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Abstract

The field of human-robot interaction has garnered significant interest in the last decade.

Every form of human-robot coexistence must guarantee the safety of the user. Safety in

human-robot interaction is being vigorously studied, in areas such as collision avoidance,

soft actuators, light-weight robots, computer vision techniques, soft tissue modeling, colli-

sion detection, etc. Despite the safety provisions, unwanted collisions can occur in case of

system faults. In such cases, before post-collision strategies are triggered, it is imperative

to effectively detect the collisions. Implementation of tactile sensors, vision systems, sonar

and Lidar sensors, etc., allows for detection of collisions. However, due to the cost of such

methods, more practical approaches are being investigated. A general goal remains to de-

velop methods for fast detection of external contacts using minimal sensory information.

Availability of position data and command torques in manipulators permits development

of observer-based techniques to measure external forces/torques. The presence of distur-

bances and inaccuracies in the model of the robot presents challenges in the efficacy of

observers in the context of collision detection. The purpose of this thesis is to develop

methods that reduce the effects of modeling inaccuracies in external force/torque estima-

tion and increase the efficacy of collision detection. It is comprised of the following four

parts:

• The KUKA Light-Weight Robot IV+ is commonly employed for research purposes.

The regressor matrix, minimal inertial parameters and the friction model of this robot

are identified and presented in detail. To develop the model, relative weight analysis

is employed for identification.

• Modeling inaccuracies and robot state approximation errors are considered simulta-

neously to develop model-based time-varying thresholds for collision detection. A

metric is formulated to compare trajectories realizing the same task in terms of their

collision detection and external force/torque estimation capabilities. A method for

determining optimal trajectories with regards to accurate external force/torque esti-

mation is also developed.

• The effects of velocity on external force/torque estimation errors are studied with

and without the use of joint force/torque sensors. Velocity-based thresholds are de-

veloped and implemented to improve collision detection. The results are compared
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with the collision detection module integrated in the KUKA Light-Weight Robot

IV+.

• An alternative joint-by-joint heuristic method is proposed to identify the effects of

modeling inaccuracies on external force/torque estimation. Time-varying collision

detection thresholds associated with the heuristic method are developed and com-

pared with constant thresholds.

In this work, the KUKA Light-Weight Robot IV+ is used for obtaining the experimental

results. This robot is controlled via the Fast Research Interface and Visual C++ 2008. The

experimental results confirm the efficacy of the proposed methodologies.

Keywords: Safety in Human-Robot Interaction, Robot Modeling, Relative Weight Analy-

sis, External Force/Torque Observers, Collision Detection, Trajectory Planning
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Chapter 1

Introduction

Physical human-robot interaction has become a major research area in the field of robotics,

with the main objective of building robots that can coexist with humans in unstructured en-

vironments [1], [2], [3]. One of many challenges concerning human-robot interaction is to

ensure safety of the user while physically interacting with the robot [4]. Accurate detection

of human-robot collisions, as well as accurate estimation of external forces acting on the

robot help to ensure the safety of the user [5]. For this reason, measurement of interaction

forces and rapid detection of collisions with the robot is imperative.

Robots can sense their environment using vision, tactile, sonar, voice-based, and other such

sensors. The cost of these sensors and their inherent complications may not be ideal. This

research develops methodologies for collision detection and accurate force/torque estima-

tion using minimal sensory information. To this end, this work presents methodologies to

improve estimation of external forces/torques and collision detection in presence of mod-

eling inaccuracies.

1.1 Related Work

A simple physical human-robot interaction diagram is shown in Fig. 1.1. The robot con-

troller is responsible for taking into consideration the sensory information from the in-

teraction to ensure the safety of the user. The amount of information available from the

interaction determines if the robot is able to behave safely. The safety includes the con-

troller design, post-collision strategies and the actuation mechanism. A lot of research is

1



2 Chapter 1. Introduction

Figure 1.1: Schematics of human-robot interaction

done on safe robotic actuators. Fast and reliable collision detection is critical in order to

activate post-collision strategies. We first review the actuation mechanisms that are related

to the development of safe robots, with collision detection literature discussed after.

1.1.1 Safe Actuation Mechanisms

Unwanted collisions might occur in robots in case of faults, failure of collision avoidance

systems, or any other unplanned changes in the environment. One way to achieve safety re-

quirements is by adding proximity sensors to the robot [6], [7] or by adding extra paddings

to the robot’s surface [8]. Another method, proven to have intrinsic limitations, is active

force control [9]. Safety issues have brought about technological innovations, most notably

several generations of Detches Zentrum fur Luft- und Raumfahrt (DLR) robots [10]. Us-

ing joint torque sensors and accurate modeling, these robots are able to incorporate proper

force control methods to assure safety of their users [11], [5].

Another method to realize a safe and interactive environment is creating intrinsically safe

robots. Motor inertia is the main contributor to safety concerns [2]. Manipulators with me-

chanical compliance within the joints reduce total link inertia, where the total link inertia

includes the motor inertia projected to the link side. One technique is distributed macro-

mini actuation [12] that divides torque generation into high and low frequency components

[13] (Figure 1.2a), where low frequency high power actuation occurs at the base of the

robot while high frequency low power actuators are placed at the joints. Another way of

adding mechanical compliance is Variable-Impedance Actuation (VIA) [14], [15]. VIA

exploits the idea that slow motions are able to keep high impedance while fast motions

need to have less impedance. VIA provides an overall smaller impedance than a regular
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(a) Distributed macro-mini actu-
ation

(b) Nonlinear antagonistic
springs accomplishing the VIA
idea

(c) A Magneto-Rheological
fluid manipulator

Figure 1.2: Actuators with mechanical compliance

actuation mechanism. A desired impedance can be achieved by varying the joint stiffness,

damping and gear ratio. An actuator accomplishing this task by using antagonistic nonlin-

ear springs is shown in Figure 1.2b. Its impedance is a function of time and depends on

the state/motion of the actuator. One intriguing aspect of the VIA concept is that it can be

implemented using various methods, such as arranging actuators at robot base, macro-mini

actuation, and antagonistic arrangements. These manipulators, dubbed soft manipulators,

require complex controllers which is an open area of research [16].

Magnetorheological-fluid (MR fluid) robots developed in our research group are another

example of inherently safe robots (Figure 1.2c), where MR fluid was implemented in robot

joints to realize safe mechanical compliance [17], [18], [19], [20], [21]. MR fluids were

originally discovered in 1948 [22], but only recent advances in technology has made them

a reliable engineering product [23], [24]. They have been used in various applications such

as throttle valves [25], vehicle vibration dampers [26] and haptic actuation to improve sta-

bility and performance [27]. They have the ability to change their viscosity depending on

the magnetic field that the fluid is exposed to. Research in Magnetorheological fluids has

shown that their ability to change their viscosity can be used in manipulator joints to pro-

vide the ability to dynamically alter the joint compliance [18]. The physical properties of

MR-fluids are used to decouple the motor inertia from the joint, allowing to have various

degrees of compliancy while having high level of safety in the joint actuation.
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The ability of the controller to cope with compliance and post-collision control laws is

also an open research subject. However, no matter the actuation mechanism, compliance

methods, or post-collision control laws, unexpected conditions may result in unwanted col-

lisions that can be potentially dangerous to the user. The efficacy of post-collision strategies

in ensuring the safety of the user, weather in compliant of not-compliant robots, is contin-

gent on accurate and fast collision detection.

1.1.2 Collision Detection

Control laws for every manipulator to handle collisions are necessary. These laws be-

come effective based on the sensory information available to the controller [8], [28]. This

becomes more important given that there are robots being developed that employ Program-

ming by Demonstration (PbD) [29]. PbD is the technique of mapping examples and their

policies to actions. Such examples can be gathered from demonstrations performed by

the user on the robot. PbD, in its modern form, attempts to replace rigid interfaces with

more human-friendly interfaces. Human safety must be ensured before implementation of

human-friendly interfaces.

In order to have safe physical human-robot interaction, rapid collision detection methods

must be developed. Detection of collisions allows the trigger of post-collision strategies.

It is shown that fast detection and appropriate implementation of post-collision strategies

reduces the collision forces and consequently improves the safety of the physical human-

robot interaction [5]. Detection of external forces using the robot model and position sen-

sors was studied in [8] and [30]. The approach of using generalized momentum of the

robot for collision detection was developed in [31]. Its application in post-collision reac-

tion strategies was discussed in [5] and [32]. Adaptive control laws implemented in [33]

and [34] were used to lower the constant thresholds. Constant thresholds are often used

for the purpose of collision detection [5], [33] and are determined based on each robotic

application. In case of safety in human-robot interaction, human pain tolerance levels can

be used to determine the thresholds [28]. The studies mentioned above have employed con-

stant thresholds for collision detection. Constant thresholds have the drawback that setting

a low threshold might result in false-positive collision detection outcomes, and setting a

high threshold might leave some collisions undetected. This drawback can be alleviated

by using time-varying thresholds. Adaptive time-varying thresholds based on a fuzzy-logic
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method were reported in [35]. Effects of physical modeling errors on the thresholds was

also studied in [36]. However, a deterministic approach to time-varying thresholds that

would consider all modeling inaccuracies along with the robot state approximations and

trajectory planning was not investigated.

Chapter 3 of this work studies the complete model of a robot while considering all sources

of modeling inaccuracies, i.e. uncertainties in minimal inertial parameters [37], sensor

reading errors, as well as errors inherent in passband filters commonly used for obtain-

ing velocity and acceleration approximations. All the mentioned inaccuracies are used

simultaneously to develop the deterministic time-varying thresholds. To this end, estima-

tion of external forces/torques is essential. As discussed before, the focus of this research

is development of safe collision detection algorithms and accurate external force/torque

measurement for robots, while avoiding costly and complex sensory information, such as

tactile, visual or force sensors. Therefore only position sensors information, which are

available in every manipulator, are considered. To this end, a study of external force/torque

estimation methods using observers is required. Issues regarding modeling inaccuracies,

time-varying collision detection thresholds, and impacts of trajectory on the estimations

must be examined.

1.2 Accurate External Force/Torque Estimation

Safe robots should be aware of their surroundings and be capable of limiting the damage

they might bring about to an acceptable minimum level. Two areas of robotics dealing

with these issues are collision avoidance and collision detection. As this research thrives

to develop safe HRI without adding additional sensors to what already exists in robot ma-

nipulators, collision avoidance would be out of the scope of this research as it requires

workspace monitoring sensors.

A collision detection scheme based on the robot state, i.e. position and velocity data of

the robot, is considered in our study. The accuracy of such a scheme depends on the ac-

curacy of the robot model, which includes friction forces, link-specific information, motor

parameters, joint elasticity, etc. Consequently, a dependable collision detection scheme re-

lies heavily on the adopted modeling scheme. One thing that is common among industrial

manipulators is the lack of accurate link and joint parameters. Hence a methodology that

can deal with inaccuracies in the collision detection algorithm is of paramount importance.

The manipulator dynamic equations allow implementation of observers for determining



6 Chapter 1. Introduction

externally applied forces and torques. Several observer-based methods have been proposed

in the literature for obtaining the external forces/torques [38], [35], [39], [40], [5]. A non-

linear torque observer based on velocity residual was formulated in [35]. This approach

did not use the complete robot dynamics for the development of a more accurate adaptive

threshold. Another nonlinear torque observer was formulated in [39] for estimating fric-

tion torques in two link manipulators. This method however, could not be easily extended

to robots with more than two joints. The implementation of high gain observers [40], for

estimating external torques in robot manipulators, was proposed and discussed in detail in

[5]. The observer in [5] is used in this work for estimation of external torques.

Investigating the modeling inaccuracies of a robot within the structure of torque observers

such as [5] will lead to an effective method for detecting collisions based on the state of

the robot at the time of collision. Modeling inaccuracies further motivate the need for

time-varying thresholds to determine collisions.

1.2.1 Modeling Inaccuracies

External force/torque observers estimate external torques, or detect collisions, using the

model and the state of the robot [30]. However, inaccuracy of the robot model and the

presence of errors in velocity and acceleration estimations reduces the efficacy of the ex-

ternal force/torque observers.

The model of a manipulator consists of the actuator model, friction model, joint elasticity,

and the minimal inertial parameters. Inaccuracy of the velocity and acceleration approx-

imations must be considered alongside the imprecisions in parameter estimations of the

model of the robot. Velocity and acceleration can be estimated by applying derivative filters

to the position signal. Therefore the filter type along with potential robot trajectories help

determine how accurate the velocity and acceleration estimations are. In case tachometers

or accelerometers are available, the precision of these sensors must be taken into account.

Also, controller design affects the external torque estimation as well. These concepts must

also be considered in the general scheme of accurate external torque estimation.

Accuracy of external torque estimation also impacts the precision of collision detection.

We propose time-varying thresholds based on the inaccuracies in modeling and sensor read-

ings. Furthermore, precision of the collision detection method, based on the manipulator

structure and the trajectory, can be determined by the proposed thresholds. Therefore a

metric will be defined to address comparison between collision detection accuracy of dif-
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ferent tasks or trajectories.

1.2.2 Time-Varying Collision Detection Thresholds

A particular formulation of serial link manipulators is given in this work which can be di-

rectly applied to determine the precision of external torque estimations. Upon investigating

this modeling formulation, time-varying thresholds are developed for collision detection.

In particular, effects of joint velocity on the collision detection thresholds are considered.

Different scenarios of collision detection are experimented with different types of proposed

thresholds using KUKA Light-Weight Robot IV+ (see Fig. 1.3). A heuristic procedure for

improving time-varying collision detection thresholds on a joint-by-joint basis with inac-

curate minimal inertial parameters is also proposed.

1.2.3 Precision of External Torque Estimation with Regards to the
Trajectory

The robot dynamics, its model parameters, and the given task all affect the efficacy of

external torque estimation methods. In particular, the trajectory that the robot takes to

complete a given task might improve or deteriorate the collision detection capability of the

external torque observers. By studying the effects of different trajectories simultaneously

with modeling inaccuracies and robot state approximation errors, a metric is defined to

compare trajectories with regards to external torque estimation and collision detection. By

pairing this metric with its corresponding model-based time-varying threshold, collision

detection capability of different trajectories and different robots can be compared.

1.3 Thesis Outline and Organization

In this thesis we study collision detection and measurement of external forces using external

force/torque observers when modeling inaccuracies are present. The robot used for this

research is KUKA Light-Weight Robot IV+ (KUKA-LWR) which has seven degrees of

freedom. Considering that this work studies modeling inaccuracies in collision detection,

modeling of KUKA-LWR was essential and is reported. An outline of the work in each

chapter is as follows,
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• In Chapter 2, modeling of KUKA-LWR is explored. This chapter starts with an in-

troduction to serial link manipulators modeling techniques. An examination of the

controller of KUKA-LWR is provided which helps in identifying its model. The

experiments with regards to friction modeling are discussed and the regressor ma-

trix and minimal inertial parameters of KUKA-LWR are obtained. To identify the

minimal inertial parameters, a novel statistics-based method using relative weight

analysis, see [41], is introduced. The modeling results of this section form the basis

for the experiments in this thesis. The accuracy of the obtained model is verified by

experiments.

• In Chapter 3, model-based collision detection thresholds are determined based on

the modeling inaccuracies, trajectories and robot state estimations. First a partic-

ular formulation of manipulator dynamics based on minimal inertial parameters is

provided. Based on this formulation, external force/torque estimation errors in pres-

ence of modeling uncertainty, sensor reading errors, and velocity and acceleration

approximation errors are investigated. This formulation of force/torque estimation

errors allows for definition of an optimization problem for determining the optimal

trajectories with regards to external force/torque estimation precision. Metrics for

comparing different trajectories in terms of external force/torque estimation are also

proposed, along with controller design considerations related to external force/torque

estimation errors. Based on the analysis of errors present in external force/torque es-

timations, model-based collision detection thresholds are proposed. Experiments are

conducted on KUKA-LWR to compare different trajectories with regards to exter-

nal torque estimation precision. Also, collision detection outcomes of the proposed

model-based thresholds for different trajectories are compared.

• Chapter 4 proposes deterministic velocity-based collision detection thresholds using

the high gain observer in [5]. Details of the external torque observers with and with-

out joint torque sensors are described. The effects of inaccurate modeling and torque

sensor reading errors on the solution of the external torque observers is studied. For

this purpose, LuGre friction model is examined [42]. Strategies for minimizing the

effects of such errors on torque observers are also discussed. Upon attempting to mit-

igate effects of modeling errors, velocity-based time-varying thresholds for collision

detection are proposed. The proposed velocity-based thresholds are implemented

on KUKA-LWR, which is equipped with joint torque sensors. Collision detection
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capability of the proposed thresholds is compared to those obtained from uncompen-

sated thresholds on KUKA-LWR. For this purpose, Endevco R© Piezoresistive 2000 g

accelerometers were installed in a Humanetics R© Hybrid III 50th Male Dummy and

were used to measure the detection delay between different collision detection meth-

ods. This comparison also includes the collision detection results of the COLLDE-

TECTION module included by the manufacturer in the KUKA-LWR software.

• In Chapter 5, intuitive methods that can help in determining time-varying thresholds

on a joint-by-joint basis are given. The mathematics behind the proposed intuitive

methods for adjusting time-varying collision detection thresholds are provided. Of

particular interest is the joint-by-joint study of the uncertainties in the physical pa-

rameters of the manipulators such as mass, inertia, center of gravity, etc. Simulation

results of applying the proposed thresholds to PUMA 560 are given. This includes

a model of a human developed using the LifeModeler R© software, an MD ADAMS R©

software package. To evaluate a human-robot interaction algorithm, the amount of

force exerted on a human should be analyzed. This could be achieved either us-

ing anthropomorphic dummies or software simulations. LifeModeler R© is used as a

simulation platform regarding human-robot collisions. The proposed scheme is then

applied to KUKA-LWR robot. The results show that by using the proposed method,

the effect of modeling inaccuracies in KUKA-LWR on external force/torque estima-

tions can be partially mitigated which in turn improves collision detection results.

• Chapter 6 summarizes and concludes the work described in this thesis. It discusses

future research directions and suggestions.

1.4 Contributions and Publications

This thesis is divided into four main chapters. The contributions of each chapter are as

follows,

• Chapter 2 provides an original comprehensive systematic modeling of KUKA Light-

Weight Robot IV+. The work is also novel in terms of implementing relative weight

analysis for obtaining minimal inertial parameters in presence of noise. The results

and the codes are available online for the robotic community use. This work is under

review in a peer-reviewed journal.
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Figure 1.3: KUKA Light-Weight Robot IV+

• Chapter 3 is novel in terms of providing an original in-depth modeling error analysis

of external force/torque observers. Optimal trajectories are formulated with regards

to external force/torque estimation precision. Also, a new metric is defined to com-

pare different trajectories with regards to external torque estimation precision. Novel

model-based time-varying thresholds are proposed for the purpose of collision detec-

tion. The proposed methodologies are developed such that they can be applied to any

serial link manipulator. However, in case of availability of more sensory information

or the actuator mechanism model, the methodology can be easily expanded upon.

This work is under review in a peer-reviewed journal.

• Chapter 4 investigates external force/torque observers to develop a new deterministic

velocity-based time-varying threshold for collision detection. This work is under

review in a peer-reviewed journal and conference proceedings.

• Chapter 5 proposed new heuristic methods to improve external force/torque estima-

tion and collision detection without resorting to re-modeling of the robot. Parts of

this work is published at conference proceedings [43], and is under review in a peer-

reviewed journal.
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Chapter 2

On Dynamic Model Identification of
KUKA Light-Weight Robot IV+

2.1 Introduction

Serial link manipulators are commonly used in robotics research. Precise control of manip-

ulators is a well-studied subject. In this respect, designing reliable controllers is made pos-

sible by obtaining the accurate model of the manipulator. Previous studies have attained the

model of commonly used manipulators, such as PUMA 560 [1], [2], and Mitsubishi PA-10

[3], [4]. KUKA Light-Weight robot IV+ (KUKA-LWR), see Fig. 2.1, is a state-of-the-art

manipulator that is put to use frequently in the robotics research community. Availability of

an explicit model of KUKA-LWR would be beneficial in applications that involve position

or force control, collision detection or human-robot interaction.

With recent advances in processing power, calculation of the formidable size of the explicit

models of manipulators with several joints is not a major concern. The work in this the-

sis includes obtaining the KUKA-LWR dynamics without any simplifications in order to

present a complete explicit model. The minimal inertial parameters, introduced in [5] and

[6], are presented for KUKA-LWR along with the associated regressor matrix [5]. Experi-

ments are designed for identification of parameters of the model of KUKA-LWR based on

the methodology developed in [7] and [8] and the results are discussed. However, in order

to achieve a more accurate model of KUKA-LWR, a larger data set than what is required

by [7] is used to identify the minimal inertial parameters of KUKA-LWR. Furthermore,

KUKA-LWR provides the user with the inertia matrix and the gravity vector, which can

16
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Figure 2.1: KUKA Light-Weight Robot IV+

be used to identify the components of the minimal inertial parameters that affect the inertia

matrix and the gravity vector. To this extent, regressor matrices based on the inertia ma-

trix and the gravity vector are defined and the methodology to identify the minimal inertial

parameters using such regressor matrices are presented. The results of the different identi-

fication procedures are compared. Also, using standard regression analysis procedures, the

statistically insignificant model parameters are determined and removed from the model.

