


APPENDIX II, INTERNAL FEEDBACK LOOPS

In this thesis data has been interpreted according to two implicit assumptions: (1) the
saccade generator upstream from the riMLF is updated between saccades about abnormal
eye positions produced by electrical / pharmacological perturbation of the INC and
riMLF, and attempts to correct these, and (2) the INC and riMLF operate in feed-
forward during saccades. Specifically, these assumptions were incorporated in the model
used to simulate neural integrator failure (Chapter 6), and when interpreting the axes of
rotation generated by intact burst neurons during partial riMLF inactivation. Although
feedback control of saccades is not a central issue in this thesis, some preliminary data
is presented here to justify these assumptions.

Current models of the brainstem saccade generator place burst neurons within two
functionally different internal feedback loops. The first loop computes the initial motor
error that drives burst neurons by comparing desired eye position to an estimate of
current position that arises from the output of the neural integrator (Jirgens et al. 1981)
This comparison and the resultant initial motor error must be three-dimensional in order
to generate saccades that correct violations of Listing’s law produced by head movements
(Chapter 3), as predicted by Tweed and Vilis’ (1990) 3-D model of the saccade
generator. Such a model predicts that the initial motor error that drives burst neurons
will attempt to correct torsionally deviated eye positions produced by INC / riMLF
stimulation or inactivation.

There are several reasons to believe that the INC and riMLF are within suck a
feedback loop. First, following unilateral stimulation of either the INC or riMLF, the
ocular torsion that resulted was negated by the next saccade. Second, during the initial
stages of torsional drift following INC inactivation, a nystagmus pattern resulted with the

quick phases directing the eye back to Listing’s plane. Finally, such a feedback loop in
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3-D would explain why after our unilateral iMLF inactivations the intact burst neurons
appeared to be less active and effective than might be expected, for example producing
less than 50% normal vertical eye velocity (Figs. 29, 31). Afier the intact neurons drove
the eye torsionally out of Listing’s plane, a torsional error signal would arise which
would tend to inhibit the intact neurons. Thus, the INC and riMLF appeared to be
within the feedback lof)p that determines initial saccadic motor error, and this error signal
appeared to be three-dimensional, rather than the two-dimensional signal proposed by
some (Hepp 1990; Van Gisbergen et al. 1992).

Most models also place the burst neurons within a short - latency "local” feedback
loop which guides an ongoing saccade to the desired eye position (Becker et al. 1981;
Van Gisbergen et al. 1981; Scudder 1988). In its original form, Robinson’s model
subtracted feedback from the integrator from the desired eye position signal to get the
current motor error signal that drives burst neurons during a saccade (Van Gisbergen et
al. 1981). To date, only a few investigations have directty tested the local feedback
model (Becker et al. 1981; Jirgens et al. 1981). This model predicts that during
integrator failure, the feedback signal will underestimate the saccadic displacement, and
so saccades will undershoot.

To test this prediction, we examined the vertical metrics of trained saccades between
LED targets in animals MAR and BAR, during INC inactivations that gave apparent
vertical integrator failure. We found that such saccades did not overshoot vertically (Fig.
63). Rather, they tended to be vertically hypometric. Similar results were obtained in
horizontal saccades by Kaneko and Fuchs (1991) during inactivation of the prepositus
hypoglossi region in the monkey. This slight saccade undershoot was in qualitative
agreement with that produced during our simulations in chapter 6, using a model in
which the integrator is downstream from the local feedback loop. The undershoot in the

simulation was simply due to an insufficient position signal, which normally made a
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FIGURE 63 Failure of vertical saccades to overshoot during INC inactivation. Vertical
eye position is plotted against time for a series of saccades towards the same downward

target. The illustrated saccades were made before and after injection of mucimol into

the INC region of a trained animal.
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small contribution to saccade metrics. Any further undershoot could be caused by loss
of a velocity signal from the burst component of INC neurons, but this would be difficult
to distinguish from spread of muscimol to the nearby riMLF or motoneurons. Thus, the
integrator, and INC in particular, does not appear to take part in local feedback.

