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Abstract

In this thesis, we investigate three fluid dynamic problems involving various physical
mechanisms which exhibit interfacial instability. These problems have wide ranging
industrial, scientific and engineering applications.

In the first problem, we investigate the linear stability of the unbounded Couette
flow of two fluids separated by a plane interface. The exact dispersion relation is solved
asymptotically and numerically to analyze the effects of the four stability parameters
of the flow; the ratio of the viscosities, the ratio of the density, the surface tension
and gravity. While our results confirm most of the earlier reported theories involving
shear flows of fluids of equal densities, they also resolve the reported discrepancies
between the numerical and the asymptotic solutions. For the general case of fluids
with different densities, new asymptotic expressions for the growth rates of the flow
are obtained and numerical calculations of marginal states are carried out in order
to examine the effects of the stability parameters on the flow. The numerical results
confirm the remarkable accuracy of our asymptotic expressions.

In the second problem, the electrohydrodynamic extension of the first problem is
presented. Here, the plane interface is stressed by applying external electric fields
normal to the interface. A linear stability analysis similar to that employed in the
first problem is used to investigate the effects of six additional stability parameters on
the stability of the flow; the ratio of the permittivities, the two conductivities, the two
initial electric fields and the velocity of the upper fluid in the unperturbed motion.
Various limiting cases having practical applications are investigated. We examine the
effects of electrical shear stresses and initial streaming of the fluids on the onset of

static instability. We also examine finite electric charge relaxation effects.
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m



Finally, we investigate the dynamic behaviour of viscous droplets in the presence
of applied electric fields in zero gravity conditions. Here, the full nonlinear equa-
tions of motion are solved numencally by adapting the NASA-VOF2D algorithm.
'The mumnerical computations carried out for axisymmetric droplets in zero gravity
successfully simnlate microgravity experiments conducted on KC-135 NASA aircraft

flights. Further experimental and modelling modifications are discussed.
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Chapter 1

Introduction

In this thesis, we consider three fluid dynamic problems involving physical mecha-
nisms which exhibit unstable behaviour. The first two problems deal with the hy-
drodynamic and electrohydrodynamic instability of the shear flow at the interface
between two fluids. The third problem involves the development of computational
methods to describe the dynamic deformation of large viscous droplets subjected to
external electric fields in a zero gravity environment. These problems have many
practical applications in industfy and engineering including underwater explosions,
atmospheric electrifications, electrostatic spraying and the orientation of fluids in zero
gravity.

In chapter 2 we analyze the unbounded Couette flow of two fluids which are
separated by a plane interface by employing a linear stability analysis. We assume
that the fluids have different viscosities, densities and equilibrium velocities. Surface
tension acts at the interface and there is a gravitational body force. The exact
dispersion relation relating the stability parameters is derived in terms of the Airy
functions and their integrals. The stability of the system depends on four parameters
including the ratio of viscosities, the ratio of the densities, gravity and surface tension.
The dispersion relation is solved both numerically and asymptotically.

The asymptotic analysis carried out for large wavenumbers a removes the restric-

tion imposed by Hooper and Boyd on the allowable values of surface tension [33].




"T'heir analysis for large wavenumbers, which was based on the Orr-Sommerfeld equa-
tion for the problem, required that the surface tension S be scaled in such a way
that Sa? remained order unity. We base our analysis on the exact dispersion relation
and we obtain a new functional forin of the asymptotic expression containing higher
powers of a without placing any restriction on the surface tension. The asymptotic
analysis is also extended for small wavenumbers to include the case of unequal fluid
densities. Both the large and the small wavenumber limits contain new terms due to
the presence of gravity.

When the two densities are equal, our results qualitatively agree with the findings
of Hooper and Boyd. However, they encountered several discrepancies between their
numerical and asymptotic solutions which are resolved using our analysis. This con-
firms the validity of the extended asymptotic analysis and corrects their numerical
results. Qur numerical results are used to show that the large wavenumber expansion
is remarkably accurate even for moderate wavenumbers. Even so, our results do not
replace numerical solutions, because it is shown that predictions of stability based
solely on asymptotic results can be erroneous. In general terms, the flow is unsta-
ble for viscosity ratios far from 1 and stable for ratios near 1 provided that surface
tension is present or gravity is stabilizing. The instability is not generally at short
wavelengths as previously reported by Hooper and Boyd.

In chapter 3 we examine the electrohydrodynamic extension of the first problem.
The interface is stressed by applying external electric fields normal to the plane inter-
face. In addition to the assumptions made in the first problem, the fluids are assumed
to have different conductivities and permittivities. A linear stability analysis similar
to that employed in the first problem is used to investigate the stability of the system:.
The stability of the system depends on the following ten parameters; the ratio of the
viscosities, the ratio of the densities, the surface tension, gravity, the ratio of the

permittivities, the two conductivities, the two initial electric fields and the velocity



field of the upper fluid in the unperturbed motion.

We consider various limiting cases with the relaxation time as the limiting pa-
rameter and we investigate the onset of instability and the destabilizing effects of
the equilibrium motion. The effects of electrical shear stresses are investigated in the
infinite and instantaneous relaxation charge limit. We also examine the finite charge
relaxation effects and develop conditions for the incipience of static instability.

Finally, in chapter 4, we investigate the dynamic evolution of viscous droplets in
the presence of applied electric fields in zero gravity conditions. Due to the applied
electric fields, an electric charge is induced on the droplet surface resulting in an
outwardly directed pressure which forces the droplet into a cone. Under suitable
conditions, small droplets are ejected from the cone.

Here, unlike in the first two problems, we solve the full nonlinear equations of mo-
tion. The core of the model is adapted from the NASA VOF2D algorithin for transient
two-dimensional flows with free surfaces. Numerical computations are carried out
with axisymmetric and zero gravity assumptions and are then compared with exper-
imenta! data collected from microgravity experiments conducted on KC-135 NASA
aircraft flights. While a number of modifications are suggested, the numerical model

successfully simulates the actual deformation process.




Chapter 2

Shear-flow Instability at the
Interface Between Two Fluids

2.1 Introduction

In this chapter we consider the parallel flow of two fluids of different viscosities and
different densities separated by a planar interface. At each side of the interface the
flow is the unbounded Couette flow. The linear stability of the flow is analysed by
deriving the exact dispersion relation and solving it numerically and asymptotically.

The linear stability of parallel shear flows, both in bounded and unbounded
domains, has been studied by many authors using asymptotic and approximate
analyses[69], [43], [52] and [20]. Yih considered the flow of two fluids of different
viscosities hetween two parallel rigid plane boundaries and separated by an inter-
face parallel to the boundaries [83]. Using non-singular perturbation methods, he
showed that when the fluids are set in motion by either an applied pressure gradient
(Poiseuille flow) or by the relative motion of the boundaries (Couette flow) the inter-
face was unstable for arbitrarily small Reynold numbers. However, it was not known
if the rigid boundaries played an important role in this instability.

In 1983, Hooper and Boyd, referred to in this thesis as HB, addressed this question
[33]. They examined the stability of the unbounded flow configuration shown in figure

2.1. By solving the exact dispersion relation containing the stability parameters



m = pa/p; where py and pu, are the constant vicosities of the upper and the lower
fluid respectively, a non-dimensionalised surface tension S, the wavenumber a, and the
wave velocity of the disturbance c, they showed that, in the absence of surface tension,
the flow with equal densities is always unstable with respect to short wavelength
disturbances.

However, their numerical procedure suffered from several shortcomings. First, it
was restricted to the case of equal densities; the case of unequal densities was tackled
using asymptotic techniques only. Second, the calculations could not be completed
for small ratios of the viscosities precisely the domain in which a comparison with
asymptotic analysis would be most revealing. Finally, if the numerical results they
obtained for moderate viscosity ratios are extrapolated to small ratios, then significant
discrepencies with the asymptotic analysis are evident, casting doubt on at least one
of the methods employed. The difficulties of the numerical computations made it
quite possible that they, rather than the asymptotic methods, were in error and,
perhaps on this supposition, these asymptotic methnds have been used since, in spite
of uncertainties.

One of the difficulties HB faced in their numerical calculations was that the dis-
persion relation describing the stability of the flow contained Airy functions having
complex arguments, and the methods available to them for computing these functions
were not efficient.

In this chapter, we re-examine the unbounded shear flow problem of two fluids
of different densities and viscosities. The presence of the density jump introduces
the stability parameters r = p;/p; and a non-dimensionalized acceleration g. We
compute the Airy functions using recently developed methods for evaluating Airy
functions with complex arguments [4], [12]. We obtain improved agreement between
the numerical solutions and the asymptotic analysis and we extend the numerical

treatment to cases not covered by HB. We also rework the asymptotic analysis, start-



ing from a different point, because their analysis placed restrictions on the allowable
values of surface tension. To be specific, their analysis for large wavenumbers o re-
quired that the surface tension S was scaled in such a way that Sa® remained order
unity. Their analysis was based on the Orr-Sommerfeld equation for the problem,
whereas we start from the dispersion relatior:

The findings of HB suggest that a more comprehensive analysis is needed. They
showed that, for zero surface tension, the flow is unstable for all viscosity ratios.
Surface tension is a stabilising influence, but will only make the flow stable provided
that the ratio of viscosities is not too different from 1. Since it is unlikely that fluids
having different viscosities will have the same densities, we investigate the effect
of density differences on the stability. The asymptotic analysis of HB shows that
a density difference can be as important an agent for stability as surface tension;
indeed, this is confirmed by an asymptoti: analysis for large wavenumbers.

One of the difficulties arising from these generalisations of the flow problem is
the increase in the number of parameters. There are now four independent stability
parameters governing the problem; m, r, S, and g. Our primary results ar> presented
in stability diagrams where the ratio of viscosities is the primary parameter. The ratio
of viscosities was chosen because it was the parameter employed by HB and because
it is supported by the asymptotic analysis to some extent. However, we leave open
the question of whether another parameter may be more appropriate. A comparison
with the asymptotic results shows that analytic expressions for the marginal stability
curves can be found that are accurate over a wide range of parameters. Numerous
stability plots are not therefore required, although the analytic approximations can
be misleading when compared with full numerical solutions.

In sections 2.2 and 2.3 we set out the mathematical techniques used in hydrody-
namic stability analysis. In section 2.4 we formulate the mathematical model of the

problem. In section 2.5 we derive the dispersion relation which, for fluids of equal




densities, reduces to that derived in HB. In section 2.6 we present some asymptotic
estimates while in section 2.7 we outline the numerical procedure used to solve the
dispersion relation relating the four stability parameters, the wavenumber a and the
wave speed c¢. Results for both equal and unequal densities are presented in section
2.8. As the parameters approach asymptotic limits, the numerical resuits and the
asymptotic approximations obtained are in excellent agreement. Finally, conclusions

are presented in section 2.9.

2.2 Introduction to Hydrodynamic Stability

Hydrodynamic stability has been studied quite extensively fur over a century. It is
of particular importance in the study of the initial stages of fluid flow transitions
from laminar to turbulent flow. These transitions usually involve different types of
instabilities. Therefore, in order to gain an understanding of the physical mechanism
of this transition process, the study of hydrodynamic stability is essential. The various
types of instabilities include thermal convective instability [64], capillary instability
[63] and shear flow instability [59]. In this chapter we deal with shear flow instability
at the interface between two fluids. This is commonly known as interfacial instability.
Among the well known examples of interfacial instability are the Kelvin-Helmholz
instability [39] and the Rayleigh-Taylor instability [74]. These are both special cases
of the problem that is considered in this chapter.

Interfacial instabilities are responsible for a wide range of natural phenomena [62].
In his investigation of liquid jets, Lord Rayleigh demonstrated that resonance as well
as acoustic stimulation could give rise to interfacial instability [62]. Later, Harrison
further investigated the same problem by considering the effect of viscosity [24]. Lamb
explained the abnormal resistance experienced by ships where there is a layer of fresh
water over salt water in terms of interfacial oscillations [41]. More recently, Taylor

studied interfacial instability theoretically [74] and Lewis studied it experimentally



[42] to explain the loss of energy in successive pulsations of underwater explosion
bubbles.

In real systems, these natural phenomena described by an interfacial instability
process may be influenced by many physical factors such as molecular diffusion across
the interface, evaporation and condensation. In this thesis, the effects of these fac-
tors are assumed to be negligible. We consider the effects of other factors including
interfacial surface tension, gravity, density and viscosity.

A mathematical theory covering the development of instability due to arbitrary
finite disturbances is generally too complex to solve and, moreover, since the nature
of the disturbances is often too difficult for experimental control, experimental com-
parisons are not always possible to perform. Therefore, most stability analyses are
based on a perturbation theory[16]. The linear theory of stability gives an adequate
representation of flows with small disturbances and it can also predict the onset of
instability. Even in the case of finite amplitude disturbances, valuable insights can be
gained through the linear theory. In this thesis we use linear stability theory to pre-
dict the conditions and the nature of stability at the interface between two superposed

fluids. In the next section we discuss the principles of this theory.

2.3 Linear Theory of Hydrodynamic Stability

The linear theory for a particular flow starts with the basic statc solutions of the
system representing the unperturbed flow. These solutions describe the character-
istics of the steady state equilitrium. Then, small perturbations are introduced to
these solutions and their evolution in time is investigated. The common method of
analysis is called the normal mode method [16]. This method consists of solving the
linearized equations of motion subject to the linearized boundary conditions for the
small perturbations about the basic state. The perturbations that result in a time

increasing departure from the basic state solutions are classified as unstable.



2.3.1 The Normal Mode Method

We begin by perturbing the basic flow as follows:

Q(r,t) = Qu(r) + ¢'(r,t) (2.1)

where Q represents any quantity associated with the flow, @, represents the basic
state value of quantity Q and ¢’ represents the small perturbation about the basic
state quantity Qy. The perturbed flow quantities are introduced into the equations
of motion which are then linearized with respect to the primed quantities and their
derivatives. In other words, all terms involving quadratic and higher order terms in the
primed quantities are neglected. A complete investigation of stability is accomplished
by Fourier analysis of arbitrary spatial disturbance. The immediate advantage of
linearity is that there are no interactions between the different Fourier components so
that the equations can be broken down into separate sets of equations for each Fourier
component [10]. Then, the stability or instability with respect to that component is
examined.

Therefore, we assume that the perturbations are spacially sinusoidal and time
dependent of the form

¢ xexpi(k-r—ot) (2.2)

where

o=o0,+10; (2.3)

is the complex wave speed and k is the wavenumber. This assumption reduces the
linear partial differential equations of motion to ordinary differential equations. By
imposing appropriate boundary conditions upon the solutions of the resulting ordi-
nary differential equations, we formulate an eigenvalue problem. The relation between
o, the perturbing wavenumber k and the other stability parameters of the particular
flow such as viscosity and surface tension is called the dispersion relation. The roots

of the dispersion relation are the eigenvalues 0. The stability or the instability of the
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flow is then determined by the sign of these roots. If o; is negative for all values of k,
then all infinitesimal perturbations of the original flow decay exponentially. This is a
necessary condition for stability. If o; is positive for any values of k, then the corre-
sponding perturbation will be exponentially amplified. This is a sufficient condition
for instability.

If o, = 0 for some values of k, then the flow is said to be neutrally stable with
respect to the corresponding perturbations. If, in this case, o; > 0 for some neigh-
bouring values of the stability parameters on which the eigenvalues depend, then the
flow is said to be marginally stable. Thus, marginal stability separates the stable and
the unstable classes of all infinitesimal disturbances for the given basic state. The
locus of the marginal stability states in the space of the stability parameters forms
the marginal stability curve (or surface). The conditions of stability for a given flow
are usually determined by investigating the nature and the structure of these curves
[10].

The state of marginal stability is divided into two according to the ways in which
the perturbations evolve. If o, = 0, then the disturbance will grow or de .ay expo-
nentially. Here, the transition from stability to instability takes place via a marginal
state exhibiting a steady secondary flow, such as the case of convection cells that
arise when a fluid is heated from below [10]. When this type of behaviour prevails
there is said to be an exchange of stability [38]'. On the other hand, if o, # 0, then
the disturbances will decay or grow in oscillatory motion and the transition from
stability to instability occurs via a marginal state exhibiting oscillatory motion with
characteristic frequency. This type of behaviour is called over stability [17). It tends
to occur when a destabilizing influence and a feature giving rise to wave motions,

such as stratification, are present simultaneously.

This definition can be traced back to Poincare [61] but Jeffreys [38] first used this definition in
the present senae.
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2.4 Formulation of the Problem

We consider the two dimensional flow of two incompressible and viscous fluids of
constant viscosities gy and u; with constant densities p, and p;. In the unperturbed
state, the two fluids are separated by the interface y* = 0, where r* and y* are the
usual Cartesian coordinates. We use subscripts 1 and 2 to refer to fluid properties
and fluid flow quantities above and below the interface respectively. Gravity ¢* acts
in the negative y* direction. The basic unperturbed flow in this two-layer model is

described by the following velocity field,
iy (z",y") = (@ny",0) (2.4)

uy(27,y") = (@uy”,0)
where @, and @; are constant vorticities above and below the interface respectively.

The schematic representation of the problem is shown in figure 2.1.

The continuity of shear stress at the interface y* = 0 implies that

- -

an = man (2.5)

i

where m = £2. As we will see later, the viscosity ratio m turns out to be one of the

stability parameters in the dispersion relation.

2.4.1 The Governing Equations

The general equations of motion of a two dimensional incompressible flow are,

ou L Gu Ou 18p° 2. .

at* tu Bz‘+v dy paz'+yv “

dv* v Fvt  10p" 2ae

7” +u pe +v o = Y- g* + vV (2.6)
ou® ov*
ot oy ~°



Zd¢3,rl
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*

'd '

K]

Figure 2.1: Schematic representation of the problem.
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where u*(z*,y",¢*) is the fluid velocity parallel to the r* axis, v*(z*,y*,¢*) is the
velocity parallel to the y* axis, p*(2*,y",1%) is the pressure, and v is the kinematic
viscosity.

Following HB’s methods, we begin by non-dimensionalizing the equations of mo-

tion with respect to the lower fluid using the following changes of variables:

pai 1/2
o & W2 - _.»
(£,9) = ( ) (=*,¥°)
#2
1/2
(u,0) = (i) (u",v°
Wapta
— 1 >
P waptz
g ( P2 )l/2 »
123
t = @yt

Then, the equations of motion given by 2.6 become

au,' 8u.— au.' _ P2 ?_&

el i) L L4 2.

a T %oz TV oz TV

dvi | i | Fvi _ p O 25

5 + u; % + v; % - T n % g + vV?p; (2.7)
Ou O
oz oy

where i = 1 for the upper fluid and ¢ = 2 for the lower fluid.
We now impose small perturbations on the basic flow as follows and investigate

their evolution in time :
ui = i;+u'(z,5,1)
vi = U; 4+ v’(:i:, Ust) (2.8)

= ﬁi+p’(i'vﬁvt)
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where the tilde superscript is used to indicate quantities of the basic flow, and the

primed quantities denote small disturbances. In terms of the new variables, the basic

state quantities are given by
i = —
L]
(2.9)

o =

P2 ap,
pi ay

—g‘

Therefore, by introducing the equations 2.8 and 2.9 into equation 2.7, we obtain

the following nonlinear partial differential equations for the disturbances

a“: w. -a" Wi , Iau ,314 - PZ ap’ i p2 2, I
a5 T o ”+{ ¥ +""ag} " 0: Vg U
()v GJ.' j)v"— 6 a ! - P2 ap, M P2 2 ’
FIREXE ] +{ a5+ 'By} Piaﬁ+#2pv (2.10)
Ou;  Ov; —o.

3 6y
We now linearize these equations by neglecting the products of the perturbations

and their derivatives as they appear in parentheses on the left-hand sides of the

first two equations. Then we obtain the following linear equations for the primed

_pa0p,; + By,

quantities:
Oui | @ ai + =
Y My Y 2t K2 pi
ov,. &; .av _ P2 0p; + Bibrga, (2.11)

T pi 0 papi

-(:’_t— wzy 3z
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satisfy the continuity equation given by the third equation of 2.11. Since the co-
efficients of equations 2.11 are only functions of §, the equations admit sinusoidal

solutions which depend on & and t. We then consider solutions of the form
(vi(2,9,1)) = (di(¥) etalé-ét)

(Pi(,8,1)) = (pi(§)) == (2.13)
in which we take the real parts of these expressions in order to obtain the physical
quantities. Since we require the solutions to be bounded as & go to oo ,the wavenumber
a must be real. The wave speed ¢ = & + i¢; represents waves which travel in the
direction (a,0) with phase speed aé, and which grow or decay in time like el@ét),

For convenience, we rescale the coordinates and phase speed by changing the

following variables as done by HB:

(2,y) = afZ,§)
c=aé. (2.14)

Then, substituting equations 2.12, 2.13 and 2.14 into equation 2.11, operating with
the derivatives in ¢ and ¢ and eliminating the exponential factors, we obtain the

following equations:

cDé; — ~yD¢. +3 ¢ =a?2p, 4 i 243 (D? — 1)Dg; (2.15)
Pi 2 pi
—cdi+ %yqﬁa =-a*2pp, + "; P2 3 (D? - 1), (2.16)
where D = ;;—;—, indicating the derivative with respect to y. To eliminate p;, we
differentiate equation 2.15 and add it to equation 2.16 and obtain
(D? - 1)%4; = z‘:" ;" 'z(y- — c)(D? - 1)y (2.17)
t

Therefore, the coefficients of the stream functions ¢, and ¢, satisfy

(D? = 1)%¢; = i?a"(my —e)(D? - 1), (2.18)
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(D — 1) = ta" %y — c)(D? - 1)¢, (2.19)
where
m== ?—'— r= -@-.
b w2 P

'These equations are the Orr-Sommerfeld equations and they correspond to equations
(4a) and (4b) in HB.