Moreover, we propose using relative weight analysis, see [9], to measure the effect of each

minimal inertial parameter in the modeling. This in turn allows us to distinguish the pa-

rameters with very small effect on the entire model. Removal of such parameters aid the

user to avoid unnecessary computational complexity and obtain accurate estimations of the

remaining minimal inertial parameters.

This paper covers the considerations specific to the KUKA-LWR manipulator for control

and modeling, the process for the calculation of the explicit model, along with the model-

ing results. Due to the closed architecture of KUKA-LWR, some physical data specifically

motor currents and motor positions are not accessible. This is taken into account during

the modeling procedure and is explained in detail. Also, KUKA-LWR has an internal con-

troller loop that can not be turned off, which must be examined as well. The organization

of this paper is as follows. Section 2.2 provides the preliminaries for the model of flexible

joint manipulators. In section 2.3, an examination of the KUKA-LWR controller is pro-

vided. Section 2.4, presents the methodology for and the results of modeling the friction of

KUKA-LWR. Also, in this section the formulations of the regressor matrix and the mini-
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mal inertial parameters of KUKA-LWR are obtained. This is followed by the identification

procedures and their results. The implementation of relative weight analysis is described

and its results are also discussed. Section 2.5 concludes this paper.

2.2 Preliminaries

The dynamic equations of a flexible joint manipulator are,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τL − τ f rL (2.1a)

Bθ̈ + DK−1τ̇J + τJ = τm − τ f r (2.1b)

τL = DK−1τ̇J + τJ (2.1c)

where q denotes the joint space position of the manipulator, M(q) is the link inertia matrix,

C(q, q̇) is the centrifugal and Coriolis matrix, g(q) is the gravitational vector, τL is the

torque transmitted to the robot links via flexible joints, and τ f rL is the friction torque from

the manipulator links. Also, B is the motor inertia matrix, θ is the motor position, K > 0 is

the diagonal joint stiffness matrix, D > 0 is the diagonal joint viscosity matrix, τJ = K(θ−q)

is the joint elastic torque, τm is the motor input torque to the flexible joint, and τ f r is the

motor-side friction torque of the manipulator.

Details of friction models for τ f r and τ f rL will be given in Section 2.4. Next section uses

the flexible model described in (2.1) to explain the effects of internal controller feedback

loops of KUKA-LWR.

2.3 KUKA-LWR Controller Considerations

KUKA-LWR manipulator can be programmed using KUKA Robot Language (KRL). While

this language is easy to use, it does not allow the user to control the input motor command

torques. KUKA-LWR allows the user to control the robot and select command torques us-

ing its Fast Research Interface module (FRI). This module connects an external computer to

KUKA-LWR using a C++ library provided by the manufacturer. This interface allows the

user to switch between different operation modes, e.g. Position Control or Impedance Con-

trol Mode. In the Impedance Control Mode, the user is able to select damping and stiffness

coefficients. For further information, readers are encouraged to refer to the KUKA-LWR

manual.



2.3. KUKA-LWR Controller Considerations 19

Controlling the robot via Position Control Mode is straightforward. The FRI module is ca-

pable of commanding custom trajectories to the manipulator. In this mode, there is no infor-

mation available on the controlled motor torque. But given that KUKA-LWR is equipped

with torque sensors, the measurements from these sensors suffice to model the physical

parameters of the robot links, such as mass, centre of gravity, and link inertia matrix. The

effects of motor inertia and the model of motor-side friction can not be investigated using

the Position Control Mode. To that extent, Impedance Control Mode must be employed.

In Impedance Control Mode, the user is able to command the desired torques. However, it

must be noted that KUKA-LWR utilizes a state-of-the-art internal feedback loop using its

joint torque sensor measurements to lower the effective motor inertia and the motor-side

friction τ f r. This internal feedback loop alters the command torque. The details of this

feedback loop, proposed in [10], are repeated here,

τm = BB−1
θ u + (I − BB−1

θ )τJ + (D − BB−1
θ Ds)K−1τ̇J (2.2)

Bθ and Ds are selected by the KUKA-LWR controller, and u is the command torque. Read-

ers are encouraged to refer to [10] for further information.

Considering (2.2), the transferred torque to the links τL is,

τL = u − Bθθ̈ − BθB−1τ f r + (D − Ds)K−1τ̇J (2.3)

Moreover, when torque sensors reading errors in the internal feedback loop (2.2) are con-

sidered, the transferred torque to the links τL is represented by,

τL =u − Bθθ̈ − BθB−1τ f r + (D − Ds)K−1 ˙̂τJ

+
(
BB−1

θ − I
)(
τ̃J + DK−1 ˙̃τJ

)
(2.4)

Torque sensors readings might have a constant bias error due to their physical properties,

or inaccurate calibration. Therefore τL is estimated by,

τL ≈u − Bθθ̈ − BB−1
θ τ f r + (D − Ds)K−1 ˙̂τJ

+
(
BB−1

θ − I
)
τ̃J (2.5)

By selecting zero damping and zero stiffness in the Impedance Control Mode, FRI makes

it possible to control the command torque u. In order to control the robot position in the

Impedance Control Mode, a PID controller with the values given in TABLE 2.1 is used.

Position control of this manipulator in Impedance Control Mode allows identification of

the friction model of KUKA-LWR. Next section studies the identification of KUKA-LWR

by employing the controller details presented in this section.
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Table 2.1: PID gains for position control of KUKA-LWR via the FRI module

Joint P I D

1 8.25 0.52 4.12

2 70 4.37 35

3 7.75 4.84 3.1

4 25 1.56 12.5

5 2.5 1.56 1.0

6 1.61 2.0 0.8

7 1.57 2.0 0.79

2.4 Model Identification

This section covers the modeling of KUKA-LWR. It includes the experiments related to the

friction model and the robot dynamic model. Effective identification of the dynamic model

of a manipulator requires access to its friction model. To this end, first the experiments

regarding the friction model of KUKA-LWR are discussed.

Information about transmission and mechanical design of KUKA-LWR is given in [11].

KUKA-LWR uses lightweight harmonic drives that account for the friction terms discussed

in the next section.

2.4.1 Motor-Side Friction Identification

To measure friction in KUKA-LWR, experiments were designed to estimate τ f r and τ f rL in

(2.1a) and (2.1b). First we use the torque sensors installed in KUKA-LWR to measure τ f r

separately from τ f rL . To this effect, using (2.1c) and (2.4), the following is obtained,

BθB−1τ f r =u − τ̂J − Bθθ̈ − DsK−1 ˙̂τJ

+ BθB−1(τ̃J + DK−1 ˙̃τJ
)

(2.6)

Due to the internal feedback loop (2.2), only BB−1
θ τ f r affects the robot dynamics. Hence,

only the identification of BB−1
θ τ f r is necessary for motor-side friction modeling of KUKA-

LWR.

Friction modeling is a very well-studied subject in engineering and robotics [12], [13], [14].

Our work in this paper employs the methods proposed in [13] and [15] to find the friction
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model of BB−1
θ τ f r. The LuGre model identification procedure from [13] is used to deter-

mine the model of τ f r. However, the results from constant velocity and sinusoidal-velocity

experiments will show that a Coulomb model is sufficient. The following describes these

experiments in detail.

To obtain the friction model of BB−1
θ τ f r, experiments with constant velocities are conducted

on KUKA-LWR. Each robot joint was moved separately at various constant velocities be-

tween −2rad/sec to +2rad/sec with the resolution of 0.16rad/sec. Equation (2.6) was used

to obtain the motor-side friction estimations. The graphs shown in Fig. 2.2 summarize the

experimental measurements of BB−1
θ τ f r versus joint velocity for all joint of KUKA-LWR.

Also TABLE 2.2 lists the values of BB−1
θ τ f r for positive and negative velocities for each

joint, respectively. These values are obtained from Fig. 2.2. In order to further investigate

the properties of friction and torque measurement errors and to verify the results of Fig.

2.2, each joint of the robot was commanded to move at very slow velocities ranging from

−0.11 rad/sec to +.11 rad/sec with a resolution of 0.01rad/sec. Using this data, the values

of BB−1
θ τ f r for small positive and negative velocities for each joint were obtained. These

values were consistent with those given in TABLE 2.2.

Furthermore, the friction identification method developed in [13] was implemented on

KUKA-LWR to measure BB−1
θ τ f r. Sinusoidal trajectories were applied to the robot to

obtain the motor-side friction BB−1
θ τ f r using (2.6). The plot of the results of BB−1

θ τ f r versus

the sinusoidal joint velocities were similar to Fig. 2.2. Considering the results of the con-

stant velocity and sinusoidal trajectory experiments, it is evident that the motor side friction

BB−1
θ τ f r can be modeled using a Coulomb friction model, i.e.,

τ̂ f r =

C+ q̇ j > 0

C− q̇ j < 0
(2.7)

where C+ and C− are positive and negative velocity Coulomb friction constants from TA-

BLE 2.2.

During constant velocity experiments, the effect of Bθθ̈ − DsK−1 ˙̂τJ + BB−1
θ DK−1 ˙̃τJ in (2.6)

is negligible due to zero joint accelerations. The constant torque measurement bias τ̃J has

an effect on the friction estimations through BB−1
θ τ̃J. However, this effect is very small and

is responsible for the minor differences between the absolute values of C+ and C− given in

TABLE 2.2.
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Figure 2.2: Measurement results of the effective motor-side friction BB−1
θ τ f r
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Table 2.2: Coulomb friction constants for effective motor-side friction BB−1
θ τ f r in KUKA-

LWR

BB−1
θ τ f r BB−1

θ τ f r

Joint Negative Velocity (N.m) Positive Velocity (N.m)

C− C+

1 -0.2591 0.2508

2 -0.4939 0.4902

3 -0.3717 0.3609

4 -0.3581 0.3491

5 -0.3034 0.2945

6 -1.1174 1.1474

7 -0.2961 0.2954

2.4.2 Link-Side Friction Identification

This section covers the friction modeling of the link-side friction τ f rL of KUKA-LWR as

defined in (2.1a). Based on our experimental results, there’s not a significant viscous com-

ponent in the link-side friction of KUKA-LWR. Therefore, a Coulomb model is assumed

for τ f rL , i.e.,

τ f rL = CLsgn(q̇) (2.8)

where CL is the Coulomb friction constant for τ f rL , and sgn(·) is the Signum function.

Constant velocity experiments described in section 2.4.1 were used to measure CL using

(2.1a). Moving one joint at a constant velocity and keeping all the other joints at zero posi-

tion leads to zero Coriolis and Centrifugal torques on the moving joint. Also, considering

that during constant velocity experiments the acceleration is equal to zero, τ f rL is obtained

from (2.1a) by,

τ f rL = DK−1τ̇J + τJ − g(q) (2.9)

The constant torque sensor bias must be considered in the link-side friction modeling.

hence,

τ f rL ≈ DK−1 ˙̂τJ + τ̂J − τ̃J − g(q) (2.10)
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Table 2.3: Coulomb friction constants of the link-side friction τ f rL in KUKA-LWR

Joint CL

1 0.9661

2 0.4561

3 0.9952

4 0.8136

5 0.2805

6 0.1313

7 0.1865

Table 2.4: Modified Denavit-Hartenberg parameters of KUKA-LWR

Link α (Deg) a θ d (Meter)

1 0 0 q1 0

2 90 0 q2 0

3 -90 0 q3 0.4

4 -90 0 q4 0

5 90 0 q5 0.39

6 90 0 q6 0

7 -90 0 q7 0

TABLE 2.3 shows the values of Coulomb friction for τ f rL obtained using constant velocity

experiments and by employing (2.10).

2.4.3 Determining Minimal Inertial Parameters and Dynamic Model

This section discusses the methodology we used for obtaining the minimal inertial param-

eters and dynamic model of KUKA-LWR.

The modified Denavit-Hartenberg (DH) parameters of KUKA-LWR as measured are given

in TABLE 2.4. The DH parameters are necessary to obtain the regressor matrix and the

minimal inertial parameters of a manipulator. Minimal inertial parameters were proposed

in [5] as the minimal set of physical parameters that would determine the complete model
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Table 2.5: Classical inertial parameters of KUKA-LWR

Link XX XY XZ YY YZ ZZ mX mY mZ m

1 0 0 0 0 0 ZZ1 0 0 0 0

2 XX2 0 0 YY2 YZ2 ZZ2 0 mY2 mZ2 m2

3 XX3 0 0 YY3 YZ3 ZZ3 0 mY3 mZ3 m3

4 XX4 0 0 YY4 YZ4 ZZ4 0 mY4 mZ4 m4

5 XX5 0 0 YY5 YZ5 ZZ5 0 mY5 mZ5 m5

6 XX6 0 0 YY6 YZ6 ZZ6 0 mY6 mZ6 m6

7 XX7 0 0 YY7 YZ7 ZZ7 0 mY7 mZ7 m7

of a manipulator, i.e.

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)Θ (2.11)

where Θ denotes the minimal inertial parameters vector, and Y denotes the regressor matrix.

In order to find Θ, the classical inertial parameters of KUKA-LWR must be determined [6].

Due to the symmetry of the robot, a few of the classic inertial parameters are equal to zero.

These parameters, as defined in [5], are given in TABLE 2.5. The algorithm proposed in

[6] was used to obtain the algebraic formulation of minimal inertial parameters Θ from

the classical inertial parameters. Based on this algorithm, 25 distinct minimal inertial pa-

rameters for KUKA-LWR were obtained. TABLE 2.6 provides the relationship between

the minimal inertial parameters and the classical inertial parameters of KUKA-LWR. The

regressor matrix Y of KUKA-LWR is also obtained. To find the regressor matrix Y , we

rewrote the iterative Euler-Lagrange equations of manipulators in terms of the classical

inertial parameters. This in turn led to an algorithm for finding the regressor matrix for

serial link manipulators using MATLAB R© Symbolic Toolbox. However, the KUKA-LWR

regressor matrix Y is too large to be written down. The web link give in Appendix A con-

tains a MATLAB R© Symbolic Toolbox file that includes the Y(q, q̇, q̈) matrix.

We conduct identification experiments and employ equations (2.11) and (2.1) to identify

the minimal inertial parameters of KUKA-LWR. In order to determine regression problem

for identification of these parameters, (2.11) and (2.1c) are substituted in (2.1a), to obtain,

Y(q, q̇, q̈)Θ − DK−1τ̇J = τJ − τ f rL (2.12)

A regression problem can be defined by substituting the measured data from the identifi-
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Table 2.6: Formulation of minimal inertial parameters of KUKA-LWR using its classical

inertial parameters

θ1 (kg.m) mY2 + mZ3 + l3(m3 + m4 + m5 + m6 + m7)

θ2 (kg.m) mY3 + mZ4

θ3 (kg.m) mY4 − mZ5 − l5(m5 + m6 + m7)

θ4 (kg.m) mY5 − mZ6

θ5 (kg.m) mY6 + mZ7

θ6 (kg.m) mY7

θ7 (kg.m2) (m3 + m4 + m5 + m6 + m7)l2
3 + 2mZ3l3 + XX2 − YY2 + YY3

θ8 (kg.m2) XX3 − YY3 + YY4

θ9 (kg.m2) (m5 + m6 + m7)l2
5 + 2mZ5l5 + XX4 − YY4 + YY5

θ10 (kg.m2) XX5 − YY5 + YY6

θ11 (kg.m2) XX6 − YY6 + YY7

θ12 (kg.m2) XX7 − YY7

θ13 (kg.m2) YZ2

θ14 (kg.m2) YZ3

θ15 (kg.m2) YZ4

θ16 (kg.m2) YZ5

θ17 (kg.m2) YZ6

θ18 (kg.m2) YZ7

θ19 (kg.m2) YY2 + ZZ1

θ20 (kg.m2) (m3 + m4 + m5 + m6 + m7)l2
3 + 2mZ3l3 + YY3 + ZZ2

θ21 (kg.m2) YY4 + ZZ3

θ22 (kg.m2) (m5 + m6 + m7)l2
5 + 2mZ5l5 + YY5 + ZZ4

θ23 (kg.m2) YY6 + ZZ5

θ24 (kg.m2) YY7 + ZZ6

θ25 (kg.m2) ZZ7
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cation experiments into (2.12). This regression problem is given here,
Y(q1, q̇1, q̈1)

...

Y(qk, q̇k, q̈k)

 Θ −


τ̇J1

...

τ̇Jk

 DK−1 =


τJ1 − τ f rLk

...

τJk − τ f rLk

 (2.13)

where the index k represents the number of data points. Based on this regression problem,

the minimal inertial parameters of KUKA-LWR can be estimated. To this end, we use

regression analysis to obtain and discuss the results of the following three methods; The

optimal excitation trajectories [7], regression using the inertia matrix and gravity vector as

measured by the FRI module, and random trajectories utilizing relative weight analysis [9].

Using Optimal Trajectories

The accuracy of the identification process depends on the excitation trajectories. To model

a serial link manipulator, suitable excitation trajectories must be determined. In this section

the application of the optimal excitation trajectories method developed by Swevers et. al.,

[7] [8], is investigated to model KUKA-LWR. The optimal excitation trajectories in [7] are

determined as sums of finite harmonic sine and cosine functions. By selecting such excita-

tion trajectories, the noise in torque and position measurements can be reduced. Also their

method significantly enhances approximation of velocity and acceleration based on band-

pass filtering of position data. The excitation trajectory employed in our work is chosen to

be a sum of twelve harmonic sine and cosine functions with the fundamental frequency of

0.009 Hertz. The optimization problem to find the optimal excitation trajectory from [7] is

solved using the Optimization Toolbox in MATLAB R©. The obtained optimal trajectories

are not presented here for the sake of brevity.

The excitation trajectories are programmed in KUKA-LWR and tracked for 10 repetitions.

Multiple repetitions allow averaging the data to minimize the effects of white noise on the

identification results. The averaged data points, i.e. joint position measurements, velocity

and acceleration approximations and joint torque sensor measurements, were substituted in

the regression problem (2.13) to find the minimal inertial parameters of KUKA-LWR.

Our KUKA-LWR identification results obtained via the optimal trajectories method were

far from the results obtained via the next two identification methods, i.e. using the mass

matrix and the gravity vector, and using relative weight analysis. Also these results were

not in accordance with the algebraic formulation of the minimal inertial parameters as given

in TABLE 2.6.
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Theoretically, the optimal excitation trajectories must obtain the best results for identifica-

tion. However, in case of KUKA-LWR, the unmodeled dynamics outweighed the modeled

dynamics. Given that unmodeled dynamics are not white noise, they can not be efficiently

eliminated via the averaging process described in [7] and [8]. The sources of unmodeled

dynamics in KUKA-LWR are the hysteresis in joint torque sensors and the friction. Also,

the internal feedback loop for minimizing effective motor inertia, as described in (2.2),

can possibly introduce additional unmodeled dynamics. Given these considerations, the

identification results from the optimal excitation trajectories method are not provided here.

Using the Inertia Matrix and the Gravity Vector

As we discussed before, the controller of KUKA-LWR computes and allows access to the

mass matrix M(q) and the gravity vector g(q). The minimal inertial parameters can be

obtained from the mass matrix and the gravity vector. To this end, the relationship between

the minimal inertial parameters and the mass matrix and the gravity vector are studied here.

Minimal inertial parameters can be linearly separated for each component on the left-hand

side of the dynamic model (2.11) by using,

g(q) = Yg(q)Θ (2.14a)

M(q)q̈ = YM(q, q̈)Θ (2.14b)

Additionally,

Mi(q) = YMi(q)Θ 1 ≤ i ≤ N (2.15)

Where Mi(q) is the ith column of the inertia matrix M(q). The web address given in Ap-

pendix A includes Yg(q) and all YMi(q) matrices.

Since the computed inertia matrix and the gravity vector do not contain any noise, it is

not necessary to use optimal trajectories. Random fifth-order polynomial trajectories were

followed by KUKA-LWR and the joint position measurements, velocity and acceleration

estimations, along with joint torque sensor measurements were substituted in a regression

problem that is derived from (2.14a) and (2.15). The obtained regression problem is solved

and the results are given in TABLE 2.7. The t-statistic of the obtained values are also pro-

vided. Small t-statistic values indicate that the corresponding minimal inertial parameters

were not considered, or equivalently set to be equal to zero, in the KUKA-LWR controller

computation of the mass matrix and the gravity vector. The column ”Final Estimation”
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includes the resultant solution to the regression problem considering the t-statistics. The

results of this column should be considered as the minimal inertial parameters that the

KUKA-LWR controller uses to calculate the mass matrix and the gravity vector. The col-

umn ”Contributing Terms” shows the components of the mass matrix or the gravity vector

that were used in the regression analysis to identify the corresponding minimal inertial pa-

rameter.

