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Abstract

The interaction of branched polymers with an adsorption surface is studied using
rigorous and numerical methods. For a polymer network with a fixed topology and
consisting of self-avoiding chains, we prove that the reduced free energy is the same as
that for self-avoiding walks interacting with a surface. For a network modelled by a
lattice animal, we prove that a pnase transition exists when such an animal interacts
with a surface. The transition points are numerically studied by one and two variable
Padé approximants. A number of rigorous results for the statistics of lattice animals

are also obtained.
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Chapter 1

Introduction

1.1 Statistics of polymer conformations

A linear polymer is a long chain molecule formed by the repetition of a basic unit or

segment named as monomer. Examples of synthetic linear polymers are

I
polymethylene ...-ti-c;.'-(':-c':-...
H HHH
H
whose repeat unit is <':-
"
H HHHHHNH
[ T R R |
and polystyrene ...-(E-c_(f_c_(.;-c_...
H H H

H
!
whose repeat unit is (':- (':- .

A polymer chain can have any number of monomers. The characteristic feature
of such a lincar polymer in dilute solution is its flexibility. This is primarily a result
of its ability to rotate, relatively freely, about the backbone of the chain consisting
of carbon-carbon covalent bonds. This rotational freedom allows the polymer chain
to take up numerous conformations characterised by the dihedral angles about these

bonds (De Gennes [1}).



The study of polymer conformations falls into two aspects:

(i) Local properties: conformations and motions of one monomer inside the chain
and their dependence on chemical substitutions in the side group.

(ii)) Global properties: dependence of physical properties (observables) on chain
length, concentrations and a few basic interaction parameters.

The local features are essential whenever we want to choose an optimal polymer
for a given practical application. This is the aspect studied by physical chemists.

The global point of view is the focus of this thesis. Here the details of the chain
structure are omitted as much as possible to extract simple, universal features which
will remain true for a large class of polymer chains. These features depend on n,
the number of monomers of a chain, and are described by certain scaling laws for
large n, represented by taking the limit n — oo. This is the aspect studied in
critical phenomena. Moreover, we shall consider polymers in a dilute, good solution.
The “dilute” refers to the fact that polymers are independent of each other and
therefore, do not interact in any way. The term “good solution” is used to imply
that the attraction between the monomers and solvent molecules is greater than the

monomer-monomer interaction.

1.1.1 Random walks

The simplest model of a linear polymer is to regard it as a random walk on a lattice.
The walk is a succession of n steps. At each step, the next jump may proceed to
any of the nearest neighbour vertices, and statistical weight for these pcssibilities
is the same. Such a walk is represented by a sequence of lattice vertices W =
{x(0), x(1), ..., x(n)} where x(i) and x( 4 1) are a pair of adjacent lattice vertices.
If each lattice vertex has 2 neighbours, the number of distinct possibilities at each step
is z, and the total number of distinct n-step walks is z”. The important quantities

in studies of polymer solutions are the mean-squared end-to-end distance (R?) and




the mean-squared radius of gyration (S?) about the centre of mass of the chain. This
latter quantity is of particular interest since the radius of gyration of a polymer in

dilute solution is experimentally determinable, e.g. by light scattering experiments.

They are defined by

(Ra) = ((x(n) = x(0))*), (1.1)
and
1 NN .
S8 = oy & ,Zz;"“" = x()%, (12)

where (-) denotes an average over all n-step walks. For random walks, it can be shown

that for large n,
(R) ~n, (1.3)

and
(52) = S(R2) (1.4)
(Barber and Ninham {2]).

A major problem with the random walk model is that it ignores the hard-core
repulsion between the monomers far apart along the polymer chain which, in certain
conformations, can be close together in space. This feature (the exclusion of one
monomer from the region of space occupied by another) is called the ezcluded-volume
effect. This effect destroys the Markovian nature of the problem, since a long term
memory eflect is implied. The standard model of linear polymers with excluued-
volume effect is a self-avoiding walk (SAW) model. This is a random walk on a lattice
with the restriction that a lattice vertex, once visited, cannot be revisited during the
realization of the walk. The self-avoiding constraint represents the excluded-volume
effect. This simple additional constraint generates a sufficiently difficult mathematical

problem that few rigorous results are available.

The first rigorous result on the large n behaviour of the number of distinct self-




avoiding walks was obtained by Hammersley [3]. He showed that

.1 N | ,
lim =ln¢, = lim —Inp, = &, (1.5)
n—e20 T n—aoo n

where ¢, denote the number of n-step SAW’s with fixed x(0) and p, denotes the
number of n-step polygons which are SAWs with x(0) = x(n). The limit « is called
connective or effective constant (note that some authors refer to u = exp(«x) as the

connective constant). It is widely believed that
o ~ e™n7, (1.6)

and
Pn ~ e n" e, (1.7)
Although nothing analytic is known about the behaviour of (R?) and (S?) for a

self-avoiding walk, numerical studies suggest, that for large n,

(R3) ~ n?, (1.8)
(83) ~ n*. (1.9)

Numerical results indicate that v = 0.75 for d = 2 and v = 0.59 for d = 3.
Self-avoiding walks in restricted geometries can model polymers in restricted en-
vironments such as pores or capillaries. One of the questions which has attracted
attention is how the geometrical constraints effect the asymptotic behaviour of the
number of distinct self-avoiding walks. A number of rigorous and numerical results
have been obtained for SAW’s with geometrical constraints. For instance, consider
self-avoiding walks on the cubic lattice confined to a half-space by a surface plane
(z = 0) which we take to be a square lattice. Let c. be the number of n-step walks
which have their first vertex in this plane and c}! be the corresponding number which

also have their last vertex in the plane. Whittington [4] has shown that

lim llnc,‘, = lim -l-lnc},' = K. (1.10)
R—e00 N} n—o00 N




It is assumed that a similar n dependence holds for ¢} and c!! so that
ch~emnamt U empntt, (1.11)

In general, for self-avoiding walks analytic treatments have proved to be very
difficult. Hence, extensive work has been done to investigate the problem by numerical
techniques including series expansion analysis of exact enumeration data, Monte Carlo

simulation and transfer matrix methods.

1.1.2 Polymer structures and topologies

Not all polymers are linear. Many parasitic reactions occurring during the synthesis
can lead to a chain which is not perfectly linear but contains branch points. In the
past, these branch points could only be detected experimentally when the fraction of
them in the structure was not too small. However, experimental progress has made
it possible to detect one branch point in a polymer and it is also possible to insert to
a chain a controlled number of branch points to produce a specific polymer structure
(Roovers et al [5) [6]). Thus, there has been considerable interest in the behaviour of
solutions of branched polymers with finite number of branch points and a specified
structure (topology) (Miyake and Freed (7}, Wilkinsonet al [8], Lipson et al [9], Saleur
(10)).

The topology or structure of a polymer network is specified precisely in terms of the
number of branch points and the connectivity which describes how these branch points
are connected together. An example of such structure is an f-star polymer formed by
joining the first vertex of f linear polymers at a vertex of degree f. Figure 1.1 gives
some typical polymer structures. For more complex networks, it is usual to take into
account only the number of branch points and neglect the connectivity (Duplantier
[11], Duplantier and Saleur {12}, Gaunt et al [13] [14], Lipson and Whittington [15])).
The goal of such models is to predict the effects of branching on the properties of

polymers with excluded-volume effect.




& I

(a) a 3-star (b) an H-comb

Ol E—>

(c) a dumbbell (d) a 3-watermelon

(e) a comb

Figure 1.1: Examples of polymer networks



-}

All these networks are modelled as graphs on a lattice. It has been shown that

for large n, the nuinber of configurations of a network , gn, behaves like
gn ~ €Ml (1.12)

where the connective constant x is the same as that for SAWs, but the exponent 4,

depends on the structure.

1.1.3 Lattice animals

Figure 1.2: A polymer gel

Under proper conditions, branching leads to the formation of an infinite molecule
or gel which has an unrestricted number of branch points and a general structure
(Figure 1.2). Such polymers are modeclled as lattice animals These are connected
sub-graphs of the lattice. There are two type of lattice animals. A site animal (strong
embedding) is a connected section graph of the lattice {so that if two vertices of the
animal are on adjacent lattice sites they must be connected by an edge in the animal).

A bond animal (weak embedding) is a connected subgraph of the lattice (so that two




vertices of the animal which are on adjacent lattice sites may or may not be connected
Ly an edge in the animal). In each case, an interesting subset is the corresponding
set of animals without cycles, which is referred to as bond trees and site trees.

Of primary interest is the statistics of configurations of lattice animals. We write
@,, An, ta and T, to be the number of bond animals, site animals, bond trees and

site trees with n vertices respectively. It has been shown (Klein [16), Soteros and

Whittington [17]) that
.1 1
lim —Ina, =sup —lna, =1n) < o0,
n—x N a>o N

lim llnA,; =sup-l-lnA,. =IlnA < oo,
n—co N n>0 N

lim llntn = sup-l-lnt.. ==1InA € x,

n—oon n>0 N
lim L InT, = sup - In T, = In Ao < oo, (1.13)
n—00 N n>0 N

where the A's, etc. are called growth constants. These are lattice dependent quantities.

Morecover (Soteros and Whittington {17]),
A> A >A> A (1.14)

Rigorous results on the rates of approach to the limits in (1.13) do not exist.

Generally, it is expected that

a, ~n~ ",
t, ~n % A3,
A, ~n"®A",
T, ~n~% Ag,

(1.15)

where the 0’s, etc. are called critical exponents or simply ezponents. These quantities

are believed to be lattice independent but depend only on the dimension.




From an argument due to Lubensky and Isaacson [18], the universality class for

these inodels is independent of the cycle fugacity, which implies that

0=0, ©O=86,. (1.16)
Furthermore, there are numerical results that indicate that

0=0,=0 =6, (1.17)

(Duarte and Ruskin [19], Gaunt [20}).

In order to study the crossover from trees to animals, Whittington et al [21]
introduced c-animals, which are lattice animals with ¢ (referrd as cyclomatic index)
independent cycles. Denoting by a,,(¢) and A.(c) the number of bond c-animals and

site c-animals with n vertices respectively, they have shown rigorously that

_lgg :—‘ln an(c) = In Ao. (1.18)
With the assumption that
an(c) ~ n~% A2, (1.19)

Soteros and Whittington [22] bave shown rigorously that
0. =0 —c (1.20)

if either of the exponents exists. For site c-animals, numerical evidence suggests that
the growth constant is independent of the cyclomatic index, i.e. A, = Ao, and that
. = O — ¢ (Gaunt et al [20], Whittington [21]). However, there are no rigorous

arguments to confirm these two results.

1.2 Relation to critical phenomena

The study of the statistics of polymers with excluded-volume effect is also motivated

by their correspondence to classical spin models of magnetism. This analogy may
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be formulated as a formal equivalence between SAW’s and the N — 0 limit of N-
component spii. model (De Gennes [1]). One of the simplest derivation of such an
equivalence is given as follows (Barber et al [23]).

Consider a system of N-component spins 8; = (s!, s?, ..., s¥) of fixed length
| 8 |= (3.(s2)*)"? = VN located on the sites i of a d-dimensional lattice. The
Hamiltonian is

-BH=KY ss;+L) s, (1.21)
where the first sum runs over all nearest-:eighbour sp‘ins on the lattice and the second
over all sites. K = J/T is the coupling constant. The magnetic field is taken to be

in the direction ‘1’ of spin space. Let
m(K, L) = (s!) (1.22)

be the expectation value of the component of any spin parallel to the magnetic field

L, then the zero-field susceptibility is

xolK,N) = Jim TR ) = 5, (129
J

where the subscript indicates that the expectation value is taken with respect to the

Hamiltonian (1.21) with L = 0. In the limit N — 0, it turns out that
Jmx(K,N) = C(K) = Dk, =1, (1.24)

where C(K) is the generating function for n-step walks. From the asymptotic be-
haviour (1.6), it follows that C(K) has a singularity at K = K. = J/T. = ¢™* of the
form

C(K)~ A(l —e"K)™, (1.25)
analogous to the singularity in the susceptibility. The number of steps n along the
walks is inversely proportional to the temperature distance from the critical point,
t = (T/T.-1) « 1/n. The bulk correlation length ¢ translates into the mean-squared
end-to-end distance (R3) of the walks.
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To discuss the problem of a self-avoiding walk near an interface, one can consider
the same magnetic model on a d-dimensional half-space bounded by a free surface,
and allow an additional magnetic field L, (again in the ‘1’ direction of spin space) to

couple to spins in the surface layer. Let 1 denote any surface site and define
my(K, L, L) = (s}). (1.26)

Two different surface susceptibilities can be defined (Binder and Hohenberg [24],
Barber [25], Binder {26]) by

xi(K, N) = Jim 2ma{fo Dol = = St (1.2
and
xu(K.N) = Jim ZEE =00 5o, (128)
Similarly, in the limit N — 0, one obtains ’
lim xi(K, N) = Ci(K) =§c,',x", (1.29)
and )
lim xi(K,N) = Cu(K) = gc,'.'h'", (1.30)

where c! and c}! are the number of n-step walks given by (1.10). The required indices
71 and 7y, as defined in (1.11) are now seen, via (1.29) and (1.30), to be analogous to
the critical exponents of x; and x;; at the bulk critical temperature K. According to

the scaling theory in the analogous magnetic problem, 9, and v,, are related through
2n-m=v+v (1.31)

This has been numerically tested for self-avoiding walks (Barber [23], De'Bell ¢t al
(27)).

For polymer networks, Ohno and Binder [28] have derived a similar forinal equiv-
alence between the generating function for the total number of configurations and the

multi-spin correlation function of the N-component spin model in the limit N — 0.
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Parisi and Sourlas [29] have shown that the effective Hamiltonian written by
Lubensky and Isaacson (18] for lattice animals is equivalent to the effective Hamil-
tonian for the Ising model in a quenched random external field. They related the
critical exponent 8(d) in d dimensions to the critical exponent o(d) which controls
the behaviour of the magnetization near a Lee-Yang singularity in the Ising model in

the presence of an imaginary external field in d — 2 dimensions. That is,
od)=0(d-2)+2. (1.32)

This suggests that for d = 2,8 = 1 and for d = 3, 8 = 3/2. These values are certainly
consistent with the available numerical evidence.

Lattice animals are also closely related to percolation clusters although the asso-
ciated weights are different in the two problems (Broadbent and Hammersley [30},
Lubensky and Issacson (18], Kesten [31]).

1.3 The interaction of polymers with a surface

Except for the excluded-volume effect, the polymers considered so far are not subject
to any interaction. The problem of these lattice models interacting with a surface
(with an energy) has attracted considerable attention since it provides models for
the study of polymer adsorption at a surface. Such a study for adsorbed polymers
provides tests of our understanding of critical behaviour at a surface. The interaction
problem for linear polymers has been studied using both rigorous (Hammersley et al
[32] and numerical results (e.g, Ishinabe (33) [34] [35]). This problem is also related
to the previous N — 0 limit spin model in which the nearest-neighbour interactions
between spins are enhanced in the surface. The adsorption transition of polymers
then corresponds to the so-called special transition of magnetism (Eisenriegler [36],
Binder [26], De’Bell and Lookman [37)).

In this thesis, we will examine a number of pclymer models interacting with an
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adsorption surface. Of primary interest is the influence of the surface on configuration
and adsorption properties. We shall be particularly concerned with models that are
discrete and are embedded in the d-dimensional hypercubic lattice in which a vertex is
a point in d-dimensional Euclidean space with integer coordinates x = (z,, ..., z,).
In two dimensions, this is a square lattice and in three dimensions it is a sitnple cubic
lattice. We define the unit vectors ¢y = (1, 0, ..., 0),e; = (0, I, ..., 0), ...,
es = (0, 0, ..., 1) and the unordered pair [x(i), x(j)] as the edge joining the two
vertices x(t), x(j).

In chapter 2, we consider the adsorption of linear polymers. Some numerical esti-
mates will be presented for the phase transition point and related critical parameters
at the point.

In chapter 3, we show rigorously that polymer networks with a specified topology
have the same adsorption properties as that for linear polymers. For a special network,
named twin-tailed tadpole, we obtain a rigorous result for its critical exponent by
relating it to the exponent 4 in (1.6) for linear polymers.

In chapter 4, we deal with randomly branched polymers which are modelled as
lattice animals. We show the existence of an adsorption (or phase) transition for
lattice animals. We alsu generalize some results from the bulk to the case where an
adsorption surface exists. Numerical estimates of the transition points are also given.

In chapter 5, we summarize the basic results of the thesis.




Chapter 2

Self-avoiding walks interacting
with a surface

Self-avoiding walks on a d-dimensional lattice and interacting with a (d - 1)-
dimensional surface have been considered as a model for the study of volymer ad-
sorption with a binding energy w for each monomer attached to the surface (Ham-
mersley et al [32]). The two models studied differ according to the type of surface
involved. The surface can be impenetrable, in which case the walks are restricted to
lie on one side of the surface. This corresponds to the adsorption of polymers at a
solid-liquid interface. For a penetrable surface, walks are not confined to lie one side
of the surface. Hammersley et al [32] have suggested that it may correspond to the
adsorption of polymers at a liquid-liquid interface. Aspects of work included in this

chapter have previously appeared in Zhao et al [38].

2.1 The adsorption of linear polymers

2.1.1 The existence of a phase transition

Let A, m be the set of n-step SAWs with x(0) = O (i.e. whicl. start at the origin) with
exactly m + 1 vertices in the penetrable surface z; = 0. Let A}, be the subset of
Anm such that zy(¢) > 0foralli =0, 1, ..., n, which corresponds to z; = 0 being

an impenetrable surface. We denote by a,, and a},. the number of n-step walks in

14
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A.m and A}, respectively. We define the partition functions

Ax(w) =) anme™; (2.1)
m=0
Ad(W) =) a} ™. (2.2)
m=0
Hammersley et al {32] have shown that the limits,
JLn; ’l—lln Aqn(w) = A(w), (2.3)
Jlim %ln Al(w) = At (w), (2.4)

hereafter referred to as the reduced free energies, exist for all w. A(w) and A*(w) are

convex non-decreasing continuous functions of w and satisfy
max{x, £ +w} € At(w) € A(w) € max{x, & +w), (2.5)

where x and &’ are the connective constants of the d and (d - 1) dimensional lattices

respectively. Moreover, there exists a phase transition point for each case defined by
we = sup{w: A(w) =«}; (2.6)
w} =sup{w: A*(w) = «}. (2.7)

Physically, these results imply the existence of the ordinary, adsorption and surface
transition for linear polymers modelled by SAWs (Binder [26}). For w < w, (w < w}),
the connective constant for a polymer attached to the surface retains the value for a
polymer in the bulk solution. For w > w, (w > w}), the connective constant decreases
and approaches a limit given by the connective constant for the corresponding (d—1)
dimensional bulk problem (which will be shown rigorously later). The value of w, (w})
then corresponds to the critical value of the attractive interaction of the monomers
with the surface at which the surface adsorption transition occurs.