If we denote the vorticities of the disturbances by
wi(z,y,t) = wi(y)e' == (2.20)

then
wi(y) = —(D? - 1)¢.. (2.21)
Therefore, in terms of the vorticity coeflicients, equations 2.17, 2.18 and 2.19 become

(D? = 1wy = '.Tma"(my — c)uny (2.22)

(D? ~ Nw, = ia~%(y — c)w,. (2.23)

Equations 2.21, 2.22 and 2.23, together with the appropriate boundary conditions,

define the stability problem.

2.4.2 Boundary Conditions

In addition to the requirement that both ¢; and w; go to zero as y goes to oo for
i = | and as y goes to —oo for ¢ = 2, we must also impose the following boundary

conditions at the interface {5).

(a) Kinematic Condition.
The kinematic condition requires that the fluids move with the common interface and
that neither fluid crosses this interface. Therefore, the normal velocity of both fluids

must equal the velocity of the interface, whose location is described by

F('ts yot) = "(z,t) -y=0 (2'24)



17

where the general distortion of the interface can be represented as a superposition of

normal modes given by
n(z,t) = e’ (2.25)
If we denote the normal unit vector to the interface by ii and if we denute the velocity

of the interface by vy, then the kinematic condition implies that

vi‘i=v2-R=vy-i (2.26)
at y = n(z,t). Here
vi(z,y,t) = (my + uj(z,9,t),v'(2, y,1)) (2.27)
and
va(z,9,t) = (y + ua(2, ¥, 1), v, 9, t)). (2.28)

Now recall that

A= VF] ~ (2.29)
1+ (=
V dz
Since the surface moves with the fluid, we obtain
DF OF
Br =3tV VF=0 (2.30)
at y = n(z,t).
With equation 2.26 this gives
%—?—-{-V;-VF=O (2.31)
for ¢ = 1,2. Therefore, we obtain
o _..0n. 00 _ ., _ O, .O_
- Bt -_ "lyaz + ul az v’ ' yaz + u: az vz (2:32)

at y = n(z,t). Then, expanding about y = 0 and evaluating at y = 5(z,t) we obtain

-2 =

9t + higher order terms (2.33)
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which, after neglecting the higher order terms, gives us

ice = ig(0) (2.34)
so that
n(z,t) = ¢—'c(-9-2e‘(""). (2.35)

When the following boundary conditions on the velocities and on the stresses are

applied, this expression is used for 5.

(b) Continuity of Velocity.
The continuity of the normal velocity which follows from the kinematic condition

above, when linearized requires that

v = vy (2.36)
at y = n(z,t) and, therefore,
dvy av,
)+ =2 n+--=vh0)+ 22| g+, (2.37)
! ay y=0 ? ay y=0

By neglecting the nonlinear terms we obtain
$1(0) = ¢2(0) = ¢(0). (2.38)

Since there is no slip between the fluids in the direction of the flow, the tangential

velocities are also continuous. This requires that

Uy = Uy (2.39)
at y = n(r,t).Therefore,
a ’ ']
m + 1 (0) + 2L o=y u0)+ 22 pe (240
Y ly=o 9 |,

which, after linearization and after cancelling the exponential factor, gives

Déy(0) + me — Dga(0) — ¢ = 0. (2.41)
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Then, substituting for ¢ from equation 2.34, we obtain

m)

Dér(0) - Déy(0) = L= y(0). (2.42)

(c) Interfacial Stress Conditions.
At the interface of the two fluids, the shear stress must be continuous. For small

disturbances this implies that

1 [Ou; Ovy Ou; Ovy
m(3y+3z) (8y+3:t =0 (2.43)
at y = n(zx,t). Again, expanding about y = 0 and multiplying by m we obtain
ouy  *uy o, 9wy Ouy %y, dv, 9%,
ay+6y"”+6x+(‘ht)y”+ -m 8y+6y2”+ﬂ +()d Nt f=0

(2.44)
where the partial derivatives are evaluated at y = 0. Then, after linearizing and

substituting for the velocities, the shear stress condition becomes
D?¢,(0) + $1(0) = m(D*2(0) + ¢5(0)). (2.45)

The normal stress condition at the interface requires that for small disturbances

the jump in the nondimensionalized normal stress given by

M .. 20vu . Ovy
( m+pzyy+may) ( pz+gy+2aﬁ) (2.46)
is balanced by the effective nondimensionalized pressure due to surface tension which
is given by
Sl
. (2.47
waps R )

where S* is the actual surface tension coefficient and R° is the actual radius of cur-
vature of the interface. We then nondimensionalize the radius of curvature and the

surface tension coefficient by ,

A= (f_’_z_'“_z.)’ Pe (2.48)
H2



S = (02’:23)%3'. (2.49)
The stress condition can then be rewritten as
—p.+£‘—gﬁ+—2-%y—-+ g-2%=% (2.50)
where the nondimensionalized radius of curvature is given by
8%y
L__ FEd (2.51)

R N
9z
9%n . .
Here, the negative sign is chosen so that the jump is positive when —— Fr) is negative.

After expanding equation 2.50 about § = 0 and linearizing, we obtain the following

equation in terins of the rescaled variables z and y:

_a 2

3y =-Sa’—. (2.52)

1) 2 Bvl
3.1:’

Mt Dy

(#a(0) = m(@)er + ;-

y=0 y=0

In terms of the stream function coefficients this becomes
(p2(0) = pr(0))er + (} 1) g% 410 | o4 (D¢2(0) - ﬂf_’:@l) = Sa’g(‘%). (2.53)

However, from equation 2.15 we have

p2(0)=pa(0) = —zeD (¢z—-‘-’1) (¢2 mﬁ)—z(o )(m-ﬁ) (2.54)

where the ¢,, ¢, and their derivatives are evaluated at y = 0. Therefore, substituting

equation 2.54 into equation 2.53, utilizing equation 2.42, and multiplying by -'-n‘;i we

obtain

a”*m (l - ;1.-) (cDg2(0) + ¢(0))
- ima (S +a”? (1 - ':T) g) (D¢'(0) - D¢'I(0)) (2.55)

1—-m

(D? - 3D) $4(0) — m (D* - 3D) 4:(0).

i
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In summary, the following two fourth order linear differential equations describe the

stability problem:

im

(D? ~ 1)y = —r-a'z(my —c)(D? - )¢,
(D? = 176 = ia(y - )(D* - 1),
where ¢; are related to w; by
wi(y) = "'(D2 - )¢y

and
wa(y) = ~(D*® - 1)¢,

subject to the following eight requirements on ¢; and ¢,.

At infinity (y = y1 = 00 and y = y3 = —oo) the disturbances must vanish :

$1(n) =0

wi(3n) =0
$2(y3) =0
wa(ya) = 0.

At the interface (y = 0) the following conditions must hold :

$1(0) = 4,(0) = ¢(0)

Dé:(0) — Dg3(0) = L= g(0)

c

D?$1(0) + ¢1(0) = m(D*42(0) + 62(0))

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
(2.62)

(2.63)

(2.64)

(2.65)

(2.66)



i atm(1- %) (cD$3(0) + $(0))
i (S o (1 _ _:: ) y) (an(o) - D¢z(0)) (267)

1-m

= (D*-3D) 6:(0) — m (D* - 3D) 5(0).

2.5 The Dispersion Relation

It is well known that, for problems of the type considered in this chapter, the Orr-
Sommerfeld equations can be solved exactly in terms of the Airy functions [16]. In
order to solve the eigenvalue problem given in the last section we make the following

changes of variables:

5 = mPpBg e 3y -'% - ia’rm™?)
22 = a ey - c~ia?) (2.68)
wi(ly) = &lzi).

Then the vorticity equations become

E fond Z]El = (2.69)
d*¢
T - mt=0 (2.70)

These equations are in the form of the Airy equation and therefore their solutions are

given by
& = amAi(n) + b Al (era‘) (2.71)

&2 = a2Ai(27) + by Ai (22¢%) (2.72)

where Ai denotes the Airy function and 8; = 2x/3 or —2x /3 [1]. Then, the boundary
conditions 2.61 and 2.63 imply that the vorticities w; must tend to zero as y — co or

y — —o0,s0 that @) = a; =0, 6, = 2r/3 and 8; = ~2r/3. Therefore,

wi(y) = hA(y) (2.73)




wi(y) = by Aq(y) (2.74)

where

Aly) = Ai (z‘eza‘) = Ai (mmr*ma-’/*(y - —",:;- - ia?rm-ﬂ)e"/“) (2.75)

Ax(y) = Ai (zze=§l) = Ai (0-3/3(!, —-c— ia’)c“"“) .
Consequently, we obtain the following equations for ¢, and ¢,:
(D? = 1)¢y = by Ay(y) (2.76)

(D? = 1)¢2 = byAs(y). (2.77)

After solving these second order linear differential equations with the boundary condi-
tions at infinity given by equations 2.60 and 2.62, we obtain the following expressions

for the stream functions:
¢} 00
&1 =ce”V 4+ b (e"”/ e’ Ay(s)ds + e"/ e"'A.(s)ds) (2.78)
0 v

62 = cze¥ + by (e" /o Y =1 Ay(s)ds + eV L T et Ay(s )da) (2.79)

where ¢; and c¢; are constants.
Finally, applying the remaining four boundary conditions given by the equations
2.64 through 2.67, we obtain four linear equations for the four unknown constants ¢,,

by, c2 and b;. The linear homogenous system of equations can then be written as

Ah=0 (2.80)

where h” = (¢;, c3, by, b;) and where the matrix A is given by
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( 1 -1 A J2 \
~l4+mfe —-1=1/c (1+m[fc)] (-1+1/c) >
A= . (2.81)
2 —2m 2.’1 - 2A| —m(—2J3 + 2.43)
\ a1 P12 a3 Pan }
Here

baa = 2- tam (-5' +a”%(1 - ‘l':)g)

I—-m
b2 = 2m— o (s a (1 - l)g) ~ima?(1 - 11 = o)1y (2.82)
1—-m r
ba = <2+ 4D+ TL (S 4071 - 1)
zamJg

bua = 2mldy— A - T2 (54 -2(1-})9)-,.,.0 ‘(1-—)(1+c\

and

J, = /owe"A,(s)ds
Jy = /ome"Ag(-s)ds

A = Al(o)
Az = Ay(0) (2.83)
’ dAl(y)
A = 22

! dy ly=0

’ dA?(y)
A, = ——| .

2 dy ly=0

For a non-trivial solution of 2.80, we require the determinant of A to vanish. This
gives the following dispersion relation for the nondimensional quantities a,¢c,m,r, g
and §

F(a,e,m,r,g,5)=0 (2.84)

where

F=F+ fi (2.85)



and

R = 2111(1 - m)J|(A2 + A ) + 2m(A' Ay — A;Al) +2(1 - "l)(A', - Al)JQ

+ 4(1 - "’l)zJ]Jz + ﬂl‘(‘ll—""')' ((2(] - m)J,Jz + m(c+ 1)AJ; + ((‘ - "i)A]J}))

Fg = 2(1 - m)m(J;Ag + A]Jg) - iam(S + 0_2(1 - ;)g)(JzAl + 1n.l|A2)

+ m(l - m)A;Az -m(l - m)A’,Al.

This reduces to HB’s dispersion relation given by equation (23) when r = 1.

To analyze the stability of this problem we investigate the dependence of the
eigenvalues ¢ on the other stability parameters such as m, r and S. In the following
sections, we examine the solutions of this dispersion relation and investigate the

stability of the flow.

2.5.1 The Stability of the m > 1 Case

The dispersion relation does not have to be studied for all values of m. It is sufficient
to consider only the m < 1 case, because the solution for mn > 1 can be found from
the solution for m < 1. If ¢(y,a,m,r, S, 9,¢), p2(y,a,m,r, S, ¢,c) and c(a,m,r, S, g)
are the solutions of the above eigenvalue problem given in section 2.4.3, then we can

show that the functions

L

o ari 1 1 Sm g c‘)
Y, m mr r% ’ r%m’ m
L \d L
& ari 1 1 Sm g c
! ¥ m 1" r% ! r%rn, m
and the eigenvalue
(arz 1 1 Sm g
m m 1', r% ram

are also solutions of the above eigenvalue problem.

This can also be directly observed from the dispersion relation as there exists the




relation
l -
I S, 9,) I ( ari 1 1 § g c )
a.m,r,. C - —y — — - p— —
y? A L S ,y1 y=0 ] ] ] r, r% 1 7‘% b y=o

where * denotes the complex conjugate and I’ is related to the dispersion relation

function F by

= F(a,m,r,S,g,c).
y=0

Iy,a,m,r,S,g,c)

Note that, in order to take advantage of this relation, one must consider negative
values of ¢g. In other words, one must consider problems in which gravity acts in the
positive y direction. However, we observe that, in the absence of gravity, the stability
of the flow is independent of the actual positioning of the more viscous fluid. Only
the direction of the propagation velocity is reversed when the positions of fluid 1 and

fluid 2 are interchanged.

2.6 Asymptotic Analysis

The dispersion relation found in the previous section is a highly complicated expres-
sion. The eigenvalues ¢ appear explicitly in the dispersion relation and implicitly in
the argument of the Airy functions and their integrals which are part of the dispersion
relation. Therefore, in general, it is not possible to solve this relation analytically. in
this section we find various approximations to the dispersion relation and therefore
to the eigenvalues ¢ by considering limiting cases of the stability parameters and of

the wavenumber a.

2.6.1 Short Wavelength Approximations

In this approximation we examine the behaviour of the eigenvalues c as the wavenum-
ber o approaches 0o. Since a appears in the arguments of A4,, Az, A}, A} ,J; and J3,

we must find asymptotic approximations for these functions as a goes to co. Let us
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This can be rewritten as

2_ © _
s, = o(5E-%) /: Lo 4 (mdr-tatv) dw (2.87)
1
where
h= a2 (S 000 e (1- )
e m m?) m3 ra

> 2
-3 1= [ ta _9
w= (\'263 y————-; =a)esy+ll
m m

and u; = ooe’s. Therefore, if adw is large and |arg(w)| < = for all values of w in
the range of the integral, then we can approximate the Airy function in the integrand
using the following asymptotic expressions for the Airy functions with large arguments

(see Appendix A):

Ai (mbrtatu) = sr-bhwd (1 - kw4 k) o 3rhmed o)
where L1
ky = ritmTea™3
k, = 25-8-1-%711"0"2
ks = 4?)58 rm” a1,

Then, Jy can be written as

~{< 2 w1 _o?[we ¥ r'*mw; =
Ji = -l-w'éa‘e ("‘+?"7t)/ e ( +* )k1w’£' (l — kw3 + k:,w'”) dw.
2 L
(2.89)
This integral is of the form
2 u
Jy = %w"%a’e(#“:"-%)/l lq(w)e'*”("”dw (2.90)
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where

g(w) = kiw™t (1 - kw™ + kw™?) (2.91)
p(w) = we™ ¢ + %—r”%mw% (2.92)

and ) = a?.

The function p(w) attains its minimum value when

dp

E = e"il + r"%mw% =0. (2.93)

Therefore, the stationary points of p(w) occur at wy = rm~2e%E, However, the

asymptotic expression of the Airy function is valid only when |arg(w)| < 7 in the
domain of the integration contour. Consequently, p(w) has no stationary points.

Moreover

dp\ _ Y i
Re (E) =3 + r~Zm|w?|cosh (2.94)

where 0 = arg(w?). Since —-g— <0< 1_2r’ Re (j—i) > 0. Therefore, the contour of
integration is a path of descent and, by Watson’s lemma, the asymptotic expansion
of the integral can be evaluated by considering the contributions from the lower end
point of the integrand only.

To apply Watson’s lemma, we expand the functions p(w) and ¢(w) about /;:

pw)= o)+ 3 palw = )

=0

g(w)= qo+ i g(w - h)’.

=1

Then, the asymptotic approximation of the integral is given by [57]

v An(w _ d d
/“ g(w)e=*)dw = e """"( + /\; + -A-5+ (/\ )) (2.95)




Therefore,

eFh % (1 — kL3 + k;,l,"’)

(+0-5))

—im? 1 2
d = zmd.g - T+ + dy
2 icm cn
R O O R )
ra ro ra
where
Skykaly ¢ e
dyy = 1524 “”1 . (2.96)

Now recall that

A= A(0) = %fa—‘k,z,-% (1= katy ™3 + kgty2) 3 bt (g 97
so that the leading terms of ;—1 are given by
1
im?
il_ - 1 - 4o%r ,
A iem\? icm\? icm\ 3
(- 73) (‘*(‘-;::z') (1-7%)
1m?
2a2r
B Ny 3 2 tcem
cm\ 2 icm
(‘*(‘“‘.z;z‘) ) ((“:;z') +(1-77 )
&
4 -4
+ O +o(a?).
k™% (1= k™3 4 ksl ™) (™)




2 ; 4
This approximation is valid when |arg(l;)| < = or LAY arg (l - z;c_&r_n;) < T’
Similar calculations result in the following approximation for the leading terms of
]
Az )
2
%2‘ = ] ic ; + A 4ﬂ: 2
2 _ tc\2 ic\?
+(1-3) (‘+("§) ) (-2
i
+ — 2(12
icv} ic\} ic
+(-5) (0-3)+0-3)
4

+—= o +o(a™).
kol (1= kale™ +k31,-3) (@™

This is valid when o= < arg (1 ) 2r

3

To find the leading terms of Aj and A for large a, we use equation A.3 and A.4
in appendix A which for large Z is given by

AZ) _ ( p 1 5 15 )
42) - \P* Y1z " mzrtaz) (2.98)
. 2
Therefore, using Z(y) = aFrimie? ( - Ea—:), we obtain
m m
A b bmde® (20 - ]
2, a~3r-Smies | Z(0) iZ0))°
AI
Then, the leading term approximation of I‘- becomes
1
, im? 5m* 15im*
A _ om 2 4qr _32q4r? 64a°r3
A] - (l 1'0’2) (] _ I__Cfﬁ) B icm % + 1 icm 4 (2‘99)
=) (-3 (-5)
g - .. ) -2 tem 4ir ) "
I'his expression is valid when <ar (1 - r—a—z) < 3 This same condition was
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required for the b X approximation. Similar computation gives

A
: 5 15

, i —_— - —_
ﬂ!=_(1_£)2_;{03._____32_q.2_1+_b_{q°__z (2.100)

N (O3 A A A

a? (l - 5?) ( o

Ca —4r ic 2r . .
which is valid when 3 < arg (l - ;2-) < 3 This was the same condition that
was required for the %2— approximation.
2

To obtain an asymptotic expression for c as a — oo, we assume that
c=coa+c+al+aa?+ea+esat +0(a™f). (2.101)

This is a different assumption from that of HB, who assumed that ¢ = é + 272 +
éa~4. The expression for ¢, found by HB contained a term Sa®, which, because of
the scaling assumed for S, did not violate their assumptions. Their result, however,
naturally led to the new ansatz given by equation 2.101, in order to free S of the
restrictions placed ou it. Substituting equation 2.101 into the above approximations

for the Airy functions and their integrals we obtain

A, imcy _ m ) SN
7{:- = —1+—2T-a'+§'-3(4rc,z-mc3-2mn)a2
- 1:jn 3 (4mrcoc1 — dm?*rcp + michi ~ 8c2r2i) a=?
-
- 127;1,.4 ( - 5m3c§ — 32m?ric; + 16mcir? + 32mepeyr? + 200 m?

— 32mPrcii — 64ir’c; + 24m2rc1q’,) a™t,

|
!