The results of this section can be used to check the validity of the relative weight analysis

method conducted in the next section. However, it should be noted that the actual values of

the minimal inertial parameters of the KUKA-LWR robot modeled in this paper might be

different than what is obtained in this section. This is in the light that FRI uses the minimal

inertial parameters of a given prototype to compute the mass matrix and the gravity vec-

tor. Next section proposes implementing relative weight analysis to identify the minimal

inertial parameters of KUKA-LWR.

Using Relative Weight Analysis

This section uses relative weight analysis to augment regression results and obtain accurate

minimal inertial parameters in presence of noise in the regression data. Relative weights

are a method to determine the importance of each independent variable in multiple regres-

sion analysis [16]. Unlike standardized betas, relative weights partition the covariance of

the predictors to obtain the importance of predictors in the regression analysis [9], [17].

Random fifth-order polynomial trajectories were tracked by KUKA-LWR to obtain the ex-

perimental data. To this end, 30 minutes of data was recorded. The long span the data was

recorded in minimizes the effects of unmodeled dynamics in the regression results. The

data was partitioned into smaller sections and the regression analysis was conducted on

each segment. This was due to the memory limitations arising from the large size of the

input data. The meta-analysis of the regression results of each minute of the experiment

was conducted. As discussed in [18], by using the covariance matrices of individual regres-

sion results, meta-analysis provides the same results as if all the individual data were used

in one regression analysis. An interesting aspect of relative weights is that they have this

same property. Their meta-analysis results are equal to the outcomes of one relative weight

analysis conducted on all the data.
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The results of the regression meta-analysis are given in TABLE 2.7 in the column ”Itera-

tion 1”. The ”Regression Results” column shows the estimated minimal inertial parameters.

The associated t-statistics and relatives weights are also given. The ”Contributing Joints”

shows the joints that were involved in obtaining the regression data given in the table. Pa-

rameters with combined small t-statistics (less than 145) and relative weights (less than

0.5) are assumed to have a significance of zero and are marked out in the ”Significance”

column. The threshold for t-statistics depends on the amount of data available and must be

determined on a case-by-case basis. The threshold for relative weights can be arbitrarily

chosen to be small. However very small thresholds for relative weights tend to impair the

efficacy of the relative weight-based method. A second regression analysis is conducted

with only the remaining minimal inertial parameters. The results of this analysis is given

in the column ”Iteration 2”. Once again, the minimal inertial parameters with combined

small t-statistics and relative weights are marked out and shown with a ”Final Estimation”

of zero. The remaining parameters are calculated and given in the column ”Final Estima-

tion”. This column shows the results of implementing relative weight analysis for obtaining

minimal inertial parameters of KUKA-LWR. By comparing the Final estimation column of

relative weight analysis with the results obtained from the mass matrix and gravity vector,

the efficacy of the proposed methodology is verified.

2.5 CONCLUSION

This paper investigated the model of KUKA-Light Weight Robot IV+. The controller of

KUKA-LWR is studied and its effect on the modeling procedure is discussed. Experiments

and the results of friction modeling are presented in detail. The formulation of the regressor

matrix and the minimal inertial parameters of KUKA-LWR are given. To identify the

values of the minimal inertial parameters in presence of unmodeled dynamics, a novel

regression-based method using relative weight analysis was developed. The relative weight

analysis method allowed a systematic elimination of the parameters that do not have a

significant effect on the dynamics of the robot. The values of the parameters identified

using the proposed method are presented and verified.
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Chapter 3

On Determining Collision Detection
Thresholds and Trajectory Planning for
Manipulators with Regards to External
Torque Estimation Precision

3.1 Introduction

Robotic manipulators are increasingly employed in unstructured environments [1]. The

quality of the physical interaction between a robot and its environment depends on how

accurately the robot is able to estimate the interaction forces. In the area of human robot

interaction, detection of contact forces between a human user and the manipulator is of par-

ticular importance with regards to the safety of the human user [2]. Successful integration

of manipulators in unstructured environments relies on the precision the external forces are

measured by the manipulator.

External forces can be obtained from tactile sensors and force/torque observers [3]. Tactile

sensors are not commonly available in all manipulators and their cost and size is not always

desirable. Force/torque observers only require the dynamic model of the robot. However,

precise estimation of external forces using an observer requires precise modeling of the

manipulator as well as accurate measurement of position, velocity and in some cases accel-

eration of manipulator joints. Predicated upon modeling-based external torque estimation

using observers, this paper studies the effects of imprecise modeling of manipulators in

34
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estimation of external torques.

Different external torque observers have been proposed for serial link manipulators [4], [5],

[6]. The nonlinear fuzzy-based observer in [4] did not exploit the robot dynamics for the

development of more precise residuals. In [5], the nonlinear torque observer was designed

for two link manipulators. Their method can not be easily extended for manipulators with

more joints. High gain observers [7] were used to define external torque observers for

manipulators in [6]. We will use available estimations of joint accelerations and the manip-

ulator model to estimate the external torques. It will be shown that the observer [6] can be

described using the same format as the acceleration-based estimation method. This formu-

lation has advantages in obtaining the optimal criteria for trajectory planning with regards

to external torque estimations.

In this paper, optimal trajectories with regards to the precision of external torque estima-

tions are determined. We will describe a particular formulation for serial link manipulator

models using minimal inertial parameters [8]. This formulation separates the effects of

position, velocity, acceleration and minimal inertial parameters in estimation of external

torques. Using this separation technique, the external torque estimation errors are defined.

We propose an optimization problem with regards to minimizing the external torque esti-

mation errors. We express this optimization such that it can be solved using Euler-Lagrange

equations. Furthermore, we a propose a metric to compare trajectories in terms of their ac-

curacy for external torque estimation. This metric is based on the objective function of

the proposed optimization problem. Also, the problem of reliable collision detection is

addressed by defining model-based thresholds. The novelty of the proposed thresholds is

that all the imprecisions in the model of the manipulator and sensor measurements are con-

sidered. These imprecisions pertain to joint velocity and acceleration signals, and minimal

inertial parameters. The effects of friction and controller on the proposed thresholds will

also be discussed. Experiment are conducted to compare different trajectories with regards

to the precision of the external torque estimations using the proposed metrics. The experi-

mental results will further validate the proposed metrics and collision detection thresholds

with regards to trajectory planning.

The structure of this paper is as follows. Section 3.2 describes manipulator modeling and

external torque observers. In section 3.3, a particular formulation of manipulator modeling

based on minimal inertial parameters is provided. External torque estimation errors based

on this formulation are presented. In section 3.4, the optimization problem for determining

the optimal trajectories with regards to external torque estimation precision is formulated.
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Also, metrics for comparing different trajectories with regards to external torque estimation

are presented. Section 3.5 presents model-based collision detection thresholds. Section 3.6

describes experiments comparing different trajectories with regards to external torque es-

timation. Also, collision detection outcomes of the proposed model-based thresholds for

different trajectories are compared. Section 3.8 concludes the paper and discusses future

work.

3.2 Manipulator Model and Collision Detection Residual

In this section, the modeling of serial link manipulators is covered. Also, an examination

of external torque observers is provided.

Dynamic equation of a serial link manipulator is given by,

M(q)q̈ + B(q)[q̇q̇] + C(q)[q̇]2 + g(q) = τL + τd + τc − τ f r (3.1)

where q denotes the joint space position of the manipulator, M(q) is the link inertia matrix,

B(q) is the matrix of Coriolis coefficients, C(q) is the matrix of centrifugal coefficients, and

g(q) is the gravitational vector. Also, in this equation [q̇q̇] is the Coriolis vector of joint

velocity products defined as,

[q̇q̇] = [q̇1q̇2, q̇1q̇3, . . . , q̇n−1q̇n]T (3.2)

and [q̇]2 is the vector of centrifugal squared velocity given by,

[q̇]2 = [q̇2
1, q̇2

2, . . . , q̇2
n]T (3.3)

Also, in equation (3.1), τ f r is the friction torque of the manipulator, τd represents distur-

bance torque, τc represents external torques acting on the manipulator, and τL is the torque

transferred to each link by the actuation mechanism.

Measurement of external torques τc is made possible using external torque observers. De-

pending on the external torque observer definition, the observer results in different filtered

forms of the external torque signal. In order to have a look at the filtered form, the observer

discussed in [6] is examined here. This observer, commonly used for collision detection

purposes, avoids obtaining joint accelerations by using the generalized momentum of the

robot, i.e.,

p(t) = M(q)q̇ (3.4)
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and is equal to the following residual for the external torques τc,

r(t) = KI

[
p(t) −

∫ t

0

(
τL + CT (q, q̇)q̇

−g(q) − τ f r + r
)
du − p(0)

]
(3.5)

where KI is the observer gain. In (3.5). The solution to r(t) represents the first-order filtered

value of τc [6], i.e.,

r(t) =
KI

s + KI
τc (3.6)

where s represents the Laplace transform. By Substituting τc from (3.1) in (3.6),

r(t) =
KI

s + KI
M(q)q̈ +

KI

s + KI

[
B(q)[q̇q̇] + C(q)[q̇]2

+ g(q) − τL + τ f r

]
(3.7)

The observer (3.5) assumes manipulator position and velocity are available. Therefore,

an alternative to (3.7) is to use an observer that only filters the term that is acceleration

dependent. Based on filtering the acceleration term, the following formulation of external

torque residuals is given.

τ̂c(t) =M(q)F (q̈) + B(q)[q̇q̇] + C(q)[q̇]2

+ g(q) − τL + τ f r (3.8)

F (q̈) = ˆ̈q denotes the filter that estimates joint acceleration. ˆ̈q is the estimated joint accel-

eration. F can be the first-order low pass filter defined in (3.6) or any other appropriate

filter. The filter should be designed based on a case-by-case basis for each manipulator.

F would also depend on the availability of tachometers and accelerometers in each joint.

Furthermore, the velocity might also need to be estimated using filters depending on the

accuracy of the tachometers or estimation techniques.

The formulation (3.8) is pertinent to the analysis of external torque estimation precision

provided in this paper. It is the simplest form of the external torque observers and can be

directly obtained from (3.1). It will be used in the following sections for examining external

torque measurements.
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3.3 Effects of Imprecise Modeling and Measurement on
Estimating External Torques

This section will first discuss the concept of minimal inertial parameters [8]. A particular

formulation with regards to minimal inertial parameters will be introduced. This formula-

tion will be used to investigate the effects of imprecise modeling and sensor measurements

in external torque estimation. This investigation will form the basis for determining tra-

jectories best suited for external torque estimation. It will also help determining collision

detection thresholds that consider all modeling inaccuracies simultaneously.

3.3.1 Dynamic Model Using Minimal inertial Parameters

Before studying the effects of imprecise modeling and measurement, it is necessary to write

down manipulator dynamic equations using minimal inertial parameters.

Minimal inertial parameters of a manipulator were proposed in [8]. They are defined as the

minimal set of physical parameters that would determine the model of a manipulator, i.e.

M(q)q̈ + B(q)[q̇q̇] + C(q)[q̇]2 + g(q) = Y(q, q̇, q̈)Θ (3.9)

where Θ is the Minimal inertial parameters, and Y is the regressor matrix.

Furthermore, each term of (3.9) can be expressed in terms of minimal inertial parameters,

i.e.,

Mi(q) = Yq
Mi

(q)Θ 1 ≤ i ≤ n (3.10a)

Bi(q) = Yq
Bi

(q)Θ 1 ≤ i ≤ n(n − 1)/2 (3.10b)

Ci(q) = Yq
Ci

(q)Θ 1 ≤ i ≤ n (3.10c)

g(q) = Yq
g(q)Θ (3.10d)

Where the vectors Mi(q), Bi(q), and Ci(q) are the ith column of the inertia matrix M(q),

Coriolis matrix B(q) and centrifugal matrix C(q), respectively. Also Yq denotes the dy-

namic matrix corresponding to each column of the inertia matrices M(q), Coriolis matrix

B(q), centrifugal matrix C(q), and gravity vector g(q).
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In order to adopt a terminology that is simpler than (3.10), we define the following vector.

Q =


q̈[

q̇q̇
][

q̇2
]

1

 (3.11)

where Q is a l = n2+3n+2
2 dimensional vector. Using Q, (3.9) can be written as,

Y(q, q̇, q̈)Θ =

l∑
k=1

Yq
k (q)QkΘ (3.12)

where Yq
k (q) includes all Yq

Mi
(q), Yq

Bi
(q), Yq

Ci
(q), Yq

g(q). Also, Qk is the kth component of

the vector Q. In the next section, the formulation (3.12) will be applied for studying the

effects of imprecise modeling in external torque estimation.

3.3.2 External Torque Estimation Errors

The external torque estimation error is defined as,

τ̃c(t) = τ̂c(t) − τc(t) (3.13)

where τ̂c is the estimated external torques and τc is the actual external torques.

In order to obtain the external torque estimation errors, the ideal external torque residual

must be considered. Based on (3.1), this ideal residual is equal to,

τc(t) =M(q)q̈ + B(q)[q̇q̇] + C(q)[q̇]2

+ g(q) − τL − τd + τ f r (3.14)

By introducing (3.9) and (3.12) in the ideal residual (3.14), the following formulation of

the ideal residual is obtained,

τc(t) =

l∑
k=1

Yq
k (q)QkΘ − τL − τd + τ f r (3.15)

Only an estimation of the parameters used in (3.15) are assumed to be available due to the

disturbance torque τd, and the errors in dynamic modeling, joint flexibility, friction model-

ing, and sensor measurements. Therefore, the external torque estimation corresponding to
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the available parameters is written as,

τ̂c(t) =

l∑
k=1

Yq
k (q)Q̂kΘ̂ − τ̂L + τ̂ f r (3.16)

where Q̂, Θ̂, τ̂L, τ̂ f r are the available estimations of Q, Θ, τL, τ f r. The joint position q

can be measured with negligible measurement error. The value of Y(q) only depends on

the Denavit-Hartenberg parameters of the manipulator which can always be measured very

accurately. Therefore the benefit of using the particular formulation in (3.16) is the ability

to linearly separate the effects of accurately measured joint position from estimated joint

velocity, joint acceleration and minimal inertial parameters.

Next step for obtaining the external torque estimation error τ̃c is substituting (3.15) and

(3.16) in (3.13), i.e.,

τ̃c(t) =

l∑
k=1

Yq
k (q)

[
Q̂kΘ̂ − QkΘ

]
− τ̃L + τd + τ̃ f r (3.17)

The external torque estimation error τ̃c(t) can be described by using Q̃ = Q̂ − Q defined as,

Q̃ =


ˆ̈q − q̈[

ˆ̇q ˆ̇q
]
−

[
q̇q̇

][
ˆ̇q2
]
−

[
q̇2

]
0

 (3.18)

By substituting Q̃, and Θ̃ = Θ̂ − Θ in (3.17), the external torque estimation error is written

as,

τ̃c(t) =

l∑
k=1

Yq
k (q)

[
Q̃kΘ̂ + QkΘ̃

]
− τ̃L + τd + τ̃ f r (3.19)

The above formulation will be used for obtaining collision detection thresholds. Also,

(3.19) will be used in the next section for determining the optimal trajectories with regards

to external torque estimation precision.
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3.4 Optimal Trajectories with Regards to Estimating Ex-
ternal Torques

In this section we will introduce a novel optimal criteria with regards to trajectory plan-

ning for the purpose of accurate external torque estimation and collision detection. To the

knowledge of the author, such criteria has not been defined previously in the literature. This

criteria will be used as a metric for comparing trajectories with regards to external torque

estimation. Also, the proposed criteria will be shown to help in finding collision detection

thresholds in the next section.

The optimal trajectory problem formulation is as follows. In order to obtain the best esti-

mation of external torques, the estimation error τ̃c(t) in (3.19) must be as small as possible.

Minimization of the estimation error in (3.19) is feasible by minimizing an upper bound for

absolute value of the torque estimation error at every joint. By introducing (3.12) in (3.19),

an upper bound for the absolute value of τ̃c j(t) is obtained as,

∣∣∣τ̃c j(t)
∣∣∣ ≤ ∣∣∣∣∣∣ l∑

k=1

Yq
k j

(q)Q̃kΘ̂ + Y j(q, q̇, q̈)Θ̃

− τ̃L j + τ̃ f r j

∣∣∣∣∣∣ +
∣∣∣τd j

∣∣∣ (3.20)

where j denotes the jth row of the corresponding vector or matrix. Therefore, obtaining

the most accurate external torque estimation is equivalent to solving the following multi-

objective optimization problem,

min
q

∣∣∣τ̃c j(t)
∣∣∣ ≡ min

q,Q̃

{∣∣∣∣∣∣ l∑
k=1

Yq
k j

(q)Q̃kΘ̂ + Y j(q, q̇, q̈)Θ̃

− τ̃L j + τ̃ f r j

∣∣∣∣∣∣
}

(3.21)

Equation (3.21) is a functional optimization problem and its solution provides the trajecto-

ries that would result in the least external torque estimation error.

The optimization problem (3.21) is further studied by only using the first two terms of the

objective function. If the model of the transmitted joint torque error τ̃L and friction model-

ing error τ̃ f r are available, they should be considered in the optimization problem as well.

When there’s no information available on τ̃L and τ̃ f r, the optimization problem (3.21) is

simplified to the sum of two objectives:
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• Objective A: Depends on the accuracy of velocity and acceleration estimations

• Objective B: Depends on the accuracy of minimal inertial parameter estimations and

trajectory planning

min
q

∣∣∣τ̃c j(t)
∣∣∣ ≡ min

q,Q̃

{∣∣∣∣∣∣
Objective A︷            ︸︸            ︷

l∑
k=1

Yq
k j

(q)Q̃kΘ̂

+

Objective B︷        ︸︸        ︷
Y j(q, q̇, q̈)Θ̃

∣∣∣∣∣∣
}

(3.22)

The two objective terms are separated as each has its own physical interpretation. Next, we

will discuss each of these objective terms.

3.4.1 Effects of Controller Design and Trajectory Planning on Accu-
racy of External Torque Measurement

In the optimization problem (3.22), the objective A depends on the joint positions q and

Q̃ as defined in (3.18). The vector Q̃ depends on the accuracy of velocity and acceleration

estimations. Multiple factors contribute to the vector Q̃ which are laid out below. The

appropriate measures that must be taken to minimize the effect of each factor on Q̃ are also

discussed.

Filter Design for Velocity and Acceleration Estimation - Objective A

Filtering joint position data is a common practice for estimation of velocity and acceleration

in robotic manipulators. Precision of velocity and acceleration estimation filters must be

evaluated on a case-by-case basis for every manipulator.

Causal filters must be implemented for real-time estimation of external torques. Such filters

are associated with a delay and are always a low-pass filter of the actual velocity or the

acceleration signal. Therefore, a trajectory with high-frequency velocity or acceleration

components impacts the effectiveness of such filters. To ensure accurate external torque

measurements, trajectories with only low-frequency components must be planned. The

cut-off frequency for these trajectories can be determined by the filters used for velocity

and acceleration estimation. However, the actual trajectory that the manipulator follows
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might include high-frequency components. These high-frequency components must be

mitigated by designing a proper controller.

Controller Design - Objective A

The next step after planning a low-frequency trajectory is ensuring that it is followed with-

out high-frequency components.

High-frequency components in joint acceleration can occur for two reasons. First be-

cause of high-frequency components in the transmitted torque τL. Such components can

be avoided by implementing a controller that would only allow low-frequency controller

outputs. Second, imperfect compensation of friction can lead up to high-frequency com-

ponents in the trajectory. Accurate friction compensation is not usually possible for low

velocities due to stiction and pre-sliding conditions [9]. Therefore, to ensure that the ma-

nipulator follows low-frequency trajectories, it is best to avoid low velocities when possi-

ble.

High-frequency components in joint velocity can occur as a result of high-frequency com-

ponents in joint acceleration. Taking the measures discussed above to lower high-frequency

components of joint acceleration will in turn ensure that joint velocity does not contain

high-frequency components. However, high joint acceleration values can cause high-frequency

components in the joint velocity. Therefore a cap must be set in the controller on transmit-

ted torque τL to make sure that joint velocity will not contain any high-frequency compo-

nents.

Tachometer and Accelerometer Precision - Objective A

In case tachometers and accelerometers are available in a manipulator, Q̃ will depend on

their precision. Their precision data can be used in the optimization problem (3.22). The

precision of these sensors can significantly enhance the estimation of external torques.

However, they are not commonly found in manipulators.

Optimal Trajectory Planning - Objective B

In the optimization problem (3.22), the objective B depends on the robot trajectory and

accuracy of the minimal inertial parameters Θ̃. The value of Θ̃ depends on the modeling

process. If the modeling is obtained using regression methods similar to [10], Θ̃ can be
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estimated using the measured variances.

The effects of the robot trajectory on the objective B should be considered simultaneously

with the objective A. To this purpose, the guidelines in section 3.4.1 must be followed.

Next section introduces the formulation of the optimal trajectory planning problem with

regards to the precision of external torque measurements.