More recent models of the local feedback loop have computed the current error signal
by subtracting an estimate of current saccade displacement signal (produced by a
separate, resettible integrator that receives input from burst neurons) from a desired
displacement signal (Becker et al. 1981; Scudder 1988). The latter feedback loop would
allow saccades to be accurate despite variations in burst neuron activity, as long as some
burst neurons can drive the eye in the desired direction. Such a feedback loop should
compensate for partial vertical burst neuron inactivation by increasing the duration of
drive to the remaining neurons. Thus, these models predict that during partial iMLF
inactivation animals would still produce large accurate saccades but with abnormally long
durations. If the burst neurons are not in the local feedback loop, saccades should be
vertically hypometric with normal durations.

As predicted by both models, the ratio between vertical saccade ampiitudes and their
durations dropped. However, the distribution of saccade amplitudes suggested that the
burst neurons were not in the local feedback loop. Figure 64 illustrates that as
inactivation of the riMLF progressed, the vertical component of saccades became smaller
and smaller. The animals reached visual targets by a series of hypometric saccades.
This was examined more rigorously in the two trained animals, MAR and BAR. Since
a local feedback mechanism could not be effective if all of the burst neurons for a
particular saccade direction have been inactivated, we concentrated on data from the
initial milder stages of unilateral inactivation and oblique saccade directions that were
less impaired (see Chapter 4). In these conditions, animals made saccades that had

normal duration and nearly normal horizontal size, but were vertically hypometric (Fig.
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FIGURE 64. Reduction in vertical saccade magnitude during unilateral riMLF
inactivation. Change in gaze direction is plotted (A) before, (B) 3 minutes after, and (C) .
39 minutes after unilateral muscimol injection. Gaze directions ( not quaternions ) are
shown, but the starting point of each saccade has been shifted to the origin. In each

case, visual targets were presented so as to encourage large vertical and oblique saccades.
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FIGURE 65. Accuracy of goal directed saccades following unilateral riMLF
inactivation. Gaze directions ( not quaternions ) are shown for multiple saccades from
a target placed 20° obliquely ( up and right ) towards centre, before muscimol injection
and following muscimol injection to the right iMLF. Saccade duration before injection
was 34.3 + 3.4 ms ( mean + SD ) and 33.5 1+ 5.9 ms after injection. Cell recordings

and stimulations indicated that there were no motoneurons near the site of injection.
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65). These observations are not consistent with participation of riMLF burst neurons
in a local feedback loop.

When the burst deficit was more advanced, particularly in the more impaired oblique
directions, hypometric saccades were often followed by a second slower movement
(duration 30 - 60 ms, peak speed < 200° per second) that caused gaze to curve slightly
towards the target. These small movements were sometimes continuous with the saccade
and sometimes separate within a series of consecutive trials. In addition, they appeared
to be dependent on state of motivation, being more prominent in goal directed saccades
performed for a reward than in random saccades. This variability is not consistent with
the predicted actions of a local feedback loop, which would operate in a machine-like
fashion to guide and accurately terminate every saccade. However, it is possible that
they were triggered by the longer feedback loop. The main point for the purpose of this
thesis is that these saccades were to slow and small to significantly affect the post-
inactivation axis measurements in Chapter 4.

The participation of burst neurons in local feedback was also evaluated in MAR and
BAR by microstimulating the iMLF (20-50 uA, 500-100 Hz, 10-20 ms) during goal
directed saccades. In this case, local feedback models predict that the stimulus-evoked
perturbation will be corrected almost instantaneously, causing the eye to reach an
accurate final position. The results of intrasaccadic microstimulation are illustrated in
figure 66 A. This figure shows that riMLF stimulation perturbed the saccade in two
ways. First, there was a torsional deviation of the eyes as described above.
Superimposed on this effect was a pause of variable magnitude in the preprogrammed
vertical and horizontal components of the saccade. Since vertical burst neurons are not
known to inhibit horizontal neurons and the pause only occurred with high stimulation
frequencies and intensities, this effect may have been due to antidromic activation of

burst neuron inputs, most likely omnipause neurons. Following the pause, the saccade
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FIGURE 66. Perturbation of goal directed saccades by brief unilateral riMLF stim-
ulation. Position quaternion components ( T, H, V: torsional, horizontal, vertical ) are
plotted against time, in Listing’s coordinates. The duration of stimulation ( fifteen 0.5
ms pulses, 60uA, 1000 Hz ) is indicated by the bars (S). A: Three normal downward-
leftward saccades ( dotted lines ) superimposed with three perturbed saccades ( solid