At the transition points, two crossover exponents ¢ and ¢+ are defined by

Aw) - A(we) ~ (w ~w)'?, w>w, (2.8)
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A*(w) = A (W}) ~ (w— )V, w> W, (2.9)

which describe the variation of A(w) and A*(w) with w at the transition points w,

and w} respectively. From (2.1), (2.5) and (2.6), we have that, as w — w, — 0%,

A.‘(h)) = i an.memw‘em(w-u‘) < An(wc)en(u-w‘), (2]0)
m=0
and then
A(w) € A(w.) + (w - w), (2-11)
or
Aw) — A(we) € (W — w). (2.12)

Combining (2.12) with (2.8) and the continuity of A(w) at w, gives

0<¢<1. (2.13)

Similarly, one can have

0<¢t <. (2.14)

Similarly, one can also define the cortesponding partition functions for SAW's with

number of edges in the surfaces. The above corresponding results can also be derived.
2.1.2 The scaling form at the phase transition point
Analogous to (1.6), it is assumed that
Ap(w) ~ erA@)nr(w)-1, (2.15)
At (w) ~ em8* Wigrt(w)-1 (2.16)

Renormalization group arguments (Kremer (39}, Diehl [40]) indicate that there is a

single value of 4*(w) for each of the transitions discussed above as follows

M*W=n w<ut, (2.17)

Tw)=1 w=d?, (2.18)
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yHw)=19, w>wl. (2.19)
Moreover these arguments show that 4{ is equal to the value of 4 for (d — 1)-
dimensional system.

The generating functions of the partition functions are defined by

G(z,y) = G(z,w) = z Apme™T" = z Gnmymz" ™™, (2.20)
m<n m<n
G*(z,¥) = G*(z.w) = Y_ ate™z" =) o} ymzm (2.21)
mgn m<n

with e = y/z.

From (2.15), the generating function G has singularities at z. = e~ 4(“) of the form
G(z,y) = G(z,w) ~ [z(w) — 3]-1(u)- (2.22)

The trajectory of the singularities in the ry plane is represented in terms of the
parameter w by

=A(w) ,

z(w)=¢ ye(w) = "4, (2.23)

From the property of A(w), one can show the following:
(a) For w < w, , the trajectory is a vertical line corresponding to z.(w) = e™". As

w crosses w,, I.(w) begins to decrease. The adsorption transition point is

=z (w)=¢€e"" y = Ye(we) = e“7". (2-24)

(b) Near the adsorption transition point, from (2.8) and (2.23), we have that as

w—w, — 0%,

Y —Ye (e¥ — e )z + (z — z.)e“*
~ z*(z.—2)* + (2 - z.)
~ (zc—2)°. (2.25)

(c) As w — oo, from equation (2.29) given in section 2.1.3, we have

2o(w) = €A 20,  yo(w) = e M) o e, (2.26)
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Hence (2.23) gives the phase boundary represented in Figure 2.1 which has been
previous described (Nakanishi [41], De’Bell and Essam [42]). The same arguments

also apply to G*(z,y).

e"‘“

("”c: yc)
e * X

Figure 2.1: Schematic phase boundary given by (a)-(c).
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There are arguments analogous to those given in section 1.2 that show that the
two generating functions for SAW’s with number of edges in the surfaces correspond
to the expansion of the high-temperature susceptibility for an N-component spin
system with a defect plane and N-component semi-infinite system in the limit N — 0
respectively (Nakanishi [41], Ishinabe (35], Binder [26], De’Bell and Lookman [37)).
The fugacity z is the interaction parameter K in the bulk and y corresponds to
the interaction parameter K, in the surface. From the scaling theory, the generating
function G* is assuined to be a generalized homogencous function near the adsorption

transition in terms of e ~ e“< and z. — r and has the scaling form
Glwrz) ~ (2~ 2) " Z((e” - e*)/(z. - 2)*"). (2.27)

(Binder [26]). From (2.25), the scaling form can then be written, in terins of z and

y, as

(2.28)

GHz,y) = (z — 2:)"™2 ((” —ve) + e (2. - ”) .

(zc - z)**
By analogy, one may assume the same scaling form for G(z,y) at its special transition

point.

2.1.3 The asymptotic behaviour of A*(w) and A(w) as w — ©

In section 2.1.1, we have mentioned that for w > w, (w > w}), the connective constant
decreases and has a limit given by the connective constant for the corresponding

(d — 1)-dimesional bulk problem. This corresponds to showing that

lim [A*(w) ~ w] = lim [A(w) - ] = X (2.29)

WD

The result is derived by considering the interaction between the adsorption surface

and linear polymers referred to as nonuniform 2-stars defined below.
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Nonuniform 2-star

A nonuniform 2-star is an n-step SAW which has one of its vertices at the origin 0.
Such a vertex is termed the “branch point” of the 2-star. The segment from the
branch point to one of the two vertices x(0) and x(n) is referred to as one “branch”
of the nonuniform 2-star. It is an n;-step SAW (n; > 0) with n; + ny = n. The term
“nonuniform” indicates that n; may not equal to n,. From such a definition, a SAW
with x(0) = O is a special case of a nonuniform 2-star with only one branch. By

analogy, the partition functions are defined as

Sa(2,0) = ) sa.m(2)e™, (2.30)
m=0

SH2,w) = 2": st a(2)e™, (2.31)
m=0

where s, m(2) and s} _ (2) are the number of n-step 2-stars with m + 1 vertices in the

penetrable surface and the impenetrable surface respectively.

Lemma 2.1 For any w,

lim %m S.(2,w) = A(w); (2.32)
tim ;t-ln S*(2,w) = At(w). (2.33)

Proof: The proof is the same for both limits, so we deal with (2.32). Since a SAW

starting at O is a special case of a nonuniform 2-star with only branch, we obtain
An(w) £ Sa(2,w). (2.34)
Consider a subset C, of A, that satisfies the conditions:
0 = z1(0) = z;(n), (2.35)

and

0 = z4(0) < z4(i) < z4(n), i=1,...,n—-1 (2.36)




The partition function for such walks is defined as

Ca(w) = i: Came™ .

m=0

It has been shown (Hammersley et al [32]) that
Cn(w)cn'(‘*’) < (n +n' + l)Cni-n'(W):

and

Ca(w) € An(w) < (20 +5)H+12eVmaiol 2 (1),

which implies that
lim -l';ln Ca(w) = A(w).

n =00

By treating each branch of a 2-star independently, we obtain

Sn(zsw)s Z Aﬂl(w)Aﬂa(“’)

ny$ny=n

From (2.38) and (2.39), equation (2.41) is replaced by

Sa(2w) S Y (2my 4 5)H2eVERHACHE (o)

ny4ny=n

(2ng + 5)#1/2eVFICHE, (w)

< (n+ 1)(2n+9)(2n+5)2d+lcc'ﬁ+ﬂwlc;,/.i‘(w).

Combining it with (2.34) and (2.40), we obtain
lim L0 S,(2,w) = A(w).
n—oon

The establishment of (2.29)

Lemma 2.2 Forw 2> 0 and any n,

AW) £ ~ln S,(2,0),

where S5,(2,w) is given in (2.30).

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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Proof: By translation, any n-step SAW in the bulk can be mapped to at least one

nonuniform 2-star, which is totally confined to one side of the surface. This mapping

is injective. Hence we have

an < 5a(2,0). (2.45)

Consider an (n, + n;)-step SAW with x(0) = 0 and a total (¢ + 1) vertices in
the adsorption surface. By cutting it at the vertex x(n,), we obtain two SAWs.
By translating until both of them have some vertices in the surface, we obtain two
nonuniform 2-stars with a total (¢’ +1) > (i + 1) vertices in the surface. Since not all

two 2-stars can be obtained in this way, we have, for w > 0 (e* > 1):
Sn, (2,w)S,.,(2,w) 2 Am+nz(w)' (2.46)

For an integer n and fixed integer m, one can writen = gm+rwith0<r<m-—1.

By repeating the inequality (2.46), one obtains

An(w) < Sm(2,0)'5,(2,w), (2.47)
or
%m Aw) s T2 %ln Sa(2w) + -rl:ln S.(2,w). (2.48)
Letting n — oo then yields
Aw) < %hs,.(z,w). (2.49)

Replacing m by n gives (2.44). The analogous inequality between A*(w) and S (2,w)

can also be obtained by following the same arguments.

Theorem 2.1 Asw — oo, the limits

lim [A*(w) - w] = wlg)‘[A(w) —w=x (2.50)

W00

exisl.
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Proof: From (2.5) and (2.44), we obtain
K <AHw) - w < AW) —w < %ln Sa(2.w)e™ ™, (2.51)

Let w — 0o, we obtain

K < dim[AYw) - o] £ lim [A(w) - o] (2.52)

< lim -l-ln Sa(2,w)e ™ = : In s, 4 (2),

w=.00 1 n

where s, ,,(2) is the number of 2-stars embedded in the corresponding (d - 1)-dimen

-sional lattice. From (2.43), we cbtain

Jim :—;ln san(2) = K. (2.53)
Substituting it in (2.52) yields
lim [A*(w) - w] = lim [A(w) -] = K. (2.54)

2.2 Numerical analysis of the critical parameters
near the transition point

In section 2.1, we have discussed the interaction of self-avoiding walks with either
a penetrable or an impenetrable surface. For each model, a phase transition exists
and at which a crossover exponent ¢ is defined. These two exponents are believed
to take different values. For impenetrable surfaces, numerical results indicate that
¢ = 0.5(d = 2) (Ishinabe [33], Guim and Burkhardt {43], Burkhardt et al [44]) and
¢ = 0.59(d = 3) (Eisenriegler et al [36]). For penetrable surfaces, scaling theory
predicts ¢ = 1 — v (Bray and Moore [45]). From the generally accepted numerical
value of v = 0.75(d = 2) and v = 0.59(d = 3), we obtain that ¢ = 0.25(d = 2) and
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¢ = 0.41(d = 3). However, the series analysis of Ishinabe [35] yields an estimate of
¢ =0.5ford =2 and ¢ = 0.59 for d = 3, inconsistent with the scaling prediction.
His analysis seemns to suggest that the two models have the same crossover behavior
at their own respective transition points ford =2 and d = 3.

In this section, we test Ishinabe’e results by analyzing the available two variable
series for SAW'’s for the penetrable and impenetrable problems on a number of lattices
in two and three dimensions. The method we use is partial differential approximants
(PDA) introduced by Fisher [46], which has been previously applied to spin system
(Stilck and Salinas [47]). The series for the penetrable surface are also analysed by

using a one variable analysis.

2.2.1 Partial differential approximants

The method of partial differential approximants (PDA) is a generalization of dlog
Padé approximants for a function f(z,y) of two variables with a truncated expansion

around the origin. The assumed scaling form for the function near its critical point

(zc’ ye) is

f(z,y) ~| AZ |7 Z(A§/ | Az 1*), (2.55)

where ¢ is the crossover exponent. The parameters in this expression are given by
Ai = Az~ (1/e3)Ay, Ay=Ay-eAz, (2.56)

where

Az=z. -2, Ay=y.—y, (2.57)

and e; and e; are two scaling parameters to specify the derivative of z and y near the
critical point.
By differentiating f(z,y) with z and y respectively, we obtain

f(z,9) = (/AR (z,9)+ | AZ |7 Z'(Aj[ | Az [*)[es + 4(AF/AZ)], (2.58)
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and

fi(z.y) = =(1/ead2) f(z,y)— | Az |70+ Z'(Ag/ | Az )1 + (6/e2)(Ay/AZ)).
(2.59)
By multiplying the first equation by [A# + (#/e3)Aj] and the second equation by
(e1A% + #Ay) and adding them together, we obtain

[A.’i' + (¢/CQ)A§]I,(I, y) + (C|Ai‘ + ¢Ag)fv(1' y)
= 1(1 - er/e)f(z,y)- (2.60)
By using expression (2.56), this can be written as
(11 - 6218z - (;‘;)(1 - 983 ulzn) + (sl - 9Dz = (2 - )A} S (20)
= 7(1- j—;m:.y). (2.61)

A partial differential approximant Fyyn(z,y) to such a function f(z,y) is a so-

lution of the linear partial differential equation:

ute 220 ) puz )2 < Pz Py, (262

where
P(z,y) =D ps='y’,
iJ
Qu(z.¥) = )_aiz'y’,
i
Ru(z,9) =) _riz'y’ (2.63)
iJ
are polynomials with L, M and N terms respectively and are chosen such that the
series solution of F(z,y) in powers of z and y agrees with the known expansion of
f(z,y) to some predetermined order.

The critical point (z., y.) is estimated by the solution of the set of coupled equa-

tions

QM(’! y) =0, Rwn(z,9)=0. (2.64)
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Near this point the polynomials are approximated to the lowest order by

Pu(z,y) = PL(z..yc) = F.,
Qe = Tz )0z + T (2,3000 = Gz + Qady,

Rute) = Bz )02 + B (20 ) Ay = Rihz + Rady. (2:65)
One thus has in the vicinity of (z., y.)
(Q:1Az 4+ Q:Ay)Fi(z,y) + (R1Az + R;Ay)F,(2,y) = P.F{z,y). (2.66)
Identifying it with (2.61) results in the set of relations

CQ =1-4¢(er/e2),

CQa = —(1/ea)(1 - ¢),

CRy = ei(1 — ¢),

CRy = —~e1/es + ¢,

CP. = (1 — ey/e3), (2.67)

where C is a constant. By solving this set of equations, one obtains the formulae

_1R-@ 1 [(R-q)\ )"
e, e3= 5‘—6;-1 + 2 [ 0, - Q;] y (2.68)
7= —;z;&_—R—;, (2.69)
6= W& +Ry) (2.70)

P.

2.2.2 Numerical results

The analysis we report is for bond and site data for a,,, on the square and simple
cubic lattices and bond data on the triangular lattice. The data for these lattices
are given in references [32]-[34] and [38]. Generally, the results for site data on all
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lattices are worse for both the penetrable and impenetrable models. From (2.28), we

have that

G(z,y) ~ (2. — 2)7"2 ((y - y‘&:_egf‘ 1)) (2.71)

By the exponent v in (2.71), we mean its value at the adsorption transition (y*¢).
Hereafter. ‘n the rest of this chapter, we refer to v*¢ as 4. Comparing (2.71) with the

generalized form (2.55), \ = have

ey =eY, ¢e3 =o00. (2.72)

A PDA depends on three labelling sets which define the polynomials Pp(z,y),
Qm(z,y) and Rn(z,y) and a matching set which is a subset of the labelling set
of F(z,y) specifying the powers of z and y of F(z,y) that are to be matched. For
convenience, we construct the approximants in two ways: (1) we let the three labelling
sets have full triangular forms with M = N = L. The matching set of F(z,y) is then
selected to be as symmetrical as possible with the main diagonal of the labelling set of
F(z,y). (2) we choose a full triangular subset as the matching set and if the number
of entriesis J, we let M = N and choose L such that M + N+ L = J +1. The entries
for the polynomials are then chosen to be as close to the triangular form as possible.

In all of our approximants, we find that | ez [3» 1 while e, varies in a rather large
interval and depends on the estimate of (z., y.). The estimates of y., y./z., 7 and ¢
are given in Table 2.1. Figure 2.2-2.9 are representative plots of y. versus z., 4 versus
¢ and v versus y, for a number of lattices for bond (or site) data as examples from
which the estimates in Table 2.1 are obtained. The estimates for y. as a function of z.
for all lattices lie on a curve resembling the critical phase diagram (see Figure 2.1 and
Figure 2.2-2.4). They do not converge to any particular value, as in a one variable
analysis. For values of y less than some value y., the approximants concentrate around
the bulk value for z.. The point at which z begins to decrease is taken as the critical

point (z., y.). The linear correlation seen in the graphs of ¢ versus v (Figure 2.5-2.7)
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is what would be expected if G(z,y) is a generalized homogeneous function in the
vicinity of (2., y.) (section 2.1.2). The values of ¢ in Table 2.1 are read from a plo.
of the estimates of ¢ against the esti:nates of v by assuming y(d = 2) = 93/64 (Guim
and Burkhardt [43]) and v(d = 3) = 1.44 (Eisenriegler et al [36]) for an impenectrable
surface and y(d = 2) = 43/32 and 7(d = 3) = 1.162 (Gutterman [48]) for a penetrable

surface. Correlations of ¢ with z. and y. are consistent with these values.

Table 2.1: The estimates of the critical parameters obtained by using partial differ-
ential approximants.