3.4.2 Formulation of the Optimal Trajectories for External Torque
Measurement

In this section, we will formulate the optimization problem for finding the best trajectories

with regards to external torque measurement accuracy and collision detection. Such for-

mulation will also determine a metric for assessing trajectories based on their suitability

for external torque estimation.

To formulate the optimization problem, the multiple objective functions in (3.22) are con-

sidered. There are n objective functions in (3.22) where n is the number of the manipulator

joints. We start with formulating the optimization problem for one joint and then we will

expand the objective function to combine all joint objectives. For the joint j of the manip-

ulator, the corresponding objective function from (3.22) at a given time t is equal to,

OF j(t) =

∣∣∣∣∣∣ l∑
k=1

Yq
k j

(q)Q̃kΘ̂

+ Y j(q, q̇, q̈)Θ̃

∣∣∣∣∣∣ ∀ j : 1 ≤ j ≤ n (3.23)

Each joint might have different levels of importance with regards to accurate external torque

estimations and collision detection. For example, with regards to safety, the end effector or

joints with sharper exterior require better collision detection than other joints. Joints that

their workspace might clamp the user require better collision detection as well. Therefore,

weights must be assigned to each joint for the purpose of optimal trajectory planning with

regards to external torque estimation. The weights are determined based on characteristics

specific to each manipulator.

By denoting each joint-weight as w j ≥ 0, we define the following combined scalar objective
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for trajectory optimization at any given time t,

OF(t) =

n∑
j=1

w jOF j(t)

=

n∑
j=1

w j

∣∣∣∣∣∣ l∑
k=1

Yq
k j

(q)Q̃kΘ̂ + Y j(q, q̇, q̈)Θ̃

∣∣∣∣∣∣ (3.24)

OF(t) is a function of time. Depending on the manipulator’s purpose, there are time periods

when the external torque measurements must be as precise as possible. For example, when

the manipulator is performing a collaborative task with a human, sensitive collision detec-

tion is very important. Therefore, the OF(t) must be time-weighted. Using the weighting

function wt(t), we define the following definite integral as the objective function, i.e.,

OBJ[q] =

∫ t f

ts

wt(t)
n∑

j=1

w j

∣∣∣∣∣∣ l∑
k=1

Yq
k j

(q)Q̃kΘ̂+

+ Y j(q, q̇, q̈)Θ̃

∣∣∣∣∣∣dt (3.25)

where ts and t f denote the starting and finish times for the time span under consideration

for trajectory planning.

The effect of Q̃ in OBJ[q] can be simplified by following the recommendations regarding

controller design in section 3.4.1. These recommendations provide us with an upper bound

on |Q̃|, i.e.,

BQ̃ :
∣∣∣Q̃k

∣∣∣ ≤ BQ̃k
, 1 ≤ k ≤ l (3.26)

We discussed in section 3.4.1 that the minimal inertial parameters are determined with a

confidence interval. The confidence interval of minimal inertial parameters is mathemati-

cally represented by an upper bound,

BΘ̃ :
∣∣∣Θ̃p

∣∣∣ ≤ BΘ̃p
, 1 ≤ p ≤ np (3.27)

where np is the number of minimal inertial parameters. By introducing (3.26) and (3.27) in

(3.25), the objective function OBJ[q] is written as,

OBJ[q] =

∫ t f

ts

wt(t)
n∑

j=1

w j

( l∑
k=1

∣∣∣∣Yq
k j

(q)Θ̂
∣∣∣∣ BQ̃k

+

np∑
p=1

∣∣∣Y jp(q, q̇, q̈)
∣∣∣ BΘ̃p

)
dt (3.28)
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The objective function OBJ[q] must be minimized in terms of the trajectory q to obtain the

optimal trajectories with regards to the precision of the external torque measurement. The

minimization problem associated with the objective function OBJ[q] is,

min
q

OBJ
[
q
]

(3.29)

The optimization problem (3.29) is a calculus of variation problem and its solution can be

found by implementing the Euler-Lagrange equations. However, Euler-Lagrange equations

require differentiability of the integrand of the optimization objective (3.28). The absolute

value operator | · | does not satisfy the differentiability requirement. By replacing | · | with

a differentiable substitute, i.e. f (x) = (ε + x2)
1
2 , where ε is a small regularization constant,

the optimization objective (3.28) is written as,

OBJ[q] =

∫ t f

ts

L(t, q, q̇, q̈)dt (3.30a)

L(t, q, q̇, q̈) = wt(t)
n∑

j=1

w j

( l∑
k=1

f
(
Yq

k j
(q)Θ̂

)
BQ̃k

+

np∑
p=1

f
(
Y jp(q, q̇, q̈)

)
BΘ̃p

)
(3.30b)

The solution to the trajectory optimization problem (3.29) using (3.30) is equivalent to the

solution to the following Euler-Lagrange equation,

δL
δq
−

d
dt

(
δL
δq̇

)
+

d2

dt2

(
δL
δq̈

)
= 0 (3.31)

The objective OBJ[q] must be optimized on the trajectory q, subject to boundary conditions.

The boundary conditions are determined as q(ts) = qs, q(t f ) = q f , q̇(ts) = q̇s, q̇(t f ) = q̇ f

and the workspace boundaries. The trajectory determined from the Euler-Lagrange equa-

tion (3.31) will be the optimal trajectory between qs and q f with regards to the precision of

external torque estimations. Further investigation of the solution (3.31) is out of the scope

of this paper and will be subject of future work.

So far the formulation of the optimal trajectories with regards to the precision of the exter-

nal torque estimation is determined. Moreover, the formulation (3.28) can be applied as a

metric to compare different trajectories.
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3.4.3 Metric for External Torque Estimation Precision of Trajectories

Programming a manipulator with the proposed optimal trajectory might not always be of

interest. There are robotic application when the robot trajectory has to be determined by

different trajectory planning procedures. In cases where solving the optimization problem

is not of interest, the objective (3.28) can be used to compare different trajectories in terms

of external torque estimation precision. The comparison capability of the objective (3.28)

motivates the following external torque estimation metric,

EM
[
q
]

= OBJ
[
q
]

(3.32)

where EM denotes estimation metric. This metric can be further expanded to include the

effects of unmodeled friction dynamics and joint elasticity.

In the next section, the formulation of the upper bound for external torque estimation

error in (3.20) will help to determine model-based collision detection thresholds. These

thresholds can be used for any serial link manipulator and any trajectory. However, the

proposed thresholds are minimized when the trajectory obtained from the optimization

problem (3.29) is used.

3.5 Model-Based Collision Detection Thresholds

Constant thresholds are usually implemented for the purpose of collision detection [6],

[11], [12]. In this section, novel varying thresholds for collision detection for robotic ma-

nipulators are proposed. We will investigate the combined effect of inaccurate modeling

and imprecise sensor measurement to determine the proposed thresholds. For this purpose,

we will use the particular formulation of external torque estimation error τ̃c(t) in (3.19).

By substituting Q = Q̂ − Q̃ in (3.19), τ̃c(t) is written as,

τ̃c(t) =

l∑
k=1

Yq
k (q)

[
Q̃kΘ̂ + Q̂kΘ̃ − Q̃kΘ̃

]
− τ̃L + τd + τ̃ f r (3.33)

We use the formulation (3.33) in determining an upper bound for the absolute value of τ̃c(t)

by using only the measured signals and available minimal inertial parameter estimations.
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By substituting (3.12) in (3.33) the upper bound for torque estimation error at joint j of the

manipulator is obtained as,∣∣∣τ̃c j(t)
∣∣∣ ≤ ∣∣∣∣∣∣ l∑

k=1

Yq
k j

(q)
[
Q̃kΘ̂ − Q̃kΘ̃

]
+Y j(q, ˆ̇q, ˆ̈q)Θ̃

∣∣∣∣∣∣
+

∣∣∣τ̃L j

∣∣∣ +
∣∣∣τ̃ f r j

∣∣∣ +
∣∣∣τd j

∣∣∣ (3.34)

The bounds BQ̃ and BΘ̃ for |Q̃| and |Θ̃|, defined in (3.26) and (3.27), hold true by following

the recommendations in section 3.4.1. By introducing BQ̃ and BΘ̃ in (3.34), the upper bound

is simplified as Bc j(t), ∣∣∣τ̃c j(t)
∣∣∣ ≤ Bc j(t) (3.35)

where

Bc j(t) =

l∑
k=1

∣∣∣∣Yq
k j

(q)Θ̂
∣∣∣∣ BQ̃k

+

np∑
p=1

l∑
k=1

∣∣∣∣Yq
k jp

(q)
∣∣∣∣ BQ̃k

BΘ̃p

+

np∑
p=1

∣∣∣Y jp(q, ˆ̇q, ˆ̈q)
∣∣∣ BΘ̃p

+
∣∣∣τ̃L j

∣∣∣ +
∣∣∣τ̃ f r j

∣∣∣ + Bd j (3.36)

where Bd is the upper bound for the disturbance torque such that for every joint
∣∣∣τd j

∣∣∣ < Bd j .

If there is information available related to the imprecise model of the actuators τ̃L and

friction τ̃ f r, it must be included in the bound (3.36). The proposed time-varying bound

Bc j(t) can be used as a collision detection threshold. If for any joint j,
∣∣∣τ̃c j(t)

∣∣∣ crosses Bc j(t)

a collision is detected and post-collision strategies must be executed. The detection of

collision at a given time t is formulated as,

∃ j : 1 ≤ j ≤ n s.t.
∣∣∣τ̃c j(t)

∣∣∣ > Bc j(t)⇒ Collision (3.37)

The thresholds Bc j(t) integrate the effects of trajectory planning, estimation error of mini-

mal inertial parameters, velocity and acceleration filters, and actuator and friction model-

ing. As a result, these thresholds adjust to all modeling and measurement inaccuracies in a

manipulator. Furthermore, implementing the optimization trajectory obtained from (3.29)

minimizes the contribution of
∑l

k=1

∣∣∣∣Yq
k j

(q)Θ̂
∣∣∣∣ BQ̃k

and Y(q, ˆ̇q, ˆ̈q) to the proposed threshold.

This minimization lowers the collision detection thresholds and is desirable.

In a large number of applications, external torques are expected to be zero. This condition,

considering (3.13), is equivalent to,

τc(t) = 0 ⇒ τ̂c(t) = τ̃c(t) (3.38)
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Therefore when expected external torques are zero, collision detection condition (3.37) is

simplified as,

∃ j : 1 ≤ j ≤ n s.t.
∣∣∣τ̂c j(t)

∣∣∣ > Bc j(t)⇒ Collision (3.39)

The condition (3.39) shows the usage of the proposed thresholds for collision detection.

The variable thresholds Bc j(t) are a novel method to detect collisions in serial link manip-

ulators. Furthermore, the current formulation allows comparison between different trajec-

tories and different manipulators in terms of collision detection capability. This is highly

valuable in cases when the manipulator is interacting with unstructured environments.

Next section will present experimental results that use the proposed thresholds (3.36). The

result will demonstrate the efficacy of the proposed metric for external torque estimation

precision (3.32) by comparing collision detection between different trajectories.

3.6 Case Study

In this section, a KUKA Light-Weight Robot IV+ (KUKA-LWR), Fig. 3.1, is used to im-

plement the proposed methods for comparing external torque measurement precision of

different trajectories. Collision detection time-delays of the manipulator using the residual

(3.16) are measured. The collision detection delays are shown to be consistent with the

external torque estimation precision metric (3.32).

The setup of KUKA-LWR manipulator is as follows. The set of minimal inertial parameters

and the regressor matrix (3.9) of KUKA-LWR are obtained using the algorithm in [8]. The

values of the minimal inertial parameters of KUKA-LWR are identified by implementing

regression modeling techniques. The modeling results are not provided here for the sake

of brevity. Regression-based modeling of serial link manipulators is discussed in detail in

[10]. Moreover, KUKA-LWR is controlled via the Fast Research Interface (FRI) which

allows controlling the robot and access to the position and torque sensors measurements.

Also, of the seven joints of KUKA-LWR, only joints 1, 2 and 4 are moved and joints 3,

5, 6 and 7 are kept at the zero position throughout the experiments of this section. The

reason behind this choice is that joints 1, 2 and 4 are the first 3 joints that allow arbitrary

positioning of the end-effector. The other joints are not moved for simplicity.
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3.6.1 Trajectories and the External Torque Estimation Precision Met-
ric

This section describes the desired trajectories used for validating the proposed model-based

threshold and the external torque estimation metric. The external torque estimation preci-

sion metrics are calculated using (3.32) for all trajectories.

All three desired trajectories have the same starting and final position. The desired tra-

jectories are specified for joints 1, 2 and 4, see Fig. 3.2, and are piece-wise fifth order

polynomials. In order to calculated the corresponding external torque estimation precision

metric for these trajectories the following assumptions pertaining to BQ̃ and BΘ̃p
are made.

BQ̃ is calculated by adding a white noise to the trajectory signal. The resulting trajectory

is filtered using the fifth-order Butterworth filter which was implemented for estimating

velocity and acceleration. This filtered trajectory is substituted in (3.18) to calculate BQ̃
for the desired trajectories in Fig. 3.2. The calculated values of BQ̃ are given in TABLE

3.1. Since the frequency content of the trajectories are almost similar, the values of BQ̃ are

almost equal for all the trajectories. Also, it is assumed that the minimal inertial parameters

are determined with a certainty of two percent, i.e.,

BΘ̃p
= 0.02

∣∣∣Θ̃p

∣∣∣ , 1 ≤ p ≤ np (3.40)

Based on the above assumptions, the external torque estimation precision metrics for the

trajectories in Fig. 3.2 are calculated and given in TABLE 3.2. Section 3.4.3 concluded

that smaller precision metrics result in more accuracy in external torque estimation. There-

fore, the results in TABLE 3.2 predict that trajectories 1 and 2 have better external torque

estimation than trajectory 3.

Predictions of the external torque estimation precision metric can not be confirmed with-

out access to the actual values of the interaction forces and torques. However, collision

detection efficiency using the model-based thresholds (3.36) can be used to confirm the

predictions of the proposed metrics in TABLE 3.2.

3.6.2 Model-Based Thresholds and Collision Detection Results

In this section, model-based thresholds (3.36) are calculated for the given desired trajecto-

ries in absence and with presence of collisions.

The manipulator is commanded to track the desired trajectories without any external col-

lisions. The trajectories in Section 3.6.1 are chosen such that they would only have either
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Table 3.1: Calculated BQ̃ for different trajectories

Trajectory 1 Trajectory 2 Trajectory 3

0.37725

0.37717

0.37705

4.7029e−5

4.6268e−5

4.5749e−5

4.7562e−5

4.6502e−5

4.5008e−5

0





0.37694

0.37701

0.37717

4.7452e−5

4.6215e−5

4.568e−5

4.8007e−5

4.6902e−5

4.4684e−5

0





0.37724

0.37715
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Figure 3.1: KUKA Light-Weight Robot IV+

Table 3.2: External torque estimation metric for different trajectories

Trajectory 1 Trajectory 2 Trajectory 3

Metric 19.422 19.433 20.668



52 Chapter 3. On Determining Collision Detection Thresholds and Trajectory...

Figure 3.2: Trajectories tracked by KUKA-LWR

Figure 3.3: External torque residuals and their corresponding model-based collision detec-

tion thresholds for trajectory 1 in absence of collisions
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positive or negative velocity at each joint. This reduces the non-linear effects of friction

present at low velocities. Given that low-velocity friction non-linearities do not exist in this

experiment, the friction torque term τ̂ f r in (3.16) can be estimated using Coulomb-viscous

friction model. Through experiments not provided here for the sake of brevity, the value

of coulomb friction is calculated for each joint. Also, viscous friction is measured and is

found to be negligible for all joints.

KUKA-LWR is equipped with joint torque sensors. Joint torque sensor measurements are

available via the FRI module used to control the manipulator. In our experiments joint

torque sensors are used to measure the transferred torque to the links τ̂L in the external

torque estimation observer (3.16).

The external torque residuals are calculated using (3.16) and the corresponding model-

based collision detection thresholds (3.36) are calculated for joints 1, 2 and 4 of KUKA-

LWR. The results of this experiment for trajectory 1 are shown in Fig 3.3. The residuals

of the trajectories 1 and 2 are not shown for the sake of brevity. Fig. 3.3 confirms that the

residuals do not pass the model-based thresholds in absence of external torques.

Next, the KUKA-LWR manipulator is commanded to track the same trajectories but in

presence of multiple collisions. The collisions are applied by colliding human arm with the

manipulator. The resulting external torque residuals and model-based thresholds are given

in Fig. 3.4 for all three trajectories. Collisions are detected using the criteria (3.39).

The actual collision times are given in TABLE 3.3 along with collision detection delays

for all the three trajectories. Collision detection delays are the time elapsed between the

moment of actual collision and the moment the model-based thresholds detect the collision

using (3.39). The average collision detection delays are also calculated for the three tra-

jectories. The results show that trajectory 3 has the slowest collision detection capability

compared to trajectories 1 and 2. This result is in agreement with the high external torque

precision metrics for trajectory 3 as given in TABLE 3.2. Trajectories 1 and 2 have similar

collision detection capability which is predicted by their almost equal external torque pre-

cision metric in TABLE 3.2.

In this section we provided experimental results that show low external torque estimation

metric (3.32) corresponds to better collision detection accuracy. Therefore, the proposed

metric is a viable method for comparing different trajectories when the manipulator is ex-

pected to measure the external forces/torques. Also, the proposed model-based thresholds

(3.36) were shown to be effective for collision detection purposes. In the next section,

discussions pertaining to the effects of friction, environment dynamics and object manipu-
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Figure 3.4: External torque residuals and their corresponding model-based collision detec-

tion thresholds in presence of collisions
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Table 3.3: Comparison between different trajectories with regards to collision detection

delays using model-based thresholds

Trajectory 1 Trajectory 2 Trajectory 3

Collision Detection Collision Detection Collision Detection

Occurs Delay Occurs Delay Occurs Delay

(Sec) (Sec) (Sec) (Sec) (Sec) (Sec)

1.250 0.018 1.148 0.022 0.825 0.018

1.791 0.018 1.852 0.017 1.656 0.021

2.465 0.007 2.910 0.021 2.770 0.023

3.020 0.017 5.470 0.011 4.030 0.029

3.520 0.012 5.751 0.001 5.175 0.018

4.127 0.007 5.996 0.007 5.876 0.022

4.740 0.021 — — 6.387 0.012

Average Collision Average Collision Average Collision

Detection Delay (Sec) Detection Delay (Sec) Detection Delay (Sec)

0.014 0.013 0.020
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lation are provided.

3.7 Discussions

As we have discussed earlier, external force/torque estimation without tactile sensors re-

lies on the accuracy of the dynamic model of the manipulator along with the precision of

available sensors. Therefore, the suitability of using external force/torque observers such as

(3.16) depends on the particular application and available sensory information. However,

the following general remarks can be made.

1. Effects of Friction: Depending on the manipulator, friction can form a major part

of the dynamics. Accurate model of friction can enhance external torque estimation

significantly. However, modeling friction at low-velocities is not always straightfor-

ward. If friction is not compensated properly by the controller, it can affect tracking

the desired trajectory. Insufficient compensation of friction can be interpreted as

noise by the controller, which in turn can result in fluctuation of the input torque

and acceleration. The presence of acceleration fluctuation components increases the

acceleration-dependent terms in external torque observer (3.16), external torque es-

timation precision metric (3.32), and model-based thresholds (3.36). Therefore, de-

signing a manipulator with low friction components along with trajectory planning

that avoids very low-velocities and velocity-direction changes is preferable.

2. Unanticipated Dynamics: Collisions were used in this paper as a form of external

forces/torques. Collisions can be considered as the simplest form of an external en-

vironment interruption of the normal manipulator operation. It should be noted that

the external environment can exhibit dynamics that can not originate from inaccura-

cies in dynamic modeling of the manipulator. Future work should review methods

to identify the dynamics of the measured external torques. Comparing the identi-

fied external torque dynamics with the dynamics present in the manipulator has the

potential become a technique to determine presence of external forces/torques.

3. Object Manipulation: The mass and inertia matrix of an object the robot performs

manipulation tasks on may not be available. In such cases, the object can be modeled

as part of the minimal inertial parameters of the manipulator. The uncertainty of the
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mass and the inertia of the object can be included in the uncertainty of the minimal

inertial parameters BΘ̃ in (3.27). This in turn means that the external torque estima-

tion precision metric (3.32), model-based thresholds (3.36), and optimal trajectories

with regards to external torque estimation (3.29), can be adjusted for manipulation of

unknown objects via BΘ̃. Therefore, this work has developed thresholds and metrics

for estimation of external torques when the manipulation of an unknown object is

performed.

