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ABSTRACT 

Intermittent hypoxia (IH) is a major pathophysiological manifestation of 

obstructive sleep apnea (OSA). Previous studies have implicated IH in mediating 

many pathophysiological outcomes associated with OSA. Only few studies have 

examined IH-induced alterations to central signaling pathways important in 

cardiovascular and metabolic phenotypes associated with OSA. This thesis 

employed a rodent model of IH to examine changes to molecular neural pathways 

associated with metabolic and cardiovascular pathophysiological outcomes of OSA. 

Acute IH induces a specific negative body energy balance phenotype. This is 

concomitant to a reduction in body weight and food intake, with an elevation in food 

conversion efficiency. Increased plasma leptin concentrations also occur 

immediately following acute IH, which is mirrored by increased activation of leptin-

signaling and satiety-inducing molecules within the arcuate nucleus of the 

hypothalamus (ARC). The effects observed on body energy balance following acute 

IH are attenuated in the homozygous leptin-deficient KILO rat, suggesting the 

importance of elevated leptin in mediating the body energy balance responses 

following acute IH. Over chronic IH exposure, rats have a complex metabolic 

phenotype, which includes a reduction in body weight and body fat mass. 

Throughout the chronic period of exposure, animals develop a resistance to the 

hormone leptin, the primary hallmark for the development of obesity. This is 

concomitant to increased food intake and fat-standardized plasma leptin 

concentrations. Within ARC, leptin-associated signaling pathways are not activated, 

and there is less protein content of satiety-inducing proteins. There is also more 

protein of a negative regulator of leptin signaling in ARC following chronic IH. 
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Chronic IH also elevates resting blood pressure and reduces baroreceptor reflex 

gain, which are associated with reduced neuroplasticity markers within the nucleus 

of the solitary tract. Some of the changes observed over acute IH in these markers 

are leptin-dependent, as they are abolished in the leptin-deficient KILO rat. Leptin 

appears to interact at the major sensory site for IH, the carotid body, with the renin-

angiotensin system, as blockers captopril and losartan inhibit IH-induced alterations 

to leptin signaling molecules. This thesis shows potential mechanisms by which IH 

can induce cardiovascular and metabolic phenotypes observed in OSA patients. 
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INTRODUCTION AND BACKGROUND 
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1. INTRODUCTION 

This thesis focuses on consequences of intermittent hypoxia, a major 

pathophysiological manifestation of obstructive sleep apnea. In particular, 

alterations to energy balance, and the cardiovascular system were assessed. In 

addition to these physiological changes, associated neural pathways were 

evaluated for alterations that may serve as determinants in mediating these 

changes. The first chapter will provide 1) an overview of obstructive sleep apnea, 

2) current understanding and mechanisms of hypoxia in body energy balance 

and cardiovascular disease, and 3) an overview of the leptin hormonal system as 

it pertains to body energy and cardiovascular systems. 

 

1.1  OBSTRUCTIVE SLEEP APNEA 

 

1.1.1 Disease description 

Obstructive sleep apnea (OSA) is a chronic, progressive disease. OSA 

patients experience episodic partial (apnea) or complete (hypopnea) closure of 

the upper airway during sleep (Dempsey et al., 2010). These closures prevent 

appropriate air flow into and out of the lungs, despite respiratory effort. As a 

result, alveolar partial pressure of oxygen is reduced, leading to a hypoxic state 

during the airway closure. This, in turn, causes a reduction in blood-oxygen 

pressure and hypoxemia. The overall effect of these repeated closures during 

sleep is a state of intermittent hypoxia (IH) and intermittent hypoxemia.  These 

events and their resultant IH lead to arousals, disrupting sleep architecture and 
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elevating activity of the autonomic nervous system above normal levels. 

Resulting from the reductions in gas exchange across the blood-gas barrier, 

hypercapnea is also commonly observed in patients with OSA. Likewise, 

intrathoracic reductions in pressure are observed as an individual struggles to 

breathe without success. 

 The first reports of OSA come from British physicians in the 1870s, who 

described individuals having “fruitless contractions of the inspiratory and 

expiratory muscles against glottis obstruction… during sleep” (Lavie, 2003). It 

was not until the 1960s that OSA was described in obese subjects experiencing 

arousals resulting from episodic airway obstruction (Gastaut et al., 1966). These 

results brought to light the concept that obesity, sleepiness, sleep disruption and 

nocturnal airway obstruction may be linked.  

 

1.1.2 Diagnosis and treatment of OSA 

OSA is diagnosed following overnight observation and polysomnography. 

Determinations of the number of apneic or hypopneic events per hour are 

calculated, representing the Apnea-Hypopnea Index (AHI). A patient with an AHI 

greater than five is considered to have a mild form of OSA, while those with an 

AHI greater than 30 are considered to have severe OSA. Significant reductions 

blood-oxygen saturation have also been described as important markers for 

OSA, with a measure of time below 90% blood-oxygen saturation being utilized 

to identify susceptibility to cardiovascular events (Nieto et al., 2000). 
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OSA is primarily treated using continuous positive airway pressure 

(CPAP) devices, since CPAP is highly effective at reducing apneic events and 

pathophysiology associated with OSA (Faccenda et al., 2001; Jenkinson et al., 

1999). That said, there is still a considerable problem with adherence among 

individuals using CPAP, despite the association between daytime sleepiness and 

severity of OSA with the likelihood of using the CPAP system (Hoy et al., 1997).  

Alternative treatments for OSA include surgery, particularly for individuals 

with anatomical-related disposition to apnea. The most common surgical 

intervention for OSA is the uvulopalatopharyngoplasty, which is not necessarily 

recommended for OSA patients without anatomical dispositions to apnea, since 

less than half of individuals treated in this way have AHI reduced to less than 20 

events per hour.  

Oral appliances are another major form of treatment for patients with OSA. 

The devices used are generally either mandibular advancement devices or 

tongue retainers, which prevent the collapse of the upper airway (Ferguson et al., 

1996, 1997). Certainly these devices have their place in the treatment of mild-to-

moderate cases of OSA, and are more effective than surgical interventions, 

though they are generally less effective than CPAP (American Academy of Sleep 

Medicine Task Force, 1999). 
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1.1.3 Prevalence of OSA  

The Wisconsin Sleep Cohort, a study involving 602 middle-aged (30-60 

years old) subjects, found the proportion of males and females with OSA to be 

24% and 9%, respectively. Despite this prevalence, only 4% of males and 2% of 

females experience daytime somnolence, although having an AHI >5, suggesting 

a significant under-diagnosis of the disease (Young et al., 1993). More recently, it 

was estimated that 17% of this same age-group in the United States suffered 

from at least mild sleep apnea, and approximately 6% suffered from at least 

moderate sleep apnea, and 41-58% of the burden of sleep apnea was due to 

excess body weight (Young et al., 2005). Interestingly, countries such as Brazil 

and some Asian countries have higher prevalence of OSA, despite lower 

prevalence of obesity (Ip et al., 2001; Sharma and Ahluwalia, 2010). 

Nonetheless, obesity is a major risk factor for the development of OSA, as an 

increase of 6 kg/m2 on the body mass index (BMI) scale results in an increased 

risk of OSA by 4-times (Young et al., 1993). It is estimated that 70% of OSA 

patients suffer from obesity (Malhotra and White, 2002). 

 

1.1.4 Comorbidities of OSA  

While obesity is a major risk factor for the development of OSA, there are 

many other comorbidities of OSA. There are three major categories of OSA 

comorbidities: cardiovascular, metabolic and neurocognitive. 
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1.1.4.1 Cardiovascular comorbidities 

1.1.4.1.1 Systemic Hypertension 

Blood pressure in normal individuals is reduced during sleep, compared to 

normal waking pressures. This “dipping” is not observed in many patients with 

OSA, attributable to vasoconstriction during the apneic period (Golbin et al., 

2008). An event-associated increase in both systolic and diastolic blood pressure 

was observed in the Sleep Heart Health Study, which involved more than 6000 

patients (Nieto et al., 2000). Likewise, Lavie and colleagues (2000) showed a 

one percent increased risk of hypertension for every increase of one unit on the 

AHI scale. The Wisconsin Sleep Cohort, a prospective study, determined an 

event-associated increase in hypertension at four years follow-up, even after 

accounting for known confounders. Other studies have not displayed a significant 

effect of OSA on blood pressure, especially when BMI is taken into 

consideration. However, OSA is considered by many to be a major risk factor for 

the development of secondary hypertension (Bradley and Floras, 2009; 

Chobanian et al., 2003). Likewise, use of CPAP is able to reduce blood pressure 

and sympathetic activity in patients (Dimsdale et al., 2000; Haentjens et al., 

2007).  

 

1.1.4.1.2 Pulmonary Hypertension 

Pulmonary hypertension is diagnosed following right heart catheterization 

measurement of pulmonary arterial pressure of greater than 25 mmHg.  The 

pathophysiology of pulmonary hypertension in OSA could be explained by the 
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fact that chronic respiratory diseases that induce hypoxia appear to remodel the 

pulmonary arteries (Presberg et al., 2003). Pulmonary hypertension prevalence 

in patients with OSA has been estimated at 41%, when adjusted for confounding 

variables, including BMI (Sajkov et al., 1994). CPAP reduces pulmonary arterial 

blood pressure (Arias et al., 2006). 

 

1.1.4.1.3 Cardiac Arrhythmias 

In the cross-sectional Sleep Heart Health Study, severe OSA patients had 

four times the frequency of having atrial fibrillation, when adjusted for 

confounders, including BMI. OSA patients had three-times the frequency of 

having nonsustained ventricular tachycardias when adjusted for confounders 

(Mehra et al., 2006). Bradyarrhythmias are also found in patients with OSA, and 

it has been shown that CPAP use can reduce this difference (Guilleminault et al., 

1983).  

Cardiovascular mortality is elevated in men and women with severe OSA 

and mortality can be reduced by implementation of CPAP (Marin et al., 2005; 

Campos-Rodriguez et al., 2012). This may be due to alterations in the timing of 

severe cardiac events, as it has been shown that these are more likely to occur 

during sleep hours of patients with OSA, while it is more frequent in the morning 

for normal people (Gami et al., 2005). 
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1.1.4.1.4 Stroke 

In a prospective study by Redline and colleagues (2010) stemming from 

the Sleep Heart Health Study, it was shown that moderate-to-severe OSA is 

associated with a three-fold risk of stroke over an eight year period. This 

association is supported by findings of the Wisconsin Sleep Cohort, which shows 

moderate-to-severe OSA is a significant risk factor for stroke (Arzt et al., 2005), 

and this may be associated with the severity of the disease (Yaggi et al., 2005). 

Interestingly, the development and progression of OSA may be bidirectionally 

associated with incident stroke, as apneas are associated with decreased blood 

flow following stroke, which may induce thrombosis (Netzer et al., 1998). CPAP 

therapy has beneficial effects in decreasing mortality in OSA patients with stroke 

(Martinez-Garcia et al., 2009). 

 

1.1.4.2 Metabolic comorbidities 

 

1.1.4.2.1 Obesity 

Obesity is an energy balance disease, resulting from a chronic state of 

positive energy balance, such that energy consumed is not adequately utilized. 

Excess calories are stored in adipose tissue depots located throughout the body. 

A concomitant increase in lean mass is also observed, resulting in significant 

weight gain and elevation of body mass index (BMI; Williams and Fruhbeck, 

2009). OSA is associated with obesity, as previously mentioned and illustrated by 

the fact that obese patients with OSA that undergo bariatric surgery have 
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improvements in OSA parameters such as oxygen saturation and sleep 

disturbances (Haines et al., 2007). Similar results have been obtained in studies 

using sibutramine-induced weight loss (Sutherland et al., 2011). Patients 

diagnosed with OSA appear to have trouble losing excess weight when 

compared to non-apneics with the same level of obesity. Likewise, patients with 

OSA tend to gain weight over the course of their disease (Phillips et al., 1999). 

As a result, it is clear that a bidirectional relationship exists between obesity and 

OSA, though this has not received much scientific study. 

 

1.1.4.2.2 Metabolic syndrome 

The metabolic syndrome is a cluster of metabolic pathophysiologies that 

include obesity, insulin resistance, hypertension and dyslipidemia. The criteria by 

which individuals are diagnosed with the metabolic syndrome include specific 

cut-offs of specific measures that fall under the umbrella of the pathophysiologies 

mentioned above, including altered cholesterols, elevated blood pressure and 

triglycerides, glucose intolerance, and elevated BMI (American Medical 

Association, 2001). Current guidelines suggest that a patient experience any 

combination of three of these issues, and obesity is not a requirement for 

diagnosis. It is estimated that the prevalence of the metabolic syndrome in 

developed countries is 23% (Ford et al., 2002).   

 Studies have emerged examining a potential relationship between OSA 

and the metabolic syndrome. OSA was found to be associated with specific 
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criteria of the metabolic syndrome, and the syndrome itself, with an odds ratio of 

around 9 (Coughlin et al., 2004). The severity of OSA may also predict the 

number of criteria of the metabolic syndrome (Lam et al., 2006). Interestingly, 

OSA is associated with a worse metabolic profile of individuals who were not 

obese, and associated with the presence of the metabolic syndrome (Kono et al., 

2007). 

 

1.1.4.2.3 Insulin resistance 

Insulin resistance is a hallmark manifestation of the metabolic syndrome, 

and type II diabetes mellitus. The prevalence of OSA within type II diabetics is 

estimated at 23%, and OSA is correlated with type II diabetes, regardless of 

appropriate confounders such as BMI, age and neck size (West et al., 2006). The 

use of CPAP in modulating glycemia has only provided weak, observational 

evidence to support a role of OSA treatment in improving hyperglycemia (Babu et 

al., 2005; Hassaballa et al., 2005). The Wisconsin Sleep Cohort failed to show 

provide an increased incidence of diabetes in OSA patients after adjustment at 

follow-up, and so a causal role for OSA in diabetes is not able to be made 

(Reichmuth et al., 2005). 

 

1.1.4.2.4 Dyslipidemia 

Many studies have observed associations between OSA and poor lipid 

profiles. The Sleep Heart Health Study, for example, showed a significant 
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negative association between OSA severity and high-density lipoprotein levels, 

whereas a significant positive association was observed between OSA severity 

and circulating triglyceride concentrations when adjusted for confounders 

(Newman et al., 2001). Other studies have shown similar effects in patients 

matched by BMI (McNicholas et al., 2007; Coughlin et al., 2004). Despite this, 

CPAP intervention studies have failed to show convincing significant 

improvement in cholesterol or triglyceride levels (Coughlin et al., 2007; Robinson 

et al., 2004). 

 

1.1.4.3 Neurocognitive comorbidities 

One of the primary symptoms of OSA is excessive daytime somnolence. 

This experience of increased sleepiness is associated with a variety of cognitive 

deficits including decreased alertness, reduced psychomotor speed and impaired 

executive function (Beebe et al., 2003). These abnormalities result in increased 

risk of automobile accidents and a significant reduction in the perceived quality of 

life (Beebe et al., 2003). A loss of gray matter has been observed in OSA 

patients, associated with these symptoms, an effect which can be altered by 

CPAP use (Canessa et al., 2011; Thomas et al., 2012). Interestingly, the use of 

CPAP appears to have greater beneficial effect on these variables in children, 

compared with adults (Sanchez et al., 2009; Ferini et al., 2003; Marcus et al., 

2012; Gurubhagavatula, 2010). 
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1.1.5 Intermittent hypoxia as a model for OSA 

Animal models employing IH have been used for the study of mechanistic 

effects of OSA-induced IH since 1992 (Fletcher et al., 1992). There are two major 

types of rodent IH models: sleep-dependent and sleep-independent IH. Sleep-

dependent IH relies on the presence of sleep for the induction of the model and 

requires significant physiological measurement, including 

electroencephalography and electromyography (Tagaito et al., 2001). This model 

is expensive, time-consuming, low-throughput, and rarely employed. 

  The second, more commonly used IH model is sleep-independent. 

Reductions in available oxygen and a subsequent return to normoxia are applied 

to the animal as many as 60 times per hour, with oxygen nadirs ranging from as 

low as 3% to as high as 10% (Polotsky et al., 2006; Veasey et al., 2004; Gozal et 

al., 2001; Peng et al., 2003). Specific experimental conditions vary widely 

between research groups. Exposure to these conditions is typically during the 

sleep-cycle of the animal, and has been shown to correlate well with oxygen 

saturation values observed in patients with OSA (Jun et al., 2010; Louis and 

Punjabi, 2009). Recently, sleep-independent models of IH have been employed 

(Louis and Punjabi, 2009). 
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1.2  HYPOXIA-SENSING AND THE CARDIOVASCULAR SYSTEM 

 

1.2.1 Peripheral arterial chemoreceptors 

Within the body, hypoxia is primarily sensed by peripheral arterial 

chemoreceptors. These specialized tissues are made up of type I glomus cells 

and type II sustentacular cells within the carotid and aortic bodies. These small 

pieces of tissue are located near the carotid bifurcation and aortic arch. Glomus 

cells are specialized receptors that are hypoxia-sensitive and release a number 

of neurotransmitters in response to altered O2 and CO2/H
+ homeostasis 

(Gonzalez et al., 1994). Sustentacular cells are supportive in nature, and don’t 

appear to have a function related to hypoxia-sensing. Changes in altered blood 

gas homeostasis activate glomus cells, causing the release of excitatory 

neurotransmitters onto the terminals of the carotid sinus branch of the 

glossopharyngeal nerve (Gonzalez et al., 1994; Nurse, 2010; Lopez-Barneo, 

2003). The subsequent neuronal activity results in activation of cardiorespiratory 

reflexes within the brainstem to alter blood gases to appropriate levels. Activation 

of the arterial chemoreceptors initiates what is known as the peripheral 

chemoreceptor reflex, resulting in an elevation of phrenic motor output to the 

diaphragm, and both sympathetic and parasympathetic efferent branches of the 

autonomic nervous system, with a resulting elevation in ventilation and blood 

pressure, and paradoxical bradycardia (Alsberge et al., 1988; Kumar, 2009). 
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1.2.2 Chemoreceptor reflex activation of the sympathetic nervous system 

Much of the evidence indicating the neural structures underlying the 

sympathetic responses to peripheral chemoreceptor reflex activation has been 

acquired in anaesthetized animal preparations. Nonetheless, activation of the 

peripheral chemoreceptor reflex induces phrenic nerve discharge and 

sympathetic nerve activity to the heart and blood vessels following specific 

activation of the carotid bodies or hypoxia (Koshiya et al., 1993; Koshiya and 

Guyenet, 1996a). This activation is eliminated following denervation of the carotid 

bodies (Koshiya and Guyenet, 1996a). The sensory component of the carotid 

chemoreceptor reflex begins with the release of excitatory neurotransmitter onto 

the afferents of the carotid sinus nerve, resulting in activation of the nucleus of 

the solitary tract (NTS). The NTS is the primary site of the termination of 

cardiorespiratory reflexes originating in the aortic and carotid bodies (Ciriello, 

1994), and contains neurons that are activated by chemoreceptor stimulation and 

project to the rostral ventrolateral medulla (RVLM; Koshiya and Guyenet, 1996b; 

Ciriello and Moreau, 2013). It is believed these NTS-RVLM neurons are 

independent of baroreceptor input and respiratory entrainment, regardless of the 

activity of the chemoreceptor reflex (Koshiya and Guyenet, 1996b).  The 

sympathetic outflow from the activation of the chemoreceptor reflex originates as 

signals from the pre-sympathetic neurons of the RVLM, perhaps due to activation 

of these NTS-RVLM neurons. The recruitment of a given subset of these neurons 

will alter the tissue to which sympathetic tone will be changed by activating 

specific sympathetic pre-ganglionic neurons of the spinal cord (Dampney, 1994). 
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How these neurons are recruited to mediate an elevation in sympathetic tone is 

still a matter of controversy (Guyenet, 2000). Increases in hypoxia-related 

sympathetic activity will cause vasoconstriction (Hudson et al., 2011) and a 

release of catecholamines from the adrenal medulla (Prabhakar et al., 2012). 

 

1.2.3 Intermittent hypoxia and cardiorespiratory reflexes 

 

1.2.3.1 Effect on peripheral chemoreceptor reflex 

Individual bouts of short-term hypoxia are observed during IH, which 

activate the peripheral chemoreceptor reflex in the same way as continuous 

hypoxia mentioned above, though with a reduced ventilatory response 

(Prabhakar et al., 2005; Reeves et al., 2003). In fact, a potentiation of the 

chemoreceptor reflex due to sensory long-term facilitation (sLTF) of the 

chemoreceptors has been identified in animals exposed to IH (Prabhakar et al., 

2005; Prabhakar et al., 2009), but not sustained hypoxia (Baker and Mitchell, 

1999; 2000). Likewise, acute IH alters expression of glutamatergic receptors 

within the dorsocaudal brainstem (containing the NTS region), whereas 

sustained hypoxia does not (Reeves et al., 2003). This sLTF is concomitant to an 

elevation of sympathetic nervous tone and blood pressure following acute IH in 

both rats (Dick et al., 2007; Xing and Pilowsky, 2010; Mandel and Schreihofer, 

2009) and humans (Leuenberger et al., 2005). Even after acute exposure to IH, 

this increased sympathetic activity persists following the discontinuation of 
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hypoxia (Fuller et al., 2000), though the increased blood pressure was transient 

(Leuenberger et al., 2005).  

Chronic IH (CIH), like acute IH, has significant cardiovascular 

consequences. Long-lasting elevations in resting blood pressure and 

sympathetic activity are found in animals (Zoccal et al., 2007, 2008; Bao et al., 

1997) and humans (Tamisier et al., 2011) following CIH. These changes in blood 

pressure are likely mediated by a combination of the sympathetic nervous 

system (Fletcher et al., 1992b), and vascular factors such as angiotensin II (Ang 

II), catecholamines and vasopressin (Foster et al., 2010; Bao et al., 1997; 

Fletcher et al., 1999; Fernandes et al., 2005). 

 The role of the peripheral chemoreceptor reflex in mediating the CIH-

induced blood pressure effects are highlighted by the fact that denervation of the 

carotid sinus nerve prior to exposure to CIH in rats, eliminates the cardiovascular 

alterations observed (Fletcher et al., 1992a). Meanwhile, the autonomic 

alterations observed following hypoxia are eliminated when chemoreceptors are 

inhibited by hyperoxia (Querido et al., 2010). 

CIH potentiates the sympathetic response to additional bouts of hypoxia. 

In studies assessing the afferent signaling from the carotid bodies, previous 

exposure to CIH, but not normoxia, caused an increased cellular response (Peng 

and Prabhakar, 2004; Rey et al., 2004). A similar effect was observed for efferent 

sympathetic responses to hypoxia (Huang et al., 2009; Greenberg et al., 1999). 
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At least some of this response is mediated by an alteration in central responses 

within NTS (Kline, 2010). 

 

1.2.3.2 Effect on arterial baroreceptor reflex 

In opposition to the peripheral chemoreceptor reflex, activation of the 

arterial baroreceptor reflex causes a reduction in sympathetic tone and blood 

pressure. The baroreceptors are located within the walls of the vasculature of the 

carotid sinus and the aortic arch and send neural projections into the NTS 

(Ciriello, 1983; Davies and Kalla, 1981), which projects to the caudal VLM. 

Activation of the baroreceptor reflex causes an inhibition of the RVLM via 

monosynaptic connections from the caudal VLM (Agarwal and Calaresu, 1991; 

Agarwal et al., 1990).  

During IH, the baroreceptor reflex would activate to buffer the elevation in 

blood pressure. In animals with experimental peripheral chemoreceptor activation 

using potassium cyanide, baroreceptors become activated following the initial 

rise in blood pressure, resulting in a biphasic response that includes subsequent 

hypotension and bradycardia (Braga et al., 2008).  

Given that animals and humans exposed to CIH develop hypertension, it 

may be concluded that the baroreceptor reflex is inhibited or desensitized 

following long-term IH exposure. In the short-term, IH resets the baroreceptor 

reflex to operate at higher levels of blood pressure and sympathetic tone, not 

changing the sensitivity of the reflex (Monahan et al., 2006), independent of 
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changes to ventilatory responses (Halliwill et al., 2003). However, following CIH, 

desensitization of the baroreceptor reflex may also occur (Gu et al., 2007; Lai et 

al., 2006). 

 

1.3  HYPOXIA AND BODY ENERGY BALANCE 

Hypoxia induces, above all else, a state of negative energy balance. This 

occurs initially at the level of the mitochondria, reducing the capacity for oxidative 

phosphorylation, and thus production of ATP. The response to this reduction in 

energy production is manifested by the release of macromolecules from 

appropriate storage sites, likely mediated by the sympathetic nervous system, 

resulting in a reduction in body weight. 

 

1.3.1 Cellular energy responses to hypoxia 

Cells are sensitive to alterations in available oxygen concentrations within 

their environment. Given the role of oxygen in energy production through 

mitochondrial oxidative phosphorylation, it is not surprising that cells are able to 

alter both the supply and demand of oxygen within their interstitium through 

various mechanisms including augmented glycolytic and reduced oxidative 

phosphorylation pathways.  
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1.3.1.1 Hypoxia-inducible factor 1 

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric protein made up of α 

and β protein subunits. HIF-1β is a constitutively expressed protein that does not 

have activity independent of HIF-1α and isn’t affected by oxygen tension. In 

contrast, HIF-1α is the primary activator of the HIF-1 complex (Wang et al., 

1995). HIF-1α has domains for binding to HIF-1β, an oxygen-sensitive core and a 

DNA-binding domain for regulation of transcriptional promoters or enhancers 

containing a hypoxia-responsive element (Jiang et al., 1997). During normoxia, 

oxygen binds to the oxygen-sensitive core, resulting in hydroxylation, 

ubiquitination and subsequent degradation of HIF-1α. During hypoxia, there is 

less oxygen to bind to the oxygen-sensitive core, and HIF-1α is free to 

translocate to the nucleus to associate with HIF-1β, forming HIF-1. The 

heterodimer HIF-1 binds to regulators of genes, which are deemed to be 

hypoxia-responsive (Chandel, 2010).  

  

1.3.1.2 Generation of ATP 

During hypoxic insults, mitochondria reduce their uptake of oxygen 

thereby limiting their production of ATP, and increasing anaerobic ATP 

production. This is done to avoid forming anoxic cellular conditions, which may 

ultimately lead to cell death.   

HIF-1 acts as a “switch” to augment the translocation and activity of 

glucose transporters in the cell membrane, increasing the influx of glucose for the 
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use in so-called fermentative pathways (Gleadle et al., 1997; Maxwell et al., 

1997). The production of ATP by these pathways is oxygen-independent and 

less efficient at producing ATP than oxidative phosphorylation. Despite this, cells 

can maintain glycolytic production of ATP at nearly the same level due to an 

elevated capacity for glucose transport and an increase in glycolytic enzymes, 

mediated by HIF-1 (Gleadle et al., 1997; Maxwell et al., 1997; Mathupala et al., 

2001; Semenza et al., 1994, 1996). 

The shunting of pyruvate and other necessary co-factors of oxidative 

phosphorylation away from the mitochondria and into glycolytic pathways 

prevents an elevation in reactive oxygen species associated with inefficient 

electron transport chain activity (Weideman and Johnson, 2008). The enzymes 

important in these effects are regulated by HIF-1 (Kim et al., 2006; Papandreou 

et al., 2006).  

Reactive oxygen species production has also been shown to occur 

following the reoxygenation events observed in IH. The increase in available 

oxygen within tissues following a return to normoxia not only provides the 

substrate for the production of reactive oxygen species, but also may alter the 

antioxidant capacity of cells (Singh et al., 2001), leading to lipid peroxidation, 

formation of reactive nitrogen species and oxidative stress (Row et al., 2003; Xu 

et al., 2004) 
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1.3.2 Organism energy responses to hypoxia 

1.3.2.1 Body weight and food intake 

It has been largely reported that hypoxia of both a continuous and 

intermittent nature causes an acute reduction in body weight (Westerterp-

Plantenga et al., 1999; Martinez et al., 2008). Interestingly, this effect in 

sustained hypoxia is mirrored by a reduction in food intake, when locomotion, 

stress and temperature are taken into consideration. Alterations in food intake 

were concomitant with an increase in the number of meals taken per day. 