1~ %iCoﬂ_l - (%c;i - %qz) + '}l) a™? + (%6061 + %Co + #Cgl - %Cgt) a's

+ ,—;—5( — 5¢} + 32¢; + 16¢2 + 32coc2 + 20 + 32chi — 64ics + 24c,qg)a-‘

and
S = 1 + iﬂeﬂcz"1 + (2rc1i - mc) - 2mri) a™?
A, 2 8 1612

m

58 (16mrcoa —~ 18m3rcy — 16¢;1% + 5m’q?i) a™?
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m
256r14

- Tm®c) + 36m*r® - :lﬁmzrzcl)a"

(30m2irclc3, — 32ir’cy — 36m>rcdi + 32mceocyr? + 16mcir?

| .- . N - ] N\ -
A, 5+ Licea™ + (gc;z -Ld+ %z)a 2+ (16coc1 — 18¢o — 16¢31 — 5c8:)a 3

- L [3oic,4, — 3%icy + 36 i + 32c0c; + 1662

~ T +36+ 36c,]a-‘.

After dividing the dispersion relation by A; A2 and substituting these expressions, we

obtain the following approximation for the coefficients ¢;:

imS
© = ~50+m) (2.102)
g = - (3 + -3-) im3$%/16 (1 + m)™°
o = - im +(-5m’—-3m+3rm+5r)m25'
L ‘q‘Z(l +m) 8r(l+m)3

mAi(r? +20mr? +20m + m? 4+ 34rm) $3
128 (1 + m)*r2
im(1 —m)(r —m?)  3igm3?(r? —-1)

@ = 2r(1 + m)? 8r2(1 4+ m)®
mbi(2m* + (13r +21)m®+ 2 (1 +r) (85r% + 116 r + 85) m?) S*
- 1024 (1 +m) 13
m3(+r2 (13 4+ 21 r)m+2r3) 84 (9m?* + 112m? + 82m?r) m3S?
B 1024 (1 + m)’ 3 B 12872 (1 + m)°
+ (63m3r? = 63m? + 112mr? + 82rm 4 9r?) m35?
12872 (1 + m)®
r—1)(=5m? -3m+3rm+ 5r) gm?
¢ = { I 8ri(ltm) )9 + Scy,
o = (1 4+9r*)m°®+ (26 +18r*)m® + (9r* —8r + 1) m4) (m — 1)

32r2(14+m)'m
(2r(13r —4)m? = 32m3 + 44mr? 4+ 107r%) (m - 1)
32r2(1+m)'m
(3r 4+ 3)(r — 1)’ mig?

- . Scs,.
16 (1 4+ m)’r3 e

Expressions for ¢4, and ¢s, are obtained using the computer algebra system Maple [11]
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and are presented in Appendix B. Equation 2.101 is the asymptotic representation for
the growth rate for short wavelength instabilities. We note that ¢5 was given by HB
for the case where r = 1 and it agrees with our results when S = 0. if we let § =0
and r = 1 in ¢, and ¢4, both coefficients become zero as was assumed by HB. When
S = 0, our c; also reduces to the corresponding HB coefficient. Finally, ¢3 reduces to
the corresponding HB coefficient when r = 1 and S = 0. The main difference between
our results and those of HB is the presence of the terms in S which they could not
obtain because of their assumed scaling. Their approximation was obtained using a
regular perturbation analysis of the fourth order differential equations in ¢, and in ¢;.
In their analysis, it was neccessary to make the assumption that S = o(a™®). This
restriction on the values of S essentially led to a zero surface tension limit. In the
method we employ of analyzing the asymptotic behaviour of the dispersion relation,
HB'’s restriction is not requred. The numerical computations we carry out both for
the large and small values of the surface tension support our conclusion that equation
2.101 holds for any value of S.

As expected, in this short wavelength range, surface tension is a very important
parameter. Equation 2.101 shows that surface tension always has a stabilizing effect.
For the case p; = p,, if there is no surface tension, the flow will always be unstable
with respect to short wavelength instabilities caused by the jump in viscosity. In the
absence of gravity, if r < m? then the viscosity jump stabilizes the short wavelength
instability caused by the density jump. In other words, if the density of the bottom
fluid is small enough, then the viscosity jump has a stabilizing effect. On the other
hand, if the bottom fluid is dense enough or if r > m?, then the viscosity jump
causes instability. As expected, gravity is a stablizing factor when r > 1 and it is a

destabilizing factor when r < 1. When r = 1, gravity has no effect on stability.




2.6.2 Long Wavelength Approximations

The long wavelength approximations occur in the limit as a goes to zero. In this
limit, the arguments of the functions A; and A; become very large. Therefore, we
can use methods similar to the one used for the short wavelength approximations in
order to obtain the following asymptotic expressions for the integrals and derivatives

of these functions:

A _ _\/mce"f cm ,/;(5m2:_1_6c2)e"4la
A Vra 4e 32 /mcs/?
r (16 &2 + 15m?)ia? a

-~ it + O(a”)
A Jee 't +_l_+ (16c2—5)e"fa_i(16c2—15)az+0( 2
A a | 4c 32652 64 cA *
S \ﬂ"e"'fa r(3m—4c)ia? 3
A - + s + 0(a®) (2.103)
Jr e~ Ta _(4c+3)ic? +0(a®)
Ag - ﬁ 462 )

Then we divide the dispersion relation by A;A; and we use the above asymptotic
expression to eliminate all the Airy functions present in the relation. Then, the

following asymptotic expression is obtained:
¢ = & + é1a + &0 + o(a?) (2.104)

where

m-=r

14r




r(m+1P2(r -1 (1-i)V2 _g(r=-1)

¢
l 2(1 +r)3’2(r—m)3/’(\/F\/ﬁ+l) r—m
Cin
Cp = -
Cad

and

Can = (B4rm(14+¢)(r—1)c’ — 16 \,@i((Sr ~5vmr*? fm—Trm
+ 83232 _ r"’”\/;ﬁ-)co6 —16m(144)(r—1)(3rm - 2re
- 4r+2q)c® -4 \/5\/5(28 mr¥? — 41313 4 32,2
- 4im®? 4 3re, /m + 16 Vmi + 3m/reg? + 32irm®? — 241313
+ 3a’ym- 44ir\/77)co"l6m(l +i)(r—=1)(3rm+2rg +29) "
- V2m (5 m* % + 4¢.*m - 69ir + 64irm — 64 mi + 4m¥?\fre,?
+ 59i —15m¥%3% _ 4 /mr®/3c,? - dre)® + 16rg ey + 16 1nr3’2g )
- 16g¢ — 16 V/m/rg c,)co'2 +8m(1 +1) (rm"’c, + 3r%mg + 3r*me,
+ 3me; —8mrey —3rmg — 3rg +rc; + 3g)co
- V2im (5 r2m3? — 1052 — 55 — 59m + 5w/ 4 64 rm) V2

cd = Pco'm (3 (r+1)(l +\/;\/ﬁ)coz—-(m—r)(l +\/;\/1;))

For r = 1, this reduces to

=m 21 +m)a?
2 m

C =

(2.105)

which is the same equation as equation (26) in HB. Therefore, with respect to long
wavelength disturbances, the flow is always stable when the densities of the two fluids

are equal. As pointed out by HB, this result is not uniformly valid as m — 0.

2.6.3 Asymptotic Behaviour of c as m — 0

The limit of m — 0 can occur either when, for fixed p;, yy tends to oo or when, for

fixed py, u2 tends to zero. The former case represents the configuration of a viscous
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fluid in the lower half plane bounded by a solid boundary at y = 0. The latter case
represents a configuration of a viscous fluid with a zero-velocity profile on top and an
inviscid fluid with a linear velocity profile on the bottom.

Analyses similar to section 2.6.1 show that as m — 0

J] 1 icm
2, =31 gaay TO(M

Aj
=1 _
A, l+2 + o(m)

and the dispersion relation reduces to

J, ( 1+ 2 (1-'“3-"(1_%)”—""))— (2.106)

2 2a 2J;

mif1 1 iasay i(1-1)g 450+4) .
Jy 203 4} 4aJ? 4J2 =

Therefore, as m — 0, the eigenvalues c either satisfy

L=0 (2.107)
or they are given by
ias i(1-Yg A
c = m (l - - e ~ 37, (2.108)
11 sy i(1-Yg A +4y
21 {1 _ 2 _ 2
tom (J, 272 T a2 4aJ? 2 )T (m?).

The Airy functions here are evaluated with ¢ = 0 in their arguments.

Note that, in the case of fluids with different densities, the density ratio determines
the stability of the flow. Only values of r larger than unity have a stabilizing effect.
However, surface tension always acts as a stablizing parameter. Note also that this
approximation can be simplified further by considering the case of large values of a.

/

. Ay ... . . .
When a is large, we can replace :’—2 with its asymptotic expression to obtain
2

LG PR Y _l) )
=5 (l a°S (l ~)9aj. (2.109)
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This is consistent with the short wavelength approximation given by 2.101 as m — 0.
Equation 2.107 represents the dispersion relation for the stability problem with
the solid boundary conditions mentioned above. To see this, note that the eigenvalue

problem in this case reduces to
(p*- ‘)2 ¢ = ia’(y — e)(D* - 1)¢
#(0) = ¢'(0) =0

#(y2) = w(yz) = 0.

This leads to the linear system

Ah=0
where A is given by
1 —-J,
A=l1 o,

Therefore, for a nontrivial solvtion, J, must vanish.

Equation 2.108 represents the case of an inviscid fluid on the bottom. In this
limit, our non-dimensionalization with respect to the lower fluid becomes singular.
However, we can investigate this case by nondimensionalizing with respect to g, and

p1. This results in a dispersion relation given by
c S
F(a,;;,m,r,g,'—n) =0 (2.110)

where F is defined as in equation 2.84, m (1 - }) is replaced by s3(1 — #) and S and
g are non-dimensionalized with respect to uy, p; and 7 where 7 defines the basic state

velocity field by
(s17y°,0) ify*>0

(s27y°,0) otherwise ~ (2.111)

u’(z",y%) = {
The Airy functions in this case are defined by

. 2
= : L AN 1/3,.-2/3_1/3, _ € 1T, ir/6
Ail(y) = Ai (zle 3 ) = At (m a8y (y - ——sgm )e ) (2.112)

N
A)y) = Ad (z,e"‘g‘) = At (a-zls,.§,2%m-‘,1(y_ c— z:nc: ) cs.a/o) )
2
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As m — 0, we obtain the following approximations for the leading terms of the

Airy functions and their integrals:

%o -(-5)
A1 - a?

A _ _-(ir_':)*
Ay *\ma?
Jy 1

K 1
A e (1-5)

Jy ima?\}
Az - cr )

Therefore, the dispersion relation reduces to
2 2 ic .y 4_ 3¢
(r+1)e* + (40 z+rsz)c+4((l - J) - l)a —-a’S—-(r-1)ga. (2.113)

As s; goes to zero, the problem reduces to the classic Rayleigh-Taylor problem
which was first formulated and solved by Harrison [24] in 1908 and later confirmed by

C‘handrasekhar. Equation 2.113 is equivalent to Chandrasekhar’s equation 113 [10;.

2.6.4 Asymptotic Behaviour of cas m — 1

In gencral, as m — 1, the problem reduces to a configuration of two equally viscous
fluids which are separated by an interface at y = 0. However, if r also approaches
unity, then the problem reduces to the unbounded Couette flow of one fluid which is
always stable [45].

As m approaches unity, the dispersion relation reduces to

2(A'|A3 - A;Al) - ﬂC(A]Jg + JlAz) + ﬂ(A]Jz - J]Az)

- ﬁt‘a (S + “—2(1 - '1')9) (J2A1 + J[Ag) =0

where
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For large values of a this yields
c-——((—-—l)g—a S). (2.114)

However, this seems to suggest that, in the absence of surface tension, the Couette
flow is neutrally stable. To resolve this apparent contradiction with r = 1, we reauce

the dispersion relation in the limit m — 1 to obtain
-1 =2 . 1—m -1 =2
7' + lim ——c—-(2(J1A2+A,Jz)+r a¥)| =0

where %x"‘aﬁz is the Wronskian of A; and A;. Therefore, to satisfy this equation for
an arbitrary disturbance, the eigenvalue ¢ must also approach zero as 1 —m approaches
zero. This leads to a trivial solution since it implies that the stream functions also
go to zero. In this limit Chandrasekhar’s result also leads to a trivial solution (10].
Later on we will consider this case again and show numerically that, for an initial

disturbance, the eigenvalue c always goes to zero as m — 1.

2.6.5 Marginal Stability Curves

As discussed in section 2.3, in order to investigate the growth or decay of a disturbance
with specified values of r,m, g and S, we look at the marginal stability curves (ie.
curves for which 3(c) = 0 on the (m, a) plane. For fixed valu-s of r, g and S, we can
use the above asymptotic expressions to obtain the asymptotic behaviours of these
curves.

The a-intercepts of the marginal stability curves can be obtained by setting the
imaginary part of the m — 0 limit given by 2.108 equal to zero:

3(1—"" (1= 1)“' A') 0 (2.115)

2 2a Jz

where J(f) represents the imaginary part of f. If r < 1 or S is small, then the
a-intercepts are large. In either of these cases, the Airy functions and their integrals

can be replaced by their asymptotic values. The intercepts are then given by
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(2.116)

iyt =

where
0 = coiet (67557
- (1-rpg2) °
‘The portions of the marginal stability curves which correspond to large a values can

be approximated by evaluating the imaginary part of equation 2.101 By using four

terms this yields a cubic equation for a:

3 2(m+1)S(c2) 2(m + 1)3(c3)
o’ — a-— =
mS mS

0. (2.117)

As m increases to unity, if the marginal stability curve intersects the m = 1 line at

large v then the intercept will approximately be given by

1_ 3
Qo = ((—Lgl—)i) . (2.118)

Finally, by setting the imaginary part of 2.104 to zero, we obtain the following

expression for the portion of the marginal stability curve with small values of a:
a=— (2.119)

where

a, = 8m (\/r_n;+l) (r-—-m)sﬁ(r-i-l)%\/f(r— 1 (m+1)

ag = =20m* —4m? 4+ 6414 4+ 16m* +64r° — 248 mr3 — 196 m3®r + 178 m3r
+ Tr%m® +320%m — 17°mt - 21205m? — 2323 m? 4 32 m?/%p%/2 — 43215/2,7/2
+ 12873 - 5215 4 276 r*m® — 67 m*41 r?m® — 362r3/2m7/2 _ 176 mr*
— 32w/ — 40033592 4 ¢912 _ 480172312 — 1501712 — /2 4 64 52 m®/2
+ 128 V2 4+ 624075 - 85 m”z\/r_' + 184 r3m? 4+ 64 m®r? + 149173/ 5/?

— 20" 03241 pant = 36 rm? + 650 m®/*15/2 4 80 /mr'/? 4 16 r*m
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— 64m* %2 4 48 ™/t — 46+5m3 — 138 r%m* + 28+%m? + 64m>r + 44rm
— 20r'm? +292rm? + 4(r - m)é(r + 1)% V2 (4 mr® —m* + 6m3r + 6m*3
— 120527 £ 432002 — 120%m® + 6P — 40t — gm0

— 3523 _ ¥ [y 4 42 TR 333,903 1 19T 2,502
12r3m? + 4rm* — 9m®/%3%2 — 3r3m* — 3r'm® - 91%?

g (3m2 —2mr* 4+ 2mr =5m+8mr? —3Imrt — 2m%r® — 8m?y?
5mirt+2mir + 2324312 _9y3/2,7/2 + 8md/2 52 _ 8452 ,5/2

5m5/2 92 + 2m5/2,3/2 + 3mb5/? \/'17 Jmd/2 82 5302 \/v- —2m%/? r"’)) .

+ + + +

This equation is valid for m < r. A similar expression is found for m > r. When

r = 1, both expressions give a = 0. This is consistent with equation 2.105.

2.7 Numerical Procedure

As discussed in section 2.5, in order to analyze the stability problem we must compute
the roots of the ciispersion relation 2.84 with respect to the eigenvalue ¢ for any given
m, a, g, S and r. As we have seen in the preceeding section, only a few limiting
cases yield asymptotic expressions for ¢. In general, we must implement a numerical
procedure to solve the dispersion relation. The standard procedure is to use Newtons’s
method or variations thereof, such as Muller’s method. A different approach, used
by HB for the case of equal densities where r = 1, is to search {or a minima of |F[?
with respect to ¢. In this thesis, we use both Newton’s method and Muller’s method
[54]. Results obtained by these two methods differ by less than ((10~7).

Since the dispersion relation 2.84 contains the Airy function and its integrals,
an algorithmn for the calculation of Airy functions with complex arguments must be
used. Two such algorithms were used and produced very similar results. The first
algorithm was developed by Amos [4] while the second one was reported in Corless,

Jeffrey and Rasmussen {12]. The integration required in the evaluation of J; and
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J; was also carried out using two different methods. Since the integrands are of
the Gauss-Laguerre type, the first method we use is the Gauss-Laguerre quadrature
formulae [72]. The second method is an IMSL numerical integration subroutine based
on a globally adaptive scheme. It initially transforms the semi-infinite interval into
the finite interval [0,1] and then uses a 21-point Gauss-Kronrod rule to estimate
the integral and the associated error [58). The results found by the two integration
methods are in excellent agreement.

In order to investigate the growth or decay of a disturbance with specified values
of rym, g and S, we look at the marginal stability curves as discussed in section 2.3.1.
(i.e. curves for which 3(c) = 0) on the (m,a) plane. The strategy for plotting the
curve uses some qualitative features of the result. The curves all have the general
shape that can be seen in figure 2.2. In particular, for small values of m there is a
solution of the equation with a large value of a. Thus, once the values of r,g and
S are chosen, we use the asymptotic expression for large values of a to calculate a
starting value for ¢ for m = 0. This value is then used as an initial approximation
for determining the marginal curve points for large values of a. We then increase the
value of m by a small amount and use the previous root as the initial approximation
to evaluate the next point on the marginal curve. This procedure is continued until
the critical value of m is reached. Once the critical value is reached, we decrease the
value of m by a small amount and use the already computed value of ¢ at the critical
value as the initial approximation. We reduce a by a small amount until the point on
the lower part of the marginal curve is obtained. This process is then continued until
m is close to zero. In all the calculations, double precision is used and the residual of
Fis (10~'*) or smaller.

Using the numerical method described above, we compute the imaginary parts of

¢ for various values of a . For r = 1, the asymptotic expression for the imaginary
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a asymptotic numerical
4 0.0026042 0.0025801
6 0.0011574 0.0011543
8 0.0006510 0.0006500
10 0.0004167 0.0004165

Table 2.1: Imaginary parts of ¢ computed from the asymptotic expression 2.118 and
from the numerical method

a asymptotic J(c)10~3 numerical 3(¢)10™3
0.003 -0.054000 -0.053963
0.004 -0.096000 -0.095906
0.005 -0.150000 -0.149669
0.008 -0.380000 -0.382001

Table 2.2: The imaginary parts of ¢ computed from the asymptotic expression 2.103
and from the numerical method

parts of c for large values of a given by 2.101 can be approximated by

=g li:lm) (“ =l aS) . (2.120)

Table 2.1 compares the imaginary parts of ¢ which are evaluated from the numerical
procedure and those which are computed from the asymptotic expression for the case
where S = 0,7 = 1 and m = 0.5. As the table shows, for large values of a, the

numerical solutions and the asymptotic solutions are in close agreement.

Similarly, for small values of a, we obtain a close agrecment between the nu-
merical calculation and the long wavelength approximation given by 2.105. This is

demonstrated in table 2.2. We carried out further comparisons to test the numerical

procedure which showed similar agreement with the asymptotic solutions.




2.8 Results and Discussion

The case of equal densities, r = 1, was the only one investigated numerically by HB.
This case is discussed at the outset so that our results may be compared to theirs.
For other values of r, HB used their asymptotic results to investigate the stability
of the system. Since we have numerical results for these cases, we can test the
predictions made on the basis of an asymptotic analysis alone. We shall demonstrate

that numerical results are necessary in order to reach correct conclusions.

2.8.1 Equal Densities

HB investigated the case where the densities of the two fluids are equal, corresponding
tor =1 and ¢ = 0. They found that, in the absence of surface tension, the flow is
always unstable. Our results confirm this conclusion. Figure 2.2 depicts the marginal
stability curve for zero surface tension. As discussed in section 2.6.4, as the viscosity
ratio approaches unity, the flow becomes the unbounded Couette flow of one fluid.
The stability curve conforms to the prediction resulting from the asymptotic analysis
that, in this limit, the flow ceases to support any growing disturbance.

The stablizing effect of surface tension can be seen in figure 2.3. As surface tension
increases from zero, the flow becomes more stable with respect to short wavelength
disturbances for m values closer to unity. However, the flow is still unstable since the
surface tensions used for these curves are small.

The marginal curves for larger values of S are represented by the solid lines in
figure 2.4. This figure shows that the instability caused by the viscosity jump is now
stabilized for small values of m. As the viscosity ratio m approaches zero, the flow
becomes more unstable and the surface tension is unable to stabilize it.

