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Abstract

The GARCH-in-mean process is an important extension of the standard GARCH

(generalized autoregressive conditional heteroscedastic) process and it has wide

applications in economics and finance. The parameter estimation of GARCH

type models usually involves the quasi-maximum likelihood (QML) technique as

it produces consistent and asymptotically Gaussian distributed estimators under

certain regularity conditions. For a pure GARCH model, such conditions were

already found with asymptotic properties of its QML estimator well understood.

However, when it comes to GARCH-in-mean models those properties are still

largely unknown. The focus of this work is to establish a set of conditions un-

der which the QML estimator of GARCH-in-mean models will have the desired

asymptotic properties. Some general Markov model tools are applied to derive

the result.

Keywords: GARCH, GARCH-in-mean, asymptotic theory, Markov model
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Chapter 1

Introduction

1.1 GARCH Models

Understanding the trade-off between risk and return is essential for financial

practices. Investors are not only concerned with the magnitude of asset returns

but also want to know the size of the accompanying risk. Therefore, modeling

financial volatilities is one of the core problems in financial econometrics.

Conventional discrete-time tools such as models of ARMA type usually find

their limitations when dealing with certain financial time series, for example the

log-return series. Empirical studies have confirmed a number of statistical reg-

ularities often observed on these series, also known as “stylized facts”, which

are hardly consistent with standard assumptions imposed on traditional mod-
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els. For instance, the marginal distributions of some financial series were found

to be leptokurtic: they have fatter tails and sharper peaks than normal distribu-

tions. Another example is the observation known as “volatility clustering”, which

was first documented by Fama (1965) and Mandelbrot (1963). The latter paper

stated: “large changes tend to be followed by large changes, of either sign, and

small changes tend to be followed by small changes”. Such observation suggests

that financial volatilities are more likely to be dynamic instead of static, and the

fluctuation depends on past information to some extent. For a detailed account

of commonly-observed stylized facts one may refer to Taylor (2005) and Tsay

(2010).

The existence of these stylized facts called for new tools that incorporate more

flexibility in volatility structures. As a result, Engle (1982) proposed the famous

autoregressive conditional heteroscedastic (ARCH) model which is defined by the

following two equations:

εt = σtηt, ηt ∼ IID(0, 1)

σ2
t = ω + α1ε

2
t−1 + · · ·+ αqε

2
t−q,

where ω > 0, αi ≥ 0, i = 1, . . . , q are constants. The stochastic process εt is

known as the ARCH process of order q, denoted by εt ∼ ARCH(q). It is not
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difficult to see that under the above specification

E(εt|Ft−1) = 0, V ar(εt|Ft−1) = σ2
t ,

where Ft = σ(εs; s ≤ t) is the information set available at time t.

From the definition equations above, we notice that ARCH model expresses

the conditional variance term σ2
t as a linear function of the past observations

of the squared process ε2t . Therefore it evolves over time as the most recent

information becoming available. This dynamic volatility feature distinguishes

ARCH models from conventional tools which operate under a constant conditional

variance assumption. The algebraic structure of the conditional variance equation

is also relatively simple yet has been found very powerful in capturing main

stylized facts.

Early applications of ARCH were mainly focused on macroeconomic aspects,

for example modeling inflation rates as in Engle (1982), Engle (1983) and Engle

and Kraft (1983). As its popularity grew, practitioners soon started to notice an

issue with the model: a long memory behavior was frequently found in empirical

studies. In other words, a good fit of ARCH usually requires a considerable

amount of parameters. For instance, the model constructed in Engle and Kraft

(1983) was in the form of ARCH(8) which included 9 parameters in total. In

order to optimize the structure and produce a more parsimonious fit, Bollerslev

(1986) revised the ARCH model and proposed the generalized ARCH (GARCH)
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process with the following specification:

εt = σtηt, ηt ∼ IID(0, 1)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

where ω > 0, αi ≥ 0, i = 1, . . . , q and βj ≥ 0, j = 1, . . . , p are constants. The

process εt is known as the GARCH process of orders p and q denoted by εt ∼

GARCH(p, q). Notice that GARCH models have essentially inherited the spirit

of ARCH: considering the conditional distribution of the process we have

εt|Ft−1 ∼ D(0, σ2
t ),

where D represents some generic distribution determined by the i.i.d innovation

process {ηt}. Note that σt represents the volatility under the financial context,

therefore is not directly observable. Nevertheless, under certain conditions it can

be expressed by an infinite past representation of lagged values of εt therefore is

well-defined and contained in Ft−1. This representation will be discussed in more

detail in Chapter 2.

Comparing to the original ARCH model, the only revision made by GARCH is

the inclusion of past conditional variances in the volatility equation. The GARCH

model assumes that the conditional variance σ2
t does not only depend on past

observations of the squared process ε2t , but also on its lagged values σ2
t−j, 1 ≤ j ≤
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p. This may be interpreted as certain type of adaptive learning mechanism as

Bollerslev (1986) pointed out. Bollerslev (1986) applied this GARCH model to the

same problem studied by Engle and Kraft (1983) and showed that a GARCH(1,1)

model provided a slightly better fit than the ARCH(8) model originally proposed.