Subjects of this study indicated they felt hungry, but did not have the drive to 

consume food, an effect observed during altitude sickness. This imbalance in 

body energetics is currently without a potential mechanism, but has been 

suggested to be the result of elevated plasma leptin concentrations (Tschop et 

al., 1998). Ratios of the consumption of specific macronutrients do not appear to 

be affected by chronic hypoxia (Westerterp et al., 1992; Westerterp et al., 1994; 

Westerterp et al., 1996). Currently, there are no studies examining food 

consumption and body energy balance during intermittent hypoxic exposure, 

though losses in body weight have been reported (Martinez et al., 2008; Ling et 

al., 2008; Drager et al., 2011). 

 

1.3.2.2 Lipid metabolism 

In normal and atherosclerosis-prone animals, chronic IH increases total 

cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein and 

triglycerides, effects which are amplified by the level of the hypoxic stimulus (Jun 
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et al., 2010; Li et al., 2005; Li et al., 2007). In support of these findings, increased 

lipid synthesis pathways of the liver have been shown to be altered (Li et al., 

2005; Li et al., 2007; Savransky et al., 2007; Li et al., 2007), an effect which 

mimics acute exposure to hypoxia (Piguet et al., 2009). Likewise, this effect may 

be mediated partially by HIF-1 (Li et al., 2006).  

In addition to elevated production of lipids, IH has been shown to induce 

lipolysis, releasing free fatty acids from adipose tissue, likely through activation of 

the sympathetic nervous system (Jun et al., 2010; Jaworski et al., 2007; Lafontan 

and Langin, 2009; Zechner et al., 2009). Chronic IH has been shown to induce 

liver enzymes and liver injury in rodents (Savransky et al., 2007), as well as 

cause the release of pro-inflammatory cytokines (Savransky et al., 2007). 

 

1.3.2.3 Glucose metabolism 

IH is capable of producing an acute insulin resistance in lean mice, and 

potentiating that found within obese leptin-deficient mice (Iiyori et al., 2007; 

Polotsky et al., 2003). As well, in human IH models, these effects have been 

observed without increasing the circulating level of leptin (Louis and Punjabi, 

2009). These effects could be mediated by changes in lipid production within the 

liver, or by increased sympathetic tone leading to lipolysis and ultimately an 

increase in free fatty acids. Free fatty acids have been shown to reduce glucose 

uptake by inhibition of insulin pathways within skeletal muscle (Delarue and 

Magnan, 2007; Kim et al., 2001). Meanwhile, glycogen is released from, and 
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glucose uptake is reduced, in muscle. Elevated hepatic gluconeogenesis and 

hyposecretion of insulin may also be mediated by the sympathetic nervous 

activation following IH. Additional mechanisms mediating insulin resistance in IH 

include inflammation (Cai et al., 2005; Yuan et al., 2001) and corticosteroid 

release (Yokoe et al., 2008; Morton, 2010). 

 

1.4  LEPTIN SIGNALING 

 

1.4.1 Leptin and its receptors 

The hormone leptin is produced from the ob gene, located on 

chromosome 6 of mice and chromosome 7 in humans. The genes are 84% 

homologous, containing 3 exons. Leptin is produced as a non-glycosylated 

protein made up of 167 amino acids, including a 21 amino acid signal peptide 

(Auwerx and Staels, 1998). The protein contains 4-alpha helices, each of which 

is 5-6 turns long, connected by lengthy crossover linkages, similar to cytokines 

like ciliary neurotrophic factor and leukemia inhibitory factor. A single disulphide 

bridge exists between cysteines 96 and 146, which appears to be crucial for the 

proper folding and receptor binding of leptin (Zhang et al., 1997). Two major 

types of mutations occur, which affect the ob gene: a non-sense mutation 

producing a premature stop codon; and a mutation within the gene promoter, 

inhibiting transcription altogether (Halaas et al., 1995).  

Leptin exerts its physiological responses through the leptin receptor 

(ObR). ObR contains a single transmembrane spanning region, and is located on 
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chromosome 1 in humans. The receptor protein belongs to the class-1 cytokine 

receptor family (Tartaglia et al., 1995). ObR can be alternatively spliced to form 

several receptor isoforms (ObRA-F), which share common extracellular and 

transmembrane domains, though a variable intracellular domains. These 

receptors can be classified as short-form (ObRA, C-D, and F), long-form (ObRB), 

or soluble/secreted (ObRE) (Wang et al., 1998; Lee et al., 1996; Tartaglia et al., 

1995). The long-form, ObRB, contains intracellular motifs for the binding and 

activation of janus kinases (JAK) and signal transducers and activators of 

transcription (STAT; the so-called JAK/STAT pathway will be discussed in 

section 1.4.4).  

The various isoforms of ObR have unique roles in leptin signaling and 

secretion. ObRB mediates most of the intracellular signaling associated with 

leptin binding to the extracellular motifs. ObRA, containing a short intracellular 

motif, is important for the movement of leptin across membrane barriers, 

including the blood-brain barrier and from the cerebrospinal fluid into brain 

parenchyma (Tartaglia et al., 1995; Mercer et al., 1996; Fei et al., 1997; Bjorbaek 

et al., 1998; Hileman et al., 2000). The ObRE soluble leptin receptor is important 

for modulation of circulating leptin and its secretion from adipocytes (Ge et al., 

2002; Huang et al., 2001; Lammer et al., 2001; Yang et al., 2004).  

1.4.2 Regulation of leptin secretion 

The hormone leptin is produced by many tissues in the body, including 

adipose tissue, heart, carotid bodies, brain and gonads. Primarily, white adipose 

tissue is the major site of production of leptin. White adipose tissue is found 
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throughout the body in major depots, including the visceral, subcutaneous, 

retroperitoneal and epididymal fat pads. Each fat pad releases different amounts 

of leptin, with the epididymal pad releasing the most (approximately 10 ng/10 

million cells) in rats. In humans, the subcutaneous fat pad releases the most 

leptin (Zheng et al., 1996; Arner, 2001). The average circulating level of leptin in 

normal adults is 3-5 ng/ml, though this value can be much higher (8-90 ng/ml) in 

obese individuals (Shek et al., 1998; Klein et al., 2004). Initially, it was held that 

leptin secretion was proportional to the level of white adipose tissue within an 

individual. The white adipose tissue produces, stores and secretes leptin. The 

amount of leptin from rough endoplasmic reticulum to golgi to secretory vesicles 

of adipocytes increases, suggestive of a concentration of leptin prior to its 

release. Basally, leptin is produced and secreted into the interstitium of adipose 

tissue to maintain a set leptin concentration within and outside of the adipocyte 

(Cammisotto and Bendayan, 2007).  

Leptin secretion is strongly linked to circadian rhythm: its plasma 

concentration is lowest in the morning and highest in the middle of the night 

(Licinio et al., 1997; Mastronardi et al., 2000; Nagatani et al., 2000). Post-

prandial elevations in insulin have also been described as an important factor for 

leptin secretion, though this occurs long after mealtime, suggestive of a long-

term, not short-term role of leptin in energy balance (Koopmans et al., 1998; 

Lynch et al., 2006). 

The stimulation of leptin secretion from the adipose appears to be 

calcium-independent (Cammisotto and Bukowiecki, 2004), though leptin 
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synthesis is dependent on the presence of glucose (Whitehead et al., 2001). This 

effect is likely mediated by alterations in ATP (Mizuno et al., 1996; Mueller et al., 

1998). Insulin, within the physiological range, is sufficient to increase the 

secretion of leptin, which is potentiated by the presence of amino acids such as 

leucine (Cammisotto and Bukowiecki, 2002; Cammisotto et al., 2005; Lynch et 

al., 2006). The post-prandial insulinemic response, and subsequent glucose-

dependent induction of ATP may explain the rise in adipocyte ATP following food 

consumption (Thompson, 1996; Lynch et al., 2006). Glucocorticoids have been 

shown to increase leptin release from adipose tissue, likely through alterations in 

transcription of the protein (De Vos et al., 1995; Bradley and Cheatham, 1999). 

Intriguingly, plasma fatty acids do not alter leptin production or secretion, 

though lipolysis significantly attenuates leptin release (Cammisotto et al., 2003). 

This is likely due to the role of catecholamines in lipolysis, as exercise, cold 

exposure and adrenergic stimulation all inhibit leptin secretion, and are lipolytic 

events associated with cyclic adenosine monophosphate signaling (Bramlett et 

al., 1999; Rayner and Trayhurn, 2001; Gettys et al., 1996).  

Hypoxia is also an important regulator of leptin secretion. Recently, a 

hypoxia-response element (HRE) was discovered in the 5’ flanking region of the 

human ob gene. It was also shown that leptin transcription was increased 

following hypoxic exposure (Ambrosini et al., 2002). This increase in leptin 

transcription was induced by HIF-1α/β binding to the HRE domain of the leptin 

promoter (Ambrosini et al., 2002; Grosfeld et al., 2002). 
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1.4.3 Leptin-related signaling pathways 

Given that ObR is homologous to class I cytokine receptors, it is likely that 

ObR activity will resemble that of other cytokines. Like other cytokine receptors, 

ObRB activates JAK/STAT pathways. Upon leptin binding, JAK2 

autophosphorylates ObRB on specific tyrosine residues (Kloek et al., 2002; 

White et al., 1997; Banks et al., 2000). When phosphorylated at Tyr1138, ObRB 

recruits signal transducer and activator of transcription 3 (STAT3), resulting in 

phosphorylation of tyrosines on STAT3, resulting in homodimerization and 

translocation of pSTAT3 to the nucleus (White et al., 1997; Banks et al., 2000; 

Vaisse et al., 1996). Activated STAT3 acts as a transcription factor, and can 

activate the transcriptional activity of genes associated with leptin signaling 

including pro-opiomelanocortin (POMC), immediate early genes and suppressor 

of cytokine signaling 3 (SOCS3) (Banks et al., 2000; Munzberg et al., 2003; 

Bates et al., 2003). In addition to the activation of the JAK2/STAT3 pathways, 

extracellular signal-regulated kinase 1/2 is also phosphorylated, though this may 

be done directly by JAK2, instead of ObRB (Banks et al., 2000)   SOCS3 acts as 

an important negative feedback regulator of ObRB activation, inhibiting the 

phosphorylation of JAK2, and thus ObRB and  extracellular signal-related kinase 

1/2 (ERK1/2). SOCS3 may accumulate following the chronic activation of ObRB 

(Anubhuti and Arora, 2008). Protein tyrosine phosphatase 1B (PTP1B) is also an 

important regulator of leptin receptor activity, and has been shown to inhibit JAK2 

phosphorylation (Sahu, 2004; Bjorbaeck and Kahn, 2004; Zabolotny et al., 2002; 

Kaszubska et al., 2002; Cook and Unger, 2002; Figure 1.1). Interestingly, some 
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have shown that ObRA has the capacity to phosphorylate JAK2, though it is 

unable to induce STAT3 activation (given that the crucial phospho-Tyr1138 is 

absent in ObRA), suggestive of a potential activation of ERK1/2 by ObRA 

(Bjorbaek et al., 1997; Ghilardi et al., 1996). 

 

1.4.4 Leptin and energy balance 

 

1.4.4.1 Food intake 

Leptin has many sites of action throughout the body, though the brain is 

the primary site for its major physiological effect to reduce food intake. 

Hypothalamic sites of leptin action have drawn particular interest from the 

scientific community, primary of which is the arcuate nucleus of the 

hypothalamus (ARC). Within this region exist specific populations of neurons that 

respond to leptin and contain ObRB. Neuronal cell bodies expressing POMC are 

found within this region (Elias et al., 1998; Korner et al., 1999). POMC is cleaved 

within these neurons by prohormone convertases to produce alternative 

cleavage products that may regulate the autonomic and anorectic effects of 

leptin, including the production of α-melanocyte stimulating hormone (α-MSH). 

By acting through the  
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Figure 1.1 Relevant leptin signaling pathways. 

Graphical representation of signaling pathways associated with the binding of 

leptin to the long-form (ObRB) of its receptor. Upon leptin binding, JAK2 

becomes phosphorylated, resulting in the phosphorylation of ObRB at Tyr1138, 

which causes the phosphorylation and homodimerization of STAT3. pSTAT3 

translocates to the nucleus to regulate the transcription of genes and ultimately 

their protein products including immediate early gene product Fra-1/2, POMC 

and SOCS3. SOCS3 will cause inhibition of the activation of the leptin receptor 

through inhibition of JAK2, which can also be regulated by PTP1B. ERK1/2 may 

also be phosphorylated by activation of ObRB. Arrows indicate activation, 

blunted lines indicate inhibition. 
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melanocortin 3/4 receptor (Schwartz et al., 2000), this peptide is able to reduce 

food intake. The Pomc gene is transcribed as a result of leptin, which can also 

drive the production of other anorexigenic proteins such as cocaine- and 

amphetamine-related transcript (CART) and corticotrophin releasing hormone 

(CRH; Arora and Anubhuti, 2006). Specific sets of neurons within ARC express 

POMC and CART together, are activated by leptin and induce satiety. Specific 

deletion of ObRB from these neurons causes hyperphagia and obesity (Dhillon et 

al., 2006; Balthasar et al., 2004). Leptin acting within the ARC also inhibits and 

reduces the production of orexigenic factors, including neuropeptide Y (NPY) and 

agouti-related peptide (AgRP) (Elmquist et al., 1998; Baskin et al., 1999; 

Erickson et al., 1996). 

In non-ARC regions of the brain, leptin acts through ObRB to mediate 

reductions in homeostatic food intake. Some of these regions include the 

ventromedial hypothalamus (Dhillon et al., 2006) and NTS (Hayes et al., 2009). 

Hedonic food intake has also been shown to be reduced by leptin through the 

dopaminergic mesolimbic system, namely the ventral tegmental area and 

accumbens nucleus (Leinninger et al., 2011; Hommel et al., 2006; Fulton et al., 

2006).  

 

1.4.4.2 Energy expenditure 

Although leptin is primarily known for its effects on satiety and food intake, 

leptin is best described as a hormone that causes a shift to negative body energy 
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balance, as it is able to increase energy utilization. Leptin increases energy 

expenditure through three major mechanisms: 1) increased metabolism (Dieguez 

et al., 2011); 2) increased locomotion (Mendoza et al., 2011); and 3) increased 

thermogenesis (Scarpace et al., 1998).  

 

1.4.5 Leptin and sympathetic nervous activity 

Leptin acts to augment the sympathetic nervous activity in part to 

complete its negative feedback loop with energy balance. That is, release of 

leptin due to energy intake will cause the activation of the sympathetic nervous 

system, which will cause lipolysis in white adipose tissue, thermogenesis in 

brown adipose tissue and elevated metabolic activity within the liver and skeletal 

muscles. These physiological mechanisms will cause net energy expenditure. 

Given that leptin acts in many homeostatic systems, the increase in 

sympathetic tone by leptin also regulates many physiological functions. Bone 

resorption, for example, has recently been shown to be regulated by the effect of 

leptin on the sympathetic nervous system (Eleftriou et al., 2005). Likewise, leptin 

is able to increase sympathetic nervous activity to the kidney and arterial 

vasculature to cause an increase in blood pressure (Mark et al., 2009). These 

effects may be caused by an inhibition of the baroreceptor reflex (Ciriello, 2013a, 

b; Arnold et al., 2009). Injections of leptin into the ARC increases sympathetic 

effects on the hindlimb and kidney, as well as the brown adipose tissue 

(Rahmouni and Morgan, 2007; Montaro et al., 2005). The role of leptin in ARC on 
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sympathetic outflow to both kidney and cardiovascular system appears to be 

dependent on the melanocortin system (do Camo et al., 2011; Morgan et al., 

2008). 

 

1.4.6 Leptin and neuroplasticity 

Recent advances in the understanding of neuroplasticity in response to 

hormones such as leptin have provided a novel mediator of homeostatic 

functions such as food intake and sympathetic tone. Plastic alterations within 

specific brain regions such as ARC (McNay et al., 2013) and NTS (Kline, 2008) 

have demonstrated that these regions undergo dynamic regulation of function, 

neural morphology and synaptogenesis. 

The role leptin may play in neuroplasticity and synaptic plasticity has only 

recently come to light. Leptin receptor has been localized to, not only somato-

dendritic regions of neurons, but also axonal processes and synapses (Shanley 

et al., 2002). Animals deficient in leptin have electrophysiological deficits in long-

term potentiation and long-term depression, both of which are important 

functional outcomes of neuroplasticity (Li et al., 2002). In vivo, leptin induces 

long-term potentiation (Wayner et al., 2004), which is dependent on N-methyl-D-

aspartate (NMDA) receptor function (Collingridge et al., 1983). Leptin augments 

NMDA receptor signaling, increasing intracellular calcium influx (Shanley et al., 

2001; Harvey et al., 2005). Likewise, there is a crucial role for GluN2 subunit of 

NMDA receptors in mediating the excitatory transmission of leptin (Moult and 
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Harvey, 2011). It appears that in adult life, the neuroplastic effect of leptin on 

synaptic strength is mediated by phosphoinositide-3 kinase, whereas at younger 

points of development this effect is likely due to ERK1/2 (Moult and Harvey, 

2011).  

 In addition to the functional neuroplasticity associated with leptin, there are 

also significant morphological remodelling events that have been shown to occur, 

which likely contribute to the overall ability of leptin to modulate neuroplasticity 

(Maletic-Savatic et al., 1999). Leptin is able to increase the density and motility of 

dendrites, and alter the actin cytoskeleton (O’Malley et al., 2005, 2007; Ning et 

al., 2006). Both of these alterations are important for neurite outgrowth, as well 

as synaptogenesis (Fiala et al., 1998; Munno and Syed, 2003). Such alterations 

have been shown to be related to changes in growth-associated protein 43 

(GAP-43) and the synaptic marker synaptophysin (Bottner et al., 2013; 

Routtenberg, 1985). These morphological alterations are mirrored in activity-

dependent neuroplasticity (Fukazawa et al., 2003).  

 Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) 

and its receptor tropomyosin receptor kinase B (TrkB) have recently been 

implicated in the satiety-inducing effects of leptin in both the hypothalamus and 

NTS (Liao et al., 2012; Spaeth et al., 2013). It appears these neuroplastic 

effectors exist downstream from the leptin receptor, and may be necessary for 

leptin to exert its effect (Liao et al., 2012). 
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1.4.7 Leptin resistance 

When leptin was first discovered in 1994, it was believed the satiety-

inducing hormone would act to resolve positive body energy balance syndromes 

like obesity. However, the finding of hyperleptinemia, as opposed to 

hypoleptinemia, in obese subjects suggested otherwise. An increase in hormone 

concentration with a reduction in its effect is suggestive of a resistance to that 

hormone, as seen with insulin in type II diabetes mellitus (Friedman, 2010). 

Application of leptin to obese mice have varying sensitivities to the hormone, with 

the leptin-deficient ob/ob mouse being the most sensitive and the leptin-receptor 

mutated db/db being the least sensitive (Halaas et al, 1997). This effect is 

mirrored in humans, where obese leptin-deficient people are sensitive to leptin, 

while most other forms of obesity are leptin-resistant. Primary leptin-deficiency in 

human populations is extremely rare (Farooqi et al., 1999), but secondary leptin-

deficiency is slightly more common, arising from lipodystrophy and hypothalamic 

amenorrhea. In all cases, administration of recombinant leptin was able to 

resolve many resulting neuroendocrine, reproductive and metabolic issues 

(Farooqi et al., 1999; Oral et al., 2002; Welt et al., 2004). 

The mechanisms associated with leptin resistance are not completely 

understood. As is found with insulin resistance, many changes in leptin signaling 

and transport systems may accumulate to mediate the resistant state. 

Hyperleptinemia associated with leptin resistance may play an important role as 

both a cause and result of the pathophysiology, given that overexpression of 

leptin within the brain induces leptin resistance, and blockade of leptin receptors 



36 

 

in obese animals exaggerates diet-induced obesity (Scarpace and Zhang, 2007). 

The resistance to leptin may be the result of decreased transport across the 

blood-brain barrier (Katsin et al., 1999; Banks et al., 2002; Burguera et al., 2000; 

Dube et al., 2000), and obese humans have a reduced cerebrospinal fluid-serum 

ratio of leptin despite concomitant hyperleptinemia (Caro et al., 1996; Schwartz 

et al., 1996).  

A reduction in downstream signaling of leptin within ARC may also play an 

important role in leptin resistance, either at the level of the receptor availability, 

reduced post-receptor activities, or by augmented negative feedback at the 

receptor (Friedman et al., 2010; Mark, 2013). 

Despite this reduced leptin effect on satiety, thus causing positive energy 

balance, it has been noted that the sympathetic effects of leptin are maintained 

during leptin resistance (Rahmouni et al., 2002; Correira et al., 2002). This has 

given rise to the concept of a selective leptin resistance in obesity, and has 

recently garnered attention as a contributor to obesity-related hypertension (Kuo 

et al., 2001). The selective nature of leptin resistance is poorly understood, but 

may be the result of alternative signaling mechanisms in sympathetic-related 

neurons and brain regions following leptin binding (Mark, 2013). 
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1.5  HYPOTHESIS AND OBJECTIVES 

 

1.5.1 Hypothesis 

We hypothesize that IH in rats will lead to metabolic and hypertensive 

cardiovascular phenotypes, which will be associated with alterations in brain 

regions known to regulate body energy balance and the cardiovascular system. 

This thesis will focus largely on manipulations of various hormones released in 

response to IH, and how they may mediate or affect the phenotypes observed.  

 

1.5.2 Objectives 

The major objectives of this thesis are as follows: 

1) characterize the body energy balance phenotype that may be associated 

with both short- and long-term IH and its concomitant alterations in 

hormonal release; 

 

2) determine alterations in the ARC of animals exposed to short- and long-

term IH that may be associated with body energy balance and the role 

leptin signaling may play in mediating these effects; 

 

3) measure cardiovascular alterations, including baroreceptor reflex function, 

following short- and long-term IH, which may be associated with 
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alterations in neuroplasticity within NTS, and the role leptin may play in the 

short-term changes, and 

 

4) determine the role of angiotensin II in modulating leptin release and 

signaling in the carotid body following IH. 
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EFFECTS OF ACUTE INTERMITTENT HYPOXIA ON ENERGY 
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2. CHAPTER 2 

2.1 CHAPTER SUMMARY 

This study was done to investigate the effects of acute intermittent hypoxia (IH) 

on metabolic factors associated with energy balance and body weight, and on 

hypothalamic satiety-inducing pathways. Adult male Sprague-Dawley rats were 

exposed to either 8h IH or normoxic control conditions. Food intake, locomotion 

and body weights were examined after IH. Additionally, plasma levels of leptin, 

adiponectin corticosterone, insulin and blood glucose were measured following 

exposure to IH. Furthermore, adipose tissue was removed and analyzed for 

leptin and adiponectin content. Finally, the hypothalamic arcuate nucleus (ARC) 

was assessed for alterations in protein signaling associated with satiety. IH 

reduced body weight, food intake and active cycle locomotion without altering 

adipose tissue mass. Leptin protein content was reduced while adiponectin 

content was elevated in adipose tissue after IH. Plasma concentration of leptin 

was significantly increased while adiponectin decreased after IH. No changes 

were found in plasma corticosterone, insulin and blood glucose. In ARC, 

phosphorylation of signal transducer and activator of transcription-3 and pro-

opiomelanocortin (POMC) expression were elevated. In addition, POMC-

expressing neurons were activated as determined by immediate early gene FRA-

1/2 expression. Finally, ERK1/2 and its phosphorylation were reduced in 

response to IH. These data suggest that IH induces significant alterations to body 

energy balance through changes in the secretion of leptin which exert effects on 

satiety-inducing pathways within the hypothalamus. 
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2.2 INTRODUCTION 

While white adipose tissue is the major storage site for triglycerides in the 

body, this organ also appears to play a role in endocrine function, partly through 

the production and release of a class of hormones known as adipokines. 

Adipokines are used by the body to provide information regarding energy 

balance, which in turn may influence thermogenic activity, food intake and 

glucose homeostasis (Ahima and Osel, 2008).  Leptin, a 16 kDa hormone 

produced by the ob gene (Halaas et al., 1995), is an adipokine that functions as a 

satiety-inducing hormone. The primary site of secretion of leptin into the 

bloodstream is the white adipose tissue, and this secretion generally occurs 

directly in relationship to the white adipose tissue mass (Maffei et al., 1995). 

However, the release of leptin into the circulation can be altered by a number of 

different stimuli, including hypoxia (Reinke et al., 2011; Sherry et al., 2009) and 

acute intermittent hypoxia (IH) (Messenger et al., 2012). Hypoxia elevates leptin 

production and release from white adipose tissue in both in vitro (Grosfield et al., 

2002) and in vivo (Sherry et al., 2009). Similarly, acute IH has been shown to 

increase the circulating levels of leptin (Messenger et al., 2012). Although the 

functional role of this upregulation of the leptinergic system is unknown, it may be 

involved in the regulation of the sympathetic nervous system activity (Mark et al., 

2009; Ciriello and Moreau, 2012), and this may be mediated partly through its 

effects on hypothalamic neurons (Harlan et al., 2011). Leptin not only reduces 

food intake largely by acting on pro-opiomelanocortin (POMC) neurons of the 

arcuate nucleus (ARC; Hill et al., 2008), but these POMC neurons may also 
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affect blood glucose levels (Berglund et al., 2012; Shi et al., 2008). Leptin binds 

to POMC neurons through the long-form leptin receptor (Ob-Rb), resulting in the 

homodimerization and phosphorylation of signal transducer and activator of 

transcription-3 (STAT3; Calvino et al., 2012). Phosphorylated STAT3 (pSTAT3) 

translocates to the nucleus of these neurons and alters gene transcription of 

various targets including Pomc and immediate early genes (Bousquet et al., 

2000).    

As adipose tissue is responsive to hypoxia, and that many factors 

produced by adipose tissue are related to energy balance, this study was done to 

determine whether acute 8 h IH altered the signaling of the adipose, resulting in 

alterations in energy balance. 
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2.3 METHODS AND MATERIAL 

2.3.1 Animals 

Adult, male Sprague-Dawley rats (320 – 400 g: n = 48) were purchased from 

Charles River Canada and housed singly at a temperature of 22°C and 60% 

relative humidity with access to food and water available ad libitum, except 

during the acute 8 h IH or normoxic (Norm) exposure, in 12h light/dark cycle 

conditions. Animals were handled in accordance with the guidelines set forth by 

the Canadian Council on Animal Care and the Animal Use Committee at the 

University of Western Ontario. 

 

2.3.2 Groups  

Animals were divided into different subsets: the first subset (n=7 per condition) 

was used to determine physiological measures including food and water intake 

and body weight changes; the second subset (n=7 per condition) was used for 

active cycle locomotion studies; the third subset (n=7 per condition) was used for 

immediate sacrifice following exposure, from which plasma samples (used for 

hormone analysis), blood glucose, adipose tissue and brains were removed; the 

final subset of animals (n=3 per condition) were perfused immediately following 

exposure, and were used for immunohistochemistry and immunofluorescence.  
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2.3.3 IH or Norm exposure 

Animals were exposed to 8 h (0900-1700) of acute IH or Norm during their sleep 

cycle, as previously described (Messenger et al., 2012). In brief, animals were 

placed in a chamber (35 L volume) consisting of four separate animal tubes (10 

cm diameter by 35 cm length) and a zero-pressure escape valve. For IH-exposed 

animals, a computer that regulated solenoid valves altered the input of N2 or 

room air to generate IH and Norm conditions. The gases were pushed through 

the system using fans and passed through a mixing chamber prior to entering the 

animal tubes. Flows of N2 and room air were set to be equal, requiring the same 

amount of time to drop from 21% to 6.5% O2, as required returning to 21% from 

6.5% O2. Animals were exposed to 80s hypoxia (6.5% O2) followed by 120s 

normoxia. The levels of O2 and CO2 were monitored by sensors on the chamber, 

which relayed information back to the computer to ensure proper cycling. 

Conditions within the chamber were isobaric (770 ± 11 mmHg) and eucapnic 

(<0.1% CO2). Norm animals were exposed to identical chambers with only room 

air input during cycling. No alterations in sleep duration or locomotion were 

observed between IH or Norm animals during exposure.  

 

2.3.4 Measures of body weight, food intake and water intake 

Animals were weighed immediately before and after IH or Norm exposure. These 

values were used to calculate body weight changes during the IH or Norm 

exposure period and 24 h body weight change. Additionally, food and water 
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intake measurements were recorded for the 16 h period immediately following 

exposure  

 

2.3.5 Locomotion assay 

In a subset (n=7 per group), immediately following acute IH or Norm exposure, 

animals were placed in home cages with ad libitum access to food and water. 