“Variable Bond (SQ) __ Site (SQ) Bond (T) Bond (SC)  Site (SC)
(a) Impenetrable surface

2. 0.37905 0.37905 0.24092 0.2135
¥ 0.780 £ 0.050 0.690 £0.010 0.688+0.015  0.314 £ 0.040
v/t  20604£0.00 182040030 2850+0070  1.470 +0.020
y 1.450 £0.050 1.400+0050 1.400£0.100  1.550 £ 0.150
#z.) o.soogg 0.520£0.020 0.500%35%
Hy.) 05000 0.450 + 0.050
#v) 6.500+0.090 0.520 £0030 0.500+£0010  0.540 £ 0.070

(b) Penetrable surface
z, 0.37905 0.37905 0.24092 0.2135 0.2135
’ 0.380£0010 0.400+£0020 0.250+£0010  0.200 £0.020 0.225 + 0.150
¥/ 2. 1.00040.020 1.05040050 1.030+0050  0.940 + 0.080 1.050 + 0.050
7 1.35010%  1.350%5%% 1.40 £0.060  1.200%32%  1.210 £ 0.030
#z.)  0.260 £ 0.060 04000200  0.400 £0.010 0.580 + 0.090
#y.)  0.250£0.030 0.260 + 0.060 0.420 £ 0.020
) 0270 £0.040 0.350£0.100 0350+0.150 0450 £0.090 0.450 £ 0.100

For the impenetrable surface, our result of ¢ = 0.5 £+ 0.04 in two dimensions is
consistent with a value of ¢ = 0.5, obtained previously from transfer matrix (Guim
and Burkhardt [43]), conformal invariance theory (Burkhardt et al [44]) and one
variable exact enumeration work (Ishinabe [34]) on the square lattice. The va'. f 4
(Figure 2.5-2.7) is consistent with the result 93/64 given by Guim and Burkhard' :3].
The estimate of 2.05 £ 0.01 for the ratio y./z. agrees with Ishinabe’s result for the
square lattice bond problem [34] and the estimate 1.80+0.02 agrees with the estimate

of Hammersley et al for the site data [32]. In three dimensions, ¢ = 0.54 £0.07 for the
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simple cubic lattice is in accord with Monte Carlo results of ¢ = 0.59 (Eisenriegler et
al [36]) and our estimate of 1.46 + 0.01 for y./r. agrees with 1.45 from Monte Carlo
work (Ma et al [49]) and the estimate 1.50 by considering the zeros of the partition
function (Ishinabe {33]).

For the penetrable surface, our estimate of ¢ = 0.28 % 0.05 in two dimensions
is not consistent with Ishinabe’s result (¢ = 0.5) {35], but is in accord with scaling
prediction (¢ = 0.25). Our value ¢ = 0.40 £ 0.01 for the simple cubic is consistent
with scaling prediction (¢ = 0.41), but does not agree with Ishinabe’s result (¢ = 0.6)
[35).

For the simple cubic lattice, most of the approximants are either poorly condi-
tioned or give good estimates for (z., y.), however, because the argument under the
square root sign in (2.68) is negative, it is difficult to calculate all critical parameters.

Partial differential approximants are useful in representing critical properties such

as the critical line in a plane and the linear correlation of 4 and ¢ near the special

point. However, since an approximant depends on both the degree and form of the
defining polynomials, convergence as that obtained in a one variable analysis is not

easy to detect and accurate estimates are difficult.
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Figure 2.2: Plots of y. against x. for square lattice (site) with an impenetrable surface.
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Figure 2.3: Plots of y. against r. for square lattice (bond) with a penetrable surface.
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Figure 2.4: Plots of y. against r. for simple cubic lattice (bond) with an impenetrable
surface.
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Figure 2.5: The exponent 7 is plotted against the crossover exponent ¢ for square
lattice (bond) with an impenetrable surface.
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2.2.3 One-variable analysis for penetrable surfaces

The problem of estimating ¢ may be reduced to a one variable analysis if 4 and the
ratio y./z. are known with sufficient accuracy, by differentiating the scaling function
(2.55) with respect to y and setting the ratio y/z to its value at the critical point
(Pfeuty et al [50]). The resulting function has a power law dependence on (z. — z)

which may be analysed using standard one variable analysis techniques:

af(z, -(v
f(azy 2 Ivlt=v¢/=¢ ~ (z. - 1) ( +‘)Z(0)' (2.73)

In the present case, we take the conjecture of Hammersley et al [32] that w, =0, i.e,

Y. = z. for the penetrable surface problem and, consequently, v has its bulk value
which is known to a high accuracy. We have applied a number of standard one variable
analysis techniques to the resulting series to this case. The results are summarized
in columns (a) to (d) of Table 2.2. (We have included results for a number of lattices
where the series are too short to allow a reasonable test of the PDA method or the
PDA approximants are too scattered to give meaningful estimates). The data for
these lattices are given in references [25], [38]. In the case of the impenetrable surface
the ratio y./z. is not known with sufficient accuracy to give us any confidence in this
method).

The results for ¢ in columns (a) to (d) of Table 2.2 show reasonable consistency
amongst themselves for a given lattice dimensionality but are too high to be consistent
with the predictions ¢(d = 2) = 0.25 and ¢(d = 3) = 0.408 £ 0.002 which result
from the scaling relation ¢ = 1 — v where it is known that v(d = 2) = 3/4 and
v(d = 3) = 0.59.

The only exception to this is the analysis of the square lattice site series by the
Baker-Hunter method (Baker and Hunter [51]) which is consistent with the predicted
value of ¢ = 1 — v. Inspection of the approximants to the Baker-Hunter auxiliary

function for the square lattice site series showed that a second pole on the real positive
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axis is also resolved. This indicates that a confluent singularity is present and the
position of this secondary pole provides an estimate of the exponent of this confluence
(De’Bell et al [27], Baker and Hunter [51]). By plotting the position of the secondary
pole against the position of the primary pole for the approximants considered and
using the expected value of the leading exponent v + ¢ = 51/32, we estimate that the
confluence has an exponent approximately equal to 4. The existence of a confluence
with exponent + is not surprising and will, in fact, always occur if the crossover func-
tion Z(A§/(A%)*) contains a multiplicative factor or additive term which is analytic
ny.

To test the assumption that it is the influence of this confluence which results in

the discrepancy with the expected value of ¢, we have formed the series

Ni(z) =(z. - :),,Qi(ég:;_y_) (2.74)
with y/z = 1, which is expected to have the form
fi(x) ~(z. - z)~* + B(z), (2.75)

where B(z) is a (backgroud) term which is not singular at z = z.. Estimates of ¢
obtained by a Baker-Hunter analysis of this series are shown in column (e) of Table
2.2. For both the two and three dimensional cases the results are in reasonable good
agreement with the predicted value. That the central estimates in two dimensions are
still a little high is perhaps not surprising since the singularity of the series analysed in
this case is somewhat weak. The weak nature of the singularity also leads to difficulty
in analysing the modified series by other methods. For example, if the Neville table
method is used to analyse the square and simple cubic lattice series the columns of
the table do not converge (for the number of terms presently available). This may be
attributed to a singularity at £ = —z. which, now is stronger than the singularity at
z = z.. Applying an Euler transform which moves the singularity on the negative axis

to a position further from the origin results in reasonably converged Neville tables
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with results consistent with those given in column (¢) of Table 2.2.

The above one-variable analysis for the penetrable surfaces indicates that the

presence of the confluent terms may be the source of the discrepancy in the results

of Ishinabe [35].

Table 2.2: The estimates of ¢ for the body-centered-cubic (bcc), face-centered-cubic
(fec), simple cubic (sc), diamond (Di), triangular (T), and square (SQ) lattices from
the one-variable analysis of the series f'(z) described in section 2.2.3 by the method
of (a) Neville tables, (b) dlog Padé approximants (c) biased dlog Padé approximants,
(d) Baker-Hunter confluent singularity analysis. Estimates of ¢ contained applying
the Baker-Hunter method to the modified series (z.— z)”f'(z) are reported in column

(e).
Method a b ¢ d e
Lattice
(a) Bond
bee 0420£0.020 0.450 £ 0.01 0.450%32% 0.480%9 9% :§ g
fec 0.430 t 0. 008 0.463 £ 0.005 0.450 + 0.020 0. 480 +0. 060 386 ]

T 0.3062 + 0.0035 0.3%62 +£0.003  0.32090%, 0. m-m 0270783
SQ 0.307 £ 0.004 0.317 £ 0.00) 0.319 £ 0.001 0. 323_“,. 0.290 + 0.010
(b) Site

Di 0473+£0.015  0.5%0 £ 0.010 0.500*35%8 0.510 £ 0.060 0.420*392°
” 0.470 £ 0.020 0.530 £ 0.010 0.480 £ 0.020 0.500 £ 0.080 0.400 £ 0.050
SQ 03561:0005 !.310*0010 0315:!:0010 0263:&00!3 0.270 £+ 0.040




Chapter 3

Polymer networks with specified
topologies

3.1 Introduction

In this chapter, we consider polymer networks whose topology is specified in terms of
¢ cycles, by vertices of degree 3, ..., b,y vertices of degree 2d. These vertices are also

referred to as branch points. These quantities are simply related together by Euler’s

formula: y
k=2-b+ ) (i-2b, (3.1)
=3
3d
2K = b + Zib,', (3.2)
=3

where b, is the number of vertices of degree 1 and K is the number of chains connecting
the branch points and the vertices of degree 1. The values do not specify a unique
topology since they do not uniquely determine the connectivity. More than one
topology may have the same set of values (see Figure 1.1 (c), (d)).

Such a network with each chain of uniform length has been studied by Duplantier
(11]) and Duplantier and Saleur [12]. They have conjectured the dependence of the
critical exponent 4, on the values {¢, ba, ..., b4} and obtained exact results in two
dimensional geometry by invoking conformal invariance. Ohno and Binder (28] have

rederived the same scaling form for such a polymer network by using the equivalence

37
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between the generating function for the number of configurations and the correlation
function for the classical N-component model in the limit N — 0.

The corresponding nonuniform polymer network with total length n has been
studied by Gaunt et al [13] and Lipson and Whittington [14]. From their exact
enumeration analysis and some heuristic arguments, Gaunt et al [13] have conjectured

that for a network with a number of cut-edges, its critical exponent is given by
T=7+b-1, (33)

where v is the exponent for SAW and b is the number of cut edges in a network G
(a cut edge, if removed, disconnects G). In section 3.2 of this chapter, we consider
a polymer network called a twin-tailed tadpole and show rigorously that its critical
exponent satisfies (3.3).

In the remainder of the chapter, we study the effects of the topology on the reduced
free energy of polymer networks interacting with a surface. We will show that for
d > 3, such polymer networks have the same reduced free energy as self-avoiding
walks. For d = 2, the reduced free energy can be different from that for SAWs.
However, we will take 3-stars and H-combs (see Figure (a), (b)) as examples to show
that provided their reduced free energies exist, they will have the same transition
point and crossover exponent as that for walks. Parts of the work included in this
chapter have previously appeared in Zhao and Lookman [52), [53].
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3.2 The critical exponent for twin-tailed tadpoles

An n-step twin-tailed tadpole is the network with the topology ¢ = 1 and by = 1
(Figure 3.1).

Figure 3.1: Example of a twin-tailed tadpole

It has two cut-edges, i.e. b = 2. By denoting by t,, the number of n-step twin-tailed
tadpoles, Gaunt et al [13] have shown that

lim lln t, = lim llnc,. = K, (3.4)
n—oo N n—oc N
and
T <r+1, (3.5)

where 4; is the exponent for twin-tailed tadpoles. From their conjecture (3.3), one

would expect that
n=7+1L (3.6)

In the following, by using a corollary from Kesten’s pattern theorem [54], we will
show that
n2y+1L (3.7)

Combining it with (3.5) yields (3.6).
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3.2.1 Pattern theorem

A pattern P is a prescribed finite step walk and is said to occur in a self-avoiding
walk W if it is sub-SAW of W. It is said that P occurs r times in W if P appears at
r distinct steps, and the vertices of any two copies of P are disjoint or the terminal
vertex of one is the initial vertex of another. P is called a Kesten pattern if there

exists an n-step walk W where P appears more than twice in W.

Theorem 3.1 (Kesten [54]) IfP is any (finite) pattern and cu(c, P, <) is the num-

ber of n-step self-avoiding walks in which ti.e pattern P occurs at most en times, then

there ezists a value of £9 > 0 such that
lim snpl Incq(c0,P,<) < & (3.8)
n—e00 n

provided that there ezists a self-avoiding walk in which P occurs more then twice.

The theorem has proved useful in lattice statistics, for example, in the study of
walks confined to a subset of a lattice (Hammersley and Whittington [55]). The

corollary of Kesten's theorem we require is as follows:

Corollary 3.1 For the same value of €o, let co(€o,P,>) be the number of n-step
self-avoiding walks in which the same pattern P appears more than gon times, then

im 20 P>) (39)
N=eOD c‘

Proof: From theorem 3.1, there exists a value of § > 0 and an integer of N such that

for any n > N, we have

0 < ca(co, P, <) < e™*-0), (3.10)
Since
cﬂ(‘ﬂ; P’ >) = c'l(‘ﬂ9 [} _) (3.11)
Cn Cn

by using (3.10), we obtain that

nla-8) P
e < cﬂ(‘ﬂ) o>) <1

1- <
n Cn

(3.12)
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Taking limits yields, from (3.4),

1 < lim inf a0, P, >) < lim sup ca(€0, P, >)

N30 Cy n—-00

<t, (3.13)
which gives (3.9).
3.2.2 The critical exponent for twin-tailed tadpoles

Now we are ready to prove (3.7) by using the above theorem and corollary with the
assumption that v exists.

We define a pattern P by

P = {x+eq X+2e4 X+2es+es;, X+ 2ey +2e,,,
X+es+2e4y, x+es+eqy, X+e4 1%+ 2e4,,

X + 3eq_,} (3.14)

(Figure 3.2(a)). It is self-avoiding walk and can occur more than twice in a SAW, for
instance, it occurs three times in the SAW W = PPP (Figure 3.2(b)). Therefore,
from the theorem, it can occur infinitely often in an infinite SAW. If we denote by
cn(e, P,>) the number of SAWs in which P occurs more than en tiines, from the

corollary, there exists £o > 0 such that for sufficiently large n,

ca = cale0, P, >)(1 + o(1)). (3.15)

Consider an n-step self-avoiding walk W on which P occurs more than en times.
We choose one of them. By deleting the edges [x + es, x + 2e4) and [x + 2e4, x +
2e;+ e4_;} and adding the edges [x +e4, es+e,_;] and [x + e+ €4y, X+ €4+ 2e4,],
we convert W into a distinct n-step twin-tailed tadpole (Figure 3.2(c)). Therefore,

we obtain

tn 2 (en)ca(e, P, >). (3.16)

Then, from (3.15), we have

tn 2 {€on)cn. (3-17)
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Combining it with (3.4) yields
nz2v+1. (3.18)

(a)

(c)

Figure 3.2: (a) the pattern P; (b) a walk having the pattern P occurring three times;
(c) conversion of the walk in (b) into a twin-tailed tadpole at one pattern.

The proof of (3.6) for twin-tailed tadpolcs gives a nontrivial analytic example to

the conjecture (3.3) which still remains a conjecture.
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3.3 The interaction of uniform polymer topolo-
gies with a surface: d > 3

We consider a uniform polymer network G(c, ba....,n;z4) interacting with a penetra-
ble surface. In this case, each chain in the network G is an n-step self-avoiding walk.
For ¢ = 0, each chain in such a network has a different initial and terminal vertex
and therefore, each chain can have either even or cdd number of vertices. The case
¢ # 0 includes those with loops in which the initial and terminal vertices of a chain
are the same. Chains forming loops or polygons must have an even number of vertices
to: non-zero embeddings in a hypercubic lattice. Hence, for a uniform topology with
¢ # 0, we restrict all chains to have an even number of vertices.

Let g, be the number of such networks with n edges in cach .hain and a total

m + 1 vertices in the surface. We define

N
Gnle,bs, ... b, w) = Y gnme™, (3.19)
m=0

where N = nK — ¢+ 1 is the total number of vertices in a uniform network.

We show that

lim L inGa(e,bs, ..., buw) = Alw), (3.20)

n-—-00 N
where A(w) is given in (2.3) and for ¢ # 0, the limit is taken through even value of n
only.

First, we derive a lower bound for the partition function Gn(c, by, ..., by, w),
which is obtained as follows. We consider some special walks with certain constraints
and show that such walks have the same reduced free energy A(w). Then, we construct
some simple polymer topologies which we call components from the special walks.
Finally, using these components and following a procedure analogous to that of Gaunt

et al [13], we construct a polymer network with the set {c,bs,...,b:4} which yields a

lower bound for Gn (¢, b3, . .., b4, w). In the following, we consider the case c # 0.
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3.3.1 Self-avoiding walks confined in a wedge
We define a wedge by
W: 1<23, ..., 1 <z4.4 < 1y, (3.21)

and consider a self-avoiding walk W which is confined in W and satisfies,
(a) x(0) = ez + €3+ --- + 24—y + 4ey;
(b) for x(i), 1 <i<n-1,

1:,1(0) < z4(t) < Id(n), (322)
and
z4-1(1) < z4(i); (3.23)
(c) for x(n),
z4(n) = 24-1(n). (3.24)

An example of such a walk is given in Figure 3.3.

Lemma 3.1 Let B, be the set of all such n-step walks and B, ., the subset of B, where
a member of it has m + 1 vertices in the surface. We denote by b, ., the number of

walks in B, and define

Ba(w) = i b me™, (3.25)
m=0
then
JLTo %ln Ba(w) = A(w). (3.26)

Proof: Let D{!), be the set of all n-step walks confined in W with x(0) = e;+---+eq
and with m + 1 vertices in the surface. We denote by d!.',’,. the number of walks in
DI, It has been shown (Whittington and Soteros [56]) that

lim 1n DM (w) = lim —ln Z = A(w). (3.27)

n--~00 N

m=0




p
Td-1 .

