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Abstract

Credibility theory provides important guidelines for insurers in the practice of

experience rating. It recognizes multiple sources of risk and proposes potential

premium adjustments by considering individual experiences along with the class

experiences. Two popular tools in credibility theory are Bayesian and Bühlmann

premium estimators. This thesis develops both models assuming a phase-type

distribution of losses, following a Bayesian inference approach. A family of con-

jugate priors is first established accordingly. The solutions for both Bayesian and

Bühlmann estimators are then obtained in explicit forms. Simulation studies are

performed to evaluate each estimator individually as well as to conduct compar-

isons where appropriate. Mean squared errors for each estimator are computed

based on different prior choices and outcomes are compared against theoretical

results.

Keywords: credibility theory, Bühlmann premium, Bayesian premium, phase-

type distribution
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4.10 Bühlmann (solid line) and Bayesian premiums (dashed line) vs. θ:

higher dimension PH . . . . . . . . . . . . . . . . . . . . . . . . . 91
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3.2 Squared error losses (S.E.L): Bühlmann vs. X̄ . . . . . . . . . . . 47
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Chapter 1

Introduction

Experience rating is one of the most important practices for insurers. Insurance

companies set up experience rating systems to determine pricing of premiums for

different groups or individuals based on their past experience. In a competitive

market nowadays, insurers want to determine individual premiums as precisely

as possible. It is crucial for them to know the optimal pricing: if it were set too

low, the insurer would face solvency issues when large claims occur; if it were set

too high then the company would compromise its competitiveness.

Individual policyholders are usually divided into different groups according

to their deemed “risk levels”, which are often assessed during the underwriting

process based on a variety of relevant factors. A manual rate is then introduced

for each group to represent the expected experience arising from the unique risk
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characteristics of the class.

In the insurance industry, manual rates are typically calculated based on large

volumes of data obtained from respective blocks of business. One implicit assump-

tion embedded in the manual rate is that the underlying risk level is uniformly

the same for each member of the class, which is sometimes referred to as “ho-

mogeneity” by actuaries. However, as Bühlmann and Gisler (2005) pointed out,

there are actually no homogeneous risk classes in insurance. Empirical evidence

has suggested that individual experiences may vary considerably even within the

same risk group, because no risk is exactly the same as another. Norberg (1979)

also point out that such heterogeneity may only appear to the insurer through

the individual claims records. Therefore, insurance premiums cannot be solely

determined by manual rates. Unique individual experiences also need to be taken

into account.

Credibility theory provides additional tools to adjust the risk premiums by

combining individual experiences with class experiences. It quantifies the dif-

ference between a unique “individual risk” and a more general “collective risk”.

The premium of a policyholder is then adjusted according to his or her history

of claims. For instance, the policyholder with a favorable record of claims may

demand a discount while the ones with larger claim sizes may be subjected to

certain levels of premium increase. Credibility models also consider how “credi-

ble” the experience data is. It helps insurers to understand whether a favorable

claim is just essentially some random fluctuation in the individual experiences or
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indicating a genuine better risk.

There are two main approaches in credibility theory. The first and earlier

approach is called limited fluctuation credibility, also sometimes referred to as

American credibility. This approach was first introduced by Mowbray (1914) in

the study of workers compensation insurance. He intended to find the minimal

number of employees needed so that the risk experience of the employer would be

statistically stable enough to be considered as fully credible. According to this

approach, an adjustment of the premium is appropriate only when the experience

of the insured is significant enough to produce a reliable estimate.

The approach of limited fluctuation credibility is relatively simple in principle

and straightforward to apply. However, it has several drawbacks. First of all,

full credibility is usually difficult to achieve for insurers in practice as it usually

requires a large amount of experience data. Secondly, this framework lacks a fine

probabilistic structure. While it may be hard to weigh its pros and cons, this

does limit our options of applying certain statistical inference tools. Finally, the

calculation of either full or partial credibility involves certain parameters that are

selected without mathematical guidance. In the absence of an underlying statis-

tical basis, it may make it difficult to evaluate the effectiveness of the estimator

and make comparison with other results. We will discuss this in more detail in

the next chapter.

The second and more modern approach is known as greatest accuracy cred-

ibility theory. Under this approach, a hidden risk parameter denoted by Θ is
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assumed for each risk class. To reflect the heterogeneity of individual experiences

within a class, this risk parameter is presumed to follow a postulated probability

law instead of being a constant. Different values of this random variable are then

assigned to policyholders as their risk level. This approach accounts for hetero-

geneities both within and outside of a risk class: the variation of individual risk

within a class is represented by different values of the risk parameter while the

difference between classes is indicated by choosing different distributions for this

parameter.

For a particular policyholder, his or her risk characteristic is featured by the

realized value of Θ, which we denote by θ. Each claim is then viewed as a random

number drawn from a conditional distribution depending on θ. Therefore, the

expectation of the claim can be calculated based on this conditional distribution,

which is also known as the risk premium. This quantity would be a natural

candidate for the purpose of pricing but unfortunately, since θ is never observed

the risk premium is only a hypothetical true value.

In practice, different models have been proposed to find the best estimator of

this true premium. Formulations could be accomplished through either frequen-

tist or Bayesian inference. The latter one is usually preferred as it introduces mul-

tiple sources of variations through different distributions. The process is Bayesian

in nature and starts by imposing a prior distribution for Θ and another distri-

bution describing the risk experience given a particular θ. Conditional on that

information the posterior distribution which establishes the dependence of θ upon
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the experience history can be obtained. The Bayesian premium is defined as the

expectation of the future claim given past experience. For more general accounts

of Bayesian analysis refer to Berger (1985), Klugman et al. (2008), Gelman et al.

(2003).

It is well known that the Bayesian premium enjoys the advantage of being the

estimator with the least squared error loss, cf. Klugman et al. (2008). However,

the explicit form of this estimator could be quite difficult to obtain as it involves a

number of integrations, whose computational complexity depends upon our choice

of the distributions. An alternative approach that address this problem is to

restrict the consideration within the class of linear estimators. This idea was first

explored by several authors including Whitney (1918), Bailey (1945, 1950) and

Mayerson (1964). The most important contribution is due to Bühlmann (1967,

1969) where a general linear estimator was obtained without imposing any specific

distributional assumption. He also showed that the obtained estimator has the

lowest squared error loss with respect to hypothetical risk premium amongst all

linear estimators. This result immediately attracted a great amount of attention

and has been widely applied by practitioners. The resulting estimate is known

nowadays as the Bühlmann premium or credibility premium.

Both Bayesian and Bühlmann premiums are important tools in actuarial sci-

ence. For comprehensive accounts of credibility models, see Goulet (2008) and

the monograph by Klugman (1992). There are also a number of other models

available proposed by different authors, for examples Heilmann (1989), Landsman
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and Makov (1998, 2000), Bühlmann and Gisler (2005). In recent years, credibil-

ity models have been extensively applied not only around property and casualty

insurance but also increasingly in group life insurance, for example see Tschupp

(2011). Klugman et al. (2009) also pointed out that life and annuity actuaries

now face issues of using company experience data for both the organizational

overall risk assessment and the preparation of principle-based reserving. These

issues tend to be resolved based on the statistical credibility methods along with

actuarial judgement.

The focus of this thesis is on the determination of Bayesian and Bühlmann

premiums within greatest accuracy credibility theory. One important aspect for

both models is the choice of the distribution of losses, which depicts the pattern

of the experience of a policyholder conditional upon his risk parameter value.

Empirical evidence often suggests that the individual’s claim data can sometimes

be volatile and hard to predict. For this reason, we intend to adopt a more general

framework that leads to better versatility and robustness of the estimator. Our

choice is the phase-type family of distributions popularized by Neuts (1981).

The phase-type distribution is used to describe the time until absorption with

a finite number of transient states and one absorbing state. It is known to have

the ability to approximate any distribution with positive support, cf. Cox (1955),

Bolch et al. (2001). Another motivation for using this distribution in statistical

modeling is pointed out by Asmussen et al. (1996): “very often, problems which

have an explicit solution assuming exponential distributions are algorithmically
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tractable when one replaces the exponential distribution with a phase-type dis-

tribution”. These features make phase-type distributions very popular in many

areas: see Herbertsson (2011), Meester and Sander (2007), Fackrell (2009) for ap-

plications of phase-type distributions in health care, finance and transportation

infrastructure. In recent years, there have been a large number of applications

available concerning risk theory, where the claim sizes were frequently assumed

to be phase-type distributed, cf. Asmussen (2000), Bladt (2005) for thorough

reviews of relevant literature.

Despite its popularity in other areas, virtually no attention has been given to

the phase-type distribution in the research of credibility theory. Therefore, it is

the goal of this thesis to exploit this deficit and develop new actuarial tools. To

be more specific, the main task of this research is to obtain explicit solutions for

Bayesian and Bühlmann premiums under the assumption that experience data

follows a phase-type distribution. On the other hand, we also want to investigate

the exact credibility property that are well known for linear exponential family,

cf. Jewell (1974a). We are interested to see how widely it may extend within the

family of phase-type distributions.

This thesis does not address the questions of parameters estimations. Nev-

ertheless, we are able to obtain the numerical values of both Bühlmann and

Bayesian premiums when the parameters of losses distributions and prior dis-

tributions are appropriately presumed. Thus, a practical question of how our

premium estimators accurately reflect the business of an insurance portfolio has
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risen. In order to solve this question, Klugman et al. (2008) pointed out that

when there is limited prior information available, we may need to use the data

provided by the insures to estimate the prior parameters. This approach is also

referred to empirical Bayes estimation. Therefore, parameters estimations is a

more practical aspect to be investigated when there is real insurance data avail-

able.

This thesis is organized as follows. The mathematical formulations underly-

ing credibility theory including Bayesian and Bühlmann premiums are carefully

reviewed in Chapter 2.

In Chapter 3, we start by reviewing an alternative representation of the den-

sity function of phase-type distributions based on the uniformization technique.

The conjugate prior for our phase-type sampling distribution is then established.

The explicit solution of the Bühlmann premium estimator is then obtained. Sim-

ulation study will be performed under different model settings and comparisons

will be conducted accordingly.

The Bayesian premium estimator is treated in Chapter 4. Using the same con-

jugate prior obtained previously, we derive the algebraic form of the estimator.

Similar numeric experiment is going to be performed as in Chapter 3. Addition-

ally, we will also compare the result with Bühlmann premiums algebraically as

well as through a number of examples.

Conclusions and future work are presented in Chapter 5.



Chapter 2

Preliminaries

2.1 Credibility Theory

In the first chapter, we introduced the credibility theory as a set of quantitative

tools used by insurers for performing experience ratings. Two branches of credibil-

ity theory, known as limited fluctuation credibility theory and greatest accuracy

credibility theory have also been briefly discussed. In this section, we will provide

more detailed discussions around mathematical assumptions and formulations of

these two approaches.

2.1.1 Limited Fluctuation Credibility Theory

Suppose that the history of a policyholder’s experience consisting n losses which

are denoted by x1, . . ., xn. They are viewed as realized values of i.i.d. random

variables X1, . . ., Xn with E(Xj) = ξ and V ar(Xj) = σ2. Then the average loss
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amount of this policyholder is determined by

X̄ = (X1 + . . .+Xn)/n.

It is not difficult for one to verify that E(X̄) = ξ and V ar(X̄) = σ2/n. Under

the limited fluctuation credibility theory, X̄ could be the premium estimator for

the next period if the policyholder’s past experience is stable enough, which is

known as the case of “full credibility”. Otherwise if the experience appears to

be more volatile, a manual rate m reflecting the risk experience of the entire risk

class would be a more appropriate choice, which case is also referred to as “no

credibility”.

From a statistical point of view, the stability of the policyholder’s past expe-

rience can be investigated by studying the distance between the sample average

X̄ and the expected value ξ, i.e. |X̄ − ξ|, which is sometimes also known as the

bias of the estimate. The past experience is then deemed stable if this bias is

bounded above by a small fraction of ξ with relatively high probability. To be

more specific, assuming two real numbers r > 0 and 0 < p < 1 with r close to 0

and p close to 1. The past experience is stable if the following inequality holds:

Pr(
∣∣X̄ − ξ∣∣ ≤ rξ) ≥ p.
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The above inequality can also be expressed equivalently as

Pr

(∣∣∣∣X̄ − ξσ/
√
n

∣∣∣∣ ≤ rξ
√
n

σ

)
≥ p. (2.1)

Now define yp by

yp = inf
y∈R

{
Pr

(∣∣∣∣X̄ − ξσ/
√
n

∣∣∣∣ ≤ y

)
≥ p

}
.

Then comparing with (2.1), a sufficient condition for full credibility can be found

to be rξ
√
n/σ ≥ yp. In other words, to ensure full credibility the number of

exposure units needs to satisfy

n ≥
(
ypσ

rξ

)2

. (2.2)

The experience is considered zero credibility when the above inequality is not

satisfied.

One concern with the above method is that it only considers “binary” results

of either full credibility or zero credibility based on a simple criteria (2.2). To

achieve a more balanced approach, an extension of this model was proposed by

Whitney (1918) which is called partial credibility. In his work, the premium

estimator was expressed as a weighted average of individual risk experience and

class experience in the form of

P = zX̄ + (1− z)m, (2.3)
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where z is called the credibility factor and it takes a value between 0 and 1. The

larger z becomes, more consideration is given toward the individual experience

and vice versa.

In practice, there are many formulae available for calculating the credibility

factor. Popular choices as mentioned by Goulet (2008) include

z = min

{
rξ

ypσ

√
n, 1

}
,

or

z = min

{(
nrξ

ypσ

)2/3

, 1

}
.

Although limited fluctuation credibility is relatively simple to implement, it

suffers a few drawbacks as commented by Klugman et al. (2008). First of all, it

provides no systematic guidance for the selection of r and p thus their choices are

somewhat arbitrary. Secondly, there is no underlying theoretical model for the

distribution of losses, which makes it difficult to prove why a premium estimator

in the format of (2.3) is preferable to the manual rate m. Finally, this approach

does not examine the difference between ξ and m therefore the reliability of m as

an estimator for the collective risk level is unclear. For more discussion of limited

fluctuation credibility theory refer to Longley-Cook (1962), Norberg (2004) and

Goulet (2008).
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2.1.2 Greatest Accuracy Credibility Theory

Greatest accuracy credibility theory treats the experience rating problem follow-

ing a model based approach. Certain distributional assumptions are implemented

under this approach.

The approach starts with assuming a hypothetical risk parameter θi for poli-

cyholder i, i = 1, . . . , k where k is the total number of policyholders within a same

risk class. The value θi represents the unobservable risk characteristics of policy-

holder i and as Norberg (2004) stated, it could be viewed as a random selection

from a portfolio of similar but not identical risks whose variation is described by

some probability distribution. In other words, we assume a random variable Θ

with a prior distribution π(θ) which describes the risk structure within a class.

Then an individual risk parameter θi can be viewed as a realized value of Θ.

The second assumption is that individual experiences are random selections

from some postulated distribution depending on his risk parameter. Suppose

that n losses have been observed for individual i denoted by xi1, . . . , xin, they are

treated as observations from i.i.d. random variables Xi1, . . . , Xin with a density

function f(xij|θi), which is also known as the likelihood in Bayesian inference.

Together with the prior distribution, the posterior distribution could then be

calculated as

π(θ|xi1, . . . , xin) ∝ f(xi1, . . . , xin|θ)π(θ). (2.4)

Ideally we would like to use the risk premium defined by µn+1(θi) = E(Xi,(n+1)|θi)
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to assess the premium for policyholder i in the future. But since θi is not observ-

able this expectation cannot be calculated. Fortunately the posterior distribution

(2.4) supplies us a valuable tool to infer the value of θi given the experience data.

Thus, instead of calculating the above expectation µn+1(θi) we can alternatively

compute E(Xi,(n+1)|Xi1, ..., Xin) and use it as an estimate of the risk premium.

This quantity is often referred to as the Bayesian premium.

As already mentioned in Chapter 1, Bayesian premiums can sometimes be very

difficult to obtain. In this light, Bühlmann (1967, 1969) proposed the credibility

premium by imposing certain linear structure in the estimator. The Bühlmann

premium is in the form of α0 +
∑
αjXij where the weights α0, . . . , αn are chosen

such that the squared error loss with respect to µn+1(Θ) is minimized. Bühlmann

has shown that this solution can also be expressed in a similar fashion as (2.3).

We will discuss this issue in more details in Chapter 3.

By definition, Bühlmann credibility is the best linear estimator of the risk

premium µn+1(θi). Moreover, research has also shown that it is the best linear ap-

proximation of the Bayesian premium E(Xi,(n+1)|Xi1, ..., Xin) as well as Xi,(n+1).

See Herzog (1990) for a thorough comparison of Bayesian and Bühlmann models.