Thirty minutes into the dark (active) cycle (1930h), animals were placed into large 

cages (60 cm x 40 cm) with a floor 4x5 grid system in the dark (red light on). 

Animals were acclimatized for 10 min to the testing cage. Over a five-minute 

period, the number of crosses of a line by an animal was determined by two 

independent, blinded observers to determine horizontal locomotion. At the same 

time, vertical locomotion was determined by the number of rearing events. An 

average value was then calculated from these two observers for both horizontal 

and vertical locomotion. These animals were not used for determination of food 

or water intake. 

 

2.3.6 Blood glucose measurement  

Immediately following exposure conscious animals had blood glucose measured 

three times using an Accu-Check Aviva glucometer (Roche Diagnostics Canada; 

Laval, QC) from a tail vein puncture.   
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2.3.7 Plasma collection and enzyme immunoassays  

Subgroups of rats exposed to IH (n=7) or Norm (n=7) were immediately 

sacrificed under equithesin anaesthesia [0.3 ml/100 g b.w.; i.p. (2.88 mg/100 g 

b.w. sodium pentobarbital; 12.79 mg/100 g b.w. chloral hydrate; 6.37 mg/100 g 

b.w. MgSO4; 0.12 ml/100 g b.w. propylene glycol; 0.03 ml/100 g b.w. ethanol)] 

immediately following exposure. Blood samples were collected by cardiac 

puncture in the presence of 7% ethylenediaminetetraacetic acid at a volume of 

10 µl/ml blood. This blood was immediately centrifuged at 10 000 RPM for 10 min 

at 4 °C to isolate the aqueous plasma. This aqueous plasma phase was removed 

and stored frozen at -80 °C until analyzed for hormone content. Plasma samples 

were analyzed using enzyme immunoassays for rat leptin (sensitivity: 67.2 pg/ml; 

Enzo Life Sciences; Farmingdale, NY), adiponectin (sensitivity: 0.12 ng/ml; 

Phoenix Pharmaceuticals; Burlingame, CA), corticosterone (sensitivity: 26.99 

pg/ml; Enzo Life Sciences; Farmingdale, NY) and insulin (sensitivity: 0.12 ng/ml; 

Alpco Diagnostics; Salem, NH), according to manufacturer instructions. Enzyme 

immunoassay plates were read on a SpectraMax M5 plate reader using SoftMax 

Pro v.5 microplate analysis software (Molecular Devices; Sunnyvale, CA).   

 

2.3.8 Tissue collection and preparation 

Immediately after exposure to IH (n=7) or Norm (n=7), additional subgroups of 

the animals were sacrificed under equithesin anaesthesia and the brain and 

retroperitoneal fat pad were removed and frozen at -80 °C until analyzed. Brains 
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were sectioned at 100 µm in a cryostat (Bright Instruments; Cambridgeshire, UK) 

until ARC was identified using cytoarchitectural landmarks and a rat brain atlas 

(Paxinos and Watson, 1986). Using a circular 1 mm (internal diameter) 

micropunch tool, bilateral punches of ARC were made to a depth of 0.5 mm and 

the frozen tissue was then homogenized in cold radioimmunoprecipitation assay 

buffer (50 mM Tris, 150 mM NaCl, 1% Triton-X 100, 0.25% sodium deoxycholate, 

1 mM NaF, 1 mM sodium orthovanadate, 25 mM β-glycerophosphate) with 

protease inhibitor cocktail (Roche Applied Science; Laval, QC) by an electric 

homogenizer (VWR International; Radnor, PA). Homogenates were then 

sonicated over three passages for 15s each on ice (55%; Sonic Dimembrator 

Model 150; Fisher Scientific). Samples were then rotated for 10 min at 4 °C and 

centrifuged at 4°C for 20 min at 14 000 RPM. Adipose tissue samples were taken 

while frozen and processed using the same procedure. Protein content of 

homogenates was quantified using the Bio-Rad Dc protein assay kit (Bio-Rad 

Laboratories; Hercules, CA). Protein samples were added to 25% LDS sample 

buffer and 10% reducing buffer (Life Technologies; Burlington, ON) and water to 

a standard protein concentration of 1.67 mg/ml.  

 

2.3.9 Western blots  

Electrophoresis was carried out using a 10% discontinuous polyacrylamide Bis-

Tris gel (Life Technologies; Burlington, ON), followed by standard protein 

immunoblotting techniques. For each animal, 25 µg of protein of each sample 
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was loaded. Electrophoresis was carried out at 200 V and terminated when the 

dye front reached the bottom of the gel. Proteins were transferred to a 

polyvinylidene fluoride membrane using a wet transfer method in the presence of 

methanol and  SDS (50 mM Tris, 40 mM glycine, 0.3% SDS, 20% methanol) and 

wet transfer apparatus (Mini Trans-Blot Electrophoretic Transfer Cell; Bio- Rad 

Laboratories; Hercules, CA) at 100 V for 2 h. After transfer, the membrane was 

washed in Tris-buffered saline + Tween-20 (TBST; 20 mM Tris, 0.5 M NaCl, 

0.1% Tween-20; pH 8.0) blocked for 1 h with 5% skim milk made in TBST buffer 

at room temperature. The membrane was then incubated with primary antibodies 

diluted in skim milk over night at 4 °C.  The following day, the membrane was 

washed with TBST before being incubated with horseradish peroxidase-

conjugated secondary antibodies-specific to the appropriate host of the primary 

antibody being analyzed, for 1 h at room temperature. For detection, the 

membrane was washed with TBST, followed by distilled water and then detected 

using a horseradish peroxidase substrate ECL chemiluminescence system 

(Luminata Forte, EMD Millipore; Billerica, MA). Blots were visualized using a 

VersaDoc imaging system (Bio-Rad Laboratories; Hercules, CA) and analyzed 

using ImageLab v.3.0 (Bio-Rad Laboratories; Hercules, CA). All comparisons 

presented were made within the same blot. 
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2.3.10 Immunohistochemistry 

Immediately following acute IH (n=3) or Norm (n=3) exposure, rats were deeply 

anesthetized with equithesin and perfused transcardially with 200-300 ml 0.9% 

physiological saline, followed by 450 ml of 4% paraformaldehyde in 0.1 M 

phosphate-buffered saline (PBS; pH 7.4).  Brains were removed and placed 

overnight in fixative at 4ºC.  Brains were then gradually dehydrated through a 

series of alcohols, and placed in xylene followed by paraffin wax. Serial, 

transverse sections (6 µm) through the region of ARC were cut on a microtome, 

mounted on double-gelatinized microscope slides and placed on a slide warmer. 

Tissue sections were later de-paraffinized in xylene and rehydrated using graded 

alcohol solutions. Sections were equilibrated using three 20 min washes of PBS 

(pH 7.4), and then underwent an antigen-retrieval protocol using a citrate buffer 

(10 mM sodium citrate, 0.05% Tween; pH 6.0) heated to 90-95ºC in a microwave 

for 15 min (von Boguslawsky, 1994). Slides were rinsed and endogenous 

peroxidase activity was inhibited by exposing the sections to a 1% hydrogen 

peroxide solution for 10 min.  Sections were washed in PBS and allowed to 

incubate overnight at 22ºC in primary polyclonal rabbit anti-rat POMC antibody in 

PBS/0.3% Triton-X 100 and 4% normal goat serum. The sections were rinsed in 

PBS and exposed to goat anti-rabbit IgG for 1 h, followed by 75 min in ABC Elite 

Kit reagent (Vector Laboratories; Burlingame, CA).  Following three rinses in 

PBS, the sections were immersed for 5 min in a solution of 0.05% 3,3’-

diaminobenzidine containing 0.01% hydrogen peroxide, resulting in a red-

brownish reaction product. The sections then underwent a similar protocol, but 
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using an overnight incubation in primary polyclonal rabbit anti-rat FRA-1/2 

antibody, after an avidin-biotin block (Vector Laboratories; Burlingame, CA). 

FRA-1/2 was detected using a solution of 0.05% 3,3’-diaminobenzidine 

containing 0.015% hydrogen peroxide and 0.05% nickel ammonium sulphate in 

PBS, resulting in a dense, black reaction product. Sections were rinsed and 

coverslipped. Some adjacent tissue sections were rehydrated, stained with 

thionin and cover-slipped for identification of cytoarchitectonic boundaries. 

Controls for immunoreactivity included forebrain brainstem sections processed 

following the omission of the primary antibody or preadsorption of the primary 

antibody with the appropriate antigen (Messenger et al., 2012). Under these 

conditions no POMC or FRA-1/2 immunoreactivity was demonstrated. 

Cells containing POMC- and FRA-1/2-like immunoreactivity were identified 

on sections through the region of ARC using bright-field microscopy (Letiz 

Diaplan), and digital images were obtained with a Nikon DS-Fil camera and NIS 

Elements Basic Research 3.0 software (Nikon Canada, Mississauga, ON, 

Canada). Cell counts of POMC-containing neurons co-expressing FRA-1/2-like 

immunoreactivity were determined by two independent, blinded observers and 

averaged to calculate a final value for each animal. 

 

2.3.11 Immunofluorescence 

Immunofluorescence was performed in a similar manner as described above for 

immunohistochemistry, except paraffin-embedded sections through the region of 
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ARC were exposed to specific antibodies for POMC and FRA-1/2 overnight, 

exposed to either biotinylated secondary antibody, and then exposed to 

streptavidin-linked Texas Red (1:100; GE Healthcare; Buckinghamshire, UK) or 

Alexa-488-linked secondary antibodies.  

 Cells containing POMC- and FRA-1/2-like immunofluorescence were 

identified throughout the region of ARC using a microscope fitted with various 

filters to detect Texas Red and Alexa-488. Digital images were obtained with a 

Nikon DS-Fi1 camera and NIS Elements Basic Research 3.0 Software 

(Messenger et al., 2012).  

 

2.3.12 Antibodies 

For western blots the following antibodies were used: rabbit anti-β-actin-HRP 

(1:50 000; A3854, Sigma-Aldrich; St. Louis MO), rabbit anti-GAPDH (1:2500; sc-

25778, Santa Cruz Biotechnology; Santa Cruz, CA), rabbit anti-leptin (1:1000; sc-

843, Santa Cruz Biotechnology; Santa Cruz, CA), chicken anti-ObRB (1:10 000; 

CH14104, Neuromics; Edina, MN), rabbit anti-FRA-1/2 (1:2000; sc-605, Santa 

Cruz Biotechnology; Santa Cruz, CA), rabbit anti-STAT3 (1:2000; #9132, Cell 

Signaling; Boston, MA), rabbit anti-pSTAT3 (Tyr705) (1:1000; #9131, Cell 

Signaling; Boston, MA), rabbit anti-ERK1/2 (1:2000; #9102, Cell Signaling; 

Boston, MA), rabbit anti-pERK1/2 (Thr 202/Tyr204) (1:1000; #9101, Cell 

Signaling; Boston, MA), rabbit anti-adiponectin (1:5000; AB3267P, Millipore; 

Billerica, MA), rabbit anti-POMC (1:2000; RayBiotech; Norcross GA), donkey 
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anti-rabbit IgG-HRP (1:10 000; 711-035-152, Jackson Immunoresearch; West 

Grove, PA), donkey anti-chicken IgY-HRP (1:10 000; 703-035-155, Jackson 

Immunoresearch; West Grove, PA). For immunohistochemistry and 

immunofluorescence the following antibodies were used: rabbit anti-POMC (1:10 

000; H-029-030, Phoenix Pharmaceuticals; Burlingame, CA), rabbit anti-FRA-1/2 

(1:1000; sc-253, Santa Cruz Biotechnology; Santa Cruz, CA), goat anti-rabbit 

IgG-biotin (1:500; BA-1000, Vector Laboratories; Burlingame, CA) goat anti-

rabbit IgG-Alexa-488 (1:200; 711-545-152, Jackson Immunoresearch; West 

Grove, PA). 

 

2.3.13 Statistics and analysis 

Differences between acute IH and Norm groups were determined by unpaired, 

two-tailed Student t-test, and a p-value < 0.05 was taken to indicate statistical 

significance. All values are expressed as mean ± standard error. All bar charts 

were made using GraphPad Prism v.5 graphing software (GraphPad Software; 

La Jolla, CA). 
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2.4 RESULTS 

2.4.1 Body weight, adipose tissue mass, food and fluid intake and 

locomotion after acute IH 

Animals in acute IH and Norm groups did not differ in starting body weight (365 ± 

9 g and 366 ± 10 g, respectively). Animals immediately after exposure to acute 8 

h IH had significantly (p < 0.01) greater body weight loss (-28 ± 2 g) compared to 

those exposed to Norm conditions (-13 ± 1 g). However, these differences in 

body weight change 24 h after the initiation of the exposure were reversed as 

animals exposed to acute IH (-5 ± 3 g) were not different from animals that were 

exposed to Norm conditions (1 ± 3 g). No changes were found in retroperitoneal 

(IH, 4.6 ± 1.2 g; Norm, 5.0 ± 1.1 g) or epididymal (IH, 2.8 ± 0.7 g; Norm, 3.2 ± 0.9 

g) adipose tissue mass (Fig 2.1).  

Despite the overnight body weight regain, food intake was significantly 

lower (p < 0.01) in acute IH animals (total food intake, 21.1 ± 2.1 g/16 h; food 

intake normalized to body weight, 5.9 ± 0.5 g/100 g body weight/16 h) compared 

to animals exposed to Norm conditions (total food intake, 35.4 ± 5.5 g/16 h; food 

intake normalized to body weight, 9.4 ± 1.3 g/100 g body weight/16 h). Water 

intake was not altered in response to acute IH exposure (total water intake, 42.6 

± 3.5 ml/16 h; water intake normalized to body weight, 12.0 ± 0.8 ml/100 g body 

weight/16 h) compared to Norm conditions (total water intake, 39.5 ± 7.0 ml/16 h; 

water intake normalized to body weight, 10.5 ± 1.9 ml/100 g body weight/16h).  
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Figure 2.1 Changes in body weight and fat mass following IH. 

Acute IH causes a greater reduction in body weight compared to Norm 

conditions, independent of alterations in adipose tissue mass. (a), line graph 

indicating significant (p<0.01) body weight loss as a result of the IH compared to 

Norm. This body weight loss is normalized 24h after the initiation of IH, and is not 

different from Norm. Bar graphs showing (b) retroperitoneal and (c) epididymal 

adipose tissue mass were not different following IH exposure compared to Norm 

animals. Data shown are means ± SEM. *, p<0.05.  n = 7-11 per group. 

 

 

 

 

 

 



76 

 

 



77 

 

Animals exposed to acute IH had significantly (p < 0.05) reduced 

horizontal locomotion (IH, 88.5 ± 4.1 line crossings/5 min; Norm, 115 ± 9.7 line 

crossings/5 min). In contrast, vertical locomotion (IH, 28.0 ± 2.6 rearings/5 min) 

compared to Norm (32 ± 3.4 rearings/5 min) were not different. These data are 

summarized in Figure 2.2.  

 

2.4.2 Plasma leptin, adiponectin and leptin:adiponectin ratio are altered by 

acute IH 

Plasma leptin concentrations in animals exposed to acute IH (10.0 ± 1.3 ng/ml) 

were significantly (p < 0.05) greater than in animals exposed to Norm conditions 

(3.2 ± 1.3 ng/ml) immediately following exposure. Plasma adiponectin 

concentration was significantly (p < 0.05) less in acute IH compared to Norm 

exposure (2.2 ± 0.1 µg/ml and 2.6 ± 0.1 µg/ml, respectively). The ratio of the 

concentration of leptin to adiponectin in the plasma of the IH group was 

significantly (p < 0.01) higher than in the Norm group (0.0045 ± 0.0008 and 

0.0012 ± 0.0003, respectively). Plasma corticosterone concentrations were not 

changed by acute IH compared to Norm control (4.8 ± 1.2 ng/ml and 5.3 ± 1.1 

ng/ml, respectively). Similarly, plasma insulin concentrations were unchanged in 

the acute IH group compared to Norm conditions (6.4 ± 0.8 ng/ml and 7.2 ± 0.6 

ng/ml, respectively). Furthermore, blood glucose levels immediately following 

acute IH or Norm exposure were not different from each other (8.2 ± 1.0 mmol/L 

and 7.9 ± 1.3 mmol/L, respectively). These data are summarized in Figure 2.3.  
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Figure 2.2 Changes in food intake and locomotion following IH. 

Acute IH results in reduced food intake and locomotion compared to Norm 

conditions. Bar graphs indicating overnight food intake (a), standard food intake 

(b), water intake (c), standard water intake (d), horizontal locomotion measure 

(e), and vertical locomotion measure (f) between IH and Norm animals. Data 

shown are means ± SEM. *, p<0.05. n = 11 per group. 
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Figure 2.3 Changes in plasma hormones in response to IH. 

Plasma hormones are altered after acute IH. Bar graphs showing plasma levels 

of leptin (a), adiponectin (b), leptin:adiponectin ratio of plasma concentrations (c), 

corticosterone (d), insulin (e), and blood glucose (f) immediately after IH or Norm 

exposure. Data shown are means ± SEM. *, p<0.05. n = 7 per group. 
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2.4.3 Adipose tissue content of leptin and adiponectin protein is altered as 

a result of acute IH exposure 

As summarized in Figure 2.4, retroperitoneal adipose tissue displayed reduced (p 

< 0.01) expression levels of leptin protein after acute IH exposure compared to 

Norm animals (0.01 ± 0.01 and 0.28 ± 0.05, respectively). On the other hand, the 

protein expression of adiponectin in this tissue was significantly (p < 0.05) 

elevated between acute IH and Norm conditions (0.11 ± 0.02 and 0.05 ± 0.01, 

respectively).  

 

2.4.4 IH exposure alters signals associated with leptin signaling within ARC 

Within ARC, acute IH exposure increased the expression of phosphorylation of 

STAT3 protein approximately 8-fold (p < 0.001) over Norm (0.86 ± 0.05 and 0.11 

± 0.05, respectively) without changing total STAT3 protein expression (0.32 ± 

0.06 and 0.34 ± 0.05, respectively). A significant (p < 0.05) decrease in the total 

amount of ERK1/2 protein expression was also detected in ARC of acute IH 

exposed animals compared to Norm control (0.41 ± 0.08 and 0.56 ± 0.02, 

respectively). In addition, the expression level of phosphorylation of ERK1/2 

protein was reduced between IH and Norm conditions when compared to total 

ERK1/2 (1.05 ± 0.09 and 1.41 ± 0.13, respectively) and compared to β-actin 

(0.42 ± 0.07 and 0.79 ± 0.08, respectively). On the other hand, acute IH did not 

alter SOCS3 protein expression in ARC, compared to Norm (0.45 ± 0.07 and 

0.38 ± 0.08). Additionally, acute IH did not induce an alteration in the expression  
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Figure 2.4 Adipose adipokine protein content following IH. 

Adipose tissue protein content of leptin and adiponectin are altered by acute IH 

exposure. Bar graphs and representative blots indicating a reduction in 

retroperitoneal adipose tissue protein content of leptin (a) and an increase in 

adiponectin (b) protein content relative to GAPDH protein loading control, after IH 

compared to Norm. Data shown are means ± SEM. *, p<0.05. n = 7 per group. 
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of the Ob-Rb protein compared to Norm control (0.32 ± 0.03 and 0.41 ± 0.05, 

respectively). These data are summarized in Figure 2.5. 

 

2.4.5 Acute IH activates POMC-containing neurons and increases POMC 

protein within ARC 

Exposure of animals to acute IH increased the number of POMC-like 

immunoreactive neurons that also expressed the immediate early gene product 

FRA-1/2 compared to Norm animals (15.1 ± 2.2% and 2.3 ± 2.5%, respectively) 

within ARC (Fig. 2.6). The expression of POMC protein within ARC was 

significantly (p < 0.01) elevated in animals exposed to IH compared to Norm 

(0.21 ± 0.07 and 0.08 ± 0.02, respectively; Fig. 2.6). 
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Figure 2.5 ObR related intracellular pathways activated following IH 

Acute IH activates specific long-form leptin receptor (Ob-Rb)-related intracellular 

pathways in ARC. Bar charts and representative blots indicating relative protein 

content of phosphorylated STAT3 (a), phosphorylated ERK1/2 (b), SOCS3 (c) 

and Ob-Rb (d) within ARC of animals exposed to IH or Norm conditions. These 

values are expressed as a ratio to total β-actin protein. Data shown are means ± 

SEM. *, p<0.05. n=7 per group. 
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Figure 2.6 ARC POMC-containing cell activation following IH.  

Acute IH increases activation of POMC-containing cells and POMC protein 

content in ARC.  Photomicrographs of ARC indicating POMC-containing cells 

(brown), which display FRA-1/2 (black), a marker of neuronal activation, in both 

IH (a-b) and Norm conditions (c). Calibration marks represents 50 µm. (b) High-

magnification image of inset in (a). (d) Immunofluorescent image of ARC 

following exposure to IH. Note that POMC immunoreactivity is shown with green 

fluorescent marker and FRA 1/2 immunoreactivity with Texas red fluorescent 

marker. In both (b) and (d) large open arrows indicate cells that contain both 

POMC- and FRA-1/2-like immunoreactivities, while small open arrows show 

example of Fra-1/2 only labelled cells and the small arrow shows examples of 

POMC only labelled cells. (e), shows a bar chart summary of the proportion of 

ARC POMC-containing cells that also express FRA-1/2-like immunoreactivity. (f), 

bar chart and representative blots indicating the relative protein content of POMC 

within ARC in IH and Norm animals. These values are expressed as a ratio to 

total β-actin protein. Data shown are means ± SEM. *, p<0.05. n = 3 per group 

for immunohistochemistry; n = 7 per group for western blot analysis.   
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2.5 DISCUSSION 

This study has demonstrated that acute IH results in significant alterations 

in several variables associated with energy balance, adipokine release and 

activation of hypothalamic satiety signals. IH reduced body weight, active cycle 

food intake, and locomotion. These changes after IH were concomitant with a 

rise in plasma leptin and a reduction in plasma adiponectin, while adipose tissue 

had less leptin and more adiponectin protein expression after acute IH exposure. 

In ARC, acute IH induced phosphorylation of STAT3, reduced total ERK1/2 and 

phosphorylated ERK1/2, but did not significantly affect Ob-Rb or its negative 

regulator, SOCS3. Acute IH also induced activation, as determined by immediate 

early gene product FRA-1/2, of POMC-containing neurons of ARC and increased 

the protein expression of POMC in ARC. Taken together these suggest that IH 

induces significant alterations to body energy balance through changes in the 

secretion of leptin which exerts effects on satiety-inducing pathways within the 

hypothalamus.  

 The 8 h exposure to IH reduced body weight compared to Norm animals. 

However, by the following morning (16 h after IH), body weight change was 

found not to be different between the two groups. Unexpectedly, this body weight 

re-gain occurred despite a reduction in overnight food intake. Although the 

mechanism responsible for this re-gain in body weight is not clear, it is possible 

that the reduction in active cycle locomotion in IH-exposed animals may have 

contributed as a result of decreased energy expenditure. The regain of body 

weight in acute IH-exposed animals may be the result of alterations in 
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metabolism, as studies in rabbits have suggested that intermittent hypobaric 

hypoxia may lower circulating levels of thyroid hormones (Sawhney and 

Malhotra, 1990). Additionally, the reduction in food intake after acute IH was 

likely associated with the increased plasma leptin concentration, which occurred 

despite the lack of change in retroperitoneal or epididymal adipose tissue depot 

mass. It is known that leptin is correlated with adipose tissue content (Maffei et 

al., 1995). However, it has been reported that under certain pathophysiological 

challenges this balance can be altered (Kim and Scarpace, 2003). In this study, 

IH was a sufficient stimulus to elevate plasma leptin concentration and this may 

have accounted for the overnight reduction in food intake observed in these 

animals. Therefore, the actions and secretion of leptin appear to be independent 

of body weight changes induced by IH, while appearing inherently associated 

with IH. Taken together, these data can be interpreted to indicate that following 

acute IH, leptin may induce a state of satiety. As previously suggested, this may 

occur regardless of nutritional status (Levin et al., 1996; Rentsch et al., 1995). 

This finding is in contrast with reduced plasma concentration of leptin in 

individuals exposed to altitude-related hypoxia (Woolcott et al., 2002; Zaccaria et 

al., 2004). However, our findings occur following IH, rather than continuous 

hypoxia and under normobaric conditions, which may account for this difference. 

Consistent with this suggestion, it has been reported that IH can increase 

circulating leptin concentrations in mice (Li et al., 2005). It has been suggested 

that some IH models can induce sleep deprivation (Gozal et al., 2001). Sleep 

deprivation has been reported to reduce body weight and energy expenditure 
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(Vetrivelan et al., 2012), and a reduction (Vetrivelan et al., 2012) or no change 

(Bodosi et al., 2004) in leptin levels, with no changes in food intake (Barf et al., 

2010; Vetrivelan et al., 2012). In humans, sleep deprivation has been shown to 

increase hunger and reduce leptin levels (Brondel et al., 2010; Spiegel et al., 

2004). As well, corticosterone levels in the acute IH-exposed rats was not 

significantly different from Norm-exposed animals, if IH induced sleep deprivation 

in these animals, it would be expected that corticosterone levels would higher 

than controls (Tartar et al., 2009). Taken together, these data would suggest that 

it was unlikely that sleep deprivation played a significant role in the leptin-feeding 

responses observed in this study during acute IH.     

Adipose tissue leptin content was found to be less in acute IH conditions. 

This, coupled with the finding of elevated plasma leptin concentrations, suggests 

an increase in the secretion of the adipokine by adipose tissue. Adipocytes have 

been demonstrated to increase their secretion of leptin in response to hypoxia 

(Famulla et al., 2012), and IH caused a sustained hypoxia in adipose tissue 

(Reinke et al., 2011). Taken together, these findings suggest that adipose tissue 

hypoxia resulting after acute IH in this study may have increased the release of 

leptin from adipocytes. Conversely, adiponectin had a lower circulating level, 

though an increased amount of the protein was found within adipocytes. This is 

consistent with previous studies showing that hypoxia causes a reduction in 

adipocyte secretion of the adipokine (Famulla et al., 2012). The changes in 

circulating levels of adipokines as seen in this study, induces a higher 

leptin:adiponectin ratio, perhaps as a result of altered adipocyte secretion as a 
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result of IH. An increase in leptin:adiponectin ratio is a commonly used measure 

associated with cardiometabolic disease (Satoh et al., 2004; Kotani et al., 2005). 

The alterations observed in circulating adipokine concentrations, as seen during 

IH in this study, are consistent with those found in individuals suffering from 

obesity (Dagogo-Jack et al., 1996) and obstructive sleep apnea (Hargens et al., 

2013), of which IH is a major component. 

Leptin action in ARC reduces food intake through activation of intracellular 

signaling pathways associated with Ob-Rb (Peters et al., 2007; Scarpace et al., 

2007). The primary pathway associated with leptin’s satiety-inducing effects is 

the phosphorylation of STAT3 in the rat (Ladyman and Grattan, 2004). 

Homodimerization of pSTAT3 results in translocation of the transcription factor to 

the nucleus of the affected cell. This induces transcription of several genes, such 

as Pomc and immediate early genes, including Fra-1 (Bousquet et al., 2000). Our 

results show that after acute IH, POMC protein content within ARC increases. 

This finding is supported by the observations of increased Pomc mRNA in 

response to leptin (Mizuno et al., 1998). The effect of leptin on specific neurons 

within ARC is thought to be dependent on the phenotype of the neurons within 

this region. Leptin has been shown to increase the firing rate of POMC-

containing neurons (Cowley et al., 2001; Wang et al., 2008), while inhibiting the 

activity of neurons expressing neuropeptide Y (van den Top et al., 2004; Wang et 

al., 2008). Increased POMC in the hypothalamus induces hypophagia (Zhang et 

al., 2011), and we have found that acute IH induces both an increase in ARC 

POMC, as well as hypophagia. Our findings show that the IH leads to activation 
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of POMC-containing neurons within this region as it was found that a larger 

number of POMC neurons in ARC expressed the immediate early gene product 

FRA-1/2. The finding of increased FRA-1/2 expression in cells has been used to 

indicate alterations in neuronal activity, including depolarization under a variety of 

conditions, including IH (Messenger et al., 2012). These findings are further 

supported by the observation of transcriptional upregulation of satiety genes 

within the hypothalamus following chronic IH (Volgin and Kubin, 2006). 