For m values higher than some critical amount m,, the flow is always stable in
the presence of surface tension. The values of m, for the curves where $ = 0.5,5 =

0.2,8 = 0.1 and S = 0.02 are 0.525, 0.650, 0.750, and 0.880 respectively. Flows with




S Asymptotic Numerical

0.1 2.1237 2.1240
0.2 1.6607 1.6610
0.3 1.4310 1.4317
0.5 1.1801 1.1814
0.9 0.9366 0.9371
1.0 0.8637 0.8643
1.5 0.7607 0.7610

Table 2.3: Comparison between 2.119 and the numerical method for r = 1.

viscosity ratios below these critical values are always unstable with respect to short

wavelength disturbances.

The a—intercept of these curves decreases with increasing surface tension thereby

reducing the number of unstable modes. For the purposes of comparison, 2.115 is
used to evaluate the a—intercept of these curves. This is accomplished by simply
solving

(2.121)
Table 2.3 compares the results found from the numerical method and the asymptotic
solutions. The close agreement is another indication that our numerical procedure is
producing correct results.

Note that, for large values of a—intercepts, we can use the asymptotic expression

given by 2.116 : .

Uit = (—;—)’ (2.122)

See table 2.4 for a comparison of this expression with the numerical solution.

HB calculated the a-intercepts from the asymptotic expressions and they obtained

similar results. For example, for § = 0.1 they obtained a = 2.12 and for § = 0.5 they
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The peaks of these curves decrease with increasing surface tension. Again, this
is due to the stabilizing effect of surface tension. For S = 0, the peak occurs at
m = 0.11 and at @ = 0.29 and has a value of 0.0674. For the case of the equal
densities configuration, this value represents an upper bound for the growth rates of all
possible disturbances. For small values cf m, the growth rates can be evaluated from
the asymptotic expression given by expression 2.108. For values of m less than 0.21,
figure 2.5 depicts the maximum growth rate curves comnuted from the asymptotic
expression for the case where S = 0.0. Note that, for very small values of m, this curve
overlaps with all the other curves since, in this case, a is so small that the a5 term
is negligible. As m increases, however, these curves depart from each other because
the surface tension effects become more important. Asymptotic curves computed for
the other values of S also give similar results.

Figure 2.6 illustrates the values of a for which the maximum growth rates occur.
These curves represent the most unstable modes for a given flow. Note that the most
unstable modes corresponding to smaller values of S are shorter in wavelength. Due
to the stabilizing influence of the surface tension, as S increases, the wavelengths of
the most unstable modes lengthen.

In the next section we examine the effects of density jump and the effects of gravity

by considering the unequal density case.
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2.8.2 Unequal Densities

Let us now consider the cases in which r # 1. The density difference can affect the
stability of the interface in two ways. The first is through the change in the inertia
of the fluid, and the secound is through the response of the fluids to gravity. In order
to investigate first the effect of inertia, we shall set ¢ = 0. Since we consider only
m < 1, then if r < 1, the less viscous fluid is also less dense. As in the case of equal
densities, the surface tension has a very strong influence on the stability. Therefore,
we consider the case where S = 0 at the outset.

In the absence of gravity and surface tension, 2.102 shows that the the sign of r —
m? determines the stability of the flow with respect to short wavelength disturbances.
If the denser fluid is the less viscous, then the viscosity jump acts as a stabilizing
influence as long as the ratio m is greater than r3. On the other hand, if the less

dense fluid is the less viscous, then the flow is always unstable (see table 2.5).

r m Numerical

0.30 0.60 -0.002343750
0.50 0.70 +0.000181661
0.90 0.95 -0.000004337
1.50 0.50 +0.011574074

Table 2.5: Imaginary parts of ¢ to illustrate the zero-gravity zero-surface tension case
with a = 2.0

This behaviour was pointed out by HB. We cannot, however, extrapolate from
this to conclude that the flow is stable if r < m? as HB did, because equation 2.101
says nothing about long wavelength stability, and a full numerical solution of the
dispersion relation shows that the flow is always unstable where o is small. In figure

2.7 we plot the neutral curves for S = g = 0 and various values of r. It can be seen
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that, for large a, the asymptotic statement is accurate; indeed, extending the analysis

to a higher order in a shows that the neutral curves are given by

= lz:( ;"f :n;m” a?+0(a™) =0. (2.123)

In figure 2.7, we plot the curves K/(m? —r) using K = 0.5, a value chosen solely on
the basis of convenience of presentation.
The effect of gravity on the stability of the flow is characterized by the reduced

gravity
1
gr = (— - 1) g (2.124)

r

If the lighter fluid is on top, then g, is negative and, therefcre, gravity is a stabilizing
parameter Otherwise gravity becomes a destabilizing influence. The stability of the
flow, however, is determined by the magnitude of g.. If the magnitude of g, is small,
then even the case where heavier fluid is on top can be stabilized by surface tension.
Similarly, in the absence of surface tension, the case where lighter fluid is on top could
be unstable if the magnitude of ¢, is not large enough. This is illustrated in table
6 where the growth rates for the case where » = 1.5, = 0,m = 0.05 and g=1.0
are presented. Note that there is excellent agreement between the numerical and the

asymptotic solution given by 2.101.

« asymptotic Numerical

0.00074112 0.00074844
0.00038135 0.00038376
0.00019928 0.00020036
0.00009800 0.00009861

-1 & O W

Table 2.6: (‘omparison of the imaginary parts of ¢ between equation 2.101 and the
numerical method where r = 1.5, S =0, m = 0.05 and g = 1.0.

The case where heavier fluid is on the bottom with various values of the nondi-

mensional quantity ¢ is depicted on the marginal stability curves of figure 2.8. As
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in the case where r = 1, when g, is non-positive, the flows become stable to all
wavenumbers for 1 > m > m., and the region of unstable wavenumbers is confined
to smaller values of m. This region shrinks as ¢ increases until it disappears when a
critical value of the parameter ¢ is used. For the particular example where r = 1.25
and S = 0.1, this critical value is 6.87. Similarly, the effect of g where the lighter fluid
is on top is illustrated in figure 2.9 where the marginal stability curves for r = 0.8

and S = 0.1 are shown.
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Again, note that both in figures 2.8 and 2.9 the asymptotic approximations com-
puted using equation 2.117 are in excellent agreement with the numerically computed
curves. The agreement between the asymptotically and the numerically computed
curves for curve (3) of both of these figures is remarkable even for moderate values of
.

The effect of reduced gravity in the absence of surface tension is illustrated in figure
2.10. The upper branch of the marginal stability curves can be found approximately

by setting the imaginary part of equation 2.101 to zero. The result is

(1 =m)(r—-m?  3m?*>?-1)
r(1 + m)g, r2(1 +m)?

In particular, the intercept with the a-axis {m = 0) is, in this approximation, simply
1/g, and the initial slope is —2/g,. Both results are independent of . The density
ratio r is present in the definition of g, but, aside from this, it clearly has only a
secondary impact on the stability of the system. If g, is not positive (and S = 0)
then large wavenumbers will always be unstable. Put another way, the shear flow can
destabilize the flow in spite of the fact that gravity is stabilizing it, provided that the
viscosity ratio is small enough. It appears from the figure that there will always be a
region of instability near m = 0, however high g, may be. The rates of growth will,
however, be very small.

The marginal stability curves of various configurations where heavier fluid is on
top are depicted in figure 2.11. In all cases, the surface tension is 0.1 and ¢ is 1.0.
The a—intercepts of these curves are computed both numerically and asymptotically.
The asymptotic values are obtained using equation 2.115.

As shown in table 2.7, our numerical solutionus agree with the asymptotic solutions.

For values of r < | or for small values of 5, the a—intercept is large. In ei-
ther of these cases, the asymptotic expression 2.116 can be used to approximate the
a—intercepts. Table 8 shows that the ;. computed from this expression agrees with

the numerical computations.
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r

0.25
0.29
0.67
0.80
0.95

numerical

3.5700
3.1899
2.8912
2.5175
2.2047

asymptotic

3.5744
3.1888
2.8980
2.5234
2.2100

Table 2.7: Comparison of a intercepts between 2.115 and the numerical method for

S=0landg=10

r

0.25
0.29
0.67
0.80
0.95

numerical

3.5700
3.1899
2.8912
2.5175
2.2047

asymptotic

3.5771
3.1891
2.9051
2.5378
2.2358

Table 2.8: Comparison of a intercepts between 2.115 and the numerical method for

S=01land g=1.0
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As m approaches unity, the intercepts of the marginal stability curves with the
line m = 1 are given by 2.118. It is easy to see that all the marginal stability curves
are in accordance with this approximation. For % = 2.0, the value of the intercept
at m = 1, calculated numerically, is 3.1624 while equation 2.118 approximates the
intercept by a value of 3.1623.

The destabilizing effects of the density jump, illustrated in figure 2.11, show that,
unlike the case of equal densities (see fig 2.2), the long wavelength disturbances are
unstable. Furthermore, we observe that when the heavier fluid is on top (i.e. when
r < 1) the flow is unstable even for values of m above the critical value m, which was
found for in the r = 1 case.

As o — 0, the long wavelength analyses discussed in section 2.6.2 show that for
r < 1 and non-negative values of g there may exist a very small region of stability.
This region is represented by a small area bounded by the marginal stability curve
for small values of o given by equation 2.119. Since this region is very small, it is not
apparent on the marginal stability curves we have seen so far. Figure 2.12 depicts
this small region for various values fr with g = 0 and S = 0.1. Note that each curve
intersects the m axis at m =0 and m = r.

Finally, the magnitudes of the maximum growth rates versus the viscosity ratio
m and the corresponding wavenumbers versus m are shown in figures 2.13 and 2.14
respectively. In figure 2.13, two curves illustrate the cases where heavier fluids and
lighter fluids are on the top. The surface tension in both cases is 0.1 and the value of
¢ is 1.0. For r < 1, unlike the equal densities case, the maximum growth rates for m
values closer to unity do not approach zero. Even in the presence of surface tension

the magnitude of the growth rate at m = 1 is of the same order as the peak value.
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2.9 Conclusion

We reworked and extended the analysis of Hooper & Boyd [33], taking advantage of
the advances that have been made in computer software since their work was pub-
lished. The more comprehensive numerical results that we obtained show satisfactory
agreement between our special cases and their work, and the points of disagreement
were clarified. The re-working of the asymptotic analysis showed more significant
qualitative changes. The starting assumption of HB for their asymptotic series was
that the series would contuin negative even powers only, whereas we demonstrated
that the series contains other powers, particularly as the result of surface tensionl and
gravity. The extensions to the numerical and asymptotic results allowed us to show
that the agreement between the two is more extensive than one would suppose at
first glance, allowing much of the qualitative behaviour of the numerical solutions to
be understood without having to resort to large numbers of plots.

One particular qualitative generalization of HB requires reconsideration. Their
abstract indicates that the instability occurs for short wavelengths. We agree that
the large wavenumber limit is a significant one for the problem, being the one in which
asymptotic results can be obtained. However, as soon as surface tension is added to
the problem, the largest wavenumbers become stable, and in all cases the largest
growth rates occur for moderate wavenumbers. The question then arises whether
viscosity or inertia is the main factor in the instability. From our results it appears
that as soon as surface tension is included in the problem, the viscosity difference
: th> main factor causing the instability whereas the < usity difference shifts the

marginal curves by relatively minor amounts.
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The more important effect of density difference is the introduction of gravity to
the problem. The asymptotic analysis indicates that gravity is potentially the second
most important contributor to the complex wave speed, although global effects on
the basis of asymptotic results can be misleading. The numerical results confirm the

importance of gravity ia determining the marginal curves.



Chapter 3

Electrohydrodynamic Instability
of Two Superposed Fluids in
Normal Electric Fields

3.1 Introduction

In this chapter we consider the electrohydrodynamic extension of the shear flow in-
stability problem discussed in the previous chapter. As before, the two fluids are
separated by a plane interface and on each side of the interface there is an unbounded
Couette flow. The fluids are assumed to have different viscosities, densities, basic
velocities and electrical properties, and surface tension acts at the interface. In this
electrohydrodynamic extension, the interface is initially stressed by applying uniform
electric fields normal to the interface.

The introduction of the applied electric fields induces electromechanical effects
related to the interaction of electric fields and free or polarization charges with the
bulk of each fluid and their common interface. These effects come into play either
through bulk coupling forces, or through interfacial coupling boundary conditions
between the electric fields and the fluid flow guantities. In the model we develop
in this chapter, the charge relaxation process dominates charge convection which
implies that the electric field is not dependent on the fluid motion and the bulk forces

of electrical origin are negligible. Therefore, the field coupling occurs at the irterface
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as specified by the appropriate boundary conditions.

Electrohydrodynamic instability at the interface between two fluids stressed by
initially perpendicular electric fields has generated considerable interest due to its
wide ranging scientific and engineering applications, including static and dynamic
imaging [14], {25], atmospheric electrification [22], the orientation, confinement and
levitation of liquids in zero gravity [8] and the separation of living and dead cells
[13]. The linear electrohydrodynamic stability of the Rayleigh-Taylor instability of
two inviscid dielectric superposed fluids subjected to a normal electric field has been
studied by many authors including Taylor [77], Melcher [46] and Devitt {15]. In 1969,
Melcher considered the viscous Rayleigh-Taylor problem and examined the dynamic
interplay of the interfacial electric shear stresses and viscous stresses [49] . The
clectrohydrodynamic instability of a single charge-free surface separating two semi-
infinite streaming inviscid fluids influenced by a normal electric field was investigated
by Elshehawey [19] and Mohammed [53). These problems are special cases of the
shear flow electrohydrodynamic stability that is considered in this chapter.

As in chapter 2, the linear stability of the flow is analysed by deriving the exact
dispersion relation in terms of the Airy functions and their integrals, and solving it
numerically and asymptotically to find marginal stability curves. The stability of
the system depends on ten parameters including the ratio of the viscosities, the ratio
of the densities, the surface tension, gravity, the ratio of the permittivities, the two
conductivities, the two initial electric fields and the velocity field of the upper fluid
in the unperturbed motion.

In sections 3.2 and 3.3 we formulate the stability problem and develop the disper-
sion relation describing the stability of the flow. In the absence of the electric fields,
the dispersion relation reduces to the equivalent of the dispersion relation found in
the previous chapter.

In section 3.4, we consider two specific limiting cases representing configurations
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with no shear stresses of electrical origin. The first limit represents the configuration
in which the lower fluid is highly conducting relative to the upper fluid so that the
fluid interface is perfectly conducting and supports a free charge. An example of this
configuration is the air-water interface which has important meteorological applica-
tions. The second limit on the other hand represents a class of charge interactions
of purely insulating dielectrics. Here, the interface does not support any free charge
and, therefore, the conduction and interface coupling is entirely due to polarization
charges. This type of interaction is sometimes referred to as a dielectrophoretic phe-
nomenon and it has applications in the orientation of cryoeenic liqurd propellants.
For both limiting cases, we examine the effects of the initial streaming on the growth
rates and we investigate the existence of instabilities exhibiting purely exponential
growth.

In sections 3.5 and 3.6 we consider two limiting cases in which the electrome-
chanical effects are dominated by electrical surface shear forees. A wide range of
clectrohydrodynamic applications, including electro-optical image reproduction and
space propulsion [27], involve the effects of electrical shear forces. In section 3.5, as in
the dielectrophoretic configurations, the electric charge relaxation times of both fluids
are longer relative to the time scales of the flow. However, here the electromechanical
interactions are dominated by free charges which relax to the interface. In section 3.6
we consider the opposite case where the electric charge relaxation times are very short
compared to the time scales of the flow so that the charge relaxation is essentially
instantaneous. We find that, generally, the principle of exchange of stability, (ie. the
onset of a static instability exhibiting purely exponential growth), does not hold in
the presence of initial streaming of the fluids. The stability of the flow in this limit
is dominated by the ratio of the conductivities of the fluids.

In section 3.7 we present a discussion of the effects of finite electrical charge

relaxation times. These eflects are likely to be iinportant in cases involving surface
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free charges. Moreover, since most real fluids have some finite relaxation times, the
above limiting cases are approximations only. Although these anproximations have
been quite successful in modelling many real systems {47}, finite relaxation time effects
are believed to have important implications in the modelling of electrohydrodynamic
interactions involving bulk coupling of the electric fields and the fluid flow. The
stability of the flow for finite charge relaxation configurations is characterized by the
ratio of the conductivities and the Hartmann number which is a measure of the relative
effects of electric forces and mechanical forces due to viscosity and surface tension. For
large Hartmann numbers, the threshold for static instability reduces to the threshold
found for the infinite charge relaxation limit. For small Hartmann numbers, it reduces
1i the instantaneous charge relaxation limit. In general, a non-zero Hartmaun number
is destabilizing. However, the effects of the ratio of the conductivities are determined
by the specific configurations. Finally, concluding remarks are presented in section

3.8,

3.2 Formulation of the Problem

We consider the two dimensional flow configuration sketched in figure 3.1 of two
homogenous incompressible viscous fluids of constant viscosity g, and 1;, densities
m and py, permittivities €7 and ¢ and conductivities o and 3. In the unperturbed
state, the interface y* = 0 where r* and y* are the usual Cartesian coordinates, is
stressed by uniform electric fields E7 and E3 in the §* direction. Note that, as in
chapter 2, subscripts 1 and 2 refer to fluid propertie~ and fluid flow quantities above
and below the interface respectively. Gravity g* acts in the negative §* direction. In

the unperturbed state the flow has the velocity field

- . owy (al‘by-, 0) if y" > 0
ut(sty7) = { (azy™,0) ify* <0 (3.1)




[R]

where a;@ and a,& are constant vorticities above and below the interface respectively

and the vorticity coeflicients a; and a; are nondimensional constants.

y*

~ N*
l(y*):waly* E —Ll
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~ ~*
uz(y*):wazy* E 12

Figure 3.1: Schematic representation of the problem.
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3.2.1 The Governing Equations
Since large currents are not present n this flow, the effects of magnetic inductions
are negligible. Hence, the electric field E* is irrotational:

V x E*=0. (3.2)

The conservation of free charge requires that

aq*
ot

V. .J4+==0 (3.3)

where J* is the free current density and ¢° is the free charge density [71]. Since the

permittivity ¢* is constant, the free charge density is given by
¢"=¢V . .E". (3.4)

The current density is the sum of the conduction, convection and diffusion currents.

In this problem we neglect diffusion currents so that J* can be represented by
J*=0"E* +u'q" (3.5)

where o% is the electrical conductivity, which we assume to be constant, and u* is
the fluid velocity vector [80). This is known as Ohm’s conduction law. Although not
obeyed by all fluids, this simplest of all conduction laws has been used to successfully
model a wide range of electrohydrodynai.ic pbenomena [47), [48].

The conservation of momentum for the flow is then given by

+ Fex + VVZ * (3.6)

i g+ Foy +vVi°




[t

and the conservation of mass is given by
ou® + dv*
ar* Ay

0 (3.7)
where u®(r*,y",t*) is the actual fluid velocity parallel to the r* axis, v*(r*,y", t*)
is the actual velocity parallel to the y* axis, p*(r*,y",t*) is the pressure, v is the
kinematic viscosity and F = (F.., F,,) is the electric force density vector.
Combining equations 3.3, 3.4 and 3.7 we obtain the following eouation for the

conservation of electric charges in the presence of charge convection:

Dq o, 0
/)

where the material derivative = — 4+ u"-V. Hence, for every fluid particle there

Dt~ ot

is a charge relaxation mechanism which forces the quantity ¢ to relax to zero as e~
where 7 = = is the charge relaxation time associated with the relaxation of free charge
deunsity. Therefore, the free charge density in the bulk of the fluid is essentially zero
regardless of the fluid motion[47).

The bulk coupling force F is composed of the Coulomb force and dielectrophoric

and electrorestrictive terms. It is commonly described by the general expression

| S de\ L*
. _ - . 4‘ - * i : -s
F'=qFE ZF Ve +V(q (0(1_)0 5 ) (3.9)

where the subscript 8 indicates an isothermal process[71].

Therefore, unless a net free charge is injected into the fluid, there is no free charge
density in the bulk of the fluid so that the Coulomb force represented by the first
term in the above expression is zero. Moreover, the last two terins also vanish since
the fluids are assumed to be homogeneous. Consequently, the bhulk coupling force F;
is zero and the field coupling occurs only at the interface regi - 5 as specified by the
boundary conditions.

The electrohydrodynamic equations and the equations of motion are nondimen-

sionalized with respect to the lower fluid as in chapter 2:
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pau 12
(z,9) = (—2—) (=°,y%)
1/2
(u,v) = (sz-) (u®,v*
Witz
(50)7
p = vl R4
Wy
g = (-2 v
palr
t = (w)t*

Here, the nondimensionalization is performed with respect to @ in order to eliminate
singularities at the no initial streaming limit.

