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Abstract 

Liquid-solid circulating fluidized bed (LSCFB) reactors are obtaining extensive attraction in 

the extraction process of functional proteins from industrial broth. A typical LSCFB is 

comprised of a riser, a downcomer, a liquid-solid separator, a top solids-return pipe and a 

bottom solids-return pipe. In light of the literature review conducted in this research, a 

detailed modeling of the protein extraction using an LSCFB ion-exchange system requires a 

microscopic study including hydrodynamic field, mass transfer and kinetics reactions.  

A computational fluid dynamics (CFD) model was developed to simulate the hydrodynamics 

of the two phase flow in an LSCFB riser. The model is based on Eulerian–Eulerian (E-E) 

approach incorporating the kinetic theory of granular flow. The predicted flow characteristics 

agree well with our earlier experimental data. Furthermore, the model can predict the 

residence time of both liquid and solid phases in the riser using a pulse technique.  

A numerical model was developed to predict the protein extraction process using an LSCFB 

ion exchange system. The model for the riser is an extension of the previous CFD 

hydrodynamic model for the riser incorporating the kinetics reaction. The model for the 

downcomer includes a one-dimensional mathematical model using the adsorption kinetics 

correlations. The numerical predictions were compared favorably with the experimental data 

from a lab-scale system. The model was used to investigate the effects of operating condition 

on the protein production rate and the system efficiency. 

For further study on the hydrodynamics in the downcomer of an LSCFB, the CFD technique 

was used to simulate the counter-current two phase flow in the downcomer. The model is 

based on E-E approach incorporating the kinetic theory of granular flow. The predicted 

results agree well with our earlier experimental data. Furthermore, it is shown that the bed 

expansion of the particles in the downcomer is directly affected by the superficial liquid 

velocity in downcomer and solids circulation rate.  

As results, it is demonstrated that the developed CFD model can be adapted to simulate and 

control the other applications of the LSCFB, such as wastewater treatment, petroleum and 

metallurgical industries. 
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Chapter 1  

1 General introduction  

1.1 Background  

Fluidization is characterized as a phenomenon which a bed of particles gains properties 

of fluid and is converted from solid state to fluid state. Fluidization occurs when fluid 

flow is introduced in the bottom of a bed of solids particles at such a velocity that the 

buoyed weight of the particles is completely supported by the drag force imposed by the 

fluid. As a result, the particles are able to move in the bed. The term “fluidization” 

reflects this state of fluid-like properties onto the solid particles, as the term liquefaction 

is used to denote the act of making liquid properties.  

Fluidized-bed includes gas–solid, liquid–solid and gas–liquid–solid fluidized-beds in 

terms of the fluid–particulate systems. With respect to bed scheme and operation, there 

are the stationary fluidized beds (SFB) or fixed fluidized beds (FFB), where the particles 

essentially stay in the fluidized bed and the circulating fluidized beds (CFB), where 

particles are mostly entrained out of the fluidized beds but at the same time recirculated 

back to or fresh particles added to the same fluidized beds. SFB are often called 

conventional fluidized beds since they were the first to be used in various industrial 

applications. In liquid–solid systems, the SFB basically has only one operating regime, 

the particulate fluidization regime, where the particles are uniformly distributed in the 

upflowing liquid. 

In CFB, the fluidizing gas or liquid (or the two combined) velocity is high enough to 

entrain all particles out of the bed; and in order to keep a continuous operation in 

fluidized bed, particles (either recycled or fresh) need to be fed into the bottom of the 

fluidized bed. In CFB, there are also different regimes: the fast fluidization regime, the 

pneumatic transport regime, and the dense suspension upflow or dense-phase transport 

regime for high suspension density and high particle flux operations (Grace et al., 1999). 

The schematic of the liquid-solid circulating fluidized bed (LSCFB) reactor is shown in 
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Figure 1.1. The major components of an LSCFB include a riser, a down-comer, a liquid-

solid separator, a top solids-return pipe and a bottom solids-return pipe. 

 

Figure 1.1: Schematic diagram of the liquid–solid 

circulating fluidized bed (LSCFB) reactor. 
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The first modern application of a fluidized-bed reactor was a stationary, dense-phase gas–

solid fluidized-bed reactor (Winkler, 1922) operated for coal gasification in Germany to 

produce synthesis fuel from coal. It started with gas-solid fluidization and then extended 

to liquid-solid and gas-liquid-three-phase fluidization. The first type of CFB reactor was 

gas-solid CFB reactor which was proposed in the late 1960’s. They have been used in 

many different kinds of industries during last 30 years. 

In comparison to gas-solid system, the LSCFB and the gas-liquid-solid circulating 

fluidized bed (GLSCFB) have received too many attentions until recent years. The CFB 

has some advantages over conventional fluidized bed such as high gas/liquid velocity, 

low backmixing, larger processing capability, better interphase contact and good heat and 

mass transfer capabilities (Yang et al., 1993). On the other hand, solid particles or 

catalysts are very expensive and need to be continuously regenerated and also, most of 

the bio-processes and gasifiers prefer continuous mode of operation. In those cases, the 

deactivated catalysts, bio-media, ion exchange resins, or adsorbents can be regenerated 

continuously by CFB reactors (Zhu, 2000). Because of these advantages, LSCFBs have 

applied in a wide range of chemical processes including wastewater treatment, 

continuous protein recovery from cheese whey and so on.  

The interest in recovery of various functional proteins from large volume of industrial 

broths and biological wastewater streams has increased in recent years, due to the 

advancement in genetic engineering and concerns about recycling limited resources (Lan, 

2001). Lan et al. (2002) developed an LSCFB ion-exchange system for the continuous 

recovery of protein from unclarified broth. LSCFB ion-exchange system was used as an 

integrated reactor and regenerator system; two different operations (adsorption and 

desorption) were carried out simultaneously in two separate columns (down-comer and 

riser, respectively) with continuous circulation of ion exchange particles between the two 

columns. Proper understanding of the hydrodynamics, mass transfer and kinetics of 

adsorption and desorption of protein in the LSCFB ion-exchange system is fundamental 

and crucial to design, scale up of the LSCFB system, and optimize the operating 

parameters.  
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A number of models have been developed to describe the protein adsorption and 

desorption behavior in different kinds of fluidized beds considering various types of 

approximation to physical reality (Wright and Galsser, 2001; Ping et al., 2005 and 

Gaikwad et al. 2008). However, detailed hydrodynamics of the LSCFB was not included 

in their models and they assumed that the distribution of solid holdup ( sε ), solid velocity 

( su ) and liquid velocity ( lu ) are uniform along the riser and downer. 

On the other hand, some comprehensive experimental studies on the hydrodynamics of 

LSCFBs have been reported (Liang and Zhu, 1997; Liang et al., 1996 and 1997; Zheng et 

al., 1999 and 2002 and Zheng and Zhu, 2003). In particular, the radial flow structure in 

the riser of an LSCFB was investigated by Liang et al. (1996) and Zheng et al (2001). 

They pointed out that unlike the conventional liquid–solids fluidized bed, the radial 

distribution of bed voidage ( lε ) is not uniform for glass beads in the liquid–solids 

circulating fluidization regime. In fact, the core-annulus structure mechanisms were 

observed, so solid holdup was high near the wall and low at the central part of riser. 

Zheng et al. (1999) have studied the axial hydrodynamic behavior of an LSCFB using 

three different particles of nearly same size. They have observed that because of the 

arrangement of the riser distributor, two distinct zones (based on their solid holdup) were 

established along the riser named as a dense zone at the bottom of riser and as a dilute 

zone at the upper part of riser.  

Experimental data demonstrate that axial and radial hydrodynamic properties are not 

uniform along the riser of an LSCFB and a complete modeling of the protein extraction 

using an LSCFB ion-exchange system requires a microscopic study on the nature of this 

system including hydrodynamic field, mass transfer and kinetics reactions. It is of 

fundamental importance for designing and scaling up LSCFB ion-exchange systems and 

optimizing operating parameters. 

The literature review of the work done on this field over the last two decades is given in 

next section to identify the gaps and discrepancies and, thus to come up with the 

objectives and road map of the present research work. 
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1.2     Literature review 

The literature review is conducted in three areas, (1) experimental studies on 

hydrodynamic characteristics of LSCFB, (2) the review of relevant computational fluid 

dynamics (CFD) models on two-phase flow and (3) investigation of protein extraction 

process based on ion exchange system. 

1.2.1     Hydrodynamic characterization of LSCFB 

Many Experimental studies have been carried out about conventional liquid-solid 

fluidization in the 1950s. Their results confirm that almost all liquid-solid systems 

fluidized at liquid velocities below the particle terminal velocity are indeed homogenous 

and axial and radial distributions of particles are uniform (Richardson and Zaki, (1954)). 

In 1954, Richardson and Zaki made a significant contribution to this field by proposing a 

simple relationship between the operating liquid velocity and the bed voidage. Later, 

Kwauk (1963) suggested that the concept developed by Richardson and Zaki (1954) 

could also be used to identify co-current and countercurrent liquid-solid flow. 

Few works have been done on the fluidization of liquid-solid system under high liquid 

velocity. Since particle entrain out from the bed when the liquid fluidizing velocity is 

higher than the particle terminal velocity, it would be necessary to feed new particles into 

the bottom of the bed or to separate the entrained particles from the top and recirculate 

them back to the bottom of the bed. That need has caused to design an LSCFB. Aside 

from two reports on applications of LSCFBs to binary solids mixing (Felice et al., 1989) 

and fermentation (Pirozzi et al., 1989), most hydrodynamics studies on the riser of 

LSCFB were carried out at Tsinghua University (Liang et,al., 1993, 1995 and 1996; 

Liang and Zhu, 1997; Yang et al., 1993 ) and more recently at the University of Western 

Ontario (Zheng et al., 1999; Zheng and Zhu, 1999 and 2000). Roy and et al (2001) also 

conducted experimental investigations on CFB riser for alkylation process with new solid 

acid catalysts. In this section, a critical review of the key results from those studies is 

provided. 
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When the liquid velocity of riser is higher than the critical transition velocity, particles 

start circulating between two columns (riser and down-comer). Zheng et al. (1999) 

illustrated the variation of the solid circulation rate, Gs, with respect to superficial liquid 

velocity in riser. They observed two different types of the circulating fluidization regime 

for a given auxiliary liquid flow: (1) above particle terminal velocity, the initial 

circulating fluidization regime in which solid circulation rate increases quickly with 

increase in liquid flow rate and (2) with further increase in the liquid velocity, the 

developed circulating fluidization regime where solid circulation rate increases 

insignificantly with increase in liquid flow rate. 

Zheng et al. (1999) worked on the axial flow structure in the riser of LSCFB under 

different operating condition. They have found out two distinct zones (based on their 

solid holdup) along the riser, namely a dense zone at the bottom of riser and an upper 

dilute zone. Solid holdup in the distributor zone is much higher and can be considered to 

be operated as conventional fluidization. The upper dilute zone is operated in circulating 

fluidization regime. Also, Both Liang et al. (1997) and Zheng et al. (1999) investigated 

the influence of particle properties on axial flow structure. They showed that under the 

initial circulating fluidization regime, the axial profiles of solid holdup for the glass beads 

(light particles) are uniform in the upper dilute zone of riser (Figure 1.2). However, the 

behavior of the steel shots is different from that of the lighter particles under the initial 

circulating fluidization regime. As shown in Figure 1.2, the axial distribution of solid 

holdups for the steel shot is not uniform under initial circulating fluidization regime; 

moreover, Further increasing the liquid velocity, the system enters the developed 

circulating fluidization regime where the solid holdup distribution becomes uniform in 

the riser for two different types of particles, as it’s shown in Figure 1.2. 
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Figure 1.2: The axial solid holdup distribution along the 

upper dilute zone of LSCFB riser for glass beads and steel 

shots, under different liquid velocity (Zheng et al., 1999) 

The radial flow structure in the liquid–solids circulating fluidization regime has been 

examined by Liang et al. (1996). They pointed out that unlike the conventional liquid–

solids fluidized bed, the radial distribution of bed voidage is not uniform for glass beads, 

in the liquid–solids circulating fluidization regime. However, this work was carried out 

with only one type of particles under limited operating conditions. 

Zheng et al (2001) presented solids holdup distribution in a lab-scale LSCFB by means of 

a fiber-optical probe. They claimed that the flow structure was affected significantly by 

operating conditions and physical properties of particles. Typical radial distributions of 

solid holdup plotted in Figure 1.3 shows that the radial flow is not completely uniform, 

but has higher solids concentrations near the wall. These results agree with the earlier 

reports by Liang et al. (1996) and Roy et al. (1997). 
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  (b) 

 

Figure 1.3: Radial profiles of solids holdup at the level H = 0.8m (a) for different 

solids flow rates (b) for different superficial liquid velocities. (Zheng et al. 2001) 

Liang et al. (1996) and Zheng et al. (2002) have conducted a study on the local liquid 

velocity distributions and reported that a non-uniform distribution of liquid velocity also 

exists in the LSCFB. It is seen that liquid velocity are higher at the axis of the riser and 

lower near the wall. In Figure 1.4, the radial non-uniformity is seen to increase with 

increasing superficial liquid velocity. On further increasing the liquid velocity, the radial 

non-uniformity of local liquid velocity distribution decreases due to the transition from 

the circulating fluidization regime to the dilute liquid transport regime (Liang et al., 

1996).  