 In summary, acute IH results in reductions in body weight, food intake and 

locomotion, and can alter the release of adipokines that regulate food intake from 

adipose tissue. Intracellular signaling pathways that are normally associated with 

satiety signaling were elevated in response to IH and this likely lead to the 

increased activity of POMC-containing neurons within ARC. These findings 

suggest that acute IH may result in altered body energy balance possibly through 

activation of hypothalamic pathways.  
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CHAPTER 3 

 

ACUTE INTERMITTENT HYPOXIA DOES NOT ALTER ENERGY 

BALANCE IN THE LEPTIN-DEFICIENT KILO RAT 
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3. CHAPTER 3 

3.1 CHAPTER SUMMARY 

Intermittent hypoxia (IH) is a major pathophysiological consequence of 

obstructive sleep apnea. Recently it has been described that acute IH results in 

complex alterations in body energy balance, induced leptin secretion and 

concomitant alterations in feeding pathways within the hypothalamus. To 

determine the role of leptin on these changes, leptin-deficient KILO rats were 

exposed to IH or normoxic control conditions. Body weights, consumatory and 

locomotor behaviours and hypothalamic alterations were assessed immediately 

following exposures. IH failed to alter measures of body weight, fat pad mass, 

food intake, locomotor activity, and the plasma concentration of angiotensin II. 

Plasma leptin concentration was undetectable by enzyme immunoassay. Within 

the arcuate nucleus of the hypothalamus, no changes were observed in 

phosphorylated signal transducer and activator of transcription 3, pro-

opiomelanocortin, long- or short-form leptin receptor, suppressor of cytokine 

signaling 3, nor within phosphorylated extracellular signal-regulated kinase ½. 

This study suggests that leptin plays an essential role in mediating the alterations 

observed in body energy balance and hypothalamic activity following IH 

compared to normoxic controls. Whether this effect is due to a lack of leptin 

directly acting in the hypothalamus, failure to initiate the release of a secondary 

factor, or altered chemoreceptor reflex sensitivity is not known. 
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3.2 INTRODUCTION 

Intermittent hypoxia (IH) is a major pathophysiological consequence of 

obstructive sleep apnea, a condition during which there is the episodic closures 

of the airway during sleep. A substantial reduction in pulmonary oxygen tension 

is observed during IH resulting in hypoxemia (Dempsey et al., 2010; Simon and 

Collop, 2012). As a result of this whole-body hypoxic insult, several physiological 

systems are altered, including the cardiovascular (Levy et al., 2012; Freet et al., 

2013) and respiratory (Debevec and Mekjavic, 2012; Dempsey et al., 2012) 

systems. It has been shown that alterations to the endocrine system are also 

induced by both sustained hypoxia and IH (Dempsey et al., 2010; Moreau and 

Ciriello, 2013; Reinke et al., 2011; Tschop et al., 2000). In particular, studies in 

both humans and experimental animal models have shown plasma leptin 

concentration to be elevated following IH (Messenger et al., 2012; Moreau and 

Ciriello, 2013; Tschop et al., 2000), and this is often associated with alterations in 

body energy balance (Moreau and Ciriello, 2013; Tschop et al., 1998). Leptin is 

an important modulator of satiety. Released by white adipocytes, the 16-kDa 

protein hormone signals arcuate nucleus of the hypothalamus (ARC; Satoh et al., 

1997). Within ARC, leptin increases the activity of pro-opiomelanocortin (POMC) 

neurons, while inhibiting neurons expressing neuropeptide Y (Elmquist et al., 

1998). When activated, POMC neurons mediate satiation and anorexigenic 

responses (Balthasar et al., 2004; Dhillon et al., 2006).   

Recently, we have shown that acute IH can alter central mechanisms important 

for the regulation of body energy balance (Moreau and Ciriello, 2013). This study 
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demonstrated that leptin, a satiety-inducing hormone, released into the 

circulation occurred after acute IH. Subsequently, a reduction in food intake was 

observed, despite an initial loss of body weight. These effects were observed 

concomitant to the induction of the anorexigenic factors phosphorylated signal 

transducer and activator of transcription 3 (pSTAT3), pro-opiomelanocortin 

(POMC), and a reduction of phosphorylated extracellular signal-regulated kinase 

1/2 (pERK1/2) within arcuate nucleus of the hypothalamus (Moreau and Ciriello, 

2013). Whether leptin played a direct role in these observed effects following IH 

is not known.  

Therefore, this study was done to determine whether the effects of acute 

IH on body energy balance and associated hypothalamic feeding pathways are 

initiated as a result of the release of leptin following IH. To determine this, leptin-

deficient rats were exposed to IH or normoxic conditions, and assessed for 

various measures of body weight, behaviors and plasma hormones associated 

with body energy balance and compared to wild type Sprague Dawley rats (WT). 

ARC was also removed to determine potential alterations in signaling in 

hypothalamic feeding pathways. 
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3.3 METHODS AND MATERIAL 

3.3.1 Animals and study design 

Adult male, Sprague-Dawley rats (300-350 g; n=12) were obtained from Charles 

River Canada (Sherbrooke, QC). Adult male, homozygous, leptin-deficient KILO 

rats (250-400 g; n=8; SD-Leptm1sage) were obtained from Sigma Advanced 

Genetic Engineering Laboratories (TGRA3780; Vaira et al., 2012). Rats were 

individually housed at a temperature of 22°C and 60% relative humidity with 

access to food and water available ad libitum, except during the 8 h IH or 

normoxic exposure, in 12h light/dark cycle conditions. Animals were handled in 

accordance with the guidelines set forth by the Canadian Council on Animal Care 

and the Animal Use Committee at the University of Western Ontario. 

 

3.3.2 IH and normoxic exposures 

Animals were assigned to either IH or normoxia group for exposure. Following 

these exposures, physiological measures of body weight and consumatory 

behaviours were measured. Animals were exposed to IH and normoxic 

conditions as previously described (Messenger and Ciriello, 2013; Messenger et 

al., 2012, 2013; Moreau and Ciriello, 2013). In brief, animals were placed in 

chambers consisting of four tubes (10 cm diameter by 35 cm length) and a zero-

pressure escape valve. For IH-exposed animals, a computer that regulated 

solenoid valves altered the input of N2 or room air to generate IH conditions. 
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Animals were exposed to 80s hypoxia (6.5% O2) followed by 120s normoxia. The 

levels of O2 and CO2 were monitored by sensors on the chamber, which relayed 

information back to the computer to ensure proper cycling. Conditions within the 

chamber were isobaric (770 ± 11 mmHg) and eucapnic (<0.1% CO2) (Moreau 

and Ciriello, 2013). Normoxic animals were exposed to only the air input. 

 

3.3.3 Measures of body weight, food intake and water intake 

Animals were weighed immediately before and after IH or normoxic exposure. 

These values were used to calculate body weight changes during the exposure 

period, overnight body weight gain and 24 h body weight change. Furthermore, 

food and water intake were measured over the remaining 16 h following IH or 

normoxic exposure (Moreau and Ciriello, 2013). 

 

3.3.4 Locomotion assay 

Immediately following IH or normoxic exposure (1700 h), animals were placed in 

home cages with access to food and water ad libitum. Animals were placed into 

large cages (60 cm x 40 cm) with a floor 4x5 grid system in the dark (red light on) 

30 min into the dark (active) cycle (1930 h). Over a 5 min period, the number of 

crosses of a line by an animal was determined by two independent, blinded 

observers to determine horizontal locomotion. Simultaneously, vertical 

locomotion was determined by the number of rearing events. An average value 
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was then calculated from these two observers for both horizontal and vertical 

locomotion (Moreau and Ciriello, 2013). 

 

3.3.5 Plasma collection and enzyme immunoassays 

As previously described (Moreau and Ciriello, 2013), immediately after the cross-

over exposure, rats were immediately sacrificed under equithesin anaesthesia 

(0.3 ml/100 g b.w.; i.p.). Blood samples were collected by cardiac puncture in the 

presence of 7% ethylenediaminetetraacetic acid at a volume of 10 µl/ml blood 

and immediately centrifuged at 10 000 RPM for 10 min at 4 °C to isolate the 

aqueous plasma. This aqueous plasma phase was removed and analyzed using 

enzyme immunoassays for rat leptin (Enzo Life Sciences; Farmingdale, NY) and 

angiotensin II (Phoenix Pharmaceuticals; Burlingame, CA) according to 

manufacturer instructions. Enzyme immunoassay plates were read on a 

SpectraMax M5 plate reader using SoftMax Pro v.5 microplate analysis software 

(Molecular Devices; Sunnyvale, CA).   

 

3.3.6 Tissue collection and preparation 

Immediately after exposure to IH or normoxia, rats were sacrificed under 

equithesin anesthesia (0.3 ml/100 g b.w.; Moreau and Ciriello, 2013) and the 

brains removed and frozen at -80°C until analyzed. Using a circular micropunch 

tool (1 mm internal diameter), 500 µm punches of ARC were taken and 



108 

 

immediately homogenized in cold radioimmunoprecipitation assay buffer (50 mM 

Tris, 150 mM NaCl, 1% Triton-X 100, 0.25% sodium deoxycholate, 1 mM NaF, 1 

mM sodium orthovanadate, 25 mM β-glycerophosphate) with protease inhibitor 

cocktail (Roche Applied Science; Laval, QC) by an electric homogenizer (VWR 

International; Radnor, PA). Homogenates were sonicated over three passages 

for 15s each on ice (55%; Sonic Dimembrator Model 150; Fisher Scientific). 

Samples were then rotated for 10 min at 4 °C and centrifuged at 4°C for 20 min 

at 14000 RPM. Protein content of homogenates was quantified using the Bio-

Rad Dc protein assay kit (Bio-Rad Laboratories; Hercules, CA). Protein samples 

were added to 25% sample buffer and 10% reducing buffer (Life Technologies; 

Burlington, ON) and water to a standard protein concentration of 1.67 mg/ml 

(Moreau and Ciriello, 2013; Messenger and Ciriello, 2013). 

 

3.3.7 Western blots 

As previously described (Messenger et al., 2012; Moreau and Ciriello, 2013), 

electrophoresis was carried out using a 10% discontinuous polyacrylamide Bis-

Tris gel (Life Technologies; Burlington, ON), followed by standard protein 

immunoblotting techniques. From each animal, 25 µg of protein of each sample 

was loaded. Electrophoresis was carried out at 200 V and terminated when the 

dye front reached the bottom of the gel. Proteins were transferred to a 

polyvinylidene fluoride membrane using a wet transfer method in the presence of 

methanol and  SDS (50 mM Tris, 40 mM glycine, 0.3% SDS, 20% methanol) and 
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wet transfer apparatus (Mini Trans-Blot Electrophoretic Transfer Cell; Bio- Rad 

Laboratories; Hercules, CA) at 100 V for 2 h. After transfer, the membrane was 

washed in Tris-buffered saline + Tween-20 (TBST; 20 mM Tris-HCl, 0.5 M NaCl, 

0.1% Tween-20; pH 8.0) blocked for 1 h with 5% skim milk made in TBST buffer 

at room temperature. The membrane was then incubated with primary antibodies 

diluted in skim milk over night at 4 °C.  The following day, the membrane was 

washed with TBST before being incubated with horseradish peroxidase-

conjugated secondary antibodies-specific to the appropriate host of the primary 

antibody being analyzed, for 1 h at room temperature. For detection, the 

membrane was washed with TBST, followed by distilled water and then stained 

using a horseradish peroxidase substrate enhanced chemiluminescence system 

(Luminata Forte, EMD Millipore; Billerica, MA). Blots were visualized using a 

VersaDoc imaging system (Bio-Rad Laboratories; Hercules, CA) and analyzed 

using ImageLab v.3.0 (Bio-Rad Laboratories; Hercules, CA). 

 

3.3.8 Antibodies 

The following antibodies were used for western blots: rabbit anti-β-actin-HRP 

(1:50000; A3854, Sigma-Aldrich; St. Louis MO),  chicken anti-ObRB (1:5000; 

CH14104, Neuromics; Edina, MN), rabbit anti-STAT3 (1:2000; #9132, Cell 

Signaling; Boston, MA), rabbit anti-pSTAT3 (Tyr705) (1:1000; #9131, Cell 

Signaling; Boston, MA), rabbit anti-POMC (1:2000; RB-08-0013, RayBiotech; 

Norcross GA), donkey anti-rabbit IgG-HRP (1:10000; 711-035-152, Jackson 
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Immunoresearch; West Grove, PA), donkey anti-chicken IgY-HRP (1:10000; 703-

035-155, Jackson Immunoresearch; West Grove, PA). 

 

3.3.9 Statistics and analysis 

For physiological measures and circulating factors, differences between IH and 

normoxic groups of WT and KILO rats were determined by two-way ANOVA, 

followed by a Bonferroni post-hoc analysis. Differences between IH and normoxic 

exposures were determined within WT and KILO groups for western blots using 

an unpaired, two-tailed Student t-test, and a p-value < 0.05 was taken to indicate 

statistical significance. All values were expressed as mean ± standard error. All 

bar charts were made using GraphPad Prism v.5 graphing software (GraphPad 

Software; La Jolla, CA). 
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3.4 RESULTS 

3.4.1 Food and water intake 

In the 16 h following exposure, WT normoxic animals consumed 30.2 ± 2.3 g of 

food, or 8.6 ± 1.3 g/100 g b.w. whereas WT IH exposed animals consumed less 

food (21.1 ± 2.1 g, or 5.9 ± 0.5 g of food/100 g b.w.). KILO rats exposed to 

normoxia consumed 29.9 ± 1.8 g of food, or 9.4 ± 1.6 g /100 g b.w., while IH 

exposed KILO rats consumed 31.2 ± 2.4 g of food, or 9.6 ± 1.5 g/100 g b.w. For 

both absolute (Fig 3.1a) and standardized food intakes (Fig 3.1b), WT IH 

consumed significantly less food than WT normoxic. In the KILO rats, this effect 

was not observed (Fig. 3.1a-b). There was no significant difference between WT 

normoxic exposed rats and normoxic and IH exposed KILO rats, though these 

relationships were complex as both had an interaction. There were no significant 

differences between any groups for water consumption. 

 

3.4.2 Food conversion efficiency 

WT animals exposed to normoxia had a food conversion efficiency of 0.46 ± 0.13 

g b.w. gain/g food consumed, whereas IH exposed WT rats had food conversion 

efficiency of 1.11 ± 0.15 g b.w. gain/g food consumed. Normoxic KILO rats had a 

food conversion efficiency of 1.00 ± 0.07 g b.w. gain/g food consumed, while 

KILO rats exposed to IH were 1.05 ± 0.05 g b.w. gain/g food consumed. In WT 

animals, IH animals had higher food conversion efficiency, while this difference  



112 

 

 

 

 

 

 

Figure 3.1 Energy intake and utilization in KILO rats following IH. 

Food intake and food conversion efficiency are altered in WT, but not KILO rats 

exposed to IH. Bar charts indicate total (a) and standardized (b) food intake over 

16h immediately following exposure to IH or normoxia in WT and KILO rats. 

Calculated food conversion efficiency over the same period (c) is also shown. 

NS: non-significant; * p < 0.05 as determined by two-way ANOVA followed by a 

Bonferroni post-hoc analysis. Data are presented as mean ± standard error. n=6 

for WT groups, n=4 for KILO groups. 
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was not observed in leptin-deficient KILO rats. KILO rats did not have 

significantly different food conversion efficiency from WT, though the 

comparisons were complex with a significant interaction being present (Fig 3.1c). 

 

3.4.3 Body weight changes 

Prior to exposure, there were no significant differences (p = 0.99) in body weights 

between KILO IH (380 ± 63 g) and KILO normoxic (380 ± 75 g), and WT IH (365 

± 10 g) and WT normoxic (364 ± 9 g) groups. During the exposure to either IH or 

normoxia, WT IH exposed animals lost approximately 8% of their body weight (-

29.3 ± 1.9 g) and WT normoxic animals lost approximately 3% (-13.8 ± 1.2 g) of 

their body weight. KILO IH animals lost 7% of their body weight (-28.4 ± 1.5 g), 

and normoxic KILO animals lost about 6% of their body weight (-24.5 ± 2.2 g). 

Body weight lost during exposure was significantly higher in WT IH animals 

compared to normoxic controls, though this effect was not observed in KILO 

animals. There was no significant difference between the body weight lost during 

exposure between WT and KILO animals, though a significant interaction was 

found (Fig 3.2a). In the 16 h immediately following the exposures, WT normoxic 

animals had a regained body weight change of 14.1 ± 3.2 g while IH animals 

regained 23.6 ± 4.5 g. KILO normoxic animals regained 29.9 ± 2.0 g overnight 

while the KILO IH animals regained 32.6 ± 2.3 g in the same time period. WT 

animals exposed to IH gained more body weight overnight, while leptin-deficient 

KILO rats did not differ in their response to IH compared to normoxia. KILO 
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animals gained significantly more body weight overnight than WT animals (Fig 

3.2b). The overall change in body weight for the 24h following the initiation of 

exposure was 0.4 ± 3.7 g for WT normoxic, -5.6 ± 2.6 g for WT IH exposed 

animals, 5.4 ± 3.2 g for normoxic KILO and 4.2 ± 3.0 g for IH KILO animals. 

There were no significant differences between IH and normoxic exposed animals 

of either strain though KILO animals gained significantly more body weight 

compared to WT animals over the same time period (Fig 3.2c). 

 

3.4.4 Fat pad mass 

The mass of the epididymal fat pad was 3.1 ± 0.8 g in WT normoxic animals, 2.8 

± 0.6 g in WT IH animals, 15.2 ± 2.6 g in KILO normoxic animals, and 13.2 ± 2.8 

g in KILO IH animals. No differences were observed between IH and normoxia 

exposures in either WT or KILO animals. However, KILO rats did have 

significantly higher fat pad mass compared to WT animals (Fig 3.3a). The 

retroperitoneal fat pad mass of WT normoxic animals was 5.2 ± 1.2 g, 4.8 ± 1.2 g 

in WT IH animals, 24.4 ± 2.9 g in normoxic KILO rats, and 22.2 ± 3.1 g in KILO 

IH animals. There were no statistical differences between normoxia and IH 

exposed animals of either genetic background, although KILO rats had 

significantly larger retroperitoneal fat pads (Fig 3.3b). 
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Figure 3.2 Body weight in KILO rats exposed to IH. 

Body weight is significantly altered following IH in WT, but not KILO rats. Bar 

charts indicating body weight change during exposure (a), overnight body weight 

gain (b), and overall body weight change 24h from baseline (c) in WT or KILO 

animals exposed to normoxia or IH. NS: non-significant; * p < 0.05 as determined 

by two-way ANOVA followed by a Bonferroni post-hoc analysis. Data are 

presented as mean ± standard error. n=6 for WT groups, n=4 for KILO groups. 
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3.4.5 Locomotion 

Horizontal locomotor activity in normoxic WT animals was 112 ± 9 line 

crossings/5 min and in IH WT animals 87 ± 3 line crossings/5 min. In the KILO 

rats exposed to normoxia, animals had horizontal locomotion of 93 ± 7 line 

crossings/5 min while the IH KILO rats had 87 ± 8 line crossings/5 min. WT 

animals exposed to IH had significantly less horizontal locomotor activity. This 

effect of IH was not found in KILO animals (Fig. 3.3c). There were no significant 

differences between WT and KILO animals, though an interaction was observed 

(Fig 3.3c).  

Vertical locomotor activity was measured in normoxic WT animals to be 31 

± 3 rearings/5 min, 28 ± 4 rearings/5 min in IH WT animals, 26 ± 4 rearings/5 min 

in normoxic KILO animals and 23 ± 4 rearings/5 min in IH KILO animals. There 

were no significant differences between or among the groups for vertical 

locomotor activity (Fig 3.3d). 

 

3.4.6 Plasma leptin concentration 

WT rats exposed to normoxia had a circulating leptin level of 3.8 ± 1.0 ng/ml, 

while WT rats had significantly elevated plasma leptin concentrations of 11.1 ± 

1.3 ng/ml following IH exposure. KILO rats exposed to normoxia had leptin 

concentration of 0.2 ± 0.1 ng/ml and IH exposed KILO rats had a similar plasma 

level (0.2 ± 0.1 ng/ml). KILO animals had a significantly lower concentration of  
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Figure 3.3 Fat pad mass and locomotion in KILO rats following IH. 

Fat pad mass and locomotion in WT and KILO animals exposed to either 

normoxia or IH. Bar charts indicating epididymal (a) and retroperitoneal (b) fat 

pad mass in either WT or KILO animals following either normoxia or IH. 

Horizontal (c) and vertical (d) locomotor activities in in WT and KILO animals 

exposed to either normoxia or IH are also displayed. NS: non-significant; * p < 

0.05 as determined by two-way ANOVA followed by a Bonferroni post-hoc 

analysis. Data are presented as mean ± standard error. n=6 for WT groups, n=4 

for KILO groups. 
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leptin than WT animals, regardless of exposure, and there was an interaction 

between both exposure and genetic background of the animals (Fig 3.4a). 

 

3.4.7 Plasma angiotensin II concentration 

WT normoxic animals had an angiotensin II plasma concentration of 0.65 ± 0.20 

ng/ml. WT IH animals had a greater than 2 fold increase in circulating level of 

angiotensin II (1.55 ± 0.17 ng/ml). KILO rats exposed to normoxia had a 

circulating angiotensin II concentration of 0.91 ± 0.10 ng/ml. Similarly, KILO rats 

exposed to IH had a circulating plasma angiotensin II concentration of 0.87 ± 

0.10 ng/ml (Fig 3.4b). 

 

3.4.8 ARC leptin signaling molecules 

Within ARC, the amount of ObRB protein was not different between normoxic 

and IH exposed animals for either WT (p = 0.65; Fig 3.5a) or KILO animals (p = 

0.90; Fig 3.5b). The amount of β-actin protein was not different between 

normoxia exposed and IH exposed WT (p = 0.88) or KILO animals (p = 0.68). 

IH WT animals had significantly more (p = 0.0031) pSTAT3 compared to 

normoxic WT animals (0.78 ± 0.03 A.U. vs. 0.12 ± 0.02 A.U., respectively; Fig 

3.5c). This effect was not observed within the ARC of KILO animals (p = 0.72) 

exposed to normoxia (0.0056 ± 0.0007 A.U.) or IH (0.0060 ± 0.0008 A.U.; Fig  
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Figure 3.4 Plasma hormone concentrations in KILO rats exposed to IH. 

Plasma concentration of leptin and angiotensin II in WT and KILO animals in 

response to either IH or normoxia. Bar charts indicate the plasma concentration 

of leptin (a) and angiotensin II (b) in WT and KILO animals exposed to either IH 

or normoxia. NS: non-significant; * p < 0.05 as determined by two-way ANOVA 

followed by a Bonferroni post-hoc analysis. Data are presented as mean ± 

standard error. n=6 for WT groups, n=4 for KILO groups. 
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3.5d). The total amount of STAT3 protein was not different for either WT (p = 

0.84) or KILO (p = 0.70) animals.  

POMC protein levels were significantly higher (p = 0.022) in ARC of WT 

animals exposed to IH (1.10 ± 0.31 A.U.) compared to normoxia (0.51 ± 0.15 

A.U.; Fig 3.5e). No significant difference (p = 0.43) was observed in POMC 

protein levels within ARC of KILO rats exposed to normoxia (0.034 ± 0.0043 

A.U.) or IH (0.029 ± 0.003 A.U.; Fig 3.5f). 
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Figure 3.5 Leptin signaling molecules in ARC of KILO rats exposed to IH. 

Representative blots and bar graphs depicting important leptin signaling 

molecules in ARC of WT and KILO rats. ObRB/β-actin within the ARC of WT (a) 

and KILO rats (b). Note that the amount of ObRB to β-actin protein within the 

ARC is not changed in WT or the KILO rat. (c-d), representative blots and bar 

graphs depicting pSTAT3/STAT3 within ARC of WT (c) and KILO rats (d). Note 

that the amount of pSTAT3 to total STAT3 protein within the ARC is elevated in 

WT, but not the KILO rat. (e-f), representative blots and bar graphs depicting 

POMC/β-actin within ARC of WT (e) and KILO rats (f). Note that the amount of 

POMC to β-actin protein within the ARC is elevated in WT, but not the KILO rat. 

*, p < 0.05 as determined by unpaired, two-tailed t-test. Data are presented as 

mean ± standard error. n=6 for WT groups, n=4 for KILO groups. 
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3.5 DISCUSSION 

This study has shown that the effects of IH previously described (Moreau 

and Ciriello, 2013) on body energy balance, hypothalamic signaling, and 

circulating hormones are mediated by the leptin released in responses to IH as 

the effects were not present in the leptin-deficient KILO rat. This is based on the 

findings that IH in WT animals reduced body weight during exposure, and 

increases overnight regain of the body weight. This effect is concomitant with a 

reduction in food intake and food conversion efficiency, effects not observed in 

the KILO rat. Additionally, elevated circulating angiotensin II and leptin are 

observed following IH exposure in WT animals, but these effects were not 

observed in KILO animals, suggesting that the absence of leptin in response to 

IH in KILO rats is important in the release of angiotensin II into the circulation in 

response to IH. Finally, in ARC, activation of downstream pSTAT3 and increased 

POMC were found following IH in WT animals. However, these differences are 

not observed in ARC of the leptin-deficient KILO animal. Taken together, these 

findings suggest that leptin released into the circulation is essentially for body 

energy balance and hypothalamic signaling in response to IH. 

 In an earlier study, significant reduction in body weight during 8h IH and a 

subsequent significant increase in body weight regain in the 16 h immediately 

following exposure has been described (Moreau and Ciriello 2013). As a result, 

the 24 h body weight change was not different between IH and normoxic 

exposed animals. As previously argued (Moreau and Ciriello, 2013), the loss of 

body weight due to exposure of IH is likely not due to a reduction in specific 



128 

 

adipose depot tissue mass, although it may be a cumulative effect from all 

sources of adipose tissue. Following chronic IH, a reduction in adipose tissue 

mass and body weight has also been observed (Martinez et al., 2008). Given that 

leptin deficient animals exposed to IH failed to lose more body weight during 8h 

IH suggests that the mechanisms resulting in weight loss during IH are 

dependent on the presence of leptin released into the circulation during IH 

(Messenger et al., 2012; Moreau and Ciriello, 2013).  

   Circulating leptin can reduce food intake by acting on neurons within 

ARC (Satoh et al., 1997). Once bound to the ObRB, leptin causes 

autophosphorylation of JAK2 and subsequent homodimerization of pSTAT3 

(Banks et al., 2000; Kloek et al., 2002; White et al., 1997). pSTAT3 then acts to 

regulate transcription of various genes, including Pomc (Banks et al., 2000). After 

acute IH, plasma leptin concentrations were increased and increased levels of 

pSTAT3 and POMC were observed in ARC as previously described (Moreau and 

Ciriello, 2013). In the absence of leptin, as in the present study, these changes in 

anorexigenic signaling molecules are not altered in response to IH. This suggests 

the activation of satiety signals in ARC due to IH is dependent upon the presence 

of leptin. This effect may not be direct, as other systems have been shown to 

increase activation of pSTAT3 and POMC within ARC (Anderson et al., 2003; 

Zhang et al., 2011). However, if they were responsible for the observed changes, 

they must ultimately fall under the control of leptin, as these changes are 

abolished in the leptin-deficient KILO rat.   
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An increase in circulating angiotensin II concentration was also observed 

in WT animals following IH. Unexpectedly, this effect was abolished in the KILO 

rat. This suggests that the release of angiotensin II following IH is dependent on 

leptin signaling. The mechanism by which leptin may contribute to the elevation 

of angiotensin II is not known, but may involve actions of leptin in the brainstem 

(Ciriello, 2013) or at the level of the carotid body (Messenger et al., 2012) to 

increase peripheral chemoreceptor sensitivity (Ciriello and Moreau, 2013), which 

in turn may increase renal sympathetic nerve activity (Ciriello, 2013), a known 

stimulus for the renin-angiotensin hormonal pathway (Froeschl et al., 2013).  

In conclusion, this study has shown that leptin plays an essential role in 

mediating the effects of acute IH on changes to body energy balance, and 

related hormonal secretion and molecular alterations within ARC. Taken 

together, these data suggest that leptin may be an essential mediator of the 

physiological response to hypoxia. 
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CHAPTER 4 

 

CHRONIC INTERMITTENT HYPOXIA INDUCES LEPTIN 

RESISTANCE 
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4.        CHAPTER 4 

4.1 CHAPTER SUMMARY 

Obstructive sleep apnea (OSA) is strongly correlated with the presence of 

obesity and it has been determined that patients with OSA experience weight 

gain, in addition to elevated leptin concentrations. Chronic intermittent hypoxia 

(CIH) is a major pathophysiological manifestation of OSA, and acute IH has 

recently been shown to alter body energy balance. Therefore, this study set out 

to determine the relationship of body energy balance and leptin signaling in CIH. 