We now impose small perturbations on the basic flow as follows:

u, = u,+u'(z9,t)

vi = V'(&,9,t)

pi = Pi+p(&9,t) (3.10)
E. = E,(%,3,1)

Ey,‘ = E.'y.+E;,(-’i«',ii,t)



77

where the tilde superscript is used to indicate quantities of the basic flow and the
primed quanticies denote small disturbances.

Then, by introducing equation 3.10 into equation 3.6, and by linearizing (i.e.
neglecting quadratic and higher order terms in small primed guantities), we obtain a
system of linear partial differential equations for the disturbances whose coeflicients
are only functions of y. Therefore, the equations admit sinusoidal solutions which

depend on & and ¢t of the following form

(i@, 9,1)) = (dil§)) &0

(pi(r,9.8)) = (p(¥)) i (E-ét) G
(Eri(#,9,0)) = {enilg))eeté=?
‘ (E”'(;}’ 2 t)) = ("v.‘(!})) ptoli=ét)

where ¥; are the stream functions and the real parts of these expressions are taken to
obtain physical quantities. As in chapter 2, boundedness of the solutions as 7 and g
go to oo requires the wavenumber a to be real. The wave speed ¢ = ¢, +1¢, represents
the wave speed with an exponential growth rate é;.

In terms of the complex amplitudes of equations 3.11, the partial differential

equations reduce to the following ordinary differential equations:

(D*-1)*¢; = #a'z(aly —e)(D? - 1), (3.12)

(D* = 12, = ia"*agy ~ c)(D? - 1)¢, (3.13)

(D* = 1)ey; = 0 (3.14)

ey, = —tDeg; (3.15)

where D = % which indicates the derivative with respect to y, r = Z—: and the vis-

cosity ratio m = % is related to the vorticity coefficients a; and «; by the continuity
of shear stress

m = =2, (3.16)

a
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Note that the viscosity ratio m is the reciprocal of the viscosity ratio used in chapter

2. In order to obtain equations 3.12 to 3.15 we used the coordinate and phase speed
rescaling given by

(£,y) = alz,y) (3.17)

c = aé. (3.18)

Equations 3.12 and 3.13 are equivalent to the Orr-Sommerfeld equations obtained
in chapter 2. However, equations 3.14 and 3.15 are new additions obtained as a result
of the introduction of electric fields. As pointed out earlier, the set of equations for the
clectric fields are not coupled with the equations for the stream function amplitude

¢;. The coupling occurs when the appropriate boundary conditions are applied.

3.2.2 Boundary Conditions

In addition to the requirement that all physical quantities must go to zero as y goes to
oo for 1 = 1 and as y goes to —oo for ¢ = 2, we must also impose interfacial boundary
conditions. The Kinematic condition requires that the fluids move with the common
interface and that neither fluid crosses this interface. Therefore, the normal velocity

of both fluids must equal the velocity of the interface whose location is described by
F(.‘L’,y,t)=7](l',t)—y =0 (319)

where the general distortion of the interface .y be represented as a superposition
of normal modes given by

1z, t) = == (3.20)
where ¢ is a small parameter. The kinematic condition at the interface then implies

that

gz t) = éli—o)e‘(""‘). (3.21)
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Since both fluids move together with the interface, and since there is no slip between
the fluids in the direction of flow, both the normal and the tangential velocities are

continuous. The continuity of the normal velocity leads to
61(0) = ¢2(0) = ¢(0). (3.22)
Similarly, the continuity of the tangential velocities implies that
Dy(0) - Dr(0) = =Wy (323

The stress condition at the interface is a balance between the hydrodynamic pres-
sure, the viscous stress, the surface tension and the electrical forces. It is given by
[51]

nPh-P)=n-(T\"-1")+n- (1Y -1 (3.24)
where mn is the unit normal to the interface, 7™ is the stress tensor of mechanical
origin and T is the stress tensor of electrical origin. In the absence of electric fields
we have already resolved and linearized the normal and tangential components of this
equation. We now incorporate the electric stress tensor which is given by [71]

i
T,‘f = tE,'EJ — ;2-18.']1';‘-[‘4‘* (l2 )

where E; are the components of the electric field. In the nondimensionalized form,

the normal component of the stress condition at y = g(z,t) can be written as

d - avz IS' l v 2 2 O
-n+ —Jy + 2m— 33 +p2—gy - 27?;}" ) + 5 (fl/,.n - Ey ) (3.26)

where E,; and E,; are the normal components of the electric field, /f is the nondi-

mensionalized radius of curvature, S is a nondimensionalized surface tension given
b
’ ¥
] P2 ve
5= (_ s (3.27)
and ¢ is given by

e= 1, (3.28)
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In the absence of the electric fields this equation is identical to the normal stress
condition obtained in chapter 2. Therefore, by incorporating the linearized form of
the electric force term above into the normal stress condition derived in chapter 2,

we obtain the following coupling equation at y = 0

(3.29)
i a? (l - 11) (¢D@2(0) + a¢2(0))
~ia(s+am (1-1)9) (D = Do) ) (3.30)

icEe,, iEje,,

= m(D*-13D) ¢,(0) — (D* - 3D) 65(0) +

(¢4

Similarly, the tangential component of the stress tensor can be linearized to obtain

the following condition at y = 0

duy duy Jdvy dy, 2 &2 . )
" (Fy_ * T)}—) (()y + —J_r_) Jr ( E E,) +eEyen — Eyera = 0. (3.31)

In terms of the complex amplitudes, this reduces to
2 -2 _ ¢1(0) P2 _ P
m(D*$1(0)+ ¢1(0)) — D?¢:(0) + $2(0) = Eszesp— eEreyy + ——— ( b} E,) (3.32)

which is another coupling equation.
Furthermore, the integration of equations 3.2 to 3.5 across the irterface yields the

following conditions

nX(Ei—-E)=0 (3.33)
n-(01E, ~ 0,E,) + Vs - (¢"v) + g‘:‘ =0 (3.34)
*=n-(cE, - E,) (3.35)

where Vg - (¢"v) is the surface divergence of the current density ¢*v. These equations

along with the stress conditions provide the coupling mechanism between the fluid
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llow quantities and the electrical quantities. In linearized form they can be written

as

_ #1(0)aP

ic
. % de, .
o-leyl - ‘7261;-2 + Q’QD¢1 = at - (-5'[1' (l‘.!’?)

(3.36)

€r1 — €2

where

P=E -k, (3.38)

(3.39)
3.3 The Dispersion Relation

As discussed in chapter 2, equations 3.12 and 3.13 can be solved exactly in terms of
the Airy functions [16]). In order to solve the eigenvalue problem given in the last

section we make the following changes of variables:

2 = m V3 B3r=13q~3e-i"/2(y — i tatrina;—1)
2 = 0—2/3(‘2”36-—::/2(!’ - ;_c; - ia"a-f')

Ei(zi) = (1 = D*)¢i(y).

Hence, £, represents the complex amplitude of the disturbance vorticity. Then, in

(3.25)

terms of §;, equations 3.12 and 3.13 become

P |
d_f; — 2 =0 (3.40)
“1

d’&

2
dz3

— 226, = 0. (3.41)

These equations are in the form of the Airy equation and thercfore their solutions are

given by

& = biAi(a1) + 1 Ai (216”) (3.42)

& = bAi(2;) + c3Ai (2¢") (3.43)
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where Ai denotes the Airy function and 8; = 2x/3 or —2x/3[l]. Then, the boundary
conditions at oo imply that the vorticities must tend to zero as y — coor asy — — 00,

so that b, = b, =0, 6, = 2r/3 and 6, = ~2%/3. Therefore,
&1 = a1t Ai(y) (3.44)

L= PzAz(y) (3-45)
where

Ally)= A (:‘6231) = At (m."/sa.'/31"'/30'2/3(.1/ - L in"rnm‘")c-"”“)
ay

Ai(y) = Ad (zge:';u) = Ai (rtg'/aa""/:’(y L. ioay! )(""""“) .

a

Consequently, we obtain the following equations for ¢y and ¢,:
(D? = 1) = 1 A(y) (13.46)

(D? — 1)$2 = c2Auly)- (3.47)

After solving these second order linear differential equations with the boundary con-

ditions at infinity we obtain the following expressions for the stream functions:
] L 7]
¢ =3¢V 4+ ¢ (e‘”/ e’ Ay(s)ds + e”/ e"A,(s)dx) (3.48)
o v

2 = c4¢? + ¢ (ey /v e A (s)ds + 7Y /- m r'A,(.«)tls) (3.49)
0 v

where ¢3 and r4 are constants,

Similarly, by solving 3.14 and 3.15 with conditions at oc we obtain

€ = cse”? (3.50)
ezq = CoeY (3.51)
cw = ic,e,e'” ‘3-’)2)
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Cy, = —ica( . (3.53)

Finally, applying the remaining six bonndary conditions given by the equations
(3.19) through (3.24), we obtain six linear equations for the six unknown constants

1y €2, €3, €4. €5 and e, The linear homogenous system of equations can then be

written as

Ah =0 (3.54)

where h?' = (¢4, ¢4, 01, ¢2, 5, ¢6) and where the matrix A is given by

SRR, (1+"—’).1, (~1+5‘—5).12 0 0
[ [ [ C
‘ E -E
-2 B (=2, +24;) = 2
« «
A= 3 7
, . K E
ININ a2 P43 4.4 —1 =2
w a
ol 0 ol i 0 I -1
o [
~il)(2 0 l'(hll(,) 0 (’(+’I,-0'] (‘+1:0’-2
\ /
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Here

! (( Elz - [?22)

¢

¢31 =2m+

. s 2 5 2
I((E| —1‘32)

¢3'3 = 7”(2-]1 - 2‘41) +

¢
b41 =2 — (b’ +a”¥(1 — -l-)q)
' a; — a r (3.41)
, rey , —a 1 o, |
bus =2 (5+a™ = 2)g) +in™0 = ) w)d,
ay — r r
, tevdy , _2 1
bas = =2+ A+ = (S am(1 = D))
) — r
o) . 1 .
baq =201y — Ay - e (-“' +a7?(1 - -)!l) +i07¥ (1 — I‘)('lz + ¢)
a, — a r r
and ,
Jyoo=f e Ag(s)ds
Jy, =[5 e A (—s)ds
A] = AI(O)
Ar = AA0) (33.42)
. dAdy)
Al - ll!] y=0
P dA(y)
A= dy =0

For a non-trivial solution of equation 3.40 we require the determinant of A to van
ish. This gives the following dispersion relation relating the cigenvalues ¢ and the

nondimensional quantities oy, v, g, 8,6, 0,04, Iy and Fy:

Fleyeap,mr, g, S, oy, o, 15, k) =0 (:3.55)
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where . N
I PFa+ iOF. eFE? — F?
[n — I,'l + __2_ + 3+>1Q 4 ( 1 2) FS (3.56)
e cle+ ) +i(o + 0y) ¢
and

l"l = Z(IH — l)ol'(A2 + AII) + 21ll(A'|A2 - A'IA]) + 27"(7" - 1)(/"1 - A] )-]2
. 1 .
+’I(l - 7ll)2-,| .]2 + L(l - ;)ﬂ-z ((2(771 - 1)J]J2 + ((‘ + (Iz)Ale

H{ay — ) Avty))
"'2 = 2((12 - (l])"l(.]]/‘z + A]Jz) - i(\'(.g + (Y-z(l - %)y)(m.]-zA] + .]]Ag)
tmifay —ay) AN A, — mi(ay — ay) Ay Ay

Fyoy —ap by |
Fy= (Aph +mAvky) (——ﬂ—L + sz) +(mALL + Ay,

¢

eEyo, + Eyo4
c

. 1 . .
+2(m — 1)y +iea™*(1 — ;).]1.]2) ( —ie(Ey + Eg))

ﬁh:(O+M—M)Lm+ﬂm—ULh~mhm)Gm+EM

& C C

, — oS +a (1 =12 2(ay —
-w((w”‘ “) A + = tom U)oy, Ha—a),,

. 1 2+ E2
~rn:1'|./2 - 7'(110'-1(1 - "‘)J)J«z - I(—E-ﬁ——z.]h’))
r

. 1
Fo = (AL + AL + 2(m = 1)y J,) — a1 — =)J,J,e.
2 1 7

Note that. in the mit of no electrie fields, this equation reduces to the dispersion
relation discussed in chapter 2 and, in the limit of no initial streaming, it reduces to
the dispersion relation discussed in reference [49).

To analvze the stability of this problem we investigate the dependence of the eigen-
values ¢ on the varions stability parameters. Since the effects of m, v, g and S have
heen studied in the previous chapter, we will examine the solutions of this dispersion

relation and investigate the stability of the flow with respect to the electrical stability
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parameters such as ¢,0; and E; in the following sections.

3.4 Free Charge (EH-If) and Polarization Charge
(EH-Ip) Configurations

In this section we consider two configurations, cach represeuting a specific type of
charge interaction phenomena, in which there are no shear stresses of electrical origin.
Regardless of interfacial deformations, the surface forces of clectrical origin always act
perpendicular to the interface in these important classes of interactions. The physical
mechanisms of the interactions are discussed in reference [16].

The free charge configurations (EH-If) represent the limiting cases in which the
fluid interface is perfectly conducting and supports a free charge @ which may be
induced on a conducting film at the interface by externally applied clectrie fields.
In practice, this configuration represents cases in which one fluid has much greater
conductivity than the other. If the lower fluid is highly conducting relative to the
upper fluid, then the electric field is confined to region 1 and £, = 0. Au important.
example of this case is the air-water interface which has attracted so muchinterest due
to its meteorological applications [22]. In this limit, the dispersion relation reduces

to

Fy (B2 (AL +mAL)

Fit =+ (3.57)

q

In contrast, in the polarization charge configuration (EIl-Ip), sometimes termed
dielectrophoretic phenomenon [60], there is no free charge on the interface (Q=0).
Therefore, there are no effects of free charge and hence of conduction and the coupling
is entirely due to polarization. Furthermore, both fluids are perfectly insulating so
that the fluid motions occur in relatively shorter time scales compared to the electric

charge relaxation times which are given by
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T = —. (3.58)

In our stability analysis where we assumed an instability dynamics of the form e'l@=cth,

this limit requires that 7¢ >> 1. As in the (EH-If) case, the interface represented
by this confignration does not support any tangential electric stress. In addition to
its application in the separation of living and dead cells [13] and in understanding
ferrohydrodynamic phenomena in ferrofluids [66], this class of polarization interaction
has important applications because of its possibilities for solving orientation problems
of eryogenie lignid propellants in the zero-gravity environment of space {8]. The
cleetrie field is used to replace the influence of gravity. The dispersion relation in this

case reduces to
I N 1B Ey(1 =€) (Ahy + mALL,)

M+ e (3.59)

Equations 3.57 and 3.59 are analogous to equations (20) and (22) respectively
in reference [19]. The latter equations were obtained by assuming that there is no
initial streaming of the fluids. In general, the dispersion relations cannot be solved
analytically, However, as in chapter 2, we can obtain an asymptotic expression for ¢

as a — 0o, Following the asvimptotic methods described in chapter 2 we assume that
= cpax + 1 + ('20_’ + o(a—]) . (3.60)

Then the Airy functions and their integrals can be approximated by

Al _ 1co (Areyi— ¢ = 2ay 1)

Ay 2mra 8mria?

‘\_'2 _ _ i_(_‘y__ (4(‘1["‘" (‘()2+2ll-) l)

Ay 2a 8 a?

.]] 1 i(‘u (2 rcy 7 — (‘02 - 2(1] It)

= = - 3.6
A4 2 + Sra 16 mr2a? (3.61)
.Ig _ l + i('o (2(‘1 1 - l'o2 + 2(12 l)

A, 27 Ra 16 2

Substituting these approximations in the dispersion relations we obtain the following



expressions for the coetlicients ¢,

1S )
Cg = —2(1 + nl) (3.('2)
I 3i(l+rt)se L
T 0 em) 16 (1+m)] (3.63)
o = — (1—r=1)4 301+ re1)ilcS  (=5ay — 3may + 3ray + dmayr) S
2 I 20l4+m) 8 (14+m)3 Sre(l + m)?
1 (1 4 20mr? + 20m 4+ m? + 3trm) S 3.64)
128m (1 + m)5r2 (3.6
where .
I} for the EH-If case
I = (3.65)

EyEy(1 = ¢)?
(e +1)

In the absence of the electrie fields, the above expression for the cigenvalue ¢ is

for the EH-Ip case.

cquivalent to what was obtained in chapter 2. Clearly, the effect of the electrie field
represented by the quantity ' is to destabilize the interface. If the heavier thiid is
on the bottom such that gravity stabilizes the system as the clectrie field is raised,
then there is a critical value when the interface first becomes unstable. For the EH-1p
configuration I vanishes when ¢ = 1. This is to be expected, sinee polarization is
characterized by the presence of permittivity gradients at the interface. In this order
of approximation, the term consisting of the initial streaming coeflicients @y and ay is
purely real so that, in the short wavelength limit, the initial streaming does not have
any effect on the stability of the flow. If these coefficients are large, then we st
obtain higher order terms in order 1o determine the effects of the initial streaming for
short wavelength instabilities.
Similarly, in the long wavelength limit, asymptotic analyses yield

. _(7. .Y _ (g + az)z (r — ])2 mr (i — 1)er + olar). (3.66)

ra; — a) \/‘2(,.“2_,“)%“ +,.)%(\/,TL+\/;)

Therefore, in the long wavelength limit, the growth rate of the instabilities is deter-

mined by inertia terms only. In general, the electrie field does not affect the stability
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Lhehaviour of the How,

3.4.1 The Principle of Exchange of Stabilities

As discussed in chapter 2, for a given set of stability parameters, the temporal evolu-
tion of each disturbance mode is governed by the sign of the imaginary part of ¢, ¢;.
If ¢, < 0 for all wavenumbers, the disturbances decay exponentially and the flow is
classified as stable. On the other hand, if ¢; > 0 for any wavenuinber, then the flow is
classified as unstable. The marginal state then separates the stable and the unstable
modes of disturbances. In the marginal states, two different hehaviours are observed
depending on whether e, is zero or not. If the marginal state is represented by ¢ = 0,
then it is charactetized by static instability and the disturbances grow monotonically.
Here, we say that the the principal of crehange of stability is valid . If the marginal
state corresponuds to ¢ = ¢, where ¢, is non-zero, then the instability will develop in
the form of vscillations of increasing amplitude. This is called over stability.

We now consider the possibility that the marginal states of the above lir-ting
cases of our problem are characterized by static instability. Therefore, as ¢ — 0 in
equations 3.07 and 3.59 we obtain the following conditions for the incipience of static
instability for the (EH-1f) charge configuration

X

ot - fT"'-n +a™ +i(ay - al)f;'_?a =1 (3.67)
where
_ m (2:]1142 + 2A1J2 + A;Ag - A,zA])
iz = (Ag.]] + IIJAlJz) (3.68)
and
_1
at = Q——'—)‘l (3.69)

‘S'

Similarly, for the (EH-1p) configuration we obtain the following condition

2 Evl I::g(l - ‘)'I o2 . a2
a® — —(T_-{-—-I).Tn+n +'(a2—“l)?‘“—0 (3'70)
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where the Airy functions are evaluated with ¢ = 0 in their argnment.
In the absence of initial streaming, a; = a; = 0 so the a2 term in the above
equation does not make any contribution. In this case, the minimum electric fields

required for the incipience of instability obtained from equations 3.67 and 3.70 are

. 208\
Eﬁ:(t ) (3.71)
for the (EH-If) case and
1
. .‘q F]
P = (————_2" (" + ‘)) (3.72)

for the (EH-Ip) case. When the electric field is raised to these critical values, the
first unstable mode occurs at the critical wavenumber a*. This is consistent with the
result found by [49).

However. in the presence of initial streaming, the ), term does not vanish and
the principle of exchange of stability is valid only if Real(ay,) — 0. If the incipience
of instability occurs at large values of a, then by utilizing the asymptotic expressions

3.61 we obtain the following condition for the exchange of stabilities
ot —1a? + o a — alV =0 (3.73)

where

B (1 —m) (l - m"r)

V= S +m)r (3.74)

a . .4 . .qe
If — is small, then the incipience of static instability occurs at.
a

3 2
r'r:a'-—-(ﬂ:‘-;-{-o((ﬁ':) ) (3.75)
o o

and the corresponding eritical electric fields will be

NP ol (et ) o

5y = E; A (3.76)
for the (EH-If) case and

. P (a® - a) )

pr=p -2 (3.77)

4er*
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for the (EH-1p) case. Therefore, if V is positive, then the critical electric fields
required for the incipience of static instability are reduced by the initial streaming
and the instability occurs at a lower wavenumber a.