T4

Figure 3.3: Example of a self-avoiding walk (full line) defined by (a)- (b) confined in
the wedge defined in (3.21). The dashed lines represent the hyperplane rq_y = rq
and x4y = 1.
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Consider a walk W = {x(0), x(1), ..., x(n)} in DI, Since it is confined in the

wedge defined in (3.21), it satisfies,

z4- (0) = 24(0)

24-1(0) € z41(i), zaa(?) Lz4(d), 1=1, ..., n (3.28)

Let j be the largest integer such that z4_y(j) + z4(j) = maxi{zq4-1(¢) + z4(i)}. By
reflecting the segment {x(j), ..., x(r)} in the hyperplane 4441 = z4(j)+24-1(j),

we obtain a new walk W' such that for i > 7
x (i) = x(7) + [24(§) — za()]ea-1 + [24-1(F) — Za-1(i)]ea. (3.29)
Therefore,

2(i) — 241 (i) = zd(§) +ad=1(j) — 2a-1(i)
—[za-1(7) + za(j) — za(3))]
= z4(i) ~ T4-1(i)

> 0. (3.30)

Also, it can be shown that W' has the same number of vertices in the surface as W
(because a reflection does not change any z; coordinate). Hence, W' is confined in
the wedge W and is a member of ‘Ds.'.),. We continue in this fashion until eventually,
we obtain a new walk W" such that z;_,(n) + z,(n) = max;{z;_,(i) + z;(i)}. We
add one extra step in the e4 direction to the end of W”. The resulting walk has either

m + 1 or m + 2 vertices in the surface and satisfies, for any 1 < n 4 1,
Zg1(n + 1) + z4(n + 1) > z4-1(2) + 24(5). (3.31)

We denote by D wu: set of all such n-step walks and by 65.22... the number of walks
in D& with m + 1 vertices in the surface. From Hammersley and Welsh [57], there

exists a constant ¢ > 0 such that

d), < eVR(d) | +d il (3.32)

NN -
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Hence,

DM(w) < V(1 + &) DP), (). (3.33)

The next step is to partition DI into subclasses by placing two walks in the
same subclass if they have the same final point. Such an n-step walk starting from

e; + - - - + 4, must be totally confined in a hyper-prism given by:
—n<n<n, 1<x3<n+l, ..., 1 Sz242<n+], 1 €24, 24 <n+l (3.34)

There are at most [ = (2n+1)(n+1)?"? /4 subclasses. For given i, consider two walks
W, and W both belonging to the ith subclass of D and having my + 1 and m; + 1
vertices in the surface respectively. Let x(n) = (zy, ..., r4) be their end point. We
reflect W3 in the hyperplane z4_, + z4 = z4_1(n) + r4(r). From (3.28)-(3.31), one
can show that it yields a 2n-step walk W’ such that its first and last points are on the
hyperplane z4_; = z4, and for 1 £ j S n =1, z;_,(j) € 7,03), i) € z4(2n). W’
can have either m; + m; + 1 or m; + m; + 2 vertices in the surface depending on the
position of x(n). We body shift W' to let x'(0) be at the vertex e; +- - - + e4_; + 5ey.
By adding an extra step to connect x'(0) with the vertex x'(0) ~ e4 and three steps to
connect x’(2n) with the vertex x’(2n) + 3e4_y, we obtain a member of Bany4, which
has either m; + ma + 5 or m; + m3 + 6 vertices in the surface. Each distinct pair of
walks W, and W; will yield a distinct member of Bz,44 in this way. We denote by

dﬁ.’}n(i) the number walks in the ith subclass with m + 1 vertices in the surface. We

obtain
d®, (i)d?), (i) € bansam,4mzs4 + b2 pami4myss. (3.35)
Write
DP(w,i) = 2 d2) (i)™, (3.36)
m=0

From (3.35), we obtain

DD = Y 3 d (), (etmrmat

my =0 my=0
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IA

n »
Z z (b')n+4.m.+m,+4 + b’"+4.m|+m,+s)¢(m'+m’)“'

m;=0my=0
nt4

< e+ eM) Y (m o+ 1)bznpame™

m=0

< (2n +4)e'I(1 + ) Bypyo(w), (3.37)

and hence, by Cauchy’s inequality

1 ? 1 1
DPW)? = (Z D&”(w,i)) <Y 1Y [DP(w,i)?

<] =1 i=1

< PP2n +4)e™(1 + ) By pa(w)

< (20 +4) (1 + M) Bynia(w), (3.38)
or
DP(w) < (2n +4)2™U(1 + &)1/ By y g (w)'/2. (3-39)
From (3.33), we obtain
DM (w) < [2(n + 1) + 4]/ 2elhtrevm)() 4 )32 By prysa(w)'/2. (3.40)

On the other hand, by adding a 3-step walk: {e; + --- +eq; + €4, €2+ --- +
€41 +2ey, ..., €2+ -+ €4, + 4&4} to a member of B, ,,, we obatain a distinct

member of Dp4ame3. Hence, we have

bnm < d:.lla.mws (3.41)
and therefore,
Bo(w) < D) (w). (3.42)

Combining it with (3.27) and (3.40), we establish (3.26).
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3.3.2 Construction of components

Definition 3.1 1) f,, and g; are maps such that, forx =(zy,....1,,... 5 SR N N

filx)= (20,02, 0 2y), d, 202 (3.43)

and
g.(x)=(.tl,...,—r;,...,r,,....rd), i>1. (3.44)

2) For any sequence of vertices W = {x(0),...,x(n)},
fu(W) = {£,(x(0)),..., fi;(x(n))}’ (3.45)
9:(W) = {g:(x(0)),...,g.(x(n))}. (3.46)

By this definition, the map f,, interchanges the coordinates z,, r, and g, replaces
the coordinate z; by —zr;. These lead to the following lemma in a straightforward

manner.

Lemma 3.2 (a) The maps f;; and g; are injective. (b) If W is a given self-avoiding
walk, the image W' of W under these mappings is still a self-avoiding walk, and W’

and W have the same number of vertices (or edges) in the surface z, = 0.

We also define two links L, and L, which are two fixed (d + 4)-step self-avoiding

walks given by
L, = {0, e, e +ey, e + 2eq4, €, + 3ey, €, + 4e,,
e; +eqy +4ey, ..., e;+e+---+eq_; +4ey,
e+ - +eq.y +4e4}; (3.47)
Ly = {0, eq, 2¢4, €4y + 2e4, €4y + 3eq4, 3e,, 4eq,

€4y +4eq4, ..., 04 -+ €42 +eqy +4e,}). (3.48)
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Figure 3.4: Full lines represents the finite walks Ly and L; defined in (3.47) and
(3.48).
Ly has two vertices in the surface x, = 0, while L; is totally embedded in the surface.
The two walks intersect only at the points 0 and x(0) = e; + - - + e4_; + de,.
Concatenating L, (or L;) with one walk in B, ., results in an (n + d 4 4)-step walk
with m+ 1 (or m +d + 4) vertices in the surface and with the edge [0, e;] (or [0, e,])
as its first step (Figure 3.4).

We partition B,, into subclasses by placing two walks in the same subclass, if

they have the same final point. By the definition of B,, there are at most K =
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the end vertex of all the walks. By using walks from the same B!, we construct three

different types of components.

The first type component

The first type component that we need is a 2(n + d + 6)-step polygon p, which is
obtained as follows. We take two walks W, and W; from B and concatenatc cither
both of them with L, or W, with L, and W3, with L,, which gives two (n+d+4)-step
walks W;, W;. We define

W'; =gy -- -gi.f:.d—lf).d(w’l)w

w; =Gy -- 'gt.fd-l.df).d—lfi.d(w;)- (3.50)

The two new walks W; and W; intersect only at the origin 0 and the vertex

-
7y e

(x5, ..., —x -z}, ..., Z{, 7;) and form a 2(n + d + 4)-step polygon, which

is totally confined in the octant given by
220, ..., 2,<0,...,2,50,..., 24 20. (3.51)

Then we delete the last edge from W and join the vertices x3(n — 1) and x;(n) by
a 5-step walk: {x3(n —1), xj(n — 1) + eg_1, X3(n — 1) + es_y + €4, X3(n - 1) +
+e4_1 + 2e4, X;(n)}. This yields a 2(n + d + 6)-step polygon. Its incident edges at
0 are the edges [0, e;] (or [0, —e;]) and [0, e;] (or [0, —e,]) with e,-e; = 0. We
denote it by P(+e;, +e;). The signs indicate the corresponding incident edges at 0
(Figure 3.5). From the definition for walks in B;, , one can verify that for any two

vertices x(k,), x(k2) of P,

{ zi(ki) —zilka) [Szg(n) + 1, i=1, ..., d (3.52)

We denote by P* the set of all polygons obtained in this way.



_#' -
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Figure 3.5: Example of a polygon Pf(e;, e,) obtained from two walks of B,.
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The second type component

The second type component consists of two kinds of 2(n + d + 6)-step self-avoiding
walks W' and W2.

Construction of W!. We take two walks W, and W from B}. We concatenate both
of them by the same L; (i = 1, 2) and denote them by W, and W,. We reflect W,
in the hyperplane z4 = z3(n) to get a new walk W; such that its first (last) vertex is
the reflection of the last (first) vertex of W,. We delete the last edge from W, and
the first edge from W3 and body shift W in the e, direction by 4 steps. We join the
two walks W, and W with a 6-step walk: {x;(n=1), x;(n—1)+eq, x;(n—1)+es+
eq1, Xj(n—1)+2eq+€4-y, ..., X;(n—1)+5e4—eq_y, X;(n—1)+5eq, x3(2)}, which
yields a 2(n + d + 6)-step walk. The new walk has its start vertex at x(s) = 0 and its
end vertex at x(e) = (0, 0, ..., 2z3(n) +4). The incident edges at these two vertices
are [x(s), x(s) + €] or [x(s), x(s) + eg] and [x(e), x(e) + €] or [x(e), x(e) — e4]
respectively. We denote it by W'(e,) or W'(e,) (Figure 3.6).

Construction of W2. We concatenate both W, and W; by L; and similarly denote
them by W; and W;. We define two new walks by

Wi = fa14(W), i=1,2 (3.53)

The new walks are confined to the wedge: {z; <0, ..., 24 <0, z4_; 2 z4} and still
have x*(n) as their end vertex since z3_,(n) = z(n) for x*(n). We reflect W, in the
hyperplane z4 = z3(n) to get W, and body shift it by 4 steps in the e, direction.
We join the two walks W| and W3’ by a 4-step walk: {x°(n), x*(n) + e4, x*(n) +
2e4, X*(n) + 3ey, x3(0)} and obtain another 2(n + d + 6)-step walk. The new walk
has its start vertex at x(s) = O with the incident edge [x(s), x(s)+ e4_1] and its end
vertex at x(e) = (0, ..., 0, 2z3(n) + 4) with the incident edge [x(e), x(e) + eq_,}.
We denote it by W3(eq-y) (Figure 3.7).




A
_/’l, cee o= .‘\\
3 ]
[]
Vi HE N
/ N\,
-" \ \
Vs 3
I "
7’ N,
T4-1 ’ N,
/s ~
l,-. \
4 N,
7 N
v \,
.'I. S LN
.f'/ N
4 N,
.‘,. \-.
0 z4 C

Figure 3.6: Example of the constructed walk W'(e;). OABC encloses the region R
in (3.54).
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Figure 3.7: Example of showing the joining of two walks W, and W, by a 4-step
walk (dashed line) to form a new walk W?(eq_;).
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From the contruction, one can sec clearly that the walk W! is confined in the

region,
R:0<z;3, ..., 0L zqr < z3(n), 244 S 24 <223(n) + 4 — 24y, (3.54)

while W2 is confined outside of R and they only intersect at their start and end

vertices (see Figure 3.6 and Figure 3.7). For any two vertices x(k, ), x(k;) in the same
walk, we have

| zj(k) — zj(ks} |[S z3(n) +1, j #4d, (3.55)

| zalks) — z4(k3) |< 223(n) +4. (3.56)

We denote by W" the set of all such walks.

The third type component

The third type component is a k-watermelon with & < 2(d — 1), which consists
of k chains with their initial vertices being joined together at a single vertex and
their terminal vertices being joined together at another single vertex (Figure 1.1 (d)).
We give an example to show how to construct a k-watermelon. We take 2k walks
W,, W;, ..., Wy from Bi. We concatenate W, and W; by L, and the other
2(k — 1) walks by L, and obtain 2k new walks W, ..., W,,. For convenience, we

write these 2k walks in pairs as
(Wi Wyl j=1,..., k (3.57)

Following the previous constructions, we construct two 2(n+d+6)-step walks W(e;),
Wi(es) from the first two pairs and (k - 2) 2(n + d + 6)-step walks W(eqy),
.., Wi(eq4-y) from the remaining (k — 2) pairs. Each of the k new walks has its
start vertex at x(s) = @ and its end vertex at x(») = (0, ..., 2z3(n) +4). All of

thet: are totally confined in the octant:

SI:ZQZO, eoay 14-120, .’1«'420. (3.58)
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We leave W] (e,) and W3(e,_,) in S; and apoly the composite map gu-y - fy-2.4-1

to Wl(eq) and W3(e,-,), which maps the two walks into the octant:
Sg 1 Z 0, ey T4=2 2 0. T4y S 0. X4 2 0. (3.59)

The new walks have their initial vertices at x(s) = 0 and their terminal vertices at
x(e) = (0, 0, ..., 2z3(n)+4) since the coordinates of the vertices are unchanged under
the map g4-1 - fa-2.4-1- The incident edges at the two vertices become [x(s), x(s)+ey),
[x(s). x(s) + eq-2] and [x(€), x(e) — eq4], [x(e), X(€) + e4_3] respectively. For each
of the remaining (k — 4) walks W2(ey_1), ..., W2(eq.1), we properly choose k"
numbers i; < i; < ... < i, and another number j from the set {2, 3, ..., d -1}

(1 € k" € d —2) and define a composite map by

F(il, ceny ik"’ j, d - 1) =4, -- 'g'h"fj'd_l' (360)
which maps the walk into the octant:

S 2,20, ..., z, <0, ..., T <0, ..., zq420. (3.61)

Similarly, the resulting new walk has the same initial and terminal vertices with the
incident edges at the two vertices being [x(s), x(s) + e,] (or [x(s), x(s) — e,]) and
[x(e), x(e) + e;] (or [x(e), x(e) — e,]). For a hypercubic lattices in d dimensions,
there are a total of 2¢-! — 2 such octants defined in (3.61), which is not less than
2(d—1)~4(> k—4) for d > 3. Therefore, each of the walks Wi(es_y), ..., Wi(e4 1)
can be mapped into one individual octant. In this way , all of k¥ 2(rn + d + 6)-step
walks intersect only at their first and last vertices and form a  vate melon with its
tw) extremes at x(s) = 0 and x(e) = (0, ..., 2z5(n) + 4) (Figure 3.8).

With a little modification, we can also construct a k-watermelon such that its two
extremes x(s) and x(e) are on the z;-axis with x(s) = 0 and x(¢) = (0, 0,..., 2zy(n)+
4, ..., 0). The incident edges at these two vertices are [0, e}, [0, e,,], ..., [0, —e,]

and [x(e), x(e) — &), [x(e), x(e) + e}, ..., [x(e), x(e) — x,,] respectively. We
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denote such a watermelon by L(k. e, e, ..., —e,). Similarly, for any two vertices
x(ky). x(k;} of L. we have

| r,(k) — (k) (S xg(n) + 1, ) #F1, (3.62)

| r(ki) = xi (k) |€ 2rg(n) + 4. (3.63)

There is a special case of k = 2 which is essentially a polygon. For convenience, we
refer to it as a 2-watermelon with two uniform 2(n +d + 6)-step branches. We denote

by £' the set of all such watermelons.

Figure 3.8: Example of a 4-watermelon L(4, e3, e;, e;, —e2) with its two extremes on
the rj-axis, formed by joining the walks Wl(e,;), W2(e;), g:(W}(e3)) and g;(Wi(e;))
iu a simple cubic lattice. Under the map f33, it becomes L(4, e;, ey, —-e3, e3) with its
two extremes on the rj-axis. .
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3.3.3 Precursors for the topology

By using members from P*. £' and W*, we construct appropriate precursors which
are uniform polymer networks with one or no cycles and with the set of vertices

(b}, by, ...,b3,}. where b, is minimized such that
by = by, (3.64)

and fori >3

b < b,. (3.65)

There are three such precursors (Gaunt et al [13]):
1). For b, = 0, the precursor is a polygon. We take it as any member of P.

2). For by = 1, the precursor satisfies
by = by, (3.66)

and for k >3
b, =0, (3.67)

which indicates that the precursor has one cycie. We take a walk W from W"* and a
polygon P from P* and join them together at the end vertex of W.

3). For by > 2, the precursor is a uniform top:logy with the set of vertices
{b,, b, ..., by} satisfying:

d

Y (- 2)(b, - b)) = 2¢. (3.68)

1=y
Such a precursor is obtained as follows. We take two walks Wi(e,) and Wi(eqs ;)
from W' and connect them by translating W3(e,_,) such that its first vertex x(s)
coincides with the last vertex x{(e) of Wj(e;). Then from L', we take a (k£ — 2)-
watermelon L(k — 2,e4-,,—€;,e;, —e€;,...) (if k£ = 3, we replace the watermelon
by a walk W'(es) from W"*, and use the map f4_14 to let its two end vertices be

on the z4_y-axis). We body shift it in the —eq_; direction to let the extreme x(e)




60

coincide with the joint of the two walks. We remove the extreme x(s) and its incident
edges, and then add to each brauch of L an edge in the —e,_; direction, which gives a
uniform network with b; = k and b, = 1 (k < 2d). Next, we take Wi(e,) from W"* and
L'(k' - 2,e4-1,—€;,€2,—€,.. .) and connect them with W3(e,_,) at its last vertex
x(e) iu the same way. The definitions of the walks and watermelons together with
cquations (3.55), (3.56), (3.62) and (3.63) ensure that the walks and watermelons are
independent of each other. By repeating the procedure, we obtain a uniform topology
with theset {b,, ..., b5,}. We note that the uniform topology constructed in this way
is a uniform brush with the ‘backbone’ consisting of W}(e,), W3(es-1), Wi(e)), ....
(A brush is a particular tree topology with a self-avoiding 'backbone’ formed by
branch points of degree > 3 that are connected by n-step SAW’s. The topology with

all branch points of degree 3 is known as a comb) (Figure 3.9).

W(e,) Wie..;) Wie,)

L(k ~2,e4.1, ey, €5, —e,,...) L'(k' - 2,e4-1,—e, €3, —e,,...)