To examine this, Sprague-Dawley rats were exposed to 95 days of CIH or 

normoxic control conditions, and were assessed for daily measures of body 

weight, food intake, and food conversion efficiency. Towards the end of the 

study, leptin sensitivity, locomotor activity and circulating leptin was determined 

within animals. Following the study period, fat pads and arcuate hypothalamic 

nuclei (ARC) were isolated. ARC were assessed for factors associated with leptin 

signaling. CIH animals increased their food intake over the study period, whereas 

normoxic animals reduced this value. Normoxic animals had a reduced daily 

body weight change over the study period, whereas this value was not different 

in CIH animals. Epididymal fat mass and food conversion efficiency was less in 

CIH animals. Following peripheral leptin injection, normoxic animals reduced 

food intake, whereas CIH animals did not. Basal concentrations of leptin were not 

different between the groups, but were elevated in CIH when normalized for 

epididymal fat mass. Within ARC, CIH animals had elevated SOCS3 protein. 
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This study suggests that CIH, as seen in OSA, can induce a state of leptin 

resistance. 
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4.2 INTRODUCTION 

Obesity is an energy balance disorder that affects a large number of 

individuals within society (Ogden et al., 2013). This disease is associated with a 

positive energy balance, whereby individuals do not utilize as many calories as 

consumed throughout the day. The caloric imbalance observed in obesity is 

believed to be the result of leptin resistance, which is considered to be the 

primary risk factor for both obesity and overweight (Morris et al., 2010). During 

leptin resistance, the satiety and anorexigenic effects of leptin are lost, thus 

promoting dysregulation of caloric consumption, preventing negative feedback 

onto energy storage sites such as the adipose tissue (Kalra et al., 1998). As a 

result, hyperphagia persists, resulting in an increased deposition of adipose 

tissue mass (Lin et al., 2000). The resultant increase in adipose tissue causes an 

elevation in circulating leptin concentrations, potentially furthering the resistance 

to leptin (Scarpace et al., 2002). 

Hyperphagia and obesity are caused by a reduced expression of leptin 

signaling molecules such as the long-form leptin receptor (ObRB) in the ARC 

(Gong et al., 2008). Once leptin binds ObRB, phosphorylation and 

homodimerization of signal transducer and activator of transcription 3 (STAT3) 

occurs (Vaisse et al., 1996). Activation by phosphorylation of extracellular 

regulated kinase 1/2 (ERK1/2) also occurs (Banks et al., 2000). The translocation 

of pSTAT3 to the nucleus induces the transcription and production of pro-

opiomelanocortin (POMC), a major effector for satiety, and suppressor of 

cytokine signaling 3 (SOCS3; Banks et al., 2000; Munzberg et al., 2003; Bates et 
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al., 2003), a negative regulator of ObRB (Bjorbak et al., 2000). Another important 

negative regulator of leptin signaling is protein tyrosine phosphatase 1B (PTP1B; 

Sahu, 2004). Leptin resistance is associated with a decrease in activity of leptin 

within the arcuate nucleus of the hypothalamus (ARC; Ladyman and Grattan, 

2004; Munzberg et al., 2004). The mechanisms that drive leptin resistance are 

not known, but may occur at the blood-brain barrier leptin transport system, such 

as the short forms of the leptin receptor (ObR100; Banks et al., 1999), at the 

level of the receptor (Rahmouni et al., 2008) or post-receptor signaling (Cheng et 

al., 2002; Mori et al., 2004), including changes in the down-stream melanocortin 

system (Marsh et al., 1999). 

Obesity is a major risk factor for the development of obstructive sleep 

apnea (Peppard et al., 2000), which is a sleep-related breathing disorder 

characterized by nocturnal intermittent hypoxia. Patients with obstructive sleep 

apnea have elevated leptin levels, and a greater disposition to weight gain 

(Phillips et al., 2000). Recently, we have demonstrated that acute intermittent 

hypoxia alters energy balance, increases plasma leptin levels and activates 

leptin-related signaling mechanisms within ARC (Moreau and Ciriello, 2013). 

Taken together, these results would suggest that chronic intermittent hypoxia 

(CIH) may induce a state of leptin resistance. To test this possibility, experiments 

were done in which leptin resistance was determined by the effects of acute 

leptin injections on food intake, altered energy balance, and concomitant 

alterations in ARC after exposure to long term CIH. 
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4.3 METHODS AND MATERIAL 

4.3.1 Animals  

Experiments were done in adult male Sprague-Dawley rats (360-400 g) 

individually housed in a room maintained at a temperature of 22°C and 60% 

relative humidity. All animals had access to food and water ad libitum, except 

during the 8h of intermittent hypoxic or normoxic exposure, in 12h light/dark cycle 

conditions. Animals were randomly assigned to either CIH (n=8) or normoxia 

(n=8) groups and exposed to the corresponding conditions for 95 days. Animals 

were handled in accordance with the guidelines set forth by the Canadian 

Council on Animal Care and Use Committee at the University of Western 

Ontario.   

 

4.3.2 CIH and normoxic exposures 

Animals were exposed to CIH and normoxic conditions as previously described 

(Moreau and Ciriello, 2013; Messenger and Ciriello, 2013; Messenger et al., 

2012, 2013). Briefly, animals were placed in chambers each consisting of four 

tubes (10 cm diameter by 35 cm length) and a zero-pressure escape valve. For 

CIH-exposed animals, a computer that regulated solenoid valves altered the 

input of N2 or room air to generate CIH conditions. Animals were exposed to 80s 

hypoxia (6.5% O2) followed by 120s normoxia. The levels of O2 and CO2 were 

monitored by sensors on the chamber, which relayed information back to the 
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computer to ensure proper cycling. Conditions within the chamber were isobaric 

(770 ± 11 mmHg) and eucapnic (<0.1% CO2). Normoxic animals were exposed 

to only the air input. 

 

4.3.3 Measurement of body weight, food and water intake 

Each day throughout the study, animals were weighed immediately before and 

after CIH or normoxic exposure. These values were used to calculate body 

weight changes during the exposure period, overnight body weight gain and 24h 

body weight change. Additionally, food and water were measured over the 16h 

immediately following CIH or normoxic exposure on each day.  

 

4.3.4 Locomotion assay 

Immediately following CIH or normoxic exposure on days 91 and 92, animals 

were returned to their home cages and were allowed access to food and water 

ad libitum. Thirty min into the dark (active) cycle (1930 h), animals were placed 

into large cages (60 cm x 40 cm) with a floor 4x5 grid system in the dark (red 

light on). Over a 10 min period, the number of crosses of a line by an animal was 

determined by two independent observers blinded to their exposure regime to 

determine horizontal locomotion (Moreau and Ciriello, 2013). Simultaneously, 

vertical locomotion was determined by the number of rearing events. An average 
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value was then calculated from these two observers for both horizontal and 

vertical locomotion (Moreau and Ciriello, 2013). 

 

4.3.5 Leptin resistance assay  

Following CIH or normoxic exposure on days 93 and 94, animals were placed 

into their home cages with ad libitum access to food and water. At the beginning 

of the dark cycle (1900 h), animals were randomly assigned to vehicle or leptin 

groups, and injected (i.p.) with either 0.4 mg/kg carrier-free recombinant rat leptin 

(598-LP; R&D Systems, Minneapolis, MN) dissolved to 1 mg/ml in 20 mM Tris 

HCl (pH = 8.0), or vehicle. Food intake measurements were taken at 1, 2, 3 and 

14h after the leptin injection. Animals were exposed to CIH or normoxic 

conditions the next day, and then were crossed-over to be injected with opposite 

injectate (i.e. vehicle instead of leptin and vice versa), such that each animal 

received an injection of both the vehicle and leptin for comparisons. 

 

4.3.6 Plasma collection and enzyme immunoassays 

The day following exposure, animals were immediately sacrificed under 

equithesin anesthesia (0.3 ml/100 g b.w.; i.p.) (Moreau and Ciriello, 2013). Blood 

samples were collected by cardiac puncture in the presence of 7% 

ethylenediaminetetraacetic acid at a volume of 10 µl/ml blood. This blood was 

immediately centrifuged at 10 000 RPM for 10 min at 4°C to isolate the aqueous 
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plasma. This aqueous plasma phase was removed and stored frozen at -80 °C 

until analyzed for hormone content. Plasma samples were analyzed using 

enzyme immunoassay for rat leptin (Enzo Life Sciences; Farmingdale, NY) 

according to manufacturer instructions. Enzyme immunoassay plates were read 

on a SpectraMax M5 plate reader using SoftMax Pro v.5 microplate analysis 

software (Molecular Devices; Sunnyvale, CA).   

 

4.3.7 Tissue collection and preparation 

Following exposure to CIH or normoxia, animals were sacrificed under equithesin 

anesthesia and the brains immediately removed and frozen at -80°C. Using a 

circular 1 mm (internal diameter) micropunch tool, 500 µm punch-outs of ARC 

were taken and immediately homogenized in cold radioimmunoprecipitation 

assay buffer (50 mM Tris, 150 mM NaCl, 1% Triton-X 100, 0.25% sodium 

deoxycholate, 1 mM NaF, 1 mM sodium orthovanadate, 25 mM β-

glycerophosphate) with protease inhibitor cocktail (Roche Applied Science; 

Laval, QC) by an electric homogenizer (VWR International; Radnor, PA). 

Homogenates were then sonicated over three passages for 15s each on ice 

(55%; Sonic Dimembrator Model 150; Fisher Scientific). Samples were then 

rotated for 10 min at 4°C and centrifuged at 4°C for 20 min at 14000 RPM. 

Protein content of homogenates was quantified using the Bio-Rad Dc protein 

assay kit (Bio-Rad Laboratories; Hercules, CA). Protein samples were added to 

25% sample buffer and 10% reducing buffer (Life Technologies; Burlington, ON) 
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and water to a standard protein concentration of 1.67 mg/ml (Messenger and 

Ciriello, 2013; Moreau and Ciriello, 2013).  

 

4.3.8 Western blots 

Electrophoresis was carried out using a 10% discontinuous polyacrylamide Bis-

Tris gel (Life Technologies; Burlington, ON), followed by standard protein 

immunoblotting techniques (Messenger et al., 2013; Moreau and Ciriello 2013). 

For each animal, 25 µg of protein of each sample was loaded. Electrophoresis 

was carried out at 200 V and terminated when the dye front reached the bottom 

of the gel. Proteins were transferred to a polyvinylidene fluoride membrane using 

a wet transfer method in the presence of methanol and  SDS (50 mM Tris, 40 

mM glycine, 0.3% SDS, 20% methanol) and wet transfer apparatus (Mini Trans-

Blot Electrophoretic Transfer Cell; Bio- Rad Laboratories; Hercules, CA) at 100 V 

for 2h. After transfer, the membrane was washed in Tris-buffered saline + 

Tween-20 (TBST; 20 mM Tris-HCl, 0.5 M NaCl, 0.1% Tween-20; pH 8.0) blocked 

for 1 h with 5% skim milk made in TBST buffer at room temperature. The 

membrane was then incubated with primary antibodies diluted in skim milk over 

night at 4°C.  The following day, the membrane was washed with TBST before 

being incubated with horseradish peroxidase-conjugated secondary antibodies-

specific to the appropriate host of the primary antibody being analyzed, for 1h at 

room temperature. For detection, the membrane was washed with TBST, 

followed by distilled water and then stained using a horseradish peroxidase 
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substrate enhanced chemiluminescence system (Luminata Forte, EMD Millipore; 

Billerica, MA). Blots were visualized using a VersaDoc imaging system (Bio-Rad 

Laboratories; Hercules, CA) and analyzed using ImageLab v.3.0 (Bio-Rad 

Laboratories; Hercules, CA).  

 

4.3.9 Antibodies 

For western blots the following antibodies were used: rabbit anti-β-actin-HRP 

(1:50000; A3854, Sigma-Aldrich; St. Louis MO),  rabbit anti-ObR (1:1000; 

OBR12-A, Alpha Diagnostics International; San Antonio, TX) chicken anti-ObRB 

(1:5000; CH14104, Neuromics; Edina, MN), rabbit anti-STAT3 (1:2000; #9132, 

Cell Signaling; Boston, MA), rabbit anti-pSTAT3 (Tyr705) (1:1000; #9131, Cell 

Signaling; Boston, MA), rabbit anti-ERK1/2 (1:2000; #9102, Cell Signaling; 

Boston, MA), rabbit anti-pERK1/2 (Thr202/Tyr204) (1:1000; #9101, Cell 

Signaling; Boston, MA), rabbit anti-POMC (1:2000; RB-08-0013, RayBiotech; 

Norcross GA), rabbit anti-SOCS3 (1:1000; ab16030, Abcam; Cambridge, MA), 

goat anti-PTP1B (1:500; sc-1718, Santa Cruz Biotechnology; Dallas, TX), donkey 

anti-rabbit IgG-HRP (1:10000; 711-035-152, Jackson Immunoresearch; West 

Grove, PA), donkey anti-chicken IgY-HRP (1:10000; 703-035-155, Jackson 

Immunoresearch; West Grove, PA), donkey anti-goat IgG-HRP (1:10000; 705-

035-003, Jackson Immunoresearch; West Grove, PA). 
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4.3.10 Statistics and analysis 

Differences between and within CIH and normoxic groups at week 1 and week 

13 of physiological variables, as well within basal plasma leptin concentrations of 

fasted and non-fasted animals, were determined by two-way ANOVA with a 

repeated measure between the exposure time groups, followed by Bonferroni 

post-hoc analysis. Western blot analyses and fat pad mass between CIH and 

normoxic groups were compared using an unpaired, two-tailed t-test. For leptin 

resistance assays, a paired two-tailed t-test was used to compare vehicle 

injection to leptin injection within CIH and normoxic groups. For all statistical 

analyses, a p-value < 0.05 was taken to indicate statistical significance. All 

values are expressed as mean ± standard error. All charts were made using 

GraphPad Prism v.5 graphing software (GraphPad Software; La Jolla, CA). 

 

 

 

 

 

 

 

 



145 

 

4.4 RESULTS 

4.4.1 Body weight changes 

Prior to exposure, body weights between CIH (385.5 ± 9.9 g) and normoxic 

(386.5 ± 10.5 g) groups were not significant different (p = 0.95). Average body 

weight after the first week CIH exposure was 386 ± 11.3 g, while the normoxic 

animals weighed an average of 402.4 ± 9.6 g. After the thirteenth week of 

exposure, CIH animals weighed 584.8 ± 12.2 g and normoxic animals weighed 

635.6 ± 21.8 (Fig 4.1a). There was both a significant effect of the duration of 

exposure and exposure type on body weight (Fig. 4.1a-d). After the first week of 

exposure, CIH exposed animals lost on average approximately 6% of their body 

weight (-23.7 ± 1.9 g), whereas normoxic controls lost about 3% of their body 

weight (-12.6 ± 0.7 g; Fig. 4.1b). After the thirteenth week of exposure, CIH 

animals lost an average of 5% of body weight (-31.8 ± 3.2 g) and normoxic 

animals lost about 2% of body weight during exposure (-11.9 ± 2.2 g; Fig 4.1b). 

There was a significant effect of exposure between CIH and normoxic groups. In 

addition, the CIH group lost significantly more body weight on average after 13 

weeks of exposure compared to the first week, but no effect of exposure length 

on normoxic animals was observed. In the 16h following exposure after the first 

week, CIH animals gained an average of 25.9 ± 1.5 g and normoxic animals 

gained 18.0 ± 0.6 g. After 13 weeks, CIH animals gained an average of 32.0 ± 

3.2 g and normoxic animals gained 12.8 ± 2.0 g overnight (Fig 4.1c). CIH animals 

gained significantly more weight overnight than normoxic animals, and this 

overnight body weight gain increased over the length of exposure. On the other 
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hand, normoxic animals had decreased overnight body weight gain over the 

same time period. Average daily body weight change after the first week for CIH 

animals was 2.1 ± 0.5 g, while normoxic animals gained an average of 5.5 ± 0.4 

g. After 13 weeks, CIH animals had an average daily body weight change of -1.1 

± 0.8 g, while normoxic animals had 0.46 ± 0.77 g (Fig 4.1d). There was a 

significant effect of exposure on daily body weight change, with CIH animals 

gaining less weight daily. The effect of exposure length on daily body weight 

change is complex as normoxic exposed animals reduce their daily body weight 

change, while CIH animals do not significantly alter this response.   

 

4.4.2 Fat pad mass changes 

Epididymal fat pad mass was significantly reduced (p = 0.024) in CIH exposed 

animals (6.1 ± 1.1 g) compared to those exposed to normoxia (10.1 ± 0.8 g) (Fig. 

4.1e). Although no differences (p = 0.17) were observed in retroperitoneal fat pad 

mass between CIH (8.4 ± 1.7 g) and normoxic animals (12.0 ± 1.8 g), a trend 

towards a decrease was also observed (Fig. 4.1f). These effects were observed 

even when accounting for total body weight. Epididymal fat of CIH animals (1.08 

± 0.14 g/100 g b.w.), was significantly less (p = 0.028) than normoxic animals 

(1.60 ± 0.11 g/100 g b.w.). Retroperitoneal fat was not different (p = 0.15) 

between CIH (1.48 ± 0.23 g/100 g b.w.) and normoxic animals (1.89 ± 0.24 g 

/100 g b.w.). 
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Figure 4.1 Effect of CIH on body weight changes and fat pad mass. 

Bar charts summarizing the changes body weight (a), body weight change during 

8h IH exposure (b), 16 h post-exposure overnight body weight gain (c), and daily 

change in body weight between animals exposed to CIH or normoxia averaged 

for over week 1 and week 13 (d). Bar charts summarize epididymal (e) and 

retroperitoneal (f) fat pad mass after 13 weeks of CIH or normoxia exposure. 

Note that body weight, body weight changes and adipose tissue mass are altered 

by CIH. Data are shown as mean ± standard error. *, p < 0.05 (determined by 

two-way ANOVA followed by a Bonferroni post-hoc analysis for body weights, 

and as determined by an unpaired, two-tailed Student’s t-test for fat pad mass). n 

= 8 per group. 
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4.4.3 Food intake 

In the 16h following daily exposure after the first week, CIH animals consumed 

an average of 25.2 ± 1.0 g of food while the normoxic animals consumed 31.4 ± 

0.8 g of food (Fig. 4.2a). Following 13 weeks of exposure, CIH animals 

consumed a daily average of 27.5 ± 0.7 g of food, representing an increase of 

approximately 9%, and normoxic animals consumed 27.9 ± 1.1 g of food, 

representing a decrease of approximately 11% (Fig 4.2a).  

 

4.4.4 Food conversion efficiency 

Food conversion efficiency was 1.04 ± 0.08 g b.w. gain/g food in CIH exposed 

animals and 0.59 ± 0.03 g b.w. gain/g food in normoxic animals after the first 

week. After week 13, CIH animals had a food conversion efficiency of 1.08 ± 0.04 

g b.w. gain/g food, and normoxic animals were 0.44 ± 0.04 g b.w. gain/g food 

(Fig 4.2b). There was an effect of exposure for CIH to increase food conversion 

efficiency, while the relationship of exposure length and exposure interacted to 

produce a complex relationship whereby there was no alteration within CIH 

animals over the exposure time, but significantly reduced food conversion 

efficiency in normoxic animals over the time period.  
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4.4.5 Locomotion changes 

Horizontal locomotor activity was not different (p = 0.66) between CIH and 

normoxic control rats (301.2 ± 25.8 line crosses/10 min and 295.6 ± 26.1 line 

crosses/10 min, respectively; Fig 4.2c). Vertical locomotor activity was not 

different (p = 0.25) between CIH and normoxic rats (83.5 ± 15.8 rears/10 min and 

72.4 ± 12.3 rears/10 min, respectively; Fig 4.2d).  

 

4.4.6 Plasma leptin concentrations 

Plasma concentrations of leptin during fasting conditions following 95 days CIH 

had 1.2 ng/ml of leptin in their plasma, while normoxia animals had 1.5 ± 0.3 

ng/ml of leptin. When these plasma levels are normalized to epididymal fat 

content in each animal, CIH exposed animals had a significantly elevated (p = 

0.036) plasma leptin than normoxic controls (0.41 ± 0.08 ng/ml/g fat compared to 

0.23 ± 0.06 ng/ml/g fat, respectively; Fig 4.2e). Furthermore, a similar finding is 

observed if the plasma leptin levels are compared to both epididymal and 

retroperitoneal fat pads.  

 

4.4.7 Leptin resistance induced by CIH 

In animals exposed to normoxia, food intake 1 h after acute leptin injection was 

significantly (p = 0.012) reduced compared to vehicle injected controls (Fig.  
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Figure 4.2 Changes in food intake and energy expenditure following CIH. 

Bar charts showing food intake (a) and food conversion efficiency (b) over the 

16h after 1 week or 13 week exposure to CIH or normoxia. In addition, (c-d) 

show that both horizontal (c) and vertical (d) locomotion were not changed by 

CIH at the 13 week time-point. Bar chart (e) also shows plasma leptin levels 

normalized for epididymal fat pad mass. Note that CIH causes changes in food 

intake and body energy utilization without changing locomotor activity. 

Furthermore, basal plasma leptin levels are elevated when fat pad mass is taken 

into account. Data are shown as mean ± standard error. *, p<0.05 (determined by 

two-way ANOVA followed by a Bonferroni post-hoc analysis for food intake, food 

conversion efficiency, leptin concentration, and as determined by an unpaired, 

two-tailed Student’s t-test for locomotor activities and normalized leptin) n = 4 per 

group. 
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4.3a). On the other hand, in the CIH exposed animals, food intake was not 

altered at this time point (Fig. 4.3a). Similarly, at 2h and 3h after acute leptin 

injection, food intake was significantly (2h, p = 0.0092; 3h, p = 0.015) reduced 

after acute leptin injections in the normoxic controls compared to vehicle injected 

animals, but was not altered in the CIH exposed animals (Fig. 4.3b-c). These 

values were not altered at the 14h time point (Fig. 4.3d). Furthermore, neither 

vehicle, nor leptin injections in animals exposed to CIH or normoxia altered food 

intake from total food intake values over the 16h measured on a daily basis. 

 

4.4.8 Protein expression of leptin receptors after CIH 

As shown in Figure 4.4, within ARC, CIH did not alter (p = 0.85) the protein 

expression of the long-form leptin receptor (ObRB) compared to normoxia (0.17 

± 0.02 A.U. and 0.16 ± 0.02 A.U., respectively; Fig 4.4a). IH also did not alter (p = 

0.46) protein expression of the short form leptin receptor ObR100 compared to 

normoxic exposed animals (0.22 ± 0.03 A.U. and 0.24 ± 0.01 A.U., respectively; 

Fig 4.4b). 

 

4.4.9 Proteins associated with leptin signaling within ARC 

Within the ARC, CIH did not alter pSTAT3 protein expression as a function of 

total STAT3 (p = 0.46) compared to normoxic controls (0.15 ± 0.02 A.U. and 0.13 

± 0.02 A.U., respectively; Fig 4.5a), and did not change total STAT3 protein  
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Figure 4.3 CIH induces resistance to leptin 

Bar charts showing cumulative food intake at 1h (a), 2h (b), 3h (c) and 14h (d) 

post-injection (i.p.) of either 0.4 mg/kg leptin or vehicle treatment. Note that leptin 

induces satiety in normoxic animals, but not in the CIH exposed animals. Data 

are presented as mean ± standard error. *, p < 0.05 (determined by a paired, 

two-tailed Student’s t-test between vehicle and leptin treatments). n = 8 per group 

and injection. 
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Figure 4.4 Effect of CIH on ObR in ARC 

Representative blots and bar graphs depicting ObRB/β-actin protein expression 

(a) and ObR100/β-actin protein expression (b). Note that leptin receptor isoforms 

are not altered in ARC following CIH exposure. Data are shown as mean ± 

standard error. n = 8 per group. 
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expression (p = 0.39). Protein expression levels of POMC were found to be 

significantly less (p = 0.045) in CIH (0.41 ± 0.02 A.U.) exposed animals 

compared to normoxia animals (0.53 ± 0.06 A.U.; Fig 4.5b). Protein expression of 

total ERK1/2 was significantly less (p = 0.0045) in CIH animals (5.72 ± 0.34 A.U.) 

compared to ARC of normoxia animals (7.62 ± 0.38 A.U.; Fig 4.5c). However, a 

significant increase (p = 0.001) in the proportion of ERK1/2 that was 

phosphorylated was observed in CIH animals (0.12 ± 0.01 A.U.) compared to 

normoxic control animals (0.043 ± 0.010 A.U.; Fig 4.5d).  

 

4.4.10 Protein markers associated with leptin resistance within ARC 

Within ARC, CIH significantly increased (p = 0.022) the expression of SOCS3 

protein compared to normoxic controls (0.20 ± 0.03 A.U. and 0.12 ± 0.01 A.U., 

respectively; Fig 4.6a). On the other hand, no significant difference (p = 0.56) in 

PTP1B protein expression was observed between CIH (0.038 ± 0.004 A.U.) and 

normoxic animals (0.041 ± 0.005 A.U.; Fig 4.6b). 
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Figure 4.5 Leptin signaling proteins in ARC following CIH 

Representative blots and bar charts depicting (a) pSTAT3/STAT3 protein 

expression, (b) POMC protein expression, (c) total ERK1/2 protein expression, 

and (d) pERK1/2 / ERK1/2 protein expression in ARC. Note that CIH alters leptin 

signaling protein expression within ARC. Data are presented as mean ± standard 

error. *, p < 0.05 (determined by an unpaired, two-tailed Student’s t-test). n = 8 

per group. 
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Figure 4.6 Effect of CIH on negative regulators of leptin signaling in ARC. 

Representative blots and bar charts depicting inhibitors of leptin signaling 

SOCS3 (a) and PTP1B (b) protein expressions within ARC. Note that CIH alters 

SOCS3, but not PTP1B protein expression in the ARC after 13 weeks exposure. 

Data are presented as mean ± standard error. *, p < 0.05 (determined by an 

unpaired, two-tailed Student’s t-test). n = 8 per group. 
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4.5 DISCUSSION 

This study has demonstrated that 13 weeks of continuous exposure to 

intermittent hypoxia induces a state of leptin resistance. Animals exposed to CIH 

have increased food intake over the study period, where normoxic controls 

reduce their level of consumption over the same period. This occurs alongside a 

significant reduction in daily body weight change by controls, while no change is 

observed in CIH animals. Epididymal fat pad mass is significantly less at the end 

of the study in CIH compared to normoxic animals. Direct measure of the effect 

of leptin on food intake indicated a state of leptin resistance in CIH animals, while 

normoxic animals responded normally to acute administration of leptin. Basal 

plasma leptin concentrations normalized to epididymal fat mass were was 

significantly higher in CIH exposed animals compared to normoxic controls. 

These changes are concomitant with a lower protein amount of ERK1/2 and 

POMC in ARC, while pERK1/2 and SOCS3 were elevated between CIH and 

normoxic groups.  

In a recent study, we have described the acute effect of intermittent 

hypoxia on body energy balance (Moreau and Ciriello, 2013). Each bout of 

exposure to intermittent hypoxia induced a loss of body weight, which was 

abrogated following non-hypoxic conditions as a result of reduced locomotion 

and altered body energy utilization. In this study, after 13 weeks of CIH, body 

weight loss during exposure increases, as opposed to no difference observed 

within the normoxic animals. It is likely that this effect could was due to a 

potentiation of the peripheral chemoreceptor reflex on sympathetic flow, 
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independent of a change in respiration (Prabhakar et al., 2005, 2009; Dick et al., 

2007; Xing and Pilowsky, 2010). This conclusion is supported by the finding that 

CIH has long-term effects on sympathetic outflow (Zoccal et al., 2007, 2008). 

Given the observed reduction of epididymal fat pad mass, it may be suggested 

that the break-down of adipose tissue contributes to the body weight loss, a 

finding also reported by others (Martinez et al., 2008; Drager et al., 2011), 

although this may not be the primary mediator of the decreased body weight 

observed following acute intermittent hypoxia (Moreau and Ciriello, 2013).  