3.8 CONCLUSION

In this paper we examined external torque estimation and collision detection in serial link

manipulators by considering modeling inaccuracies and trajectories. We formulated op-

timal trajectories based on the precision of the external torque estimations. The optimal

trajectories for a given manipulator with given modeling inaccuracies result in the most

accurate external torque estimation and collision detection outcomes. Also, our method

resulted in a metric for comparing different trajectories and manipulators with regards to

external torque estimation. We proposed model-based thresholds that adapt based on the

manipulator’s position, velocity and acceleration. Collision detection experiments were

conducted using different trajectories and the proposed thresholds. The experiments con-

firm that a trajectory with smaller collision detection metric results in more accurate col-

lision detection outcomes. Future work will consider joint elasticity and friction in the

proposed model-based thresholds. Moreover, a comprehensive study is needed that would

simultaneously consider controller design, trajectory generation and the structure of the

manipulator in term of precision of external torque estimation.
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Chapter 4

Velocity-Based Variable Thresholds for
Improving Collision Detection in
Manipulators

4.1 Introduction

Safety in human-robot interaction has become an important research area in recent years.

In order to allow robots to share their workspace with humans, it is important to build safety

modules that ensure safe operation of the robot in unstructured environments [1], [2], [3],

[4]. Safe human-robot interactions can be achieved using different technologies, e.g. safety

paddings, compliant actuators, light-weight robots, collision avoidance systems, and colli-

sion detection.

When robots and humans share a common workspace, immediate removal of unwanted

collisions is crucial to the human safety. Without a collision avoidance system, or in case

of collision avoidance system failure, human safety will depend on post-collision safety

strategies. Accurate collision detection ensures that active post-collision strategies, which

are designed to prevent injuries to humans, are employed as soon as possible. Collisions

can be detected either with or without tactile sensors. Considering the cost and the size of

tactile sensors, it is more favourable if the robot is able to detect collisions without such

sensors. The use of joint torque sensors in robot joints is an alternative solution. The most

cost effective method is to use force/torque residual observers to estimate external torques

exerted on the robot by the environment.

60
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Several observer-based methods without using torque sensors have been proposed in the lit-

erature for obtaining the values of external torques [5], [6], [7], [8], [9]. A nonlinear torque

observer based on velocity residual was formulated in [6]. This approach did not use the

complete robot dynamics for the development of a more accurate adaptive threshold. An-

other nonlinear torque observer was formulated in [7] for estimating friction torques in two

link manipulators. This method however, could not be easily extended to robots with more

than two joints. The implementation of high gain observers [8], for estimating external

torques in robot manipulators, was proposed and discussed in detail in [9] and is used in

this paper for the calculation of external torque residuals.

To detect collisions in manipulators, accurate modeling of the robot dynamics and the fric-

tion is essential for external torque observers with or without joint torque sensors. This

paper describes how collision detection in manipulators can be improved if the dynamic

modeling errors, friction compensation errors and sensor errors are taken into considera-

tion. We propose techniques for finding estimations of the modeling and sensor errors with-

out resorting to complete remodeling of the robot. The proposed techniques are developed

for robots with and without joint torque sensors and are used to introduce velocity-based

variable thresholds. It is shown that by compensating the torque residual thresholds with

the velocity-based variable thresholds, collisions can be detected more accurately com-

pared to uncompensated thresholds. Experimental results on a robot equipped with joint

torque sensors are used to show the efficacy of our method.

The organization of this paper is as follows. Section 4.2 covers manipulator modeling

equations for rigid and flexible joint robots. Also, in this section, details of external torque

observers with and without joint torque sensors are described. Section 4.3 analyzes the ef-

fects of inaccurate modeling and torque sensor reading errors on external torque observers.

Strategies for minimizing the effects of such errors on torque observers are also discussed.

In section 4.4, velocity-based variable thresholds for collision detection are proposed. In

section 4.5, the proposed velocity-based thresholds are implemented on a KUKA-LWR

robot that is equipped with joint torque sensors. Collision detection capability of the pro-

posed thresholds is compared to those obtained from uncompensated thresholds on the

KUKA-LWR. This comparison also includes the results of the COLLDETECTION mod-

ule included by the manufacturer in the KUKA-LWR software. Section 4.6 concludes the

paper and discusses future work.
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4.2 Manipulator Modeling and Calculation of External Torques

A manipulator’s dynamic equation is given by,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τm + τd + τc − τ f r (4.1)

where q denotes the joint space position of the manipulator, M(q) is the link inertia matrix,

C(q, q̇) is the Centrifugal and Coriolis matrix, and g(q) is the gravitational vector. Also in

this equation, τm represents the motor torque, τ f r is the friction torque of the manipulator,

τd represents the disturbance torque, and τc represents external torques acting on the ma-

nipulator.

In what follows, two methods for observing external torques with and without torque sen-

sors are discussed.

4.2.1 External Torque Observer Using Motor Torques

Various external torque observers have been proposed in the literature, including high gain

observers and sliding mode observers [8], observers based on adaptive control law [10],

and nonlinear disturbance observers [7]. A common drawback among these observers is

their complex dynamics, which in case of error analyses leads to further complications. In

this paper, we use the observer discussed in [9] which can be applied to any manipulator

without further modifications. This observer uses the generalized momentum of the robot

i.e.,

p(t) = M(q)q̇ (4.2)

and is defined as the following N-dimensional residual for the external torques τc,

r(t) = KI

[
p(t) −

∫ t

0

(
τm + τd + CT (q, q̇)q̇

−g(q) − τ f r + r
)
du − p(0)

]
(4.3)

where N is the number of robot joints, and KI is the observer gain. In (4.3), r(t) represents

the first-order filtered value of τc [9], i.e. r(t) = KIτc/(s + KI), where s represents the

Laplace transform. Accurate calculation of r(t) is not possible due to the existence of errors

in dynamic modeling, joint flexibility, friction modeling, sensor readings, and disturbance
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torque τd. Hence, one is limited to,

r̂(t) = KI

[
p̂(t) −

∫ t

0

(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q

−ĝ(q̂) − τ̂ f r + r̂
)
du − p̂(0)

]
(4.4)

where the hatted values are the approximations obtained through either modeling, online

calculations, or real-time sensor readings. The solution of the differential equation (4.4)

with respect to r̂(t) is given by,

r̂(t) = KI

[
p̂(t) − KI

(
e−KI t ∗ p̂(t)

) ]
− KI

(
e−KI t ∗

(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂) − τ̂ f r

))
(4.5)

where ∗ denotes convolution (for more details see Appendix B). The initial value p̂(0)

has only a transient effect on r̂(t) and is ignored in (4.5). The external torque residual in

equation (4.4) is approximately zero as long as there is no collision [9], i.e.,

τc(t) = 0 =⇒ r̂(t) ≈ 0 (4.6)

In order to use r̂(t) for detecting collisions, the simplest method is to choose a constant

threshold b for r̂(t) so that upon exceeding this threshold, i.e., |r̂(t)| > b, post-collision rou-

tines are triggered. It is a common practice to define such thresholds for collision detection

[9], and determine the threshold values experimentally as the maximum value of |r̂(t)| in

the absence of external forces [10], [11].

4.2.2 Measuring External Torques Using Joint Torque Sensors

Availability of force/torque sensors in robot joints provides another method for measuring

external torques. These sensors measure the sum of external forces/torques and manipulator

dynamics, i.e.,

τs =Ms(q)q̈ + Cs(q, q̇)q̇ + gs(q) − τds − τc + τ f rL (4.7)

where the subscript s denotes the parameters measured at the location of the torque sensors.

τds is the disturbance at the torque sensors, and τ f rL is the part of the friction that can be

measured by the torque sensors. In Fig. 4.1, a general schematic of a robotic joint is
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Figure 4.1: Schematic diagram of a single robot joint

depicted to show the relative locations of the torques acting on the joint.

In order to avoid using the estimated values of joint accelerations to calculate τc, an

observer similar to (4.3) can be used,

rs(t) = KI

[
ps(t) −

∫ t

0

(
τs + τds + CT

s (q, q̇)q̇

−gs(q) − τ f rL + rs
)
du − ps(0)

]
(4.8)

Similar to (4.4), using available estimations, the corresponding observer for τ̂c is given by,

r̂s(t) = KI

[
p̂s(t) −

∫ t

0

(
τ̂s + ĈT

s (q̂, ˆ̇q) ˆ̇q

−ĝs(q̂) − τ̂ f rL + r̂s
)
du − p̂s(0)

]
(4.9)

In the same manner as in (4.5), the solution to (4.9) with respect to r̂s is given by,

r̂s(t) = KI

[
p̂s(t) − KI

(
e−KI t ∗ p̂s(t)

) ]
− KI

(
e−KI t ∗

(
τ̂s + ĈT

s (q̂, ˆ̇q) ˆ̇q − ĝs − τ̂ f rL

))
(4.10)

The accuracy of the observers (4.4) and (4.9) is prone to modeling and measurement errors.

In the next section, the effects of these errors are calculated and methods for overcoming

these inaccuracies, with and without torque sensors, are discussed.

4.3 Effects of Unmodeled Dynamics on Measuring Exter-
nal Torques

Unmodeled dynamics appear in the calculation of external torques. In this section, the

effects of such dynamics on the torque observers given in (4.4) and (4.9) are examined and
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approaches for minimizing their impact on external torque measurements are presented.

The formulation of unmodeled dynamics provided in this section will be used in Section

4.4 to define Velocity-Based Variable Thresholds.

4.3.1 Motor Torque Observer

The effect of inaccurate modeling on external torque observers is defined as the difference

between the actual external torques and the observed external torques. For the observer

(4.4), this effect is equal to the following residual,

r̃(t) = r̂(t) − r(t) (4.11)

where r̃(t) can be obtained in the same way described for r̂(t) in Appendix B. Hence,

r̃(t) = KI

[
p̃(t) − KI

(
e−KI t ∗ p̃(t)

) ]
− KI

(
e−KI t ∗

(
τ̃m − τd + ṽ − g̃ − τ̃ f r

) )
(4.12)

in that τ̃m = τ̂m−τm, p̃(t) = M̂(q̂) ˆ̇q−M(q)q̇, ṽ(t) = ĈT (q̂, ˆ̇q) ˆ̇q−CT (q, q̇)q̇, g̃(t) = ĝ(q̂)−g(q),

and τ̃ f r = τ̂ f r − τ f r. Here we define two terms that contribute to (4.12) and are caused by

modeling inaccuracies. The first term is due to friction modeling errors and inaccuracies in

estimating motor torques, i.e.,

τ f me = τ̃ f r − τ̃m (4.13)

The second term is the effect of dynamic modeling errors in (4.12),

h̃(t) , KI

[
p̃(t) − KI

(
e−KI t ∗ p̃(t)

) ]
− KI

(
e−KI t ∗

(
ṽ − g̃

))
(4.14)

The problem of improving the external torque observers, is equivalent to the problem of

estimating or minimizing τ f me(t) and h̃(t). One method for keeping h̃(t) as small as possible,

in the absence of external torques, is to use the adaptive controller proposed in [10], which

minimizes the dependency of the residual to p̃(t), ṽ(t), and g̃(t). This paper will propose

the velocity-based variable thresholds to reduce the effects of τ f me(t) and h̃(t) on collision

detection outcomes.

In the next section, the suitability of employing joint torque sensors in reducing the effects

of inaccurate modeling is studied.
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4.3.2 Joint Torque Sensor Observer

When torque sensors are employed for the calculation of external torques, the external

torque residual (4.9) must be implemented. Similar to (4.11), the effect of measurement

and modeling errors in the external torque residual (4.9) is equal to,

r̃s(t) = r̂s(t) − rs(t) (4.15)

Consequently, in the same way as in (4.12), r̃s(t) can be expressed as,

r̃s(t) = KI

[
p̃s(t) − KI

(
e−KI t ∗ p̃s(t)

) ]
− KI

(
e−KI t ∗

(
τ̃s − τds + ṽs − g̃s − τ̃ f rL

))
(4.16)

where τ̃s = τ̂s − τs, p̃s = p̂s − ps, ṽs = v̂s − vs, g̃s = ĝs − gs, and τ̃ f rL = τ̂ f rL − τ f rL . Using

similar arguments as in (4.13) and (4.14), the following two term in (4.16) contribute to

modeling inaccuracies,

τs fe = τ̃s − τ̃ f rL (4.17)

h̃s(t) = KI

[
p̃s(t) − KI

(
e−KI t ∗ p̃s(t)

) ]
− KI

(
e−KI t ∗

(
ṽs − g̃s

))
(4.18)

In the absence of external torques, h̃s(t), similar to h̃(t), can be kept as small as possible

using the adaptive controller in [10].

4.3.3 Concurrent Use of Motor Torque Observer and Joint Torque
Sensor Observer

In this section, the combined effect of unmodeled dynamics when both motor torque ob-

server and joint torque observer are implemented is discussed. When joint torque sensors

are installed, the sum of two of the unmodeled terms, namely τ f me defined in (4.13) and τs fe

defined in (4.17), can be obtained by subtracting (4.1) from (4.7),[
τ̂s − τ̂ f rL − τs fe + τds

]
−
[
τ̂m − τ̂ f r + τ f me + τd

]
=[

Ms(q)q̈ + Cs(q, q̇)q̇ + gs(q)
]
−
[
M(q)q̈ + C(q, q̇)q̇ + g(q)

]
(4.19)
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An estimation of τ̂ f me + τ̂s fe is then given by,

τ̂s fe + τ̂ f me ≈
[
τ̂s − τ̂ f rL

]
−
[
τ̂m − τ̂ f r

]
−
[
M̂s(q̂) ˆ̈q

+ Ĉs(q̂, ˆ̇q) ˆ̇q + ĝs(q̂)
]
+
[
M̂(q̂) ˆ̈q + Ĉ(q̂, ˆ̇q) ˆ̇q + ĝ(q̂)

]
(4.20)

Furthermore, if the manipulator has only revolute joints, and if the torque sensors are in-

stalled on the same axis the motors are installed on, then using the Euler-Lagrange equa-

tions it can be shown that gs(q) = g(q) and Cs(q, q̇)q̇ = C(q, q̇)q̇. Consequently the estima-

tion in (4.20) will simplify to,

τ̂s fe + τ̂ f me ≈
[
τ̂s − τ̂ f rL

]
−
[
τ̂m − τ̂ f r

]
− M̂s(q̂) ˆ̈q + M̂(q̂) ˆ̈q (4.21)

In (4.20) and (4.21), τ̂m can be estimated using motor currents. The estimations τ̂ f r and τ̂ f rL

are the friction models that were used in the observers (4.4) and (4.9).

The applicability of (4.20) and (4.21) to external torque measurement largely depends on

the relative accuracy of τ̂ f me and τ̂s fe . The value of τ̂ f me + τ̂s fe by itself cannot be used to

reduce the effects of modeling accuracies in the residuals (4.12) and (4.16). Hence, further

examination of these residuals is required to estimate τ̂ f me and τ̂s fe using (4.21).

In the next section, we propose the velocity-based variable thresholds for collision de-

tection by utilizing the available information on the inaccuracies of τ̂s fe and τ̂ f me , and by

using approximations for h̃(t) and h̃s(t). To this effect, we employ the formulation of the

unmodeled dynamics of serial link manipulators provided in this section.

4.4 Velocity-Based Variable Thresholds for Collision De-
tection

In this section we introduce velocity-based thresholds for the purpose of collision detection

in industrial manipulators with modeling inaccuracies.

First, we analyze the effects of inaccurate friction modeling on collision detection thresh-

olds. Given that most friction models, e.g. LuGre model, are velocity dependent, inaccurate

modeling of friction results in velocity-dependent errors. To further elaborate on this mat-

ter, the effects of parameter uncertainty on the LuGre model are considered in the following
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Figure 4.2: Simulated values of friction estimation error for a LuGre model with 15%

parameter uncertainty

simulation results.

The LuGre friction model is defined as follows [12],

ż = q̇ −
σ0|q̇|
s(q̇)

z; (4.22a)

τ f r = σ1ż + σ0z + σ2q̇; (4.22b)

s(q̇) = Fc + (Fs − Fc)e−α|q̇| (4.22c)

where z represents the deflection of bristle-like elements used for characterizing the friction

force in the model, τ f r is the friction torque, σ0, σ1, and σ2 are the stiffness, damping and

viscous friction coefficients, respectively, and Fc and Fs are Coulomb and stiction friction

torques, respectively. Also, α represents the nature of the transitions between Fc and Fs

in s(q̇). A Monte Carlo simulation on a LuGre friction model with a maximum of 15%

uncertainty in all the parameters is conducted. The inputs to the LuGre model are 500

fourth-order polynomial velocity trajectories of different lengths throughout a total time

span of 1000 seconds. Fig. 4.2 shows the results of this simulation, i.e. τ̃ f r = τ̂ f r − τ f r.

From Fig. 4.2, it is clear that the friction modeling error |τ̃ f r| = |τ̂ f r − τ f r| is dependent on

the velocity, i.e.

|τ̃ f r(t)| ≤ β(q̇) (4.23)

where,

β(q̇0) = max
t
|τ̃ f r(t)|, ∀ q̇(t) = q̇0 (4.24)

Thus, for any mechanical system with friction including manipulators, it can be safely as-

sumed that a function β(q̇) exists that determines the maximum friction modeling error for

any given velocity. This concept will be later used to determine the velocity-based variable
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thresholds.

The second step in determining the collision detection thresholds is considering the un-

modeled dynamics. We use an approximation of h̃(t) and h̃s(t), introduced in [13], for the

velocity-based variable thresholds. These approximations are

h̃(t) ≈ γĥ(t) (4.25)

where,

ĥ(t) , KI

[
p̂(t) − KI

(
e−KI t ∗ p̂(t)

) ]
− KI

(
e−KI t ∗

(
v̂ − ĝ

))
(4.26)

and similarly,

h̃s(t) ≈ γsĥs(t) (4.27)

where,

ĥs(t) , KI

[
p̂s(t) − KI

(
e−KI t ∗ p̂s(t)

) ]
− KI

(
e−KI t ∗

(
v̂s − ĝs

))
(4.28)

γ and γs are constants that are adjusted for every joint individually.

In order to define the velocity-based variable thresholds for the residuals (4.4) and (4.9), the

robot dynamics during collision-free periods are considered. Considering that the estima-

tions of τ f me(t) and h̃(t) are available, (4.13) and (4.14) are introduced into (4.12) to obtain

a residual signal without systematic modeling inaccuracies. This residual, in the absence

of external forces, can be approximated to be zero and is equal to,

r̂c(t) = r̂(t) − h̃(t) − KI

(
e−KI t ∗ τ f me

)
≈ 0 (4.29)

Furthermore, by including the approximation of h̃(t) given in (4.25),

r̂c(t) ≈ r̂(t) − γĥ(t) − KI

(
e−KI t ∗ τ̂ f me

)
≈ 0 (4.30)

In a similar manner, estimations of τs fe(t) and h̃s(t) allow introducing (4.17), (4.18) and

(4.27) into (4.16) to obtain the following residual signal,

r̂s,c(t) ≈ r̂s(t) − γsĥs(t) + KI

(
e−KI t ∗ τ̂s fe

)
≈ 0 (4.31)
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We will use the signals r̂c(t) and r̂s,c(t) to define the velocity-based variant thresholds for

the standard residuals r̂(t) and r̂s(t). To this effect, we use the notion of velocity-dependent

friction modeling described in (4.23) and apply it to (4.30) to arrive at,

Lr̂(q̇) < r̂c(t) < Ur̂(q̇) (4.32)

where Lr̂(q̇) and Ur̂(q̇) are the lower and upper bounds of the residual r̂c(t), respectively.

These bounds should be determined experimentally. Substituting r̂c(t) from (4.30) into

(4.32) yields,

Lr̂(q̇) < r̂(t) − γĥ(t)

− KI

(
e−KI t ∗ τ̂ f me(q̇)

)
< Ur̂(q̇) (4.33)

consequently,

LT r̂(t) < r̂(t) < UT r̂(t) (4.34)

in that,

UT r̂(t) = Ur̂(q̇) + γĥ(t) + KI

(
e−KI t ∗ τ̂ f me(q̇)

)
(4.35)

and,

LT r̂(t) = Lr̂(q̇) + γĥ(t) + KI

(
e−KI t ∗ τ̂ f me(q̇)

)
(4.36)

UT r̂ and LT r̂ respectively are the velocity-based upper and lower thresholds for the motor

torque-based external torque observer r̂(t) defined in (4.4).

For the external torque observer using joint torque sensors, i.e. r̂s(t) as defined in (4.9), one

can similarly obtain,

LT r̂,s(t) < r̂s(t) < UT r̂,s(t) (4.37)

where UT r̂,s and LT r̂,s respectively are the upper and lower velocity-based thresholds for

r̂s(t), and are equal to,

UT r̂,s(t) = Ur̂,s(q̇) + γsĥs(t) − KI

(
e−KI t ∗ τ̂se(q̇)

)
(4.38)

LT r̂,s(t) = Lr̂,s(q̇) + γsĥs(t) − KI

(
e−KI t ∗ τ̂se(q̇)

)
(4.39)
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Figure 4.3: Collision detection using a Hybrid III 50th male dummy

Similar to (4.32), Lr̂,s(q̇) and Ur̂,s(q̇), are determined experimentally as the lower and upper

bounds of the residual r̂s,c(t) in (4.31).