Figure 3.9: The construction of a uniform topology (uniform brushes) as a precursor
from walks and watermelons from the sets W* and L°.
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2.3.4 A lower bound for the partition function

We now convert the precursors into a uniform network with the set (¢, by, ..., by) by
using the following two constructions. We concentrate on the third case and denote
the precursor by G'. In G', the vertex x(s) of W!(e,) has degree | and satisfics the
condition that for any vertex x of G', r4 > r4(s). We denote such a vertex by x.
We start with x; of G', which has the incident edge [xs. X, + €;]. We will perform

all translations as needed in the —e4 direction:

Construction 1. Adding the vertices of odd degrees to G'. Equation (3.68) implies

d-1
Y (bzar = bpp) =0 (mod 2). (3.69)

=1
There remains an even number of such vertices. Starting with the highest degree, we
list all of these vertices and write them in pairs. In one such pair, let the first vertex
have degree i and the second vertex have degree j,s0 i > j and i — j = 2k. We take
a (j — 1)-watermelon L(j — 1, eq,€4,,..., —€; _,) from L*, which has its two extremes
on the z4-axis. We translate it to let its extreme x(e) coincide with x;, of G’, which
converts ¥, into a vertex of degree j. At the extreme x(s) of the watermelon, we first
join it with the last vertex x(e) of a walk W'(e;) from W* by translating W'(e).
We then take k polygons from P' such that at 0, the incident edges of the polygons
are not the edges [0, -e4),[0,e4,....[0, —e,, _,], and by a translation, the polygons
are confined in k of the remaining 242 — 1 octants which satisfy z4 < z4(s) at x(s)
of the watermelon. By joining the polygons in this way, we convert the extreme x(s)
into a vertex of degree i. Thus, we add the precursor with a vertex of degree ¢ and a
vertex of degree j, which produces [1 + (i + j — 6)/2] cycles. We repeat the procedure
for all pairs and obtain a uniform polymer network G” with by, of vertices with
degree 2i + 1. The vertex x(s) of the last walk added becomes x; of G” with incident

edge [xs, X + eg).
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Construction 2. Adding a vertex of degree 2k (forming (k — 1) cycles) to G". We
first join x; of G* by a walk W(e4_,) from W" to convert it into a vertex of degree
2 with incident edges [x;, X, + €4_;] and [x;, X, + e4]. We then take k — 1 polygons
from P*, which, at 0, have incident edges other than [0, e,_;] and [0, e/}, and can be
translated to be confined in the other 2¢-? octants at x,. By joining the k—1 polygons
at the joint vertex x;, we have thus added a vertex of degree 2k and k — 1 cycles to
G". The new x, is the vertex x(s) of W?(e4_1) with incident edge [x;, X; + €q4_s).
Next, we take a walk W(e4) from W' and k' - 1 polygons and add them to x; to
convert it into a vertex of degree 2k’, which yields K -1 cycles. The procedure is
repeated until all needed vertices of even degree have been added.

This procedure yields a uniform polymer network Ga(nsd+6)(C, b3, . . ., bag) with
each of its chains being constructed from 2 members of B: and having a length of
2(n + d + 6)-step. Similarly, based on the above constructions, we can convert the
other two precursors into a polymer network.

Generally, we take a group of 2K walks W,;, W,, ..., W3k from B: such that
W, has m, + 1 vertices in the surface z; = 0. We first concatenate K, of the walks
with L; and the rest of K, walks with L, where 2K = K, + K;, and then use these
walks to construct the required walks, watermelons and polygons. By following the
above procedure to join these components together, we obtain a polymer network
Gi(n+d+6)(C, B3, ..., b24). Since, L, has two vertices and L, has d + 5 vertices in the
surface respect,vely, the resulting network G can have either m + Ky + K3(d+5)-b"+1
or m+ Ky + K3(d+5)—b"+1+4K vertices in the surface, depending on the position of
the end vertex x*(n) of the walks, where m = my 4+ --- + mgx and b* = 2#2 b;,. The
construction of Gy(nid46)(C, bs,. .., b24) from the walks W,, ..., W,k is considered

as a standard procedure which has to be followed whenever a group of 2K walks from

B;, are used to construct a polymer network. Hence, a distinct group of 2K walks
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will give a distinct polymer network Gj(n4446)(€. bs.. .., b2g). We denote by b, . the

number of walks in the ith subclass with m + 1 vertices in the surface. We obtain
2k
r[ brim, S INm+K +Ka(d+5)-8* + INon s K1+ Ka(d45)-b% 44K (3.70)
1=l
withm=my+ma+...4+myy and N =2K(n +d+6) — c+ 1. We write
n
Bu(w,i) = ) _ b, .e™ (3.71)

m=0

as the partition function for walks in the ith subclass. From (3.70) we have
n K
[Balw, Y = (Z b:.,me"‘“')
m=0
2K
SRR | O
™M,

o<mi+ma+...+myx <2Kn 3=1

D

05m|+mz+...+m";52l\'n
(gN.ma Ky +K3(d45)-b* + INm 4K, +K2(d45)-bs 4aK e

< (2Kn) K f(w)Gn(c,ns, ..., n2g,w), (3.72)

IA

where f(w) = (1 + et*1)elK1+Kald+5)-b"lel [t p = 2K and ¢ = 2K(2K —1)7*, then
p~' 4+ ¢ = (2K)™' + (2K - 1)(2K)~! = 1. By Holder’s inequality, we have

; 2K
[Bﬁ(“")]zx = (ZB,.(W,I))

1 2K-1
< (}:1"‘/‘“’-") 3 (Bufw, i)™

=1 =1

< PEY2KEn)X f(w)Gn(c,n3, ..., a4 w). (3.73)
Combining it with (3.26) establishes

Alw) £ nli.rginf 1—:— InGn(e, bs,. .., 04,w) (3.74)

for even n.




3.3.5 An upper bound for the partition function

We derive an upper bound on the partition function Gy(c, bs. ..., by, w) regardless

of whether n is even or odd.

We classify all networks by the number of branches which have at least on vertex
in the surface. There are K such classes. For a network in each class, if a branch of
the network has vertices in the surface, we choose one of these vertices and consider
this branch as a nonuniform 2-star rooted on the surface at the chosen vertex. For
a branch without any vertex in the surface, we consider it as a self-avoiding walk in
the bulk. We denote by Gn(c, by, - .., b, w, k) the partition function for networks in

the kth class. By treating each branch independently, we obtain
Gu(c by ... baasw, k) < T(5)[Sa(2,w)]*(an)* 7, (3.75)

where a, is the number of n-step walks in the bulk, S.(2,w) is defined by (2.30),
and T(6°) is the number of ways of connecting the set {by, bs, ..., by} with b° =
by + b3 + -+ - + byg. From Gaunt et al (13}, T(4") < 2 (*-1/2 From (1.5), (2.5) and

(2.32), we have, for a given w,
Sa(2,w) < erAlIteln), (3.76)
an < emHoln) < grAleltoln) (3.77)
Substituting them in (3.75) yields
Gnlc,by,.. . brg,w, k) S 2 -13eKnAlw)toln), (3.78)
Therefore, we have

K
Gule,bs,....buw) = Y Gn(e,bs,... b, k)
k

< bi-(50-1)/26KnA(w)+o(n)‘ (379)
and
. 1
,.l.’..To Sup InGnc, by, ..., ba,w) € Alw). (3.80)

Combining it with (3.74) gives (3.20).
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3.3.6 The adsorption of networks at an impenetrable sur-
face

When the interaction surface is impenctrable, a network is then totally confined to
one side of the surface, say z, > 0. In this case, we consider the set B}, which is the
subset of B, satisfying

z{1)>20 1=0,1, .., n (3.81)

By following the same procedure in lemma 3.1, we can show that

lim lln B} (w) = A*(w). (3.82)

n—oc N

where B} (w) is the corresponding partition function for walks in the set B}.

By the previous procedure, the constructed network has all its b, ( ¢ # 2) vertices
of degree i in the adsorption surface z; = 0. When the surface is impenectrable, a
branch point of degree 2d can not locate on the surface. To avoid it, we replace the

two links L, and L by three new uniform finite step walks L;, Ly’ and L, defined by

L’| = {33], 2‘], 23] +ey4, e + ey €, 00 €4, 28‘, 3edi €4 +3e‘o

vy @24+ €41 + 3ey, e+ -+ ey +4ey}; (3.83)

L; = {3e,, 3e; + eq4, 3e, 4+ 2e4, 2, + 2¢4, 2¢; + 3ey, 3e, + ey,
3e, +4e4, 2¢, +4eq4..., € + ey, dey, €41 +44,, ...,

e+ -+ ey_y + 4eq}); (3.84)

,

L3 = {321, 4elv 4e, t+ ey, ..., 4e, + 4eq4, 4¢3 + €4, + 4ey, ...,
de;+e€;+---+eqy +4eq, ..., e+ €3+ -+ €4y +dey,

ceey @2+ - +@g1 + 4e4). (3.85)

They are confined to z; > 0 and only intersect at the vertices A = (3, 0, ..., 0) and

x(0) = ez + - -- + €4y + 4eq4. The first step of I, is the edge [A, A — e,], and the
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first step of L, is the edge [A, A + e} and the first step of Ly is the cdge [A, A +¢,]
(Figure 3.10).

By concatenating the walks in B} with the three new links and following the same
procedures as in section 3.3.2, we can construct the correspouding polygons, walks
and watermelons. All of these new components will have their x(s)’s and x(e)’s in
the surface r, = 3. Then by using these new components and following the same
procedure in section 3.3.3 and section 3.3.5, but replacing A(w) with A*(w) where

neccessary, we obtain that

lim 1 nGYe, by,... baw) = AY(w). (3.86)

T OO N

Figure 3.10: Three new finite walks Ly, L, and L; defined by (3.83)-(3.85).
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3.4 Uniform networks interacting with a surface:
d=2

In the section 3.3, we have shown that, for d > 3, the reduced free encrgy for uniform
networks interacting with a (d — 1)-dimensional surface is independent of the topology
which is specified by the set {c, b3, ..., byq}. However, for d = 2, the conclusion does
not hold. For instance, consider a uniform 3-star in the square lattice, interacting
with an impenetrable surface. If we denote by S,(3,w) the partition function for such

3-stars, it has been shown by Whittington and Soteros [56] that

max{x, (x +2w)/3} < lim inf3—ln-lnS..(3,w)

< nILngO sup 51;1- In Sy(3,w) < min{x + 2w/3, A*(w)}. (3.87)

These inequalities indicate that if the reduced free energy exists for 3-stars, it is a
non-analytic function of w and hence there exists a transition point which is at least
as low as that for self-avoiding walks; also for large enough w, the reduced free energy
is different from A*(w).

These results can be improved by showing that if the reduced free energy exists
for 3-stars, it has the same transition point and the same crossover behaviour at this
point as that for walks. In the following we outline a proof. For convenience, we do
not distinguish the surface and denote the reduced free energy simply by A(w). In
the square lattice, a vertex is represented by (z, y).

We start with the walks in the set (', defined by (2.35) and (2.36) in section
2.1.3. For each walk in C,, we translate it by one step in the positive y direction
and add one edge to connect its start vertex with the origin, which yields a new
walk which satisfies that z(0) < z(s) for any :. From (2.40), the new walks have
the same reduced free energy A(w). At the origin 0, we define two wedges by : W,:
{(z, ¥), 0 Sz < =y}, W: {(z, y). —z < y < 0}. We denote by B, and B_ the set

of n-step walks which start at 0 and are confined in Wy and W, respectively and let
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b, and b, be the number of walks in these two scts. It has been shown (Hammersley
and Whittington [55]) that

lim LInd, = lim LInb = x. (3.88)

n—% n n—won

By taking a walk from each set, we obtain a uniform 3-star. Any distinct such

triplet gives a distinct 3-star. Therefore, we have
b,b.Ch(w) < Sa(3,w). (3.89)
Taking logarithm and dividing by 3n and letting n — oo yields
K2+ AW)/3 < lim inf 515 In Sa(3, ). (3.90)

Combining it with (3.87), we obtain that if the limit

fim 5‘;1:. Sa(3,w) = S(3,w) (3.91)
exists, then
k/2+ Aw)/3 € S(3,w) < A(w). (3.92)

This equation shows that 5(3,w) has the same transition point as that for A{w). Also

for w > w,, from (2.6) and (3.92), we have
SIA) — A(w)] < 5(3,0) - S@,we) € AW) - Afwe). (3.93)

. Taking logarithm, dividing by In(w ~ w.) and letting w — w, yields, from (2.8)
In{S(3,w) - §(3,w.)]

In(w — )

1/¢ £ lim <1/é (3.94)

which implies that $(3,w) has the same crossover exponent ¢ as that for A(w). There-
fore, they have the same crossover behaviour at w..
If, for each walk of Cy, we also define two wedges at its end vertex and concatenate

it at the end vertex with two walks which are confined in defined two wedges, we obtain
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a uniform a uniform H-comb. By following the same arguments, we can show that

k/4+ AWw)/5 < liminf 1 In Hu(w)

a—o0  5n
< ,.ll.'?‘, sup gl'; In Hp(w) € A(w). (3.95)

which, in turn, shows that H-combs have the same w_, and ¢ as tkat for walks.
From these two examples, we may suggest that in the two dimensional lattice, for
uniform polymer networks with a general topology, the transition point and crossover
exponent are the same as that for self-avoidiuyg walks. However, we have not been able
to extend the same results to polymer networks with other topologies, for instance,

polygons in the two dimensional lattice.

3.5 The adsorption of nonuniform polymer net-
works

One can also consider the interaction between un adsorption surface and nonuniform
polymer networks with the set {c, b3, ..., b4} and a total number of n vertices.
By following an analogous procedure, we can show that for d > 3, the reduced free
energies A(w) and A*(w) are independent of the topology. For networks in a two
dimensional lattice, such results can only be obtained for networks witk n, #0.

In the following, we consider the networks which have the third kind of precursors
for d > 2, regardless of the type of the surface. We outline a proof analogous to that
given in section 3.3.3 and section 3.3.4.

We take a walk W from C, (or C}) defined by (2.35) and (2.36) in section 2.1.3
and concatenate it with a finite step walk {x(n), x(n) + e;, x(n) + 2¢;, x(n) +
3e,, x(n) + 3e; + e4}. This gives an n + 4-step walk which has the same number
of vertices in the surface z; = 0 as W. For t'.> new walk, its last vertex has its z4

coordinate strictly greater than any other vertices. We denote such a vertex by x,.

We add (k ~ 1) edges [x;, x; + eJ), [X¢:, x¢ + 4_y], [%(, X - €4_4}, ..., to X, which
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converts it into a vertex of degree k and converts the walk into a topology with b, = k
and b, = 1. Next, we repeat the same procedure at the vertex x; + e4 and convert it
into a vertex of degree k' and so on. Finally, we obtain a nonuniform precursor G,
with the set of vertices {by, b5, ..., by}

Analogous to construction 1, we first add to x, of G, two vertices x; = X, +eq and
x" = x| + €4 and the edges [x;, x,) and [x,, x;]. We then add (j — 1) 3-step walks:
{x:, X¢ + €41, Xe+ €41 + g x;}, {xt, X¢ — eq_1, X¢ — €4_1 + €4, X;}, ..., which
converts x; and x| into two vertices of degree j. Then at x;, we add k = i — j)/2
d-cycles. {xi, X, + &, X/ +e;+€;, Xe+ey, Xe}, {Xi, X —€), Xi—€;—€;, X;—e3, X},
and so on. Next, we repeat the same procedure at the vertex x,. By this process, we
obtain a network G; which has by, 4, vertices of degree 2 + 1.

Analogous to construction 2, we add to x, of G3 a 3-step walk {x¢ +e4-1, X¢ +
€41 + €4, X + e4_; + 2e4}, which converts x, into a vertex of degree 2. At x,, we
add (k — 1) 4-cycles: {X;, Xt — €4-1, X¢ — €41 + €42, X¢ + 4-2, X¢}, {X¢, Xe —
€4-2, X¢ — €47 + €43, X +€4_3, X}, ..., which converts x; into a vertex of degree
2k. We repeat the same procedure at the vertex x; + e4_; + 2e4 and so on until all
needed vertices of even degree have been added.

During this process, a finite number of vertices have been added and none of them
is in the surface. Each walk in C,s gives a distinct topology G with n vertices, b3 of
degr.:2 3, ..., baq of degree 2d, c cycles and the same number of vertices in the surface.

Thercfore, de ..ting by G, the partition function for such networks, we have
Gole ba,- - bagyw) 2 Cor (). (3.96)
From (2.40), we obatin that
lim inf % InG (¢, bs,..., baw) = A(w) (3.97)

for any n. By following the samie arguments in section 3.3.5, we can also establish

Ga(c,bs, ... byg,w) < CemAleitoln) (3.98)
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for some constant C'. Then from (3.97) and (3.98)

N B
lim - InG, (¢, bs,.... b w) = A(w). (3.99)

N~ 2

3.6 Conclusions

We have studied the interaction between a surface and polymer networks with a
specific topology defined by the values {c, b3, ..., by}. Our rigorous results for
d > 3 and examples for d = 2 indicate that for such networks, the transition points and
crossover exponents are exactly the same as that for SAW's and therefore, independent
of the topology. In section 2.2, we have mentioned that for SAW's interacting with a
penetrable suiface, scaling theory predicts that ¢ =1 — v (Bray and Moore [45]). If
such a scaling form also holds for networks interacting with a penetrable surface, our

results show that v is the same for SAW’s and polymer networks.



Chapter 4

Randomly Branched Polymers:
Lattice Animals

4.1 Preliminary

Although lattice animals had been previously studied in the mathematical literature
(Klarner [58]), they were first seriously considered as a model for brarched polymers
by Lubensky and Isaacson [18]. They proposed a field theory showing that the lattice
animals can be considered as models for randomly branched polymers with excluded-
volume effects in dilute solution in much the same way that self-avoiding walks have
been used as models of linear polymers with excluded volume. The configuration
properties of lattice animals in the bulk have been discussed in chapter 1.

In this chapter, we study the interaction of an adsorption surface with lattice
animals, which can be considered as a model for the study of the adsorption of
randomly branched polymers. In section 4.2, we consider the adsorption of bond
trees, bond animals and site animals and show that results analogous to (2.3)-(2.9)
icr walks can also be established for these models with x and ' being replaced
by the corresponding growth connective constants. In section 4.3 and section 4.4,
we generalize the results (1.18) and (1.20) for bond c-animals to the case where an
adsorption surface exists. In section 4.5, we consider a special case for the adsorption

of site trees and site c-animals. Section 4.6 gives numerical results. Aspects of the
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work included here has been published in Lookman e! al {59] and Zhao and Lookman
[60).

For convenience, we represent a vertex by v = (z,, ..., r4). For each embedding,
we denote by V, £ the vertex set and the edge set of the embedding respectively. We
shall need the following definitions and theorems.