Overnight food intake was observed in animals exposed to CIH during the 

first week compared to normoxia. This acute effect was also observed following 

only 8h of exposure to intermittent hypoxia (Moreau and Ciriello, 2013) and has 

been reported in humans exposed to chronic hypoxia (Tschop et al., 1998). 

However, by the thirteenth week food intake between CIH and normoxic animals 

was not significantly different. In fact, food intake over this time course was 

reduced in normoxic controls, but was increased in CIH exposed animals. The 

increased food intake could be suggestive in the CIH exposed animals of a 

potential manifestation of leptin resistance (Kalra et al., 1998; Trujillo et al., 

2011). Similarly, food conversion efficiency, an indirect measure of whole-body 

energy utilization, was reduced in normoxic animals over the exposure period. 

This is suggestive of increased body energy utilization. This change was not 

observed in CIH animals, suggesting their body energy metabolism was not 

changing in a way concurrent to normoxic control animals. Along the exposure 

length in the CIH animals, food conversion efficiency was elevated compared to 
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normoxic animals, suggestive of reduced body energy utilization. Although the 

long-term effects that food conversion efficiency will have on pre-disposition to 

weight gain is not well understood, a reduction in metabolic function is associated 

with weight gain in humans (Houmard, 2008). Whether the lack of increase in 

body energy utilization is due to leptin resistance in CIH animals is not known, 

but it is possible that given that leptin augments metabolic activities mediated in 

part by the sympathetic nervous system (Harris, 2013), and plasma leptin levels 

are elevated following a bout of intermittent hypoxia (Moreau and Ciriello, 2013), 

CIH may contribute to leptin resistance. In support of this suggestion, leptin 

resistance was measured directly by a repeated comparison to leptin and vehicle 

treatment in CIH and normoxia exposed animals. It was found that in normoxic 

animals, acute leptin injections caused a significant reduction in food intake in the 

first three hours. However, in the CIH exposed animals, leptin did not induce a 

satiating effect when compared to vehicle injections.  

Leptin resistance is followed by the development of weight gain and 

hyperphagia (Kalra et al., 1998; Trujillo et al., 2011). Due to the complex 

interaction of CIH and this leptin resistant state on body weight, it may be 

suggested that the effects on body weight may not yet have taken hold in these 

CIH exposed animals for a long enough period to induce a significant weight gain 

as recently reported (Guo et al., 2013).  An alternate explanation may be that in 

this model, due to its anorexigenic effects through increased sympathetic activity, 

an increase in body weight may not be easily demonstrated until animals are 

exposed to longer periods of CIH, despite evidence that CIH causes a wide 
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range of metabolic pathophysiologies including dyslipidemia, high blood pressure 

and insulin resistance (Polotsky et al., 2003; Zoccal et al., 2007; Drager et al., 

2011).  It should also be kept in mind that there are individuals that suffer from 

the metabolic syndrome that are not obese, and CIH, as a result of obstructive 

sleep apnea, can worsen their metabolic profile (Kono et al., 2007).  

Another major effect of leptin resistance is chronic hyperleptinemia. 

Fasting leptin concentrations in the CIH animals were not different compared to 

normoxic controls. However, given that CIH animals had less body weight and 

epididymal fat pad mass, it suggested that the observed levels of leptin in the 

CIH animals were in fact elevated compared to normoxic controls. When fat 

mass was taken into account, it was found that CIH animals had significantly 

higher plasma leptin concentrations than their normoxic counterparts. It should 

be noted that the epididymal fat mass is thought to be the largest producer of 

leptin in the rat (Zheng et al., 1996). Previous reports by us (Messenger et al., 

2012; Moreau and Ciriello, 2013) and others (Polotsky et al., 2003; Li et al., 

2006) have shown that acute short-term intermittent hypoxia can increase 

plasma leptin concentrations. This elevated leptin release immediately following 

bouts of intermittent hypoxia on a daily basis may contribute to the development 

of the leptin resistance observed in the 13 week exposed CIH animals.  

Following CIH, within ARC, no alterations were observed in the protein 

expression of either the long- or short form leptin receptors. While the precise 

mechanism surrounding leptin resistance is not understood, it has been 

suggested that a reduction in ObRB may prevent appropriate leptin signaling 
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(Schwartz et al., 1997). From these data, it appears that this may not be the 

mechanism driving the leptin resistance in this model. Similar suggestions have 

been made regarding ObR100, where a reduction in this protein would prevent 

sufficient transport of leptin across the blood-brain barrier (Banks et al., 2001). 

CIH animals were found not to have altered ObR100 protein expression in ARC. 

However, it should be kept in mind that these do not take into account changes in 

affinity for the receptor (Mooradian et al., 2000), or changes in receptor 

localization (Gan et al., 2012).  

Within ARC, it was observed that CIH animals had less POMC protein 

expression than normoxic control animals. Consistent with this finding, a 

reduction in POMC within ARC has been shown to be associated with 

hyperphagia (Richard et al., 2011). This could be the result of reduced signaling 

in leptin resistance, or could function as a mediator of the resistance itself. Also 

within ARC, SOCS3 protein was found to be higher in CIH than normoxic 

animals. An increase in SOCS3 would prevent activation of the leptin receptor 

signaling cascade (Bjorbak et al., 2000), and preventing downstream activation 

of factors associated with the effect of leptin, such as POMC (Banks et al., 2000). 

SOCS3 overexpression has previously been shown to occur in leptin resistant 

states, and experimentally can increase food intake (Bjørbaek et al., 1998; Reed 

et al., 2010).  

Taken together, these data have demonstrated for the first time that 

exposure to CIH can induce a state of leptin resistance. This pathophysiological 

state is associated with increased energy balance. Furthermore, this leptin 
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resistant state is associated with an increased protein expression of SOCS3 and 

with a concomitant reduction in POMC protein expression within ARC. These 

findings suggest a possible link between patients exposed to CIH, such as 

obstructive sleep apnea and the development of obesity and metabolic disorders. 
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CHAPTER 5 

 

INTERMITTENT HYPOXIA INDUCES CHANGES IN PROTEIN EXPRESSION 

OF NEUROPLASTICITY MARKERS IN THE NUCLEUS OF THE SOLITARY 

TRACT 
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5.         CHAPTER 5 

5.1 CHAPTER SUMMARY 

Intermittent hypoxia (IH) has been shown to alter the response of neurons in 

nucleus of the solitary tract (NTS) to cardiovascular inputs. The mechanisms 

involved in these effects may involve pre- and/or post-synaptic neuroplasticity 

alterations in NTS. To investigate this possibility, Sprague-Dawley wild-type rats 

were exposed to 1, 7 or 95 days of IH or normoxia. Additionally, to determine 

whether leptin exerted an effect on the 1 day changes to IH, leptin-deficient 

(KILO) rats were exposed to IH or normoxia. Arterial pressure (AP) was also 

measured at these time intervals in conscious wild-type animals. Additionally, at 

each time point protein was extracted from NTS and analyzed by western blot for 

the expression of brain-derived neurotrophic factor (BDNF), tropomyosin receptor 

kinase B (TrkB), synaptophysin and growth-associated protein-43 (GAP-43). AP 

was not different between the IH and normoxic animals at 1 or 7 days. However, 

after 95 days of IH, AP was significantly elevated compared to normoxic controls. 

After 1 day IH, TrkB protein expression in NTS was higher while synaptophysin 

was lower than normoxic wild-type rats. No changes were found in TrkB protein 

expression in KILO rats after 1 day IH, although synaptophysin protein 

expression was decreased. BDNF and GAP 43 protein expression levels were 

not altered in any group following 1 day IH or normoxia. After 7 days of IH, BDNF 

and TrkB protein expression was found to be elevated in NTS compared to 

normoxic controls. After 95 days of IH expression of BDNF, synaptophysin, and 

GAP-43 proteins were less abundant in NTS than in normoxic controls. These 
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results suggest that neuroplasticity changes occurring within NTS may be 

associated with the development of autonomic dysregulation often seen in 

patients with chronic obstructive sleep apnea, including elevated blood pressure. 
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5.2 INTRODUCTION 

 Obstructive sleep apnea is a chronic, progressive disease that is 

characterized by episodic closures of the upper airway during sleep (Dempsey et 

al., 2010). One of the physiological consequences of obstructive sleep apnea is 

intermittent hypoxia (IH; Freet et al., 2013). IH has previously been shown to 

activate peripheral carotid chemoreceptors (Cooper et al., 2005). These 

specialized cells respond to lowered blood oxygen tension and in response 

increase afferent neural activity to the nucleus of the solitary tract (NTS), the 

primary site of peripheral chemoreceptor afferent termination (Ciriello et al 1994). 

It has previously been shown that chronic intermittent activation of the carotid 

chemoreceptor pathway can result in sympathetic long-term facilitation (Dick et 

al., 2007; Xing and Pilowsky, 2010), which plays an important role in the 

exaggerated sympathetic responses seen by further chemoreceptor activation 

(Xing and Pilowsky 2010).  

IH may also induce alterations in the sensitivity of the baroreceptor reflex 

(Bonsignore et al., 2002; Carlson et al., 1996). Intermittent apneas have been 

shown to reset the baroreceptor reflex to a higher level (Monahan et al., 2006; 

Prabhakar and Khumar, 2010) suggesting a possible interaction between 

activation of the chemoreceptor reflex and a depression of the baroreceptor 

reflex (Cooper et al., 2005; Somers et al., 1991) during IH. Although the central 

mechanisms that may induce sympathetic long-term facilitation and baroreceptor 

reflex depression are not known, they may be important in the development and 

maintenance of hypertension observed in individuals suffering from chronic 
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obstructive sleep apnea. We have recently demonstrated that IH can increase 

plasma leptin concentration (Messenger et al., 2012; Moreau and Ciriello, 2013). 

Circulating leptin has been shown to potentiate the chemoreceptor reflex (Ciriello 

and Moreau, 2013; Ciriello and Moreau, 2012) and inhibit the baroreceptor reflex 

(Arnold et al., 2009; Ciriello, 2013a, 2013b) at the level of the NTS. Interestingly, 

the NTS region has been identified as one of the few neurogenic sites within the 

central nervous system (Bauer et al 2005; Chigr et al 2009), and the NTS has a 

high level of expression of factors associated with neuroplasticity including the 

neurite outgrowth protein brain-derived neurotrophic factor (BDNF) and its 

receptor tropomyosin receptor kinase B (TrkB), growth-associated protein-43 

(GAP-43), and the synaptogenic marker synaptophysin (Jin et al., 2010; 

Korshunova and Mosevitsky, 2010; Moyse et al., 2006). Leptin has been shown 

to affect neuroplasticity and synaptogenesis within extra-hypothalamic regions of 

the brain (Harvey, 2013; Shanley et al., 2001; Wayner et al., 2004). Previous 

studies have suggested BDNF, TrkB, GAP-43 and/or synaptophysin may be 

important in mediating alterations associated with activity-dependent functional 

changes in cardiovascular afferents that terminate within NTS (Martin et al 2009).  

 This study was designed to investigate whether neuroplasticity occurred 

within NTS in response to acute (1 day), short term chronic (7 days) and long 

term chronic (95 days) IH and whether changes in mean arterial pressure (MAP) 

and heart rate (HR) occurred that may be associated with chronic IH. Finally, the 

role of leptin in the neuroplastic alterations in NTS following acute IH was also 

determined in the leptin deficient KILO rat (Vaira et al., 2012).  
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5.3 METHODS AND MATERIAL 

5.3.1 Animals 

Adult, male Sprague-Dawley rats (300-350 g; n=36) were purchased from 

Charles River Canada and served as wild-type control animals (WT). Adult, male, 

homozygous, leptin-deficient KILO rats (250-400 g; n=8; SD-Leptm1sage) were 

obtained from SAGE Laboratories (TGRA3780; Vaira et al., 2012). Animals were 

housed singly at a temperature of 22°C and 60% relative humidity with access to 

food and water available ad libitum, except during the daily 8 h IH or normoxic 

exposure, in 12h light/dark cycle conditions. All experimental procedures were 

done in accordance with the guidelines on the use and care of laboratory animals 

as set by the Canadian Council on Animal Care and approved by the Animal 

Care Committee at The University of Western Ontario.  

 

5.3.2 IH or normoxic exposure 

Animals were exposed to 8 h (0900-1700) of IH or normoxia each day as 

previously described (Messenger et al., 2012, 2013; Moreau and Ciriello, 2013). 

WT rats were exposed for 1-day, 7-days or 95-days of IH or normoxia. KILO rats 

were exposed only for 1-day of IH or normoxia. In brief, animals were placed in a 

chamber consisting of four tubes (10 cm diameter x 35 cm length) with a zero-

pressure escape valve. For IH-exposed animals, a computer that regulated 

solenoid valves altered the input of N2 or room air to generate IH conditions. 

Animals were exposed to 80s hypoxia (6.5% O2) followed by 120s normoxia. The 

levels of O2 and CO2 were monitored by sensors in the chamber, which relayed 
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information back to the computer to ensure proper cycling. Conditions within the 

chamber were isobaric (770 ± 11 mmHg) and eucapnic (<0.1% CO2). Normoxic 

animals were exposed to same conditions except that only room air was cycled 

(Messenger et al., 2012, 2013; Moreau and Ciriello, 2013). 

 

5.3.3 Hemodynamic recordings 

Following exposure to IH or normoxia at 1 day, 7 days and 95 days, WT animals 

had their systolic, diastolic and MAP and HR measured using the non-invasive 

tail cuff method (CODA System; Kent Scientific; Torrington, CT). This approach 

has been previously validated with direct hemodynamic measures (Feng et al., 

2008).  

 

5.3.4 Tissue collection and preparation 

Following exposure to IH or normoxia, animals were sacrificed under equithesin 

anesthesia (0.3 ml/100 g b.w.; Moreau and Ciriello, 2013) and the brains 

removed and frozen at -80°C until analyzed. Using a circular 1 mm (internal 

diameter) micropunch tool, 500 µm bilateral punches of NTS from each animal 

were taken and immediately homogenized in cold radioimmunoprecipitation 

assay buffer (50 mM Tris, 150 mM NaCl, 1% Triton-X 100, 0.25% sodium 

deoxycholate, 1 mM NaF, 1 mM sodium orthovanadate, 25 mM β-

glycerophosphate) with protease inhibitor cocktail (Roche Applied Science; 

Laval, QC) using an electric homogenizer (VWR International; Radnor, PA). 

Homogenates were then sonicated over three passages for 15s on ice (55%; 
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Sonic Dimembrator Model 150; Fisher Scientific). Samples were then rotated for 

10 min at 4 °C and centrifuged at 4°C for 20 min at 14000 RPM. Protein content 

of homogenates was quantified using the Bio-Rad Dc protein assay kit (Bio-Rad 

Laboratories; Hercules, CA). Protein samples were added to 25% LDS sample 

buffer and 10% reducing buffer (Life Technologies; Burlington, ON), and water to 

a standard protein concentration of 1.67 mg/ml (Messenger et al., 2013).  

 

5.3.5 Western blots 

Electrophoresis was carried out using a 10% discontinuous polyacrylamide Bis-

Tris gel (Life Technologies; Burlington, ON), followed by standard protein 

immunoblotting techniques (Messenger et al., 2013). For each animal, 25 µg of 

protein of each sample was loaded. Electrophoresis was carried out at 200 V and 

terminated when the dye front reached the bottom of the gel. Proteins were 

transferred to a polyvinylidene fluoride membrane using a wet transfer method in 

the presence of methanol and  SDS (50 mM Tris, 40 mM glycine, 0.3% SDS, 

20% methanol) and wet transfer apparatus (Mini Trans-Blot Electrophoretic 

Transfer Cell; Bio- Rad Laboratories; Hercules, CA) at 100 V for 2 h. After 

transfer, the membrane was washed in Tris-buffered saline + Tween-20 (TBST; 

20 mM Tris, 0.5 M NaCl, 0.1% Tween-20; pH 8.0) blocked for 1 h with 5% skim 

milk made in TBST buffer at room temperature. The membrane was then 

incubated with primary antibodies diluted in skim milk over night at 4 °C.  The 

following day, the membrane was washed with TBST before being incubated with 

horseradish peroxidase-conjugated secondary antibodies-specific to the 



182 

 

appropriate host of the primary antibody being analyzed, for 1 h at room 

temperature. For detection, the membrane was washed with TBST, followed by 

distilled water and then detected using a horseradish peroxidase substrate ECL 

chemiluminescence system (Luminata Forte, EMD Millipore; Billerica, MA). Blots 

were visualized using a VersaDoc imaging system (Bio-Rad Laboratories; 

Hercules, CA) and analyzed using ImageLab v.3.0 (Bio-Rad Laboratories; 

Hercules, CA).  

 

5.3.6 Antibodies 

For western blots, the following antibodies were used: rabbit anti-β-actin-HRP 

(1:50000; A3854, Sigma-Aldrich; St. Louis MO), rabbit anti-TrkB (1:1000; sc-

8316, Santa Cruz Biotechnology; Dallas, TX), mouse anti-synaptophysin (1:1000; 

ab8049, Abcam; Cambridge, MA), rabbit anti-GAP-43 (1:1000; #8945, Cell 

Signaling Technology; Danvers, MA), rabbit anti-BDNF (1:1000; sc-20981, Santa 

Cruz Biotechnology; Dallas, TX), donkey anti-rabbit IgG-HRP (1:10 000; 711-

035-152, Jackson Immunoresearch; West Grove, PA), donkey anti-mouse IgG-

HRP (1:5000; 715-035-151, Jackson Immunoresearch; West Grove, PA).  

 

5.3.7 Statistics and analysis 

All values are expressed as mean ± standard error. Differences between IH and 

normoxic groups were determined by unpaired, two-tailed Student t-test. A p-

value < 0.05 was taken to indicate statistical significance. All bar charts were 
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made using GraphPad Prism v.5 graphing software (GraphPad Software; La 

Jolla, CA). 
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5.4 RESULTS 

5.4.1 AP following exposure to IH 

Following 1 day and 7 days of IH, systolic (Fig. 5.1a), diastolic (Fig. 5.1b), MAP 

(Fig. 5.1c), and HR (Fig. 5.1d) were found not to be altered compared to 

normoxic controls at the same time points. After 95 days of IH, animals had a 

significantly higher (p = 0.030) systolic blood pressure, compared to normoxic 

controls (152 ± 6 mmHg vs. 130 ± 8 mmHg, respectively; Fig. 5.1a). Additionally, 

these animals had significantly elevated diastolic blood pressure (p = 0.05; IH, 

113 ± 6 mmHg vs. normoxic controls, 99 ± 4 mmHg; Fig 5.1b). As a result, MAP 

was significantly elevated within these animals (p = 0.026; IH, 124 ± 6 mmHg vs. 

normoxic controls, 107 ± 4 mmHg; Fig 5.1c). On the other hand, no differences 

(p = 0.13) were observed in HR between the normoxic control and IH groups 

(400 ± 12 bpm vs. 419 ± 12 bpm, respectively; Fig. 5.1d). Figure 5.1e also shows 

that the gain as measured by the MAP level compared to HR was decreased at 

95 days following IH compared to normoxic controls. 

 

5.4.2 BDNF protein expression in NTS following IH  

BDNF protein expression was found not to be different (p = 0.42) in NTS 

between IH and normoxic WT after 1 day exposure (Fig. 5.2a). Following 7 days 

of IH exposure, there was 53% increase (p = 0.0062) in BDNF protein expression 

in NTS compared to normoxic WT (Fig 5.2b). On the other hand, after 95 d of IH 

exposure, there was 34% less BDNF protein expression in NTS compared to 

normoxic WT (p = 0.008; Fig 5.2c). 
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Figure 5.1 Effect of IH on hemodynamic variables 

Bar chart showing arterial pressure and heart rate changes following 1, 7 and 95 

days of exposure to IH or normoxia. Shown are: (a), systolic pressure, (b), 

diastolic, (c) mean arterial pressure and (d) heart rate in the conscious rat. In 

addition, (e) shows the effect of IH on heart rate in relation to the level resting 

arterial pressure (Gain; bpm/mmHg). Note that systolic, diastolic and mean blood 

pressures and gain are significantly (*, p<0.05) altered after 95 days of IH 

exposure. n=7 for all the 1 and 7 days groups and n=8 for the 95 day groups. 
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Figure 5.2 NTS expression of BDNF following IH 

Representative western blots and bar charts indicating the change in protein 

expression of BDNF determined by western blot in the same NTS samples at 1 

day (a), 7 days (b) and 95 days (c) after IH or normoxic exposure. Note that 

BDNF protein expression is elevated after 7 days of IH exposure and then 

reduced after 95 days of IH exposure. *, p<0.05 determined by two-tailed, 

unpaired Student t-test. n=7-8. 
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5.4.3 TrkB protein expression in NTS following IH  

After 1 day of IH, there was a significant elevation in protein expression of both 

the short (gp95) and long (gp145) isoforms of the TrkB neurotropic receptor in 

the NTS region of WT (Fig 5.3a).  The gp95 isoform was increased (p = 0.028) by 

about 28% in IH compared to normoxic controls (Fig. 5.3). Over the same time 

period in the NTS, the gp145 isoform was also increased (p = 0.018) by about 

166% in IH compared to normoxic controls (Fig. 5.3a). The ratio of gp145:gp95 

isoform was 100% higher (p = 0.012) in IH compared to normoxic control NTS in 

WT (Fig. 5.3d).  

 Following 7 days of IH (Fig 5.3b), gp95 was significantly higher (p = 0.043) 

from normoxic controls in NTS, with about 43% more gp95 protein expression in 

IH animals. The gp145 isoform was also significantly greater (p = 0.038) by about 

52% in IH compared to normoxic controls (Fig. 5.3b). The ratio of gp145:gp95 

isoform was not significantly different (p = 0.39) in IH compared to normoxic 

control (Fig. 5.3d). 

 After 95 days of IH (Fig 5.3c), gp95 was significantly lower (p = 0.013) by 

approximately 52% compared to normoxic control animals, while the gp145 

isoform was not different (p = 0.27). The gp145:gp95 ratio was also not different 

(p = 0.29) between 95 d IH exposed and 95 d normoxic animals (Fig. 5.3d). 

 

5.4.4 Synaptophysin protein expression in NTS following IH  

The expression of the synaptic marker protein synaptophysin was significantly 

lower (p = 0.042) by about 16% in NTS after 1 day IH exposure compared to  
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Figure 5.3 NTS expression of TrkB isoforms following IH 

Representative western blots and bar charts indicating the change in protein 

expression of gp95 (a), gp145 (b) and the ratio of gp145:95 (c) TrkB isoforms in 

NTS following 1 day (a), 7 days (b), and 95 days (c) IH or normoxic exposure. 

(d), the ratio of gp145:gp95 TrkB isoforms. Note that both TrkB isoforms are 

increased after acute and short term exposure to IH. However, after 95 days IH 

exposure, only the gp95 isoform is reduced. Differences were determined 

between IH and normoxia within isoform and ratio of each group. *, p<0.05 as 

determined by two-tailed, unpaired Student t-test. n=7-8. 
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normoxic control WT (Fig 5.4a). On the other hand, no differences were found in 

synaptophysin protein expression (p = 0.34) between IH and normoxic controls in 

the NTS region following 7 days of exposure (Fig 5.4b), although there was a 

trend towards a decrease. After 95 days, there was about 42% less expression 

(p = 0.0029) of the synaptophysin protein in NTS of the IH animals compared to 

normoxic WT animals (Fig 5.4c). 

 

5.4.5 GAP-43 protein expression in NTS following IH  

GAP-43 protein was not different in NTS between IH and normoxic WT rats at 1 

day (p = 0.42) and at 7 days (p = 0.48) exposure (Fig 5.5a-b). Following 95 days, 

GAP-43 protein expression was reduced by about 34% (p = 0.045) in NTS of the 

IH exposed animals compared to the normoxic animals (Fig 5.5c). 

 

5.4.6 Changes in neuroplastic markers in NTS of KILO rats following IH  

To determine whether leptin contributed to the changes observed in the 

neuroplastic markers in NTS, leptin deficient rats (KILO rat) were exposed to 

acute (1 day) IH. IH failed to induce any changes in BDNF in the KILO (p=0.44) 

or WT rat (Fig. 5.6a).  Similarly, in the KILO rat, acute IH did not induce changes 

in TrkB isoforms (Fig. 5.6b) which were present in the WT rat. Neither gp95 (p = 

0.27; Fig. 5.3b), gp145 (p = 0.20) nor the ratio of gp145:gp95 TrkB isoforms (p = 

0.44) were altered in NTS of the KILO rats following IH exposure. On the other 

hand, 1 day exposure of KILO rats to IH induced a lower (p = 0.043) protein 

expression of synaptophysin in NTS by about 26% compared to normoxic KILO  
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Figure 5.4 NTS expression of synaptophysin following IH. 

Representative western blots and bar charts showing changes in protein 

expression of synaptophysin in NTS after 1 day (a), 7 days (b) and 95 days (c) of 

exposure to IH or normoxic. Note the synaptophysin decreases in response to 

acute/short term and long term IH exposure. *, p<0.05 as determined by two-

tailed, unpaired Student t-test. n=7-8. 
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Figure 5.5 NTS expression of GAP-43 following IH. 

Representative western blots and bar charts showing the change in protein 

expression of GAP-43 in NTS at 1 day (a), 7days (b) and 95 days (c) after IH or 

normoxic exposure. Note that at only 95 days of IH exposure is GAP-43 altered 

in NTS. *, p<0.05 as determined by two-tailed, unpaired Student t-test. n=7-8.  
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controls (Fig. 5.6c). IH as previously shown induced a decrease in synaptophysin 

protein expression in the WT rat after 1 day exposure. Acute IH exposure in the 

KILO rat did not induce changes in GAP-43 (p = 0.44; Fig. 5.6d). 
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Figure 5.6 Effect of IH in KILO rats on neuroplastic markers in NTS. 

Representative western blots and bar charts showing the change in protein 

expression of BDNF (a), TrkB (b), synaptophysin (c)m and GAP-43 in NTS at 1 

day IH exposure in WT and KILO-/- rats. Note that the lack of leptin abolishes the 

TrkB effects to IH (b), but not those associated with synaptophysin (c) after IH. In 

addition, note that the lack of leptin does not induce changes in BDNF nor GAP-

43 after IH. *, p<0.05 as determined by two-tailed, unpaired Student t-test. n=4-8. 
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5.5 DISCUSSION 

 This study has demonstrated that both acute and long term IH exposure 

induces changes in neuroplasticity markers in NTS. In addition, some of these 

changes observed following acute IH exposure were due to leptin signaling in 

NTS as they were not observed in the leptin deficient rats. Finally, long term 

exposure to IH induced an increase in MAP, but not HR, suggesting that some of 

the neuronal plasticity changes observed in NTS may be associated with the 

hypertension resulting from long term activation of peripheral chemoreceptors. 

BDNF protein expression levels were elevated in NTS following 7 days of 

IH exposure. On the other hand, after 95 days of IH exposure, BDNF levels were 

found to be lower than those of animals exposed to normoxia. These changes 

suggest an initial elevated responsiveness of the BDNF-TrkB system, whereas 

this effect is diminished over long-term exposure to IH as gp145:gp95 

normalizes, and BDNF ligand is reduced. The neurotrophin BDNF has been 

demonstrated in NTS cardiovascular afferent synapses (Martin et al., 2009), and 

has been suggested to be released in response to activation of the carotid 

chemoreceptor reflex (Chavez-Valdez et al., 2012; Montero et al., 2012). BDNF-

containing terminal boutons come in close apposition to second-order neurons 

shown to express its receptor, TrkB (Kline et al., 2010). Within NTS, BDNF has 

been reported to modulate glutamatergic neurotransmission and thus altering 

cardiovascular responses (Clark et al., 2011).  

It was found that the TrkB receptor isoforms within NTS increased in 

response to acute and short term IH exposure, whereas after 95 day IH 
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exposure, the gp95 isoform was decreased. The gp145 TrkB subunit is 

considered the full-length isoform of the receptor, whereas gp95 TrkB is a 

truncated version lacking an intracellular kinase domain (Klein et al., 1990; 

Middlemas et al., 1991). The gp95 TrkB acts as a dominant negative receptor 

inhibiting the responsiveness of the full-length gp145 TrkB to stimulation by 

BDNF (Haapasalo et al., 2001). Due to the dominant negative nature of the gp95 

TrkB isoform, the ratio of gp145:gp95 may be an important indicator of BDNF-

TrkB signaling capability (Haapasalo et al., 2001). This ratio was found to be 

higher in animals exposed to 1 day IH, but not different following 7 or 95 days of 

exposure. As BDNF-TrkB signaling plays an important role in long-term 

neuroplastic alterations such as neurite outgrowth (Hartnick et al., 1996; Hu et 

al., 2005) and synaptogenesis (Seil and Drake-Baumann, 2000; Hu et al., 2005), 

it is likely that these changes begin within the first day of IH exposure and 

diminish over time once neuroplasticity has been induced. The finding that BDNF 

protein expression decreases after long term exposure is consistent with a recent 

study by Chavez-Valdez and colleagues (2012) demonstrating a decrease of 

NTS BDNF content following hyperoxia in juvenile rats. 