Roy et al (1997) measured the radial distribution of particle velocity in the riser of 

LSCFB. Experiments were performed using the CARPT method (computer-automated 

radioactive particle tracking) to track fairly large particles. It is interesting to note that the 

radial profiles of particle velocity are less uniform than those of liquid velocity and 

particles come down close to the wall in the most of operating conditions. Their results 
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demonstrate that the increase in the liquid superficial velocity steepens the radial profiles 

of particle velocity in the operating range of their study. They also found that the radial 

profiles of particle velocity do not change significantly with the axial position.  

 

Figure 1.4: The radial distribution of the liquid velocity under Gs = 5 kg/m
2
s and 

different liquid velocities for glass beads (Zheng et al. 2002). 

1.2.2 CFD models 

In recent decades, CFD techniques have received a lot of attentions in simulating the 

transport phenomena in two-phase fluidized beds. CFD simulations are able to give very 

detailed information about the local values of solid hold-up ( sε ), liquid phase flow 

patterns and the intermixing levels of the individual phases especially in the regions 

where measurements are either difficult or impossible to obtain. Such information can be 

useful in the understanding of the transport phenomena in fluidized beds. 

Generally, there are two approaches to solve two-phase flow: Eulerian-Lagrangian (E-L) 

approach and Eulerian-Eulerian (E-E) approach. In the E-L approach, the gas phase is 

considered as a continuous phase and Navier–Stokes (N-S) equations are solved for the 

gas phase. The solid phase is treated as a discrete phase and each solid particle is tracked 

by solving Lagrangian force balance equation. By averaging the movement parameters of 

a great number of particles tracked, the solid phase flow and concentration distribution 

can be estimated. This method has many advantages, such as clear and simple physical 

mechanism. However, its biggest drawback is that the high computational cost is required 
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to solve dense two-phase flow which has a large number of particles. Therefore, at 

present, this method can only be applied to some engineering cases which two-phase flow 

is dilute enough. 

In the Eulerian-Eulerian approach, also well known as two fluid model, each phase is 

treated as an interpenetrating continuum and the concept of phasic volume fraction is 

introduced. The conservation equations of mass, momentum, and energy for both the 

particulate and the fluid phases are derived which have similar structure for all phases. In 

order to close pseudo N-S equation for solids phase, some constitutive correlations are 

required for solid-phase viscosity, pressure and stresses. So far, some researches have 

developed various assumptions to derive these correlations. 

In the case of two-phase flow in the fluidized beds where the number of solids particles is 

huge, The E-E approach is the more attractive and practical method. That’s why it has 

been widely used for simulations of two-phase flows in fluidized beds. Two fluid model 

was originally developed by Jackson (1963), Soo (1967), Garg and Pritchett (1979) to 

simulate the flow structure of bubbling fluidized beds. Their models were based on the 

assumptions of zero gas and solids viscosities. They were able mainly to predict the 

behavior of bubbling beds. Another heavily simplified model was constant-viscosity 

model introduced by Tsuo and Gidaspow (1990) to the simulation of riser column. They 

assumed that the particle viscosity is 200 times of the gas viscosity. Although this 

treatment was greatly approximated and highly empirical, their model was claimed to 

predict some flow patterns in the riser of circulating fluidized bed. However, these 

models are not quantitative enough to give accurate results close to experimental data. 

In 1980s, kinetic theory of granular phase (KTGP) was presented to model the solid 

viscosity and solid stresses; Moreover, In the case of particulate flows, kinetic theory of 

granular flow has been widely applied in the literature (Sinclair and Jackson, 1989; 

Gidaspow, 1994 and Enwald et al., 1996). It is based on the kinetic theory of dense gases, 

as presented by Chapman and Cowling (1970). It assumes that the random motion of 

particles arising from particle-particle collisions is analogous to the thermal motion of gas 

molecules. Also, a granular temperature (Θ) proportional to the mean square of the 
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random particle velocity is then defined. In this Theory, the usual thermal temperature is 

replaced by a granular temperature for which a differential equation is derived using the 

methods of kinetic theory. Thus the solid viscosity and the solid stress are a function of 

this granular temperature, which varies with time and position in a fluidized bed.  

Though the published works on CFD modeling of fluidized beds are mostly on the gas-

solid fluidized beds, a few CFD studies are available on the liquid-solid fluidized beds. 

Liquid-fluidized beds should, at least in principle, be simpler to model than gas-fluidized 

beds, since the hydrodynamics are more homogeneous, turbulence is much less of a 

factor, and the density difference between the two phases is reduced. Inter-particle 

collisions are also greatly attenuated, or even absent (Gidaspow and Lu, 1998) due to the 

liquid film separating particles as they approach each other.  

Roy et al (2001) presented a two-fluid model based on the KTGP to simulate the LSCFB 

riser for alkylation process. The drag force correlation of Wen and Yu was applied to 

model momentum exchange between two phases. The liquid-phase turbulence was 

modeled using the standard k-ε model. No-slip condition was used at the wall for the 

liquid (continuous) phase. Johnson and Jackson boundary conditions were applied for 

velocity and granular temperature of solid phase on the wall. At the inlet, the boundary 

conditions were set to impose a uniform solids-liquid distribution. The purely convective 

flow was assumed as the outlet boundary conditions and also the symmetry conditions 

were imposed at the central axis of the column. Sensitivity to restitution coefficients (e) 

was examined and the predicted profiles were found not very sensitive to the restitution 

coefficient in the vicinity of e=1.0. The computed solid velocity vectors indicated solids 

rising in the middle and flowing down near the walls; moreover, they were in a 

qualitative agreement with experimentally observed flow patterns. They achieved a 

typical set of residence time distribution (RTD) curves for the solids and liquid evaluated 

from solving the scalar transport equations for each phase which were in agreement with 

experimental data. 

Doroodchi et al. (2005) have applied a CFD model to investigate the influence of the 

inclined plates on the expansion behavior of the fluidized suspensions. This model was 
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based on Eulerian–Eulerian approach to simulate the laminar regime in the mono-

dispersed and binary-dispersed suspensions. For the solid phase, the viscous stress term 

was neglected. The Richardson and Zaki correlation was used for the drag coefficient. 

The no-slip condition was imposed on the fluid velocity at the wall while particles were 

allowed to slip freely at all walls. A maximum possible particle volume fraction of 0.58 

was enforced. The numerical results illustrated the effect of the fluidization superficial 

velocity on the average volume fraction. The CFD models successfully predicted the 

general trends in the experimental data. They indicated that some CFD model limitations 

have contributed to the observed deviations between the experimental results and CFD 

predictions. First, the modified fluidized bed was simulated with a two-dimensional 

model to reduce computational time, although the suspension is three- dimensional 

phenomenon. Second, the particle size distribution and the interaction between the solid 

phases for the binary system of particles were ignored and a laminar flow regime was 

assumed throughout the vessel. 

Lettieri et al. (2006) used the CFD modelling based on Eulerian–Eulerian approach to 

simulate a liquid fluidized bed of lead shot in slugging mode. The granular kinetic theory 

was applied to describe the solids pressure and the solid phase stress tensor. The radial 

distribution function (go) given by Ding and Gidaspow (1990) was used in their work. 

The inter-phase momentum exchange was modeled by an equation presented by 

Gidaspow and Ihme (1994). No-slip boundary conditions were applied for both phases on 

the wall. The uniform gas inlet velocity was employed as a boundary condition at the 

bottom of the riser. Pressure boundary conditions were employed at the top of the riser. 

This implies Dirichlet boundary conditions on pressure and all flow quantities were of 

zero normal gradient. Results from simulations were analyzed in terms of voidage 

profiles, bed expansion, pressure drop and pressure fluctuations. The CFD results showed 

an agreement with the experimental data at low liquid velocities. However, modeling was 

not able to predict flow structure at high liquid velocity, reasonably. 

Cornelissen et al. (2007) presented a CFD model based on multi-fluid Eulerian approach 

to simulate a liquid–solid fluidized bed. A no-slip boundary condition and pressure outlet 

condition were imposed on the wall and outlet face, respectively. The case studies have 
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demonstrated that the mesh size, time step and convergence criteria are three inter-related 

parameters. They’ve shown that the Courant number (u∆t/∆x) in the range 0.03< Courant 

No.<0.3 gives the best results which are independent of mesh, time step, and convergence 

criterion. Also, they have applied both uniform and non-uniform (discrete-hole) 

distributor at the inlet and flow characteristics was compared between the two 

distributors. The non-uniform distributor caused a slight decrease in overall bed voidage 

compared to a perfectly uniform distributor. Also, the perfectly uniform distributor 

resulted in fewer swirls than the non-uniform distributor. It was also shown that particles 

near the distributor ascend near the wall and descend in the core, while this pattern 

reverses in the upper part of the column which is in agreement with the experimental 

data. The difference between the upward and downward velocities may be caused by a 

non-uniform radial distribution of voidage, with lower voidage in the downflow region 

than in the upflow region. The CFD and experimental results were also compared with 

the predictions from the well-known Richardson and Zaki (1954) equation. The CFD 

model consistently underpredicts the voidage, but, except at the highest superficial liquid 

velocities, the predictions are better than those from the Richardson and Zaki equation 

and within 5% of the experimental data. 

1.2.3 Protein extraction from biological broth using an 
LSCFB ion exchange system 

One of the common separation methods which are used to extract the protein from 

biological broth is the ion exchange mechanism. In this section, the principles of ion 

exchange particle are discussed first and then it’s followed by an emphasis on its 

application in protein recovery. 

An anion exchanger can be represented as Resin-F
+
 E

- which Resin-F
+
 denotes the inert 

matrix containing the positive fixed ion (functional group) and E-
 indicates the counter-

ion. When an anion exchange particle is submerged in a solution containing a different 

anion, A-, the ion exchange will process as following: 

 

Resin-F
+
 E

-
 + A

-  
 ⇔  Resin-F

+
 A

-  
 + E

-
     (1) 
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When an ion exchanger particle is placed in an aqueous solution, the pores will fill with 

solution and a sufficient concentration of counter-ions to maintain the overall electric 

balance in the particle. The counter-ion can move through the matrix by diffusion or 

under the influence of an electric field. These counter-ions are thus exchanged with ions 

of the same charge from the bulk solution and this step is the base of the ion exchange 

process. 

The continuous ion exchange processes using different types of fluidized beds were 

extensively investigated (Byers et al., 1997; Gordon et al., 1990; Higgins, 1969; and 

Himsley, 1981). The application of conventional fluidized beds for ion exchange process 

has some benefits such as the low and stable bed pressure drop and the direct application 

of unclarified whole broth feed. As reviewed by Zhu et al. (2000), compared with 

conventional fluidized beds, circulating fluidized beds have many advantages including 

continuous operation with adsorption and desorption carried out simultaneously, high 

throughout due to high liquid velocity in the riser, highly efficient liquid-solid contact, 

favorable mass and heat transfer, maintaining the nearly plug flow condition in the riser 

which reduced back-mixing of phases and integrated reactor and smaller processing 

volumes. (Felice, 1995; Fan, 1989; and Lan et al., 2000).  

The schematic of the LSCFB ion exchange system used by Lan et al. (2000) for 

continuous protein extraction is shown in Figure 1.1. The major components of the 

LSCFB extractor include a riser, a downcomer, a liquid-solid separator, a top solids-

return pipe, a bottom solids-return pipe, a top washing section, a bottom washing section, 

a riser distributor and a downcomer distributor. The riser is 3.0 m in height and 0.038 m 

in diameter, and the downcomer is 2.5 m in height and 0.120 m in diameter.  

Two different types of liquid streams are used to fluidize the particles in the riser and 

downcomer. The liquid velocity in the riser is higher than the terminal velocity of the 

particles; therefore, the particles can be entrained up along the riser. However, the liquid 

velocity in the downcomer is less than the terminal velocity of the particles, so particles 
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can flow down from the top of downcomer. As a result, the particles are able to circulate 

between the two columns. 

The distributor for the downcomer is a tubular ring that is carefully designed in order to 

have a uniform liquid distribution while allowing the solids to flow down. The riser 

distributor divides the incoming stream into two streams: the primary and auxiliary 

streams. The primary stream enters through a tubing of 1.1 cm in ID extending 5.1 cm 

into the riser. The outlet of the primary stream was located above the solids entrance at 

the bottom of the riser. Also, the auxiliary stream is introduced through a perforated plate 

at the bottom of the riser. The particles at the bottom are mobilized by the auxiliary 

stream, and then the particles are entrained up along the riser by the combination of the 

primary and auxiliary streams.  

The dynamic seals between the riser and downcomer are achieved by maintaining the two 

solids return pipes in the moving packed-bed regime. The top wash section and the 

bottom wash section clean the particles before they entering the solids return pipes to 

avoid penetrating liquid solution from one column to another. The solids circulation rate 

is controlled by a butterfly valve installed on the bottom solids return pipe. The solids 

circulation rate was measured by a device which is installed at the top of the downcomer 

and made of a central vertical plate and two half butterfly valves.  