Also refer to Hewitt(Jr.) (1970) for some historical notes. In some instances,

both models can yield the exactly same estimator. This phenomenon is termed

as exact credibility and was first examined by Jewell (1974a,b) where he showed

that the exact credibility occurs when the likelihood is of exponential form and
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the prior is conjugate 1. This problem was also rigorously studied by Diaconis

and Ylvisaker (1979) and they showed that the above condition was in fact suf-

ficient and necessary. For a review of exact credibility see Goel (1982). Schmidt

(1980) conducted another comparison focusing on the large sample property of

the two estimators and it was shown that when n goes to infinity, both estimators

converge to the same quantity which was termed as “individual premium” by the

author.

Besides Bayesian and Bühlmann premiums, a number of other credibility mod-

els have also been introduced by various researchers. For example, the Bühlmann-

Straub model of Bühlmann and Straub (1990) extended the Bühlmann model by

considering Xi1, . . . , Xin as independent but not identically distributed random

variables: experiences were still assumed to have the same conditional mean

but different conditional variances. Other popular models include the random

coefficients regression credibility model introduced by Hachemeister (1975), the

hierarchical credibility model and crossed classification credibility model. For de-

tails and formulas see surveys by Goulet (1998), Makov et al. (1996), Bühlmann

and Gisler (2005).

In this thesis, our focus will be restricted to Bayesian and Bühlmann pre-

miums. One of the most important steps for implementing both models is the

choice of the likelihood density f(xij|θi) as in (2.4). This is where the phase-type

1The prior distribution π(θ) is said to be conjugate for likelihood if the posterior distribution
π(θ|x) is in the same family as the prior distribution.
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distribution comes to play.

2.2 Phase-type Distributions

Choosing a proper distribution for Xij|θi can be difficult: individual experiences

may exhibit different types of behaviors which are difficult to be summarized by

one particular distribution. For this reason, we decide to adopt a more versatile

framework with the ability to model various types of structures. The phase-

type distribution excels in this regard due to its capacity to approximating other

distributions.

The earliest work regarding phase-type distributions can be tracked back to

1900s and was due to Erlang (1909). However, it was not until the late 70s that

Neuts (1981) established the modern theory of phase-type distributions which

has then been widely applied in different areas. See also Neuts (1989, 1995). A

phase-type distribution can be either continuous or discrete. In this section, we

review both forms as well as their important properties.

2.2.1 Continuous Phase-type Distributions

As Latouche and Ramaswami (1999) pointed out, the construction of phase-type

distributions is based on the method of stages. The key idea is to model random

time intervals as being made up a number of exponentially distributed segments

and to exploit the resulting Markovian structure to simplify the analysis.
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Consider a continuous-time Markov process {J(x), x ≥ 0} with m+1 states

such that states 1, ...,m are transient and state 0 is an absorbing state. In addi-

tion, we suppose the process starts with an initial probability measure defined on

the m+1 states specified as (α0,α), where α0 = 1−α′1 and 1 is a m-dimensional

column vector of ones. We further denote the infinitesimal generator1 Q as

Q =

 0 0

t0 T

 ,

where t0 is an m × 1 column vector and T is an m ×m matrix. Since Q is the

generator of a Markov process we know that

Tii < 0, Tij ≥ 0, t0 ≥ 0, for 1 ≤ i 6= j ≤ m

and

T1 + t0 = 0.

Now we are in the position to formally define the phase-type distribution.

Definition 2.1. The distribution of the time X till absorption into the absorbing

state 0 is called the PH distribution with representation (α,T), denoted by X ∼

PH(α,T).

Based on this design one may derive the distribution function and density

1For a continuous-time Markov process it is also known as the transition rate matrix.
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function of phase-type distribution by exploiting the Markov structure. The

following result is given by Neuts (1981). However, his derivation was quite

sketchy. To make the result more self-explanatory we have included a more

detailed proof.

Proposition 2.2. Assume that X ∼ PH(α,T). The cumulative distribution

function of X is given by

F (x) = 1−α′ exp Tx1, x ≥ 0 (2.5)

and its probability density function is given by

f(x) = α′ exp Txt0, x ≥ 0, (2.6)

where t0 = −T1 and the matrix exponential for some matrix A is defined by

exp(A) =
∞∑
n=0

1

n!
An.

Proof. See section 2.4.1.

The moment structures of the continuous Phase-type distribution can then

be studied and the results are outlined in the following corollary.

Corollary 2.3. Suppose X ∼ PH(α,T) and tI + T is not singular. The moment
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generating function of X is given by

M(t) = E(etX) = −α′(tI + T)−1t0 + α0.

The k-th moments of X is

E(Xk) = k!α′(−T−1)k1.

Proof. The moment generating function can be easily derived from the Laplace-

Stieltjes transform of X obtained by Neuts (1981). The calculation of kth mo-

ments then follows by E(Xk) = dk

dtk
M(t)|t=0.

2.2.2 Discrete Phase-type Distributions

The discrete phase-type distribution is constructed in a similar fashion to the

continuous case. Assuming a discrete-time Markov chain with initial probability

measure (α0,α) with transient states 1, 2, ...,m and an absorbing state 0. The

transition probability matrix is given by

P =

 1 0

t0 T

 ,

where t0 ≥ 0, Tij ≥ 0 for 1 ≤ i, j ≤ m and t0 + T1 = 1. Suppose X is the

absorption time into state 0 in this discrete Markov chain, then X is said to have
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a discrete phase-type distribution denoted by PHd(α,T). Notice that it is the

exactly same as Definition 2.1 except that the Markov context has been slightly

altered.

The cumulative distribution function and probability mass function are given

in the proposition below.

Proposition 2.4. Assume that X is PHd(α,T). We have that

P (X = 0) = α0, (2.7)

P (X = k) = αTk−1t0, k ≥ 1, (2.8)

P (X ≤ k) = 1−αTkt0, k ≥ 0. (2.9)

Proof. The kth step transition matrix can be obtained by block matrix multipli-

cation:

P k =

 1 0

1− Tk1 Tk

 .

The probability mass function can then be derived based on conditional proba-

bility arguments, cf. Neuts (1981).

Based on the above result, the probability generating function and factorial

moments are obtained.

Corollary 2.5. Suppose X ∼ PHd(α,T) and I − zT is nonsingular. The prob-
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ability generating function of X is given by

G(z) = E(zX) = α0 + zα(I − zT)−1t0, for |z| ≤ 1.

The factorial moment of X is

E[X(X − 1) · · · (X − k + 1)] = k!α(I − T)−kTk−11, for k ≥ 1.

Proof. One can easily calculate the probability generating function by
∑∞

k=0 z
kP (X =

k). The factorial moments are followed by differentiating the p.g.f. successively,

cf. Latouche and Ramaswami (1999).

2.3 Proofs

2.3.1 Proof of Proposition 2.2

Consider a Markov process with the infinitesimal generator Q is in the state J(x)

at time x for all x ≥ 0. The transition function P (x) with elements Pij(x) =

[J(x) = j|J(0) = i] is given by P (x) = exp(Qx). We also know that by definition,

exp(Qx) =
∞∑
n=0

(Qx)n

n!
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It is easy to verify that the infinitesimal generator Q can be rewritten as

Q =

 0 0

−T1 T

 ,

and its nth power is

Qn =

 0 0

−Tn1 Tn

 .

Thus,

exp(Qx) =

1 0

0 I

+

 0 0

−Tx1 Tx

+

 0 0

−T2x21
2

T2x2

2

+ · · ·

=

 1 0

−(Tx+ −T2x2

2
+ · · · )1 I + Tx+ −T2x21

2
+ · · ·



=

 1 0

(I − exp(Tx))1 exp(Tx)



=

 1 0

1− exp(Tx)1 exp(Tx)


Then we could obtain that

F (x) = P [J(x) = 0]

=
∑

0≤i≤m

P [J(0) = i]P [J(x) = 0|J(0) = i]



2.3 Proofs 23

= α0 +
∑

0≤i≤m

αiPi0(x)

= α0 + α1−αexp(Tx)1

= 1−αexp(Tx)1.

After differentiation, the density function is given by

f(x) = α′exp(Tx)t0,

which completes the proof.



Chapter 3

Bühlmann Premium for

Phase-type Distributed Losses

The focus of this chapter is the Bühlmann model. The assumption of phase-

type distributed losses will be applied to obtain the corresponding Bühlmann

estimator. The issue of conjugate prior will also be discussed.

3.1 The Bühlmann Premium

We will first start by outlaying the mathematical grounds for a general Bühlmann

type estimator without any distribution assumptions. This section is heavily

based on the original work due to Bühlmann (1967, 1969). In the interests of

presenting a self-contained development, in what follows below we present several

pages which follow closely from Klugman et al. (2008).
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Assume that some policyholder has a history of losses xi, i = 1, . . . , n and his

hypothetical risk parameter is θ. As already been discussed in the last chapter,

we treat those losses as observations from i.i.d. random variables Xi, whose

distribution is specified by fX|Θ(x|θ).

To estimate the future premium one natural choice would be the risk pre-

mium µn+1(θ) = E(Xn+1|Θ = θ). Since this object is not directly workable,

the Bühlmann premium was proposed to provide a linear approximation. The

estimator is defined by

PCr = α0 +
n∑
j=1

αiXi, (3.1)

and the weights α0, . . . , αn are chosen so that the squared error loss with regard

to µn+1(Θ)

Q = E


[
µn+1(Θ)− α0 −

n∑
j=1

αjXj

]2
 (3.2)

is minimized, where expectation is over the joint distribution of X1, ..., Xn and

Θ. We would like to make a remark here to emphasize the difference between the

so-called “squared error loss” and the commonly known mean squared error. By

the law of total expectation, we can rewrite (3.2) as

Q = E

E
[
µn+1(Θ)− α0 −

n∑
j=1

αjXj

∣∣∣∣Θ = θ

]2
 .

This equation shows that the calculation of Q actually involves two integrals.
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The inner integral is in fact equivalent to

MSE(PCr) = E

[
µn+1(θ)− α0 −

n∑
j=1

αjXj

]2

, (3.3)

which is the mean squared error of the estimator PCr with regard to µn+1(θ) while

fixing θ. Then Q can be obtained by taking another expectation with respect to

the distribution of Θ.

To obtain solutions of α0, . . . , αn we first minimize Q. Denote α̃0, . . . , α̃n to

be the appropriate values that minimize Q. Then we know the respective partial

derivatives of Q evaluated at α̃0, . . . , α̃n should equal to zero. This gives us the

following relations:

E(Xn+1) = α̃0 +
n∑
j=1

α̃jE(Xj), (3.4)

E(XiXn+1) = α̃0E(Xi) +
n∑
j=1

α̃jE(XiXj). (3.5)

Equations (3.4) and (3.5) are often referred to as the “unbiased equation” and

the “normal equation” respectively.

Based on equations (3.4) - (3.5) α̃0, . . . , α̃n can be solved. Introduce the

following notations:

µ(θ) = E(Xi|Θ = θ), v(θ) = V ar(Xi|Θ = θ).
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Also define

µ = E[µ(Θ)], v = E[v(Θ)], a = V ar[µ(Θ)].

It can be shown that the mean, variance, covariance and correlation coefficient

of the experiences are

E(Xi) = E(µ(θ)) = µ,

V ar(Xi) = E(v(θ)) + V ar(µ(θ)) = v + a,

Cov(Xi, Xj) = V ar(µ(θ)) = a,

ρ(Xi, Xj) =
a

v + a
.

Then the solutions of α̃0, . . . , α̃n are given by

α̃0 =
(1− ρ)µ

1− ρ+ nρ
,

α̃i =
ρ

1− ρ+ nρ
,

where ρ = ρ(Xi, Xj).

Substituting α̃0, . . . , α̃n back into (3.1) we have

PCr = ZX̄ + (1− Z)µ, (3.6)

where Z = nρ/(1− ρ+nρ) and X̄ = n−1
∑n

i=1Xi. By replacing ρ with a/(v+ a)
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we can also calculate Z by

Z =
n

n+ k
, (3.7)

k =
v

a
=
E[V ar(Xj|Θ)]

V ar[E(Xj|Θ)]
. (3.8)

Moving forward we will use (3.6) as the definition for Bühlmann premium.

We would like to point out the resemblance between equations (3.6) and (2.3).

Z from (3.6) is also known as the credibility factor despite of the difference in

their definitions. For a homogeneous portfolio, there is no need to charge different

premiums to the insureds since v would be minimum leading to a small value of

Z close to 0. Conversely, the more heterogeneous the portfolio, the greater the

consideration of the individual experience, hence the higher the credibility factor.

On the other hand, when there is no prior information available, one can

always refer to the approach of nonparametric estimation to find the unbiased

estimation of the parameters µ, v and a involved in the Bühlmann premium. The

materials presented below will follow Klugman et al. (2008) closely.

Suppose that, for policyholder i, we have the loss vector

Xi = (Xi1, . . . , Xin)T , i = 1, . . . , r.
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Furthermore, conditional on Θi = θi, Xij has mean and variance such as

µ(θi) = E(Xij|Θi = θi),

v(θi) = V ar(Xij|Θi = θi).

and Xi1|Θi = θi, . . . , Xin|Θi = θi are independent. Therefore, the unbiased esti-

mators of the Bühlmann quantities are given by

µ̂ = X̄ = (rn)−1
r∑
i=1

n∑
i=1

Xij,

v̂ = 1
r(n−1)

r∑
i=1

n∑
i=1

(Xij − X̄i)
2,

â = 1
r−1

∑
i=1

r(X̄i − X̄)2 − 1
rn(n−1)

r∑
i=1

n∑
i=1

(Xij − X̄i)
2.

Klugman et al. (2008) also stated that if fXj |Θ(xj|θ) is assumed to be of para-

metric form but not π(θ), then we refer to the problem as being of a semipara-

metric nature. In another case, the fully parametric approach can be investigated

when both fXj |Θ(xj|θ) and π(θ) are assumed to be of parametric forms.

3.2 Expressing Phase-type Distributions as In-

finite Mixtures of Erlang Distributions

Phase-type distributions entail rich mathematical structure which sometimes

leads to considerate amount of complexity in modeling and computation. Luckily,
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research has shown that an alternative representation is available for phase-type

distributions, which is in the form of an infinite mixture of Erlang distribution1.

This representation was obtained using the technique of uniformization, which

was first discussed by Jensen (1953). Johnson and Taaffe (1988) showed the

denseness of both phase-type distributions and this infinite mixtures represen-

tation. For related discussions see Shanthikumar (1985), Stanford (2011). The

major advantage of using this representation is to reduce the complexity associ-

ated with deriving Bayesian and Bühlmann estimators later.

In this section we review the formulation of this representation. Suppose that

X|θ ∼ PH(α,T) where matrix T depends on θ. Without loss of generality, we

can presume that T can be written in the form of

T =



−θ1 θ1p12 θ1p13 . . . θ1p1m

θ2p21 −θ2 θ2p23 . . . θ2p2m

θ3p31 θ3p32 −θ3 . . . θ3p3m

...
...

...
. . .

...

θmpm1 θmpm2 θmpm3 . . . −θm


, (3.9)

where θi, i = 1, . . . ,m represents the rate of leaving state i and pij, 1 ≤ i 6= j ≤ m

represents the rate of leaving state i then immediately entering state j. To satisfy

1Essentially an Erlang distribution is a special case of Gamma distribution with the shape
parameter being an integer.
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the Markov process context we assume that

pij ≥ 0, θi ≥ 0 (1 ≤ i 6= j ≤ m),
∑
j 6=i

pij < 1 for some 1 ≤ i ≤ m. (3.10)

Setting θ = maxi{θi}, we then define

P = I + (1/θ)T, (3.11)

where the matrix I is an identity matrix with a proper dimension. Therefore we

have:

P =



1− θ1/θ θ1p12/θ θ1p13/θ . . . θ1p1m/θ

θ2p21/θ 1− θ2/θ θ2p23/θ . . . θ2p2m/θ

θ3p31/θ θ3p32/θ 1− θ3/θ . . . θ3p3m/θ

...
...

...
. . .

...

θmpm1/θ θmpm2/θ θmpm3/θ . . . 1− θm/θ


. (3.12)

It is not difficult to see that P is also sub-stochastic under condition (3.10).

By using the property eX+Y = eXeY for commutative matrices X and Y , we

can calculate exp(Tx) as:

exp(Tx) = exp(θ(P − I)x)

= exp(θxP ) exp(−θxI)
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=
∞∑
k=0

(θx)k

k!
P k

∞∑
l=0

(−θx)l

l!
I l

=
∞∑
k=0

(θx)k

k!
P k(e−θxI)

=
∞∑
k=0

e−θx(θx)k

k!
· P k. (3.13)

The following two results are presented by Hassan-Zadeh and Stanford (2013)

which give the exact representation.