Figures 3.2 and 3.3 are examples of the marginal stability curves for the (EH-
If) and (EH-Ip) configurations respectively. In both cases, a® = v20, m = 0.5,
@ —az = 0.5 and V = 0.83. In the absence of the applied electric fields the flow
is stable. The curves are computed using the numerical procedures described in
the last chapter. Since o® is large, the effect of the initial streaming is small as
discussed above. This is demonstrated in figure 3.2 where, as the electric field is
increased, equation 3.75 predicts instability to occur at & = 0.991. The critical
values of the electric fields corresponding to this wavenumber are 0.861, 0.944 and
1.056 for ¢ = 1.2, ¢ = 1.0 and ¢ = 0.8 respectively. Even in the presence of such
moderate initial streaming, the agreement between the computed critical values and
the predicted values is quite remarkable. Similarly, in figure 3.3, the critical electric
fields 1.417 and 1.280 corresponding to ¢ = 0.8 and ¢ = 1.2 respectively, predicted
by equation 3.77, are in close agreement with the computed curve. Furthermore, for
values of a exceeding 1.0, the numerically computed curves match the hyperbolas
described by equations 3.67 and 3.70.

Finally, the destabilizing effects of the initial streaming for positive V are demon-
strated in figure 3.4. As a; — a3 increases, the configurations become more and more
unstable until the flow becomes unstable even in the absence of the electric field.
Figure 3.4 depicts ay ~ a; and the electric field required for a marginal state for the
disturbance of wavenumber a*. As the initial streaming increases, the electric field
required for destabilizing a® goes to zero. Furthermore, figure 3.5 demonstrates that,
as ay — a; increases, the real part of ¢ corresponding to the marginal state at ao*
becomes non-zero. (Consequently, there is no exchange of stability and 3.67 and 3.70

are not valid.
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3.5 Infinite Electric Charge Relaxation Limit

Here we consider the limit in which the relaxation times of both fluids are very
long compared to the time scales of the flow and in which the equilibrium surface
charge @ is non-zero. Unlike the limiting cases discussed in the previous section,
here interfacial electrical stresses are present and dominate the surface interactions.
A wide range of applications including static and dynamic image reproduction and
space propulsion, involve electrical relaxation and electrical shear effects [27]. In this

limit, the dispersion relation reduces to

2 . cl:}"—f']?
F=p,+ﬁ+PF3+’QF‘+( ! ‘)ﬁg (3.78)
c cle+1) ¢

where F} is the same as F3 with o, = 0 and o2 = 0. In the limit where ¢ — 0, the

above expression further reduces to

. 22 4 f3 . by
L (3.79)
where
by = eEy + E; — (A} - 202) Q. (13.80)

Therefore, in general, an exchange of stabilities is not possible in the presence of
initial streaming.

If there is no initial streaming of the fluids, then the principle exchange of stability
holds and the marginal stability curves are given by

2 4 2 .
at — E—Ei—;-,*;-——--‘-a +a?=0. (3.81)

Therefore, the minimum electric fields for the incipience of instability must satisfy
the relation

2 + E? = 2a° 8. (3.82)
In terms of P and @ this condition is given by

1PQ  20°S(1 — )

2 2 _ -
P +Q -7 1+«

(3.83)
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which is equivalent to the expression (32) of [49]. For any value of ¢, equation 3.83
represents a rotated ellipse on the P — @Q plane. For values of P and Q inside this
ellipse the flow is always stable. However, P and @ values outside the ellipse represent
unstable configurations.

For a configuration with o* = V20, $ = 0.1, a; — a3 = 0.05, ¢ = 0.8 and an
cquilibrium surface charge of 0.14, equation 3.83 yields the minimum value of P
reguired for the onset of static instability to be about 0.32. Figure 3.6 depicts the
marginal stability curves for two different values of Q. The curves are computed using
the numerical procedure and they are consistent with the predicted analytical values
fur the eritical values of o and P for the incipience of static instability.

As discussed above, however, in the presence of initial motion the induced insta-
bility is not necessarily static and the predicted critical values are not valid. Figure
3.7 demonstrates this case where we have the same configuration as in figure 3.6 but
where a; — a; = 1.25 instead of 0.05. The critical values of a and P are 0.21a" and

0.203 respectively which are considerably smaller than the predicted values of a* and

0.32 respectively in the no initial streaming limit.
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3.6 Instantaneous Charge Relaxation Limit

In this section we consider another limiting case involving shear stresses of electrical
origin. In contrast to the limiting case discussed in the previous section, here the elec-
tric charge relaxation times of both fluids are very short compared to the mechanical
time scales of the flow, so that rc << 1 and me << 1. Therefore, this configura-
tion represents interfaces between fluids that are highly conducting, for example, an
electrolyte and mercury. In this limit, the dispersion relation becomes

i + 10 F ek? — [2
F=F‘+&_iPF3+zQF4+( i 2)
c ('(Gl +02) c

Fs (3.84)
where
Fy = (Axd + mALLY)E0, — a2 Ey) + (m ALy 4+ ALy
+ 2(m - I)JlJz)(CE]G’g + Egﬂ'])
Fy = (az—a) (D AeEy + Ba) + (AL — J1.01)Q)
~ QUaS+a (1 = 1))y~ iQ (¢ + ).
For the short wavelength limits, the asymptotic expressions for the Airy funetions

and their integrals, given by equation 3.61, can be substituted in the above dispersion

relation to give the following approximation for the cigenvalue ¢

c=bya+ b + ba™! + o(a7!) (3.85)
where
[ 7>
b = —30%m)
boo (Ervek— E;)P 3i(14r")s?
! 20 +m)(1+4&) 16 (1+m)
(1=rN)i 3i(l+r ") (Efek = £3)S  i(1 =) (kR — E3k)S
by = —y - .
2(1 +m) 8(1 +m)3(1 + k) 16(1 + 1)3(1 + k)
i (13 + 20mr? 4 20m 4+ m® + 34110) S?  (5ay + nay — Sraz — Snagr) S
- 128m(1 + m)br3 - 8r(1 + m)?
_ -l-iE,E,(‘k” +5 )+ (5+ 7)) S
16 (1 4+m)*(1 + k&)
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and

= —. (3.86)

From this expression, we deduce that the growth rate for the short wavelength
instability depends on the ratio of the conductivities of the two fluids. If the lower
fluid has a much greater conductivity relative to the conductivity of the upper fluid,
then the above expression reduces to equation 3.60 with I'* corresponding to the (EH-
If) limit. Ou the other hand, if the fluids have nearly equal relaxation times so that
there is no equilibrium charge, then the above expression reduces to equation 3.60
with I' corresponding to the (EH-Ip) configuration. Therefore, in the instantaneous
relaxation limit the nature of the charge interaction and the stability of the flow are
closely related to the conduction and relaxation of the electric charges.

By letting ¢ — 0 in the dispersion relation, we determine the following condition

for the onset of static instability:
ot +a*? = Ba/S (01 + 03) (mBy Ay + Sy Az) + QPN J2) = 0 (3.87)
where

B = (m?;. +Q (B2 + ER) +i(az - a,)(.l.A,(ei:, + E3)Q + (AYy — 1 J5)Q?

+om(2h Az + 2400, + AL Ay — ALAL) (o4 + a,))).

Again, if a; — a; is not small, then there is no exchange of stabilities. However,
if the initial streaming is small, then incipience of instability occurs at o® and the
critical electric fields satisfy

B*a
2 1 ] - ) M
@ ) ((0'1 + a'g) (nngAl + J; Ag) + Q"zjl.’z) . (3 88)

For large values of a*, equation 3.87 reduces to the following simple condition for
the incipience of static instability:

(\2 _ (El(k - EZ)Pa + at? =0. (3.89)

S(1+ k)
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demonstrated both theoretically and experimentally that electric and surface tension
stresses conld balance for a liguid in the shape of a cone of a half angle of 49.30 at a
particular voltage depending on the surface tension and on the clectrode configuration.
In recent years, further analytical and experimental investigations of liquid drops in
clectric fields were carried out by many authors including Kim and Turnbull [40],
Flghazaly and Castle [18] and Cerkanowicz [9]. In 1988, Inculet and Kromann [34]
experimentally studied the breakup of large water droplets in an electric field in the
presence of gravity by suspending an alcehol doped water droplet in a dielectric oil.
The droplet clongated and developed a Taylor cone on one or both sides of the droplet
and cjected a filament. When the droplet was symmetrically positioned between the
clectrodes, Taylor cones formed at both ends. However, if the droplet was lightly
displaced from the centre, only one cone formed at the end closer to the electrode.

In comparison to the experimental and analytical investigations, the numerical
simulations of ligquid drops in electric fields have been limited. This is due primarily
to the nemerical and computational difficulties in solving the full nonlinear equations
of motion where the location of the free boundary is not known a priori. Basaran
and Seriven developed a finite element algorithm to investigate the profiles of electri-
fied conducting drops and bubbles [6]. Theodossious, Nelson and Qdel developed a
numerical simulation for the motion of dielectric fluids [78]. In 1989 Inculet, Floryan
and Haywood developed and utilized a numerical simulator based on a finite volume
technique and an adaptive grid algorithm to predict the experimentally observed elon-
gation of a large liguid droplet by a uniform electric field [35]. The droplet was placed
hetween two parallel electrodes and the experiment was carried out in microgravity
conditions produced with parabolic K(-135 NASA aircraft flights. Unfortunately, the
numerical technique was unable to predict the evolution of the droplet beyond the
clongation.

In 1990, similar experiments were carried out to investigate the behaviour of sessile
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3.7 Finite Relaxation Time Effects

The limiting cases we have considered so far involve cither very small or very large
clectric charge relaxation thnes compared to the characteristic dynamic time scales
of the flow. In this section we look at configurations in which the fluids have fi-
nite electric charge relaxation times that are comparable to the characteristic time
scale of the flow. These configurations are important since, for most real systems,
the limiting cases we have considered are approximations only. Fven though these
approximations have been quite successful in modelling many real systems [47], fi-
nite relaxation effects are likely to be important in configiurations where equilibrivm
charges are present. Furthermore, it is believed that finite relaxation tine effects have
important implications for fluid interactions involving bulk coupling of the fluids {51).

In this finite relaxation configuration the possibility of incipience of static insta-

bility (ie. the principle exchange of stability is valid) is determined by

2 2 2¢ TR TP x5 (Frek — Ep)P
(o + &™) H.°S + 1) — H (e EY + Ej)a — S+ &) o

_ P(Erek+ Ey) - (¢EF + ED)(1 + k)f"
1+ k ;
(lnz("1+0'z)+QJablz( _

S(mds + J)(on +02)

+ i((tz - (l])

where «;; and by, are given by 3.68 aud 3.80 respectively and

_ AL+ mAyS: — 2(1 —wm)dyd,
- m.J, + .J,

_ Qs J,
- (7".]] + .lg)(ffl + 0’2).

Js (3.92)

H.*?

(3.93)

The quantity H, is called the electric Hartmann number and it is a measure of the
relative effects of the electric forces and the mechanical forces[31].
Clearly, in the presence of initial streaming the iimaginary part of the above equa-

tion is nonzero and therefore, the onset of instability will not be static in general. In

1This is analogous to the Hartmann number of magnetohydrodynamics.
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the short wavelength limit and where there is relatively small initial streaming, the

condition for the static instability reduces to

(Eyek — E3)P

2 o2 2¢ - 2 2 2 -—
(0f + ") HA°S + 1) ~ Ha*(eE} + ES)ar S+ k)

=0 (3.94)

Wll(‘r(‘

2= < (3.95)
ol 2("1 + l)(0’| + 0’2). )

Therefore, as the electric field is raised the first unstable mode will occur at o* again.

The entical eleetrie field must be such that

(Evek — Ey))P
FTEysaal (3.96)

2a° (l + H,lz) = H¢l2(¢ Ell + Ezz) +

Therefore, the general stability bebaviour of the flow is characterized by the Hart-
mann number. If the Hartmann number is large compared to unity, then equation
3.9 reduces to equation 3.81 which is the condition for the onset of static instability
for the infinite charge relaxation limit. On the other hand, if the Hartmann number
is small in comparison to unity, then equation 3.94 reduces to equation 3.89 which is
the condition for the onset of static instability for the instantaneous charge relaxation
linit.

If the Hartimann number is finite, then the stability is generally determined by
the conductivity ratio &, the permittivity ratio ¢ and the Hartmann number. While
H,; is always destabilizing, the effects of the conductivity ratio are determined by the
quantity (I:}.ck - IE‘,) P. If this quantity is negative, then & is stabilizing. Otherwise

it is destabilizing.
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3.8 Concluding Remarks

We examined the electrohydrodynamic stability of a shear flow which is subjected
to perpendicular electric fields. We investigated various limiting cases and developed
conditions for the incipience of static instability (characterized in the marginal state
by ¢ = 0). As the initial motion parameter a; — 0, our results agreed with previous
work [47]. In the long wavelength limit the electric field does not affect the stability
behaviour. Short wavelength analysis, however, demonstrated that the electric field
effects are of secondary importance compared to the effects of surface tension. In the
presence of initial motion, static stability is not generally possible except in the limit
of short wavelengths. Finally, we considered the effect of finite relaxation times. We
found that the electric field effects are characterized by the Hartmann number and
the ratio of the conductivities. For large Hartmann numbers the threshold for static
instability reduces to the threshold found for the infinite charge relaxation limit and
for small Hartmann numbers it reduces to the instantaneous charge relaxation limit.
While a non-zero Hartmann number causes instability, the effects of the ratio of the

conductivities are determined by the specific configurations.



Chapter 4

Interfacial Deformation of Liquid
Droplets by Applied Electric
Fields at Zero Gravity

4.1 Introduction

In this chapter we consider an electrohydrodynamic problem in which a large viscous
druplet is subjected to an applied electric field in a zero gravity environment. When
drops and bubbles are subjected to electric fields, electric shear-induced convections
are usnally present [76). These convections are physically similar in nature to the
convections that occur in the shear flow electrohydrodynamics problem discussed in
chapter 3. Due to the applied electric field, an electric charge is induced on the surface
of the droplet, resulting in an outwardly directed force to the surface. This outward
pressure directly counteracts the surface tension and, under suitable conditions, it
forces the liguid up into a cone from which small charged droplets are ejected. The
emission of the charged droplets depends on the viscosity, the surface tension, the
mass density. the permittivity and the electrical conductivity of the fluid.

In addition to being of theoretical interest, this problem has widespread appli-
cations in several areas including electrostatic precipitators for air pollution control
{82). electrostatic painting, insecticide spraying of crops and ink-jet printing [73],

[42). In the case of water droplets, the deformation and break up of the interface

107



108

is believed to be an important factor in the production of thunder storms [75]. In
zero-gravity conditions, droplet dynamic problems are important in order to obtain
a better understanding of containerless processing technology in space [50].

In chapter 2 and in chapter 3, we studied two problems related to the interfacial
instability of shear flows. By utilizing linear stability analyses, we identified specific
parameters which governed the instability and we determined the critical conditions
at which these parameters destabilize the interface. While these conditions are im-
portant in understanding the mechanism of the interfacial instability and evolution,
one must solve the full nonlinear equations of motion in order to fully describe the
interfacial dynamics and the deformation process. Therefore, in order to study the
the viscous droplet dynamic problem considered in the present chapter, we solve the
full nonlinear equations of motion using computational techniques.

The interaction of electric fields with fluids and the presence of a cone on the
surface of a liquid in an electric field was recorded as early as 1600 by William
Gilbert. He noted that when an electrified rod was brought near a drop of water
which was sitting on a dry surface, the droplet formed into a conical shape. In 1882,
Lord Rayleigh derived the critical amount of the charge (Rayleigh Limit) that was
required to destabilize an isolated conductive spherical droplet, and observed that the
resulting instability was a fine jet that broke up into a series of small stable charged
droplets [65]. The validity of Rayleigh’s observation was later confirmed by Hendricks
and others [28]. In 1914, Zeleny photographed and studied the reaction of a meniscus
held at the end of an electrified glass capillary tube with a diameter of less than
a millimeter [85]. The meniscus oscillated at a lower voltage and, eventually, with
increased voltage, the droplet disintegrated after forming a conical end and issuing
a thin jet. Zeleny later showed that the square of the potential at which instability
begins is proportional to the surface tension of the liquid and the radius of the droplet

formed [86]. Taylor gave further explanation to these observations in 1964 [75]. He
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demonstrated hoth theoretically and experimentally that electric and surface tension
stresses could balance for a liquid in the shape of a cone of a half angle of 49.30 at a
particular voltage depending on the surface tension and on the clectrode configuration.
In recent years, further analytical and experimental investigations of liquid drops in
clectric fields were carried out by many authors including Kim and Turnbull [40],
Iilghazaly and Castle [18] and Cerkanowicz [9]. In 1988, Inculet and Kromann [34]
experimentally studied the breakup of large water droplets in an electric field in the
presence of gravity by suspending an alcohol doped water droplet in a dielectric oil.
The droplet clongated and developed a Taylor cone on one or both sides of the droplet
and cjected a filament. When the droplet was symmetrically positioned between the
clectrodes, Taylor cones formed at both ends. However, if the droplet was lightly
displaced from the centre, only one cone formed at the end closer to the electrode.

In comparison to the experimental and analytical investigations, the numerical
simulations of liquid drops in electric fields have been limited. This is due primarily
to the numerical and computational difficulties in solving the full nonlinear equations
of motion where the location of the free boundary is not known a priori. Basaran
and Seriven developed a finite element algorithm to investigate the profiles of electri-
fied conduecting drops and bubbles [6]. Theodossious, Nelson and Odel developed a
numerical simulation for the motion of dielectric fluids [78]. 1n 1989 Inculet, Floryan
and Haywood developed and utilized a numerical simulator based on a finite volume
technique and an adaptive grid algorithm to predict the experimentally observed elon-
gation of a large liquid droplet by a uniform electric field [35]. The droplet was placed
between two parallel electrodes and the experiment was carried out in microgravity
conditions produced with parabolic KC-135 NASA aircraft flights. Unfortunately, the
numerical technigue was unable to predict the evolution of the droplet beyond the
clongation.

In 1990, similar experiments were carried out to investigate the behaviour of sessile




110

droplets under the influence of applied electric fields [36]. A large liquid droplet
generated in microgravity conditions was placed on the bottom electrode of a parallel
electrode system. Once the electric field was applied, the evolution of the droplet
was recorded on a high speed camera. The experiment shows that when the applied
electric field is above a critical value, then the droplet elongates into a cone from
which smnall charged droplets are ejected.

The aim of this chapter is to model and develop a computational procedure in order
to simulate the elongation and break up processes of the droplets observed during this
experiment. As stated above, one of the main difficulties encountered while simulating
these types of problems involving interfacial deformations is in tracking the moving
interface which is not known a priori. Among the various computational technigues
available for solving problems with interfacial dynamics, volume tracking methods
have shown great promise for numerical simulations of large surface deformations.
In this chapter we modify and employ a finite difference algorithm called NASA-
VOF2D [79] which is based on a volume tracking technique called volume of fluid
(VOF)[30}, [31]). The NASA-VOF2D algorithm which descended from the Marker And
Cell (MAC) method [23], [21] solves two dimensional transient fluid flow problems
with free boundaries. In this algorithm, the location of the interface is identified in
terms of a volume fraction parameter F, which represents the fractional vohiume of the
surface cell that is filled with fluid. Therefore, F is unity in cells filled with fluid, zero
in empty cells and takes intermediate values in the interface cells. A special donor-
acceptor method is utilized to advect the volume fraction field and to reconstruct the
fluid interface [56).

In the next section we discuss the mathematical model describing the dynamic al
behaviour of the droplet. As in the previous chapter, the coupling hetween the electsic
quantities and the fluid flow quantities in this dropiet model oceurs at the interface

only. There is no bulk force of electrical origin and gravity is neglected. Furthermore,

e s ket amadosf o T
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the axisymmetric assumption simplifies the complicated three dimensional problem.
‘The numerical simulation used to study and predict the belhiaviour of the droplets
is discussed in section 4.3 and a discussion of the numerical results is presented in
section 4.4. While our results are consistent with the qualitative behaviour of the
droplet break up when compared to the experimental data, there is a need for a more

realistic three dimensional maodel in order to obtain quantitative agreement as well.