Constant thresholds are often used for the purpose of collision detection [9], [10]. Our

proposed thresholds (4.35), (4.36), (4.38), and (4.39) are velocity-dependent in terms of

τ̂se(q̇) and τ̂ f me(q̇), and time-variant in terms of ĥ(t) and ĥs(t). These variable thresholds are

more realistic and result in more true-positive outcomes in collision detection.

In what follows, we cover a case study on the application of the proposed velocity-based

variable thresholds in a torque sensor equipped robot. Moreover, the performance of the

factory-integrated collision detection module on this robot is compared to the performance

of the proposed time-variant thresholds.

4.5 Case Study

In this section, our proposed methodology for improving collision detection using velocity-

based thresholds for external torque observers described in section 4.4 is examined on a

KUKA Light-Weight Robot IV+, hereafter KUKA-LWR, shown in Fig. 4.3.
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4.5.1 KUKA-LWR Considerations

KUKA-LWR is a flexible joint robot, which is modeled as,

Ms(q)q̈ + Cs(q, q̇)q̇ + gs(q) = τL + τd + τc − τ f rL (4.40a)

Bθ̈ + DK−1τ̇s + τs = τm − τ f rm (4.40b)

τL = DK−1τ̇s + τs (4.40c)

where τm is the controlled motor torque, B is the motor inertia matrix, θ is the motor po-

sition, K is the diagonal joint stiffness matrix, D is the diagonal joint viscosity matrix,

τs = K(θ−q) is the elastic torque measured by the torque sensors, τ f rm is the friction torque

of the motors, τ f rL is the friction torque of the links, and τL is the torque transferred to the

manipulator’s links.

By replacing τm and τ f r with τL and τ f rL , respectively, every equation derived in sections

4.2-4.4 holds true for the flexible joint model (4.40). Therefore, the velocity-based variable

thresholds (4.34-4.39) are valid for flexible joint robots as well.

KUKA-LWR employs a state-of-the-art internal feedback loop from the torque sensors to

the input motor torque which successfully reduces the effective motor friction τ f rm and the

effective motor inertia Bθ̈. We briefly review the details of this internal feedback loop orig-

inally proposed in [9] for the benefit of our discussion. In the proposed feedback loop in

[9], the controlled motor torque is given by,

τm = BB−1
θ u + (I − BB−1

θ )τs + (D − BB−1
θ Ds)K−1τ̇s (4.41)

where u is the command torque and the values of Bθ and Ds are determined by the KUKA-

LWR controller. Readers are encouraged to refer to [9] for further information. This torque

feedback loop is mentioned here since torque sensor reading errors affect the controlled

motor torque τm in (4.41) and thereby τL, and the velocity-based thresholds.

Considering (4.40b), (4.40c), and (4.41), the transferred torque to the links is given by,

τL = u − Bθθ̈ − BB−1
θ τ f rm + (D − Ds)K−1τ̇s (4.42)

Furthermore, considering the torque sensor errors τ̃s, (4.42) becomes,

τL =u − Bθθ̈ − BθB−1τ f rm + (D − Ds)K−1 ˙̂τs

+ (BθB−1 − I)(τ̃s + DK−1 ˙̃τs) (4.43)
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Table 4.1: PID gains used via KUKA-LWR FRI module

Joint P I D

1 8.25 0.52 4.12

2 70 4.37 35

3 7.75 4.84 3.1

4 25 1.56 12.5

5 2.5 1.56 1.0

6 1.61 2.0 0.8

7 1.57 2.0 0.79

The torque sensors in KUKA-LWR must be calibrated. An inaccurate calibration results in

a constant bias. Considering such a constant bias in torque sensor readings and assuming a

small Bθ, one can conclude that

τL ≈u + (BθB−1 − I)τ̃s (4.44)

These result are used in the next section to justify the biases in the velocity-dependent terms

of the proposed thresholds.

In our experiments, the Fast Research Interface (FRI) module of KUKA-LWR was used

to control the robot. In order to provide a motor command torque to KUKA-LWR, the

FRI module needed to run in the Impedance Control mode. The Impedance Control mode

includes automatic gravity compensation. We used a PID controller with the gains listed in

TABLE 4.1 via the FRI module, together with the automatic gravity compensation, for the

purpose of position control.

4.5.2 Parameter Adjustment of the Velocity-Based Variable Thresh-
olds

The values of γ, Lr̂(q̇) and Ur̂(q̇), and the measurements of τ̂ f me(q̇) in (4.35) and (4.36)

can be adjusted simultaneously. Similarly, the values of γs, Lr̂s(q̇) and Ur̂s(q̇), and the

measurements of τ̂s fe(q̇) in (4.38) and (4.39) can be obtained simultaneously. To this effect,

two least square problems based on (4.30) and (4.31) must be used to obtain the parameters
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of the proposed velocity-based thresholds. These two least square problems are,

min
γ,τ̂ f me (q̇)

{
γĥ(t) + KI

(
e−KI t ∗ τ̂ f me(q̇)

)
− r̂(t)

}
(4.45)

min
γs,τ̂s fe (q̇)

{
γsĥs(t) + KI

(
e−KI t ∗ τ̂s fe(q̇)

)
− r̂s(t)

}
(4.46)

For the motor torque residual in (4.34), for every set of collision free data, the least square

solution to (4.45) can be used to determine the values of γ and τ̂ f me(q̇). Lr̂(q̇) and Ur̂(q̇) can

be obtained by the maximum error for each velocity in the least square solution to (4.45).

A similar method can be used to determine γs, τ̂se(q̇), Lr̂s(q̇), and Ur̂s(q̇) in (4.37-4.39) by

solving (4.46).

Also, the internal feedback loop (4.41) integrated in the KUKA-LWR controller selects

the effective motor inertia Bθ as a small value. A small value of Bθ corresponds to the

following,

M(q) ≈ Ms(q) =⇒

γ ≈ γs

h(t) ≈ hs(t)
(4.47)

In order to obtain the data required for formulating the least-square problems of (4.45) and

(4.46), fifth-order-polynomial trajectories between random set points were followed in the

absence of any collisions and the values of ĥ(t), r̂(t), ĥs(t), r̂s(t) were calculated. Moreover,

the values of q̇ were quantized with the resolution of 0.06 Rad/Sec. Since KUKA-LWR

is equipped with torque sensors, we used (4.21) to combine the two least square problems

(4.45) and (4.46) into one single least square problem. As a result, the values of γ ≈ γs,

τ̂ f me(q̇), and τ̂s fe(q̇) were found simultaneously.

Fig. 4.4 shows τ̂ f me(q̇), and τ̂s fe(q̇) obtained for all seven joints of KUKA-LWR. The graphs

in Fig. 4.4 have a constant bias which is explained by (4.44). The values of γ ≈ γs are given

in TABLE 4.2.

Constant thresholds and velocity-based variable thresholds based on TABLE 4.2, Fig. 4.4,

and (4.34-4.39) were calculated for a trajectory of fifth-order polynomial in the absence of

external torques. Fig. 4.5 shows the torque sensor based residuals r̂s(t) for joints 1-3, and

their respective velocity-based variable upper and lower thresholds, UT r̂,s(t) and LT r̂,s(t).

Similar results were obtained for joints 4-7, as well as for the motor torque based observer

r̂(t), which are not presented here for the sake of brevity.

It should be noted that the data provided in this paper from KUKA-LWR depends on the
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Figure 4.4: Estimated values of τ̂s fe(q̇) and τ̂ f me(q̇) for all joints of KUKA-LWR
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Table 4.2: Estimated γ ≈ γs for all joints of KUKA-LWR

Joint γ

1 0.002

2 5.06 × 10−4

3 0.005

4 0.001

5 −0.0054

6 0.0188

7 −0.0592

calibration of the robot and is subject to change if a different robot is used. However, the

methodology to calculate the velocity-based thresholds remains unchanged for any ma-

nipulator with or without joint torque sensors. In the next two sections, we compare the

efficacy of the proposed thresholds, constant thresholds, and the factory-integrated collision

detection module of KUKA-LWR.

4.5.3 Comparison of Velocity-Based variable Thresholds with Con-
stant Thresholds

In this section, collision detection of external torque observers, defined in (4.5) and (4.10),

using proposed velocity-based variable thresholds is compared to collision detection using

constant thresholds. In order to demonstrate the performance of the proposed thresholds,

random external impact forces were applied by an individual’s forearm colliding with the

second joint of the robot while the robot was following an arbitrary fifth-order polyno-

mial trajectory. The torque sensor-based residuals r̂s(t) and their respective velocity-based

thresholds were calculated. The results for joints 1-3 are shown in Fig. 4.6. Motor torque-

based residuals r̂(t) and their velocity-based thresholds for joints 1-3 are also shown in Fig.

4.7. Similar results were obtained for joints 4-7 which are not included for the sake of

brevity. TABLE 4.3 lists the times of detecting each collision using velocity-based thresh-

olds and the relative delays that occur if constant thresholds are used instead. The results

of TABLE 4.3 underscore the importance of the proposed velocity-based thresholds in col-

lision detection.
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Figure 4.5: Torque sensor-based residuals r̂s(t) and their respective upper and lower thresh-

olds for joints 1-3 of KUKA-LWR in the absence of collision forces

Figure 4.6: Torque sensor-based residuals r̂s(t), velocity-based variable thresholds, and

constant thresholds for joints 1-3 of KUKA-LWR in the presence of collision forces
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Figure 4.7: Motor torque-based residuals r̂(t), velocity-based variable thresholds, and con-

stant thresholds for joints 1-3 of KUKA-LWR in the presence of collision forces
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4.5.4 Comparison with the Collision Detection Module

This section compares the performance of constant and velocity-based variable thresholds

with the KUKA-LWR factory-integrated collision detection module, i.e., COLLDETEC-

TION. A Hybrid III 50th Male dummy as shown in Fig. 4.3 was used in these tests to

measure the detection delays between the three methods. Endevco R© Piezoresistive 2000

g accelerometers were installed in the dummy’s head for collision detection, alongside

KUKA-LWR integrated COLLDETECTION module. Both constant and velocity-based

thresholds were used in these tests. The robot was repeatedly moved to collide with the

dummy’s head. Fig. 4.8 demonstrates the torque sensor-based residuals, constant and

velocity-based variable thresholds for joints 1 and 4, as well as the accelerometer output

obtained in one collision experiment with the dummy. Only the results for joints 1 and 4 are

shown as these are the joints that can detect the collision. It is assumed that the accelerom-

eter readings detect collisions instantly. TABLE 4.4 compares the delays in collision de-

tection between the three methods, namely COLLDETECTION, constant thresholds, and

velocity-based variable thresholds. The weaker performance of the COLLDETECTION

module compared to the constant thresholds could be attributed to the calibration of the

joint torque sensors, even though standard techniques provided by KUKA were employed

to calibrate these sensors properly. As observed, the results clearly show that the proposed

velocity-based variable thresholds are faster in detecting collisions in comparison to the

other two methods.

4.6 CONCLUSION

In this paper we examined external torque residuals for serial link manipulators. The accu-

racy of these residuals for the purpose of collision detection was assessed and new velocity-

based variable thresholds for detecting collisions using the residuals were proposed. It

was shown that velocity-based variable thresholds, determined based on modeling errors

and torque sensor inaccuracies, resulted in more accurate collision detection than constant

thresholds. Experimental results validated that the proposed thresholds could improve the

capability of the external torque observers for detecting collisions. The velocity-based

methodology presented in this paper is a general technique that is applicable to any serial

link manipulator.

Future works will combine the proposed thresholds with adaptive modeling techniques
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Table 4.4: Collision detection delays of velocity-based and constant thresholds using torque

sensor residuals and KUKA-LWR integrated collision detection module

Experiment Velocity-Based Threshold Constant Threshold COLLDETECTION Module

Number Detection Delay (Sec) Detection Delay (Sec) Detection Delay (Sec)

Using r̂s Using r̂s

1 0.0964 0.1081 0.8132

2 0.1071 0.1218 0.8357

3 0.0784 0.0911 0.6038

4 0.1101 0.1756 0.7820

5 0.1478 0.2015 0.8226

6 0.0883 0.1430 0.7426

Average 0.1047 0.1402 0.7667

Figure 4.8: Torque sensor-based residuals r̂s(t) and their respective upper and lower thresh-

olds for joints 1 and 4 of KUKA-LWR and the scaled acceleration signal from the Hybrid

III 50th male dummy for a single collision
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and acceleration based collision detection. Moreover, we will obtain the velocity-based

variable thresholds for Magneto-Rheological fluid robots. Such robots have an inherently

safe structure for the purpose of human-robot interaction. Comparing collision detection

in Magneto-Rheological robots and KUKA-LWR using the proposed thresholds will help

determine how different actuation mechanisms can assist in creating a safe environment for

human-robot interaction.
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Chapter 5

Improved Observer-Based Collision
Detection Using Time-Variant
Thresholds

5.1 Introduction

Human robot interaction has become an active research area in recent years, with the hope

of building robots that can interact with humans in unstructured environments [1], [2],

[3], [4], [5]. The idea of robots permeating into the human environment presents a set of

challenging problems to which providing a plausible solution requires new approaches in

mechanical design, sensors and actuators [6], [7], computer vision, control algorithms, and

artificial intelligence.

One of the challenges facing researchers is evaluating the interaction of the robot with its

environment. The evaluation can be achieved using vision, tactile, or sonar sensors [8],

[9]. The evaluation becomes more important if the robot physically interacts with humans.

These types of interaction concern the safety of the humans involved [10], [11] , [12], [13].

In such cases, more reliable schemes for human-robot interactions are required. One way

to better understand the interactions of the robot with the environment is to find the forces

that are acting on the robot. These forces could be obtained either using force sensors or

force observers. Force, torque, and tactile sensors are usually costly and require extra phys-

ical space. Thus, if external torques could be found without sensors, it would be of great

advantage. Torque observers based on joint position and velocity are good techniques for

85
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obtaining the value of the external torques. The downside of using observers is the need

for the dynamics information of the robot which entails accurate modeling of the robot.

Several observer-based schemes have been proposed in the literature for obtaining the value

of the external torques [14], [15], [16], [17], [18]. In [14], an external torque observer for a

robot based on the motor current and speed was proposed. However, the observer did not

take the robot dynamics into consideration. In [15], a nonlinear torque observer based on

a velocity residual was developed. The heuristic approach adopted in this method hampers

the use of robot dynamics for the development of a more accurate adaptive threshold. In

[16], a nonlinear torque observer for two link manipulators to estimate friction was pro-

posed. Although the estimated values of the friction forces were close to their real values,

this method became of minimum use when robots with more than two joints were con-

cerned. The notion of high gain observers, originally proposed in [17], was modified for

observing torque in robot manipulators [18]. In [19], an adaptive control scheme was used

to detect collisions. However the scheme did not directly consider the effects of modeling

inaccuracies in collision detection. The aforementioned methods commonly assumed that

a reasonably accurate model of the robot was available. These methods considered inaccu-

racies in the model as additional disturbances on the observer output.

In this paper, in order to more effectively deal with the uncertainties in the robot dynamics

and friction modeling and to detect collisions more accurately, we combine the high-gain

observer scheme in [18] with time-variant thresholds. The evaluation of the collisions is

performed using time-variant thresholds. This means if the robot is moving at high ve-

locities, human safety during interactions with the robot is at higher risk compared to low

velocity movements [12]. Hence time-variant thresholds are obtained with more emphasis

on high velocity movements. To the best of our knowledge, time-variant thresholds have

not been proposed previously.

The idea of time-variant thresholds is illustrated in Figure 5.1, where constant and time-

variant thresholds are compared. In Figure 5.1 the blue line represents the difference be-

tween actual and estimated torque values, i.e. torque residual. In this figure it is assumed

that changes in the value of the torque residual during time-span T1 are due to modeling

errors while similar changes in time-span T2 are as a result of a collision. If the value of

a constant threshold is set such that it detects a collision at T2, it will also trigger a false

detection at T1. On the other hand, a time-variant threshold is able to correctly detect the

collision at T2 while avoiding false detection at T1. One should also note that time-variant

thresholds are more effective in accurate detection of collisions on less accurately modeled



5.2. ManipulatorModeling, FrictionModeling and Collision Torque Observer 87

Figure 5.1: Time-variant threshold concept

manipulators.

– The organization of the paper is as follows. In section 5.2, dynamic modeling of ma-

nipulators, LuGre friction modeling, and torque observers are reviewed. Section 5.3 pro-

vides the mathematics behind the proposed time-variant collision detection threshold that

includes uncertainties in sensor readings, dynamic modeling, and friction modeling. Of

particular importance are the uncertainties in the physical parameters of the manipulators

such as mass, inertia, center of gravity, etc., which contribute to a major time-varying

component of the threshold value during high velocity periods. Section 5.4 provides the

simulation results of applying the proposed method to a typical manipulator with six de-

grees of freedom. This includes a model of a human developed using LifeModeler software

in order to demonstrate the capabilities of the proposed time-variant threshold in detecting

collisions with humans. In Section 5.5, the proposed scheme is applied on a KUKA Light-

Weight Robot shown in Figure 5.2. Modeling errors in KUKA Light-Weight Robot show

the capabilities of time-variant thresholds. The results show that collision detection ac-

curacy of the Light-Weight Robot is improved using time-variant thresholds compared to

constant thresholds. Section 5.6 concludes the paper and discusses future work.

5.2 Manipulator Modeling, Friction Modeling and Colli-
sion Torque Observer

A manipulator’s general dynamic equation is given by,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τm + τd + τc − τ f r (5.1)
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Figure 5.2: Collision with KUKA Light-Weight Robot IV+

where q denotes the joint space position of the manipulator, M(q) is the link inertia matrix,

C(q, q̇) is the Centrifugal and Coriolis matrix, and g(q) is the gravitational vector. Also

in this equation, τm represents the torque vector exerted by the motors, τ f r is the friction

torque vector acting on the manipulator, τd represents disturbance torque vector, and τc

represents collision torque vector. Vectors τd and τc together represent external torques

acting on the manipulator. To identify the external torques in the dynamic equation, vari-

ous types of observers have been used in the literature, including high gain observers and

sliding mode observers [17], observers based on adaptive control law [19], and nonlinear

disturbance observers [16]. The common characteristic of these observers is their com-

plex dynamics which requires unnecessary complicated error analysis. In this paper, the

observer discussed in [18] is used, since this observer can be applied to any manipulator

without further modifications. This observer is defined as an N-dimensional residual for

collision torque τc,

r(t) = KI

[
p(t) −

∫ t

0

(
τm + τd + CT (q, q̇)q̇

−τ f r − g(q) + r(u)
)
du − p(0)

]
(5.2)

where N is the number of robot joints, KI is the observer gain, and p(t) = M(q)q̇ is the

generalized momentum of the robot. In (5.2), r(t) represents the first-order filtered value

of τc [18], i.e. r(t) = KI/(s + KI)τc, where s represents Laplace transform variable. It is
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not possible to accurately calculate r(t) due to the existence of errors in dynamic modeling,

friction identification, sensor readings, and the actual value of τd. Hence, one is limited to,

r̂(t) = KI

[
p̂(t) −

∫ t

0

(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q

−τ̂ f r − ĝ(q̂) + r̂(u)
)
du − p̂(0)

]
(5.3)

where the hatted values are the approximations obtained through either modeling, calcula-

tions, or real-time sensor readings.

To model friction τ f r various methods have been proposed [20], [21], [22], [23], [24], [25].

In this paper, the LuGre model from [26] is used for estimating friction forces as follows,

ż = q̇ j −
σ0|q̇ j|

s(q̇ j)
z; (5.4a)

τ f r, j = σ1ż + σ0z + σ2q̇ j; (5.4b)

s(q̇ j) = Fc + (Fs − Fc)e−α|q̇ j | (5.4c)

where z represents the deflection of bristle-like elements used for characterizing the friction

force in the model, τ f r, j is joint j friction torque, σ0, σ1, and σ2 are the stiffness, damping

and viscous friction coefficients, respectively, and Fc and Fs are Coulomb and stiction fric-

tion torques, respectively. The value of α represents the nature of the transitions between

Fc and Fs. An approximation of the LuGre model is given by,

˙̂z = ˆ̇q j −
σ̂0| ˆ̇q j|

ŝ( ˆ̇q j)
ẑ; (5.5a)

τ̂ f r, j = σ̂1 ˙̂z + σ̂0ẑ + σ̂2 ˆ̇q j; (5.5b)

ŝ( ˆ̇q j) = F̂c + (F̂s − F̂c)e−α|
ˆ̇q j | (5.5c)

Equations (5.2) and (5.3) show that as long as there is no collision, r(t) = 0 and r̂(t) ≈ 0.

In order to use r̂(t), at least a constant threshold b must be defined such that whenever

|r̂(t)| > b, a collision is detected. It is a common practice to define such a threshold and

detect a collision when this threshold is surpassed [18]. Usually, the value for the thresh-

old is determined experimentally [27], [19]. This technique does not provide an effective

method for finding collision torques by itself, since r̂(t) is an approximation of r(t). Some

considerations need to be made so as to reduce the impact of approximating r(t) in colli-

sion detection accuracy. To this end, the next section discusses the notion of a time-variant

threshold for errors in r̂(t).
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5.3 Residue Error Bounds

In this section the bounds for errors in r̂(t) are found assuming that there is no collision.