Proposition 3.1. The density function of X|θ ∼ PH(α,T) can be rewritten as

an infinite mixture of Erlang densities as follows:

f(x|Θ = θ) =
∞∑
n=0

qn+1θe
−θx(θx)n/n! (3.14)

where θ = maxi{θi} with θi specified in (3.9) and

qn+1 = α′P n(I − P )1 ≥ 0; n = 0, 1, . . . , (3.15)

with P specified by (3.12). The coefficients qn+1 satisfy
∑∞

n=0 qn+1 = 1.

Proof. See section 3.6.1.

Based on the above result, the joint probability density function for a collec-

tion of phase-type distributed losses can be easily derived which is shown below.

Corollary 3.2. Assume that given Θ = θ, X1, ..., Xn are random samples from
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(3.26). Then their joint probability density is

f(x1, ..., xn|Θ = θ) = θne−θ
∑n
i=1 xi

∞∑
l=0

(θ
∑n

i=1 xi)
l

l!
C(l, x1, ..., xn), (3.16)

where

C(l, x1, ..., xn) =
l∑

i=0

(
l

i

)
qi+1

( xn∑n
j=1 xj

)i(
1− xn∑n

j=1 xj

)l−i
C(l − i, x1, ..., xn−1)

(3.17)

for all l ∈ Z+ ∪ {0} and n ∈ N. The above iteration is initiated by

C(l, x1) = ql+1, l = 0, 1, 2, ...

Proof. See section 3.6.2.

This corollary identifies the likelihood function we are going to use for the

construction of Bayesian and Bühlmann premiums. It will help us to derive the

conjugate prior in the next chapter.

3.3 Conjugate Prior for Phase-type Distributions

The first step to construct premium estimators is to specify a prior distribution

for the risk parameter Θ. While the choice of prior distributions are generally

subjective, we intend to use the natural conjugate prior for our phase-type like-

lihood.
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The following result from Bühlmann and Gisler (2005) is helpful for construct-

ing a class U of conjugate priors to a distribution family F.

Proposition 3.3. Assumptions: F and U satisfy the following conditions:

• The likelihood functions l(θ) = fθ(x), x fixed, are proportional to an element

of U, i.e. for every possible observation x ∈ A, there exists a ux ∈ U, such

that ux(θ) = fθ(x)(
∫
fθ(x)dθ)−1.

• U is closed under the product operation, i.e. for every pair u, v ∈ U we have

that u(·)v(·)(
∫
u(θ)v(θ)dθ)−1 ∈ U.

Then it holds that U is conjugate to F.

Proof. See Theorem 2.21 of Bühlmann and Gisler (2005).

We are now ready to state our first important result of this chapter.

Theorem 3.4. Suppose X1|θ, . . . , Xn|θ are i.i.d. distributed random variables

with PH(α,T). Then a prior which is conjugate for the joint likelihood f(x1, ..., xn|θ)

can be written as an infinite mixture of Erlang distributions with the probability

density function specified as

π(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
, (3.18)

where β > 0 and m is a non-negative integer. ζl is a probability measure, i.e.∑∞
l=0 ζl = 1 with the possibility ζl = 0 for some l. The parameters β, m and {ζl}

are considered as the “updated parameters”.
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Proof. See section 3.6.3.

Theorem 3.4 shows the class of all distributions that is trivially conjugate for

the joint likelihood specified above. Observing equation (3.32), we notice that the

class of conjugate prior distributions is defined as arbitrary countable mixtures

of Erlang distributions with the same scale parameter. It could be an infinite

summation or a finite one by setting for example ζi = 0 for all i > k with k being

fixed. We also want to point out that an alternate expression for (3.32) can be

obtained by viewing l +m as a whole entity and adjusting relevant parameters:

u(θ) =
∞∑
l=0

ωl · βe−βθ
(βθ)l

l!
,

where ω0 = ω1 = ... = ωm−1 = 0, ωm = ζ0, ωm+j = ζj for j = 1, 2, 3, . . ..

Note that according to Hassan-Zadeh and Stanford (2013), exact credibility

does occur for the phase-type case when parameters are set in a particular way

which reduces it to a Gamma distribution, with the corresponding prior being

another single Gamma distribution guaranteed by setting {ζl} being the negative

Binomial coefficients.
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3.4 Bühlmann Premium for Phase-type Distributed

Losses

As Latouche and Ramaswami (1999) pointed out, the uniformization technique

which leads to the alternative expression of phase-type distributions allows one to

interpret a continuous time Markov process as a discrete time Markov chain, for

which one merely replaces the constant unit of time between any two transitions

by independent exponential random variables with the same parameter. In this

regard, suppose a phase-type distributed random variable X|Θ describing the

time to absorption of certain Markov process. It can be viewed alternatively as

comprising a succession of i.i.d. exponential intervals at rate Θ. That is,

X = Y1 + Y2 + . . .+ YN

where Yi ∼ exp(Θ), i = 1, 2, . . ., with N representing the number of transitions

required for the process to become absorbed. In this case N follows a discrete

phase-type distribution, i.e.

N ∼ PHd(α, P ), (3.19)

where P is defined by (3.12).

We are now in the position to state our second result of this chapter.



3.4 Bühlmann Premium for Phase-type Distributed Losses 37

Theorem 3.5. Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the Bühlmann

premium estimator based on losses X1, . . . , Xn is

PCr =
n

n+ k
X̄ +

k

n+ k
µ, (3.20)

where N is defined by (3.19), X̄ = 1
n

∑n
i=1Xi and

µ = E(N)β
∞∑
l=0

ζl
l +m

,

k =
V ar(N) + E(N)

(E(N))2
· g(m, ζ) (3.21)

with

g(m, ζ) =

∑∞
l=0

ζl
(l+m)(l+m−1)∑∞

l=0
ζl

(l+m)(l+m−1)
−
(∑∞

l=0
ζl

(l+m)

)2 .

Here parameters m > 1, m ∈ Z, β and {ζl} follows the same definitions from

Theorem 3.4.

Proof. See section 3.

The above result gives us solution of the Bühlmann premium under phase-

type distributed losses. Notice that the solution is not in a sense of “closed form”

since the definitions of µ and k involve infinite series. Those series are obviously

convergent since their general terms are all bounded above by ζl. However, since

the choice of the measure {ζl} is relatively flexible, the infinite series can yield a
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number of different limits.

3.5 Examples

Example 3.5.1. We consider a simple case here when the density function of

X|Θ just follows some single Erlang distribution such that f(x|θ) = θe−θx (θx)k−1

(k−1)!
,

qn+1 = 1 when n = k − 1 and qn+1 = 0 otherwise. Then the initial step for the

recursive C function is

C(k − 1, x1) = qk = 1 and C(m,x1) = 0 for m 6= k − 1

Recall that C(M,x1, ..., xn) =
∑M

i=0

 M

i

 qi+1( xn∑n
j=1 xj

)i(1− xn∑n
j=1 xj

)M−iC(M−

i, x1, ..., xn−1) and so the formula for the case of two observations is

C(M,x1, x2) =
M∑
i=0

(
M

i

)
qi+1(

x2

x1 + x2

)i(
x1

x1 + x2

)M−iC(M − i, x1),

and it would only have a valid result only if both qi+1 and C(M − i, x1) equal to

1. We have already known that qi+1 = 1 when i = k − 1 and C(M − i, x1) when

M − i = k − 1. By combining those two pieces of information we realize that it

will happen when i = k − 1 and M = 2k − 2. So we have

C(2k − 2, x1, x2) =

(
2k − 2

k − 1

)
(

x2

x1 + x2

)k−1(
x1

x1 + x2

)k−1
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C(M,x1, x2) = 0 when M 6= 2k − 2.

Then the recursive C function for three observations is

C(3k − 3, x1, x2, x3) =
(3k − 3)!

3 · (k − 1)!
(x1 · x2 · x3)k−1(

1

x1 + x2 + x3

)3k−3

C(M,x1, x2, x3) = 0 when M 6= 3k − 3.

Therefore, in general, the recursive C function for n observations is

C(nk − n, x1, ..., xn) =
(nk − n)!

n · (k − 1)!
(
n∏
i=1

xi)
k−1(

1∑n
1 xi

)nk−n

C(M,x1, ..., x3) = 0 when M 6= nk − n.

Recalled from the previous section that the conjugate prior is

u(θ) =
∞∑
l=0

{
C(l, x1, ..., xn) (l+n)!

l!∑∞
k=0C(k, x1, ..., xn) (k+n)!

k!

}
· (

n∑
i=1

xi)e
−θ

∑n
i=0 xi

(θ
∑n

i=1 xi)
l+n

(l + n)!

By substituting the C function inside we have

u(θ) =
C(nk − n, x1, ..., xn) (nk)!

(nk−n)!

C(nk − n, x1, ..., xn) (nk)!
(nk−n)!

· (
n∑
i=1

xi)e
−θ

∑n
i=0 xi

(θ
∑n

i=1 xi)
nk

(nk)!

= (
n∑
i=1

xi)e
−θ

∑n
i=0 xi

(θ
∑n

i=1 xi)
nk

(nk)!
,
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which follows a gamma distribution. This example actually verifies the general

result in our case, which is the conjugate prior for an Erlang distribution is a

Gamma distribution.

Example 3.5.2. In section 3.3 we have obtained the explicit solution of the

Bühlmann premium estimator given phase-type distributed loss and the corre-

sponding conjugate prior. Now we would like to design a few simulation experi-

ments to investigate some of its properties.

Recall from Theorem 3.4, the conjugate prior for phase-type distributions is

in the form of

π(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
,

where ζl represents some probability measure. In this experiment, we apply the

geometric distribution due to its ability to take countably infinite many values,

i.e.

ζl = (1− p)lp, l = 0, 1, 2, 3, . . .

with p = 0.3. Note that another advantage for using this particular measure is

that it leads to a closed form solution of the g(m, ζ) in Theorem 3.5. We also

assume that β = 20 and m = 10.

Under these assumptions, the prior pdf can be explicitly expressed in a closed-
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form formula such as

π(θ) =
∞∑
l=0

ζlβe
−βθ (βθ)l+m

(l +m)!

=
∞∑
l=0

(1− p)lpβe−βθ (βθ)l+m

(l +m)!

=
∞∑
l=0

p

(1− p)m
βe−βθ

(β(1− p)θ)l+m

(l +m)!

=
p

(1− p)m
βe−βθ

(
eβ(1−p)θ −

m∑
k=0

(β(1− p)θ)k

k!

)
.

On the other hand, we assume the losses satisfy that

Xi|θ
i.i.d.∼ PH(α, θ(P − I)),

with the values of parameters being

α = (1, 0)

and

P =

 1/3 1/3

0 1/2

 .

This setting provides a relatively simple phase-type structure to conveniently study

relevant properties.

Given the above parameters, the particular formulation for Bühlmann pre-
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mium can be obtained based on Theorem 3.5. By equation (3.35) we have

∞∑
l=0

ζl
l +m

=
∞∑
l=0

(1− p)lp
l +m

=
p

(1− p)m
∞∑
l=0

(1− p)l+m

l +m

=
p

(1− p)m
(−log(1− (1− p))−

m−1∑
l=1

(1− p)l

l
)

=
p

(1− p)m
(−log(p)−

m−1∑
l=1

(1− p)l

l
),

and

∞∑
l=0

ζl
(l +m)(l +m− 1)

=
∞∑
l=0

(1− p)lp
(l +m)(l +m− 1)

= p
∞∑
l=0

(1− p)l( 1

l +m− 1
− 1

l +m
)

= p
∞∑
l=0

(1− p)l

l +m− 1
− p

∞∑
l=0

(1− p)l

l +m

=
p

(1− p)m−1

∞∑
l=0

(1− p)l+m−1

l +m− 1
− p

(1− p)m
(−log(p)−

m−1∑
l=1

(1− p)l

l
)

=
p

(1− p)m−1
(−log(p)−

m−2∑
l=1

(1− p)l

l
)− p

(1− p)m
(−log(p)−

m−1∑
l=1

(1− p)l

l
)

=
p2

(1− p)m
log(p)− p

(1− p)m−1

m−2∑
l=1

(1− p)l

l
+

p

(1− p)m
m−1∑
l=1

(1− p)l

l
.

Notice that several equalities above involve the application of the Taylor’s expan-
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sion log(1− x) = −
∑∞

n=1
xn

n
. We also know that

E(N) = α′(I − P )−11

V ar(N) + E(N) = 2α′(I − P )−21− (α′(I − P )−11)2

Substituting corresponding parameter values into the above results, we obtain that

E(N) = 2.5, V ar(N) + E(N) = 5.25, k = 7.215939, µ = 4.215061. (3.22)

By its definition, we know that the Bühlmann estimator should yield the least

squared error loss amongst all linear estimators. In the following experiment, we

conduct a comparison between the Bühlmann premium estimator and the straight

average X̄ = 1
n

∑n
i=1Xi. For the Bühlmann premium PCr we know that

Bias = E(ZX̄ + (1− Z)µ− µ(θ))

= (Z − 1)E(N)θ−1 + (1− Z)µ, (3.23)

Variance = V ar(ZX̄ + (1− Z)µ− µ(θ))

= Z2V ar(X̄)

=
Z2

n
(V ar(N) + E(N))θ−2,

MSEθ(PCr) = bias2 + variance, (3.24)
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where Z = n/(n+ k).

Similarly, for X̄ we have

Bias = E(X̄ − µ(θ)) = 0,

Variance = V ar(X̄ − µ(θ))

= V ar(X̄)

=
(V ar(N) + E(N))θ−2

n
,

MSEθ(X̄) =
(V ar(N) + E(N))θ−2

n
. (3.25)

Before comparing both estimators we examine some important properties of

our prior distribution. In fact, we can easily calculate empirical quantiles along

with other descriptive statistics, which are shown below

Table 3.1: Descriptive statistics for prior distribution

Min 2.5% Q 25% Q Median Mean 75% Q 97.5% Q Max

0.1235 0.3133 0.5020 0.6322 0.6652 0.7940 1.1987 2.2370

We see that the area between 0.3133 and 1.1987 accounts for 95% of the prob-

ability mass.

To compare the MSEs of the Bühlmann estimator and the average X̄, we con-

duct two sets of experiments. Firstly, we select a number of different θs following

a scheme that ranging from 0.1 to 2.5 with an increment of 0.01. This gives rise

to 241 equally spaced values. We set the total number of losses n = 10. The
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MSEs can be evaluated based on (3.24) - (3.25). The following graph shows the

MSEs at different values of θ.

0.5 1.0 1.5 2.0 2.5

0
5

1
0

1
5

2
0

θ

M
S

E

Figure 3.1: MSE comparison Bühlmann (solid line) vs. X̄ (dashed line)

We see that the MSE for Bühlmann estimator does not always yield a smaller

MSE. Roughly speaking, when θ < 0.3 or θ > 0.9 the average estimator X̄ actually

outperforms Bühlmann in the sense of MSE. If we calculate the respective averages

over those 241 MSEs, Bühlmann estimator yields an average MSE of 3.448053

while X̄ yields an average MSE of 2.204005.

The above observation may seem to be contradictive with the known property

of Bühlmman estimator. The true reason that X̄ has a smaller average MSE is
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because the averaging process fails to take account of the distributional information

implied by the prior distribution. This average is taken based on equally spaced

values of θ which were manually set hence does not reflect on the expectation of

equation (3.2).

In order to correctly estimate the squared error losses, we now randomly sam-

ple 200 θs from the prior distribution and evaluate the MSEs accordingly. The

averages of the MSEs are now found to be 1.1570003 for the Bühlmann estimator

and 1.757805 for X̄, which is consistent with the theoretical result. This is be-

cause our prior distribution, according to Figure ??, has most of probability mass

between 0.3 and 0.9, which is exactly the area that Bühlmann estimator yields

lower MSEs.

We can repeat the above process from different sample sizes for θ, denoted by

n. Below shows the squared error losses estimated based on n = 100 until 20000

different θs.
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Table 3.2: Squared error losses (S.E.L): Bühlmann vs. X̄

n S.E.L of PCr S.E.L of X̄ difference

100 1.0479763 1.706382 -0.6584057

200 1.1570003 1.757805 -0.6008050

300 1.0190901 1.708748 -0.6896583

500 0.9595561 1.680415 -0.7208591

1000 0.9983797 1.709539 -0.7111594

2000 1.0073427 1.740795 -0.7334527

3000 0.9655605 1.663279 -0.6977186

5000 1.0032764 1.715398 -0.7121216

10000 0.9872958 1.685964 -0.6986678

20000 0.9708508 1.677591 -0.7067405

From the above table, we see that even at the level n = 100 the Bühlmann es-

timator shows less squared error loss. However, the difference between two S.E.L.

are not quite stable at the start. For instance, there are noticeable fluctuations in

the last column for the first few entries. When n reaches 3000, the difference is

more steady and slightly fluctuates around −0.7.