TrkB may also mediate the effects of hormonal signaling molecules such 

as leptin within NTS (Spaeth et al., 2012) and other brain regions (Liao et al., 

2012). The changes in TrkB isoforms observed following acute IH were not seen 

in NTS of leptin-deficient KILO rats. This observation, coupled with the earlier 

finding that plasma leptin levels are elevated after acute IH (Messenger et al., 

2012; Moreau and Ciriello, 2013) suggests that leptin is important for the 
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increase in TrkB. Although the importance of leptin over longer periods of IH 

exposure is not known and warrants further study, on the basis of the finding that 

TrkB protein expression remains elevated compared to normoxic controls after 

short term IH exposure suggests that it may continue to signal TrkB. 

Interestingly, the decrease in TrkB after 95 days of IH exposure is also consistent 

with the finding of decreased plasma levels of leptin observed in these animals 

after long term IH exposure (unpublished observations). 

We observed reduced synaptophysin during exposure to IH and reduced 

GAP-43 protein expression only following 95 days of IH. The reduction in 

synaptophysin in NTS following 1 day exposure of IH was not due to leptin 

signaling as it was still observed within the leptin deficient animals. This suggests 

that these alterations in synaptophysin expression may be due to activity-

dependent signaling (Li et al., 2002) or a direct effect of hypoxia (Ding et al., 

2009). Synaptophysin is a marker for synapses and synaptic strength, and has 

been used for the quantification of synapses (Calhoun et al., 1996). On the other 

hand, GAP-43 is an important mediator of neurite outgrowth (Jap Tjoen San et 

al., 1991), neuronal regeneration (Meiri et al., 1988) and a marker of the pre-

synaptic terminals (Eastwood et al., 2007). Consistent with the findings in this 

study, it has recently been shown that IH exposure reduces afferent 

neurotransmission in the intermediate and caudal NTS (Almado et al., 2012). It 

was also determined that this synaptic depression was the result of a loss of 

active synapses (Almado et al., 2012). Thus, the reduction in synaptophysin and 

GAP-43 observed in this study could be interpreted to suggest a reduction in 
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NTS active synapses, synaptic strength and afferent neurites. Although it would 

be expected that chemoreceptor afferent activity would be elevated following IH, 

the depression of neurotransmission may be selectively related to reduced 

baroreceptor reflex activity and output observed in animals exposed to chronic IH 

(Lai et al., 2006). Consistent with this suggestion, it was found that after chronic 

IH, the animals exhibited an elevated MAP and a decreased HR response to the 

elevated arterial pressure further suggesting an impairment of the baroreceptor 

reflex. 

In conclusion, the present results support the notion that the NTS complex 

functions as an important site of integration of afferent inputs. The IH induced 

changes observed in neuroplastic molecules including BDNF-TrkB, 

synaptophysin and GAP-43 suggest this integration is dynamic, and may be 

altered over acute, short- and long-term IH and at least the short term effects 

appear to be dependent on leptin. The direct contribution of these alterations to 

cardiovascular changes observed are not known, but do appear to be associated 

with hypertension and possibly baroreceptor reflex resetting.  
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CHAPTER 6 

 

EFFECTS OF ANGIOTENSIN II ON LEPTIN AND DOWNSTREAM LEPTIN 

SIGNALING IN THE CAROTID BODY DURING ACUTE INTERMITTENT 

HYPOXIA 
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6.     CHAPTER 6 

6.1 CHAPTER SUMMARY 

Angiotensin II (ANG II) is known to promote leptin production and 

secretion. Although ANG II type 1 receptors (AT1R) and leptin are expressed 

within the carotid body, it is not known if AT1R and leptin are co-expressed in the 

same glomus cells nor if these peptides interact to alter the carotid body function. 

This study was done to investigate whether ANG II altered leptin signaling in the 

carotid body during acute intermittent hypoxia (IH). Rats were treated with 

captopril or the AT1R blocker losartan in the drinking water for 3 days prior to 

being exposed to IH (8h) or normoxia (8h). IH induced increases in plasma ANG 

II and leptin compared to normoxic controls. Captopril treatment abolished the 

plasma leptin changes to IH, whereas losartan treatment had no effect on the IH 

induced increase in plasma leptin. Additionally, carotid body glomus cells 

containing both leptin and the long form of the leptin receptor (OB-Rb) were 

found to co-express AT1R protein, and IH increased the expression of only AT1R 

protein within the carotid body in both captopril and non-captopril treated 

animals. On the other hand, losartan treatment did not alter AT1R protein 

expression to IH. Additionally, captopril and losartan treatment eliminated the 

elevated carotid body leptin protein expression, and the changes in 

phosphorylated signal transducer and activator of transcription 3 protein, the 

short form of the leptin receptor (OB-R100), suppressor of cytokine signaling 3, 

and phosphorylated extracellular-signal-regulated kinase 1/2 protein expression 

induced by IH. However, captopril elevated the expression of OB-Rb protein, 
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whereas losartan abolished the changes in OB-Rb protein to IH.  These findings, 

taken together with the previous observation that ANG II alters carotid body 

chemosensitivity, suggest that the increased circulating levels of ANG II and 

leptin induced by IH act at the carotid body to alter leptin signaling within the 

carotid body which in turn may influence chemoreceptor function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



212 

 

6.2 INTRODUCTION 

The carotid body is a highly vascularized organ located bilaterally at the 

bifurcations of the common carotid arteries (Heymans et al., 1930; Nurse, 2005). 

The carotid body, composed of specialized oxygen-sensing type-I glomus cells, 

signals carotid sinus nerve endings that transmit the afferent information to the 

nucleus of the solitary tract (Ciriello et al., 1994), activating homeostatic 

mechanisms involving respiratory, cardiovascular and hormonal systems 

(Schultz and Li, 2007; Kumar, 2009).  

There are now considerable data suggesting that substances within the 

circulation gain access to carotid body glomus cells and alter their excitability 

(Allen 1998; Chen et al., 2005; Leung et al., 2000, 2003; Nurse & Piskuric, 2012; 

Peng et al., 2006). One vasoactive compound shown to alter the discharge of 

carotid body afferent fibers independent of its circulatory effects is angiotensin II 

(ANG II) (Allen 1998; Leung et al., 2000). The carotid body has been shown not 

only to contain ANG II binding sites (Allen, 1998), but to also possess its own 

intrinsic renin-angiotensin system (RAS) (Lam & Leung, 2002), suggesting that 

ANG II within the carotid bodies may act in an autocrine/paracrine manner. Key 

elements of the RAS, including protein and mRNA of angiotensinogen as well as 

mRNA of angiotensin I converting enzyme (ACE) have been localized to the 

type-I glomus cells (Lam & Leung, 2002). A role for ANG II in chemosensitivity is 

supported by the finding that gene expression for the ANG II type 1 receptor 

(AT1R) is up-regulated in the carotid bodies during chronic hypoxia (Leung et al., 

2000; Fung et al., 2002), and this increased expression of the AT1R is associated 
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with the increased sensitivity of carotid chemoreceptors (Leung et al., 2000; Fung 

et al., 2001, 2002). In addition, administration of the ANG II type 1 receptor 

(AT1R) antagonist losartan abolishes these effects on chemoreceptors (Allen, 

1998; Leung et al., 2000), including the increased intracellular calcium levels in 

type-I cells induced by ANG II (Fung et al., 2001). Consistent with these results, 

a recent study has demonstrated that signaling through the AT1R is critical for 

carotid chemoreceptor sensitivity and signal transduction of the carotid 

chemoreceptor reflex during hypoxia (Marcus et al., 2010). 

The increases in intracellular calcium induced by ANG II suggest that 

through activation of the AT1R, ANG II may impact vesicle secretion from type-I 

glomus cells and therefore promote the release of other potential modulators 

involved in chemoreceptor function and for the signal transduction of glomus 

cells to the carotid sinus nerve (Gomez-Nino et al., 1990; Eyzaguirre and Zapata, 

1968; Bock, 1980). One possibility may be that ANG II may signal changes in 

leptin signaling within the carotid body as ANG II signaling is known to affect 

leptin production and secretion in other tissues such as ventricular myocytes, 

bone marrow and adipocytes (Cassis et al., 2004; Danser et al., 1999; 

Haznedaroglu and Buyukasik, 1997; Haznedaroglu et al., 1996; Rajapurohitam et 

al., 2006, 2012). Leptin is a 16 kDa protein product of the obese gene and is 

produced in proportion to, and secreted primarily, but not exclusively, by 

adipocytes (Lonnquist et al., 1995; Caro et al., 1996). Circulating leptin is thus an 

indicator of body fat content and acts as a satiety hormone, as well as increasing 

energy expenditure to balance body energy stores (Lonnquist et al., 1995; Caro 
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et al., 1996). Leptin signals primarily through the long-form leptin receptor (OB-

Rb), although 6 splice variants of the leptin receptor exist (OB-Ra-OB-Rf) of 

which only a few have known functions (Lee et al., 1996; Wang et al., 1996). 

Leptin has been shown to possess a signaling capability within the carotid body 

(Messenger et al., 2012; Messenger and Ciriello, 2013), and both circulating and 

carotid body protein expression levels of leptin have been found to increase in 

response to acute intermittent hypoxia (IH) and chronic intermittent hypoxia 

challenge (Messenger et al., 2012; Messenger and Ciriello, 2013), although its 

function within carotid body glomus cells remains unclear. The discovery of 

leptin, as well as four leptin receptor isoforms within carotid body glomus cells 

(Messenger et al., 2012, 2013; Porzionato et al., 2011), as well as the finding that 

circulating leptin induces phosphorylated signal transducer and activator of 

transcription 3 (pSTAT3) and immediate early gene Fra-1/2 expression within 

glomus cells (Messenger et al., 2012) is suggestive of a role in chemosensitivity 

for the adipokine. 

ANG II has been shown to be released and is required along with 

increased sympathetic nerve activity for the chronic hypertension in both human 

and the animal model of obstructive sleep apnea (Fletcher et al., 1999, 1992a/b; 

Moller et al., 2003; Yuan et al., 2004). In addition, in the animal model of 

obstructive sleep apnea, circulating and carotid body leptin is elevated 

(Messenger et al., 2012; Messenger and Ciriello, 2013; Moreau and Ciriello, 

2013), a finding consistent with clinical data (Phillips et al., 2000; Harsch et al., 

2003). However, it is not known whether ANG II may affect leptin signaling in the 
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carotid body, which in turn may contribute to altered sensitivity within the 

chemoreceptor reflex pathway (Ciriello and Moreau, 2012, 2013). Therefore, this 

study was done to determine: (1) whether, selective chronic inhibition of ACE by 

captopril or the selective blockade of the AT1R by losartan had an effect on 

circulating levels of leptin during IH; (2) whether glomus cells expressing the 

AT1R co-express leptin and the OB-Rb, and whether AT1R levels in carotid 

bodies are altered following exposure to IH; (3) whether chronic inhibition of ACE 

or the AT1R alters leptin, leptin receptor or downstream mediators of the OB-Rb 

signaling within the carotid body.   
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6.3 METHODS AND MATERIAL 

6.3.1 General animal procedures 

Experiments were done in male Sprague–Dawley rats (Charles River Canada, 

St. Constant, Canada) weighing 250-350 g. All animals were housed under 

controlled conditions with a 12 h light/dark cycle. Food and water were available 

ad libitum. All experimental procedures were done in accordance with the 

guidelines on the use and care of laboratory animals as set by the Canadian 

Council on Animal Care and approved by the Animal Care Committee at the 

University of Western Ontario. 

 

6.3.2 Angiotensin converting enzyme inhibition 

Inhibition of angiotensin converting enzyme was performed by administration of 

captopril (Sigma-Aldrich, St. Louis, MO) in the drinking water (2 mg/ml) of each 

animal three days prior to IH (n=7) or normoxic conditions (n=7). Captopril was 

freshly dissolved daily in the drinking water which was monitored daily and it was 

calculated that the animals received 146 ± 6 mg/kg/day of captopril. At this dose, 

ACE inhibition has been shown to occur (Schiffrin & Genest, 1982; Ferrone & 

Antonaccio, 1979). 
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6.3.3 Selective blockade of AT1R 

Selective blockade of the AT1R was accomplished by the administration of 

losartan (Merck, Whitehouse Station, NJ) in the drinking water (0.12 mg/ml) of 

each animal three days prior to AIH (n=7) or normoxic conditions (n=7). Losartan 

was freshly dissolved daily in the drinking water which was monitored daily and it 

was calculated that the animals received 14.2 ± 0.7 mg/kg/day of losartan. At this 

dose, AT1R blockade has been shown to occur (Boustany et al., 2005; Kline & 

Liu, 1994). 

 

6.3.4 Induction of IH 

IH or normoxia was induced in the captopril or losartan treated animals described 

above and in a separate set of animals that were not treated with the drugs (IH, 

n=11; normoxia, n=11) as previously described (Messenger et al., 2012; 

Messenger and Ciriello, 2013; Moreau and Ciriello, 2013). Animals were exposed 

to the 8h IH or the normoxic stimuli each day of the experimental period during 

daylight hours (900h-1700h). 

 

6.3.5 Plasma collection and immunoassays 

Measurement of plasma levels of leptin and ANG II were made immediately after 

the exposure of the animals to IH or the normoxic stimuli (Messenger et al., 
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2012; Messenger & Ciriello 2013; Moreau and Ciriello, 2013). Blood samples 

were collected by cardiac puncture in 7% ethylenediaminetetraacetic acid at a 

volume of 10 µl/ml blood. The blood was immediately centrifuged at 10 000 RPM 

for 10 min at 4 °C to isolate the aqueous plasma. This aqueous plasma phase 

was removed and stored frozen at -80 °C until analyzed for hormone content. 

Plasma samples were analyzed using enzyme immunoassays for rat leptin (inter-

assay variability: 6.5% intra-assay variability: 7.1%; Enzo Life Sciences; 

Farmingdale, NY), and rat ANG II (inter-assay variability: <15%; intra-assay 

variability: <10%; Phoenix Pharmaceuticals, Burlingame, CA) according to 

manufacturer instructions. Enzyme immunoassay plates were read on a 

SpectraMax M5 plate reader using SoftMax Pro v.5 microplate analysis software 

(Molecular Devices; Sunnyvale, CA). 

 

6.3.6 Carotid body protein extracts and immunoblot analysis 

Carotid body protein extracts were obtained following bilateral carotid body 

excision from the normoxia- or IH-exposed animals as described previously 

(Messenger et al., 2012; Messenger & Ciriello 2013). In brief, the carotid bodies 

(bilaterally) from each animal were snap frozen, pooled together, homogenized in 

200µl of RIPA buffer solution (150 mM NaCl, 1 mM NaF, 1 mM NaVO4, 0.5 mM 

β-glycerophosphate, 1mM EDTA, 1% Triton-X 100, 50mM Tris-HCL at pH of 7.5) 

with a protease inhibitor cocktail (Roche Diagnostics, Laval, QC, Canada) and 

sonicated. The homogenate was centrifuged at 4°C for 15 min at 2100 RPM. The 



219 

 

supernatant was retained and then centrifuged a second time at 4°C for 20 min 

at 13200 RPM. The resultant supernatant was retained as the protein 

preparation. Equal concentrations of extracted proteins normalized by 

colorimetric DC assay (Bio-Rad laboratories, Hercules, CA) underwent gel 

electrophoresis in 10% Bis-acrylamide gel (Life Technologies Inc., Carlsbad, CA) 

and transferred onto a polyvinylidene fluoride membrane. Blots were probed 

using: polyclonal rabbit anti-AT1R (1:1000; Cat. # sc-1173; Santa Cruz 

Biotechnology Inc., Dallas, TX), anti-AT2R (1:1000; Cat. # sc-7420; Santa Cruz), 

polyclonal rabbit anti-leptin (1:1000, Cat. # sc843; Santa Cruz Biotechnology 

Inc.), polyclonal rabbit anti-OB-R (1:1000, Cat. # OBR12-A; Alpha Diagnostics 

International Inc., San Antonio, TX), affinity purified polyclonal chicken anti-OB-

Rb (1:1000, Cat. # CH14104; Neuromics, Edina, MN), polyclonal rabbit anti-

SOCS3 (1:1000, Cat. # ab16030; Abcam Inc., Cambridge, MA), monoclonal 

rabbit anti-STAT3 (1:2000, Cat. # 4904S; Cell Signaling Technology), polyclonal 

rabbit anti-pSTAT3 (1:1000, Cat. #9131S; Cell Signaling Technology, Danvers, 

MA), monoclonal rabbit anti-ERK1/2 (1:1000, Cat. # 4695S; Cell Signaling 

Technology), monoclonal rabbit anti-pERK1/2 (1:1000, Cat. # 4376S; Cell 

Signaling Technology), and monoclonal horseradish peroxidase-conjugated β-

actin (1:50000, catalog no. A3854, Sigma-Aldrich) diluted in 5% milk-Tris-

buffered saline-Tween 20 buffer and with horseradish peroxidase conjugated 

donkey anti-rabbit IgG, donkey anti-goat, or donkey anti-chicken IgG (1:10000, 

catalog # 711- 035-152, 705-035-003 or 703-035-155, respectively; Jackson 

ImmunoResearch Laboratories, West Grove, PA) diluted in 5% milk-1X Tris-
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buffered saline-Tween 20 buffer as the secondary antibody. Immunoreactive 

bands were visualized using an enhanced chemiluminescence detection system 

(Millipore Canada Ltd, Toronto, ON, Canada).  

 

6.3.7 Immunofluorescence 

Immediately after the application of the 8h IH or normoxic stimuli, the animals 

(IH, n=3; normoxia, n=3) were anesthetized with 0.3 ml/100g equithesin and 

perfused transcardially using 500 ml ice-cold phosphate buffered saline (PBS; 

0.1M, pH 7.4) followed by 4% paraformaldehyde in 0.1 M PBS (Messenger et al., 

2012; Messenger & Ciriello 2013). The carotid arteries at their bifurcations, along 

with the attached carotid bodies were removed bilaterally, and stored overnight in 

Zamboni’s fixative at 4 ºC. The following day the tissues were gradually 

dehydrated through a series of alcohols, and placed in xylene followed by 

paraffin wax. Serial transverse sections were cut at 6 µm on a RM 2155 

microtome (Leica Microsystems Inc., Buffalo Grove, IL), floated in a warm water 

bath and mounted on double-gelatinized glass microscope slides and placed on 

a slide warmer. Tissue sections were later de-paraffinized in xylene and 

rehydrated using graded alcohol solutions. For each animal, 1 in every 5 slides 

was stained with thionin to identify the region of the carotid body and blood 

vessels. Additionally, adjacent sections to those stained for thionin from the 

normoxic and IH-exposed animals were rinsed in PBS and processed for double-

immunofluorescence (Vectastain Elite ABC Kit, Cat. # PK6100; Vector 
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Laboratories, Burlingame, CA) for leptin, Ob-Rb and AT1R. Sections underwent 

an antigen-retrieval protocol using a citrate buffer (10 mM sodium citrate/0.05% 

Tween; pH 6.0) heated to 90-95ºC in a microwave for 15 min and then were 

rinsed in PBS before being placed in 5% normal goat serum ((Cat. # S-1000; 

Vector Laboratories) in PBS containing 0.3% Triton X-100 for 30 min (Messenger 

et al., 2012). The sections were later rinsed in PBS and placed overnight (12 h) 

into a primary polyclonal rabbit anti-leptin (Cat. # sc843; Santa Cruz 

Biotechnology Inc.; 1:1000 in PBS/0.3% Triton X-100) or affinity purified 

polyclonal chicken anti-OB-Rb (1:1000, Cat. # CH14104; Neuromics) at room 

temperature. Sections were then rinsed in PBS and incubated in goat biotinylated 

anti-rabbit IgG (Cat. # BA-1000; Vector Laboratory) diluted 1:500 in PBS/ 0.3% 

Triton X-100 for 1 h. Following PBS rinses, sections were placed in Streptavidin 

Alexafluor-488 (Cat. # S11223; Life Technologies) diluted 1:100 for 1 h. 

Following PBS rinses, sections were exposed to an avidin containing solution for 

15 min followed by a biotin containing solution for an additional 15 min 

(Avidin/Biotin blocking kit, Cat. # SP-2001; Vector Laboratories) to block non-

specific binding sites. Sections were then rinsed in PBS and incubated overnight 

at room temperature in primary polyclonal rabbit anti-AT1R (Cat. # sc-1173; 

Santa Cruz Biotechnology Inc.) diluted 1:1000 in PBS/0.3% Triton-X 100 and 5% 

normal goat serum. Following PBS washes, the sections were placed in goat 

biotinylated anti-rabbit IgG diluted 1:500 in PBS/ 0.3% Triton X-100 or goat 

biotinylated anti-chicken IgY (Vectastain Elite ABC Kit) diluted 1:200 in PBS/ 

0.3% Triton X-100 for 1 h. Sections were rinsed in PBS and placed in 
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Streptavidin Texas Red (Code: RPN1233; GE Healthcare, Baie d’Urfe, QC, 

Canada) diluted 1:100 for 1 h. Following PBS rinses, sections were placed in 

100% ethanol containing 5% glacial acetic acid on dry ice for 10 min. Sections 

were then immediately cover-glassed using Fluoromount mountant. 

 

6.3.8 Statistical analysis 

Statistical comparisons between the normoxia and IH exposed animals were 

made using a two-tailed, unpaired Student t-test. In all comparisons, a minimum 

p-value of < 0.05 was taken to indicate statistical significance (GraphPad Prism; 

GraphPad Software, San Diego, CA, USA).  
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6.4 RESULTS 

6.4.1 Plasma ANG II and leptin levels following captopril or losartan 

treatment 

IH significantly increased plasma ANG II (p < 0.002) (Fig. 6.1a) levels about 3 

fold above those found in the normoxic controls. Plasma leptin (Fig. 6.1b) levels 

were also significantly increased in IH exposed animals by approximately 6 fold 

(p < 0.01) above those found in the normoxic controls. Following captopril 

treatment, no differences were found between the IH and normoxic controls in 

both ANG II and leptin levels within the plasma. Following losartan treatment 

ANG II levels were found not to be different between the normoxic controls and 

IH exposed animals (Fig. 6.1a), whereas the increased levels of leptin induced by 

IH was not affected by the selective blockade of AT1R with losartan (Fig. 6.1b).  

 

6.4.2 Leptin, OB-Rb and AT1R co-expression in carotid body 

Figure 6.2 shows the effect of IH on leptin, OB-Rb and AT1R immunoreactivity 

within glomus cells of the carotid body. Glomus cells expressed low levels of 

leptin (Fig. 6.2a), OB-Rb and AT1R (Fig. 6.2b) immunofluorescence under 

normoxic conditions. However, following exposure to IH, carotid body glomus 

cells exhibited an elevated immunofluorescence associated with leptin (Fig. 

6.2c), ObRB (Fig. 6.2e), and AT1R (Fig. 6.2d and 6.2f).  Figure 6.2 also shows  
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Figure 6.1 Change in plasma levels of ANG II and leptin following IH. 

Bar charts showing the effect of IH on plasma levels of ANG II (a), and leptin (b) 

compared to levels observed in normoxic controls under sham (non-captopril 

treatment), and captopril and losartan treatment. Note that plasma ANG II (a) and 

leptin (b) are significantly elevated following IH in the non-captopril treated 

(sham) group compared to normoxic group. Additionally, note that captopril and 

losartan prevented the rise in ANG II to IH. Furthermore, note that while captopril 

blocked the rise in leptin to IH, this increase in leptin to IH was not affected by 

losartan treatment. Values are shown as means ± S.E. *p < 0.01. 
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Figure 6.2 Leptin, ObRB and AT1R in glomus cells in the carotid body. 

Fluorescent photomicrographs of the carotid body showing glomus cells 

immunoreactive to leptin (a,c), Ob-Rb (e) and angiotensin type-1 receptor (AT1R; 

b,d,f) following exposure to IH (c,d,e,f) or normoxia (a,b). Note that cells 

immunoreactive to leptin and Ob-Rb also contain immunoreactivity to AT1R. 

Calibration marks indicate 25 µm. 
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that AT1R immunoreactivity is co-localized within the same glomus cells of the 

carotid body that express leptin and Ob-Rb immunoreactivity.  

 

6.4.3 Effect of IH on AT1R and AT2R in carotid body 

Figure 6.3 shows the effect of IH on AT1R and AT2R protein expression in the 

carotid body. When exposed to IH, the expression of AT1R was significantly 

increased by about 33 % (Fig. 6.3a). However, the protein expression of AT2R 

was not different following IH exposure (Fig. 6.3b). This same pattern was 

evident in animals that were treated with captopril (Fig. 6.3c-d). However, 

following losartan treatment, neither AT1R nor AT2R protein expression was 

altered in the carotid body after IH exposure (Fig. 6.3e-f). 

 

6.4.4 Effect IH in animals treated with captopril or losartan on leptin within 

the carotid body 

As previously reported by Messenger and Ciriello (2013), IH induced an increase 

in the leptin protein expression in the carotid body. Figure 6.6 shows the effect of 

captopril treatment on carotid body leptin protein levels following normoxia (Fig. 

6.4a) or IH (Fig. 6.4b) exposure. In normoxic animals (Fig. 6.4a), captopril 

treatment lowered leptin levels to about 50% of non-captopril treated animals. In 

the IH animals, captopril (Fig. 6.4b) lowered leptin levels within the carotid body  
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Figure 6.3 Effect of IH on AT1R and AT2R within carotid body. 

Western blots showing the effect of IH on AT1R (a) and AT2R (b) the protein 

expression in the carotid bodies. Note that AT1R protein levels are significantly 

elevated following IH, whereas levels of the AT2R are not altered in the carotid 

bodies (a-b). These effects on the AT1R were maintained after captopril 

treatment (c-d). However, losartan treatment eliminated the effects of IH on AT1R 

protein expression (e), and did not alter AT2R (f) protein expression. *, 

significantly different from normoxic control animals. 
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Figure 6.4 Carotid body leptin protein following IH. 

Western blots showing changes in leptin protein expression within the carotid 

body following IH with or without captopril (Capt; a-c) or losartan (Los; d) 

treatment. Note that captopril treatment lowered leptin levels within the carotid 

body in both normoxic (Norm) (a) and the IH (b) group. In addition, the decrease 

in leptin following captopril treatment was greater in the IH group compared to 

the normoxic group (c).  A similar decrease in leptin protein expression is 

observed following losartan treatment (d). *, significantly different from non-

captopril IH treated animals. 
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to about 58%, of those levels found within the IH non-captopril treated animals. In 

addition, when the effects of captopril (Fig. 6.4c) in the normoxic animals were 

compared to those in the IH animals, it was found that captopril lowered the 

leptin levels of the IH animals to about 60% of the normoxic captopril animals 

(Fig. 6.4c). Similarly, losartan significantly lowered carotid body leptin protein 

expression to IH (Fig. 6.5d; Table 6.1).   

 

6.4.5 Effect of IH on OB-Rb and OB-R100 protein expression within the 

carotid body following captopril or losartan treatment 

Captopril treatment in either the normoxic controls (Fig. 6.5a) or the IH exposed 

(Fig. 6.5c) animals resulted in a lower carotid body OB-Rb (Fig. 6.5a and 6.5c) 

protein levels (31% and 44%, respectively) compared to normoxic controls, while 

the protein expression levels of  OB-R100 (Fig. 6.5b and 6.5d) were increased to 

about 100% and 140% above the levels within the non-treated normoxic (Fig. 

6.5b) and IH (Fig. 6.5d) animals, respectively. Additionally, when the effects of 

captopril in the normoxic animals were compared to those of the IH animals (Fig. 

6.6a), it was found in the IH animals that captopril raised the expression levels of 

the OB-Rb protein to about 140% more than the normoxic controls. On the other 

hand, no differences were found with the expression of the OB-R100 protein (Fig. 