The top (bottom) vertex of V is defined as follows. First construct the subset
V: such that the coordinate z, of every vertex in V; has the maximum (minimum)
value over all vertices in V. We then recursively construct Vi C Vi_; such that
the coordinate z; of every vertex in Vi has the maximum (minimum) value over all
vertices in Vi_,, Let j be the smallest integer such that V, contains precisely one
vertex, and call this vertex v, (v, ) the top (bottom) vertex of V. In the same way,
we can define the top (bottc:z) virtex for a subset of V.

The top edge of £ is defined as follows. All vertices which are directly connected
to the top vertex v, formn a subset of V. We can define the top vertex v: for this
subset. The top edge is the edge which connects v, and v,.

The distance between two vertices vy = (z,,..., x4) and vz = (y1, ..., yq) is

defined as .
dvi,va) =Y |1 -ul, (4.1)

which essentially is the minimum number. :)lf steps needed to connect two vertices in
the lattice.

The nearest neighbour vertez of a vertex v is the vertex which is one step apart
from v. The set formed by all such vertices is the ncarest neighbourhood of v.

Any two vertices which are cne step apart and are not connected with each other
form a contact.

The distance of two vertex sets Vy and V; is defined as

dW, V) = v.ev:?frzevz d(vy,v3). (4.2)

The following theorem immediately follows.




4

Theorem 4.1 For any finite sets V, and V,, there ezist v, € V) and v, € V, such

that
d(V1, V;) = d(v,.v,). (4.3)

The following theorems and corollary will be used quite often in establishing limits

in the followin; =ections.

Theorem 4.2 (Hammersley [61]) Suppose a, is a sequence such that a,/n is
bounded below and

Gnim S Gy + G + bn+m (44)

forn, m > N, where N is a constant and b, is a non-decreasing sequence. Then
there exisis a conslant p such that
lim Llna, =1 45
Jim ~Ina, =lau (4.5)

iff the series Y, bn/n? is convergent.

Theorem 4.3 (Wilk and Whittington [62]) Suppose a, is a non-decreasing se-

quence of positive numbers such that n~'Ina, is bounded above and
@nGm < Qpy f(m) (4.6)

for some positive function [ which satisfies

. f(m) _
n!T:oT =1. (4.7)

Then there exists a positive constant u such that

lim -l-ln a, =Inu. (4.8)

n—co n

Corollary 4.1 Let a, be the sequence given in theorem {.9, ezcept it satisfies

GnGyy S Can-’-llm)n (4‘9)
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where C is a positive constant. Then the limit

lim lIn aGn =Inpu (4.10)

n—aoc N

erists.

Proof: The prove is simple. We let b, = a,/C. One can verify that b, is non-

decreasing , n~!lnb, =n~(lna, — C) is bounded, and from (4.9), it satisfies
babm = anamllcz < C"n'l*l(m)/c2 = Ot f(m)- (4.11)

From theorem 4.3, we obtain (4.10).

4.2 The adsorption of randomly branched poly-
mers

In this section, we consider the interaction of an adsorption surface at r; = 0 with
bond trees, bond animals and site animals. Similarly, the surface considered can be
either penetrable or impenetrable, and, for each embedding, one can consider either
counting the number of vertices in the surface or counting the number of edges in
the surface. We will show that results analogous to (2.3)-(2.9) for walks can also
be established for these models with x and &’ being replaced by the corresponding
growth connective constants. In the following, we will concentrate on the problem of
n-vertex bond trees with number of vertices in the srface. The same arguments can
also apply to the other cases with some possible minor modifications which will be
pointed out later.

The partition functions for lattice bond trees rooted on the surface r, = 0 are

defined as
Ta(w) =Y tase™, (4.12)

=1
THw) =3 the", (4.13)

= d
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where t,; denotes the number of distinct n-vertex trees which are rooted at the
origin 0 and have i vertices in the surface, t;,, is the number of such trees that
must lie on one side of the surface. For the other models, the corresponding partition
functions are defined in the same fashion. Obviously, the partition functions (4.12)
and (4.13) are non-decreasing functions of either n or w with the other one being

fixed. This property will be used quite often later without further mention. We prove

the following results.

(1) The limits

InT(w) = "hr{.lo '1-; In T (w), (4.14)
InTH(w) = lim —’l;ln TH(w) (4.15)

exist. for all w.

(2) The limits InT(w) and InT*(w) are continuous convex non-decreasing func-

tions of w satisfying
max(In Ao, In Ay + w) € InT*(w) < InT{w) < max(in Ao, In A + w), (4.16)

where Ao and A, are the growth constants of the d-dimensional and corresponding
{(d — 1)-dimensional lattices respectively given by (1.13). These two inequalities then

imply that there exist critical values w. and w?} defined by
we = sup{w : T(w) = A}, w} =sup{w: THw) = Ao} (4.17)
at which T'(w) and T*(w) are non-analytic.

4.2.1 The establishment of limits (4.14) and (4.15)

We establish the existence of the limit T'(w). The proof for T'+(w) is the same.

Let 7,, and 7,, be sets of bond trees with ny and n; vertices respectively. Then

T.=T.lJ - UTa (4.18)
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for i = 1 and 1 = 2, where Ty, . is the subset of 7,, with m vertices on the surface
z; = 0. We denote by t, . the number of trees in T, . For every T, € T, m, and
T; € T,,.n,, Wwe denote by V, be the vertex set of T, and V; the vertex set of T;.

Therefore, ¥V, and V; are finite and their intersect is nonempty, since

0e V[ )Va (4.19)

We body shift T; in the direction of z4, which then does not change the configuration,
therefore, the number of vertices of T in the surface. By a finite number of steps,
we obtain that d(V,,V;) = 1. Then from theorem 4.1, there exists a vertex vy € V;

and a vertex vz € V; such that

d(vi,v3) = 1 (4.20)

with v; = (24, 23, ..., z4) and va = (x4, 73, ..., 24+ 1). By adding an edge (o join
these two vertices, we obtain a (n; + nz)-verte tree T3 which has m; + m; vertices

in the surface. We formally write

Ty = (Ty, T3) (4.21)

to indicate that T; is obtained by body shifting T; and connecting it to T, as
described above. Any distinct pair of Ty and T; gives a distinct T3. We denote by
T, +n, the set of all such trees given by (4.21). T, ,,. can be considered as a direct

product of 7, and 7y, such that

’

T, sy = Ty @ Ty = {(T1. T2), T1 €T, and T2 € T, }.
Obviously, for the subset Ty, 4n,.m of Ty, 40y, we have
7:| +n3.m = (7;‘1'| @Tninm) U i U (7;! N @Tﬂﬂnl) (4’22)

with

(70 s @ Toan-) (N (Tors D Torm-s) = 0 (4.23)
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for i # 7. Since
T C Ty 4ngims (4.24)

n4n2,m =
we obtain

tn..ltm.m +---+ tn;.mtn;.l S tnl+n,.m+l- (425)

Multiplying both sides of equation (4.25) by e!™*+!* and summing over m gives
Ta, (@)Tn, (w) < Ty 4m, (w). (4.26)
From (1.13) and (4.12), we obtain

1 1
~InTuw) < ;ant,,m+w

m=]

< :—llnnt,+w$|nko+l+w ‘4.27)

where ¢, is the number of trees in the bulk which is related to the number of rooted
trees by a factor n, and we also use the that fact n='Inn < 1 for any n. Then by

theorem 4.3, we establish

lim 10Ty (w) = sup % InT,(w) = In T(w). (4.28)

n—-0o N

4.2.2 The existence of a critical point

Since T,(w) s a non-decreasing function of w, and for fixed n, T, is a polynomial in
e“ and therefore, bounded in any fixed closed interval of w. Consequently (Hardy et

al [63]), to establish that In T,(w) is a convex function of w, it is enough to show that

1 1 1 1
- - > - -
5 InTo(wn) 4 2 InTh(w:) 2 In T,.(2u, + 2w3) (4.29)

for any wy, wp. By Cauchy’s inequality

Ta(wy)Ta(ws) = i tyme™ i tame™

m=1 m=]

n 2
> (Zz,..,.e'"wﬂv*) = (Ta((r +a)/2)),  (4.30)




9

which proves (4.29). Now, if the limit of a sequence of convex functions exists, that
limit is also a convex function. Hence InT(w), and similarly InT*(w) defined by
(4.14) and (4.15) are both non-decreasing convex functions of w for all real w.

To derive (4.16), we let t} be the number of trees with n vertices satisfying z, > 0,
and t}, the number of such trees with only its root in the surface r; = 0. Then, for

w < 0, we have

tt e’ =t} e’ < THw) < To(w) < To(0) < nt,,, (4.31)
where t,, is given in (1.13). Since

1 1
lim Slntt = lim ~Int} = lim ~Int, = In A (4.32)

n==00 N n--00 1N N==00 T

(Whittington and Soteros {17]), we obtain for w < 0,
Indo <InTHw) < InT(w) < In . (4.33)

For w > 0, we have
t}e™ < THw) € Th(w) < ntpe™. (4.34)
Since t}, = nt,, where t' is the total number of trees wholly embedded in the (d - 1)-

dimensional surface z; = 0,

lim L tt, = lim lin nt, = InAg, (4.35)

R-e00 N n—oon

Ao is the growth constant of trees in (d — 1)-dimensional lattice. This gives
Ina,+w <InTHw) <InT(w) <ln o +w. (4.36)

The inequalities (4.33) and (4.36) give (4.16) and imply that there exist critical points

(transition points) w. and w} given by

we =sup{w: T(w) = A}, w} =supfw: T*(w) = A}. (4.37)
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at which T'(w) and T*(w) are respectively non-analytic. By analogy, two crossover

cxponents ¢ and ¢* can also be defined at the transition points by
InT(w) - InT(w) ~ (w - we)®,  w>uw, (4.38)
InT*w) = InTHwe) ~ (w -, w>ut (4.39)

The numerical estimates of the transition points are given in section 4.6.

4.2.3 Other cases

By following exactly the same arguments, we can establish the existence of the limits
(4.14) and (4.15) for bond animals and site animals by counting the number of their
vertices in the surface. For the problems of bond trees and bond animals in which one
is interested in the number of edges in the surface, a difference arises when establishing
the inequality (4.26). For instance, for bond trees, adding an edge to join T, and
T; results in a new tree T; containing n; + nz + 1 edges with either my + m; or
m, + my + 1 of them in the surface. If we still denote by T,(w) the partition function

for such trees, equation (4.26) is replaced by
T,, ()T, () S (1 + €)T, 40 1 (W) (4.40)

The existence of the limit analogous to (4.14) is established by using corollary 4.1. For
the model of site animals with edges in the surface, one more step body shift is needed,
i.e. we require that d(V;,V;) = 2. Then there exist v; = (z,, z3, ..., 24) € V; and
vy = (2, 22, ...,Z¢+2) € V3. We add the vertex v, + e4, which may have some
vertices of ¥, and V; other than v, and v; in its nearest neighbourhood. From the
definition of site animals, we need to add all corresponding edges to connect v, + ey4
with these vertices, which results in a new site animal having at most 2d extra edges
and at most 2(d — 1) extra edges in the surface. The inequality analogous to (4.40)

is then given as

A, (WA, (W) S2d(1 +e™ 4 472N W), (4.41)
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where we denote by A;(w) the partition function for site animals with number of
edges in the surface. By using corollary 4.1 again, we establish (4.14).

From the same arguments for n-vertex trees, we can show that the reduced free en-
ergy of all these models are non-decreasing convex functions of w and bounded by the
inequalities analogous to (4.16) with Ag and )y being replaced by the corresponding
growth constants.

Even though, by analogy, one would expect the same results for site trees, we are
unable to show the existence of the limits (4.14) and (4.15) for site trecs embedded
in a general d-dimensional hypercubic lattice. However, with the assumption of the
existence of (4.14) and (4.13), one can obtain (4.16) for site trees by using the same
arguments for bond trees. The previous arguments for site animals with number of
edges in the surface have indicated that a directed concatenation of two site trees
may not result in a site tree. In section 4.5, we will discuss a special case: site trees
embedded in the square lattice, where, by following a modified approach, we will show
the existence of the reduced free energy (4.14) and (4.15) for site trees in the square

lattice.

4.3 Lattice bond trees with restricted number of
branch points

In this section, we examine the interaction between the adsorption surface and bond
trees with a restriction on the number of the branch points. We derive some properties
for the reduced free energy which will be used in the next section. In the remainder of
this chapter, we will not distinguish the surface each time. However, it is understood
that the corresponding results should apply.

We denote by 7, (¢, <) the set of n-vertex trees which contain at most £n vertices

of degree greater than 2. T, (¢, <) is a subset of 7, (¢, <), which contains all n-vertex

trees with i vertices in the surface and t, ;(¢,>) is the number of trees in T,,(¢, <).
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Theorem 4.4 There ezxists T(e,w) > 0 such that

lim ~InTa(e, €,0) = lim =10} ta,(e. S w)e™ = InT(e,w), (4.42)
n-—-a0 N n—oo N =1

and In T'(e,w) is a concave function of ¢ in [0, 1].

Proof: Consider two trees T, € 7T,, . (c1,<) with a vertex set V, and T; €
Tns.i2(€3, <) with a vertex set V;. We body shift T; in the direction of z4 by a
finite number of steps such that d(V,,V2) = ¢ + 1, where ¢ is some positive in-
teger. Then there exists a vertex vi € V(t;) and a vertex v € V; such that
vi = (2}, 2}, ..., z}) and v; = (&}, 13, ..., 2} + ¢ + 1). By adding a g¢-step
SAW (v;, vy +eq, ..., Vi + qey, vz}, we obtain a new tree T3 with n, + n; + ¢
vertices and either i, + i; or ¢, 4+ i; + q of them in the surface. T; can have at
most €1n; + €3n; + 2 vertiecs of degree greater than 2. Therefore, choosing ¢ to be
the smallest integer greater or equal to 2/¢’ ensures that T3 € T,,, 4ny 44, 4is (€', <) oF
Tas +mateis +ia+e(€s <), where &' = (&40 +£3n2)/(ny +n2). This construction produces
a unique T3 for each pair T, and T; but not all members of T, 4n,4¢(¢’, <) can be

obtained in this fashion. Following the arguments in section 4.2.1, we obtain
tny iy (€11 SYlmpis (€2, €) < tayamptgin+ia(€s S) + tayamyrairsinee (€ ). (4.43)
Multiplying both sides with el**+2* and summing over i, + i, yields
T (e1, S, 0)T (€2, S,0) € (14 e™)T,, 4nyue(€, S, w0). (4.44)
Putting €, =¢2 = € in (4 44) gives
Tu(e, S, 0)T (6, 5,w) < (1 + )Ty 4y g, S w0) (4.45)

Since T, i(¢, <) € Tai, Ta(e, S,w) < Ta(w). From (4.27), n~! In T, (¢, <,w) is bounded

above for any w. From theorem 4.3, there exists T'(¢,w) > 0 such that

lim L1nTu(e, <,w) = InT(e,w) < oo. (4.46)

n--00 1}
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Now put n; = nj; = n in equation (4.44). This gives
Ta(e1, <,w)Ta(22- S w) € (1 4+ ™) Tt (€1 + €2)/2, S w0). (4.47)

Taking logarithm, dividing by n and taking the limit n — oo with ¢; and ¢; fixed,
we have

InT(e),w) +InT(e2,w) < 2InT((e) + £2)/2,w). (4.18)

Since InT(e,w) is a bounded non-decreasing function of ¢, equation (4.48) implies
that InT'(e,w) is a concave function of ¢ for £ €[0, 1](Hardy et al [63)).

For the function In T'(¢,w), one can have the following propositions:
Proposition 4.1 [ur any w, InT(0.w) < InT(1,w).

Proof: It is clear that T,,(0,<) = 8,.(2), the set of all nonuniform 2-star of n
vertices with ¢ of them in the surface and 7,,(1,<) = T,;, the set of trees of n

vertices of which ¢ of them are in the surface. Thercfore, we have
InT(0,w) = A(w), (4.49)

and

InT(1,w) = InT(w), (4.50)

where A(w) and In T'(w) are given by (2.3) and (4.14) respectively.
For w < 0, from (2.5) and (4.16), A(w) = « and In T(w) = In As. Since x < In )
(Gaunt et al [20]), we obtain that, for w < 0;

InT(0,w) < InT(1,w). (4.51)
For w 2 0, from (2.44) and (4.26),
A(w) < ;l;ln Sa(2,w), (4.52)

InT(w) > 'l—lln To(w). (4.53)




Since for any n,

Sa(2,w) < Talw).

We have, for w 2 0,
A(w) < InT(w),
or

InT(0,w) < InT(1,w).

Therefore, for any w,

InT(0,w) < InT(1,w).
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(4.54)

(4.55)

(4.56)

(4.57)

Proposition 4.2 For any w, InT(e,w) is a continuous function of e in [0, 1).

Proof: Since InT(e,w) is a non-decreasing concave function of ¢ € {0, 1], it is

continuous for £ € (0, 1) (Hardy et al [63]). One only need establish the continuity

at ¢ = 0. Let n; be the number of vertices of degree k in a tree. Let u,q(¢) be the

number of n-vertex trees with i vertices in the surface and containing at most en

vertices of degree not equal to 2. Then we have
tn,i(ea S) S un.i(2d€)’
since, from Euler’s formula (3.1),

m=n1+2n,-=2+z:(i—l)n.~52den

i3 i>3

provided that 2 < & < L. Therefore, we have

Tule, Sw) = Y taile, S)e™ S Y tn,(2de)e™ = Un(2de,w).

i=1 =l

By following arguments in section 3.3.5, we can bound U(2de,w) by

Un(2de,w) < Y T(m) ( ;:22 ) (n — 2)erAWHoln)

m<2den

(4.58)

(4.59)

(4.60)

(4.61)
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where T(m) is the number of ways to connect all m vertices of degree not equal to 2.

Since there exist positive constants B and 8 (Otter [64]) such that
T'(m) < BA™, (4.62)

we obtain
Ta(e, w) € Un(2de,w) < (2d)en Bpt24e™) ( 2;;3 5 ) enAlW)+o(n) (4.63)

provided that € < 3=+ ;. It has been shown by Madras et al [65] that for any a > 0

and b> 0,
lim —-—ln( an ) =alna — blnb— (a — b)In(e — b). (4.64)

n—oo N

Therefore, in (4.63), taking logarithm, dividing by n and taking the limit n — oo, we

have

InT(e,w) = lim —ln T(e, £,w) (4.65)

n—00 1N

< (2de)In B — (2de)In(2de) — (1 — 2de) In(1 — 2de) + A(w).