4.2 Formulation of the Problem

Consider a single spherical incompressible liquid droplet of density p and kinematic
viscosity # placed on the surface of the lower electrode of a parallel plane electrode sys-
tem as shown in figure 4.1, Gravity is assumed to be zero and hence all gravitational
cffects are assumed to be negligible. We suppose that the problem is two dimen-
sional and axisymmetrical with respect to the z-axis from the droplet centre normal
to the electrodes. Furthermore, we assume that the droplet is a perfect conductor
and, therefore, that there is no bulk coupling between the electrostatic variables and
the fluid flow variables since the free electric charges in a conductor reside on the
surface of the conductor. Hence, the electrostatic equations are solved separately and

coupled by the appropriate stress condition at the interface.
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Upper Electrode

Y

Droplet

\ Lower Electrode

Figure 4.1: Schematic representation of the the physical problem

4.2.1 Governing Equations

Within the bulk of the fluid the conservation of mass and the conservation of momen-
tum must be satisfied. The mass conservation equation is the comtinnity equation,

which for incompressible fluids is given by
Vev=0 (4.1)

where v = (u,v) is the velocity vector field. Similarly, the equations expressing the
conservation of momentum are the Navier-Stokes equations

v F VP ” ,
at+v-Vv—-p— p + vVt (4.2)

where F is the total body force and p is the pressure. In this model, there are no

external forces in the bilk of the fluid so that F is identically zero. Therefore, for an
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axisymmetric cylindrical flow the conservation of mass becomes

dJu u ov
o ;+5;— (4.3)

and the conservation of momentum becomes

i + Ju + du 1ap ) J*u + 1o u (4.4)
— —_ y—— == e —— —_—— e, — — o — .
at T o Tz por o2 ror 2 922

v dv Do 1dp v 19v v

PPNl M -;5:*‘"(075*:5; P (45)

where r and = are the radial and axial coordinates respectively, and u and v are the
velocity components in the » and = direction respectively.

Along with the above equations we must also solve the relevant electrodynamic
cquations.  Since our model is based on perfect conductivity, the electrodynamic

cquation is the Laplace equation for the electric potential ¢

Po 10 %
i tiartan =" (4.6)

which must be solved in the region outside the bulk of the droplet where we neglect
the mechanical effects of air. The electric field components are then computed by

taking the negative of the gradient of the potential ¢. They are given by

— gﬂ
Ef - ar (4-7)
and
__9%
E. = -3, (4.8)

where (E,. E.) is the eletrice field.
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4.2.2 Boundary Conditions
Let the profile of droplet surface be described by
n(t,r,z)=0. (4.9)
Then the initial profile of the droplet surface at t = ¢, is
y(t = to,r,z) = 0. (4.10)
The kinematic condition at the surface of the droplet can be stated as
(v-v,)-n], =0 (4.11)

where v, is the velocity of the droplet’s surface, T'y represents the surface of the
droplet and n = (n,,n;) is the unit vector normal to the surface of the droplet. This
condition represents the conservation of mass and it can be obtained by integrating the
continuity equation across the interface. In terms of the droplet profile this condition
can be written as

l_)_wl n 4 n ()1[

o= tig g =0 (4.12)

At the interface, the stresses must be continnous.  As shown in the previous
chapter, this surface condition can he decomposed into normal and tangential stress

conditions. The continuity of the normal stresses is given by

dv;  Ov, 1 1 D )
P=F= (().r, + ?.L'.) mins 7 (121 + 7{;) Ty (4.13)

where 4 is the constant surface tension, g is the viscosity, £, is the normal component
of the electric field, ¢g is the permittivity of free space and A + I_]f: is the mean radins
of curvature where R; and K, are the local principal radii of curvature. The first term
in equation 4.13 represents the stress due to viscosity, the second term represents the

pressure jump across the interface due to surface tension, and the Jast term is produced

by the electric field. Similarly, the continuity of the tangential stresses is given by

(_()ﬂ.{..dv )th =0 (4.14)

de, dz,
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where ¢ = (¢,,1,) is the unit tangential vector.

We also have wall conditions for the velocities and for the potential ¢. The bound-
ary conditions for v result from the no-slip and no-penetration conditions which
require the vanishing of the tangential and normal components of the velocity re-
spectively. A constant contact angle is given at the triple point where the droplet
interface intersects with the solid electrodes. This condition is usually determined
from experiments.

One of the boundary conditions for ¢ results from the assumption that the droplet
is a perfect conductor so that its surface is equipotential. Therefore, on I'y, which

represents all the poiits on the lower electrode and the droplet surface, we require

(8], = s (4.15)

where @ is the constant potential of the lower electrode. Similarly, on the upper
clectrode we require

(¢}, = ¢ (4.16)
where @, is the constant potential at the upper electrode. Finally, the following
Neumann boundary condition is imposed along the lines of symmetry

Vo.-n=0. (4.17)

These surface and wall boundary conditions along with the equations of motion given
by equations 1.3 to 4.5 define the mathematical model. In the next section we discuss

the numerical method used for solving these sets of equations.

4.3 Description of the Numerical Procedure

4.3.1 The Fluid Flow Model

The core of the fluid flow model is solved using the NASA-VOF2D program which

solves the fluid flow equations for the velocity and pressure directly with an Eulerian
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representation of the mesh [79] . It discretizes both the space and time variables
of the continuity and momentum equations utilizing the finite difference technique.
In this section, a qualitative description of the NASA-VOF2D program is presented.
A more detailed examination of the program is provided in the documentation of
Torrey et. al.[79]. The NASA-VOF2D program is essentially an extended version of
the SOLA-VOF algorithm, and further discussion of the program may be found in
reference [55).

As illustrated in figure 4.2, a typical computational mesh divides the region of
interest into rectangular meshes. Each cell has sizes 87, for the ¢ column and oz,
for the ;' row. As depicted in figure 4.3, the radial velocity components u,_1, and
u;_1; are located on the left and right cell faces respectively, and the axial velocity
components v;;_1 and u, 44 are located on the bottom and on the top cell faces
respectively. The pressure variable I’ and the volume of fluid variable 1 are both
located at the centre of the cell. The positioning of the field variables in this manner
simplifies boundary condition application and assists in the conservation of mass|81]}.
The variable F assigned to each cell indicates the fractional amount of fluid occupying
that cell. A value of one for F corresponds to a cell filled with fluid. A value of zero
corresponds to a completely empty cell . A value between zero and one corresponds
to a free surface.

The solution of the problem for advancing one time step 82 proceeds in the fol-
lowing manner. First, by employing the previous values of the velocity field and the
pressure, we update the velocities by an explicit finite difference approximation of the
momentum equations given by 4.4 and 4.5. The updated velocities do not satisfy the
continuity equation given by 4.3. Therefore, to satisfy the continnity equation, the
pressure in each cell is adjusted in an iterative procedure. This iteration is contined
until the new velocity components satisfy the continnity equation within a defined

convergence criterion. Finally, the volume of fluid function F' is updated and the



L Fluid

Figure 4.2: A typical computational mesh

Figure 4.3: Location of variables in a typical mesh cell
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entire procedure is repeated up to any desired interval of time. During cach stage,
suitable wall and interface boundary conditions must be imposed.
Therefore, as a first step. we find an explicit finite ditference approximation to

the momentum equations. The only terms in the momentum equations that are

o . . du oo _
discretized with respect to time are 5 and N Their finite difference approximations
é

at the right face of the cell (i, j) are given by

n+l

du Uipd, ~ Uisd

('a?) = “‘2"& —&7 (4.18)
i+d

; "t o~

(%’t_’) = ""'%M Ak (4.19)
o+l '

where the superscript n + 1 corresponds to the updated velocities. The variables
without a superscript represent the previous or the old values, The remaining terms
represent partial derivatives with respect to the space coordinates.

We also have the viscous acceleration terms in the momentum equation and they

are given by

\ Pu 1ldu u Pu
VISR = v (F o2 '(E'z') (4.20)
Pv liv v

.q /] — emem—— — a— —— . .l

VISZ = v (i)r" o i)zz) (4.21)
The first order partial derivatives are defined by

(ﬂ) = Litgo ~ By (4.22)

or i T4k —Tizd )

and

= Ditgant T By (4.23)

241 2
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where r;_4 and r, +1 are the coordinate positions of the left and right cell sides re-

spectively. Similar equations may be obtained for the first derivatives at (: 4 1, ;) and

A B
(i + }ZvJ - 2)'
The approximation of VISR at the right side of the mesh cell is then given by

()= 3, (5)s~ ()
I/ iy ar o9 0z i+di+l 9= i+di-4

Ti¢gl — T Zi41 — ZTj-1
Jdu du
Oriq (‘5;;) + ér; (5;) s Bid
+ - o (4.24)
T"-+% (6741 + 61¢) 1".+%

‘The factor 2 in the second term is required in order to compensate for the extra
distance associated with the use of cell-centered coordinate positions =4, and z;_;.

Similar expressions can be written for VISZ at the top side of the mesh cell.
Finally, we approximate the convective terms which are the products of the veloci-
ties and their derivatives. These are approximated using a combination of forward dif-
ference approximation and central difference approximation using the method which
ou

is described in reference [55). For example, the flux of u in the r direction FUR = u—

or

is approximated at the right side of the cell mesh by

) Ui s ;
FURK, ., = u——(,)u = 37 |5 Ou + érip u
a I /it éry Ly o).,
2'

g 01
+ asgn (u,—+%d) (61',-.,., (a—:‘-) .+ ér; (0—:‘) . )] (4.25)
LIS ] 1.7

or, = 0r; + 614y + asgn (u,-+%’j) (01 + 67i4q) (4.26)

where

and &r, is the width of the cell i. The variable « is the donor-cell fraction and sgn is
the sign function. When o = 0, this expression reduces to a central-difference second

order accurate approximation. When a = 1, this expression reduces to a forward
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first order accurate approximation. Initially, the upper limit o = 1 is used and then
reduced to 0.25 < a < 0.5 for later runs. An analogous expression can he written for
the flux of v in the = direction FUZ,, 4 ,.

Substituting the above expressions into equation 4.4 we obtain the following ex-
plicit finite difference approximation for the provisional value of the radial velocity

component u:

o1 ) PRy — prid o ‘
Uidhs = Wieks T &t (—J_—i—l’("iﬂ =) + FUR,-,,,%J + FUZH,%J -V I.‘n'.\“%d) . {4.27)
Similar expressions may be written to approximate the provisional values of the axial
velocity component v.

These provisional values do not yet satisfy the continuity cquation given by 4.3,
Thus, we must adjust the pressure and the velocities in order to satisfy the conserva-

tion of mass. To determine the required pressure adjustment we let the new pressure

P,-’fj be the old pressure P,"; ! and a correction factor § P
k k-1 .
Pl =P + 4P (4.28)

where £ is the current number of iteration of the pressure and velocities values at the
time cycle (n + 1). If we substitute equation 4.28 into the finite difference approxi-

mation 4.27, we find an adjusted expression for the right side velocity u,, L,

. et bt6P

T = ULy L —————, 4.29
u|+%.J uH-%.J p(,.',+‘ - 1'.') ( )

Here, the second terms on the right are the required velocity correction factors that
reflect the adjusted pressure. Similar expressions can be found for the top, left and
bottom side velocities.

The finite difference approximation of the continuity equation is given by

n4l ntl n4l ntl n+1 ntd
prtl = Yieki T Nt + Vigty " Vig-k | Yirks Tk
W

or; 8z, 2r,

u

= 0. (4.30)
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If we substitute the adjusted velocities into this equation, we find an equation for the

increments pressure § P. Then, solving for § P, we obtain the following expression:

PD.".,"’]
6P = ’_?*L'— (4.31)
i
where
281 8z 6z, ér; or;
gutt 2 £l ! : 4.32
A oriéz; [6r.-+| + or; + Orioy + ér; + 8zj41 + 62 + bzjuy + 625 ( )

This incremental pressure is calculated for each cell and immediately put into the
velocity correction equations, such as equation 4.29, in order to update the provi-
sional velocities. Once all the fluid cells have been updated, the maximum value of
DrFY is compared to a small predetermined value. Note that DI} is the residual
of the continiity equation and, consequently, if it is not sufficiently less than this
predetermined value, then we repeat the iteration all over again. On the other hand,
if DPF' turns out to be within the desired accuracy requirement for each cell, then
these velocities and pressure will be taken as the updated values.

Since we have a pressure boundary condition at the interface, this procedure is
modified for interface cells. For these cells, the pressure P;, is computed by a linear
interpolation or extrapolation hetween the surface pressure P, calculated from surface

tension and electrostatic forces and a neighbouring pressure P, inside the fluid in a

direction closest to the normal to the interface. Hence, we set

S = (1 = &) P + €aPs = P (4.33)

where &g = % is the ratio of the distance between the cell centers and the distance
between the ;'rﬂ' surface and the centre of the interpolation cell (see figure 4.4).
Therefore, using the new P, and the old P,;, we compute a new P, ; iteratively until
all the S;,’s are within some defined accuracy requirement.

Finally, we use the updated velocities and pressures to determine the new location

of the fluid interface. This is done using the VOF function F(r, z,t) mentioned earlier.
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Surface Cell
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Interpolation Cell

Figure 4.4: Definition of d, and d, for the surface pressure interpolation.
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The time dependence of F'is governed by
) ] .
pr = oF aF oF =0. (4.34)

Dt ol tu il 0z

‘This equation states that /' moves with the fluid. In our Eulerian mesh, the flux
of F moving with the fluid through a cell must be computed. However, standard
linite difference approximations would lead to a smearing of the F function and the
interfaces would lose their definition. In order to preserve the discontinuous nature
of the F function, its value at each of the four cell boundaries is first determined to
e either a donor or an acceptor of fluid depending on the sign of the corresponding

velocity components. For example, if w1 . is positive, then cell 7 is the donor and
y 1 ] 1+

3+

cell 141 is the aceeptor of fluid, at this one cell side. By incorporating this directional

indicator with the value of F' at each interface cell and by paying close attention to

the maximnun value of fluid contained in the donor cell, a value of each interfacial F

can be determined from an explicit finite difference formula for F. The details of this
procedure are given in [56], [31].

Let us now discuss the calculation of the surface tension effect that must be

incorporated into the surface pressure P, The surface tension term in P, is given by
14
Py = —4H (4.35)

where the mean curvature H is given by

1 + 1
Rr: Rryl’

R, . is the principal radins of curvature in the plane and R,y is the principal radius

(4.36)

of curvature associated with the azimuthal direction of the cylindrical coordinates.
In order to determine H, we must know the exact orientation of the interface. Thfs
is done by introducing surface height functions Z(r) and R(z) based on the value of
I in the surface cell and its eight neighbours. For example, Z(r) for the (2, ) cell, is
given by

L= Z(",) == ’4;.1—1651—1 + R.i‘s:] + F‘t.j+16:1+l' (4'37)
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Therefore, the slope of the fluid interface at cell (z,) can be approximated by the

expression
(Zun = Z)bricy  (Zim Zii)orgy
(IZ 61"~+ 1 67" -1
a ). = e o ! (4.78)
"/is Ti-d + O
where
ori + driy .
briyy = ——— (4.39)

and so forth. By interchanging the roles of » and 2, a similar equation can be de-

is smaller than

dr dz

nearly horizontal than vertical, otherwise it is more nearly vertical. The derivative

rived for %g at each cell (z,7). If

~

, the boundary is more

with the smallest magnitude gives the best approximation of the slope because the
corresponding K and Z approximations are more accurate in that case,
The surface tension force f acting across the faces of the computational cell is

given by
f= -,ﬁn x dL (4.40)

where dL is the differential element directed along a connter-clock-wise path on the

fluid interface. Then the surface pressure P27 due to R, will be

sinf, + sinf3,
Pr= g strf 6—: sin i (4.41)

where 3, is the angle that the normal of the fluid surface makes with the z axis
(counter-clock-wise angle) at the right cell side and fy is the angle that the normal
of the fluid surface makes with the z axis at the left cell side. The 4 angles are

determined from the relations

fan i, = AVFR—-AVFCR (4.42)
6rivy

and
AVFCR - AV FEL

tanf3 =
61,_%

(1.43)
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where AVER, AV FC R and AV F L are average fluid height values in the right, centre
and left cells respectively. Then, the sinf3 required for the surface pressure can be

casily determined from the trigonometric identity

tan/3

sinf = —-\/‘__l__t—-—m

The surface pressure contribution P of Ry is

(4.44)

50
P = -15:-‘} (4.45)

[or a nearly horizontal surface and

P = _7c0.¢0

(4.46)

Teyl
for a nearly vertical surface. Here, 0 is the angle between the interfac: tangent and
the radial axis when the interface is mainly horizontal, and 0 is the angle the interface
tangent makes with the axial axis if the interface is mainly vertical. W; is the distance
in the r-direction from the axis of symmetry to the centre of the cell (7, 7), and rey is
given by

—riod + F; ér, if fluid is to the right of the interface
Feyl = (4.47)
Tl — F, or; if fluid is to the left of the interface.

Therefore. the surface pressure P due to the surface tension is the sum of the

two contributions P and P,

P} =P 4 P (4.48)
The total surface pressure P is then given by

P, =P} + P; (4.49)

where P7 s the surface pressure due to the applied electric fields which are calculated

in the next section.




4.3.2 The Electrostatic Model

For the electrostatic field model we must solve Laplace’s equation which is given by
4.6 for the electric potential ¢ within the region of study. To do this we make the

following change of variable

Vi=-< (4.50)

9

which transforms the Laplace’s equation into

Po 96 P
9,90, (4.51)

Tosz T r T 92
This equation has two advantages. First, it eliminates the nnmerical difficulties en-
countered in the usual Laplace’s operator as r goes to zero [2]. Second, with this
change of variables, the spacing in the radial direction used for the fluid flow model,
is transformed to a finer spacing in o near the axis of symmetry and this gives a
more accurate boundary condition approximation a* r = 0, and a more accurate field
calculation at the tip of the droplet.

There are various numerical methods available for solving Laplace’s equation in-
cluding finite difference, finite elements, Monte Carlo and boundary integral methods.
In this thesis, we employ the finite difference techniques becanse they are easy to im-
plement and incorporate with the fluid flow model which is also based on the finite
difference method. To find a finite difference approximation to 4.51, we use the same
rectangular mesh used for the fluid flow problem as shown in figure 4.5. The coor-
dinates of the node points are denoted by the mesh (i,7) whose distance from the
neighbouring left, right, bottom and top mesh points are labelled as by, by, by and
h, respectively. For surface cells, the values of the hs are caleulated using the VOF
variable F. The neighbouring mesh point for a surface cell is taken to be a point on
the interface. For example, if cell (z,7) is a surface cell where cell (1,7 — 1) is a fluid
cell, then the (7, j — 1) mesh point will be the point of intersection of the vertical line

passing through (i, ) with the interface as depicted in figure 4.6. Accordingly, by will
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he the distance hetween these points. For all the empty cells, the ks are simply the
spacing between the neighbouring cells. Because of the perfect conductivity assump-
tion, the value of the potential for all surface cells and full cells is simply the lower

clectrode potential which is éy.

Jt Bt et

Figure 1.5: The rectangular mesh used to solve the electrostatic problem
g P

If the cell (¢, 7) is a surface cell or a cell on an electrode, then we call the node
corresponding to this cell a metal node; otherwise we call it a non metal node. Using
this definition, we obtain the following finite difference approximation of equation

1.51 [26]
0041, + biy0icyj + Cijpr i + dijbi i — eijdi; = fij (4.52)

where, for non metal nodes,

F & 1
M = he(he + Iy) + 20hi + h,)
b, = —— ! (4.53)

o hi(h, + b))~ 2(h + hy)
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1
“ T halhe + he)
1
d, = —m—
J ho(he + hs)
€ _ Iy + £y + 1 + l
e he(hy + Ry) - hy(he + ) he(he + ) M(he + hy)
fi, = 0.

I i, J Free Surface

i, j1

Figure 4.6: Definition of the k's for the surface cells

If the cell (¢,) or any of its neighbours are metal nodes, then the coefficients a,

to f;; must be modified. For example, if the bottom neighbour is a metal node, then
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we set

]
=

d;, (4.54)

_ Piy-1
fii = “htht R

Since cell (i, j — 1) is a metal node in this case, ¢; ;-1 is known and has a fixed value.

(4.55)

Similarly, a metal node neighbour on the left will modify 4;; and f; ;, and so on.
Equation 4.52 represents a linear system of equations. There are several direct and
iterative methods for solving such systems. Direct solutions generally require excessive
computational efforts and computer memory to solve large numbers of equations.
Iterative methods are therefore the preferred. They are less time consuming and easier
to implement than direct methods. In this thesis we employ an iterative technique
referred to as successive over relazation (SOR) [84]'. In this technique the potential at
cach node is updated by scanning the set of mesh points in a prearranged manner. The
updated potential at a node influences the next mesh point calculation. After each
node has been updated, the entire mesh is scanned again until the solution converges
within a preassigned tolerance. During the iteration process the boundary conditions
at the electrodes and at the interface will propagate their influence throughout the
mesh until a solution is obtained {7]). This is done by multiplying the potential residual
¢,.;» by a constant factor w and adding it to the old potential at each mesh point (i, 5).