Bovine serum albumin (BSA) was used as model protein and continuous recovery of 

BSA solution in the LSCFB ion exchange system was conducted with the BSA solution 

as feed in the downcomer and 0.4 M NaCl solution as the extracting buffer in the riser. 

Diaion HPA25 particles were used as ion-exchange particles for all BSA adsorption-

desorption studies. 

The downcomer is assigned for protein adsorption and the riser is designed as a stripper 

to desorb the protein and to regenerate the particles. Proteins are thus adsorbed onto the 

adsorbents in the downcomer and the loaded-adsorbents are regenerated simultaneously 

in the riser in a continuous mode. One of the unique features of the LSCFB extractor is 

that the downcomer operates as an expanded bed with the adsorbent particles falling 

down and the liquid phase moving up. The space between particles in the downcomer can 
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be kept up large enough to allow the passage of the colloids in the feed without clogging 

the bed. In other words, an unclarified broth containing colloids can be treated directly by 

an LSCFB extractor without preclarification. This will significantly simplify the overall 

purification scheme. 

Numerical modeling of an LSFCB ion exchange system for protein extract from 

biological broth is the topic of this thesis. A number of models have been developed to 

describe the protein adsorption and desorption behaviors in packed beds, expanded beds 

and circulating fluidized beds considering various types of approximation to physical 

reality. Several steps are involved in the process of adsorption of proteins onto the 

adsorbent particles: (1) convective and diffusion mass transfer from the liquid phase to 

the adsorbent surface, (2) diffusion through the pore of the ion exchange particles and (3) 

the surface reactions. The surface adsorption process is sufficiently rapid compared to the 

first two steps and is not usually considered as a limiting step. Veeraraghavan et al. 

(1989) developed a model for adsorption of phenol onto granular activated carbon in a 

liquid–solid fluidized bed considering liquid and solid phase axial dispersion, film mass 

transfer resistance and homogeneous diffusion model for pore diffusion. Wright and 

Galsser (2001) developed a similar model for the adsorption of proteins in the fluidized 

bed and studied the effect of operating parameters on the adsorption performance. Later 

on, Ping et al. (2005) and Junxian et al. (2005) modeled the protein adsorption in 

expanded bed and in addition to Wright and Galsser (2001), they considered axial 

distribution of particles size and axial variations of bed voidage. Lan et al. (2000) 

developed a model for continuous protein recovery in LSCFB ion-exchange systems 

assuming the process is not surface reaction limited. However, detailed hydrodynamics of 

the LSCFB was not included in their model. Recently, Gaikwad et al. (2008) developed 

another model on adsorption in an LSCFB considering the film mass transfer resistance 

as the limiting step. Their model covered only the adsorption in the down comer whereas 

the protein desorption process was not considered in the riser. 
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1.3 Objectives and thesis structure 

In light of the literature review presented in the previous sections, it is seen that a number 

of CFD modeling has been done on the hydrodynamics of LSCFBs. Some kinetic models 

have also been developed to describe the protein adsorption and desorption behaviors in 

different kinds of fluidized beds considering various types of simplifications to physical 

reality (Wright and Galsser, 2001; Ping et al., 2005; and Gaikwad et al., 2008). However, 

detailed hydrodynamics of the LSCFB was not included in their kinetic models and they 

assumed that the distribution of solid holdup ( sε ), solid velocity ( sU ) and liquid velocity 

( lU ) are uniform throughout the riser and downcomer. In contrast, experimental data 

have demonstrated that both axial and radial distributions of hydrodynamics properties 

are not uniform along the riser of an LSCFB. 

As a result, a complete modeling of the protein extraction using an LSCFB ion-exchange 

system requires a microscopic study on the nature of this system including 

hydrodynamics field, mass transfer and kinetics reactions. It is of fundamental 

importance for designing and scaling up LSCFB ion-exchange systems and optimizing 

operating conditions. 

At this research work, first, the hydrodynamics field of an LSCFB riser will be simulated 

by Eulerian-Eulerian model based on the kinetics theory of granular flow. Then, the 

influence of operating conditions such as liquid superficial velocity and solids holdup on 

the flow structure will be investigated. And next, in order to simulate the protein 

extraction process using the LSCFB ion-exchange system, the mass transfer model of the 

protein species will be coupled to the initial CFD model for the hydrodynamics. Finally, a 

CFD model is developed to capture the hydrodynamic characteristics of the counter-

current flow in the downcomer of the LSCFB. Therefore, the thesis structure is as 

follows: 

Chapter 1 gives an introduction and comprehensive review to the experimental 

studies on the hydrodynamics characterization of the LSCFB, the CFD modeling of 

the liquid-solid two phase flow and the protein extraction process from biological 

broth using LSCFB ion exchange systems. 
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Chapter 2 reports a numerical investigation on the hydrodynamics of the LSCFB riser 

using a CFD model based on Eulerian-Eulerian approach and incorporating the 

granular kinetics theory.  

Chapter 3 presents a sophisticated numerical model to simulate the protein extraction 

process using the LSCFB ion-exchange system. This model will take into account a 

more accurate study on the nature of this system including hydrodynamics, mass 

transfer and kinetics. A axisymmetric CFD model is developed to capture the detailed 

information about the local values of volume fraction, velocity and protein 

concentration of both the liquid stream and the solid particles in the riser. In addition, 

the adsorption process in the LSCFB downcomer is simulated by a one-dimensional 

mathematical model using the adsorption kinetics correlations. 

Chapter 4 reports a CFD model to simulate the hydrodynamics of the counter-current 

two phase flow in the downcomer of the LSCFB. The model is based on Eulerian-

Eulerian (E-E) approach incorporating the kinetic theory of granular flow. 

Furthermore, the effect of operating condition on hydrodynamic characteristic is 

examined. 

Chapter 5 summarizes the key results from all above studies and recommends the 

future work.   

Therefore, the results of this research would expand our knowledge on: 

(1) Nature of hydrodynamics of the two phase flow in an LSCFB riser. 

(2) Detailed simulation of the protein extraction process from industrial broth using an 

LSCFB ion-exchange system 

 (3) Optimization of the protein extraction process from industrial broth using an LSCFB 

ion-exchange system. 

(4) Hydrodynamic characteristics of the counter-current two phase flow in the 

downcomer of an LSCFB. 
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Chapter 2  

2 A Computational Fluid Dynamics Study on the Flow 
Field in a Liquid-Solid Circulating Fluidized Bed Riser• 

2.1 Introduction 

Liquid-solid circulating fluidized bed (LSCFB) reactors are obtaining extensive attraction 

in diverse fields of industrial processes, such as many new processes in biochemical 

technology, wastewater treatment, petroleum and metallurgical industries (Atta et al., 

2009).  This is because this new type of liquid-solids contacting equipment has a large 

number of unique features, such as effective liquid-solids contacts, short and narrow 

residence time for both phases and independent control of solids holdup by varying the 

mass flow rate of particles (Zheng et al., 2002&2003). 

A typical LSCFB is comprised of a riser, a downcomer, a liquid-solid separator, a top 

solids-return pipe and a bottom solids-return pipe. Particles are entrained up by the liquid 

stream along the riser under a co-current pattern, then separated at the riser top 

(separator), and finally recirculated back through a particle storage vessel or downcomer 

to the bottom of the riser (Zheng et al., 2002; Razzak et al., 2009). A proper selection of 

the reactor is crucial to minimize the costs of the plant and also the negative impact of the 

reaction products on environment. The reactor modeling approach that illustrates the key 

features of the multiphase flow pattern and predicts the relevant physical quantities can 

be a reliable technique to gain the aim. However, a kinetics model describing the reaction 

chemistry can predict the reactor performance meaningfully, only when the 

comprehensive flow field information in the reactor is known (Roy et al., 2001).  

In recent decades, computational fluid dynamics (CFD) techniques have received many 

attentions in simulating the flow field in two phase flow. Generally, two different types of 

the CFD models can be used to simulate two phase flow: Eulerian-Lagrangian (E-L) 
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approach and Eulerian-Eulerian (E-E) approach. In the E-L approach, the carrier phase is 

considered as a continuous phase and the solid phase is treated as a discrete phase and 

each solid particle is tracked by solving the Lagrangian force balance equation. In the E-

E approach, also well known as the two-fluid model, each phase is treated as an 

interpenetrating continuum. In order to estimate the solids viscosity and solids stresses, 

the kinetic theory of granular phase (KTGP) is incorporated into the two-fluid model 

(Sinclair and Jackson, 1989; Gidaspow, 1994; and Ding et al., 1990). 

In the case of two-phase flow in the fluidized beds where the number of solid particles is 

huge, the E-E approach is the more attractive and practical method. The prior CFD 

studies on this area mostly focused on the gas-solid fluidized bed; and less attention has 

been dedicated to the CFD modeling of the liquid-solid fluidized bed. Roy et al. (2001) 

presented a two-fluid model based on the KTGP to simulate the LSCFB riser for 

alkylation process. The liquid-phase turbulence was modeled using the standard k-

ε model. They found out that the predicted flow field was not very sensitive to the 

restitution coefficient in the vicinity of e=1.0. Doroodchi et al. (2005) applied the E-E 

approach to investigate the influence of the inclined plates on the expansion behavior of 

the liquid-solid fluidized bed. The viscous stress of the solids was neglected in the 

simulation. The CFD models successfully predicted the general trends in the 

experimental data. 

Lettieri et al. (2006) used the E–E approach to simulate a liquid fluidized bed of lead shot 

in slugging mode. The granular kinetic theory was applied to describe the solids pressure 

and the solid phase stress tensor. The CFD results showed an agreement with the 

experimental data at low liquid velocities. However, modeling was not able to accurately 

predict the flow structure at high liquid velocity. Cheng and Zhu (2005) developed a two-

fluid model to simulate the turbulent liquid-solid flow in an LSCFB riser. KTGP was 

incorporated into the model. The model predictions agreed well with the experimental 

data in the literature and it was also found that increase in particles size and bed diameter 

result in more non-uniform distributions of hydrodynamic parameters in the radial 

direction. Shi et al. (2010) developed a three-dimensional E–E model to describe the 
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liquid-solid flow in a tubular loop propylene polymerization reactor. The predicted 

pressure gradients showed a good agreement with the classical calculated data. 

In this work, an axisymmetric CFD model is proposed to describe the flow field in 

LSCFB risers. The model is based on Eulerian–Eulerian approach incorporating the 

kinetic theory of granular flow. The CFD model is applied to capture the detailed 

information about the local values of volume fraction and velocity, as well as the 

residence time of both the liquid stream and the solid particles in the riser with a Pulse 

technique. 

2.2 Experimental setup of the LSCFB system 

In our earlier works, Zheng et al. (1999, 2002 and 2003) conducted an experimental study 

on the structure of the solids and liquid flows in an LSCFB which was designed and 

manufactured in a lab scale. A schematic diagram of the experimental apparatus is shown 

in Fig. 2.1. The main components of the system are the vertical Plexiglass riser column of 

76 mm I.D. and 3.0 m in height, a liquid-solids separator, a liquid stream distributor, a 

dual flipping valve for measuring solids circulation rate and a solids storage vessel. The 

distributor divides the incoming liquid stream into two substreams: the primary and 

auxiliary streams. The primary stream enters through 7 stainless steel tubes (1.27 cm 

I.D.), occupying 19.5% of the total bed area and extending 0.2 m into the bed. Also, the 

auxiliary stream is introduced through a perforated plate with 4% opening area at the 

bottom of the riser. The particles at the bottom are mobilized by the auxiliary stream, and 

then the particles are entrained up along the riser by the combination of the primary and 

auxiliary streams. All experiments were carried out at ambient temperature. Tap water 

was used as carrier liquid phase and glass beads as solid particles (dp=508 µm, ρp=2490 

kg/m3 and Ut=5.9 cm/s). 
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Figure 2.1: Schematic diagram of the liquid-solid circulating 

fluidized bed (Zheng et al., 2003). 

2.3 Mathematical modeling 

Since the liquid phase velocity in the riser is higher than the terminal velocity (Ut) of the 

solid particles, the riser is operated under the circulating fluidization regime (Liang et al., 

1997). A CFD axisymmetric model is used to simulate the turbulent flow field in the 

LSCFB riser. The CFD model is based on Eulerian–Eulerian approach. Thus, the 

governing equations for the solid phase have similar structure to those for the liquid 

phase. Furthermore, in order to close the conservation equations for the solid phase, the 

viscosity, pressure and stresses of the solid phase are modeled by the kinetic theory of 

granular phase (KTGP). In this theory, the mean square of the random particle velocity is 
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defined as the granular temperature (Θ). Thus the solids viscosity and the solids stress are 

correlated by a function of the granular temperature.  

The k-ε turbulence model is used to incorporate the influence of turbulence on the liquid-

solid flow. Three different types of the ,k ε turbulence models are examined to find the 

most computationally efficient and accurate model.  