These bounds would also serve as the thresholds for r̂(t). To this purpose, re(t) is defined

as,

re(t) = r̂(t) − r(t) (5.6)

5.3.1 Constant Bounds

To calculate a bound for re(t), a straight forward method is to directly subtract (5.2) from

(5.3), i.e.,

re(t) =KI

[
M̂(q̂) ˆ̇q − M(q)q̇ −

∫ t

0

(
τme − τd − τ̂ f r

+ τ f r + ĈT (q̂, ˆ̇q) ˆ̇q −CT (q, q̇)q̇ − ĝ(q̂) + g(q)

+ re
)
du − M̂(q̂(0)) ˆ̇q(0) − M(q(0))q̇(0)

]
(5.7)

By denoting pe(t) = M̂(q̂) ˆ̇q − M(q)q̇, Ve(t) = ĈT (q̂, ˆ̇q) ˆ̇q − CT (q, q̇)q̇, ge(t) = ĝ(q̂) − g(q),

τ f re = τ̂ f r − τ f r, and by taking the Laplace transform of (5.7), the following expression for

re is obtained,

Re(s) =
s

s + KI
KIL

{
pe(t) −

∫ t

0

(
τme − τd + Ve(u)

− ge(u) − τ f re
)
du − pe(0)

}
(5.8)

Because of the time constant KI , pe(0) only has a transient effect on re(t) and hence could

be ignored. Converting (5.8) to the time domain yields,

re(t) = KI

[
pe(t) − KI

∫ t

0
e−KI (t−u) pe(u)du

]
− KI

∫ t

0
e−KI (t−u)(τme − τd + Ve(u) − ge(u) − τ f re

)
dt

(5.9)

In this paper, for the sake of simplicity in writing, the L∞ norm of a vector is defined as

‖·‖∞ =
[
‖·‖∞,1 , ..., ‖·‖∞, j , ..., ‖·‖∞,N

]T
where ‖·‖∞, j = sup

t, j
| · |, j = 1, ...,N is the L∞ norm of
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the jth component of the vector.

The vectorized L∞ norm applied to (5.9), yields the maximum of each component of the

vectors across the time span t. A maximum bound for |re(t)|, in which | · | is the component-

to-component absolute value of the vector, is found as,

|re(t)| ≤ b1 (5.10)

in that,

b1 =2KI ‖pe(t)‖∞ + ‖Ve(t) − ge(t)‖∞

+ ‖τme(t) − τd(t)‖∞ +
∥∥∥τ f re(t)

∥∥∥
∞

(5.11)

Since it is difficult to determine the exact values of the right-hand side terms of (5.11), the

maximum bound defined in (5.10) is not of much use in its current form. This equation

is only to demonstrate the needs for a constant maximum bound for collision detection

purposes. One can obtain such a value experimentally.

More importantly, from (5.9), it can be concluded that the maximum value of the term

2 ‖pe(t)‖∞ in (5.11) is only reached if pe(t) instantaneously changes from its minimum to

its maximum possible value. This change, dpe(t)
dt , is dependent on M(q(t)) and M̂(q̂(t)),

where t spans the time interval before the convolution attenuates pe(t) in the integral. Thus,

one can argue that there exists a time-variant bound that M(q(t)) and M̂(q̂(t)) contribute to.

This idea is explained in the next section.

5.3.2 Proposed Time-variant Bounds

To obtain time-variant bounds for re(t), which serve as the thresholds for r̂(t), let us use a

different formulation of (5.7) using the linearity in parameters property [28]. The left-hand

side of (5.1) can be expressed as,

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)Θ (5.12)

where Θ is a constant vector containing minimal inertial parameters of the manipulator

which includes the mass, the center of mass, and inertia tensor of the robot links [29]. It

can be easily deduced that each individual component in (5.12) is linear in terms of Θ, i.e.
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M(q)q̈ = YM(q, q̈)Θ; C(q, q̇)q̇ = YC(q, q̇)Θ; g(q) = Yg(q)Θ. Thus (5.7) becomes,

re(t) =KI

[(
YM(q̂, ˆ̇q) − YM(q, q̇)

)
Θ + YM(q̂, ˆ̇q)Θe

−

∫ t

0

[
τme − τd +

(
YCT (q̂, ˆ̇q) − YCT (q, q̇))

)
Θ

+ YCT (q̂, ˆ̇q)Θe −
(
Yg(q̂) − Yg(q)

)
Θ − Yg(q̂)Θe

− τ f re + re

]
du − pe(0)

]
(5.13)

Denoting YMe(t) = YM(q̂, ˆ̇q)−YM(q, q̇), YCT e(t) = YCT (q̂, ˆ̇q)−YCT (q, q̇), Yge(t) = Yg(q̂)−Yg(q),

and by taking the Laplace Transform of (5.13) the following is obtained,

re(s) =
s

s + KI
KIL

{
YMe(t)Θ̂ + (YM(q̂, ˆ̇q) − YMe(t))Θe

− pe(0)
}
−

KI

s + KI
L

{
τme − τd + YCT e(t)Θ̂ + (YCT (q̂, ˆ̇q)

− YCT e(t))Θe − Yge(t)Θ̂ − (Yg(q̂) − Yge(t))Θe − τ f re

}
(5.14)

As in (5.9), pe(0) has been ignored due to its transient effect. Rewriting and rearranging

(5.14) in the time domain gives,

re(t) =KI

[
YMe(t) −

∫ t

0
e−KI (t−u)(KIYMe(u) + YCT e(u)

− Yge(u)
)
du

]
Θ̂ + KI

[
YM(q̂, ˆ̇q) − YMe(t)

−

∫ t

0
e−KI (t−u)

[
KI

(
YM(q̂, ˆ̇q) − YMe(u)

)
+ YCT (q̂, ˆ̇q) − YCT e(u) − (Yg(q̂) − Yge(u))

]
du

]
Θe

− KI

∫ t

0
e−KI (t−u)(τme − τd − τ f re)du (5.15)

Excluding the inaccuracies in motor modeling and unmodeled dynamics of the robot, the

inaccuracy in the manipulator modeling is represented by Θe. The following formulation

for Θe proves to be very effective in obtaining the simulation and experimental results in

sections 5.4, and 5.5, respectively.

Θe = εΘ̂ + δΘ̂ (5.16)
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where

ε = diag(ε1, ε2, . . . , εp); δΘ̂ = [δΘ̂,1, δΘ̂,2, . . . , δΘ̂,p]T (5.17)

In other words, ε is a diagonal constant matrix which needs to be tuned and δΘ̂ compensates

for the difference between Θe and εΘ̂. Also, p is the number of minimal inertial parameters.

To include the effect of friction in time-variant thresholds, τ f re is rewritten as

τ f re(t) = ε f rτ̂ f r(t) + δ f r(t) (5.18)

where

ε f r = diag(ε f r,1, ε f r,2, . . . , ε f r,n);

δ f r(t) = [δ f r,1(t), δ f r,2(t), . . . , δ f r,n(t)]T (5.19)

Again, ε f r is a diagonal constant matrix which needs to be tuned and δ f r(t) compensates for

the difference between τ f re(t) and ε f rτ̂ f r(t). To justify the particular formulation given in

equation (5.18), it is assumed, for obvious reasons, that human safety is more jeopardized

during faster robot motions. During faster motions, the dominant part of the friction is

viscous friction which is linear in terms of joint velocity. Hence friction modeling error

would be, to some extent, linear in terms of τ̂ f r(t). This linear formulation proves to be

useful in obtaining the simulation results of section 5.4 that incorporate the LuGre friction

model. By defining,

H(t) =KI

[
YM(q̂, ˆ̇q) −

∫ t

0
e−KI (t−u)(KIYM(q̂, ˆ̇q)

+ YCT (q̂, ˆ̇q) − Yg(q̂)
)
du

]
(5.20)

and using (5.18) and (5.16), equation (5.15) can be rewritten as,

re(t) − ε f rKI

∫ t

0
e−KI (t−u)τ̂ f r(t)du − H(t)εΘ̂

= KI

[
YMe(t) −

∫ t

0
e−KI (t−u)(KIYMe(u)

+ Y(CT−g)e(u)
)
du

]
(Θ̂ − Θe) + H(t)δΘ̂

− KI

∫ t

0
e−KI (t−u)(τme − τd − δ f r)du (5.21)
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where Y(CT−g)e(t) = YCT e(t) − Yge(t). Hence, the time-variant bounds for re(t) are found as,

b2L(t) ≤ re(t) ≤ b2H(t) (5.22)

where

b2H(t) = b2C + b2V(t); b2L(t) = −b2C + b2V(t) (5.23)

b2C =(2KI ‖YMe(t)‖∞ +
∥∥∥Y(CT−g)e(t)

∥∥∥
∞

)(|Θ̂| + |Θe|)

+ ‖τme(t) − τd(t)‖∞ +
∥∥∥δ f r(t)

∥∥∥
∞

(5.24)

b2V(t) = |H(t)| |δΘ̂| + H(t)εΘ̂

+ ε f rKI

∫ t

0
e−KI (t−u)τ̂ f r(u)du (5.25)

As before, | · | denotes a component by component absolute value operator.

Contrary to b1(t), b2H(t) and b2L(t), are bounds that depend on the trajectory of the robot.

These bounds can decrease or increase the maximum and minimum values that re(t) can

take without triggering a collision. When inaccuracies in the robot and friction modeling

appear as positive collision torques in robot dynamics, the bounds b2H(t) and b2L(t) are

increased and whenever these inaccuracies appear as negative collision torques, b2H(t) and

b2L(t) are decreased. To use these time-variant bounds easier, some minor changes need to

be made which are discussed in subsection 5.3.3.

5.3.3 Implementation Notes

Implementation of b2H(t) and b2L(t) involves finding H(t) in (5.20) which in turn requires

all the Y matrices. Unfortunately, calculating the Y matrices is not easy for manipulators

with multiple joints. Moreover, in (5.25), tuning the value of ε and determining an upper

bound for |δΘ̂| are non-trivial tasks. To overcome these downsides, a joint-by-joint view of

(5.16) is considered here,

Θe = γ jΘ̂ + δΘ̂, j (5.26)
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where γ j is a scalar value to be tuned for each joint. Using (5.18) and (5.26), the residual

error given in (5.15) for joint j can be rewritten as,

re, j(t) − ε f r, jKI

∫ t

0
e−KI, j(t−u)τ̂ f r, j(t)du − γ jH j(t)Θ̂

= KI, j

[
YMe, j(t) −

∫ t

0
e−KI, j(t−u)(KI, jYMe, j(u)

+ Y(CT−g)e, j(u)
)
du

]
(Θ̂ − Θe) + H j(t)δΘ̂, j

− KI

∫ t

0
e−KI, j(t−u)(τme, j − τd, j − δ f r, j)du (5.27)

where the subscript j denotes the jth row of the corresponding vector or matrix. This

formulation of residual error lends itself to new definitions for b2C, j and b2V, j(t) originally

defined in (5.24) and (5.25), respectively. These new definitions are,

b2C, j =
∥∥∥H j(t)δΘ̂, j

∥∥∥
∞

+ (2KI, j

∥∥∥YMe, j(t)
∥∥∥
∞

+
∥∥∥Y(CT−g)e, j(t)

∥∥∥
∞

)(|Θ̂| + |Θe|)

+
∥∥∥τme, j(t) − τd, j(t)

∥∥∥
∞

+
∥∥∥δ f r, j(t)

∥∥∥
∞

(5.28)

b2V, j(t) = γ jh(t) + ε f r, jKI

∫ t

0
e−KI, j(t−u)τ̂ f r, j(u)du (5.29)

where,

h(t) =KI

[
p̂(t) −

∫ t

0
e−KI (t−u)(KI p̂(u)

+ ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂)
)
du

]
(5.30)

The reason for assuming H j(t)δΘ̂, j as a constant term of b2C, j is that otherwise it requires

obtaining all Y matrices in (5.20) for obtaining b2V, j. As mentioned earlier, calculating Y

matrices in not an easy task for manipulators with multiple joints. Moreover, an estimate

of δΘ̂, j is not readily available.

As long as there is no external collision torques on the manipulator, r(t) = 0, which in turn

using (5.6) results in r̂(t) = re(t). Consequently having,

|r̂(t)| > b2C + b2V(t) or |r̂(t)| < −b2C + b2V(t) (5.31)
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is an indication of a collision.

To implement (5.28) and (5.29) in practice, involving robot manipulators, usually one does

not necessarily have access to individual values such as
∥∥∥∥pΘ̂

e (t)
∥∥∥∥
∞

or
∥∥∥δ f r(t)

∥∥∥
∞

, unless with

extensive experiments on the robot. A remedy for this problem is to present b1(t), b2H(t) and

b2L(t) after combining the constant terms in (5.11), (5.28), and (5.29), and obtaining these

constant values through experiments. Using this method, if KI is kept at a constant value

throughout all experiments, (5.11) would turn into,

b1 =KIβ1 + β2 = β (5.32)

and if γ and ε f r are known, b2H(t) and b2L(t) become,

b2H(t) = α1 + (KIα2 + α3)(Θ̂ + α4) + α5

+ γh(t) + ε f rKI

∫ t

0
e−KI (t−u)τ̂ f r(u)du (5.33a)

= α + γh(t) + ε f rKI

∫ t

0
e−KI (t−u)τ̂ f r(u)du;

b2L(t) = −α + γh(t) + ε f rKI

∫ t

0
e−KI (t−u)τ̂ f r(u)du (5.33b)

The values of β, α, γ and ε f r can be tuned experimentally by having the robot follow few

different trajectories. Tuning γ and ε f r properly gives (5.33) the ability to detect collisions

more accurately as compared with the constant threshold approach given in (5.32).

5.4 Simulations

In this section we evaluate the effectiveness of time-variant thresholds on collision detection

and compare it to constant thresholds using a complete simulated model of PUMA 560

shown in Figure 5.3. PUMA 650 is selected due to the availability of its complete model in

the literature. The model of PUMA 560 haven been reported in several articles [30], [31],

[32], [33]. The model parameters used here are taken from [31]. As there is no information

about the friction modeling of the wrist, which includes the last three joints of PUMA

robot, these joints are excluded from collision detection analyses. The effect of these joints

have been considered in calculating the inertia of the robot simulated.

An estimation of the inertia parameters within 15% error is assumed. The LuGre model is

considered for friction modeling and the parameters of the estimated model are assumed to
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Figure 5.3: PUMA 560

Table 5.1: Simulated Trajectory Points

time(s) q1 q2 q3 q4 q5 q6

0 0 -90 90 0 0 0

1.25 0 -90 90 0 0 0

2.5 45 -90 135 0 90 135

3.75 0 -45 90 180 0 0

5 0 -90 90 0 0 0

have 15% error. Parameter estimations are obtained by using random functions. Due to the

large number of parameters, their values are not included in this paper. The robot controller

used in these simulations is a PID controller with gravity and friction compensation.

5.4.1 Collision Detection

PUMA 560 is set to follow a trajectory comprised of multiple time-stamped via points for

each joint angle as listed in Table 5.1. The trajectory for each joint is constructed using a

five-order polynomial passing through the given points. The gains of the PID controller for

the first three joints are given in Table 5.2.

To calculate the time-variant term of the thresholds, b2V(t) given in (5.29), the values of γ

and ε f r must be known. These values and the value of α in (5.33b) are found by comparing

r̂e(t), h(t) and KI

∫ t

0
e−KI (t−u)τ̂ f r(u)du for various trajectories. For the first three joints, the
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Table 5.2: PID Controller Gains for a Simulated PUMA 560.

Joint P I D

1 4500 0.7 80

2 12000 0.5 80

3 2500 0.1 30

Table 5.3: Values of α, γ and ε f r for a Simulated PUMA 560.

Joint 1 2 3

α 0.2212 0.3653 0.2311

γ -0.0456 -0.036 -0.078

ε f r -1.74 1.98 0.29

values of γ, ε f r and α are given in Table 5.3. It is assumed that KI = 20 for all joints. The

simulation results for the trajectory described by Table 5.1 are shown in Figure 5.4. As

observed, despite significant variations in the value of the residue signal no collision has

been detected. One is able to observe that the appropriate changes in b2V(t) counteracts the

changes in r̂(t) and hence no collision is detected.

In order to further evaluate this technique using realistic force/torque data (with noise), an

ATI force/torque sensor shown in Figure 5.3 was used to imitate a possible human collision

with a robot. Collision forces fc(t) and torques mc(t) applied by the hand to the sensor are

shown in Figure 5.5. The obtained data was applied to the last joint of PUMA to simulate

the propagation of the collision forces/torques in all joints of the robot,

τc(t) = JT
c (q)

 fc(t)

mc(t)

 (5.34)

where JT
c (q) is the Jacobian of the manipulator at the point of collision c; in this case the

end effector.

The results in Figure 5.6 show the upper bound b2H(t) and the lower bound b2L(t), collision

torques τc, and the residue r̂(t). Also in this figure, the constant thresholds considered to be

the absolute maximum values of r̂(t) in Figure 5.4 are shown. The constant thresholds for

the first three joints are 0.95, 2.6, 0.45 N.m, respectively. Table 5.4 compares the results

for collision detection using the proposed time-variant thresholds and constant thresholds

for the actual data acquired using ATI sensor. It is assumed that whenever a joint’s residue
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Figure 5.4: Collision residue r̂(t) and thresholds b2H(t) and b2L(t) for a simulated PUMA

560.

Figure 5.5: Collision forces/torques applied to the last joint of PUMA 560
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Figure 5.6: Collision residue r̂(t) compared to the collision torques τc for PUMA 560.

crosses the corresponding threshold value, it triggers a collision signal and when the residue

returns within its respective thresholds, it deactivates collision detection. The results in

Table 5.4 clearly show that the proposed time-variant method is able to detect all but one

of the collisions without setting off any false collision. There is a delay in the detection

that depends on the value of KI . As it is clear from Figure 5.6 and Table 5.4, constant

thresholds can miss too many actual collisions due to the shortcoming described previously.

In fact, there is no constant threshold that can be obtained from (5.32) to detect all collisions

correctly and avoid erroneous trigger of unreal collisions. This fact is clearly illustrated in

Figure 5.6 if one notices the large values of r̂(t) due to modeling errors and not actual

collision forces. A constant threshold will trigger false detections to these large values of

r̂(t), if it is set small enough to detect the collisions occurring at t = 6.26sec and t = 8.49sec.
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Table 5.4: Collision detection times in the first three joints of PUMA 560

Collision Time-variant Threshold Constant Threshold

Number Detection Delay (Sec) Detection Delay(Sec)

Collision Starts Collision ends Collision Starts Collision Ends

1 0.27 0.10 0.31 0.05

2 0.14 0.20 0.16 0.11

3 0.05 0.03 Does not Detect Does not Detect

4 0.03 0.09 Does not Detect Does not Detect

5 0.04 0.11 Does not Detect Does not Detect

6 0.05 0.13 0.04 0.03

7 Does not Detect Does not Detect Does not Detect Does not Detect

8 0.04 0.18 0.05 0.11

9 0.06 0.18 0.07 0.14

5.4.2 Collision with Human Arm

The model of PUMA 560 with the same parameters and PID control described in section

5.4.1 was imported from MATLAB into Multi-Body Dynamics Adams software. The same

values of γ, ε f r and α as given in Table 5.3 were used. It was assumed that the end-effector

of the robot was holding an aluminum shaft with a mass of 2.86 kg. The shaft is shown

in Figure 5.7 using a black cylinder. Using LifeModeler software, a human model with

passive joints was created in MD Adams to simulate the human body. The aluminum

shaft was moved by the robot such that it collided with the human arm twice at speeds

of 0.307 meter/sec and 0.423 meter/sec. Four snapshots of this scenario at various times

are shown in Figure 5.7. The collisions with the human arm were constructed by rotating

the first joint of PUMA 560, while keeping the other joints at constant relative positions.

The collision forces are shown in Figure 5.8. The residues obtained using (5.3), and the

upper and lower bounds b2H(t) and b2L(t) given in (5.33) for the first three joints of PUMA

560 are depicted in Figure 5.9. It is easy to see that no constant threshold is able to detect

the collisions correctly on the first joint, whereas the time-variant thresholds detect both

collisions successfully. Table 5.5, shows how fast the proposed time-variant thresholds

works for collision detection in the first three joints of the robot. With the first collision

happening at 1.58sec, the third joint is able to detect the collision only 20 milliseconds later
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Figure 5.7: Snapshots of a modeled human in LifeModeler software during two collisions

with a robot (PUMA 560).

Figure 5.8: Collision forces between the human arm and an aluminum shaft held by PUMA

560.
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Figure 5.9: Collision residue r̂(t) and upper and lower collision detection bounds for PUMA

560.
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Table 5.5: Collision detection with the human arm using time-variant thresholds in the first

three joints of PUMA 560.