Lastly, we examine the Bühlmann estimator itself. According to (3.23), the

bias of the Bühlmann estimator converges to 0 as the total number of losses goes

to infinity. To investigate this property, we produce Bühlmann estimates based

on different number of random samples drawn from X|θ with θ fixed. Below

shows the Bühlmann premium estimates against the corresponding sample size

with θ = 0.2. For reference, a horizontal line y = µ(θ) is also plotted.
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Figure 3.2: Bühlmann premium (solid line) vs. µ(θ) (dashed line) with θ = 0.2

From Figure 3.2, we can see that when θ = 0.2 the Bühlmann estimates con-

verge fairly quickly to the hypothetical true value µ(θ). The estimates become

much more stable after n = 400. Only minor fluctuations present after the level

n = 800.

One may also want to study the impact of the values of θ. Figure 3.3 below

shows the trending for premium estimates when θ = 0.65.
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Figure 3.3: Bühlmann premium (solid line) vs. µ(θ) (dashed line) with θ = 0.65

Comparing Figure 3.3 with Figure 3.2, we notice the similarity between their

overall convergence trends. However, the rate of convergence seems to be slower

this time. The estimates are still notably volatile even at n = 1000. The fluctu-

ation then weakens after n = 1500. This suggests that different choices of θ may

have an impact on the speed of convergence of the estimator.
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3.6 Proofs

3.6.1 Proof of Proposition 3.1

Proposition 3.1 The density function of X|θ ∼ PH(α,T) can be rewritten as

an infinite mixture of Erlang densities as follows:

f(x|Θ = θ) =
∞∑
n=0

qn+1θe
−θx(θx)n/n! (3.26)

where θ = maxi{θi} with θi specified in (3.9) and

qn+1 = α′P n(I − P )1 ≥ 0; n = 0, 1, . . . , (3.27)

with P specified by (3.12). The coefficients qn+1 satisfy
∑∞

n=0 qn+1 = 1.

Proof. We have

t0 = T1

= θ(I − P )1. (3.28)

From Proposition 2.2, after substitution of (3.13) and (3.28), the density function

of the phase-type distribution can be written as

f(x|Θ) = α′ exp(Tx)t0
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= α′
∞∑
i=0

e−θx(θx)i/i!P iθ(I − P )1

=
∞∑
i=0

α′P i(I − P )1θe−θx(θx)i/i!

=
∞∑
i=0

qi+1θe
−θx(θx)i/i!,

where qi+1 is defined as

qi+1 = α′P i(I − P )1, i = 0, 1, 2, . . .

The following establish that qi+1 sum to unity.

∞∑
i=0

qi+1 =
∞∑
i=0

α′P i(I − P )1

= α′
∞∑
i=0

P i(I − P )1

= α′(I − P )−1(I − P )1

= α′1

= 1.

Specifically, qi+1 represents the probability that absorption will occur at the (i+

1)th transition of the uniformized Makrov chain. The following section establishes

that qi+1 is non-negative for all possible. Define

f0 = (I − P )1 and fi = P · fi−1 for i = 1, 2, ... (3.29)
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The ith component of f0 is θi
θ

(1−
∑

i 6=j pij) which is non-negative for all i’s. Thus,

q1 = α′ · f0 is also non-negative. The non-negativity of P together with the form

of the recursion in 3.29 ensures that fi ≥ 0 for i = 1, 2, . . ..

By investigating the pattern and properties of the probability mass function,

we recognize that qi+1 actually represents the density function of a discrete phase-

type distribution, i.e. PH(α,P).

3.6.2 Proof of Corollary 3.2

Corollary 3.2 Assume that given Θ = θ, X1, ..., Xn are random samples from

(3.26). Then their joint probability density is

f(x1, ..., xn|Θ = θ) = θne−θ
∑n
i=1 xi

∞∑
l=0

(θ
∑n

i=1 xi)
l

l!
C(l, x1, ..., xn), (3.30)

where

C(l, x1, ..., xn) =
l∑

i=0

(
l

i

)
qi+1

( xn∑n
j=1 xj

)i(
1− xn∑n

j=1 xj

)l−i
C(l − i, x1, ..., xn−1)

(3.31)

for all l ∈ Z+ ∪ {0} and n ∈ N. The above iteration is initiated by

C(l, x1) = ql+1, l = 0, 1, 2, ...

Proof. The statement can be proved by induction. The statement holds for n = 1,
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which can be readily verified after substitution. Assuming that the statement

holds for n observations, we show below that the statement also holds for n + 1

observations.

f(x1, ..., xn+1|Θ)

= f(x1, ..., xn|Θ)f(xn+1|Θ)

= θne−θ
∑n
i=1 xi

∞∑
l=0

(θ
∑n

i=1 xi)
l

l!
C(l, x1, ..., xn) ·

∞∑
k=0

qk+1θe
−θxn+1

(θxn+1)k

k!

= θne−θ
∑n
i=1 xi

∞∑
l=0

∞∑
k=0

(θ
∑n+1

i=1 xi)
l+k

(l + k)!

(l + k)!

l!k!

(
∑n

i=1 xi)
l(xn+1)k

(
∑n+1

i=1 xi)
l+k

qk+1C(l, x1, ..., xn)

= θne−θ
∑n
i=1 xi

∞∑
s=0

s∑
k=0

(θ
∑n+1

i=1 xi)
s

s!

s!

(s− k)!k!

(
∑n

i=1 xi)
s−k(xn+1)k

(
∑n+1

i=1 xi)
s

qk+1C(s− k, x1, ..., xn)

by letting s = l + k

= θne−θ
∑n
i=1 xi

∞∑
s=0

(θ
∑n+1

i=1 xi)
s

s!

s∑
k=0

(
s

k

)
(
∑n

i=1 xi)
s−k(xn+1)k

(
∑n+1

i=1 xi)
s

qk+1C(s− k, x1, ..., xn)

= θne−θ
∑n
i=1 xi

∞∑
s=0

(θ
∑n+1

i=1 xi)
s

s!
C(s, x1, ..., xn+1)

by the definition of C(s, x1, . . . , xn+1) function,

thereby showing that indeed f(x1, ..., xn+1|Θ) satisfies the stated forms.

3.6.3 Proof of Theorem 3.4

Theorem 3.4 Suppose X1|θ, . . . , Xn|θ are i.i.d. distributed random variables

with PH(α,T). Then a prior which is conjugate for the joint likelihood f(x1, ..., xn|θ)

can be written as an infinite mixture of Erlang distributions with the probability
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density function specified as

π(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
, (3.32)

where β > 0 and m is a non-negative integer. ζl is a probability measure, i.e.∑∞
l=0 ζl = 1 with the possibility ζl = 0 for some l. The parameters β, m and {ζl}

are considered as the “updated parameters”.

Proof. In order to find the conjugate prior for phase-type distributions, we need to

obtained a closed form for the joint density function of multiple claims conditional

on a risk parameter, which has been introduced in the previous section. Based

on Proposition 3.3, the conjugate prior could be derived as following

u(θ) =
f(x1, ..., xn|θ)∫
f(x1, ..., xn|θ)dθ

.

According to Corollary 3.2, the joint likelihood has the form of (3.30). Then

the denominator on the right-hand side above becomes

∫
f(x1, ..., xn|θ)dθ =

∫ ∞
0

θne−θ
∑n
i=1 xi

∞∑
l=0

(θ
∑n

i=1 xi)
l

l!
C(l, x1, ..., xn)dθ

=
∞∑
l=0

C(l, x1, ..., xn)

∫ ∞
0

θne−θ
∑n
i=1 xi

(θ
∑n

i=1 xi)
l

l!
dθ

=
∞∑
l=0

C(l, x1, ..., xn)
(l + n)!

l!

1

(
∑n

i=1 xi)
n+1



3.6 Proofs 55

×
∫ ∞

0

(
n∑
i=1

xi)e
−θ

∑n
i=1 xi

(θ
∑n

i=1 xi)
l+n

(l + n)!︸ ︷︷ ︸
Gamma(α = l + n+ 1, β =

∑n
i=1 xi)

dθ

=
1

(
∑n

i=1 xi)
n+1

∞∑
l=0

C(l, x1, ..., xn)
(l + n)!

l!

Hence,

u(θ) =
θne−θ

∑n
i=1 xi

∑∞
l=0

(θ
∑n
i=1 xi)

l

l!
C(l, x1, ..., xn)

1
(
∑n
i=1 xi)

n+1

∑∞
k=0C(k, x1, ..., xn) (k+n)!

k!

=

∑∞
l=0C(l, x1, ..., xn) (l+n)!

l!
· (
∑n

i=1 xi)e
−θ

∑n
i=1 xi

(θ
∑n
i=1 xi)

l+n

(l+n)!∑∞
k=0 C(k, x1, ..., xn) (k+n)!

k!

=
∞∑
l=0

{
C(l, x1, ..., xn) (l+n)!

l!∑∞
k=0C(k, x1, ..., xn) (k+n)!

k!

}
·

(
n∑
i=1

xi

)
e−θ

∑n
i=0 xi

(θ
∑n

i=1 xi)
l+n

(l + n)!

=
∞∑
l=0

ζl

(
n∑
i=1

xi

)
e−θ

∑n
i=0 xi

(θ
∑n

i=1 xi)
l+n

(l + n)!
,

where ζl = C(l, x1, ..., xn) (l+n)!
l!

/
∑∞

k=0 C(k, x1, ..., xn) (k+n)!
k!

. We need to check the

convergence property of ζl to ensure the validity of u(θ). C function presented in

Corollary 3.2 is

C(M,x1, ..., xn)

=
M∑
i1=0

 M

i1

( xn∑
xj

)i1 (
1− xn∑

xj

)M−i1
qi1+1C(M − i1, x1, ..., xn−1)

≤
M∑
i1=0

qi1+1C(M − i1, x1, ..., xn−1)

since the Binomial probability is less or equal to 1
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=
M∑
i1=0

qi1+1

M−i1∑
i2=0

 M − i1

i2

 (
xn−1∑
xj

)i2(1− xn−1∑
xj

)M−i1−i2qi2+1C(M − i1 − i2, x1, ..., xn−2)

≤
M∑
i1=0

qi1+1

M−i1∑
i2=0

qi2+1C(M − i1 − i2, x1, ..., xn−2)

...

≤
M∑
i1=0

qi1+1

M−i1∑
i2=0

qi2+1 · · ·
M−

∑n−1
l=1 il∑

in−1=0

qin−1+1 · qM+1−
∑n−1
l=1 il

=
∑

. . .
∑

qi1+1 · qi2+1 · · · qM+1−
∑n−1
l=1 il

= Pr(N1 + · · ·+Nn = M),

where Ni are i.i.d discrete phase-type distributions with the probability density

function Pr(Ni = l) = ql+1 with ql+1 specified in Proposition 3.1. Then,

∞∑
k=0

C(k, x1, ..., xn)
(k + n)!

k!
≤

∞∑
k=0

Pr(N1 + · · ·+Nn = k)(k+ 1)(k+ 2) · · · (k+n).

According to the closure properties of phase-type distributions, the summation

of independent discrete phase-type distributions, N1 + · · · + Nn, still follows a

discrete phase-type distribution denoted by N . Then the inequality could be

rewritten as

∞∑
k=0

C(k, x1, ..., xn)
(k + n)!

k!
≤

∞∑
k=0

Pr(N = k)(k + 1)(k + 2) · · · (k + n)

= E(
n∏
i=1

(N + i)),
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which is the factorial moments of the discrete phase-type distribution N and

its closed form is presented in Corollary 2.5. So
∑∞

k=0C(k, x1, ..., xn) (k+n)!
k!

is

bounded. As a consequence, the general term C(k, x1, ..., xn) (k+n)!
k!

approaches 0

as k goes to infinity.

Therefore, according to the first condition in Proposition 3.3 we have

u(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+n

(l + n)!
,

where ζl = C(l, x1, ..., xn) (l+n)!
l!

/
∑∞

k=0C(k, x1, ..., xn) (k+n)!
k!

.

In order to construct a conjugate prior for the PH distribution, we also need

to check the second condition of Proposition 3.3, which is the prior set should be

closed under the product operation.

u(θ)v(θ) =
∞∑
l=0

ζlβ1e
−β1θ (β1θ)

l+n

(l + n)!
·
∞∑
m=0

ζmβ2e
−β2θ (β2θ)

m+n

(m+ n)!

=
∞∑
l=0

∞∑
m=0

ζlζmβ
l+n+1
1 βm+n+1

2 e−(β1+β2)θ θl+m+2n

(l + n)!(m+ n)!

=
∞∑
l=0

∞∑
m=0

ζlζm(β1 + β2)e−(β1+β2)θ [(β1 + β2)θ]l+m+2n

(l +m+ 2n)!

× (l +m+ 2n)!

(l + n)!(m+ n)!
(

β1

β1 + β2

)l+n(
β2

β1 + β2

)m+n(
β1β2

β1 + β2

)

By changing the variables, s = l +m, we get

u(θ)v(θ) =
∞∑
s=0

s∑
l=0

ζlζs−l(β1 + β2)e−(β1+β2)θ [(β1 + β2)θ]s+2n

(s+ 2n)!
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× (s+ 2n)!

(l + n)!(s− l + n)!
(

β1

β1 + β2

)l+n(
β2

β1 + β2

)s−l+n(
β1β2

β1 + β2

)

=
∞∑
s=0

(β1 + β2)e−(β1+β2)θ [(β1 + β2)θ]s+2n

(s+ 2n)!︸ ︷︷ ︸
Gamma(α = s+ 2n+ 1, β = β1 + β2)

×
s∑
l=0

ζlζs−l
(s+ 2n)!

(l + n)!(s− l + n)!
(

β1

β1 + β2

)l+n(
β2

β1 + β2

)s−l+n(
β1β2

β1 + β2

)

The above equation can be rewritten as

u(θ)v(θ) =
β1β2

β1 + β2

∞∑
s=0

ξs(β1 + β2)e−(β1+β2)θ [(β1 + β2)θ]s+2n

(s+ 2n)!
,

where ξs =
∑s

l=0 ζlζs−l
(s+2n)!

(l+n)!(s−l+n)!
( β1
β1+β2

)l+n( β2
β1+β2

)s−l+n.

Therefore,

u(θ)v(θ)∫
u(θ)v(θ)dθ

=
∞∑
s=0

ξs∑∞
k=0 ξk

(β1 + β2)e−(β1+β2)θ [(β1 + β2)θ]s+2n

(s+ 2n)!
.

We also need to check that ξs and
∑∞

s=0 ξs are convergent as s goes to infinity.

We have that

lim
l→∞

l∑
s=0

ξs = lim
l→∞

l∑
s=0

s∑
n=1

ζnζs−l
(s+ 2n)!

(l + n)!(s− l + n)!
(

β1

β1 + β2

)l+n(
β2

β1 + β2

)s−l+n

≤ lim
l→∞

l∑
s=0

s∑
n=0

ζnζs−l+n

= lim
l→∞

l∑
s=0

P (Z1 + Z2 = s+ 2n)

= 1.
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Therefore the series
∑∞

s=0 ξs is convergent. As a necessary condition, we know

that the general term ξs should approach 0 as s increases. Thus, the prior set is

closed under the product operation.

Therefore, by natural extension,

u(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
, (3.33)

is a suitable form of the conjugate prior for phase-type distributions according to

Proposition 3.3, with ζl following a discrete distribution.

3.6.4 Proof of Theorem 3.5

Theorem 3.5 Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the Bühlmann

premium estimator based on losses X1, . . . , Xn is

PCr =
n

n+ k
X̄ +

k

n+ k
µ, (3.34)

where N is defined by (3.19), X̄ = 1
n

∑n
i=1 Xi and

µ = E(N)β
∞∑
l=0

ζl
l +m

,

k =
V ar(N) + E(N)

(E(N))2
· g(m, ζ) (3.35)
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with

g(m, ζ) =

∑∞
l=0

ζl
(l+m)(l+m−1)∑∞

l=0
ζl

(l+m)(l+m−1)
−
(∑∞

l=0
ζl

(l+m)

)2 .

Here parameters m > 1, m ∈ Z, β and {ζl} follows the same definitions from

Theorem 3.4.

Proof. The conditional mean and variance of X|Θ can be expressed as

µ(Θ) = E(X|Θ) = E(Y1|Θ)E(N)

= E(N)Θ−1,

and

v(Θ) = V ar(X|Θ)

= E2(Y1|Θ)V ar(N) + E(N)V ar(Y1|Θ)

= (V ar(N) + E(N))Θ−2.