2.3.1 Governing equations 

Continuity equation for the phase q (q=l for the liquid phase and q=s for the solid phase) 

are given as: 
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Where αq is the volume fraction of phase q. Momentum equations for the liquid phase 

and the solid phase are written as: 
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where the granular bulk viscosity, λs, describes the resistance of an emulsion to 

compression or expansion. Furthermore, µs, ps and Ksl are the solids viscosity, solids 

pressure and the coefficient of the momentum exchange between two phases, 

respectively. External body, lift and virtual mass forces are neglected in the momentum 

equations. The coefficient of the momentum exchange between the liquid and solid 

phases (Ksl) is described by the empirical drag correlation of Wen and Yu (1966): 
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The granular temperature, which is representing the solid phase velocity fluctuation, is 

defined as (Roy and Dudukovic, 2001): 

2

3s skθ =  (8) 

where ks is the kinetic energy due to solids velocity fluctuation. The transport equation of 

the granular temperature can be written as: 
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where (kΘs) and (γΘs) are the granular conductivity and the collisional dissipation of 

energy, respectively. 

In this study, three different types of the k-ε multiphase turbulence models are used, the 

mixture turbulence model, dispersed turbulence model and per-phase turbulence model. 

The mixture turbulence model represents the first extension of the single-phase k-ε 

model. It uses the mixture properties and mixture velocities to capture important features 

of the turbulent flow. This model is given as: 
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Where ρm, 
m

v  and Gk,m are the mixture density, mixture velocity and the production of 

turbulence kinetic energy, respectively. 

The k-ε dispersed turbulence model uses the standard k-ε model supplemented with extra 

terms that include the interphase turbulent momentum transfer. The dispersed turbulence 

model is given as: 
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The per-phase turbulence model includes a set of k-ε transport equations for each phase. 

Since two additional transport equations are solved for the solid phase, the per-phase 

turbulence model is more computationally expensive than the dispersed turbulence 

model. The transport equations are closed by the constitutive correlations derived from 

the kinetic theory of granular flow. They are summarized in table 2.1. 

 2.3.2 Boundary conditions 

The computational domain of the riser is shown in Fig. 2.2. As it is seen, the uniform 

boundary conditions are imposed on the inlet of the riser for both solids and liquid 

streams. Therefore, the quantities of both phases are distributed uniformly at the entire 

inlet cross section. The no-slip and free-slip boundary conditions are used on the wall for 

liquid and solid phases, respectively. Johnson and Jackson (1987) developed the 

boundary conditions for the slip velocity of solid phase near the wall: 

[ ] 0 tanN
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The first term on the left side of Eq. (12) denotes the stress within the solids flow 

approaching the wall. Here, usl is the slip velocity between the particles and the wall, cσ  

and fσ are collisional and frictional stress tensors, respectively, and n is the unit normal 

vector of the wall. The second term stands for the rate of tangential momentum transfer to 

the wall by particle-wall collisions, which is the product of the collision frequency for 

each particle, s/3Θ , the average tangential momentum transferred per collision, 

6/3
slpp udπφρ , and the number of particles adjacent to unit area of the wall, 1/ac. Here, s 

denotes the average distance between the wall and an adjacent particle, estimated by 

( )[ ]1/ 31
max, −= pppds αα , ac is the average boundary area per particle read as 

( ) 32
max,

2 / pppc da αα= , and φ is the specularity coefficient. pρ  is the density of the solid 

material, dp is the particle diameter, Θ  is the granular temperature, pα  is the solids 

volume fraction, and max,pα is the solids volume fraction at a closely random packing 

state. The third term on the left side of Eq. (12) is the stress due to sliding particles, 

which is obtained by applying Coulomb’s law of friction to the particles sliding over the 

surface. 
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Table 2.1. The constitutive correlations for closure of the transport equations 
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The granular temperature of the solid phase near the wall is calculated based on the 

correlation by Johnson and Jackson (1987): 

 

( )2 3/22

, 2/3 2/3
,max ,max ,max ,max

2/3 2/3

3 1
0.

2 3 4
s

p sw sp Slip s

w

s s s s

s s s s

eu
q θ

πρ θπρ ψ θ

α α α α

α α α α

−
+ − =

   
− −      

   

 (13) 

where uslip and qw,θs are the slip velocity and the flux of fluctuation energy within the 

solids flow approaching the wall. 

 

Figure 2.2: The computational domain in the LSCFB riser. 



32 

 

The standard k-ε model used for the liquid phase or mixture is only applicable for high 

Reynolds flow. Therefore, the viscosity-affected near-wall region at which Re number is 

low is resolved by a near-wall model. In this study, the two-layer approach is used as a 

near-wall model to calculate the velocity, turbulence energy dissipation and the turbulent 

viscosity of the liquid phase or mixture in the near-wall region. Fully-developed flow 

condition is used for all flow quantities at the outlet of the riser. The flow is assumed to 

be axisymmetric to reduce computational cost.   

2.4 Numerical methodology 

The commercial software, ICEM CFD, Ansys 13.0, is used to create the riser geometry 

and then generate the mesh. The governing equations are then solved by the commercial 

CFD code FLUENT, Ansys 13.0. The convection terms and gradients in all transport 

equations are descritized by the second order upwind method and green-gauss cell based 

method, respectively. The SIMPLE algorithm using a segregated solution technique is 

used to solve the pressure field and velocity field. The mesh independence is examined 

using three different grids, 25×2500, 30×3000 and 35×3500. The radial distributions of 

the solid holdup at the height of 2.5 m obtained by these three grids are compared. The 

result from 30×3000 grid deviates less than 0.5% from the one using the finer mesh. 

Therefore, this mesh is used in the rest of simulations in this study. The time step 

independence test shows that the time step of 0.005 sec can satisfy the time step 

independency. The specularity coefficient (φ ), restitution coefficient of interparticle 

collisions and restitution coefficient of particle-wall collisions are 0.0001, 0.99 and 0.99, 

respectively.  

2.5 Results and Discussion 

The numerical model presented in this study is used to predict the flow field in the 

LSCFB riser. The effect of turbulence models on the numerical simulation of the liquid-

solid turbulent flow is examined by comparing the numerical results with available 

experimental data (Zheng et al., 2002 and 2003). Also, the effects of the liquid superficial 

velocity (Ul) and solids circulation rate (Gs) on the hydrodynamic characteristics of the 
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LSCFB riser are investigated. In addition, the residence time distributions (RTD) of both 

liquid and solid phases are determined under one of the operating conditions. 

2.5.1 The effect of turbulence models 

In order to investigate the influence of turbulence models on the numerical results of the 

turbulent liquid-solid flow in an LSCFB, simulations are performed using three different 

types of k-ε multiphase turbulence models, the mixture turbulence model, dispersed 

turbulence model and per-phase turbulence model. The comparison between the 

numerical results using three different turbulence models and experimental data for the 

radial liquid velocity profiles is shown in Fig. 2.3 under Ul=0.1 m/sec and Gs=5 kg/m2sec 

at H=0.8 m above the inlet distributor of the riser. 

 

Figure 2.3: Comparison of the liquid velocity profile using 

three types of the k-ε multiphase turbulence models 

(Experimental data by Zheng et al. (2003)). 
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It can be seen that the predictions using the dispersed and per-phase k-ε models are in 

good agreements with the experimental data obtained by Zheng et al. (2003). In contrast, 

the mixture k-ε model is not an appropriate model for the turbulent two phase flow in a 

LSCFB, when the density ratio between the two phases is much higher than 1. 

The comparison of the numerical prediction for the radial solids holdup profiles with the 

experimental data is shown in Fig. 2.4. It is seen that there is a slight difference among 

the solids holdup predictions using three different k-ε multiphase models. 

 

 Figure 2.4: Comparison of the solids holdup profile using three types of k-ε 

multiphase turbulence models (Experimental data by Zheng et al. (2002)). 

Since the dispersed k-ε model is computationally less expensive and predicted 

hydrodynamic quantities equally well as the per-phase turbulence model, it is used for the 

rest of the simulations in this work. 

 



35 

 

2.5.2 Effect of liquid superficial velocity 

In Fig. 2.5, the predicted liquid velocities for Gs = 5 kg/m2sec are compared with the 

experimental data under different liquid superficial velocities.  

 

Figure 2.5: Comparison of the radial distributions of the liquid velocity under 

different liquid superficial velocities (Experimental data by Zheng et al. (2003)). 

It is illustrated that the numerical predictions for the liquid velocity agree favorably with 

the experimental data. The difference between the CFD results and the experimental data 

is below 8.5 %. Also, the radial non-uniformity for the liquid velocity is seen, especially 

at Ul = 15 cm/s. However, the radial distribution of the liquid velocity in a conventional 

fluidized bed system is fully-uniform (Zheng et al., 2003). 

Fig. 2.6 shows the comparison of the numerical results with the experimental data for the 

radial distributions of the solids holdup for Gs = 5 kg/m2sec under different liquid 
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velocities. It is shown that the simulation predictions are in an acceptable agreement with 

the experimental data by Zheng et al. (2002). Furthermore, it is seen that the increase in 

the liquid superficial velocity decreases the average cross-sectional solids holdup under 

the same solids circulation rate. That is because the slip velocity between the two phases 

increases with the increase in the liquid superficial velocity, which results in an increase 

in the drag force. Therefore, solids particle velocity increases and solids holdup 

decreases. 

 

Figure 2.6: Comparison of the radial distributions of the solid holdup under 

different liquid superficial velocities (Experimental data by Zheng et al. (2002)). 

2.5.3 Effect of solids circulation rate 

The comparison of the numerical predictions and experimental data for the radial 

distributions of the solids holdup in the LSCFB under different solids circulation rates at 

H=0.8 m above the distributor is plotted in Fig. 2.7. It shows that the CFD predictions 

favorably agree with the experimental data by Zheng et al. (2002). It is clearly seen that 
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the increase in the solids circulation rate results in an increase in the average solids 

holdup for the same liquid superficial velocity since the increase in the solids circulation 

rate (in terms of the superficial solids velocity) increases the amount of solid particles fed 

into the system. Therefore, the average solids holdup increases in the riser. 

 

Figure 2.7: The radial distributions of the solid holdup under different solids 

circulation rates (Experimental data by Zheng et al. (2002)). 

2.5.4 Residence time distribution 

The global dispersion and the residence time distributions (RTDs) for both phases can be 

estimated using the CFD results and applying the pulse technique (FLUENT User’s 

Guide, 2013). Since the transient CFD simulation reached an invariant state, the final 

steady-state field is utilized for the calculation of the phasic RTDs. With the pulse 

technique, tracers with the same physical properties as the solid particles are defined and 

injected at the inlet boundary of the flow field. After the calculations of the momentum 

equations are turned off, by solving the Lagrangian equations for each tracer, their 
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location versus time and the RTD of solid phase can be predicted. However, because only 

the final steady-state flow field has been used, the micro-mixing effects are neglected in 

this mathematical method. To obtain the RTD of liquid phase by the pulse technique, 

massless particles are injected at the inlet boundary of the riser and then particle positions 

are computed in the entire computational domain by generating pathlines. 

Fig. 2.8 shows the predicted RTD curves for the solids and liquid phases at Ul =10 cm/s 

and Gs=5 kg/m2s. Clearly, the liquid and solids flow patterns are very close to the plug 

flow. Moreover, the average residence times for the liquid and solid phases are 24.8 and 

55.6 seconds, respectively. This is because that the solids (glass) density is higher than 

the liquid (water) density.  

The predicted RTD curves for the solids and liquid phases are shown in Fig. 2.9 under Ul 

=15 cm/s and Gs=5 kg/m
2
s. It is seen that the liquid and solids flow patterns are close to 

the plug flow similar to the case shown in Fig. 2.8 for Ul =10 cm/s. In addition, the 

average residence times for the liquid and solid phases are 17.7 and 30.8 seconds, 

respectively. Also, Figs. 2.8 and 2.9 demonstrate that the increase in the liquid superficial 

velocity results in the increase of the solids dispersion and the decrease of the dispersion 

of liquid stream.  

In summary, the axisymmetric CFD model for the simulation of the liquid-solid turbulent 

flows in a riser is able to provide the detailed information, such as local phasic velocity 

and volume fraction, and resistance time distributions in the riser, which is useful for the 

riser design. 
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(a) 

 

(b) 

Figure 2.8: The residence time distributions of (a) the liquid phase and (b) the solid 

phase at Gs=5 kg/m
2
sec and Ul =10 cm/s. 
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(a) 

 

(b) 

Figure 2.9: The residence time distributions of (a) the liquid phase and (b) the solid 

phase at Gs=5 kg/m
2
sec and Ul =15 cm/s. 

2.6 Conclusions 

The CFD model was proposed to provide qualitative and quantitative pictures of the 

turbulent two phase flows in an LSCFB riser. Three different types of k-ε multiphase 



41 

 

turbulence models were examined in this work and it was found that the dispersed k-ε 

turbulence model is more efficient than other ones because of the lower computational 

time and higher accuracy. Comparisons of the predicted liquid velocity profiles and 

solids holdup profiles are in a good agreement with the experimental data. It was found 

that the non-uniformity of liquid velocity distribution in the LSCFB is higher than that in 

a conventional liquid-solid fluidized bed. In addition, it was shown that the increase in 

the liquid superficial velocity decreases the average cross-sectional solids holdup under 

the same solids circulation rate in the LSCFB. Furthermore, in order to observe the global 

dispersion, the CFD model was adapted to predict the solids and liquid RTDs. This 

implies that the model can be used for the scale-up and design of the real industrial-scale 

reactors. 