That is

ne C" j
=gy — w2 (4.56)
tJ
where (i, is the residual and is given by
Gy = 6ij®igr + bijdinr; + Cijnrdijn + dijdijon — €ijdi — fj. (4.57)

The constant w is called the over relaxation parameter. If w = 1 in equation 4.56,

then this reduces to the usual Gauss Seidel iteration procedure. In successive over

ISouthwell named this technique by analogy to the relaxation of strains in stressed, jointed
frameworks [70]
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relaxation method the value of w is between 1 and 2. Therefore, the SOR procedure
effectively accelerates the rate of convergence by adding a greater change of potential
to the old potential than in the Gauss Seidel procedure. The optimum value of w
is highly problem dependent. It can be evaluated analytically only for the simplest
configuration. In practice it is determined by trial and error. However, a numerical
estimate can be obtained from the expression

WP = lim (ﬁ}—) (4.58)

N e 0O C:,l“.:
where (nor 1s the maximum residual of the nodes. For a rectangular mesh spacing,

an approximate value of this optimum w can also be evaluated from

2
WP = (1.59)
1+ ﬁ - pja('ubt
where pjqconi is the spectral radius for the Jacobi method and is given by
cost + F*cost )
Piacobi = —1 . (4.60)

I
where 3 = g—:;)* is the grid aspect ratio and [ and J represent the total number of grid
points in the 7 and z directions respectively. Thus, we repeat the iterations with the
optimum w?* until {4z is within some defined error ¢. In our problem, ¢ is of the
order of 10~°.

The coupling of the electrostatic model and the fluid flow model occurs at the
interface through the electric field. The electric field is defined as the gradient of the

potential so that
¢
T or
¢

Jz

E, = (4.61)

E.= (4.62)

Therefore, the derivatives of the potential in both the r and z directions are required.
There are various methods of numerical differentiations. Among them are central

differencing, extrapolation techniques and polynomial techniques. After a thorough
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numerical experimentation on the problem, a high order polynomial approximation
is employed. A third order polynomial in r and z is used to locally to describe the

potential at any point [68]. Therefore, in the r direction we let
#(r) = ap + ayr + a;r? + azr®. (4.63)

Then
E.(r) = —a; — 2apr — 3azr? (4.64)
and, using this expression for the potentials of the four nodes located at ry, r; ,ra,

and rq respectively, we find four equations for ag, @, az and az. Then substiruting

for the @'s we obtain

In(r) = ¢ratdraa(2r—r1 =)+ drasa(3r2 =201 =210 =2r3r 41 104+ r3+71o13) (4.65)

where
2 = "'——¢_2 — ?i
r, —n
b3 — @ _ &2 — &
gy = —2—la T2 M
' rs — 1y
¢1—@3 d3—¢2 G3—s b1—h
T4 —T3 Ta—=T; T3—713 T2 =1
P13 = 41— N2 3= (4.66)

Tq — T
where ¢; is the potential at r;. This expression can also be used for finding E.(z) by
replacing the #’s with the 2's. If the electric field is required at a non-nodal location,
then the potential is determined by interpolating the nearby potentials at the nodal
puints,

Experience with the problem shows that the selection of the four points for the
derivative is crucial. It is found ihat only one metal node must be used to obtain
best results. More than one consecutive metal node tends to distort the value of the
clectric field near metal node boundaries. For example, in figure 4.7 we use nodes 2,

3,4 and 5 instead of 1, 2, 3, and 4.
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1.*2
\ |

metal nodes

Figure 4.7: Selection of metal nodes

Once E, and E. are calculated using the above procedure, we must compute the
normal component of the electric field. The pressure discontinuity at the interface

due to the electric field as given by equation 4.13 is

E}
P: = —(()T- (4()7)

The normal unit vector to the interface can be described by its slope if the surface is
nearly horizontal, or by its inverse slope if the surface is nearly vertical. For example
if the neighbouring interpolation cell is below the surface cell (4, j), then the normal

electric field component for a nearly horizontal surface will be

E, - E,
E,=2Zx_— (4.68)

- v1+m?

where m is the slope. Similarly, for a nearly vertical slope

E.—nm'E, .
En = m (4.‘)9)

where m’ is the inverse slope. Similar expressions can be found for other arrangements
of the surface cell and neighbouring cells.
Now we substitute the computed E, into equation 4.67 and enter it into equation

4.49 to obtain the total surface pressure F,.
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4.4 The Initial Equilibrium Shape

‘I'he equilibrinm shape of droplet A which is in contact with surrounding fluid B is

governed by the Young-Laplace equation. This is the basic equation of capillarity [5)

AP =« (h}‘, 711",) : (4.70)

This equation relates the interfacial tension to the pressure difference between the
fluids at each point along the interface.* The pressure difference AP may be obtained

from the hydrostatic equation

. 2
AP = (o~ pa)gs + 3 (4.71)

where b is the principal radius of curvature at the origin O for our cylindrical coordi-
nates (r,z). The first term in equation 4.71 represents the hydrostatic pressure and
the second term represents the reference pressure which is chosen at the apex for the

sake of convenience. The principal radii of curvature for the axisymmetric droplet is

Figure 4.8: Equilibrium profile of a sessile droplet.

2This relation is the basis of most experimental methods for measuring the interfacial surface
tension 4 of liquids,
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given by [3]

4=
1o d
Rl - A2 :il'
(l + (E) )
1 & .
R = Y I (4.72)
r (l + ("—Ii) )
so that equation 4.71 becomes
[ A
i‘j dz
74 d? oy dr T =(m—pdez+ . (4.73)
d=\*\? dz\*\? b
&) (@)

This second order ordinary differential equation and the boundary conditions
2(0) = 0 and z'(0) = 0 define the equilibrium shape of the droplet where prime
denotes the differentiation with respect to r. Unfortunately, this cannot be solved
analytically except in certain limiting cases. Usually, a numerical method such as
the Runge-Kutta technique is implemented. In the absence of gravity, however, the

cquation can be written in the simple form

(4 2 2r
Ly L (4.74)
dr (1 + 27)3 b
which may be easily integrated to obtain the following circular arc:
l) 2
(=2 +r?= (;) . (4.75)

The constant ¢ is determined by the contact angle A which is generally a material
property of the fluids and solids which are present. If this angle is 90 degrees, then
the shape of the droplet is a hemisphere and it’s radius is dependent on the total

volume of the droplet.




4.5 Flow Chart of the Numerical Model

The flow chart below illustrates the calling sequence of the various computational

steps. It summarizes the procedures involved in advancing one time step.
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4.6 Numerical Results

In order to investigate the validity of our numerical procedure, we carry out numerical
computations on a water droplet with a volume of 3 em3. The droplet is placed on the
lower clectrode of a parallel electrode system which is kept at a potential difference
of 30,000 volts. The difference between the electrodes is 7.5 em. These parameters
are chosen for the purpose of making direct comparisons with the the experimental
data, described below.

The typical flow parameters for water at the ambient temperature are

p = 1000kg/m?
v o= 9.7 x1077m?/sec

v = 7.2 x 107N/ m.

The initial equilibrinm shape of the droplet is computed using the sessile droplet
imodel developed in section 1.4, The result in figure 4.9 shows that the contact an-
gle between the fluid interface and the lower electrode is 82 degrees. By employing
the equilibrinm configuration as our initial condition, we carry out numerical com-
putations to simnlate the evolation of the droplet up to 54 milliseconds utilizing the
numerical algorithm developed in this chapter.

The computations are carried ont on the Cyber 962. We employ a 100 x 100 mesh
{or the computational area between the two electrodes. The time step is 6 = 0.1
milliseconds. This small time step is used in order to guarantee convergence. The
evolution of the droplet is shown by plotting the surface plot coordinates for various
times. Figures £.10 to 1,18 depict the various stages of the droplet’s evolution. The
equally spaced square mesh background is plotted to give a dimensional reference for
our analysis and comparison with the experimental data. The size of each grid is 0.25

millimeters which is the size used for the background frame during the experiment.

The initial droplet profile has a maximum horizontal diameter of 2.76 cmn. at the
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hottom axis and a maximum vertical radius of 1.14 cm. at the vertical axis.

Once the electric field is applied, the droplet elongates at the tip following the
direction of the electric field and forms into a cone shape. This is depicted in fig-
ure 4.10 where t = 25.6 milliseconds. Figure 1.11 shows the droplet profile at 28.3
milliseconds where the first breakup is about to occur. At this stage, the droplet’s
maximum vertical radius has elongated to 1.36 ¢m. The volume of the droplet is con-
served, however, since the contact line between the lower electrode and the droplet
surface is moving inward. The maximum horizontal diameter is 2.66 em. Less than
0.3 milliseconds later, the first droplet breaks ofl as shown in figure 4.12 at ¢ = 28.5
milliseconds. The emitted droplet occupies only two grid spaces and it's estimated
volume is approximately 0.3 cubic millimeters. As shown in fignre 4.13, the emitted
droplet travels a distance of approximately | cm in less than 8 milliseconds. As the
droplet approaches the upper electrode, it accelerates rapidly. Since the model does
not incorporate space charge and other phenomena associated with the breakup, the
computations carried out after the first breakup may not he accurate. The second
breakup occurs at 40 milliseconds as shown in figure 4.14. This is 11.5 milliseconds
after the first breakup. Figure 4.15 illustrates the subsequent evolution at 51 millisee-
onds. The conical shape at the tip of the droplet in figure 4.16 at 1 = 52 milliseconds
indicates the imminent emission of a third droplet. This breakup ocenrs at 52.5 mil-
liseconds; 12.5 milliseconds after the second breakup, The profile of the droplet after
the third break up is depicted in figure 4.16 at 1 = 54 milliseconds, Herethe contact

line has moved inward to a maximum horzontal radius of 2.5 cm.

4.7 Comparison of the Model With Experimental
Results

In 1991, microgravity experiments were carried out jointly by the Applicd Electro.

static Research Centre of the University of Western Ontario and the Canadian Space
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Agency. The microgravity conditions were produced with NASA KC 135 aircraft
flights. The experiment apparatus shown in appendix C consisted of a parallel elec-
trode system, a high-speed camera, a charge/current measuring unit and a data
aquisition system. A detailed description of the apparatus and of the experiinental
methodology is reported in reference [36].

Large liquid droplets were generated and placed between two parallel plane elec-
trodes separated by a distance of 7.5 cm. The maximum potential difference between
the electrodes was 60,000 volts. When the electric field was applied, the droplet elon-
gated, formed into a cone and emitted small droplets. The evolution of each droplet
was recorded with a high speed camera at a rate of 2000 frames per second. The
charge transfer from the sessile droplet to the smaller, emitted droplets was recorded
using a charge/current measnrement unit. Samples of the pictures taken during these
experiments are provided in appendix C.

Prior to the application of the electric field, the droplet’s surface made a contact
angle of 82 degrees with the lower electrode. After the electric field was applied,
the contact line, which is the intersection between the droplet surface and the lower
clectrode, moved continnously and the contact angle did not remain constant. The
sessile droplet then formed into a cone shape and emitted a droplet of 0.3 em? at
t = 650 milliseconds. The data collected from the charge/current measurement unit
shows that there were several intermittent charge losses well before the droplet was
emitted. Once this initial break-up occurred, the pictures reveal that the flow was
not axisymmetric,

Recall that our numerical results predicted that droplets would be emitted at
1= 285, 40 and 52.5 milliseconds and that the droplets would be quite small; 0.3
cubic millimeters. The critical breakup time observed during the experiment was con-
siderably longer and the the size of the emitted droplet was considerably larger than

these predictions, The reason that the experiment was unable to record the existence
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of droplet emission before 1 = 650 milliseconds is that the droplets emitted prior to
that time were too small to be detected. In reality, these ejected droplets are tiny dots
travelling at high speed. This conclusion is supported by the data collected from the
charge/current measurement unit. The intermittent charge fluctuations of the sessile
droplet observed during the experiment can be attributed to the loss of charge as the
small droplets were emitted prior to t = 650 milliseconds. Unfortunately, due to the
lack of analyzed charge data, this conclusion cannot yet he guantitatively verified.
Therefore, further experimental studies which employ more acenrate charge/current
instrumentation are suggested in order to evaluate and compare the observed charge

losses at the breakup.

4.8 Future Improvements and Considerations

Both the experimental and numerical results suggest that further studies are required
in a number of areas to successfully model the behaviour of the droplets.

It is clear that the dynamic bebaviour of the contact angle and the contact line is
an important factor in the deformation process. The dynamie contact line introduces
additional modelling difficulties which arise becaunse it deseribes the intersection of a
solid with the interface of the fluids. In our problem, the zero shear-stress boundary
condition applies at the air-water interface while the no-slip houndary condition ap-
plies at the water-solid interface. Both of these conditions must be satisfied at the
contact line. Studies of dynamic contact lines show that this essentially leads to an
infinite velocity gradient [41]. This apparent contradiction is due to the fact that,
in the immediate neighbourhood of the contact line region, the continummn approach
breaks down. Consequently, the molecular activities in that region such as absorp-
tion, relaxation and re-orientation become tmportant [67). Further experimental and

numerical investigations are therefore recommendedd.

Since the experiments were carried out in microgravity conditions, the zero gravity
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assumption made in onr model should be modified to incorporate the effects of resid-
nal accelerations present during the flight. The sources of these residual accelerations
include the carth’s gravity gradient, the atmospheric drag on the spacecraft and the
spacecraft altitnde motions arising from machine vibration and crew movement during
the experiment [37). The effects of these accelerations are not yet completely under-
stood. However, recent studies suggest that they may be important in experiments
involving bubbles and drops [37]. Attempts have been made to model microgravity
experiments involving bublles using a sinnsoidal function vibration of gravity envi-
ronment [29]. However, further investigation is required in order to examine the effect
of these residual accelerations on our experiment.

The droplet deformation, as recorded in the experiment, is eventually character-
ized by the full] three-dimensional equations of motion. Therefore, our axisymmet-
ric assumption becomes invalid at this point, and we must consider the full, three-
dimensional Navier Stokes equations. Since three-dimensional solutions of free surface
problems are still not fully developed, this poses an interesting research problem for
future study.

Finally, it is recommended that this model be extended to include non-conducting
liquids. For these fluids, further investigation is required in crder to take into account
the effect of charge relaxation as discussed in chapter 3. In practical situations, we
can assume that any liguid which can be effectively charged through induction will

have sufficiently high conductivity to satisfy this model.

4.9 Concluding Remarks

The dynamic behaviour of a viscous droplet in zero gravity and under the influence
of applied electric fields was investigated by numerically computing the axisymmetric

Navier Stokes equations which were subjected to initial and boundary conditions.

Phe nitial condition of the droplet profile was determined by solving the Young-
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Laplace equation of capillarity and the core of the fluid flow model was adapted from
the NASA-VOF2D algorithm developed by Torrey et. al. {79]. The electrostatic
equations were solved using finite difference techniques.

The model was successful in predicting the dynamic deformation process of the
droplet including its breakup,. Although the numerically observed breakups were too
small to be detected experimentally, our computational results were supported by the
charge loss measurements of the sessile droplet carried out during the experiment.

Potential difficulties involving contact line problems, residunal acceleration and the
charge relaxation process were identified. Further investigation of these difficulties by

extending the model to simulate the full, three-dimensional problem is recommended.




Figure 1.9: Equilibrium droplet profile at ¢t = 0 -..illiseconds. The contact angle is 82

degrees.
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Figure 4.10: Droplet profile at t = 25.6 milliseconds.
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Figure 4.11: Droplet profile at ¢ = 28.3 milliseconds.

2 : siifii : FHE I :
HEEEHEHRHI e I A i
o3 u.h $ nh $ ¥ : 3 iz
ﬁ.ﬁ
...... FiiIiiiciiine ik #u sHEBEHHHRE




146

1
' w
e
i
: 1 ) 3 “
. “ v
i s
e :
1T " e
lF } RN
i ‘
I
ey "
3 i E
" v
4
.
:l. '

Figure 4.12: Droplet profile at ¢t = 28.5 milliseconds. First breakup occurs.




. ~=

’
L
-
+
i
v
il

H
0
5
¢
.

Figure 4.13: Droplet profile at ¢ = 36 milliseconds.

-~

R A R T Y

rres
tearas
e
frveae
Eirera
trrtae
Teriay
tesase
TIXY)
o
W
"
+:
o
e

.t
trude
[FNE N

strkted
TrEvees
EEFEVED
«arsiEsey

147




148

1
3
1
»
t
’
'
v
'
¢
H
3
¥
v
r
3
.
(X
.
£
t
+
]
v
H
s
[}
.
®
"
2

J‘..\t

t
]

[}

Ties
LERE]
I EE ]
LR R
(R E]
trey
IRRE
rer e
gy
[ AR R
LR R
(RS T]
[(RERINERNE]
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Figure 4.17: Droplet profile at t = 54 milliseconds. Third breakup has occurred.



Chapter 5

Conclusion

In this thesis we examined three fluid dynamic problems. First, we dealt with the
hydrodynamic instability at the interface between two fluids. The stability of the
flow was characterized by four parameters; the ratio of the viscosities, the ratio of
the densities, the surface tension and gravity. The dispersion relation relating these
parameters was solved both asymptotically and numerically. The two solutions were
in excellent agreement. For the case of equal densities, the discrepancies between the
numerical and the asymptotic solutions reported by Hooper and Boyd were resolved
[33]. For the general case of unequal densities, long and short. wavelength analyses
were carried out. This result removes Hooper and Boyd's restriction on the allowable
values of surface tension.

Second, we examined the electrohydrodynamic instability of the shear flow prob-
lem. Various limiting cases were investigated and the conditions for the incipience
of static instability were determined. The results revealed that, in the presence of
equilibrium motion, the principal of exchange »f stabilities is not valid. The electrie
field did not have any effect on stability in the long wavelength limit. However, in
the short wavelength limit the electric field had a lesser effect on the stability of the
flow than the surface tension. For configurations involving finite relaxation times, the
stability of the flow was characterized by the Hartmann mumber and by the ratio of

the conductivities. In general, the Hartmann number had a destabilizing effect,
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Finally, we investigated the dynamic deformation of liguid droplets by electric
fields in zero gravity conditions. The core of the fluid flow problem was solved by
employing a modified NASA- VOF2D algorithm developed by Torrey et. al.[79]. Nu-
merical computations carried out using our model were compared with measurements
obtained from microgravity experiments. The model successfully predicted the de-
formation of the droplet up to and including breakup. Due to the small size of the
emitted droplets, the numerically computed breakups were not detected by the mi-
crogravity experiment. However, the presence of these breakups was supported by
the charge measurements that were carried out during the experiment. Several modi-
fications to the numerical model and to the experiment were recommended including

a consideration of the three dimensional problem.




Appendix A

Airy Functions

The Airy differential equation is given by

2
‘:[l—_l;l—:w:(). (A1)

Two linearly independent solutions which are real when = is real are Ai(2) and 131(=2)

which satisfy the initial conditions [1]

Al 3%
(0) = —=<
T
N
S O
Bi( 3%
i(0) = ,
r(z
‘(;)
Ai(0)) = ——. (A.2)

We note that Ai(wz) and Ai(wz) also represent a pair of linearly independent solutions
in
where w = ¢35 [57].

The asymptotic series for Ai(z) is given by by

. o . —k
Ai(Z) - ,,-1/27;1/4, ~2/32%¢ (Z (_”kdk(:liz-,/z) ) (/\.3)
k=1 ‘
. o, . - -k
Ai'(Z) = o=\ 2 A -4 (Z (-1 )‘“:;k(éz-‘/‘ ) ) (A1)
k=1 :
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where

Ik + 2) 6k + 1

dy =1 dy = ATk + 1) and aa=1 ¢ = T

(Ik.

which is valid when |Argz| < =.[1]

The Wronskian of the functions Ai(z) and Ai(wz) is equal to

W(Ai(z), Ai(wz)) = El?:“m




Appendix B

The Coefficients ¢4, and c5,

(B.1)

-

&

]
f

Chy = — (13.2)

where
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+ + + + + + + o+
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Appendix C

Photographs From The
Experiment

All the experiments were carried out by the Applied Electrostatic Research Center at

The University of Western Ontario in conjunction with the Canadian Space Agency.

A

Figure C.1: The over all view of the microgravity experimental apparatus.
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Figure C.2: The experimental droplet profile for water on a brass electrode before
breakup

Figure C.3: The experimental droplet profile for water on a brass electrode just before
breakup
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Figure C.4: The experimental droplet profile for water on a brass electrode after
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Figure C.5: The nonaxisymetric droplet profile for water on a brass electrode after

breakup
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Figure C.6: The experimental droplet profile for water on an aluminium electrode
before breakup

Figure C.7: The experimental droplet profile for water on an aluminium electrode
just before breakup




Figure C.8: The experimental droplet profile for water on an aluminium electrode
after breakup

Figure C.9: The nonaxisymetric droplet profile for water on an aluminium electrode
after breakup




Figure C.10: The nonaxisymetric droplet profile for water on an aluminium electrode
before a second breakup
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