Therefore, we have

µ = E(µ(Θ))

= E(N)E(Θ−1)

= E(N)

∫ ∞
0

θ−1

∞∑
l=0

ζlβe
−βθ (βθ)l+m

(l +m)!
dθ
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= E(N)
∞∑
l=0

ζl
β

l +m

∫ ∞
0

βe−βθ
(βθ)l+m−1

(l +m− 1)!
dθ

= E(N)
∞∑
l=0

ζl
β

l +m
,

v = E{(V ar(N) + E(N))Θ−2}

= [V ar(N) + E(N)]

∫ ∞
0

θ−2

∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
dθ

= [V ar(N) + E(N)]
∞∑
l=0

ζl
β2

(l +m)(l +m− 1)

∫ ∞
0

βe−βθ
(βθ)l+m−2

(l +m− 2)!
dθ

= [V ar(N) + E(N)]β2

∞∑
l=0

ζl
(l +m)(l +m− 1)

,

Similarly,

a = V ar{E(N)Θ−1}

= (E(N))2{E(Θ−2)− (E(Θ−1))2}

= (E(N))2β2

{ ∞∑
l=0

ζl
(l +m)(l +m− 1)

−
( ∞∑

l=0

ζl
(l +m)

)2}
.

Therefore, the Bühlmann coefficient k is given by

k =
V ar(N) + E(N)

(E(N))2

∑∞
l=0

ζl
(l+m)(l+m−1)∑∞

l=0
ζl

(l+m)(l+m−1)
−
(∑∞

l=0
ζl

(l+m)

)2 .

As the number of transitions until absorption N follows a discrete phase-type
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distribution with parameters (α, P ), we have the first two factorial moments from

Latouche and Ramaswami (1999) as

E(N) = α′(I − P )−11,

E[N(N − 1)] = 2α′P (I − P )−21.

Then we can obtain that

V ar(N) + E(N) = E(N2)− (E(N))2 + E(N)

= E[N(N − 1)] + 2E(N)− (E(N))2

= 2α′P (I − P )−11 + 2α′(I − P )−11− (α′(I − P )−11)2

= 2α′(P + (I − P ))(I − P )−21− (α′(I − P )−11)2

= 2α′(I − P )−21− (α′(I − P )−11)2.



Chapter 4

Bayesian Premium for

Phase-type Distributed Losses

In the class of all linear estimators, the Bühlmann premium we considered in

Chapter 3 provides the minimum squared error loss Q defined in (3.2). How-

ever, the Bühlmann model is restrictive in the sense of the linear structure it

relied upon. By relaxing this linearity restriction we can study the more gen-

eral Bayesian premium which offers the minimum squared error loss amongst all

estimators.

This chapter starts by a rigorous account of the mathematical formulation

of Bayesian premiums. We will then derive the estimator under phase-type dis-

tributed losses using the same conjugate prior distribution outlined in Theorem

3.4. We will also investigate some interesting properties of the marginal distribu-

tion of the loss.
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4.1 The Bayesian Premium

In this section we give a detailed review of the formulation of Bayesian premium

to make the thesis self-contained. The materials are largely based on the presen-

tation from Klugman et al. (2008).

To construct the Bayesian premium estimator, suppose that for a particular

policyholder, we have observed n losses x = (x1, . . . , xn), which is viewed as the

observations from the random vector X = (X1, ..., Xn) just as before. We are

interested in setting a rate to cover the future loss Xn+1.

Similar to Chapter 3, we continue to assume that the sampling distributions

Xi, . . . , Xn given the risk parameter θ are independent and identically distributed.

This independence can be interpreted as the relative irrelevance between the

experiences of the policyholder during different exposure periods.

As already been argued, the most ideal premium estimator is the risk premium

µn+1(θ) = E(Xn+1|θ) but it is not tractable. Fortunately by applying Bayesian

inference we can infer plausible values of θ based on historical data xi. In other

words, the Bayesian premium focuses on E(Xn+1|X) instead of E(Xn+1|θ).

Now we start to derive the Bayesian premium. Suppose the risk parameter Θ

has a prior distribution π(θ) and the sampling distribution of Xi|θ has a density

fXj |Θ(xj|θ). By the independence of the losses we have the joint likelihood:

f(x1, ..., xn|θ) =
n∏
j=1

fXj |Θ(xj|θ),
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based on which the posterior distribution can be derived:

π(θ|x1, . . . , xn) = h · f(x1, ..., xn|θ)π(θ) = h ·

(
n∏
j=1

fXj |Θ(xj|θ)

)
π(θ),

with the normalization factor given by

h−1 =

∫ ( n∏
j=1

fXj |Θ(xj|θ)

)
π(θ) dθ.

The conditional density of Xn+1|X can thus be obtained by

f(xn+1|x1, . . . , xn) =

∫
f(xn+1|θ)π(θ|x1, . . . , xn) dθ. (4.1)

Based on the above results the Bayesian premium can be derived as follows

E(Xn+1|X1, ..., Xn) =

∫
xn+1f(xn+1|x1, ..., xn) dxn+1

=

∫
xn+1

(∫
f(xn+1|θ)π(θ|x1, ..., xn) dθ

)
dxn+1

=

∫ (∫
xn+1f(xn+1|θ) dxn+1

)
π(θ|x1, ..., xn) dθ

=

∫
µn+1(θ)π(θ|x1, ..., xn) dθ, (4.2)

where the integral is evaluated with regard to all possible values of θ.

Equation (4.2) shows that the Bayesian premium considers the risk premium

µn+1(θ) and the posterior density π(θ|x) collectively. In a certain sense, the
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Bayesian model provides an indirect approach to evaluate the hypothetical object

µn+1(θ) while the knowledge of θ is gained from the posterior.

4.2 Bayesian Premium for Phase-type Distributed

Losses

Now we are ready to proceed with the derivation of the Bayesian premium estima-

tor given phase-type distributed losses. The same set of distribution assumptions

are applied as the Bühlmann estimator: the sampling distribution of X|Θ is as-

sumed to be PH(α,T) with its conjugate prior distribution assigned to Θ. The

characterization of the resulting posterior distribution is given by the following

lemma.

Lemma 4.1. Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the corresponding

posterior distribution is

π(θ|x1, ..., xn) =
∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β+

n∑
j=1

xj)
s+m+n+1 B(s, x1, ..., xn,m, β)∑∞

t=0B(t, x1, ..., xn,m, β)
,

(4.3)

where the parameters β, m and {ζl} are specified in Proposition 3.3. B is defined
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by a recursive relation

B(s, x1, ..., xn,m, β) = (s+m+ n)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i=0

qi+1B(s− i, x1, ..., xn−1,m, β)

×
(
s+m+ n− 1

i

)(
1− xn

β +
∑n

j=1 xj

)s−i+m+n−1(
xn

β +
∑n

j=1 xj

)i
, (4.4)

with initial conditions

B(s, x1,m, β) = (s+m+1)
β

(β + x1)2

s∑
i=0

(
s+m

i

)
(

β

β + x1

)s+m−i(
x1

β + x1

)iqi+1B(s−i).

and

B(l) = ζl.

Proof. See section 4.5.1.

From Lemma 4.1, we notice that the posterior distribution is also expressed

as infinite mixtures of Erlang distributions with common scale parameters, which

follows the same pattern of the prior distribution but with different “updated

parameters”.

We want to make a note on the structure of the object B(s, x1, ..., xn,m, β)

defined above. We may loosely call it as “function” B but technically, each

iteration defines a different function. The first one starts with ζl with no xi

involved, then each time a iteration is applied to bring in one additional xi.

The iteration hence produces a sequence of functions which we denote by B(l),
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B(s, x1,m, β), B(s, x1, x2,m, β) and so on.

Now we present the most important result of this chapter.

Theorem 4.2. Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the Bayesian

premium estimator is

E(Xn+1|X1, ..., Xn) = E(N)(β +
n∑
j=1

xj)

∑∞
s=0

1
s+m+n

B(s, x1, ..., xn,m, β)∑∞
s=0 B(s, x1, ..., xn,m, β)

, (4.5)

where N is defined by (3.19), parameters m and β follows the same defini-

tions from Theorem 3.4 and B(s, x1, ..., xn,m, β) follows the same definition from

Lemma 4.1.

Proof. See section 4.5.2.

Equation (4.16) incorporates complicated mathematical structures. It also

involves infinite series as equation (3.34) but are far more difficult to handle.

The general term contains a function B(s, x1, ..., xn,m, β) which is defined by a

recursive relation. Therefore it is quite difficult to obtain a closed form solution

of the Bayesian premium. In section 4.5.2 we will prove the convergence of the

relevant infinite series, which is not as trivial as in the Bühlmann case.
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4.3 Marginal and Predictive Distributions for

the Losses

Sometimes it is interesting to know the marginal distribution of losses which is

independent of risk parameter θ. It provides valuable insight around the risk

pattern of a policyholder. The other motivation is that knowing the explicit

form of the marginal distribution of losses is an important element for empirical

Bayes estimation of prior parameters. In this section we intend to investigate this

problem by applying some known results obtained previously.

From the proof of Theorem 4.2, we know that under our setting the joint

density function of X1, ..., Xn is

f(x1, ..., xn) =
∞∑
s=0

B(s, x1, ..., xn,m, β),

where related objects m, β and B are defined in Theorem 4.2.

Analyzing the above form is difficult due to the algebraic complexity intro-

duced by function B. Nevertheless, we can still study some special cases. The

following corollary contains the result derived from one particular case.

Corollary 4.3. Suppose a loss X has a likelihood X|Θ ∼ PH(α, θ(P − I)). If Θ

follows a distribution specified by (3.32) with m = 0 and {ζl} being a probability



4.3 Marginal and Predictive Distributions for the Losses 70

measure representing a Geometric distribution, i.e.

ζl = (1− p)lp, l ∈ Z+ ∪ {0},

where 0 < p < 1. Then the marginal distribution of X is

f(x) =
∞∑
l=0

ql+1
(l + 1) · βp · xl

(x+ βp)l+2
, (4.6)

where ql+1 is defined in Proposition 3.1.

Proof. See section 4.5.3.

The term (l+1)·βp·xl
(x+βp)l+2 is actually the density function of an inverse Pareto dis-

tribution with shape and scale parameters being l + 1 and βp respectively. The

corollary tells us under this special setting, marginal distribution for one loss is

in fact an infinite mixture of inverse Pareto distributions.

Equation (4.19) also has an equivalent closed form. To derive this, first notice

that we can rewrite (4.19) as

f(x) =
βp

(x+ βp)2

∞∑
l=0

ql+1
d

dz
(zl+1)

∣∣∣∣
z= x

x+βp

=
βp

(x+ βp)2

d

dz

{
∞∑
l=0

ql+1z
l+1

}∣∣∣∣
z= x

x+βp

,

where ql+1 is defined in Corollary 3.1 and can be considered as the probabil-
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ity density function of PHd(α,P). We also know from Corollary 2.5 that the

probability generating function of this discrete phase-type distribution is

P (z) = zα(I − zP )−1w,

where w = (I−P )1 and I is an identity matrix of appropriate dimension. There-

fore

d

dz

{
∞∑
l=0

ql+1z
l+1

}
=

d

dz
P (z)

=
d

dz
zα(I − zP )−1w

= α(I − zP )−1w + zα
d

dz
(I − zP )−1w

= α(I − zP )−1w + zα(I − zP )−1P (I − zP )−1w

= α(I − zP )−1(I + zP (I − zP )−1)w

= α(I − zP )−1(I + zP (I − zP )−1)(I − zP )(I − zP )−1w

= α(I − zP )−1(I − zP + zP )(I − zP )−1w

= α(I − zP )−2w.

So the marginal density function f(x) can be also expressed as

f(x) =
βp

(x+ βp)2
α(I − x

x+ βp
P )−2(I − P )1.

The following Corollary is to show the explicit expression of the predictive
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distribution Xn+1|X1, . . . , Xn, which is the relevant distribution to be employed

for risk management purposes. Mathematically, the derivation of the predictive

distribution’s density function is virtually identical to the marginal loss distribu-

tion’s, except that the posterior is used as mixing distribution rather than the

prior. So it will be a natural extension to discuss the predictive distribution in

conjunction with the marginal loss distribution.

Corollary 4.4. Suppose a loss X has a likelihood X|Θ ∼ PH(α, θ(P − I)). If

the posterior Θ|X1, . . . , Xn follows a distribution specified in Lemma 4.1, then the

density function of the predictive distribution is given by

f(xn+1|x1, . . . , xn) =

∑∞
k=0B(k, x1, ..., xn+1,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

, (4.7)

where the function B(k, x1, . . . , xn,m, β) is also specified in Lemma 4.1.

Proof. See section 4.5.4.

4.4 Examples

Example 4.4.1. From the previous chapter, the prior can be expressed as

∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
,
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where β > 0, m is a non-negative integer and
∑
ζl = 1. We would like to

construct a single Gamma prior and compute the Bayesian premium accordingly

by setting β = γ, m = 0, and

ζl =


1, l = K − 1;

0, otherwise.

We also know that

B(s, x1, ..., xn,m, β) =
s∑
l=0

(s+m+ n)!

l!(s− l +m)!

βs−l+m+1(
∑n

j=1 xj)
l

(β +
∑n

j=1 xj)
s+m+n+1

ζs−lC(l, x1, ..., xn).

So,

B(s, x1, ..., xn, 0, γ) =


0, when s < K − 1;

(s+n)!
(s−K+1)!(K−1)!

γK(
∑n
j=1 xj)

s−K+1

(γ+
∑n
j=1 xj)

s+n+1 1

×C(s−K + 1, x1, ..., xn), when s > K − 1.

The Bayesian premium for Phase-type distributions is

E(Xn+1|X1, ..., Xn) = E(N)(γ +
n∑
j=1

xj)

∑∞
s=0

1
s+n

B(s, x1, ..., xn, 0, γ)∑∞
s=0B(s, x1, ..., xn, 0, γ)

.

Then the denominator of the Bayesian premium is

∞∑
s=0

B(s, x1, ..., xn, 0, γ)
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=
∞∑

s=K−1

B(s, x1, ..., xn, 0, γ)

=
∞∑

s=K−1

(s+ n)!

(s−K + 1)!(K − 1)!

γK(
∑n

j=1 xj)
s−K+1

(γ +
∑n

j=1 xj)
s+n+1

1C(s−K + 1, x1, ..., xn)

=
∞∑
l=0

(l +K + n− 1)!

l!(K − 1)!

γK(
∑n

j=1 xj)
l

(γ +
∑n

j=1 xj)
l+K+n

C(l, x1, ..., xn), by letting l = s−K + 1

=
γK

(K − 1)!

∞∑
l=0

(l +K + n− 1)!

(γ +
∑n

j=1 xj)
l+K+n

(
∑n

j=1 xj)
l

l!
C(l, x1, ..., xn).

Similarly, the numerator of the Bayesian premium is

∞∑
s=0

1

s+ n
B(s, x1, ..., xn, 0, γ)

=
∞∑

s=K−1

1

s+ n
B(s, x1, ..., xn, 0, γ)

=
∞∑

s=K−1

1

s+ n

(s+ n)!

(s−K + 1)!(K − 1)!

γK(
∑n

j=1 xj)
s−K+1

(γ +
∑n

j=1 xj)
s+n+1

1C(s−K + 1, x1, ..., xn)

=
∞∑

s=K−1

(s+ n− 1)!

(s−K + 1)!(K − 1)!

γK(
∑n

j=1 xj)
s−K+1

(γ +
∑n

j=1 xj)
s+n+1

1C(s−K + 1, x1, ..., xn)

=
∞∑
l=0

(l +K + n− 2)!

l!(K − 1)!

γK(
∑n

j=1 xj)
l

(γ +
∑n

j=1 xj)
l+K+n

C(l, x1, ..., xn), by letting l = s−K + 1

=
γK

(K − 1)!

1

γ +
∑n

j=1 xj

∞∑
l=0

(l +K + n− 2)!

(γ +
∑n

j=1 xj)
l+K+n−1

(
∑n

j=1 xj)
l

l!
C(l, x1, ..., xn).

Hassan-Zadeh and Stanford (2013) also calculated the Bayesian premium of

Phase-type distributions with a Gamma prior and introduced a “d function” such

that

d(K, γ, x1, ..., xn) =
∞∑
l=0

Γ(l +K + n)

(nx̄+ γ)l+K+n

(nx̄)l

l!
C(l, x1, ..., xn).
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Therefore, the denominator and numerator can be rewritten as

∞∑
s=0

B(s, x1, ..., xn, 0, γ) =
γK

(K − 1)!
d(K, γ, x1, ..., xn)

∞∑
s=0

1

s+ n
B(s, x1, ..., xn, 0, γ) =

1

γ +
∑n

j=1 xj

γK

(K − 1)!
d(K − 1, γ, x1, ..., xn)

Hence, the Bayesian premium is

E(Xn+1|X1, ..., Xn) = E(N)
d(K − 1, γ, x1, ..., xn)

d(K, γ, x1, ..., xn)
,

which is consistent with the result derived by Hassan-Zadeh and Stanford (2013).