42 

 

References 

Atta, A., Razzak, S. A., Nigam, K. D. P., & Zhu, J. X. (2009). (Gas)-Liquid-Solid 

Circulating Fluidized Bed Reactors: Characteristics and Applications. Ind. Eng. Chem. 

Res., 48, 7876–7892. 

Ding, J., & Gidaspow, D. (1990).  A bubbling fluidization model using kinetic theory of 

granular flow. AICHE Journal, 36 (4), 523–538. 

Doroodchi, E., Galvin, K. P., & Fletcher, D. F. (2005). The influence of inclined plates on 

expansion behaviour of solid suspensions in a liquid fluidized bed-a computational fluid 

dynamics study. Powder Technology, 156, 1–7. 

Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory 

Descriptions. Boston: Academic Press. 

Johnson, P. C., & Jackson, R. (1987). Frictional-Collisional Constitutive Relations for 

Granular Materials with Application to Plane Shearing, Sheared in an Annular Cell. J. 

Fluid Mech., 176, 67-93. 

Lettieri, P., Di Felice, R., Pacciani, R., & Owoyemi, O. (2006). CFD modelling of liquid 

fluidized beds in slugging mode. Powder Technology, 167, 94–103. 

Lun, C. K. K., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for 

granular flow: inelastic particle in Couette flow and slightly inelastic particles in a 

general flow field. J. Fluid Mechanics, 140, 223–256. 

Razzak, S. A., Barghi, S., & Zhu, J. X. (2009). Application of electrical resistance 

tomography on liquid–solid two-phase flow characterization in an LSCFB riser. 

Chemical Engineering Science J,. 64, 2851-2858. 

Roy, S., & Dudukovic, M. P. (2001). Flow Mapping and Modeling of Liquid-Solid 

Risers. Ind. Eng. Chem. Res., 40, 5440-5454. 



43 

 

Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible 

granular flow. J. Differential Equations, 66, 19–50. 

Shi, D. P., Luo, Z. H., & Zheng, Z. W. (2010). Numerical simulation of liquidsolid two-

phase flow in a tubular loop polymerization reactor. Powder Technology J., 198, 135-

143.  

Sinclair, J. L., & Jackson, R. (1989). Gas-particle flow in a vertical pipe with particle-

particle interactions. AIChE Journal, 35(9), 1473-1486. 

Syamlal, M., Rogers, W., & O’Brien, T. J. (1993). MFIX Documentation: Theory Guide. 

National Technical Information Service, vol. 1. DOE/METC-9411004, 

NTIS/DE9400087.VA: Springfield. 

Wen, C. Y., & Yu, Y. H. (1966). Mechanics of fluidization.Chemical Engineering 

Progress Symposium Series, 62, 100-111. 

Zheng, Y., & Zhu, J. X. (2003). Radial distribution of liquid velocity in a liquid-solids 

circulating fluidized bed. Int J Chem Reactor Eng, 1, 1-7. 

Zheng, Y., Zhu, J. X., Marwaha, N., & Bassi, A. S. (2002). Radial solid flow structure in 

a liquid-solid circulating fluidized bed. Chem Eng J, 88, 141–150. 

Zheng, Y., Zhu, J. X., Wen, J., Martin, S., Bassi, A. S., & Margaritis, A. (1999). The 

axial hydrodynamic behavior in a Liquid-Solid Circulating Fluidized Bed. Can. J. Chem. 

Eng., 77, 284-290. 

 

 

 

 

 



44 

 

Chapter 3  

3. CFD modeling of continuous protein extraction 
process using liquid-solid circulating fluidized beds•  

3.1 Introduction  

The extraction of functional proteins from industrial broth has been of intensive interest 

during the recent years, due to concerns on limitations of the natural resources (Lan, 

2001). Significant improvement in protein separation technology plays a crucial role in 

achieving the commercial success. The traditional procedure to extract proteins from 

biological broth has been using a series of individual separation steps. Different 

mechanisms have been used to achieve this purpose, such as centrifugation techniques, 

ultra-filtration, ion-exchange process, hydrophobic interaction chromatography, and a 

number of other processes of varying degree of selectivity (Lan et al.  2002). 

The ion exchange process using the conventional fluidized bed has shown a potential for 

the protein extraction (Byers et al., 1997; Gordon et al., 1990; Higgins, 1969; Himsley, 

1981). It has been found out that the conventional beds have some benefits such as the 

low and stable bed pressure drop and the direct application of unclarified whole broth 

feed. 

As reviewed by Zhu et al. (2000), in addition to all advantages of the conventional 

fluidized beds, circulating fluidized beds (CFBs) have many unique features including 

continuous operation with adsorption and desorption carried out simultaneously, high 

throughout due to high liquid velocity in the riser, highly efficient liquid-solid contact, 

favorable mass and heat transfer, maintaining the nearly plug flow condition in the riser 

which reduced back-mixing of phases and integrated reactor and smaller processing 

volumes. To take advantage of the exceptional characteristics of CFBs, Lan et al. (2000) 

developed a liquid–solid circulating fluidized bed (LSCFB) ion-exchange system for 
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continuous extraction of protein. Generally speaking, an LSCFB is comprised of a riser, a 

downcomer, a liquid-solid separator and other auxiliary components. The downcomer is 

assigned for protein adsorption and the riser is designed as a stripper to desorb the protein 

and to regenerate the particles. Proteins are thus adsorbed onto the ion exchange particles 

in the downcomer and the loaded-particles are regenerated simultaneously in the riser in a 

continuous mode. The operating conditions in the two columns of an LSCFB system 

could be controlled independently with the liquid flow rate and the solids circulating rate 

between the two columns.  

A number of models have been developed to describe the protein adsorption and 

desorption behaviors in packed beds, conventional fluidized beds and circulating 

fluidized beds with various types of approximations to the physical reality. Several steps 

are involved in the process of adsorption of proteins onto the adsorbent particles: (1) 

convective and diffusion mass transfer from the liquid phase to the adsorbent surface, (2) 

diffusion through the pore of the ion exchange particles and (3) the surface reactions. The 

surface adsorption reaction is sufficiently rapid compared to the first two steps and is not 

usually considered as a limiting step (Mazumder et al., 2009). Veeraraghavan et al. 

(1989) developed a model for adsorption of phenol onto granular activated carbon in a 

liquid–solid fluidized bed considering liquid and solid phase axial dispersion, film mass 

transfer resistance and pore diffusion. Wright and Galsser (2001) developed a similar 

model for the adsorption of proteins in a fluidized bed and studied the effect of operating 

parameters on the adsorption performance. Later on, Ping et al. (2005) and Junxian et al. 

(2005) modeled the protein adsorption in a conventional fluidized bed and they 

considered axial distribution of particles size and axial variations of bed voidage. Lan et 

al. (2000) developed a model for continuous protein recovery in LSCFB ion-exchange 

systems assuming the process is not surface reaction limited. However, detailed 

hydrodynamics of the LSCFB was not included in their model. Recently, Gaikwad et al. 

(2008) developed another model on adsorption in an LSCFB considering the film mass 

transfer resistance as the limiting step. Their model included only the adsorption in the 

downcomer whereas the protein desorption process was not considered. In order to 

simplify the physical reality, the detailed hydrodynamics of the LSCFB was not included 

in all above-mentioned models and they assumed that the distributions of the solid holdup 
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( sε ), solids velocity ( sU ) and liquid velocity ( lU ) are uniform throughout both the riser 

and the downcomer. In contrast, experimental data clearly demonstrated that both axial 

and radial distributions of hydrodynamic properties are not uniform along the riser of an 

LSCFB (Liang et al., 1997, Razzak et al., 2009). In recent decades, computational fluid 

dynamics (CFD) techniques have received many attentions in simulating the transport 

phenomena in fluidized bed reactor; however, most past studies focused on using CFD 

method for gas-solid fluidized bed reactors and less attention has been paid to the CFD 

modeling of the liquid-solid fluidized bed reactors (Shi, 2010). 

The purpose of this study is to develop a sophisticated numerical model to simulate the 

protein extraction process using an LSCFB ion-exchange system. This model will take 

into account a more accurate study on the nature of this system including hydrodynamics, 

mass transfer and kinetics. The simulation of the desorption process in the LSCFD riser is 

based on Eulerian-Eulerian (E-E) approach incorporating the kinetic theory of granular 

flow. A two-dimensional axisymmetric CFD model is applied to capture the detailed 

information about the local values of volume fraction, velocity and protein concentration 

of both the liquid stream and the solid particles in the riser. In addition, the adsorption 

process in the LSCFB downcomer is simulated by a one-dimensional mathematical 

model using the adsorption kinetics correlations developed by Lan et al. (2000). 

3.2 Experimental setup of the LSCFB system 

In one of our earlier work, Lan et al. (2000) has conducted an experimental study on the 

protein extraction process. In that study, an LSCFB ion exchange system was designed 

and manufactured in a lab scale. This system was able to carry out protein extraction 

from model broth. The main components of this system will be explained in the 

following section, and also all materials and kinetics of ion exchange process will be 

summarized. 

3.2.1 Apparatus 

The schematic of the LSCFB ion exchange system used by Lan et al. (2000) is shown in 

Figure 3.1. The major components of the LSCFB extractor include a riser, a downcomer, 
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a liquid-solid separator, a top solids-return pipe, a bottom solids-return pipe, a top 

washing section, a bottom washing section, a riser distributor and a downcomer 

distributor. The riser is 3.0 m in height and 0.038 m in diameter, and the downcomer is 

2.5 m in height and 0.120 m in diameter.  

Two different types of liquid streams are used to fluidize the particles in the riser and 

downcomer. The liquid velocity in the riser is higher than the terminal velocity of the 

particles; therefore, the particles can be entrained up along the riser. However, the liquid 

velocity in the downcomer is less than the terminal velocity of the particles, so particles 

can flow down from the top of downcomer. As a result, the particles are able to circulate 

between the two columns. 

The distributor for the downcomer is a tubular ring that is carefully designed in order to 

have a uniform liquid distribution while allowing the solids to flow down. The riser 

distributor divides the incoming stream into two substreams: the primary and auxiliary 

streams. The primary stream enters through a tubing of 1.1 cm in ID extending 5.1 cm 

into the riser. The outlet of the primary stream was located above the solids entrance at 

the bottom of the riser. Also, the auxiliary stream is introduced through a perforated plate 

at the bottom of the riser. The particles at the bottom are mobilized by the auxiliary 

stream, and then the particles are entrained up along the riser by the combination of the 

primary and auxiliary streams.  

The dynamic seals between the riser and downcomer are achieved by maintaining the two 

solids return pipes in the moving packed-bed regime. The top wash section and the 

bottom wash section clean the particles before they entering the solids return pipes to 

avoid penetrating liquid solution from one column to another. 

The solids circulation rate is controlled by a butterfly valve installed on the bottom solids 

return pipe. The solids circulation rate was measured by a device which is installed at the 

top on downcomer and made of a central vertical plate and two half butterfly valves.  
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Figure 3.1: Schematic diagram of the LSCFB ion-exchange system Lan et al. (2000). 
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 3.2.2 Materials 

Bovine serum albumin (BSA) was used as model protein and continuous recovery of 

BSA solution in the LSCFB ion exchange system was conducted with the BSA solution 

as feed in the downcomer and 0.4 M NaCl solution as the extracting buffer in the riser. 

Diaion HPA25 particles were used as ion-exchange particles for all BSA adsorption-

desorption studies. The properties of Diaion HPA25 particles are listed in Table 3.1.  

Table 3.1: Properties of Diaion HPA25 ion-exchange particles (Lan et al. 2002). 

Matrix Polystyrene Žhighly porous. 

Functional group Quaternary alkylamine 

Ionic form Cl-1 

Average diameter (dp, mm) 0.32 

apparent density, ( wρ , kg/m3) 1080 

Total exchange capacity Cl-, meq/mL) 0.6 

Terminal velocity (Ut , mm/s) 4.5 

Bed expansion index (n) 2.67 

BSA adsorption capacity (qm , kg/m3) 87.9 

 

3.2.3 Kinetics of Ion Exchange mechanism in the LSCFB 
System 

For a continuous ion-exchange process in the LSCFB, the BSA solution as the feed 

protein is entered from the bottom of the downcomer, while the ion exchange particles 

are introduced from the top solids return pipe into the top of the downcomer. Since liquid 

velocity in the downcomer is maintained lower than the terminal velocity of the ion-

exchange particles, the ion-exchange particles move down countercurrent to the rising 

feed liquid. Because of the excellent contact between the particles and feed liquid in the 

downcomer, the BSA protein in the feed is adsorbed onto the ion exchange particles and 

then the deproteinized solution is discarded from the top of the downcomer. The loaded 
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particles are then transferred to the bottom of the riser through the bottom solids return 

pipe after washing.  

The extracting buffer (0.4 M NaCl solution), the combination of the primary and 

auxiliary streams, is entered from the bottom of the riser. The superficial velocity of the 

extracting buffer (Ulr) is kept higher than the terminal velocity of the ion exchange 

particles; therefore, the loaded particles are carried upward along the riser while the BSA 

protein is desorbed and the ion exchange particles are regenerated. Then, the regenerated 

particles are returned to the top of the downcomer through the top solids return pipe after 

washing. 

