvector

(vx, vy) and data’s mean µx and µy model parameters minimizing energy Eq. (A.2) are:

47
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Figure A.1: Linear least squares problem. The red dots are the data points, the red line is the
optimal line model. The blue line segments show euclidean distances from the data points to
the line. The green vector is the first principal component.

A = vx (A.3)

B = vy

C = −(A · µx + B · µy)

A.2 Integral image

A integral image is an algorithm for an effective sum of values in a rectangular subset of a

image [5, 36]. The value at any point (x, y) in the integral image is the summation of all the
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Figure A.2: Finding the sum of a rectangular area using integral image.

pixels above and to the left of (x, y), inclusive:

I(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) (A.4)

An integral image can be computed efficiently in a single pass over the image:

I(x, y) = i(x, y) + I(x − 1, y) + I(x, y − 1) − I(x − 1, y − 1), (A.5)

Once the integral image is computed, the task of evaluating any rectangle can be accom-

plished in constant time with four array references. The sum of intensities i(x,y) over the

rectangle spanned by A, B,C and D is:

∑
x0≤x≤x1
y0≤y≤y1

i(x, y) = I(C) + I(A) − I(B) − I(D), (A.6)

where A = (x0, y1), B = (x1, y1), C = (x1, y0) and D = (x0, y0) (Fig. A.2). After the integral

image is obtained the computation of µ ( mean intensity inside a window around a pixel (x, y))



50 Chapter A. Computer vision techniques

can be done in constant time:

µ =
I(C) + I(A) − I(B) − I(D)

(x1 − x0)(y1 − y0)
. (A.7)

A.3 Gabor filter

Gabor filter is a linear filter used for edge detection, data compression, face recognition, texture

analysis, handwriting recognition and other image processing problems [3, 35]. For a given

pixel (x1, y1) with intensity I(x1, y1) in an image, its Gabor feature is the result of convolution:

J(x1, y1) =

"
I(x1 − x, y1 − y) g(x, y; λ, θ, ψ, σ, γ) dxdy, (A.8)

where Gabor kenerl g(x, y; λ, θ, ψ, σ, γ) is :

g(x, y; λ, θ, ψ, σ, γ) = exp
(
−

x′2 + γ2y′2

2σ2

)
sin

(
2π

x′

λ
+ ψ

)
, (A.9)

x′ = x cos θ + y sin θ, (A.10)

y′ = −x sin θ + y cos θ, (A.11)

and σ is the deviation of the Gaussian envelope, ψ is the phase offset, γ is the spatial aspect

ratio, λ and θ are the wavelength and the orientation of the Gabor function respectively. Gabor

kernels in four orientations (0 , 45 , 90 , and 135 ) are shown in Fig. A.3.
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(a) (b)

(c) (d)

Figure A.3: Gabor filter kernels in four orientations: a) θ = 0◦, b) θ = 90◦, c) θ = 45◦ and d)
θ = 135◦
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