Example 4.4.2. We have now obtained solutions for both Bühlmann and Bayesian

premiums in Theorem 3.5 and Theorem 4.2 respectively, under the setting of

phase-type distributed losses with the corresponding conjugate prior. In this ex-

periment, we conduct a number of simulations to investigate and compare their

properties.

The first step is to set up the conjugate prior distribution. From Theorem 3.4,

we know the density of this distribution is given by

π(θ) =
∞∑
l=0

ζl · βe−βθ
(βθ)l+m

(l +m)!
,

where ζl represents some probability measure. In this example, we apply a prior
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by imposing the following parameter setting:

ζl =



1
5
, l = 0;

3
5
, l = 10;

1
5
, l = 40;

0, otherwise,

(4.8)

as well as m = 2 and β = 8. Substituting those values into π(θ) above gives us

π(θ) =
1

5
βe−βθ

(βθ)2

2!
+

3

5
βe−βθ

(βθ)12

12!
+

1

5
βe−βθ

(βθ)42

42!
, (4.9)

which is essentially a mixture of Gamma(3, 8), Gamma(13, 8) and Gamma(43,

8) densities1. We also set up the distribution of losses Xi|θ ∼ PH(α, θ(P − I)),

where α = (1, 0) and the matrix

P =

 0 0.4

0.8 0

 .

Now we proceed with the calculation of Bühlmann premium. Suppose we ob-

serve losses x1, . . . , xn By Theorem 3.5 we have

f =
∞∑
l=0

ζl
l +m

=
1

5

(
1

m
+

1

10 +m
+

1

40 +m

)
,

1We adopt the conventions that Gamma(α, β) indicated the Gamma density with α being
the shape parameter and β being the rate parameter
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h =
∞∑
l=0

ζl
(l +m)(l +m− 1)

=
1

5

(
1

m(m− 1)
+

3

(10 +m)(9 +m)
+

1

(40 +m)(39 +m)

)
,

E(N) = α′(I − P )−11,

V ar(N) + E(N) = 2α′(I − P )−21− (α′(I − P )−11)2.

Based on the above results we can obtain µ = 2.54902 and k = 1.508471. There-

fore the Bühlmann premium can be calculated as

PCr =
n

n+ 1.508471
x̄+

3.845122

n+ 1.508471
, (4.10)

where x̄ = 1
n

∑n
i=1 xi.

To calculate the Bayesian premium we follow Theorem 4.2. The first two

terms on the right-hand side of equation (4.16) are not difficult to handle since

E(N) and β +
∑n

i=1 xi can be easily calculated based on the parameter setting.

The last term is more difficult to evaluate algebraically since the recursive relation

(4.15) that defines function B has very complex structure. For this reason, we

target to find an approximation of the Bayesian premium instead of a closed form

solution as (4.10).

Given observations x1, . . . , xn we can initiate the iteration (4.15) by setting

B(l) according to (4.8) along with m and β specified in the example. Keep applying

(4.15) we eventually move to the level of B(s, x1, ..., xn,m, β). Denote S(k) =

B(k, x1, ..., xn,m, β), for some small number ε > 0 we find a positive integer N
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such that

∣∣∣∣∣
N∑
k=0

S(k)−
N−1∑
k=0

S(k)

∣∣∣∣∣ < ε, (4.11)∣∣∣∣∣
N∑
k=0

S(k)

k +m+ n
−

N−1∑
k=0

S(k)

k +m+ n

∣∣∣∣∣ < ε. (4.12)

Now define

B̂ =
N∑
k=0

1
k+m+n

S(k)∑N
t=0 S(t)

then we approximate the Bayesian premium by:

PBa = E(N)

(
β +

n∑
i=1

xi

)
B̂ = 2.058824

(
8 +

n∑
i=1

xi

)
B̂. (4.13)

To compare Bayesian and Bühlmann estimators we conduct a simulation ex-

periment based on the following algorithm:

1. Draw 200 values of θ from the prior density (4.9), denote by θ1, . . . , θ200.

2. For θ1, generate x1, . . . , x30 based on the PH(α, θ1(P − I)) with parameters

specified previously. Estimate Bühlmann and Bayesian premiums according

to (4.10) and (4.13).

3. Repeat steps 2 for 10000 times obtaining 10000 Bühlmann premiums P
(j)
Cr1

and Bayesian premiums P
(j)
Ba1

, j = 1, . . . , 10000.

4. Repeat step 3 for θ2, . . . , θ200. We finally end up with Bühlmann premi-
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ums P
(j)
Cri

and Bayesian premiums P
(j)
Bai

, where i = 1, . . . , 200 and j =

1, . . . , 10000.

We start with investigating the prior distribution. The following Figure 4.1

shows the kernel density plot of the prior distribution.
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Figure 4.1: Density plot of prior distribution: finite mixtures of 3 Gammas

This density has most of the probability mass focused roughly between 1 and 3.

The rest of the probabilities are spread upon two areas: (0, 1) and (4, 7). Figure

4.2 shows the density estimation based on the 200 θs drawn.
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Figure 4.2: Density estimation based on 200 samples of θ

Comparing with Figure 4.1, we see our 200 θs approximate the true density

well in general. However, we found that the left tail has been considerably over-

estimated as we are not seeing an obvious drop around θ = 1.

One of the most important comparison between Bühlmann and Bayesian es-

timators is around the mean squared error. Considering µ(θi) = E(N)/θi, the

MSEs for Bühlmann and Bayesian premiums can be estimated by

MSEθi(PCr) =
1

10000

10000∑
j=1

(P
(j)
Cri
− E(N)/θi)

2,
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MSEθi(PBa) =
1

10000

10000∑
j=1

(P
(j)
Bai
− E(N)/θi)

2.

The graph below shows respective MSEs against 200 different values of θ.
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Figure 4.3: MSE(PCr) minus MSE(PBa): finite mixtures of 3 Gammas

From Figure 4.3 we see that the Bayesian estimator does not always yield

less MSE. Roughly speaking on the region (0.1, 1), we see higher MSEs for the

Bayesian estimator and vice versa on the rest of the support. However, according

to Figure 4.1, we know the area (0.1, 1) does not take account of most probability

mass. Therefore, we still have good reason to believe that the Bayesian premium

will yield less squared error loss than the Bühlmann premium. Taking the average
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over the 200 MSEs, our result has confirmed that the Bayesian premium yields

a lower average MSE of 1.778677 while the Bühlmann premium yields 1.799254.

We also noticed that for extremely small θ the Bayesian premium seems to have

much greater advantage over the Bühlmann premium by yielding smaller values

of MSE.

Ideally, in order to confirm the fact that Bayesian premium does yield lower

squared error loss, we wish to produce a chart in the same fashion as Table 3.2.

Unfortunately, our algorithm for computing the Bayesian premium turned out

to be quite time consuming: the MSEs obtained for 200 θs shown in Figure 4.3

caused a computational time of more than 2 weeks. Further increasing the number

of θs involved will lead to even greater computational time.

Besides MSEs, we also want to investigate the premium itself. Below shows

the Bayesian premium estimates given different values of θ.
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Figure 4.4: Bayesian premiums at different θ: finite mixtures of 3 Gammas

From Figure 4.4 we see that the Bayesian premiums gradually decreases as

the value of θ get larger. Investigating Bühlmann premiums we found it shows an

almost identical pattern. The figure below presents the difference between those

two.
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Figure 4.5: Difference in premiums, PCr − PBa: finite mixtures of 3 Gammas

The result shows the difference between the two premiums are very small at

most of the time. We found one occasion that the Bayesian premium is larger by

about 1.1. Comparing all 200 cases we found the Bayesian premium is on average

larger than the Bühlmann premium by only 0.12. Considering their computational

costs the Bühlmann estimator might be a more practical choice for our case.

Example 4.4.3. In this example, we would like to investigate the possible impact

of the prior distribution. We change our conjugate prior to include more Gamma
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densities by assuming:

ζl =



1
18
, l = 1;

1
9
, l = 2;

1
3
, l = 9;

1
3
, l = 10;

1
9
, l = 30;

1
18
, l = 40;

0, otherwise

The other parameters are assumed to be the same, i.e m = 2 and β = 8. In this

case the prior is in the form of a mixture of 6 Gamma distributions. The density

plot of this prior distribution is shown below.
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Figure 4.6: Density plot of prior distribution: finite mixtures of 6 Gammas

Comparing to Figure 4.1 this prior looks slightly different. The right tail is

relatively flat and left tail becomes more smooth.

As in the last example we still assume 30 losses. For Bühlmann premiums, the

credibility factor Z is found to be 0.9521249 and µ is equal to 2.54902. Therefore

it can be estimated by:

PCr = 0.9521249x̄+ 0.1220346.

The Bayesian premium can be estimated following the similar logic to (4.11)
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- (4.13). Then we apply the same algorithm as the previous example to compare

the MSEs of both estimators at different values of θ.
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Figure 4.7: MSE(PCr) minus MSE(PBa): finite mixtures of 6 Gammas

According to Figure 4.6 most of the probability mass is distribution between

1 and 2, which is the exact region that Bayesian premiums show less MSEs.

Overall, the average mean squared error for Bühlmann premiums is found to be

0.2699196 and the average MSE for Bayesian premiums is 0.2523452, which is

consistent with the theoretical result. Nevertheless, they are quite close to each

other indicating very limited advantage from the Bayesian estimator.

Next we compare the premium estimates.



4.4 Examples 88

0 1 2 3 4 5 6 7

0
2

4
6

8
1

0

θ

C
re

d
ib

ili
ty

 p
re

m
iu

m

0 1 2 3 4 5 6 7

0
2

4
6

8
1

0

θ

B
a
ye

si
a

n
 p

re
m

iu
m

Figure 4.8: Bühlmann premiums (left) and Bayesian (right) premiums at different
θ: finite mixtures of 6 Gammas

We found that the Bayesian and Bühlmann estimates are almost identical

given various value of θ. To further investigate their difference, we present the

plot of PCr − PBa against θ in the graph below.
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Figure 4.9: Difference in premiums, PCr − PBa: finite mixtures of 6 Gammas

Comparing to Figure 4.5, we see the difference has become even more negligi-

ble. The greatest difference is only about 0.01. On average the Bayesian premium

is only larger than Bühlmann premium by 0.003390951. The conjecture of exact

credibility seems possible.

Example 4.4.4. In examples 4.4.2 and 4.4.3, we assume the losses Xi|θ ∼

PH(α, θ(P − I)) with P being a 2 × 2 matrix. In this example, we extend to

the case that P being a 3 × 3 matrix. To be more specific, we set α = (1, 0, 0)′
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and

P =


0.1 0.8 0.1

0.8 0.1 0.0

0.8 0.0 0.1

 .

We assume that a total number of 10 losses are observed. The conjugate prior

we are using in this example is a single Gamma distribution with the shape param-

eter 10 and the rate parameter 0.1. For the Bühlmann premium, the credibility

factor can then be calculated as 0.5405 and µ to be 0.2222. For the Bayesian pre-

mium, we estimate the premium based on the approach used in previous examples,

outlined by equations (4.11) - (4.13). However, we are no longer able to imple-

ment 10000 repetitions for each θ we drawn from the prior. As the dimension

of the matrix P increases, the speed of the convergence for function B defined in

Theorem 4.2 becomes much slower than the 2 × 2 case, leading to a significant

increase in the computational cost of Bayesian premium estimation. Due to this

reason we are not able to obtained the MSE estimates this time.

Figure 4.10 below shows both estimates at a total number of 45 different values

of θ.
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Figure 4.10: Bühlmann (solid line) and Bayesian premiums (dashed line) vs. θ:
higher dimension PH

We see that in general, Bayesian premiums are slightly larger than Bühlmann

premiums. However, the difference is almost negligible considering the scale of

y-axis. Calculating the averages over all premium estimates indicates that on

average, Bayesian premium is larger by only 0.009494021. Our finding that the

Bühlmann and Bayesian premium yield relatively close values is consistent with

what we see from the previous two examples. It is possible that this observation

is due to exact credibility.

Table 4.1 below shows the details of the 45 different values of θ and their

corresponding Bühlmann and Bayesian estimates.
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Table 4.1: Bühlmann and Bayesian Premiums

θ Bühlmann premium Bayesian premium
34.14869713 0.302236082 0.321404998
42.79435118 0.22174486 0.232775557
62.79605163 0.205496365 0.219002058
66.21883728 0.210393949 0.219750605
66.38865763 0.340599342 0.358810239
71.79211913 0.290199231 0.306828659
75.254049 0.225038727 0.233054627

75.37344014 0.296995508 0.313194236
76.44335718 0.205121471 0.217401828
76.64149874 0.231554936 0.241876828
79.17830488 0.303965402 0.30807168
80.2033774 0.187972165 0.200248442
80.38552405 0.197382249 0.208832867
81.66550168 0.245409197 0.259834256
84.40946205 0.279504545 0.290290129
86.97170852 0.160756745 0.170526562
88.36015902 0.221526611 0.229836998
90.16527715 0.158431359 0.161234834
91.22303124 0.221165798 0.224578943
93.56016068 0.209358413 0.223151974
95.18084294 0.190346468 0.201876015
95.66358591 0.198440525 0.210852743
96.90740593 0.243118101 0.258997664
97.61937869 0.178894147 0.177991448
102.7290665 0.246916946 0.262413317
104.9009097 0.193639087 0.204858129
104.9810904 0.180718995 0.186188564
106.3523824 0.199853468 0.211932295
107.8381893 0.195895189 0.200011474
110.9361579 0.190167546 0.20251323
113.6102975 0.232032506 0.237829989
114.2259155 0.174818388 0.175022853
114.6073869 0.211028513 0.219069725
118.5417648 0.15524825 0.162929053
121.6205557 0.195016711 0.207934545
124.9809513 0.165947348 0.171050802
136.7691784 0.201026129 0.209277404
139.8760172 0.144104739 0.146708442
146.3851159 0.193410778 0.19133235
158.9753741 0.130072604 0.135813872

Mean 0.2133887 0.2228828
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Now we change the prior from a single Gamma distribution to a mixture of 3

Gamma distributions by assigning weight according to

ζl =



1
5
, l = 0;

3
5
, l = 50;

1
5
, l = 100;

0, otherwise.

We keep all the assumptions the same as before and also set m = 2. For the

Bühlmann premium, the credibility factor is found to be 0.8918911 and µ is

0.3039216. For the Bayesian premium, we estimate it by equations (4.11) - (4.13)

and we are only producing one each estimate for a specific θ, for the reason we

have explained in the last experiment.

The following graph shows both estimates for a number of 45 different θs.
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Figure 4.11: Bühlmann (solid line) and Bayesian premiums (dashed line) vs. θ:
higher dimension PH

We see that the Bayesian premium does not consistently stay above or be-

low the Bühlmann premium as θ changes. To help us understand the difference

between both estimators, one may also study a histogram.
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Figure 4.12: Histogram for the difference PCr − PBa: higher dimension PH

The histogram shows the differences are not exactly distributed symmetrically.

On a slightly larger proportion of θ’s we see a larger Bayesian premium. This

fact can also be confirmed by closer examining the data. The average Bayesian

premium is found to be just 0.002123647 larger than the average Bühlmann pre-

mium.