3.3 Mathematical modeling 

3.3.1 CFD modeling of flow field and mass transfer in the 
Riser 

Since the liquid phase velocity in the riser is higher than the terminal velocity of the ion 

exchange particles, the riser is operated under the circulating fluidization regime. The 

CFD model used this study takes into account the effects of the hydrodynamics and mass 

transfer on the protein extractions in the riser.  

Generally, there are two approaches to model two-phase flows: Eulerian-Lagrangian (E-

L) approach and Eulerian-Eulerian (E-E) approach. In the E-L approach, the liquid phase 

is considered as a continuous phase and Navier–Stokes (N-S) equations are solved for it. 

The solid phase is treated as a discrete phase and each solid particle is tracked by solving 

the Lagrangian force balance equation. However, the main drawback of this approach is 

that a high computational cost is required to solve the dense two-phase flow. In the E-E 

approach, also well known as two-fluid model, each phase is treated as an 

interpenetrating continuum and the concept of phasic volume fraction is introduced. The 

conservation equations of mass, momentum, and chemical species for both the particulate 

and the fluid phases are solved.  

In the current work, the two phase flow in the riser of the LSCFB is modeled by E-E 

approach. The conservation of the mass, momentum and mass transfer between the 
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phases provide the governing equations for the liquid and solid phases. The governing 

equations for the solid phase have similar structure to those for the liquid phase. 

However, in order to close the pseudo N-S equation for the solid phase, the viscosity, 

pressure and stresses of the solid phase are modeled by the kinetic theory of granular 

phase (KTGP), which has been widely applied for particulate flows (Sinclair and 

Jackson, 1989; Gidaspow, 1994). In this theory, the mean square of the random particle 

velocity is defined as the granular temperature (Θ). Thus the solids viscosity and the 

solids stress are a function of this granular temperature, which varies with time and 

position in a fluidized bed. 

The relevant equations for liquid-solid flows based on the kinetic theory of granular flow 

are listed in Table 3.2. The granular bulk viscosity which describes the resistance of an 

emulsion to compression or expansion is determined by the equation proposed by Lun et 

al. (1984). The viscosity of the solid phase comes from three sources: inter-particle 

collision, friction and kinetic energy of particles. The correlation by Gidaspow et al. 

(1990) is used for the collisional viscosity. Frictional viscosity is calculated by the 

expression of Schaeffer (1987), with an angle of internal friction of 30 ◦.The kinetic 

portion of the granular viscosity and the granular conductivity are both obtained by the 

relationships from Syamlal et al. (1993). The radial distribution function of Ding and 

Gidaspow (1990) takes into account the probability of particles colliding with each other. 

External body, lift and virtual mass forces are neglected in the momentum equations. The 

momentum exchange between the liquid and solid phases is described by empirical the 

drag laws of Wen and Yu (1966). Since the protein desorption from the ion exchange 

particles is processed in riser. The mass transfer of protein species from ion-exchange 

particles to the liquid phase needs to be considered.  The protein mass transfer rate of the 

protein species in the riser is calculated by the equation of Lan et al. (2000). 

3.3.2 Hydrodynamics and mass transfer simulation in 
downcomer  

In order to maintain stable operation, the liquid velocity in the downcomer must be kept 

less than the particle terminal velocity. Therefore, three distinctive zones are observed in  
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Table 3.2: Governing equations for liquid-solid flows in the riser 
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the downcomer which have different solid holdups, the dense zone, the dilute zone, and 

the freeboard zone as shown in Figure 3.1.  

It was observed that the solid holdup in the freeboard zone is zero and the solid holdup in 

the dilute zone is much lower than that in the dense zone. Therefore, the mass transfer of 

protein species from feed to ion exchange particle is neglected in the freeboard zone and 

dilute zone, and the mathematical model is only developed for the dense zone. Diaion 

HPA251 ion exchange particles are assumed to be uniform in size and spherical in shape. 

The riser and the downcomer are operated at steady state condition with the ion exchange 

particles continuously circulated between the two columns. 

The dense zone in the downcomer operates as a conventional fluidized moving bed in 

which solids move downward and liquid moves upward. Thus, all hydrodynamic 

quantities such solids, liquid velocity and solid holdup in downcomer are assumed 

uniform. The bed voidage, dε , can be described by an empirical correlation (Lan et al., 

2000): 

n
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d
sdld UUU ε

ε

ε
11

=
−

+  (1) 

where, Uld and Usd are the superficial liquid and solids velocities, respectively, U1 is the 

superficial liquid velocity at the bed voidage 1
d

ε =  and n is the bed expansion index. 

The superficial solids velocity, Usd, is given as: 

s
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s

G
U

ρ
=  (2) 

where Gs is the solids circulation rate between riser and down comer. 

In order to derive the governing equations for the kinetics reactions in downcomer of  the 

LSCFB ion exchange system, the following assumptions are considered:  (a) The surface 

adsorption process is instantaneous and thus a local equilibrium is established at the 

particle surface between the protein concentration in the liquid–solid interface and the 

solid resin phase. The equilibrium is well represented by a Langmuir isotherm (Lan et al., 
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2001); (b) The rate of adsorption is limited by the mass transfer resistance film 

surrounding an individual adsorbent particle and the intra-particle diffusional resistance; 

(c) The back mixing of the solids in the downcomer is negligible; and (d) The thermal 

effect is negligible, that is, the system operates at isothermal condition. Therefore, the 

protein transport in the liquid and solid phases can be described by following one-

dimensional equations (Mazumder et al., 2009): 
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where, Cd and qd are the protein concentration of the liquid phase and solid phase in the 

downcomer, respectively, Z is the axial distance from the bottom of the downcomer, Dax,l 

and Dax,s are axial dispersion coefficients of the liquid phase and solid phase, 

respectively, KL is the lumped mass transfer rate coefficient, a is the specific surface area 

of the ion-exchange resins, Ceq is the liquid phase protein concentration at the liquid–

solid interface which is in equilibrium with the solid phase. As mention before, the mass 

transfer rates of protein species in the freeboard and dilute zones are negligible.   

Since the liquid velocity is very low, the fluidization in the downcomer can be considered 

as homogeneous. So, the effects of the liquid dispersion and solids back mixing are 

negligible. Again, the lumped mass transfer rate coefficient (KL) can be expressed as: 

fL kK  ψ=  (5) 

where, kf is the film mass transfer coefficient and ψ  is a constant factor which includes 

the effect of intra-particle diffusion.  

The equilibrium of the BSA adsorption on Diaion HPA251 ion exchange resin can be 

described by Langmuir Isotherm. Therefore, the equilibrium liquid phase protein 

concentration at the liquid–solid interface (Ceq) can be expressed as: 
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where, qm is the maximum adsorption capacity of the ion-exchange particles and Kd the 

dissociation constant. As the system always maintains a dynamic seal between the two 

columns, the feed solution cannot be mixed with the ion exchange particles in the bottom 

return pipe, thus, protein concentrations in the ion exchange particles are the same at both 

the bottom of the downcomer (qed) and the inlet of the riser (qor).  

3.3.3 Parameters of modeling  

The mass transfer equations in the riser and downcomer include some coefficients which 

can be obtained by either individual experiments or available empirical correlations.  

The correlation of Monkos (1996) is used to determine the viscosity and density of BSA 

solution. The film mass transfer coefficient (kf) in the downcomer is a function of solid 

holdup ( sdε ), the Schmidt number (Sc) and particle Reynolds number (Rep). The film 

mass transfer coefficient is obtained by the correlation of Fan et al. (1960): 
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Where, Uslip is the superficial slip velocity between the two phases and Dm is the 

molecular diffusion coefficient of BSA.  

The coefficient of intra-particle diffusion (ψ ) is tuned using available experimental 

results (Lan et al., 2000, 2002). The fine-tuning procedure is based on minimization of 

deviation between the experimental data and the model predictions. Maximum adsorption 

capacity of Diaion HPA25 ion-exchange particles (qm), dissociation coefficient (Kd) and 
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the desorption rate constant in the riser (Kr) were reported by Lan et al. (2000). These 

modeling parameters are listed in table 3.3. 

Table 3.3: model parameters (Lan et al., 2000) 

Kd (kg/m3) qm (kg/m3) Kr (s
-1) ψ  

0.00907 87.9 0.045 0.15 

 

3.3.4 Numerical methodology  

Under each operating condition, the value of the bed voidage in the downcomer is 

obtained by solving Eq. 1. Then, by using the following boundary conditions, the mass 

transfer equations, Eqs. 3 and 4, which are the ordinary differential equation, are solved 

by a finite difference method: 

( 0) ( ) .d 0d d er  C C       and        q h q
d

Z Z= = = =  (8) 

where Cod is the protein concentration in feed solution and qer is the protein concentration 

in the regenerated ion-exchange particles which are coming from the exit of the riser. At 

the beginning of the circulation, qer equals to zero. As a result, this mathematical model is 

able to predict the protein concentration in liquid and solid phase along the downcomer 

and also the protein concentration of loaded particles which are entrained to the bottom of 

the riser can be obtained. 

The two phase flow in the riser is simulated with an axisymmetric model to reduce 

computational cost. The commercial software, ICEM CFD, Ansys 13.0, is used to create 

the riser geometry and then generate the mesh. The governing equations are then solved 

by the commercial CFD code FLUENT, Ansys 13.0 based on the laminar flow regime. 

The computational domain of the downcomer is shown in Figure 3.2(a) and the 

computational domain of riser is given in Figure 3.2(b). As it is shown, the inlet of 

primary stream of the liquid phase is named as ‘Inlet 1’ where there is no solid particle. 

Also, the ‘Inlet 2’ represents the inlet of both Auxiliary stream and solid particle phase, 

therefore the velocities of the liquid and solid phase, and solid holdup are set on this 

cross-section. No-slip and free-slip boundary conditions are imposed on the wall for 
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liquid and solid phases, respectively. The expressions of Johnson and Jackson (1987) are 

used to calculate the slip velocity and granular temperature of solid phase near the wall. 

Fully-developed flow condition is used for all flow quantities at the top of the riser. The 

symmetry conditions are imposed at the central axis of the column. 

The convection terms and gradients in all transport equations are descritized by the 

second order upwind method and green-gauss cell based method, respectively. Then, the 

SIMPLE algorithm using a segregated solution technique is used to solve the pressure 

field and velocity field separately within an iteration cycle.  

The mesh independence is examined using three different grids, 20×2000 25×2500, 

30×3000 and 35×3500. The radial distributions of the solid holdup at the height of 2.5 m 

from these three grids are compared and the comparison indicates the 30×3000 grid gives 

less than 0.5% variation in comparison to the finer grid. Therefore, this mesh can provide 

mesh-independent results. The time step independence test shows that 0.0004 sec time 

step can give the time step independent results. 

As a result, protein concentration in the riser is determined in the first cycle of solids 

circulation between downcomer and riser. Because of unique design of the LSCFB, the 

solid phase protein concentration at the top of the riser (qer) is equal to the one at the top 

of downer (qod), so the value of qer from the current riser simulation is used as qod in the 

next downcomer simulation. While particles are entraining between these two columns, 

adsorption capacity of the downcomer and desorption capacity of the riser are 

establishing a kinetic equilibrium. Eventually, the LSCFB ion exchange system reaches a 

stable operation condition.  
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Figure 3.2: Computational domain of in the downcomer and riser of the 

LSCFB. (a) Downcomer and (b) Riser. 

3.4 Results and Discussion 

The numerical model presented in this study is able to predict the hydrodynamics and 

mass transfer characteristics of the ion exchange particles in the LSCFB. The numerical 

results are compared with available experimental data (Lan et al., 2000) to validate the 
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numerical model. Then, the effects of the operating conditions on the distribution of the 

protein concentration along the downcomer and the riser are investigated.  

Furthermore, the protein production rate (P) and the total efficiency of protein extraction 

process in the LSCFB (E) are the two key performance parameters of the system which 

are defined by the following equations: 

Protein production rate (P) = UlrArCer 

 

lr r er

ld d od

U A CProtein production rate 
Total Efficiency (E)

Amount of  protein in the feed U A C
= =  

(9) 

These parameters (E and P) can be considered as the two objective functions to find out 

the optimal conditions for the protein extraction process using the LSCFB. The current 

numerical model will predict the two objectives under different operating conditions.  

In this study, one of the stable operating conditions is selected as the reference point. The 

parameters at this reference point are Cod=2 (kg/m
3), Uld=0.0006 (m/s), Ulr=0.0113 (m/s) 

and Gs=1.24 (kg/m
2
/s). The height of the dense zone in the downcomer is 0.8 (m) at the 

reference point.  

3.4.1 Validation of the numerical model  

In order to validate the present numerical model, the predicted results are compared with 

the experimental data (Lan et al., 2000). The protein concentration of liquid phase in the 

downcomer is shown in Figure 3.3 under different superficial liquid velocities in the 

downcomer (Uld). In this simulation, the rest of operating conditions are set at the 

reference point.  