lines ) that paused and then continued without correcting the stimulus-evoked torsion.
B: Three normal downward-rightward saccades ( dotted lines ) superimposed with two
perturbed saccades ( solid lines ) that came to a complete halt, and were then followed

by corrective saccades (*) at low latencies that eliminated the stimulus-evoked torsion.
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resumed and horizontal eye positior: did not undershoot the target position. This result
is similar to the effect of intrasaccadic pause neuron stimulation (Becker et al. 1981) and
suggests that the unknown part of the saccade generator that is being inhibited
(possibly upstream from riMLF neuro s) is within a local feedback loop. In contrast,
the direct effect of stimulating riMLF burst neurons, a large CCW deflection with a
small upward coriponent, was not corrected when the saccade resumed. Both monkeys
failed to correct these primarily torsional stimulus-induced perturbations during 20°
saccades in all directions. This strongly suggests that the riMLF burst neurons
themselves were not within the local feedback loop.

Is there any way to determine the latency of the longer feedback loop that generates
initial moter error? Depending on stimulus intensity and saccade direction, the pause
effect seen in figure 14(a) was often strong enough to terminate the saccade completely.
When this occurred, a second discrete saccade usually occurred (Fig 66 B, *) at a very
short latency (< 100 ms) that brought gaze onto target and also always corrected the
torsional deviation. The lowest latency observed for such correction was 30 ms.
Similarly, when brief iMLF microstimulation was delivered just before a saccade, the
resulting torsion was corrected at latencies as low as 30 ms. This is a relatively rapid
correction, but stili not fast enough to guide and terminate saccades. For example, a 30
ms overshoot could almost double the size of a saccade.

Thus, the riMLF burst neurons appeared to be within the longer 3-D feedback loop
required to compute initial motor error. This loop apparently operates at latencies that
are too long for moment-to-moment saccade guidance, but much shorter than the normal
intersaccadic interval. However, the evidence pointed against participation of either the
INC or riMLF in a local feedback loop that produces the current motor error signal for
guiding and terminating saccades. Thus, our assumption that the INC and riMLF
operated in feed-forward fashion during saccades appears to be justified. This suggests
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that our interpretations based on kinematics of saccades during riMLF / INC inactivation

were not obscured by feedback effects.




Based on our functional identifcation (Section 2.2.5), the vertical-torsional oculomotor
integrator circuits appeared to be centered at stereotaxic coordinates anterior 7 mm,
lateral 1.5 mm, and dorsal 5 mm, corresponding to the location of the interstitial nucleus
of Cajal (Shantha et al. 1968). Figure 67 shows reconstructed muscimol injection sites
in coronal sections (anterior 7) from all five animals. This shows that injections directly
into the above-mentioned area (@) produced an immediate deficit in holding eye
position, whereas the deficit developed more gradually after injections just outside this
area (*). Injections 2 mm anterior or posterior to the illustrated sites did not produce

immediate position-holding deficits.
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FIGURE 67. Anatomic locations of muscimol injection sites. One coronal section
(anterior 7) through th.* midbrain is shown for each of animals BAR (A), LAR (B), ART
(C), MAR (D), and CAS (E). Inection sites are reconstructed from sterotaxic
coordinates used during injection and the histologically observed locations of marker
lesions. (@): sites which produced immediate ocular drift. (®): sites where ocular drift
appeared within 30 minutes. (©O): sites where drift did not appear within 30 minutes of
injection. Anatomic structures are drawn and labeled according to the stereotaxic atlas
of Shantha et al. (1968). Antatomic abbreviations: INC: interstitial nucleus of Cajal.
III: third ventricle. FRTM: formatio reticularis tegmenti mesencephali. NOC: nucleus

centralis n. oculomotorii. NOD: nucleus n. oculomotorii, pars dorsalis. NOV nucleus

n. oculomotorii, pars ventralis. NR: nucleus ruber. DBC: decussatio brachii conjuntivi.
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