The details around the values of θ and respective Bayesian and Bühlmann

estimates are given in Table 4.2 below.
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Table 4.2: Bühlmann and Bayesian Premiums for Figure 4.11

θ Bühlmann premium Bayesian premium

41.10726654 0.375972285 0.394705777
41.80179183 0.57655457 0.619601266
45.92609184 0.327485316 0.340341551
57.4171651 0.282197734 0.28956452
61.56653536 0.256337413 0.260569589
62.80264632 0.353965143 0.37003108
66.3542512 0.421203464 0.445419568
68.49175297 0.320679198 0.332710442
68.75480924 0.225583821 0.226088259
71.33682846 0.20327754 0.201078164
74.49887597 0.28617303 0.294021674
76.19256169 0.345916541 0.361006882
77.12285506 0.184966179 0.180547225
78.47737041 0.327581696 0.340449614
81.42280203 0.246252327 0.249262058
86.37466356 0.271922209 0.278043467
86.67245391 0.19873366 0.195983506
88.35969813 0.350207618 0.365818095
95.19895927 0.20502298 0.203035173
97.44486379 0.277491412 0.28428773
98.09599325 0.249252716 0.252626134
98.52242607 0.142271362 0.132677236
99.14934166 0.235974915 0.237738889
99.45254008 0.229798406 0.230813707
100.0737574 0.235384426 0.237076825
109.2923823 0.237946879 0.239949881
112.7388241 0.186075625 0.18179115
113.6257764 0.160975167 0.153648187
113.9449118 0.223252298 0.223474124
114.7240078 0.252097043 0.255815231
114.8545051 0.195811349 0.192706972
115.9135617 0.183904541 0.179356903
118.1572945 0.214650687 0.213829885
118.6268251 0.163449729 0.156422699
119.2860557 0.258851232 0.263388116
121.6002771 0.139258186 0.129298823
122.3832646 0.198247401 0.195438305
126.9599809 0.170245488 0.164042193
135.3311894 0.13718506 0.126974408
147.05884 0.129404236 0.118250445

152.2790966 0.174410076 0.168711584
157.0170884 0.139161133 0.129190007
159.8129401 0.135966286 0.125607902
160.8287531 0.168598357 0.162195409
165.9622627 0.152701949 0.144372147

Mean 0.238942193 0.24106584
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4.5 Proofs

4.5.1 Proof of Lemma 4.1

Lemma 4.1 Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the corresponding

posterior distribution is

π(θ|x1, ..., xn) =
∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β+

n∑
j=1

xj)
s+m+n+1 B(s, x1, ..., xn,m, β)∑∞

t=0B(t, x1, ..., xn,m, β)
,

(4.14)

where the parameters β, m and {ζl} are specified in Proposition 3.3. B is defined

by a recursive relation

B(s, x1, ..., xn,m, β) = (s+m+ n)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i=0

qi+1B(s− i, x1, ..., xn−1,m, β)

×
(
s+m+ n− 1

i

)(
1− xn

β +
∑n

j=1 xj

)s−i+m+n−1(
xn

β +
∑n

j=1 xj

)i
, (4.15)

with initial conditions

B(s, x1,m, β) = (s+m+1)
β

(β + x1)2

s∑
i=0

(
s+m

i

)
(

β

β + x1

)s+m−i(
x1

β + x1

)iqi+1B(s−i).

and

B(l) = ζl.
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Proof. Recall from Corollary 3.2 the joint density for losses is given by:

f(x1, ..., xn|θ) = θne−θ
∑n
j=1 xj

∞∑
l=0

(θ
∑n

j=1 xj)
l

l!
C(l, x1, ..., xn),

where C(M,x1, ..., xn) =
∑M

i=0

(
M
i

)
qi+1( xn∑n

j=1 xj
)i(1− xn∑n

j=1 xj
)M−iC(M−i, x1, ..., xn−1)

for M = 0, 1, 2, ... initialized by C(l, x1) = ql+1, l = 0, 1, 2, ...

The conjugate prior π(θ) for the joint density has been constructed in the

form of infinite mixtures of Erlang distributions, given by Theorem 3.4:

π(θ) =
∞∑
k=0

ζkβe
−βθ (βθ)k+m

(k +m)!
,

where
∑∞

k=0 ζk = 1, β > 0 and m is non-negative.

Thus the density of the posterior distribution π(θ|x1, ..., xn) can be derived

using the Bayesian methodology so that:

π(θ|x1, ...xn) =
f(x1, ..., xn|θ)π(θ)

f(x1, ..., xn)
.

The numerator on the right hand side is

f(x1, ..., xn|θ)π(θ)

=

[
θne−θ

∑n
j=1 xj

∞∑
l=0

(θ
∑n

j=1 xj)
l

l!
C(l, x1, ..., xn)

][ ∞∑
k=0

ζkβe
−βθ (βθ)k+m

(k +m)!

]

=
∞∑
l=0

∞∑
k=0

e−θ(β+
∑n
j=1 xj)θl+k+m+nβk+m+1

( n∑
j=1

xj
)l ζkC(l, x1, ..., xn)

l!(k +m)!
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=
∞∑
l=0

∞∑
k=0

e−θ(β+
∑n
j=1 xj)θl+k+m+n

(l + k +m+ n)!
(β +

n∑
j=1

xj)
l+k+m+n+1

× (l + k +m+ n)!

l!(k +m)!

βk+m+1(
∑n

j=1 xj)
l

(β +
∑n

j=1 xj)
l+k+m+n+1

ζkC(l, x1, ..., xn)

Letting s = l + k,

=
∞∑
s=0

s∑
l=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1

× (s+m+ n)!

l!(s− l +m)!

βs−l+m+1(
∑n

j=1 xj)
l

(β +
∑n

j=1 xj)
s+m+n+1

ζs−lC(l, x1, ..., xn)

=
∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1B(s, x1, ..., xn,m, β),

where B(s, x1, ..., xn,m, β) =
∑s

l=0
(s+m+n)!
l!(s+m−l)!

βs−l+m+1(
∑n
j=1 xj)

l

(β+
∑n
j=1 xj)

s+m+n+1 ζs−lC(l, x1, ..., xn).

Similarly, for the denominator part we have

f(x1, ..., xn) =

∫ ∞
0

f(x1, ..., xn|θ)π(θ)dθ

=

∫ ∞
0

∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1B(s, x1, ..., xn,m, β)dθ

=
∞∑
s=0

B(s, x1, ..., xn,m, β)

∫ ∞
0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1dθ

=
∞∑
s=0

B(s, x1, ..., xn,m, β).

The last equality is due to the fact that the integrand can be viewed as a Gamma

density.
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From the above results, we have the posterior

π(θ|x1, ..., xn) =
∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β+

n∑
j=1

xj)
s+m+n+1 B(s, x1, ..., xn,m, β)∑∞

s=0B(s, x1, ..., xn,m, β)
,

which shows that the posterior is another infinite mixture of Erlang distributions

and thus follows the same distribution as the prior, but with different parameters.

We realize that the function B(s, x1, ..., xn,m, β) is expressed in terms of the

coefficient C(l, x1, ..., xn). We next establish an equivalent recursive formula for

B(s, x1, ..., xn,m, β) which is independent of the C coefficients. Obtaining such

representation allows us to develop a more efficient algorithm updating the pre-

mium based on the new (n+ 1)th observation without resorting to the recalcula-

tion of all C coefficients from the beginning. We know the original specification

of B is

B(s, x1, ..., xn,m, β) =
s∑
l=0

(s+m+ n)!

l!(s− l +m)!

βs−l+m+1(
∑n

j=1 xj)
l

(β +
∑n

j=1 xj)
s+m+n+1

ζs−lC(l, x1, ..., xn).

By expanding C(l, x1, ..., xn) we have

B(s, x1, ..., xn,m, β)

=
s∑
l=0

(s+m+ n)!

l!(s− l +m)!

βs−l+m+1(
∑n

j=1 xj)
l

(β +
∑n

j=1 xj)
s+m+n+1

ζs−l

×
l∑

i=0

(
l

i

)
qi+1

(
xn∑n
j=1 xj

)i(
1− xn∑n

j=1 xj

)l−i
C(l − i, x1, ..., xn−1)
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=
s∑
i=0

s−i∑
k=0

(s+m+ n)!

(k + i)!(s− k − i+m)!

βs−k−i+m+1

(β +
∑n

j=1 xj)
s+m+n+1

ζs−k−i

×(k + i)!

k!i!
qi+1(xn)i(

n−1∑
j=1

xj)
kC(k, x1, ..., xn−1)

=
s∑
i=0

(s+m+ n)!

i!(s− i+m+ n− 1)!
qi+1

(β +
∑n−1

j=1 xj)
s−i+m+n

(β +
∑n

j=1 xj)
s+m+n+1

(xn)i

×
s−i∑
k=0

(s− i+m+ n− 1)!

k!(s− i− k +m)!
ζs−i−k

βs−i−k+m+1(
∑n−1

j=1 xj)
k

(β +
∑n−1

j=1 xj)
s−i+m+n

C(k, x1, ..., xn−1)

=
s∑
i=0

(s+m+ n)!

i!(s− i+m+ n− 1)!
qi+1

(β +
∑n−1

j=1 xj)
s−i+m+n

(β +
∑n

j=1 xj)
s+m+n+1

(xn)i

×B(s− i, x1, ..., xn−1,m, β)

=
s+m+ n

β +
∑n

j=1 xj

s∑
i=0

(s+m+ n− 1)!

i!(s− i+m+ n− 1)!
qi+1

(
β +

∑n−1
j=1 xj

β +
∑n

j=1 xj

)s−i+m+n

×
(

xn
β +

∑n
j=1 xj

)i
B(s− i, x1, ..., xn−1,m, β)

= (s+m+ n)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i=0

(
s+m+ n− 1

i

)
qi+1

×
(

1− xn
β +

∑n
j=1 xj

)s−i+m+n−1(
xn

β +
∑n

j=1 xj

)i
B(s− i, x1, ..., xn−1,m, β).

Note that the second equality is obtained by setting k = l − i.

The above result shows the formula to calculate function B recursively. The

initial condition can also be easily obtained and it is given by:

B(s, x1,m, β) = (s+m+1)
β

(β + x1)2

s∑
i=0

(
s+m

i

)
qi+1(

β

β + x1

)s+m−i(
x1

β + x1

)iζs−i.

Lastly we need to prove the convergence of
∑∞

s=0B(s, x1, ..., xn,m, β) so that
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the posterior density is well defined. From the above result we know

B(s, x1, ...xn,m, β)

= (s+m+ n)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i1=0

(
s+m+ n− 1

i1

)
qi1+1

×
(

1− xn
β +

∑n
j=1 xj

)s−i1+m+n−1(
xn

β +
∑n

j=1 xj

)i1
B(s− i1, x1, ..., xn−1,m, β)

≤ (s+m+ n)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i1=0

qi1+1B(s− i1, x1, ..., xn−1,m, β)

≤ (s+m+ n)(s+m+ n− 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i1=0

qi1+1

s−i1∑
i2=0

qi2+1B(s− i1 − i2, x1, ..., xn−2,m, β)

...

≤ (s+m+ n) · · · (s+m+ 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

s∑
i1=0

qi1+1

s−i1∑
i2=0

qi2+1 · · ·
s−i1−···−in−1∑

in=0

qin+1

= (s+m+ n) · · · (s+m+ 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

∑
· · ·
∑

i1+···+in=s
qi1+1qi2+1 · · · qin+1

= (s+m+ n) · · · (s+m+ 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2
Pr(N1 + · · ·+Nn = s)

= (s+m+ n) · · · (s+m+ 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2
Pr(N = s),

where Nk, k = 1, . . . , n are independent discrete phase-type distributions with

p.m.f qik+1 and N =
∑n

k=1 Nk. From the above result we have:

∞∑
s=0

B(s, x1, ..., xn,m, β) ≤
∞∑
s=0

(s+m+ n) · · · (s+m+ 1)
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2
Pr(N = s)

=
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2

∞∑
s=0

(s+m+ n) · · · (s+m+ 1)Pr(N = s)
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=
β +

∑n−1
j=1 xj

(β +
∑n

j=1 xj)
2
E(

n∏
k=1

(N +m+ k)).

Since the summation of independent discrete phase-type distributions is still a

discrete phase-type distribution, we know N follows a discrete phase-type distri-

butions. From Corollary 2.5 we know the factorial moment E(
∏n

k=1(N +m+ k))

is finite. Hence,
∑∞

s=0 B(s, x1, ..., xn,m, β) is convergent.

4.5.2 Proofs of Theorem 4.2

Theorem 4.2 Suppose X1|Θ, . . . , Xn|Θ are i.i.d. distributed random variables

with PH(α,T). If Θ follows a distribution specified by (3.32), the Bayesian

premium estimator is

E(Xn+1|X1, ..., Xn) = E(N)(β+
n∑
j=1

xj)

∑∞
s=0

1
s+m+n

B(s, x1, ..., xn,m, β)∑∞
s=0B(s, x1, ..., xn,m, β)

, (4.16)

where N is defined by (3.19), parameters m and β follows the same defini-

tions from Theorem 3.4 and B(s, x1, ..., xn,m, β) follows the same definition from

Lemma 4.1.

Proof. Here we will show two different approaches to derive the Bayesian pre-

mium. The simpler approach proceeds as following:

E(Xn+1|X1, ..., Xn) =

∫
µ(θ)π(θ|x1, ..., xn)dθ
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=

∫ ∞
0

E(N)θ−1

∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1

× B(s, x1, ..., xn,m, β)∑∞
s=0B(s, x1, ..., xn,m, β)

dθ

= E(N)(β +
n∑
j=1

xj)

∑∞
s=0

1
s+m+n

B(s, x1, ..., xn, β)∑∞
s=0B(s, x1, ..., xn)

.

This result can be also verified following an alternative approach outlined

below.

E(Xn+1|X1, ..., Xn) =

∫ ∞
0

xn+1f(xn+1|x1, ..., xn) dxn+1

=

∫ ∞
0

xn+1
f(x1, ...xn+1)

f(x1, ..., xn)
dxn+1 (4.17)

We have already known that f(x1, ..., xn) =
∑∞

s=0B(s, x1, ..., xn,m, β). The sub-

stitution of the numerator and denominator of (4.17) yields

E(Xn+1|X1, ..., Xn) =

∫ ∞
0

xn+1

∑∞
s=0B(s, x1, ..., xn+1,m, β)∑∞
s=0B(s, x1, ..., xn,m, β)

dxn+1

=
1∑∞

s=0 B(s, x1, ..., xn,m, β)

∫ ∞
0

xn+1

∞∑
s=0

B(s, x1, ..., xn+1,m, β) dxn+1

=
1∑∞

s=0 B(s, x1, ..., xn,m, β)

∫ ∞
0

xn+1

∞∑
s=0

(s+m+ n+ 1)
β +

∑n
j=1 xj

(β +
∑n+1

j=1 xj)
2

×
s∑
i=0

(
s+m+ n

i

)
qi+1

(
1− xn

β +
∑n+1

j=1 xj

)s−i+m+n(
xn+1

β +
∑n+1

j=1 xj

)i
×B(s− i, x1, ..., xn,m, β).
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After simplification the numerator of the above formula becomes

∞∑
s=0

s∑
i=0

(s+m+ n+ 1)!

i!(s+m+ n− i)!
qi+1B(s− i, x1, ..., xn,m, β)

×
∫ ∞

0

xn+1

(β +
∑n

j=1 xj)
s−i+m+n+1xn+1

i

(β +
∑n+1

j=1 xj)
s+m+n+2

dxn+1

=
∞∑
s=0

s∑
i=0

(s+m+ n+ 1)!

i!(s+m+ n− i)!
qi+1B(s− i, x1, ..., xn,m, β)(β +

n∑
j=1

xj)
s−i+m+n+1

×
∫ ∞

0

xi+1
n+1

(β +
∑n+1

j=1 xj)
s+m+n+2

dxn+1. (4.18)

To solve the integral part, we may assume that x = xn+1, a = i + 1, b =

s + m + n + 2, i.e b > a, and c = β +
∑n

j=1 xj to make the calculation more

convenient. So

∫ ∞
0

xi+1
n+1

(β +
∑n+1

j=1 xj)
s+m+n+2

dxn+1

=

∫ ∞
0

xa

(c+ x)b
dx

=
1

−b+ 1
xa(x+ c)−b+1

∣∣∣∣∞
0

−
∫ ∞

0

a

−b+ 1
xa−1(x+ c)−b+1 dx

=

∫ ∞
0

a

b− 1
xa−1(x+ c)−b+1 dx

=

∫ ∞
0

a(a− 1)

(b− 1)(b− 2)
xa−2(x+ c)−b+2 dx

...

=

∫ ∞
0

a(a− 1) · · · 1
(b− 1)(b− 2) · · · (b− a)

(x+ c)−b+a dx

=
a!

(b− 1)(b− 2) · · · (b− a)

∫ ∞
0

(x+ c)−b+a dx



4.5 Proofs 106

=
a!

(b− 1)(b− 2) · · · (b− a− 1)
c−b+a+1

=
(i+ 1)!

(s+m+ n+ 1) · · · (s− i+m+ n)

1

(β +
∑n

j=1 xj)
s−i+m+n

.

Substituting the above result back into (4.18) we have

E(Xn+1|X1, ..., Xn)

=
1∑∞

s=0 B(s, x1, ..., xn,m, β)

×
∞∑
s=0

s∑
i=0

(s+m+ n+ 1)!

i!(s+m+ n− i)!
qi+1B(s− i, x1, ..., xn,m, β)(β +

n∑
j=1

xj)
s−i+m+n+1

× (i+ 1)!