6.6b) between normoxic- and IH-captopril treated animals. In contrast, both OB-

Rb and OB-R100 protein expression were not altered in the IH group compared to 

the normoxic controls after treatment with losartan (Table 6.1).  
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Table 6.1 The effect of captopril or losartan treatment on ANG II receptors 

and leptin signaling molecules in the carotid body following IH. 

________________________________________________________________________ 

 

Treatment IH 
IH + 

Captopril 
IH + 

Losartan 

Protein 
 

(p value) (p value) (p value) 

  
  

 AT1R 
 

↑ 0.0129 ↑ 0.0138 0.9201 

AT2R 
 

0.4406 0.3641 0.4634 

Leptin 
 

↑ * ↓ 0.05 ↓ 0.0452 

OB-Rb 
 

↓* ↑ 0.0348 0.5232 

OB-
R100 

 
↑ * 

0.2471 
0.7864 

pSTAT3 
 

No Change * 0.2219 0.8345 

pERK1/2 
 

↑ * 0.246 0.2093 

SOCS3 
 

↑ * 0.28 0.3421 

________________________________________________________________________ 

All p values are in comparison to normoxic controls with captopril or losartan 

treatment. *, adapted from Messenger and Ciriello, 2013. 
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Figure 6.5 ObR isoforms following Capt in carotid body. 

Western blots showing changes in OB-Rb (a-b) and OB-R100 (c-d) protein within 

the carotid body following IH and captopril treatment. Note that captopril 

treatment lowered Ob-Rb protein levels within the carotid body in both normoxic 

(Norm) (a) and the IH (b) group. On the other hand, the protein levels of OB-R100 

were increased in both the normoxic (c) and the IH (d) groups. *, significantly 

different from non-captopril treated animals within each group. 
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Figure 6.6 ObR isoforms following Capt: IH vs. normoxic groups. 

Western blots showing changes in OB-Rb (a) and OB-R100 (b) protein within the 

carotid body following captopril treatment in both the normoxic and IH groups. 

Note that the protein level of Ob-Rb was significantly (*) lower in the IH animals 

compared to the normoxic animals (a) treated with captopril. 
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6.4.6 Effect of captopril or losartan on STAT3, pSTAT3, SOCS3 and pERK 

1/2 in the carotid body after IH 

Figures 6.7-6.11 summarize the effects of captopril treatment on carotid body 

protein expression of STAT3 (Figs. 6.7a-b and 6.8a), pSTAT3 (Figs. 6.7c-d and 

6.8b), SOCS3 (Fig. 6.9a-c), and pERK 1/2 (Figs. 6.10 and 6.11a-c; Table 6.1) in 

normoxic and IH exposed animals. Captopril treatment in normoxic animals 

resulted in decreased STAT3 protein expression (Fig. 6.7a) to about 47% of non-

treated group, whereas no differences were found between IH-exposed animals 

(Fig. 6.7b) or between normoxic and IH animals treated with captopril (Fig. 6.8a) 

or losartan (Table 6.1). Captopril treatment in normoxic and IH exposed animals 

also decreased pSTAT3 (52% and 49% of non-captopril treated animals, 

respectively) protein expression (Fig. 6.7c-d). However, STAT3 and pSTAT3 

protein levels in the IH-captopril treated animals were not different from those in 

the normoxic-captopril treated animals (Fig. 6.8; Table 6.1). Similarly, pSTAT3 

protein levels in the IH-losartan treated animals were not different from those in 

the normoxic-losartan treated animals (Table 6.1). 

Captopril treatment in normoxic and IH exposed animals increased 

SOCS3 protein expression within the carotid body (Fig. 6.9a-b). In normoxic 

animals, captopril increased the expression of SOCS3 protein by almost 1036% 

(Fig. 6.9a), while in the IH exposed animals captopril increased the expression of 

SOCS3 protein by about 2490% (Fig. 6.9b). However, the protein expression 

level of SOCS3 in the IH captopril treated animals compared to the normoxic 
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captopril treated animals was not different (Fig. 6.9c; Table 6.1). Similarly, 

SOCS3 protein levels in the IH-losartan treated animals were not different from 

those in the normoxic-losartan treated animals (Table 6.1). 

ERK1/2 and pERK1/2 protein levels were decreased (to about 48% and 

42% of non-captopril treated animals, respectively) following captopril treatment 

(Fig 6.10a and 6.10c).  On the other hand, neither ERK1/2 or pERK1/2 protein 

levels in the IH captopril treated animals were different from those in the non-

captopril treated IH exposed group (Fig, 6.10b and 6.10d) or from the normoxic 

captopril treated groups (Fig. 6.11). Similarly, ERK1/2 and pERK1/2 protein 

levels in the IH-losartan treated animals were not different from those in the 

normoxic-losartan treated animals (Table 6.1). 
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Figure 6.7 Changes in STAT3 following Capt 

Western blots showing changes in STAT3 (a-b) and pSTAT3 (c-d) protein within 

the carotid body following IH and captopril treatment. Note that captopril 

treatment significantly (*) lowered STAT3 protein levels within the carotid body 

only in normoxic (Norm) group (a). However, pSTAT3 levels were significantly (*) 

lower in both the normoxic (c) and the IH (d) groups after captopril treatment. 
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Figure 6.8 Changes in STAT3 following Capt: IH vs. normoxic groups 

Western blots showing changes in STAT3 (a) and pSTAT3 (b) protein within the 

carotid body following captopril treatment in both the normoxic and IH groups. 

Note that the protein level of pSTAT3 was significantly (*) lower in the IH animals 

compared to the normoxic animals (b) treated with captopril. 
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Figure 6.9 Changes in SOCS3 following IH and Capt treatment. 

Western blots showing changes in SOCS3 protein expression within the carotid 

body following IH and captopril treatment. Note that captopril treatment 

significantly (*) elevated SOCS3 protein levels within the carotid body in the 

normoxic (Norm) (a) and IH group (b). However, SOCS3 levels were significantly 

(*) lower in the IH captopril treated group compared to the normoxia captopril 

treated group (c). 
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Figure 6.10 Changes in ERK1/2 following IH and Capt treatment 

Western blots showing changes in ERK 1/2 (a-b) and pERK 1/2 (c-d) protein 

within the carotid body following IH and captopril treatment. Note that captopril 

treatment significantly (*) lowered ERK 1/2 and pERK 1/2 protein levels within the 

carotid body only in normoxic (Norm) group (a and c).  
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Figure 6.11 Changes in ERK1/2 following Capt: IH vs. normoxic groups 

Western blots showing changes in ERK 1/2 (a) and pERK 1/2 (b) protein within 

the carotid body following captopril treatment in both the normoxic and IH groups. 

Note that the protein levels were not altered in either group treated with captopril. 
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6.5 DISCUSSION 

These data provide the first direct evidence that ANG II plays an important 

role in the regulation of leptin not only within the carotid body, but also within the 

circulation during IH, and that within the carotid body ANG II through activation of 

AT1R contributes to changes in downstream leptin signaling during IH. These 

conclusions are based on the findings that within the carotid body, cells that 

expressed leptin and the OB-Rb also expressed the AT1R. Additionally, inhibition 

of ANG II by blocking ACE following captopril treatment decreased leptin not only 

within the carotid body, but also the plasma levels of leptin during IH. 

Furthermore, the decrease in available leptin to the carotid body was 

accompanied by an increase in the OB-Rb protein expression in captopril treated 

animals, but no change in the losartan treated animals. This coupled with the 

lower carotid body levels of leptin during IH in the captopril and losartan treated 

animals suggests a dampening of the entire leptin signaling system within the 

carotid body by the lack of ANG II and activation of AT1R. This suggestion is 

consistent with the observation that both captopril and losartan treatment 

resulted in an inhibition of the downstream mediators of leptin signaling within the 

carotid body following IH. Finally, contrary to the increase in OB-Rb protein 

expression levels following captopril treatment, OB-R100 protein levels in the 

carotid body were increased suggesting either an increase in transport of leptin 

out of cells or an increase in leptin degradation within the cells. Taken together, 

these data can be interpreted to suggest that ANG II effects on carotid body 

chemosensitivity may be mediated in part through the activation of the carotid 
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body leptin system, and that ANG II signaling is also critical for the maintenance 

of circulating levels of leptin in normoxia and during IH.  

The finding that ANG II influences leptin activity and requires functional 

leptin receptors is supported by the observation that AT1R blockade results in a 

decreased body mass index and food intake, but has no effect in obese Zucker 

rats with a genetic mutation in the leptin receptor (Muller-Fielitz et al., 2011). In 

addition, it has been shown that the brain RAS facilitates renal and brown 

adipose tissue sympathetic nerve responses to leptin (Hilzendeger et al., 2012). 

However, the finding that plasma leptin levels induced by IH are not altered after 

losartan treatment, whereas carotid body leptin is inhibited suggests that not all 

leptin effects are mediated by the selective activation of the ANG II AT1R. 

The finding of a decrease in circulating leptin following ANG II inhibition is 

consistent with earlier data suggesting that ANG II signaling stimulates not only 

leptin production, but also leptin secretion (Cassis et al., 2004; Premaratna et al., 

2012). Considering that the main production/secretion site of leptin into the 

plasma is adipose tissue (Lonnquist et al., 1996; Caro et al., 1996), this study 

provides further supports the suggestion that the leptin system may be in part 

under the control of ANG II. This latter suggestion is also consistent with the 

observation in a mouse model deficient in the AT1Ra isoform, in which plasma 

leptin concentrations were found to be reduced when compared to wild-type 

(Kaneko et al., 2011).  
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Carotid body leptin levels were also found to be decreased in animals 

treated with captopril during both normoxia and IH conditions. This finding is 

similar to that observed within adipocytes taken from rats treated with captopril, 

in which both circulating leptin and leptin release was decreased (Cassis et al., 

2004). Additionally, incubation of adipocytes with ANG II resulted in an up-

regulation of leptin mRNA, as well as leptin secretion (Cassis et al., 2004) while 

in ventricular myocytes, ANG II promotes de novo synthesis and secretion of 

leptin (Rajapurohitam et al., 2006). Furthermore, blocking OB-Rs in these 

cardiomyocytes prevented the hypertrophic effects ANG II normally has on these 

cells suggesting that leptin may mediate effects normally attributed to direct ANG 

II action (Rajapurohitam et al., 2012). Finally, in human vascular smooth muscle 

cells, it has been previously found that increased ANG II results in increased 

leptin protein and mRNA expression (Shyu et al., 2012). Thus, it is not 

unreasonable to suggest that leptin may be involved in mediating some of the 

changes in carotid body chemosensitivity normally attributed to ANG II (Gomez-

nino et al., 1990; Eyzaguirre and Zapata, 1968; Bock, 1980).  

Interestingly, the increased leptin protein and mRNA expression observed 

in human vascular smooth muscle cells as a result of the elevated ANG II has 

been attributed to increases in reactive oxygen species (Shyu et al., 2012). The 

IH induced changes in the carotid body chemosensitivity have been suggested to 

be related to an enhanced reactive oxygen species production (Pawar et al. 

2009; Iturriaga et al., 2009). In addition, the IH effects associated with increases 

in superoxide have been shown to be blocked by losartan, a specific AT1R 
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blocker (Marcus et al., 2010). Therefore, taken together, these data suggest a 

possible mechanism by which ANG II signaling may modulate ROS activity and 

subsequently leptin activity within the carotid body. 

Captopril treatment in both normoxia and after IH reduced protein levels of 

OB-Rb compared to their respective controls. This finding suggests that ANG II 

plays an important role in the regulation of Ob-Rb, although due to the low levels 

of available leptin both locally and from the circulation following captopril 

treatment, ligand-induced endocytosis seems unlikely (Bennett et al., 1998; 

Uotani et al., 1999). The short-form leptin receptor displayed increased levels of 

protein expression in the carotid bodies following captopril-treated animals in 

both the normoxic and IH conditions. Generally, OB-Ra is believed to be involved 

in leptin transport, specifically across the blood-brain barrier (Banks et al., 1996; 

Golden et al., 1997; Bjorbaek et al., 1998). One potential explanation may be that 

the reduced leptin availability stimulates OB-Ra protein expression to aid in leptin 

secretion from glomus cells. Additionally, the OB-Ra has been suggested to 

function in the degradation process of leptin (Iida et al., 1996; Merabet et al., 

1997; Sharma et al., 1997) and may provide one mechanism through which the 

decreases seen in carotid bodies occurs. However, the functional significance of 

ANG II effects on Ob-Ra is unknown.  

The lower protein levels of leptin and OB-Rb in the carotid bodies after 

captopril treatment is consistent with the decreases in activation of STAT3. In 

normoxic and IH conditions, captopril treatment reduced pSTAT3 levels, a 

downstream signaler involved in OB-Rb activation (Elmquist et al., 1997; 
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Fruhbeck, 2006; Wang et al., 1998; Huo et al., 2006, 2007). The down-regulation 

of both the ligand and the receptor would be expected to result in a decrease in 

activation of the signaling pathway (Elmquist et al., 1997; Fruhbeck, 2006; Wang 

et al., 1998; Huo et al., 2006, 2007). One other potential explanation for the 

decrease in pSTAT3 levels found in captopril treated animals is the decrease in 

ANG II levels as ANG II signaling, through AT1R, can activate the JAK/STAT 

pathway resulting in phosphorylation of STAT3 (Ji et al., 2012; Omura et al., 

2001). However, it has also been shown that leptin injections resulted in up-

regulation of pSTAT3 protein expression (Messenger et al., 2012), and thus this 

decrease after ANG II inhibition most likely occurs at least in part through 

decreased leptin signaling. 

Consistent with the decrease in pSTAT3 is the concomitant rise in SOCS3 

levels.  SOCS3 acts as a negative feedback loop on JAK/STAT signaling 

(Bjorbaek et al., 2000; Fruhbeck et al., 2006). The decrease in pSTAT3 

accompanied by the SOCS3 rise would be expected in the IH condition, which 

has previously been shown to stimulate the JAK/STAT pathway (Messenger et 

al., 2012; Messenger & Ciriello, 2012). In some cell types, ANG II has been 

known to stimulate the JAK/STAT pathway which results in increased SOCS3 

expression (Calegari et al., 2003; Ji et al., 2012; Omura et al., 2001). However, 

as to the reason why such a profound increase was found in both the normoxic 

and IH condition is unknown.  

In addition to the JAK/STAT pathway, OB-Rb signaling can also activate 

the MAPK cascade (Bjorbaek et al., 1997; Banks et al., 2000) and thus activation 
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of ERK1/2 is an indicator of pathway activation. In normoxic animals, captopril 

treatment resulted in a decrease in pERK1/2 protein levels, however no changes 

were observed in the IH animals. This finding suggests during IH, other 

mechanisms in addition to leptin (Bjorbaek et al., 1997; Banks et al., 2000) or 

ANG II (Li et al., 1998; Nakai et al., 2012) may activate ERK1/2.  

In summary, this study has demonstrated that the RAS modulates the 

leptin system not only in the circulation, but also within the chemosensitive 

carotid body. Inhibition of ANG II by ACE results in a dampening effect on 

circulating leptin levels as well as local carotid body leptin protein levels. There is 

also a decrease in the OB-Rb and downstream indicators of OB-Rb activation, 

and this appears to be mediated through an interaction with the activation of the 

AT1R. Angiotensin signaling through the AT1R is critical for this chemosensitivity 

by the carotid bodies (Marcus et al., 2010), and given its co-localization with OB-

Rb and leptin within the glomus cells suggests that AT1R has a stimulatory effect 

on the carotid body leptin system and ANG II chemosensitive role may be 

mediated in part through leptin signaling.  
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7.         CHAPTER 7 

7.1 SUMMARY OF MAJOR FINDINGS 

This thesis examined the effects of intermittent hypoxia (IH) exposure on 

physiological responses related to energy balance and cardiovascular regulation 

in rats. Physiological alterations were observed following both acute and chronic 

exposure to IH, and included changes in neural pathways associated with these 

physiological systems. The role of leptin signaling in these pathways was an 

underlying theme, and was altered in both acute and chronic models, an 

important factor in mediating many of the observed effects. 

In Chapter 2 of this thesis, I wanted to evaluate alterations in body energy 

balance associated with exposure to acute IH. This study was performed given 

that chronic models of IH have significant, detrimental metabolic alterations and 

that OSA patients also present with altered metabolism and body energy balance 

(Martinez et al., 2008; Dempsey et al., 2010). The role of leptin in these major 

changes was also determined using a leptin-deficient transgenic rat in Chapter 3. 

These KILO animals have the leptin gene removed through zinc-finger nuclease 

technology (Vaira et al., 2012). Body energy balance is significantly altered in 

wild-type rats exposed to IH, displaying a negative body energy balance, 

including body weight loss likely due to decreased food intake. Interestingly, the 

body energy expenditure appeared to be reduced in these animals, given that 

food conversion efficiency and locomotion were both decreased compared to 

normoxic controls. These alterations were associated with a significant elevation 

in circulating leptin, concomitant with reduced adipose leptin content. Circulating 
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adiponectin was reduced, whereas adipose adiponectin content was elevated. 

Leptin:adiponectin ratio was elevated in animals exposed to IH, as a result. The 

ARC of animals was isolated and protein expression of pSTAT3 was shown to be 

higher in animals exposed to IH, suggestive of activation of a cytokine receptor 

dependent on the JAK2/STAT3 signaling pathway. POMC was also higher in the 

ARC of IH animals, and this was mirrored by an increased number of POMC 

cells expressing immediate early gene product immunoreactivity. When leptin-

deficient KILO rats were used, none of these differences were observed between 

IH and normoxic exposed animals, suggesting that leptin is a necessary 

component of mediating the body energy balance phenotype in animals exposed 

to IH. 

Since the role of leptin in mediating the effects of IH on body energy 

balance appeared to be critical, we looked at the role of chronic IH in body 

energy balance and whether a state of leptin resistance could potentially be 

induced in Chapter 4. Certainly animals exposed to 95 days of IH had reduced 

body weight compared to controls, but by the end of the study period, animals 

exposed to IH were gaining no more body weight than at the start of the period, 

compared to a reduction in body weight gain in controls, an effect mirrored by 

energy utilization. These changes were concomitant to an elevation in food 

intake in CIH animals over the study period, whereas normoxic animals had a 

significant reduction in food intake over the same time. This may be suggestive 

of a physiological manifestation of leptin resistance. Leptin sensitivity was 

measured directly, and it was shown that CIH animals were resistant to leptin 
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compared to normoxic controls. Animals had elevated leptin/epididymal fat pad 

mass, an important factor given the alterations observed in body energy balance. 

No changes in locomotion were observed. CIH animals exhibited no differences 

in the protein expression level of neither ObRB, nor ObR100, nor pSTAT3, 

though pERK1/2 was curiously elevated. POMC protein was decreased and 

SOCS3 increased in the ARC, suggesting that leptin resistance may occur 

following CIH through SOCS3 induction, and POMC is reduced as a result of the 

decreased leptin signaling. This study suggests that IH may be able to induce a 

state of positive body energy balance over long-term exposures. 

In Chapter 5, the role of acute, short-term and chronic IH on hemodynamic 

measures were assessed and associated with neuroplastic alterations within the 

NTS region of the brainstem. Hypertension without concomitant alterations in 

heart rate was observed in animals following 95 days of IH, but not at any other 

time point. The basal gain of the baroreflex was also reduced following this 

exposure. It was observed that specific alterations in the TrkB-BDNF signaling 

system change over time, which may be the result of differential leptin signaling. 

Interestingly, the amount of synaptophysin within the NTS region was reduced 

following IH, indicative of a loss of synapses within the region. However, in acute 

IH this effect was still observed in KILO leptin-deficient animals, suggesting leptin 

does not play a role in this effect. The neurite growth factor GAP-43 was reduced 

following CIH, suggesting a potential reduction in cardiorespiratory afferent 

neurites or potential for neurite sprouting within the NTS region. We believe this 

may be a novel mechanism mediating hypertension following IH, an effect 
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supported by other groups observing a reduction in glutamatergic synapses 

following IH (Almado et al., 2012). 

Finally in Chapter 7, the role of angiotensin II in mediating leptin signaling 

within the carotid body following IH was assessed. This was done by exposing 

animals to acute IH following angiotensin converting enzyme (ACE) inhibition or 

blockade of the type 1 angiotensin II receptor (AT1R), and served as a follow-up 

to initial findings describing the effects of acute IH on leptin signaling in the 

carotid body (Messenger and Ciriello, 2013). Here, we show that leptin protein 

within the carotid body is reduced in animals exposed to IH compared with 

controls in both conditions of reduced angiotensin II signaling. The treatments 

also prevented all the alterations observed in leptin signaling within the carotid 

body following IH under sham conditions, suggesting that angiotensin II plays a 

critical role in mediating the effect of leptin at the carotid body during IH. 

Likewise, it was observed that circulating leptin concentrations were not different 

in IH animals following ACE inhibition, but were elevated during AT1R blockade 

following IH, similar to sham animals. This suggests that leptin secretion 

following IH is dependent on angiotensin II acting through non-AT1Rs. 

 

7.2 LIMITATIONS AND FUTURE STUDIES 

The animal model of IH used in these studies under both acute and chronic 

exposures is a sleep-independent model, which is applied during the rest phase 

of the sleep/wake cycle of the rats used. Due to the sleep-independent nature of 



269 

 

this exposure, it could be that for some short periods of time animals were being 

exposed to IH while actually awake. The effect this may have on the outcomes of 

these studies is not known, but may be negligible since studies using IH 

exposure during an aroused state in humans showed effects consistent with that 

observed in patients with obstructive sleep apnea (OSA; Louis and Punjabi, 

2009). Likewise, alterations in oxygen availability in patients with OSA may 

persist throughout the waking hours (Shiota et al., 2013).  

 In addition to potential inconsistencies of hypoxia between the model of IH 

utilized and OSA, it has previously been shown that rodents exposed to IH 

experience an elevated ventilator response, resulting in eucapnea and no 

alterations in intrathoracic pressure (Fletcher et al., 1992). In patients with OSA, 

both hypercapnemia and reductions in intrathoracic pressure similar to that seen 

in the Muller manoeuvre have been noted during apnea (Dempsey et al., 2010). 

This is the result of difference between the inductions of IH experimentally and 

clinically. In the model of IH, environmental oxygen levels are altered, but the 

airway of the animal or subject remain intact. This occurs without a change in 

environmental pressure or carbon dioxide, and thus breathing is free to go 

unimpeded and without any change in carbon dioxide within the lungs. In 

contrast, a reduction in airway flow during OSA results in reduced gas exchange 

and unsuccessful attempts to breathe during apnea (Dempsey et al., 2010). 

Since these models do not mimic OSA, but rather the specific IH component of 

OSA, is precisely the reason that models of IH are not described as models of 

OSA, and so differences between the model and the disease are important to 
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take into consideration. Despite this, it is believed that the cardiovascular and 

metabolic responses in OSA are largely due to the observed IH. The 

neurocognitive components appear to be largely due to disruption in sleep 

architecture and IH. Interestingly, it has been determined in rodent models that 

hypercapnea does not alter responses to IH (Dempsey et al., 2010). 

 Despite the overwhelming contributions of IH in exploring mechanistic and 

causal roles of OSA-induced IH to other disease states, there are other 

unresolved issues in modelling OSA with current IH models. The most important 

of which, is the sudden nature of IH exposure. OSA is a chronic, progressive 

disease that can persist for a significant portion of an individual’s life. Most 

current models of CIH involve exposing rodents to IH with an apnea-hypopnea 

index (AHI) within the moderate-severe range immediately. This massive change 

in oxygen availability is likely a massive insult to the homeostasis of an animal, 

and does not mimic what is observed in OSA. In an attempt to resolve this issue, 

I have proposed a model of CIH that includes a progressive component, 

increasing hypoxic exposure to a plateau level that coincided with that normally 

exposed in our CIH model. This so-called ramped IH model consists of starting 

animals with an AHI of 1 event/h, with progressive steps of AHI by 1 event/h 

every four days. Animals are then exposed to CIH in the plateau phase for 28 

days, for a total hypoxic exposure of 96 days (on par with our 95 day CIH model). 

I believe this model will allow for appropriate adaptation in neural signaling 

networks, such as the carotid body afferent system and sympathetic and phrenic 

efferent systems. This model must be further studied to validate these claims, 
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and determine the appropriateness for use in better modelling the chronic, yet 

dynamic exposure to IH experienced in OSA. On this topic, it may also be 

advisable that models of CIH be utilized for longer time periods. Given that 

rodents exposed to 95 days IH developed leptin resistance and had small initial 

alterations in food intake and body weight changes, it would be better suited to 

observe these models over long periods of time to determine the 

pathophysiological manifestation of obesity and/or metabolic syndrome. As well 

other, currently unstudied pathologies and their association to CIH such as heart 

failure and sudden cardiac death could also be studied over longer exposure 

times.   

 

7.3 SIGNIFICANCE OF RESEARCH AND CONCLUSIONS 

OSA represents a significant disease burden to both patients and healthcare 

systems globally. Given the associations of OSA with other diseases such as 

obesity and cardiovascular disease, the time has come to determine the true role 

OSA has in mediating mechanisms that lead to, and are part of, these deadly 

disease states. Understanding the factors that link these diseases is important for 

1) an understanding of the importance of diagnosing and treating OSA, 2) 

mechanisms which may be targeted by OSA treatment, 3) the development of 

novel treatment approaches to OSA, and 4) the development of novel treatment 

approaches for OSA-related pathologies. 
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 Clinical studies have shown that obesity is an important risk factor for the 

development of OSA, and patients with OSA tend to gain weight compared to 

normal individuals (Phillips et al., 2000). Likewise, OSA patients have more 

trouble losing weight than normal individuals. These findings form the basis for a 

bidirectional relationship between OSA and body weight gain. For the first time, 

body energy balance within animals has been assessed in a model of CIH. My 

study has shown that a primary and potentially causative hallmark of obesity is 

induced by CIH. In this study, leptin resistance occurs despite a reduction in body 

weight gain, though is accompanied by an increase in food intake over the 

exposure time, compared to controls. This may provide a mechanism by which 

body weight gain and obesity could be induced by the CIH observed in patients 

with OSA. Likewise, most of the short-term effects of IH on body energy balance 

are due to leptin signaling. This is concomitant to the finding that hypoxia and 

OSA in humans increases circulating leptin. Acute IH causes changes such as 

an alteration in leptin:adiponectin ratio, which is believed to be an important 

variable in cardiovascular disease development (Kappelle et al., 2012), though 

this measure has not been assessed in OSA patients. 

 Another common comorbidity with OSA is hypertension. My studies 

suggest a potential novel mechanism by which neuroplastic alterations in the 

nucleus of the solitary tract is associated with hypertension in animals exposed to 

IH. The development of hypertension in patients with OSA is often described as 

resistant in nature. This suggests that classical mechanisms of blood pressure 

elevation, which are largely targeted by drugs, are not likely the mechanisms 
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mediating the hypertension-inducing effects of OSA. Instead, new approaches to 

hypertension must be addressed in complicated forms of secondary resistant 

hypertension, such as the one induced by the CIH model. It cannot be ruled out 

that selective leptin resistance, which permits the activity of the hypertensive 

effects but inhibits the satiety effects of leptin, played a role in mediating this 

hypertension. Likewise, the alterations observed in neuroplastic markers, 

especially considering that leptin deficient animals do not develop the same 

alterations in some of the markers of neuroplasticity, may also be the result of 

leptin acting selectively in this area to drive blood pressure. Nonetheless, these 

potential pathways warrant a closer look in additional studies to determine the 

role of these changes following IH in hypertension. 

 Finally, in Chapter 4 of this thesis I have shown that leptin signaling 

pathways within the carotid body are regulated by the AT1R, while the IH-

dependent release of leptin is regulated by angiotensin II through non-AT1R. The 

clinical relevance of this data is not obvious, but these effects may be important 

in suggesting a role for a complex interaction between leptin and angiotensin II 

both peripherally and specifically within the carotid body. The functional effects of 

this interaction are unknown, but it is known that angiotensin II is an important 

modulator of the carotid chemoreceptor reflex (Marcus et al., 2010), and so leptin 

may interact with this to potentiate hypoxic responses. This is important, as data 

suggest a potentiation of carotid body signaling and sympathetic nervous drive 

following exposure to IH (Dick et al., 2007). 
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Collectively, the studies in this thesis provide many new avenues for 

research into cardiometabolic diseases associated with IH exposure, presumably 

to determine mechanism of diseases associated with OSA. Addressing these 

mechanisms may provide novel therapeutic targets in addressing the disease 

burden associated with OSA. This disease burden will become increasingly 

important as OSA increases in prevalence within our population. 
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