Collision Starts (Sec) Joint 1 Joint 2 Joint 3

1.58 1.61 - 1.60

1.64 1.66 1.69 1.66

at 1.60sec. Similarly, the second collision at 1.64sec is detected with 20 milliseconds delay

at 1.66sec by joints 1 and 3. Only the second joint is not able to detect the first collision,

and the reason is that the collision forces are almost perpendicular to the second joint axis,

creating little amount of external torque on that joint.

5.5 Experimental Results

In this section, the results of section 5.3 are applied to the KUKA Light-Weight Robot IV+

(KUKA-LWR) shown in Figure 5.10. The Fast Research Interface (FRI) module in the

KUKA-LWR controller gives direct access to the mass matrix M(q) and the gravity vector

g(q) without the need to find minimal inertial parameters. The values for C(q, q̇) matrix are

not accessible through the FRI module. However, the C(q, q̇)q̇ amounts to almost 2% of

the total torque value in KUKA-LWR and it can be safely ignored in (5.3). i.e.,

ĈT (q̂, ˆ̇q) ˆ̇q ≈ 0 (5.35)

While KUKA-LWR can measure the torque at each joint of the robot, the focus of this pa-

per is to study sensorless collision detection. As a result, the experimental results obtained

in this section are only based on torque residuals, without using the torque sensor readings

for collision detection.

In order to provide a command torque in KUKA-LWR, the FRI module must run in Impedance

Control mode. The Impedance Control mode includes automatic gravity and friction com-

pensation. Hence, the commanded torque exerted on each joint is equal to,

τm = τm,FRI + g(q)comp + τ f r,comp (5.36)

where τm,FRI is the motor torque, and g(q)comp and τ f r,comp are the gravity and friction com-

pensation terms added to the motor torque by FRI module in Impedance Control mode.

In these experiments, only the first three joints of KUKA-LWR were considered. Joints 4-7
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Figure 5.10: KUKA Light-Weight Robot IV+

were kept at their zero position throughout the experiments. The results presented in this

section can be extended to joints 4-7 but are chosen not to in favour of the simplicity of

the text. To control KUKA-LWR, a sampling rate of 3ms was used. A PD controller with

friction compensation and automatic gravity compensation was used in Impedance Control

mode. The gains of the PD controller are given in Table 5.6.

A number of preliminary experiments that are not reported in this paper were conducted to

measure the error in friction compensation, i.e,

τ f re = τ̂ f r − τ f r (5.37)

The results from these experiments indicated that for every joint, τ f re defined in (5.37)

is found to have a hysteretic nature. Figure 5.11 demonstrates the results for Joint 1 for

different velocities from -2.0 to 2.0 rad/sec in which the hysteretic nature of τ f re is apparent.

It is therefore, suitable to model τ f re, j as,

τ f re, j = −C j

∣∣∣q̇ j

∣∣∣
q̇ j

(5.38)

This new model for τ f re should be used instead of (5.18) to obtain friction error in KUKA-

LWR. In other words, in KUKA-LWR the friction error is not linearly proportional to the
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Figure 5.11: Hysteretic nature of τ f re in joint 1 of KUKA-LWR

Table 5.6: PD controller values for KUKA-LWR

Joint P D

1 132 13.2

2 1120 112

3 124 12.4

estimated value of the friction (i.e., τ̂ f r) as in (5.18), instead it has hysteretic behaviour. This

hysteretic behaviour perhaps is due to the hysteresis that exists in torque sensor measure-

ments. The new model of τ f re provides new time-variant thresholds. These time-variant

thresholds are defined as,

b2H(t) = α + γh(t) −CKI

∫ t

0
e−KI (t−u)

∣∣∣q̇ j(u)
∣∣∣

q̇ j(u)
du (5.39a)

b2L(t) = −α + γh(t) −CKI

∫ t

0
e−KI (t−u)

∣∣∣q̇ j(u)
∣∣∣

q̇ j(u)
du (5.39b)

where α, γ, and C are vectors determined experimentally for b2H(t) and b2L(t) by compar-

ing the values of r̂e(t), h(t), and −KI

∫ t

0
e−KI (t−u) |q̇ j(u)|

q̇ j(u) du for various trajectories. For the first

three joints, the values of γ, α and C are given in Table 5.7. To compare the time-variant

thresholds given in (5.39) with the constant threshold defined in (5.32), the values of β and

e f f = α
β

are also included in Table 5.7. Note that the smaller values of e f f represent more

effectiveness of the time-variant threshold. For KUKA-LWR, the inaccuracies in the esti-

mation of the minimal inertial parameters have a larger effect on the lower joints. These
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Table 5.7: Experimental values of αH, αL, γ for KUKA-LWR

Joint 1 2 3

α 2.0137 1.8727 2.3715

γ 0.0020 5.0523e-004 0.0521

C 0.2678 0.5654 0.4367

β 2.5662 2.4758 2.8413

e f f = α/β 0.7847 0.7564 0.8347

inaccuracies have resulted in smaller values of e f f for joints 1 and 2. This demonstrates

the effect of modeling inaccuracies on external torque residues and validates our approach

in obtaining time-variant thresholds.

The results of an experiment with no collision using KUKA-LWR on a trajectory described

in Table 5.8 are shown in Figure 5.12. In this experiment the value of KI was set to 20 for

all joints. The results for collision detection using time-variant and constant thresholds

are compared in Figure 5.13, where the upper threshold b2H(t), the lower threshold b2L(t),

the residue r̂(t), along with the constant thresholds are shown. The collision forces in this

experiment were exerted on the second joint of KUKA-LWR. Table 5.9 summarizes the

results of this comparison and clearly shows the advantage of using time-variant thresholds

in collision detection. A collision has occurred whenever a joint residue crosses its corre-

sponding threshold. As observed, the collisions detected by the time-variant thresholds are

either missed or detected with delays using constant thresholds. The results also indicate

that small collision forces are detected neither with time-variant nor constant thresholds.

5.6 CONCLUSION

In this paper, time-variant thresholds for collision detection in robot manipulators were

proposed. It was shown both theoretically and experimentally that the proposed thresh-

olds were more effective in detecting collisions than any constant threshold. Time-variant

thresholds are easy to use for collision detection in robot manipulators as they require tun-

ing of three unknown parameters per joint. The proposed time-variant thresholds require

the knowledge of torques resulted from model uncertainties which in turn, make collision

detection based on time-variant thresholds more effective for the lower joints of a manip-
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Table 5.8: Trajectory Points of KUKA-LWR

time(s) q1 q2 q3

0 0 0 0

3 25 25 25

15 -168 -6 88

27 27 -70 -70

36 0 100 44

47 168 -37 -88

56 0 115 -168

69 168 6 -88

83 -55 4 1

96 34 -4 -1

107 -165 -115 169

122 165 115 -169

133 -165 -85 -169

146 165 -85 169

160 27 -70 -70

Table 5.9: Collision detection times in the first three joints of KUKA-LWR

Collision Time-variant Threshold Constant Threshold

Number Detection time (Sec) Detection Delay(Sec)

1 3.36 Does not Detect

2 7.39 Does not Detect

3 21.83 Does not Detect

4 28.43 0.01

5 38.92 0.03

6 50.18 0.42

7 62.59 Does not Detect

8 76.13 0.05

9 97.84 0.06

10 98.22 Does not Detect
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Figure 5.12: Collision residues r̂(t) and bounds b2H(t) and b2L(t) for KUKA-LWR in the

absence of collision forces
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Figure 5.13: Collision residues r̂(t), time-variant thresholds, and constant thresholds for

KUKA-LWR in the presence of collision forces
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ulator. It was also shown that the proposed thresholds were effective during fast robot

motions, when the friction forces were mainly due to viscous frictions. Simulation results

using LifeModeler software and experimental results on KUKA Light-Weight Robot were

presented to validate this approach. Future work will include obtaining similar time-variant

thresholds for the observer model given in (5.2) within the task space of a manipulator. It

is conjectured that comparing the results with those obtained within the joint space of the

manipulator will lead to possible improvements in collision detection capabilities of the

observer. Moreover, comprehensive studies of various types of robot collisions with dif-

ferent part of the human in LifeModeler environment will be an important step in order to

establish new standards for characterizing human-safe robots.
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Chapter 6

Concluding Remarks and Future Work

This chapter discusses the main contributions of this work and makes suggestions for future

research in the area of safe human-robot interaction and collision detection.

6.1 Conclusions

The key contributions of this thesis are as follows:

1. Chapter 2 discussed modeling of KUKA Light-Weight Robot IV+ (KUKA-LWR).

This robot, developed at DLR laboratories [1], is frequently used for research pur-

poses. To model the robot, the regressor matrix and minimal inertial parameters

formulations were obtained. Extensive experiments were conducted to obtain the

friction model of KUKA-LWR. Even though the LuGre model was employed to ob-

tain the friction model [2], it is shown that both link side and motor side friction of

KUKA-LWR could be best explained using a Coulomb model. A contribution of

this chapter is the identification of the minimal inertial parameters of the robot, and a

study on the effects of torque sensor calibrations in the KUKA-LWR controller. The

novelty of the work presented in this chapter in terms of modeling technique includes

the application of relative weights (see [3]) in the regression analysis of the minimal

inertial parameters. Relative weight analysis was used to consider the covariance

in the identification procedure to determine the importance of each minimal inertial

parameter in the model. Small relative weights were used as a criteria to remove the

corresponding parameters that can not be accurately identified. This in turn improved

the identification of the remaining parameters.

116



6.1. Conclusions 117

Moreover, the KUKA-LWR controller allows access to the mass matrix and the grav-

ity vector values. Procedures were devised to obtain the minimal inertial parameters

using the mass matrix and the gravity vector provided by the controller. The min-

imal inertial parameters obtained by these procedures were compared to the results

obtained by regression analysis.

2. Inaccuracies in robot models diminish the quality of external force/torque observer

results. Chapter 3 provided a comprehensive study considering modeling inaccura-

cies and robot state approximation errors in external force/torque estimation and col-

lision detection. One of the contributions of this chapter was providing the formula-

tion for external force/torque estimation errors by concurrently considering modeling

inaccuracies, and velocity and acceleration approximation errors. Another contribu-

tion was the development of model-based time-varying thresholds based on the pro-

posed formulation. Based on these thresholds, a novel collision detection capability

metric for comparing robots, trajectories, and robot state approximation filters was

developed. Also, the problem of obtaining optimal trajectories with regards to exter-

nal force/torque estimations was defined. The solution to this problem can help in

ensuring safety of the user by timely detection of collisions. The optimal trajectory

problem was developed such that it can be solved by Euler-Lagrange equations. Also

discussions were presented about the capability of the proposed method to automat-

ically compensate effects of manipulation of unknown objects in the model-based

thresholds. This property makes the proposed thresholds suitable for unstructured

environments. Further discussions were provided with regards to controller design,

effects of friction and unmodeled dynamics.

Collision detection experiments were conducted on KUKA-LWR to show the effi-

cacy of the proposed model-based collision detection thresholds. The collision de-

tection metric of different trajectories achieving the same task on KUKA-LWR were

compared. The results show the capability of the proposed metric in anticipating

collision detection efficiency.

3. Inaccurate friction modeling results in poor external force/torque observer perfor-

mance. Friction modeling is a well-studied subject in the literature [4]. The model

of the friction of a robotic system might change as a result of age, and temperature.

Usually the experiments regarding friction modeling are time-consuming and might

not be appropriate for every application. Given that friction models are velocity de-
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pendent [5], the goal of Chapter 4 was defined as considering effects of velocity

in modeling inaccuracies in observers and in collision detection without resorting

to remodeling the robot. The main contribution of Chapter 4 was the proposal of

velocity-based collision detection thresholds to achieve this goal. Robots with and

without joint force/torque sensors were studied. The effects of modeling inaccuracies

in the residual signal from the generalized momentum-based observer, proposed in

[6], was investigated. This in turn led to theoretical formulation of the deterministic

velocity-based thresholds.

In order to identify the time the collision occurs, Endevco R© Piezoresistive 2000 g

accelerometers were installed in a Humanetics R© Hybrid III 50th Male Dummy. Ex-

perimental results from conducting collisions between KUKA-LWR and the dummy

validated the proposed thresholds. The velocity-based methodology can be used to

augment the model-based thresholds developed in Chapter 3 to achieve more accu-

rate thresholds.

4. Effects of modeling inaccuracies on force/torque observers, specially errors in min-

imal inertial parameter estimations, can be further studied on a joint-by-joint basis.

By avoiding the complexity of model-based and velocity-based thresholds, a heuris-

tic method was given in Chapter 5 for improving collision detection. Considering a

linear relationship between the approximation error and the estimated value of the

minimal inertial parameters, a signal was defined for collision detection threshold

adjustment. Simulation results on PUMA 560 robot were given to validate the con-

cept. Calibration of the proposed collision detection signal was also discussed. It

was shown that this signal can be calibrated together with the friction modeling ad-

justment signal. To this end, experiments on KUKA-LWR showed that using the

proposed heuristic method, given an appropriate friction model, effects of friction

modeling errors and minimal inertial parameter inaccuracies can be mitigated simul-

taneously.

6.2 Suggestions for Future Work

The work in this thesis can be continued in several directions. Some suggestions for future

research are given here:

1. Availability of an accurate model of the actuator helps in determining the external
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forces/torques and collision detection. Considering that soft actuation systems, such

as [7], [8], [9] and [10] usually have complex mechanisms, it is essential to obtain

a very accurate model of the joints dynamics. Although without an accurate model,

the heuristic method in Chapter 5 can still be employed, and the model-based and

velocity-based thresholds can still be determined. However in such cases, due to

presence of not so small disturbances caused by unavailability of the actuator model,

the efficacy of the proposed thresholds are reduced. Therefore the actuator dynamics

of a human-safe robot must be available and accurately identified.

2. Utilization of dirty derivatives or other computational methods to obtain accelera-

tions is not satisfactory in case of non-smooth actual trajectories, specially in real-

time applications. Acceleration and velocity can be better estimated using non-causal

filters such as the Savitsky-Golay filter [11]. Such filters are useful in measurement

of external forces/torques in applications where time-delay is acceptable. However,

considering human-safety, collision detection requires fast online computation of ac-

celeration and velocity, which is usually erroneous. Availability of accelerometers

and to a lesser extent tachometers in human-safe robots can significantly lower col-

lision detection thresholds. Future work can consist of installation of such sensors

in manipulators for comparison of external force/torque estimation capability with

manipulators without such sensors.

3. Motor inertia is a major contributor to the maximum collision force in physical

human-robot interaction [12]. Therefore reducing the effective motor inertia in robot

dynamics is desirable. MR-Fluid robots are capable of disconnecting the motor in-

ertia from the link inertia [13]. This capability of MR-Fluid actuators makes them

a viable option for development of human safe-robots. A comparison between MR-

Fluid robots and other manipulators in terms of maximum collision forces can estab-

lish MR-Fluids as a major human-safe actuation mechanism. The proposed collision

detection thresholds along with trajectory planning considerations will be applied to

MR-Fluid robots in upcoming research. Theoretical formulation of the proposed col-

lision detection thresholds predicts that application of such thresholds to MR-Fluid

robots would further reduce maximum possible human-robot collision forces. Fur-

thermore, extensive studies done in our lab on hysteresis modeling of MR-Fluid ac-

tuators, such as [14], will help in development of fast and accurate collision detection

strategies.
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4. The time-varying thresholds proposed in this thesis have multiple parameters that

need to be determined before the thresholds are implemented. Tuning these param-

eters requires information about the implemented robot state estimation method and

experimental data. Although parameter tuning in each chapter of this work is sepa-

rately explained, there is a need for a standardized technique to tune the time-varying

thresholds. This can be subject of future work.

5. In chapter 3, effects of trajectory planning on external force/torque estimation and

collision detection was studied. A calculus of variations problem to maximize ex-

ternal force/torque estimation precision was proposed. However, the solution to

this optimization problem was not investigated. Future work should contain solv-

ing this problem. Moreover, upon availability of the actuator model, accelerometers

or tachometers, the optimal collision detection trajectory for performing a given task

must be reformulated.

6. The external force/torque observers can, to a good extent, only detect at which joint

the collision has occurred. Employing the Jacobian matrix of a manipulator along

with the observer help in obtaining more information about collision forces/torques

at each joint. Given the collision data, Jacobian matrix can be used to determine the

maximum possible external force/torque that could’ve occurred at each joint. To this

end, the exterior design of each link must also be considered.

7. One aspect of research in safe physical human-robot interaction is the studies on

distinguishing between user commands and accidental collisions. Any interaction

with the environment can increase or decrease the internal energy of the manipulator.

The interactions can be categorized into passive and active interactions. Preparing a

Programing by Demonstration scheme that makes use of such a passive-active cat-

egorization to make the robot able to identify the intention of its user can be an

objective of future work. The importance of such research is in its direct effect on

the safety of the users. Artificial damping can be added through the controller to the

robot when interacting with the user to make the distinction of intentional interaction

from accidental collision easier.



BIBLIOGRAPHY 121

Bibliography

[1] A. Albu-Schaffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimbock, and G. Hirzinger,

“The dlr lightweight robot: Design and control concepts for robots in human environ-

ments,” Industrial Robot, vol. 34, no. 5, pp. 376–385, 2007.

[2] M. Kermani, R. Patel, and M. Moallem, “Friction identification and compensation in

robotic manipulators,” Instrumentation and Measurement, IEEE Trans. on, vol. 56,

pp. 2346 –2353, dec. 2007.

[3] S. Tonidandel and J. LeBreton, “Relative importance analysis: A useful supplement

to regression analysis,” Journal of Business and Psychology, vol. 26, no. 1, pp. 1–9,

2011.

[4] H. Olsson, K. Astrom, C. C. de Wit, M. Gafvert, and P. Lischinsky, “Friction models

and friction compensation,” European Journal of Control, vol. 4, no. 3, pp. 176 – 195,

1998.

[5] C. Canudas de Wit, H. Olsson, K. Astrom, and P. Lischinsky, “A new model for

control of systems with friction,” Automatic Control, IEEE Trans. on, vol. 40, pp. 419

–425, mar 1995.

[6] A. D. Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Collision detection

and safe reaction with the dlr-iii lightweight manipulator arm,” in Intelligent Robots

and Systems, 2006 IEEE/RSJ International Conference on, pp. 1623 –1630, oct. 2006.

[7] A. Bicchi and G. Tonietti, “Fast and ”soft-arm” tactics [robot arm design],” Robotics

Automation Magazine, IEEE, vol. 11, pp. 22 – 33, june 2004.

[8] A. Bicchi, S. Rizzini, and G. Tonietti, “Compliant design for intrinsic safety: general

issues and preliminary design,” in Intelligent Robots and Systems, Proceedings. 2001

IEEE/RSJ International Conference on, vol. 4, pp. 1864 –1869 vol.4, 2001.

[9] M. Zinn, O. Khatib, B. Roth, and J. K. Salisbury, “A new actuation approach for

human friendly robot design,” in International Symposium on Experimental Robotics,

S. Angelo dIschia, I, pp. 379–398, 2002.



122 Chapter 6. Concluding Remarks and FutureWork

[10] P. Yadmellat, A. S. Shafer, and M. R. Kermani, “Design and development of a

safe robot manipulator using a new actuation concept,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pp. 337–342, 2013.

[11] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified

least squares procedures.,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.

[12] A. D. Santis, B. Siciliano, A. D. Luca, and A. Bicchi, “An atlas of physical human-

robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp. 253 – 270,

2008.

[13] A. Shafer and M. Kermani, “Design and validation of a magneto-rheological clutch

for practical control applications in human-friendly manipulation,” in Robotics and

Automation (ICRA), 2011 IEEE International Conference on, pp. 4266–4271, 2011.

[14] P. Yadmellat and M. Kermani, “Output torque modeling of a magneto-rheological

based actuator,” in IFAC World Congress, vol. 18, pp. 1052–1057, 2011.



Appendix A

Downloadable Files

All files are available at http://publish.uwo.ca/˜vsotoude/.

123

http://publish.uwo.ca/~vsotoude/


Appendix B

Time-Domain Solution to the External
Force/Torque Observer

Equation (4.5) is obtained by taking the Laplace transform of (4.4),

r̂(s) =KI

[
p̂(s) −

(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂) − τ̂ f r + r̂

)
s

−
p̂(0)

s

]
(B.1)

therefore,

r̂(s) =
KI s

s + KI
p̂(s) −

KI

s + KI

[(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂)

− τ̂ f r
)
−p̂(0)

]
(B.2)

and by taking the inverse Laplace transform of (B.2),

r̂(t) =KI

[
δ(t) − KIe−KI t

]
∗ p̂(t) − KIe−KI t ∗

[(
τ̂m

+ ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂) − τ̂ f r
)
−p̂(0)

]
(B.3)

The term −KIe−KI t ∗ p̂(0) is the transient response and is assumed to be negligible after a

certain time period. Hence (B.3) can be written as,

r̂(t) = KI

[
p̂(t) − KI

(
e−KI t ∗ p̂(t)

)]
− KI

(
e−KI t ∗

(
τ̂m + ĈT (q̂, ˆ̇q) ˆ̇q − ĝ(q̂) − τ̂ f r

))
(B.4)
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