As it is seen that the liquid phase protein concentration in the downcomer (Cd) decreases 

along the column as the protein is adsorbed onto the ion-exchanger resin. There is a good 

agreement between the numerical results and experimental data, especially at the outlet of 

the downcomer, although the liquid dispersion, solids back mixing and non-uniformity of 

velocity field are not taken in account in the numerical model.  
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Figure 3.3: Comparison of the liquid protein concentration along the downcomer at 

different superficial liquid velocities (Uld) in the downcomer at Cod=2 kg/m
3
, Gs=1.24 

kg/m
2
/s, Ulr=0.0113 m/s (Experimental data by Lan et al. (2000, 2002a)). 

Figure 3.4 shows the liquid phase protein concentration along the riser at different 

superficial liquid velocities in the riser (Ulr). In this simulation, the rest of the operating 

conditions are set at the reference point. The protein concentration of the liquid phase in 

the riser (Cr) increases along the column as the protein of the ion-exchanger resin is 

desorbed by the extracting solution. This plot also exhibits a reasonable agreement 

between the experimental data and numerical results, especially at the top of the riser. 

The average difference between the CFD results and experimental data is about 17.8 %. 
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Figure 3.4: Comparison of the liquid protein concentration along the riser at 

different superficial liquid velocities (Ulr) in the riser at Cod=2 kg/m
3
, Gs=1.24 

kg/m
2
/s, Uld=0.006 m/s (Experimental data by Lan et al. (2000, 2002a)). 

The reaction rate constant in the riser (kr) can be one of the main reasons for the deviation 

between the experimental data and numerical results, because kr is assumed to be 

constant in the current model, which should be  a function of the local solid holdup. The 

protein concentration of the liquid phase in the riser (Cr) is illustrated by a contour in 

Figure 3.5.  
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Figure 3.5: Contour of the protein concentration of the liquid n the riser, Cr (kg/m
3
). 
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3.4.2 Effect of the liquid velocity in the downcomer  

The liquid velocity in downcomer (Uld) has significant effect on the performance of the 

ion exchange LSCFB. They could be identified in many aspects. First of all, the increase 

in Uld will decrease the resident time of liquid phase. Therefore, it leads to less time for 

the adsorption process and as a result, the protein concentration in the raffinate stream 

will increase. Secondly, it influences the bed voidage in the downcomer based on Eq. (1).  

The increase in Uld will increase the bed voidage. On the other hands, under a constant 

solids circulation rate (Gs), the volume flow rate of the feed increases with the increase in 

Uld and it changes the mass balance on the BSA in the downcomer.  

The liquid phase protein concentration profile along the riser is plotted in Figure 3.6 at 

different Uld while keeping other operating conditions the same as those at the reference 

point.  

 

Figure 3.6: Variation of the liquid protein concentration along the riser 

at different superficial liquid velocity in downcomer, Uld (Cod=2 kg/m
3
, 

Gs=1.24 kg/m
2
/s, Ulr=0.0113 m/s). 
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Figure 3.6 shows that with the increase in Uld, the liquid phase protein concentration (Cr) 

increases at the outlet of the ion extracting stream. As the protein loading rate in the 

downcomer increases when Uld increases, the ion exchange particles carry over higher 

amount of protein to the riser which result in higher desorption rate in the riser. 

3.4.3 Effect of the liquid velocity in the riser 

The liquid velocity in the riser (Ulr) has a significant effect on the operation of an LSCFB 

ion exchange system as shown in Figure 3.4. It can be seen from Figure 3.4 that the 

protein concentration of the raffinate (Cer) decreases at the outlet of the riser with the 

increase in Ulr. It causes the reduction of solid phase residence time in the riser and the 

decrease in the desorption capacity. That is why the protein concentration of the liquid 

phase (Cer) decreases with the increase in Ulr. 

3.4.4 Effect of the feed concentration 

The protein concentration in the feed can have a dominant role on the performance of 

LSCFB ion exchange systems. Figure 3.7 shows the profile of the liquid protein 

concentration in both riser and downcomer at different feed protein concentration, while 

other operating conditions remain at the reference point. It can be seen in Fig. 3.7 (a) that 

the protein concentration of the liquid phase at Z/hd=1.0 is increasing with the increase in 

the feed protein concentration. As a result, the increase in Cod causes that a higher amount 

of BSA is discharged from the outlet of the raffinate stream. The distribution of the 

average protein concentration in the liquid phase of the riser (Cr) is illustrated under 

various feed protein concentration (Cod) in Fig. 3.7(b). It indicates that the protein 

concentration at the outlet of the riser (Cer) increases with the increase in Cod. As the 

loading rate of the protein increases in the downcomer due to higher Cod, the protein 

concentration of the loaded particles which are introduced to the bottom of riser, 

increases; therefore, the desorption capacity and Cer are higher in the riser.  
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(a) 

 

(b) 

Figure 3.7: Influence of the feed protein concentration (Cod) on the 

protein concentration of the liquid phase at Gs=1.24 kg/m
2
/s, Uld=0.0006 

m/s, and Ulr=0.0113 m/s. (a) downcomer, (b) riser 
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3.4.5 Evaluation of the system efficiency and protein 
production rate  

Increasing the system efficiency and production are two dominate objectives of each ion 

exchange LSCFB system. The protein production rate (P) and the total efficiency of 

protein extraction process in an LSCFB (E) can be calculated by Eq. (9). The predicted 

values of these two objective functions can be used to perform an optimization study on 

the protein extraction system. The values of the protein production rate (P) and system 

efficiency (E) are summarized in Table 3.4 under different operating conditions.  

Table 3.4: Protein production rate and system efficiency under different operating 

conditions 

Ulr (m/sec) Gs (kg/m2sec) Cod (kg/m3) Uld (m/s) 
Protein 

Production 
Rate (kg/hr) 

System 
 Efficiency (%) 

Effect of Ulr 

0.0113 1.24 2 0.0006 0.0422 86 

0.0149 1.24 2 0.0006 0.0393 80 

0.0224 1.24 2 0.0006 0.0319 65 

      

Effect of Uld 
0.0113 1.24 2 0.0006 0.0422 86 

0.0113 1.24 2 0.0008 0.0539 83 

0.0113 1.24 2 0.001 0.0634 78 

      

 Effect of Cod 
0.0113 1.24 1 0.0006 0.0214 87 

0.0113 1.24 2 0.0006 0.0422 86 

0.0113 1.24 3 0.0006 0.059 80 

 

Table 3.4 shows that both the protein production rate and system efficiency decrease with 

the increase in Ulr, because it reduces the protein adsorption and desorption capacity in 

the downcomer and riser, respectively.  Also, it is observed that the protein production 

rate is enhanced when Uld increases due to higher protein loading rate. However, the total 
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efficiency of the LSCFB ion exchange system has an opposite trend compared to the 

protein production rate, i.e. it decreases with the increase of Uld. Generally, the 

production rate goes up with the increase of Cod because of higher loading rate. However, 

the overall system efficiency decreases with the increase of Cod due to the limited BSA 

capacity.  

3.5 Conclusions  

A CFD model to simulate the protein extraction process in the LSCFB ion exchange 

system has been presented. This model took into account both adsorption and desorption 

processes. The simulation of the desorption process in the LSCFB riser was based on 

Eulerian-Eulerian (E-E) approach incorporating the kinetic theory of granular flow. In 

addition, the adsorption process in the LSCFB downcomer was formulized by a one-

dimensional mathematical model using the adsorption kinetics correlations developed 

before. The numerical results were validated favorably with reported experimental data.  

The adsorption and the desorption behavior were studied under various operating 

parameters to better understand the performance of the system. The model could predict 

the protein production rate and the overall system efficiency which can be considered two 

objective functions for the optimization study on the protein extraction process. In 

general, it was found that both the rate of protein production and the total system 

efficiency decrease with the increase in the superficial liquid velocity in the riser. In 

contrast, with the increase in the feed flow rate and the feed protein concentration, the 

rate of protein production increases, but the overall system efficiency decreases.  
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Chapter 4  

4 Numerical Simulation of Counter-Current Flow Field in 
the Downcomer of a Liquid-Solid Circulating Fluidized 
Bed• 

4.1 Introduction  

The extraction of functional solids materials from industrial broth has received high 

attentions during the recent years due to concerns on limitations of the natural resources 

(Lan, 2001). The continuous ion exchange process using the conventional fluidized is one 

of the major extraction equipment which has been used extensively (Byers et al., 1997; 

Gordon et al., 1990; Higgins, 1969; Himsley, 1981). Although the conventional fluidized 

beds have some benefits such as the low and stable bed pressure drop and the direct 

application of unclarified broth feed, the continuous transportation of a large number of 

particles between vessels becomes a challenging issue (Gaikwad et al., 2008). Because of 

the unique features of the liquid–solid circulating fluidized bed (LSCFB) including 

continuous operation in vessels, high throughout due to high liquid velocity in the riser, 

high efficient liquid-solid contact, integrated reactor and smaller processing volumes, 

Zhu et al. (2000) proposed LSCFB system as a potential candidate for the continuous 

extraction process. A typical LSCFB is comprised of a riser, a downcomer, a liquid-solid 

separator and other auxiliary components. Also, liquid-solid flow pattern is co-current in 

the riser and counter-current in the downcomer. 

To take advantage of the exceptional characteristics of LSCFBs, Lan et al. (2000, 2002) 

reported a liquid–solid circulating fluidized bed (LSCFB) ion-exchange system for 

continuous extraction of protein. In addition to modeling the riser, they also developed a 

semi-empirical correlation to predict the solids holdup in the downcomer. The correlation 

was derived from Richardson and Zaki equation (Richardson and Zaki, 1954; Kwauk, 

1992). Further, they studied the effects of operating conditions on the overall efficiency 
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of the protein extraction process. Feng et al. (2003) carried out the cesium separation 

using a continuous ion exchange circulating fluidized bed. 

Control and optimization of the extraction process using ion exchange LSCFB require a 

comprehensive study on the hydrodynamics in the riser and downcomer. In the last 

decade, computational fluid dynamics (CFD) techniques have received more attentions in 

simulating the transport phenomena in liquid-solid fluidized bed reactors; however, there 

is only a few works in the literature on the behavior of the two-phase flows in a 

downcomer. In addition, because of the counter-current contact of two phases, the flow 

field in the downcomer is more complex. As far as we know, there has been no CFD 

study on the liquid-solid counter-current flow in the literature. Din et al. (2010) 

developed a CFD model to simulate a liquid-liquid counter-current flow in the pulsed 

sieve plate extraction column. The model was based on Eulerian–Eulerian approach with 

standard multiphase k–ε turbulence model. A pulse generation model was incorporated to 

simulate the effect of pulses in the system. By Comparison with experimental data, the 

CFD results shows 27.83% of the error.  

The purpose of this study is to develop a sophisticated CFD model to simulate the liquid-

solid flow field in the LSCFB downcomer. This model is based on Eulerian-Eulerian 

approach incorporating the kinetic theory of granular flow. The proposed model is used 

to examine the effect of operating condition on hydrodynamic characteristics and to 

obtain the residence time distribution (RTD) of solid particles using a Pulse technique. 

4.2 Configuration of the LSCFB ion-exchange system 

The LSCFB ion exchange system used in this study was developed by Lan et al. (2000), 

where an experimental study on hydrodynamics and kinetics of the protein extraction 

process in this LSCFB ion exchange system was conducted. In that study, a lab scale 

system was designed and manufactured. The schematic diagram of the LSCFB ion 

exchange system used by Lan et al. (2000) is shown in Fig. 4.1. It is comprised of a riser, 

a downcomer, a liquid-solid separator, a top solids-return pipe, a bottom solids-return 

pipe, a top washing section, a bottom washing section, a riser distributor and a 
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downcomer distributor. The riser is 3.0 m in height and 0.038 m in diameter, and the 

downcomer is 2.5 m in height and 0.120 m in diameter. 

 

Figure 4.1: Schematic diagram of the LSCFB ion-exchange system Lan et al. (2000). 
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In the downcomer, Bovine serum albumin (BSA) solution was used as a liquid feed and 

Diaion HPA25 particles were used as solid ion-exchange particles (dp=0.32 mm, ρw =1.08 

gr/mL and Ut=4.5 mm/s).  

The liquid feed stream is introduced into the bottom of the downcomer through 

distributor and ion-exchange particles are simultaneously entered into downcomer 

through top solids entrance. The liquid velocity in the downcomer is less than the 

terminal velocity of the particles; therefore, particles can flow down from the top of 

downcomer and the flow pattern of the two phases is counter-current. Since the feed 

distributor is designed like a tubular ring, it can provide a uniform liquid distribution 

while allowing the solids to flow down. 

4.3 Mathematical modeling 

There are two CFD approaches available to model liquid-solid flows: Eulerian-

Lagrangian (E-L) approach and Eulerian-Eulerian (E-E) approach. In the E-L approach, 

the liquid phase is considered as a continuous phase and Navier–Stokes (N-S) equations 

are solved for it. The solid phase is treated as a discrete phase and each solid particle is 

tracked by solving the Lagrangian force balance equation. However, the main drawback 

of this approach is that a high computational cost is required to solve the dense two-phase 

flow. 