(s+m+ n+ 1) · · · (s− i+m+ n)

1

(β +
∑n

j=1 xj)
s−i+m+n

=

∑∞
s=0

∑s
i=0(i+ 1)qi+1B(s− i, x1, ..., xn,m, β) 1

s−i+m+n
(β +

∑n
j=1 xj)∑∞

s=0B(s, x1, ..., xn,m, β)

=

∑∞
i=0

∑∞
s=i(i+ 1)qi+1B(s− i, x1, ..., xn,m, β) 1

s−i+m+n
(β +

∑n
j=1 xj)∑∞

s=0 B(s, x1, ..., xn,m, β)

=

∑∞
i=0(i+ 1)qi+1

∑∞
s=iB(s− i, x1, ..., xn,m, β) 1

s−i+m+n
(β +

∑n
j=1 xj)∑∞

s=0 B(s, x1, ..., xn,m, β)

= E(N)(β +
n∑
j=1

xj)

∑∞
s=0

1
s+m+n

B(s, x1, ..., xn, β)∑∞
s=0B(s, x1, ..., xn,m, β)

.

We have showed that the Bayesian premium is consistent through different

methodologies.

4.5.3 Proof of Corollary 4.3

Corollary 4.3 Suppose a loss X has a likelihood X|Θ ∼ PH(α, θ(P − I)). If Θ

follows a distribution specified by (3.32) with m = 0 and {ζl} being a probability
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measure representing a Geometric distribution, i.e.

ζl = (1− p)lp, l ∈ Z+ ∪ {0},

where 0 < p < 1. Then the marginal distribution of X is

f(x) =
∞∑
l=0

ql+1
(l + 1) · βp · xl

(x+ βp)l+2
, (4.19)

where ql+1 is defined in Proposition 3.1.

Proof. When there is only one observation available and the parameter m equal

to 0 the B function can be expressed as

B(s, x,m = 0, β) =
s∑
l=0

(s+ 1)!

l!(s− l)!
βs+1−lxl

(β + x)s+2
ζs−lql+1.

We also know that the joint density function of X1, ..., Xn is f(x1, ..., xn) =∑∞
s=0 B(s, x1, ..., xn,m, β) from the previous section. Then,

f(x) =
∞∑
s=0

B(s, x, 0, β)

=
∞∑
s=0

s∑
l=0

(s+ 1)!

l!(s− l)!
βs+1−lxl

(β + x)s+2
ζs−lql+1

=
β

(β + x)2

∞∑
s=0

s∑
l=0

(s+ 1)!

l!(s− l)!
βs−lxl

(β + x)s
ζs−lql+1

=
β

(β + x)2

∞∑
l=0

∞∑
s=l

(s+ 1)!

l!(s− l)!
βs−lxl

(β + x)s
ζs−lql+1
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=
β

(β + x)2

∞∑
l=0

ql+1

∞∑
k=0

(k + l + 1)!

l!k!

βkxl

(β + x)k+l
ζk

By considering the case when ζk follows a Geometric distribution so that

ζk = (1− p)kp, k = 0, 1, 2, 3, ..., we have

f(x) =
β

(β + x)2

∞∑
l=0

ql+1

∞∑
k=0

(k + l + 1)!

l!k!

βkxl

(β + x)k+l
(1− p)kp

= βp
∞∑
l=0

ql+1

∞∑
k=0

(1− p)k (k + l + 1)!

(l + 1)!k!

βkxl+2

(β + x)k+l+2︸ ︷︷ ︸
NB(r = l + 2, p = β

β+x
)

(l + 1)

x2

= βp
∞∑
l=0

ql+1
(l + 1)

x2

∞∑
k=0

(1− p)kfNB(k)︸ ︷︷ ︸
p.g.f of NB, p(z)|z=1−p

= βp
∞∑
l=0

ql+1
(l + 1)

x2

(
1− β

β+x

1− β
β+x

(1− p)

)l+2

= βp
∞∑
l=0

ql+1
(l + 1)

x2

(
β + x− β

β + x− β(1− p)

)l+2

= βp
∞∑
l=0

ql+1
(l + 1)

x2

(
x

x+ βp

)l+2

= βp

∞∑
l=0

ql+1(l + 1)
xl

(x+ βp)l+2

=
∞∑
l=0

ql+1
(l + 1) · βp · xl

(x+ βp)l+2
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4.5.4 Proofs of Corollary 4.4

Corollary 4.4 Suppose a loss X has a likelihood X|Θ ∼ PH(α, θ(P − I)). If

the posterior Θ|X1, . . . , Xn follows a distribution specified in Lemma 4.1, then

the density function of the predictive distribution is given by

f(xn+1|x1, . . . , xn) =

∑∞
k=0B(k, x1, ..., xn+1,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

, (4.20)

where the function B(k, x1, . . . , xn,m, β) is also specified in Lemma 4.1.

Proof. We have that

f(xn+1|x1, . . . , xn)

=

∫ ∞
0

f(xn+1|θ)π(θ|x1, . . . , xn)dθ

=

∫ ∞
0

∞∑
l=0

ql+1θe
−θxn+1

(θxn+1)l

l!

∞∑
s=0

e−θ(β+
∑n
j=1 xj)θs+m+n

(s+m+ n)!
(β +

n∑
j=1

xj)
s+m+n+1

× B(s, x1, ..., xn,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

dθ

=

∫ ∞
0

∞∑
l=0

∞∑
s=0

ql+1θ
s+l+m+n+1e−θ(β+

∑n+1
j=1 xj)

(xn+1)l

l!

(β +
∑n

j=1 xj)
s+m+n+1

(s+m+ n)!

× B(s, x1, ..., xn,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

dθ

=

∫ ∞
0

∞∑
l=0

∞∑
s=0

(β +
n+1∑
j=1

xj)e
−θ(β+

∑n+1
j=1 xj)

[(β +
∑n+1

j=1 xj)θ]
s+l+m+n+

(s+ l +m+ n+ 1)!

(s+ l +m+ n+ 1)!

(s+m+ n)!l!
ql+1

×

(
xn+1

β +
∑n+1

j=1 xj

)l(
β +

∑n
j=1 xj

β +
∑n+1

j=1 xj

)s+m+n+1
1

β +
∑n+1

j=1 xj

B(s, x1, ..., xn,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

dθ

=
∞∑
l=0

∞∑
s=0

ql+1
(s+ l +m+ n+ 1)!

(s+m+ n)!l!

(
xn+1

β +
∑n+1

j=1 xj

)l(
β +

∑n
j=1 xj

β +
∑n+1

j=1 xj

)s+m+n+1
1

β +
∑n+1

j=1 xj
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× B(s, x1, ..., xn,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

=
∞∑
k=0

k∑
l=0

ql+1

β +
∑n

j=1 xj

(β +
∑n+1

j=1 xj)
2
(k +m+ n+ 1)

(k +m+ n)!

l!(k − l +m+ n)!

(
xn+1

β +
∑n+1

j=1 xj

)l

×

(
β +

∑n
j=1 xj

β +
∑n+1

j=1 xj

)k−l+m+n
B(k − l, x1, ..., xn,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

=
1∑∞

t=0B(t, x1, ..., xn,m, β)

∞∑
k=0

(k +m+ n+ 1)
β +

∑n
j=1 xj

(β +
∑n+1

j=1 xj)
2

k∑
l=0

(
k +m+ n

l

)

×

(
xn+1

β +
∑n+1

j=1 xj

)l(
β +

∑n
j=1 xj

β +
∑n+1

j=1 xj

)k−l+m+n

B(k − l, x1, ..., xn,m, β)

=

∑∞
k=0 B(k, x1, ..., xn+1,m, β)∑∞
t=0B(t, x1, ..., xn,m, β)

.

The last step is achieved by applying the recursive relation specified by Equation

4.15 in Lemma 4.1.



Chapter 5

Conclusions and Future Work

In this thesis, we derived original credibility models under the assumption that

individual losses depending on his risk parameter value θ follows a phase-type

distribution. Since the risk parameter θ for a policyholder is never known, we

constructed premium estimators following Bayesian inference techniques. By im-

posing a prior distribution on Θ, we are able to probabilistically describe the risk

structure for the entire rating class. In practice, the choice of this prior distribu-

tion is subjective to personal judgements or induced from historical data of the

corresponding group.

The focus of Chapter 3 is to determine Bühlmann credibility when losses

follows a phase-type distribution. The problem is well-understood for linear ex-

ponential family, wherein exact credibility occurs. We are interested to see if it’s

still the case under the phase-type text. In section 3.2, we constructed a family

of conjugate priors for phase-type distributions. The prior was found to be in
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the form of a possibly infinite mixture of Erlang distributions. One motive for

using this distribution is to investigate the exact credibility property which is well

known for linear exponential family with corresponding conjugate priors. Lastly,

the explicit form of the Bühlmann premium estimator is obtained based on this

prior.

The Bayesian premium was treated in Chapter 4 based on the same distribu-

tional assumptions. The solution obtained was much more complicated than the

Bühlmann estimator and involved certain infinite series with the general term ex-

pressed by a recursive relation. We were able to show that the Bayesian estimator

was well defined but unfortunately, this infinite series portion was very difficult

to evaluate analytically due to its algebraic complexity. Therefore a numeric al-

gorithm was designed to approximate this quantity and simulation studies were

also performed for both Bayesian and Bühlmann estimators.

One important experiment was to compare the squared error losses yielded

by both estimators: we want to know how much difference there is between the

accuracy of the Bühlmann case and the Bayesian case. Theoretically the Bayesian

estimator should yield lower squared error loss than the Bühlmann one. We

performed a series of comparisons based on conjugate priors comprising different

numbers of Erlang distributions. Our findings are consistent with the theory,

although the differences between the differences in the squared error losses of

the Bayesian and Bühlmann premiums were often found to be small. We’d also

like to point out that our squared error losses were not obtained by algebraic
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means, but rather estimated based on a number of simulated losses depending

on different values of θ. By the law of large numbers, such estimation improves

as more repeated samplings of θ and losses are involved. However, our numeric

algorithm for Bayesian premium estimation is quite time consuming, which makes

the computational cost for large scale experimentation fairly high. For instance,

it can take more than 2 weeks for one machine to complete the computation of

Bayesian premiums for 200 different θs. To reduce the running time, we leveraged

high performance computing platforms with MPI parallel computing package, by

which most of our experiments were completed within 5 days.

To continue this work we list a few directions to pursue. One interesting

problem would be to investigate if Corollary 4.3, which studies the marginal

distribution of one loss under a specific prior/likelihood setting, can be extended

by considering the marginal joint distribution of multiple losses with more relaxed

assumption on {ζl}. We can also revisit the Bayesian premium problem but

from a simulation based approach. If we can obtain reliable samplings from

the conditional density of future loss f(xn+1|x1, . . . , xn) via some algorithms, for

instance MCMC, a Bayesian premium approximation can be easily obtained. This

may offer better computational efficiency than the current algorithm introduced

in section 4.4. We also wish to dedicate more effort to better understanding the

algebraic structure of the infinite series in equation (4.16). The function denoted

B incorporated quite complex structures and our algorithm determines its status

of convergence by considering the sequential difference of two consecutive terms.
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We are wondering if there is another termination condition we can apply in terms

of determining how many terms to calculate. Lastly we could investigate further

in an even more important model, the Bühlmann-Straub model, which is a more

generalized model of the Bühlmann premium estimator.
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Trans. Soc. Act. 41, 43–88. 14

Hewitt(Jr.), C. (1970). Credibility for severity. Proceedings of the Casualty Ac-

tuarial Society 57, 148–171. 14

Jensen, A. (1953). Markoff chains as an aid in the study of markoff proceesses.

Skand. Aktuarietidskr 36, 87–91. 30

Jewell, W. (1974a). Crediblity means are exact bayesian for exponential families.

ASTIN Bulletin 4, 77–90. 7, 14

Jewell, W. (1974b). Regularity conditions for exact credibility. ASTIN Bulletin 8,

336–341. 14

Johnson, M. and M. R. Taaffe (1988). The denseness of phase distributions.

Working Paper, Purdue University. 30

Klugman, S. (1992). Bayesian statistics in actuarial sciences with emphasis on

credibility. Boston, MA: Kluwe. 5



BIBLIOGRAPHY 119

Klugman, S., T. Rhodes, M. Purushotham, and S. Gill (2009). Credibility theory

practice. MIB Solutions . 6

Klugman, S. A., H. H. Panjer, and G. E. Willmot (2008). Loss Models from Data

to Decisions. Hoboken, New Jersey: John Wiley and Sons. Inc. 5, 8, 12, 24,

28, 29, 64

Landsman, Z. and U. Makov (1998). Exponential dispersion models and credi-

bility. Scandinavian Actuarial Journal 1, 89–96. 5

Landsman, Z. and U. Makov (2000). On credibility evaluation and the tail area of

the exponential dispersion family. Insurance: Mathematics and Economics 27,

277–283. 6

Latouche, G. and V. Ramaswami (1999). Introduction to Matrix Analytic Methods

in Stochastic Modeling. Philadelphia, Pennsylvania: Society for Industrial and

Applied Mathematics. 16, 21, 36, 62

Longley-Cook, L. H. (1962). An introduction to credibility theory. Proceedings

of the Casualty Actuarial Society 49, 194–221. 12

Makov, U., A. Smith, and Y. Liu (1996). Bayesian methods in actuarial science.

Journal of the Royal Statistical Society 45, 503–515. 15

Mayerson, A. L. (1964). A Bayesian view of credibility. Proc. Cas. Act. Soc. 51,

85–104. 5



BIBLIOGRAPHY 120

Meester, L. E. and M. Sander (2007). Stochastic delay propagation in railway

networks and phase-type distributions. Transportation Research 41 (2), 218–

230. 7

Mowbray, A. H. (1914). How extensive a payroll exposure is necessary to give a

dependable pure premium? Proceedings of the Casualty Actuarial Society I,

24–30. 3

Neuts, M. (1981). Matrix-geometric solutions in stochastic models, Volume 2

of John Hoplins Series in the Mathematical Sciences. Baltimore, Md: Johns

Hopkins University Press. 6, 16, 18, 19, 20

Neuts, M. (1989). Structured stochastic matrices of the M/G/1 type and their

applications, Volume 5 of Probability: Pure and Applied. New York: marcel

Dekker Inc. 16

Neuts, M. (1995). Algrothmic probability. Stochastic Modeling Series. London:

Chapman & Hall. 16

Norberg, R. (1979). The credibility approach to experience rating. Scandinavian

Actuarial Journal , 181–221. 2

Norberg, R. (2004). Credibility theory. Encyclopedia of Actuarial Science, 398–

406. 12, 13

Schmidt, K. (1980). Convergence of bayes and credibility premium. Astin

Bull. 10, 167–172. 15



BIBLIOGRAPHY 121

Shanthikumar, J. (1985). Bilateral phase-type distributions. Naval Research

Logistics Quarterly 32, 119–135. 30

Stanford, D. (2011). Discussion on the paper “Risk modelling with the mixed

erlang distribution” by G.E. Willmot and X.S. Lin. Appl. Stochastic Models

Bus. 21, 17–18. 30

Tschupp, M. (2011). Application of credibility theory to group life insurance.

Milliman Research Report . 6

Whitney, A. W. (1918). The theory of experience rating. Proceedings of the

Casualty Actuarial Society 4, 274–292. 5, 11



Curriculum Vitae

Name: Yanyan Zang

Post-Secondary University of Western Ontario
Education and London, ON, Canada
Degrees: 2009 - 2013, Ph.D Candidate

University of Western Ontario
London, ON
2008 - 2009, M.Sc

Honours and Western Graduate Research Scholarship
Awards: 2008 - 2013

Related Work Teaching Assistant and Research Assistant
Experience: University of Western Ontario

2008 - 2013


	Credibility theory for phase-type distributions
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Credibility Theory
	2.1.1 Limited Fluctuation Credibility Theory
	2.1.2 Greatest Accuracy Credibility Theory

	2.2 Phase-type Distributions
	2.2.1 Continuous Phase-type Distributions
	2.2.2 Discrete Phase-type Distributions

	2.3 Proofs
	2.3.1 Proof of Proposition 2.2


	3 Bühlmann Premium for Phase-type Distributed Losses
	3.1 The Bühlmann Premium
	3.2 Expressing Phase-type Distributions as Infinite Mixtures of Erlang Distributions
	3.3 Conjugate Prior for Phase-type Distributions
	3.4 Bühlmann Premium for Phase-type Distributed Losses
	3.5 Examples
	3.6 Proofs
	3.6.1 Proof of Proposition 3.1
	3.6.2 Proof of Corollary 3.2
	3.6.3 Proof of Theorem 3.4
	3.6.4 Proof of Theorem 3.5


	4 Bayesian Premium for Phase-type Distributed Losses
	4.1 The Bayesian Premium
	4.2 Bayesian Premium for Phase-type Distributed Losses
	4.3 Marginal and Predictive Distributions for the Losses
	4.4 Examples
	4.5 Proofs
	4.5.1 Proof of Lemma 4.1
	4.5.2 Proofs of Theorem 4.2
	4.5.3 Proof of Corollary 4.3
	4.5.4 Proofs of Corollary 4.4


	5 Conclusions and Future Work
	Bibliography
	Curriculum Vitaes