Letting £ — 0 in (4.65) yields
ii_r’noln T(e,w) = A(w) =InT(0,w), (4.66)

which establishes the continuity of InT'(e,w) at ¢ = 0.

4.4 Weakly embedded animals with cyclomatic
index c

In the bulk, n-vertex bond trees and n-vertex bond animals with cyclomatic index ¢
are related by equations (1.18) and (1.20). In this section, it will be shown that these
relations also hold in the presence of a surface interaction. Precisely, we will show
that

lim L1n An(c,w) = lim ~ mz ani(c)e” = InT(w), (4.67)

n-—00 71

=1
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where a,,(¢) denotes the number of c-animals with n vertices of which i of them are

in the surface, and InT(w) is given by (4.14). If we assume that, as n — oo,
Anlcyw) ~ (T(w))nncoc(‘)o (4.68)

then,

0.(w) = Op(w) — ¢ (4.69)

for all w. This result can also be generalized to the case where there is a monomer-

monomer interactio’s that competes with the monomer-surface interaction (Zhao and

Lookman [66]).

4.4.1 An upper bound on A,(c,w)

It has been shown by Whittington et al {21] that, by deleting the top edge of ore cycle
(the top edge in the edge set consisting of all edges in the cycle) of a c-animal, one
converts the c-animal into a (¢~ 1)-animal of n vertices. The resulting (¢ — 1)-animal
can have at most (2dn) c-animals as its precursors. Since this procedure does not
change the positions of all n vertices in the lattice, the resulting (c — 1)-animal has

*ue same number of vertices in the surface as the c-animal does. Therefore, one has
an4{c) < (2dn)a,i(c—1). (4.70)
Repeating the same procedure ¢ times gives
an.i(c) < (2dn)°an i(0) = (2dn)t,,. (4.71)
Multiplying both sides with ¢’ and summing over i yields
An(c,w) < (2dn)°To(w). (4.72)
4.4.2 A lower bound on A,(c,w)

Such a lower bound is obtained by generalizing the arguments of Soteros and Whit-

tington [22] taking into account the existence of the surface.




| | |

1 2 3 4 5

Figure 4.1: On the square lattice, a vertex of degree greater than two must be one of
the five types shown

For convenience, we concentrate on c-animals embedded in the square lattice.
However, the results can be generalized to the d-dimensional hypercubic lattice. In
the square lattice, a vertex has coordinates (z, y). The adsorption “surface” is £ = 0.
A vertex is a member of V, if it is of degree 4 and is a member of V;, V3, V4 or Vs if it
is of degree 3 and is not connected to the neighbouring vertex in south, west, north

or east direction respectively (Figure 4.1). Let V' be one of them.

Theorem 4.5 Every n-vertez tree conlaining a verter vg € V' can be converted into
a |-animal (with n + 1 vertices) conlaining a 4-cycle in which vy is the bottom (or
top) vertez of the 4-cycle. The resulting 1-animal can have at most three trees rooted

al a vertexr in V' as precursors.

Proof. Let v, be the top vertex of the tree with coordinates (z;, y.). Without loss of
the generality, we let vo € V' = V), then vy is connected to v; and v; with coordinates
(zr+1, y)and (z, y + 1) respectively. We consider three subcases as follows.

(1) There is no vertex in the tree with coordinates (z + 1, y + 1) (in this case
Vo € Wy).

(i) There is a vertex v3 € V with coordinates (z + 1, y + 1) and either [v,, v3] €

€ or [v,, v3] € € (then vo € W,).
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(3ii) va € V but both of the edges [vy, V3], [va, V3] are not in the set £ ( then
vo € Ws).

For the three cases, we have three different constructions.

(i) Add v at (z + 1, y + 1) and the edges [vy, v3] and [v3, vi].

(ii) If [v1, va] € €, add [va, v3], and the vertex v, with coordinates (z, + 1, y;)
and the edge [v:, v¢]. If [va, v3] € €, add [v,, V3] and the vertex v« with coordinates
(z¢y y¢ + 1) and the edge [v,, v,»].

(iii) The tree must contain at least one of two vertices with coordinates (z+2, y+
1) and (z + 1, y + 2). We call these vertices v4 and v; respectively. In addition, at
least one of the edges ey = {v3, v4] and e5 = [v3, V3] must be a member of £. v, is
connected to vg through one and only one of e and es. Delete the edge e, or 5 on this
connected path, add the edges [v;, v3] and [v;, v3] and the vertex v, = (z. + 1, y()
and the edge [v,,vy] if e4 is deleted, or the vertex v,» = (z;, ¥ + 1) and the edge
[ve, v ] if es is deleted.

The connected graph resulting from each of these constructions has n + 1 vertices
and n + 1 edges so that it is a 1-animal. Under the transformation, any two trees
which differ only by having the vertex vo in different W, may result in the same
1-animal. Since i = 3, the 1-animal can have at most three trees as its precursors.

For v, in the other four sets, we follow the same procedure except that we will

examine the vertex v, with coordinates (z — 1, y — 1) for vo € Vs or Vs.

Within the procedure, the number of vertices of the tree in the surface is unchanged.
Therefore, if the tree has i vertices in the surface, the resulting 1-animal can have
either i or i + 1 vertices in the surface.

We denote by b, i(¢) the number of n-vertex trees with i vertices in the surface

and containing more than en vertices which are members of V', one of V4, Va2, Vs, V,




and V5. Then, from theorem 4.5, we have
o)+ nnin(1) 2 () bles

for any € such that en > 1, since there are at least

(7)

ways to choose vo. Similarly, if en > ¢, we can have

( o ) (4.75)

ways to choose ¢ vertices. By carrying out the above transformation at these c vertices
successively, we obtain a c-animal which has n + ¢ vertices with ¢ + j of them in the

surface where 0 < j < c. Hence, we have

al+¢.l(c) + Qpgcatd (C) + ...+ an+c,|'+c(c) Z ( C: ) bl.i(e)lsc (4'76)

for en 2 c.

Now, we derive a lower bound on b, ;(¢).

Lemma 4.1 Let T, (¢, >) be the set of n-vertex trees with i vertices in the surface
conlaining more than en vertices of degree greater than 2 and ty;(e,>) be the number
of irees in T, i(e,>), then

bai(€/5) 2 tnile,n)/5. (4.77)

Proof: Let 7,,(¢,>) be the set of n-vertex trees with 1 vertices in the surface and
containing more than en vertices of degrece greater than 2. We construct subsets
Toi(e,>) such that a tree T € 7, is a member of T%(e,>) if m is the smallest
number such that the number of vertices in V,,(T) is at least as large as the number
in Vi(T), k=1, ..., 5, k # m. Thus, T can be a member of only one subset
T(€,>). Let V' be V,,, such that

1T3i(e,>) 1= max{|T (e, >) |, j=1, ..., 5) (4.78)
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where | - | denotes the cardinality of a set. From the definitions of T, ,(¢,>) and

T (¢, >), there must be at least ¢n/5 vertices in V' = V,,. We obtain

S
baa(e/5) 2| Tk(e, >) |2 Z VT0.(6.>) 175 21 Tasle, >) 1 /5 = taule,>) /5. (4.79)
=1

From (4.76) and (4.77), we have
e'n
Anyea(C) + ... + Guycasc(c) 2 ( c ) tna(€)/5-3° (4.80)
with ¢’ = £/5. Multiplying both sides with €' and summing over i gives
c-(1+eM+. . +eMA, (ew) > ( ¢ )Tn(e,>,w)/5-3‘- (4.81)

Lemma 4.2 For anyw, there exists eo(w) > 0, a constant C(w) and an integer N(w)

such that for any ¢ < €o(w) and n > N(w),
e'n
Anicle,w) 2 Clw) ( . )T,.(w) (4.82)
with €' =¢/5.
Proof: It is obvious that for any € > 0,
Toi = Taile, )| J Tasle>), (4.83)

and

Tu.i(ev 3)073.5(59 >) = ov (484)

where T, (¢, <), aefined in section 4.3, is the set of n-vertex trees with ¢ vertices in
the surface and containing at most en vertices of degree greater than 2. Then, one
has

tai = tai(e, <) + tus(e, >), (4.85)

and

Ta(w) = Tafe, S,w) + Tale, >, w). (4.86)
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From (4.14) and (4.46), we can write

Tale < w) = [T(e, W) - e, (4.87)

-

and

Tuw) = [T(W)]*- et (4.88)

Substituting these two equations into (4.88), we obtain

T..;fn,(:.)w) _ l_.T_v:_(Tf_':(i_;“_) (4.89)
_ T(C!“") " o(n)
: ('r(w)) o

From proposition 4.1 and 4.2, for any w, T(e,w) is continuous for ¢ € [0, 1) and

T(0,w) < T(1,w) = T{w). Therefore, there exists go(w) > 0 such that for any

£ < gofw),
T(e,w) < T(w). (4.90)
Therefore, for this ¢,
. T(e, " oin
“1_1_.12 (l - (—7(%;)) e ’) =1 (4.91)

Hence, there exists an integer N(w) and a positive constant Cy(w) such that for all

n> N(w)

Tn [ Kl ] T b "
_%(E)_“” =1- (—7(—,%‘%)) ™ > Cy(w), (4.92)
or
Tole, >, w) 2 Cy(w)Ta(w). (4.93)

From (4.81) and (4.93), we obtain
e'n
Anselc,w) 2 C(w) ( c ) To(w), (4.94)

where C(w) = Cy(w)[c- (1 + e +... + e~ and €' < eo(w)/5.
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The same inequality also can be obtained for a d-dimensional hypercubic lattice. In
such a lattice, we classify all branch points by their degrees and by the way they

connect with their nearest neighbour vertices. There are a total

k:i(u):?‘-?d’—d—l (4.95)
i :

=3
such sets. In each set, a cycle is introduced at a branch point in the same fashion.

Then in lemma 4.1, the inequality corresponding to (4.77) is
bai{e/k) 2 tai(e, <)/ k. (4.96)
From (4.72) and (4.94), we obtain
Theorem 4.6 For given w,

lim -'l;m A(ew) = InT(w) (4.97)

N—e0C

and, if the limit

- In A, (0,w) - nInT(w) _

lim inm ~0o(w) (4.98)
ezists, then the limit
. InAy(e,w) —nlnT(w)
nlLTo Inn = 0w) (4.99)
also ezists for all c and
0.(w) = Op(w) — <. (4.100)

4.4.3 n-edge c-animals

As is mentioned, for an embedding, the interaction can also considered by counting
thé number of its edges in the surface. There is an interesting question: Can we
derive the analogous results of (4.97) and (4.100) between n-edge trees and n-edge
c-animals with number of edges in the surface? In the bulk, such a problem is very

trivial, since if we denote by t., ¢, a,(c) and au(c) the number of trecs and c-animals
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with n edges and n vertices respectively, then from Euler’s formula (3.1) and (3.2),
we have £, = ta,, and a,,.(c) = aa(c). But it is not a trivial problem with the
presence of an adsorption surface, since the partition functions for these embeddings
no longer have such clear relations. However, we can show that for such a problem,
the analogous results can also exist.

We denote by a, ,(c) the number of n-edge c-animals with i edges in the surface

(a,,(0) =t ;). From the arguments given in section 4.4.1, we immediately obtain
a,.(c) < (2dn)la,_yia(e = 1) +apy (= 1)), (4.101)
or
ani(c) S (2d)n(n 1) (n—ct Dltnie' +-- + 4, (4.102)
Multiplying both sides with e* and summing over i yields
Alle,w) < (2d)n(n —1)---(n — e+ 1) f(w)To(w). (4.103)

where f(w) = (1 + e ... 4 ).

But an inequality analogous to (4.94) cannot be obtained by the arguments in
section 3.5.2. From the previous procedure, one can see that such an inequality is
deduced by proposition 4.1 and 4.2. We are unable to prove proposition 4.1 for the
edge counting problem. However, by using a different approach to be introduced in
the next section, we can derive the inequality analogous to (4.94). Combining these

two inequalities will yield

Theorem 4.7 For given w,

lim 'l' In A'(c,w) = In T’ (), (4.104)
and, if we assume that
A, (e,w) ~ n~ T (w)]", (4.108)

then
0 (w) = O(w) — ¢ (4.106)




if either of them ezists.

4.5 Strong embeddings in the square lattice

In section 4.2 we : .ve shown that in a general d-dimensional lattice, an adsorption
transition exists for lattice animals and lattice bond trees. We have also mentioned
that the same result can also be established for site trees embedded in the square
lattice. In this section, instead of only establishing the limit (4.14) for site trees, we
consider the interaction between site c-animals and an adsorption surface. We show
that theorem 4.6 also holds for site c-animals in the square lattice. In other words,
if we denote by a ;(c) the number site c-animals (a}, ;(0) = ¢} ;, the number of site
trees) with n vertices of which i of them are in the “surface” z = 0, we show that the
limit

n—o0 N

lim ~ In) el (c)e = lim %In Y the =InT*(w) (4.107)
i1=1 =1

exists. Therefore, it is independent of cyclomatic index ¢. In addition, by assuming

the expected asymptotic forms
T (w) ~ n~ @I (W) |, A%(e,w) ~ n~®IT*(w)", (4.108)

we show that
O (w) = Bp(w) — ¢ (4.109)

if either of them exists.

The idea of the proof is to show that by a rearrangement of the local configuration
of a site animal or a site tree, we can either delete cycles from the animal or introduce
a cycle to the tree at any vertex, which will yield two inequalities between T)(w) and
A?(c,w) analogous to (4.72) and (4.94). Then by following the same approach, w.
also establish the existence of the limit (4.14) for site trees. Combining all these

together then gives (4.107) and (4.109) for site c-animals.
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4.5.1 Deleting cycles from an animal

We give a transformation to delete cycles from a c-animal. We state it as a theorem:

Theorem 4.8 Any c-animal can be converted to a new animal such that the new
animal has a cyclomatic indez strictly less than c. The new animal can have at most

(n — 3)M, c-animals as its precursors for some constant M, .

Proof: Consider a c-animal A with a vertex set V. Let vy = (25, yo) be the bottom
vertex of one cycle of A (the bottom vertex of the vertex set consisting of all vertices
of the cycle). From the definition of the bottom vertex, vy is connected to the vertices
v, and v, with coordinates (zo + 1, yo) and (zo, yo + 1) respectively. We define a

square area at Vg given by
S(vo):={(z,y), Zo—-4<z<z0+4 w<y<uyo+8}, (4.110)

which has the edge [vo, v,] inside (Figure 4.2(a)). By eliminating all vertices and
edges of A contained inside S(vy), therefore the edge [vo, v,], we delete the cycle
which has v, as its bottom vertex, and also break A into a group of finite number of
disconnected subclusters with each of them having at least one vertex on the boundary
of §(vo) (Figure 4.2(b)). The number of cycles which the subclusters can have is then

strictly less than ¢. Let V' be the vertex set of the subclusters.



....................

vo = (29, ¥): ;

R R T D IR LT ERE S

Figure 4.2: (a) The square 7rea (dashed lines) is defined for A (solid lines) at vg; (b)
Deleting all vertices and edges of A inside $(vg) breaks A into disconnected clusters.
“o” represent lattice vertices of W given by (4.111).
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Let W be the set containing eight lattice vertices:

W = {wy=(zo+1, yo+1), wa=(x0+3, yo+3), (4.111)
vi=(Zo+95, Yo+3), we=(z0+7, yo+1),
W5=(.to+7,yo— l), W8=(3'0+5' y0~3)v

wr = (2o + 3, yo—3), ws = (20— 1, yo — 1)}

For each subcluster C, let its vertex set be V{C). Then, we have d(V(C),W) = 1,
or 2, or 3. Especially, the subcluster containing vo has a distance one with W. We
choose some vertices from each subcluster as follows:

If d(V(C), W) = 1, we choose all vertices which have one step to W. We denote
by V, the set for all such vertices.

If d(V(C), W) = 2, we choose one and only vertex v from C which is two steps to
either one vertea or two vertices in W. We denote by V} and V2 the sets for all such
vertices respectively.

If d(V(C), W) = 3, we choose one and only one vertex v which is three steps to
a vertex in W. Sin ¢ in A, such a cluster C must be connected with others through
one of such vertices, we also let v be such a vertex.

By this selection, we obtain that
(A) If a vertez v is in V;, its nearest neighbour vertezx with j — 1 steps to W cannot
be in V'

We connect each vertex in Vi, V] , V2 and V; to a vertex which coincides with
some vertex in W (we may simply say “ connect a vertex with W ") as follows:

(1). First, we deal with vertices in V. This is simple. For each vertex v € V,, we
add the corresponding vertex w € W and the edge [v, w] (Figure 4.3 (a)).

(2). Next we consider the vertices in V5. Without loss of generality, we let the

vertex vio = (2o + 1, yo — 4) be such & vertex, therefore, in A, the cluster which

vio belongs to is connected with other clusters through v,5. We add the vertex
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(b)

Figure 4.3: (a) Connecting vertices in V; with W; (b) connecting vertices in V3 with

W.




99

Vi1 = Vio + €3 and the edge [vi0, vi1]. There are three subcases:

(i) vor = (o, yo — 3) is in V' and already connected to W. Adding the edge
[Vo1, v11] connects vyo to W.

(i1) vo is in V' and not connected to W. We connect it with v;; and add two
other vertices vi3 = vi; + €, and vi3 = v, + 2e; = w; and the corresponding edges.
Then we remove from Vs, V) and V] the vertex which is the same cluster as vo,. In
this case, vjo and vo; may belong to the same cluster. From the definition for the
vertices in V3, the vertex v;; and its two incident edges are part of A and we have
recovered a cycle of A which does not contain the edge [vo, v)]. It can be shown that
the number of cycles is still strictly less than c as follows: If it is not true and there
exist c cycles, clearly, none of them contains the edge [vo, v1]. By recovering A, we
also recover the cycle which contains the edge [vo, v,]. It indicates that A has c+ 1
cycles, which gives a contradiction.