In the E-E approach, also well known as two-fluid model, each phase is treated as an 

interpenetrating continuum and the concept of phasic volume fraction is used. The 

conservation of the mass, momentum and energy provide the governing equations for the 

liquid and solid phases. The governing equations for the solid phase have similar 

structure to those for the liquid phase. However, in order to close the pseudo N-S 

equation for the solid phase, the viscosity, pressure and stresses of the solid phase are 

modeled by the kinetic theory of granular phase (KTGP), which has been widely applied 

for particulate flows (Sinclair and Jackson, 1989; Gidaspow, 1994). In this theory, the 

mean square of the random particle velocity is defined as granular temperature (Θ) and 

the solids viscosity, pressure and stress are functions of the granular temperature, which 

varies with time and position in a fluidized bed. 
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4.3.1 Governing equations 

In this work, a CFD model is developed to simulate the counter-current flow field in the 

downcomer of an LSCFB. The model is based on the E–E approach incorporating the 

kinetic theory of granular phase. The relevant equations are listed in Table 4.1. The 

granular bulk viscosity (λs) which describes the resistance of an emulsion to compression 

or expansion is determined by the equation proposed by Lun et al. (1984). The viscosity 

of the solid phase (µs) is generated by three sources: inter-particle collision, friction and 

kinetic energy of particles. The correlation by Gidaspow et al. (1994) is used for the 

collisional viscosity (µs,col). Frictional viscosity (µs,fl) is calculated by the expression of 

Schaeffer (1987), with an angle of internal friction (Φ) of 30o.The kinetic portion of the 

granular viscosity (µs,kin) and the granular conductivity (kΘs) are both obtained by the 

relationships from Syamlal et al. (1993). The solid pressure (ps) is estimated by the 

correlation developed by Lun et al. (1984). 

External body, lift and virtual mass forces are neglected in the momentum equations. The 

coefficient of the momentum exchange between the liquid and solid phases (Ksl) is 

described by the empirical drag correlation of Wen and Yu (1966). 

4.3.2 Boundary conditions 

In order to solve governing equations, a set of appropriate boundary conditions are 

defined on the computational domain which is illustrated in Fig. 4.2. As it is seen, the 

specified velocity boundary conditions are imposed at the inlet for both solids and liquid 

streams. Also, the specified velocity boundary condition is used on the outlet of the 

solids. The no-slip and free-slip boundary conditions are defined on the wall for liquid 

and solid phases, respectively.  
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Table 4.1: Governing equations for liquid-solid flows  
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 Figure 4.2: Schematic diagram of the computational domain to simulate the 

liquid-solid flow in the downcomer of the LSCFB  

The granular temperature of the solid phase near the wall is calculated based on the 

correlation by Johnson and Jackson (1987): 
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(1) 

where uslip and qw,θs are the slip velocity and the flux of fluctuation energy within the 

solids flow approaching the wall. The fully-developed flow condition is imposed for all 

flow quantities at the top outlet of the downcomer. 

4.4 Numerical methodology 

The flow in the downcomer is assumed axisymmetric. The geometry of the 

computational domain and mesh grid are created by using the commercial software, 

ICEM CFD, ANSYS 14.0. The governing equations are then solved by the commercial 

CFD code, FLUENT, ANSYS 14.0. The convection terms and gradients in all transport 

equations are descritized by the second order upwind method and green-gauss cell based 

method, respectively. The SIMPLE algorithm using a segregated solution technique is 

used to solve the pressure field and velocity field. The initial bed height and initial solids 

holdup are given as 1.2 m and 0.6, respectively. The mesh independence is examined 

using three different grids, 15×750, 20×1000 and 26×1350. The axial distributions of the 

cross-sectional solids holdup obtained by these three grids are compared. The result from 

20×1000 grid deviates less than 0.5% from the one using the finer mesh. Therefore, this 

mesh is used in the rest of simulations in this study. The time step independence test 

shows that the time step of 0.005 sec can satisfy the time step independency. 

4.5 Results and Discussion 

The CFD model developed in this study is used to predict the liquid-solids two-phase 

flow field in the downcomer of the LSCFB. The accuracy of the numerical simulation is 

examined by comparing the numerical results with available experimental data (Lan et 

al., 2000). Also, the effects of the liquid superficial velocity in the downcomer (Uld) and 

solids circulation rate (Gs) on the hydrodynamic characteristics in the downcomer of the 

LSCFB are investigated. The solids holdup distribution in the downcomer is illustrated 

by a contour in Fig. 4.3.  
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Figure 4.3: Predicted solids holdup distribution in the downcomer at 

Uld = 0.55 mm/sec and Gs=0.05 kg/m
2
sec. 
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This simulation was performed at Uld = 0.55 mm/sec and Gs=0.05 kg/m2sec. In order to 

maintain stable operation, the liquid velocity in the downcomer must be kept less than the 

particle terminal velocity. Therefore, four distinctive zones are observed in the 

downcomer which have different solids holdup, the storage zone, the dense zone, the 

dilute zone, and the freeboard zone as shown in Fig. 4.3.  

It illustrates that the solid holdup in the freeboard zone is zero and the solid holdup in the 

dilute zone is much lower than that in the dense and storage zones, and the particles are 

packed in the bottom of downcomer (the storage zone) and solids holdup in this zone is 

higher than other zones in the downcomer. It is also seen that the expansion of the bed 

equals 0.45 m ((1.15+0.5)-1.2). 

4.5.1 Validations of the numerical model 

In order to validate the proposed numerical model, simulations are performed under three 

different superficial liquid velocities (Uld) for the downcomer. The comparison between 

the numerical results and experimental data for the average solids holdup in the dense 

zone of the downcomer (αsd) is shown in Fig. 4.4 under Gs= 1.06 kg/m2sec, which shows 

the predictions are in an acceptable agreement with the experimental data.  
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Figure 4.4: Comparison of numerical and experimental results for the 

average solids holdup in the dense zone of the downcomer 

(Experimental data by Lan et al. (2000)). 

4.5.2 Effect of superficial liquid velocity on solids holdup 

To investigate the influence of the superficial liquid velocity in the downcomer on the 

hydrodynamic quantities, the simulations are performed under three different superficial 

liquid velocities and Gs=0.05 kg/m2sec. In Fig. 4.5, the predicted solids holdup in the 

dense zone of the downcomer (αsd) is plotted with respect to the superficial liquid 

velocity. 

It is illustrated that αsd decreases with an increase in the superficial liquid velocity in the 

downcomer. This result is in agreement with those previously obtained from the modified 

Richardson and Zaki equation (Lan et al., 2000). 
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Figure 4.5: Variation of the solids holdup in the dense zone 

of the downcomer (αsd) at different superficial liquid velocity 

4.5.3 Effect of solids circulation rate on solids holdup 

Fig. 4.6 shows the numerical results for the radial distributions of the solids holdup in the 

dense zone of the downcomer (αsd) at Uld = 0.6 mm/sec under different solids circulation 

rates. It is clearly seen that the increase in the solids circulation rate results in a decrease 

in the solids holdup in the dense zone of the downcomer (αsd) for the same superficial 

liquid velocity. The main reason of this trend is that the increase in the solids circulation 

rate increases the relative velocities between two phases. 
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Figure 4.6: Variation of the solids holdup in the dense zone of the downcomer (αsd) 

at different solids circulation rates 

4.5.4 Radial distribution of the solids holdup  

The radial distribution of the solids holdup in the downcomer is plotted in Fig 4.7. It 

shows the numerical results under two different superficial liquid velocities, Gs=0.05 

kg/m2sec and at X=1.5 m. It is seen that the radial distribution of the solids holdup is 

uniform in the dense zone of the downcomer and it is consistent with the nature of the 

liquid-solid particulate flow (Couderc, 1985). 
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Figure 4.7: Radial distribution of the solids holdup in the dense zone of 

the downcomer at Gs=0.05 kg/m
2
sec and x=1.5 m 

4.5.5 Effect of superficial liquid velocity on the dispersion of 
the solid particles 

The residence time distribution (RTD) of the solid particles, illustrating the solids 

dispersion, can be determined by using the results of E-E model and applying the pulse 

technique (FLUENT User’s Guide, 2013). After the calculations of the E-E model reach 

a steady-state, tracers with the same physical properties of the solid particles are defined 

and injected at the inlet boundary of the solid phase based on the pulse technique. By 

solving the Lagrangian equations for each tracer, their location versus time are tracked 

and the RTD of solid phase are predicted. However, because only the final steady-state 

flow field has been used, the micro-mixing effects are neglected in this mathematical 

technique.  

Fig. 4.8 shows the predicted RTD curves of the solid phase at Gs=0.05 kg/m2s and under 

two different superficial liquid velocities. It is seen that the solids flow pattern at 
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Uld=0.65 mm/sec are closer to the plug flow than the one at Uld=0.55 mm/sec. it indicates 

that the increase in the superficial liquid velocity results in the decrease of the solids 

dispersion in the downcomer of the LSCFB. 

4.6 Conclusions 

A CFD model was developed to simulate the counter-current two phase flows in the 

downcomer of an LSCFB. The model was based on Eulerian-Eulerian (E-E) approach 

incorporating the kinetic theory of granular flow. The numerical results were validated 

favorably with reported experimental data. The hydrodynamic characteristics of the flow 

were studied under various operating parameters to better understand the system. 

It was found that the bed expansion of the particles in the downcomer is directly affected 

by the superficial liquid velocity in the downcomer (Uld) and solids circulation rate (Gs). 

The solids holdup in the dense zone of the downcomer (αsd) decreases with the increase 

in either Uld or Gs. It was also found that the radial distribution of solids holdup is very 

uniform. In addition, in order to study the influence of Uld on the solids dispersion, the 

CFD model was adapted to predict the solids RTDs. It was illustrated that the increase in 

the Uld decreases the solids dispersion in the downcomer. As a result, the model can be 

used as a robust tool for the scale-up and design of the real industrial-scale counter-

current reactors. 
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(a) 

 

(b) 

Figure 4.8: The residence time distributions of the solid phase at Gs=0.05 kg/m
2
sec 

and (a) Uld =0.55 mm/sec, (b) Uld =0.65 mm/sec 
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Chapter 5  

5 Conclusions  

In this study, novel CFD models were developed to describe the detailed hydrodynamics 

of the liquid-solid flow in the LSCFB riser and downcomer. A comprehensive model was 

also proposed to simulate the protein extraction process using the LSCFB ion exchange 

system.  

The hydrodynamics of the turbulent liquid-solid flow in the LSCFB riser was modeled by 

developing a CFD model (chapter 2). The model was based on Eulerian-Eulerian (E-E) 

approach incorporating the kinetic theory of granular flow. Three different types of k-ε 

multiphase turbulence models were examined in this work and it was found that the 

dispersed k-ε turbulence model is more efficient than other ones because of the lower 

computational time and higher accuracy. Numerical predictions of the local liquid 

velocity and solids holdup are in a good agreement with the experimental data. It was 

found that the non-uniformity of liquid velocity distribution in the LSCFB is higher than 

that in a conventional liquid-solid fluidized bed. In addition, it was shown that the 

increase in the superficial liquid velocity decreases the average cross-sectional solids 

holdup in the LSCFB. Furthermore, in order to observe the global dispersion, the CFD 

model was adapted to predict the solids and liquid RTDs.  

The kinetics of the protein extraction process in the LSCFB ion exchange system was 

simulated by a comprehensive numerical model incorporating the CFD model of the 

hydrodynamics in LSCFB riser (chapter 3). This model took into account both adsorption 

and desorption processes. The simulation of the desorption process in the LSCFD riser 

was carried out by a CFD model based on E-E approach incorporating the kinetic theory 

of granular flow. In addition, the adsorption process in the LSCFB downcomer was 

formulized by a one-dimensional mathematical model using the adsorption kinetics 

correlations developed before. The numerical results were validated favorably with the 

reported experimental data. In addition, the model could predict the protein production 

rate and the overall system efficiency which can be considered two objective functions 
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for the optimization study on the protein extraction process. In general, it was found that 

both the rate of protein production and the total system efficiency decrease with the 

increase in the superficial liquid velocity in the riser. In contrast, with the increase in the 

feed flow rate and the feed protein concentration, the rate of protein production increases, 

but the overall system efficiency decreases.  

The hydrodynamics of the counter-current liquid-solid flow in the downcomer of the 

LSCFB was simulated by a comprehensive CFD model (chapter 4). The model was based 

on E-E approach incorporating the kinetic theory of granular flow. The numerical 

perditions of the hydrodynamic characteristics were validated favorably with our earlier 

experimental data. Numerical studies on the flow field under various operating 

parameters show that the bed expansion of the particles in the downcomer is directly 

affected by the superficial liquid velocity in downcomer (Uld) and solids circulation rate 

(Gs). The solids holdup in the dense zone of the downcomer (αsd) decreases with the 

increase in either Uld or Gs. it was also illustrated that the radial distribution of the solids 

holdup is uniform in the downcomer. In addition, the residence time distributions of the 

solid particles were determined by a pulse technique and it was found out that the solids 

dispersion decreases with increase in the superficial liquid velocity. 

In conclusion, it is demonstrated that the proposed CFD models can be a reliable tool for 

the scale-up and design of industrial LSCFB reactors for diverse applications, such as 

protein extraction process, wastewater treatment, petroleum and metallurgical industries.  
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