(iii) v, is not in V'. We connect vy, hence, vip to W in the same way as that in
case (ii).

(Figure 4.3 (b)). From this procedure, we connect all vertices in V3 to W and also
have some disconnected clusters connected together. We obtain a new group of finite
number disconnected clusters, which can have at most {c — 1) cycles. We alsc obtain
that

(B) Any vertez in V; is either connected with only one vertez in W or with more than
one vertez in W such that each of them is connected with one verter in V;.

After (2), we have some vertices in V} and V? connected with W and removed
from these two sets. For convenience, we still denote by V} and V? those remaining
vertices which have not been connected with W.

(3). We consider the vertices in V] first. From the definitions of V] and W, we

have
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(C) A vertez in V} can only be two steps away from one verter in W and also a verter
in W can be two steps away from one verter in V}.

Therefore, for such a pair, we may say that one is the other’s correspondence. Consider
a vertex v; € V). Add one step to it to connect with a vertex v, inside S(vo). v,
is then one step apart from to the correspondence, w of vy. From (A), (C) and the
procedure in (2), w cannot be connected with any vertex in V'. It is possible that
v, is also one step apart from a vertex v; which is then connected with one vertex
in V3, therefore, to one of the vertices in W. in this case, we add the edge [v',, v;']
Otherwise, we add the edge [v;, w] which connects v, with w. The procedure
connects all vertices in V] to W without creating any new cycle (Figure 4.4 (a)). We
also have

(D) Any vertez in V] is connected either to its correspondence or some vertices in W
other that its correspondence.

(4) Finally, we consider vertices in V3. Let vz be one of them. Adding the edge
[v2, V3] connects it with the vertex v, inside $(vo) which is the nearest neighbcurhood
of two vertices w', w of W. We have taree subcases:

(i) Neither of w' and w” is connected with any vertex in V’, we choose any of
them, say w' and add the [v;, w']. In this case, w' is in the nearest neighbourhood
of v, (given above), we also add the edge [v;, v;].

(ii) One of them, say w' is connected with a vertex in V', we add the edge [v,, w').

(iii). Each of them is connected with one vertex in a vertex in V’. From (A), (B)
(C) and (D), each of them can only be connected with one vertex in V] or one vertex
in V3 and therefore, w' and w" are disconnected with each other. We add the edges

[va, w'] and [v3, w"] to connect v, with W.

(Figure 4.4 (b)). From the procedure, in each case, no new cycle can be formed.
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Figure 4.4: (a) Connecting vertices in V] with W; (b] connecting vertices in V2 with

w.
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Figure 4.5: Connecting all disconnected clusters to form a new animal

Now we have connected all disconnected subclusters to some vertices in W and
obtain some new clusters. If there is only one cluster, it indicates that we alrcady have
all clusters connected together and form a new connected cluster A’. Otherwise, we

add a 6-step walk which starts at 2’ = (z9+3, yo—1) and ends at 2" = (2o +3, yo+1):
{Z', 2 +e, 2 +2e, 2/ +2e, +e; 2'+2e; +2¢e;, 2/ +e +2e, 2"}). (4.112)

The walk is two steps away from each new cluster. From each disconnected cluster,
we choose one vertex which is in W, and connect it with one vertex of the walk by
adding two edges. This connects all clusters to the walk and forms one connected
cluster A’. From our discussion, in either case, we obtain a new animal A’ which has
a cyclomatic index strictly less than ¢ (Figure 4.5).

Since such a transformation changes a c-animal A only by its local configuration

confined within §(vg), any two c-animals A;, A; can yield the same new animal A’
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only if they differ from each other by the configurations inside S(v,) and S(v;), where
v, and v; are two vertices of Ay and A; such that A, has v, as the bottom vertex
of one of its cycles and A; has v; as the bottom vertex of one of its cycles. Since,
in a hypercubic lattice, at least four vertices are needed to form a cycle, an n-vertex
c-animal can have at most (n — 3) vertices which could be the bottom vertex of a

cycle. Also, within S(vg), the total number of configurations of c-animals is bounded

above by
M=) > g (4.113)

1<k<K 0<5e
where a,:(j) is the number of k-vertex site j-animal in the bulk. Hence, A’ can have

at most (n — 3)M, c-animals as its precursors.

Within the procedure, we have deleted k, vertices of which j, are in the surface and
added k; vertices of which j; are in the surface. The resulting animal A’ has n—k, + &,
vertices with 1 — j; + j, of them in the surface. Within S(vo), an embedding can have
at most K = 72 vertices with at most 7 of them in the surface, therefore, we have
| k|=| ks — k2 IS K and | j |=| j1 — j2 IS 7. Denoting by a;(c) the number of
animals in A, ;(c) (a,(0) = ¢t2,), we have

AN S (=M D D alpiye =)+ oo+ i (1) + thyniyy (4114)

kI<K lil<7
Multiplying both sides with ¢* and summing over i gives
Ai(cw) S (n-3)M Y 14(1 +2coshw +- - + 2cosh Tw)

k<K
lA;“,(c —Lw)+--+ A45,(1L,w) + T,f,_,,(w)]

< (n—3)M;14(2K)(1 + 2coshw + - - - + 2 cosh Tw)

[Anen(c—Lw)+ -+ Ap k(@) + T2 (w)].  (4.115)
By using this recursion ¢ times, we obtain

Allew) S (=M f(W)TLx(w)+:
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+n=3)n=-3:¢ K)---[n=3+(c—- DKM ()T n(w)

< n =3+ (c = DKFMEf(W) T, lw) (4.116)

with

J(w) = 14(2K)(1 + 2coshw + - - - 4+ 2 cosh Tw). (4.117)
4.5.2 Introducing a cycle to a tree

A lower bound on A,(c,w) can also be derived in the same fashion except that, in this
case, we let vg be any vertex of a tree. By following the same procedure, we connect
all disconnected clusters to some vertices of W. No matter how many ncw clusters are
formed, we add a 8-cycie P with its bottom vertex at the vertex wg = (29— 1, yo—1)
and connect each disconnected clusters with P through one vertex which is in W.
This yields a 1-animal.

Performing such a transformation at different vertices will yield different 1-animals
which differ from each other at least at the bottom vertices of added 8-cycles. There-
fore, the precursors of the resulting 1-animal can only be those trees which differ with
each other only by the configuration inside S(vyp). The total number of such trees is

bounded above by
M=) 1, (4.118)

k<K

where t{ is the number of k-vertex site trees in the bulk. Therefore, the resulting
1-animal can have at most M; trees as its precursors. To convert T into a c-animal,
we note that, in the above procedure, there is a neighbourhood, A(vy), of vo defined
by

Nvo):={(z,y): |z—20|<9, |y—w <9} (4.119)

such that if T has another vertex vy which is not in A(vo), repeating the same

transformation at v, will leave the cycle at vo unchanged. T can have at most
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N = (18)* vertices contained in N(vo). Hence, if n > (¢ — 1) - N, there are at least

() e

ways to select the ¢ vertices at which we can carry out the transformation successfully
to convert T into a distinct c-animal. Therefore, from the above arguments, we obtain
s > n _j -N s M.Sc
Y Y auai2 ]I , ts ./ (MaSel). (4.121)
IkI<eK Lil<Te 0<j<e-1
Muliplying both sides with e'“ and summing over : yields
4c Y Al(cw)(1+2coshw + - - +2cosh Tav)
Ikl<eK

> ]I (" N ) T2(w)/(Ms°d)), (4.122)

0<ige~1

or, for sufficiently large n,
143 K AL,k (c,w) fi(w) 2 n°T(w)(1 + on)), (4.123)

where fi(w) = (1 + 2coshw + - - - 4+ 2cosh Tew).
By combining it with equations (4.116) end (4.134), we obtain

Theorem 4.9 a) The limit

lim +1n A2(c,w) = In T*(w) (4.124)

n—00 1}

ezists and is independent of cyclomatic indez c.

b) If the limit

lim InT3(w) = nlnT*(w)
n—+0o Inn

= —Bp(w) (4.125)

czrists, then

lim In Aj(c,w) — nln Ts(w) = -8.(w) (4.125)

n—oo Inn

erists for all ¢ and

O (w) = Op(w) —c. (4.127)
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4.5.3 The existence of limit (4.14) for site trees

We establish (4.14) for site trees in the square lattice. Let T; be an n;-vertex tree
with i, vertices in the surface and T, an n,-vertex tree with i vertices in the surface.
By following the arguments in section 3.2.1, we can body shift T, in the y direction
until d(Vy, Vi) = 2, where V) is the vertex set of T, and V; is the vertex set of T;.
From theorem 4.1, there exist v; € V(T,) and v; € V(T;) surh that v3 = v, + 2e;.
We add the vertex v, + e; and all edges to connect it with its nearest neighbour
vertices contained in V, and V,;. In the square lattice, a vertex can have at most
four nearest neighbour vertices. From Euler’s relation (3.1), the resulting graph is an
(n1 + n2 + 1)-vertex animal which can have, at most, two cycles. Any distinct pair of

T,; and T; gives a distinct such animal. Therefore, we have

¥ t‘ < L

F
ndyptngdy = Cmpdna+liidn +tn:+ﬂ:.i1+i2+l
. .
+an1+nz+l.i;+i3(l) + "m+nz+l.-‘.+iz+l(l)

485, pny 41, 4is (2) F Oy bna s 4ia415(2). (4.128)

Multiplying both sides with el*+2)¢ and summing over ¢, + i3 yields

ny 402
To(T5 W) € Y ilth sngeri + th tngitt
$=1
+“:,+n;+1..‘(l) + “:, +u;+l,i,+l(l)
+a:u +m+1.-‘(2) + ";. +n;+l.i+l(2)]ei“

€ (m+n)(l+e")

[T:,+n,+|(‘“’) + A:,+n3+l(l’w) + A:,”,“(Zw)]. (4.129)
By (4.116), we have
T (W)T5 (W) < (n+na)(l +e )Ty 4, 41(w)

+(ny +ng - 3)/(“’)7:, +n:+l+K(w)

+(ny 4+ 12 = 3+ K f(w)T2 4rsreac@)),  (4.130)
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where f(w) is given in (4.117).

For a tree T with n vertices of which i of them are in the surface, we let V' be the
subset of its vertex set such that V' contains all vertices of degree 1 except the one
rooted at 0. Then, by deleting the top vertex in V', we convert the n-vertex tree into
an (n — 1)-vertex tree which has either i or i —- 1 vertices in the surface. The new tree
can have at most n n-vertex trees as its precursors which differ only at the top vertex
of V'. Then by repeating the same procedure K times, we obtain an (n — K)-vertex
tree, which can have at most n(n — 1) ... (n — K + 1) n-vertex trees as its precursors.

Hence, we have
nc - n(n - l) (" -K + l)(tn S=K +---+ t:\.i)' (4'131)
Multiplying both sides with ¢ and summing over i yields

T!w) < nn=1)---(n=K+ 1)K +eM 4 ... 4 KT L (w)

< Mg (T:_g(w), (4.132)

where gx(w) = K(1 4 e 4 - - - 4 eKM). Substituting it in (4.130) gives

To(W)To,(w) < (1 +na)(1 + e ){(n1 + 12 + 1)gi(w)T}, ., (W)
+(n1 +n2 = 3)(ny +n2 + 1 + K)¥ ¥ gge 1 (W) f(0)TZ, 10 (W)
+(m + 03 + K)?(ny + 0z + 1 4 2K)5 Y gy 41 (W) f(0) T2, 10, (w))
< 3(m + 13+ 14 2K) " Mg s (W) f(w)' TS, 4, (). (4-133)

Since 3 o7, n~?In(n + K) is a convergent series and —1 In T2(w) > —1(Innts +nw) >

—(ln Ao + w + 1), by theorem 4.2, we establish the existence of the limit

lim L1n T%(w) = In T*(w) (4.134)

n—00 1

for site trees in the square lattice.
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4.5.4 Discussion

By using a different approach from that for bond embeddings in section 4.4, we
establish analogous results (4.97) and (4.100) for site embeddings in the square lattice.
But we do not have a clear idea of how to extend such an approach to site embeddings
in a lattice with a dimensionality greater than two (one thing for sure is that we should
replace the square S(vo) by an appropriate hypercube). The difficulty is when we
connect all disconnected clusters together by following the above procedure We do
not know how to avoid cycles that are not needed.

However, for bond embeddings, there is no such difficulty since by the definition of
a bond embedding, any two vertices which are in contact may not be connected by an
edge. Therefore, the procedure of introducing a cycle to any vertex of an embedding
can be applied to bond embeddings in any d-dimensional lattice, which immediately
yields an inequality analogous to (4.94) for bond embeddings by counting either the
number of vertices or the number of edges in the surface. By using this inequality

with the inequality (4.103), we prove theorem 4.7 for n-edge bond c-animals.

4.6 Numerical estimates of the transition point

The generating function of the partition function (4.12) is given by
G(z,y) = Y tamz™ "y™, (4.135)
n,Mm

where t,n is the number of distinct lattice tree (weak) embeddings rooted at the
surface with m surface contacts. We consider both the case where m is the number
of tree vertices in the surface and the case where m is the number of tree edges in
the surface. The data analyzed are given in reference [59).

Two methods are used to analyze the generating function G(z,y). In the first
method the problem is reduced to a one variable analysis by analyzing the data at a

series of fixed values of r = y/z. D — log Padé appoximants to the resulting series in
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I are then used to estimate the critical value of z for the given value of y. We have
considered hoth the cases of penctrable and impenetrable surfaces.

In the penetrable surface problem we expect the adsorption transition to occur at
y = Ye = .. Although this resuit has not been established rigorously it is indicated
by noting that when y = z the problem is just the bulk lattice tree problem and
therefore the dominant critical behaviour has an associated critical exponent which
is just the bulk exponent 8. From this we identify the crossover point at which the
surface adsorption occurs to be at y. = z.. The difficulty with verifying this from
the one variable analysis described above is that while the value of z. should be a
constant for r < r. = y./x., a plot of z. vs y through a range of values of r shows that
the estimate of z. varies continuously for a wide range of r values. This is common to
this one variable type of analysis (De'Bell and Essam [42]). We therefore attempted
to estimate the value of r at which the downward curvature of the z. estimates rapidly
increased using this as our best estimate of r.. In all cases the results obtained in
this way are consistent with r. = 1 for the penetrable surface.

By analogy with the results obtained for the penetrable surface, we estimate r,
for the impenetrable surface by locating the value of r at which the estimates of z.
consistently fall below the known bulk value. The values of r. obtained in this way
are presented in Table 4.1. The bulk values of z. used are those obtained by the
Baker-Hunter confluent singularity method as described in section 2.2. A plot of z,
versus r for the triangular lattice with an impenetrable surface and surface contacts
counted by the number of tree edges in the surface is shown in figure 1. Corresponding
plots for the other problems considered are similar but, in general, the approximants
are less well behaved.

The second method is the partial differential approximant method (PDA) intro-
duced in section 2.2. We find that the estimates of (z., r;) obtained are rather
scattered. However, as described for the self avoiding walk problem, the scattered
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Table 4.1: Summary of critical points (z., y.) for the surface-adsorption transition.
z. values are those obtaincd by applying the Baker-Hunter method to the bulk series.
y. values in the second column are obtained analyzing the scries at fixed value of
r = y/z; those in the third column are obtained by partial differential approximant
method.

Lattice I, y./x. y./x. (PDA)
Triangular

Bond 0.11892 £ 0.00001 435+005 44 +0.1

Site 0.11892 + 0.00001 270+ 0.04  3.0£0.2
Square

Bond 0.19445+3.9%00! 2.865 £ 0.005 2.8 0.1

Site 0.19445*3 200 2.270 £ 0.005 2.3 1:0.2
Simple cubic

Bond 0.00481%09098 151 4001  1.40 + 0.2

Site 0.09481*0-0000 147 £ 0.02

points in the vicinity of the critical point are expected to fall on the critical lines of
the phase diagram. Inspection of the estimates for the tree problems does, indeed,
show them to have the expected qualitative form of the phase diagram. The values
of (z., rc), tabulated in Table 4.1, are obtained by plotting z. versus r. from various
individual PDA solutions and assuming that the value of r, at which z. fell below its
bulk value was the best estimate of r.. The estimates of z., r. from individual PDAs

are superimposed on Figure 4.6 for comparison.
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Figure 4.6: Variation of z. with y./z. for the triangular lattice with an impenetrable
surface (cdge problem). Solid triangle represents the z. obtained from a typical
Padé approxin:ant ([5/5]). Open square represents the results obtained from partial
differential approximants.



Chapter 5

Summary

We have used rigorous and numerical methods to study the interaction of polymers
with two different types of surfaces. By following the work of Hammersley et al [32],
we have shown the existence of the adsorption transition for branched polymers. The
transition points and crossover exponents for SAWs have been numerically estimated
by two-variable and one-variable analyses of exact enumeration data.

For a polymer network with a fixed topology in a d(> 3) dimensional lattice,
we have proved that the reduced free energy is the same as that for self-avoiding
walks and therefore, independent of the topology. For d = 2, the reduced free energy
depends on the topology of a network. However, we have given two examples to
show that if the reduced free energy exists, even though it may differ from that of
SAWs, it still has the same transition point and the same crossover exponent as that
for SAWs. For lattice animals, the results of Soteros and Whittington (22} for bond
c-animals have been generalized to the case where an adsorption surface exists. The
same results have also been obtained for site c-animals in the square lattice. We have
thus shown that for specified polymer networks and lattice animals, certain critical
properties of polymers in the bulk are preserved when the polymers interact with an
adsorption surface. This implies that a surface interaction is an irrelevant operator.

By using Kesten's pattern theorem [54], we have obtained a rigorous result for the

exponent of twin-tailed tadpoles by relating it to the exponent of self-avoiding walks
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(see equation (3.2)). This, to our knowledge, is the first nontrivial rigorous result of
the exponents for polymer networks with fixed topology. It may also be possible to
show that the twin-tailed tadpoles have the same exponent v as that for SAWs given
in (1.8) and (1.9). The model of twin-tailed tadpoles is also relevant to the study of
polymer trails which are random walks on a lattice with a less restrictive self-avoiding

constraint than that for SAWs. These problems are currently under investigation.
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