Since its introduction GARCH models have been extremely popular and

widely applied to various areas in financial modeling, for example, option pricing

as discussed in Duan (1995). For literature reviews of empirical studies and fi-

nancial applications see Bollerslev et al. (1992), Engle (2001) and Engle (2004).

Also refer to Gouriéroux (1997), Francq and Zaköıan (2010) for comprehensive

accounts of both theories and practices. In the meantime, numerous extensions

to the original GARCH structure were also introduced by researchers to serve

different purposes in applications. For example, the GJR-GARCH model of

Glosten et al. (1993) focuses on modeling an asymmetric behavior by assuming

the signs of past observations also have impact on the forecast. The Markov-

switching GARCH model of Hamilton and Susmel (1994) aims to model dif-

ferent volatility dynamics within different sub-period of time. Other examples

of GARCH extensions include the integrated GARCH (IGARCH), exponential

GARCH (EGARCH), and threshold GARCH(TGARCH) just to name a few. For

a survey of commonly encountered GARCH acronyms see Bollerslev (2010).

Among this large variety of GARCH extensions is the GARCH-in-mean model

which is of great importance and will be the focus of our study. The motivation

behind this particular model is to explain the excessive “risk premium” in the
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financial market. Engle et al. (1987) pointed out: “as the degree of uncertainty

in asset returns varying over time, the compensation required by risk averse eco-

nomic agents for holding these assets, must also be varying”. Unfortunately,

traditional GARCH models could not explain such excessive return since the

condition expectation E(εt|Ft−1) remains to be zero throughout the time. Un-

der other frameworks such as the GARCH regression model or ARMA-GARCH

(where the GARCH process replaces the traditional i.i.d normal innovations), the

conditional expectation of the process either depends on exogenous variables or

past observations of the process as opposed to volatilities. The GARCH-in-mean

model proposed by Engle et al. (1987) excels by directly establishing a risk-return

relationship where the time-varying risk-premium is expressed as a linear function

of the current size of risk. The model is defined by the following three equations:

yt = λ+ δσt + εt

εt = σtηt, ηt ∼ IID(0, 1)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

where ω > 0, αi ≥ 0, i = 1, . . ., q, βj ≥ 0, j = 1, . . ., p and λ, δ are constants. The

process yt is known as the GARCH-in-mean process of orders p and q denoted

by yt ∼ GARCH-M(p, q). Notice that based on the last two equations, εt is a

well-defined pure GARCH process by itself, i.e. εt ∼ GARCH(p,q). Therefore the

GARCH-in-mean process is essentially a linear combination of a pure GARCH
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process and its underlying volatility process.

Time varying conditional expectation is the key feature of GARCH-in-mean

models. Based on the definition equations above one could verify that

yt|Ft−1 ∼ D(λ+ δσt, σ
2
t ),

where D represents some generic distribution determined by the distribution of ηt.

λ and δ are the two new parameters introduced by this model and under certain

financial context, they may respectively represent the risk-free portion and risk-

premium portion of the total excessive return. It also needs to be pointed out that

the conditional mean specification can take different forms in practice. Besides

the linear function λ+δσt, other popular choices include the squared form λ+δσ2
t

and the log form λ+δ log(σ2
t ). In this thesis, the consideration will be restricted to

the linear form which is the most common one seen in literature. In other words,

we assume the risk premium is proportional to the volatility which is on the same

scale of the return, as opposed to the variance or the logarithm of variance.

When λ = δ = 0 we have yt = εt ∼ GARCH(p, q). Therefore the GARCH

process may be viewed as a special member of a more general GARCH-in-mean

class. The GARCH-in-mean model plays an important role in financial modeling

and econometric study, for examples cf. Grier and Perry (2000), Devaney (2001)

and Brewer et al. (2007), just to list a few.
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1.2 Estimation Theory

GARCH-type models are not only of great value to practitioners, but also con-

tain rich theoretical contents which generate interesting problems. Considerable

amount of research is available nowadays investigating various statistical proper-

ties of GARCH-type models: stationarity, moment structure, estimation, testing,

etc. This thesis will focus on the aspect of parameter estimation. More specifi-

cally, we want to study large sample properties of the quasi-maximum likelihood

estimator (QMLE) of the GARCH-in-mean process.

Early research such as Engle (1982), Bollerslev (1986), Engle et al. (1987)

adopted the traditional maximum likelihood estimation (MLE) approach to esti-

mate parameters of GARCH-type models. The innovation terms were assumed

to be i.i.d Gaussian distributed therefore the likelihood function could be con-

structed based on the conditional distribution

εt|Ft−1 ∼ N(0, σ2
t ).

It needs to be pointed out that the estimation of GARCH-type models is based

on the conditional likelihood function. Unlike conventional ARMA models where

the likelihood function can be written explicitly, the marginal distribution of

GARCH-type processes is usually unknown, and hence one need to work with

the conditional distribution instead. Therefore, the QMLE is in fact based on
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the conditional quasi-likelihood. For convenience, we will just refer to it as the

quasi-likelihood in the later chapters.

One concern around the above MLE approach is the Gaussian assumption:

empirical studies of financial series often confirm a certain level of leptokurticity

of the distribution of innovation process, which makes the distribution not likely

to be Gaussian. In this light, the quasi-maximum likelihood estimation becomes

quite popular as it does not rely on any particular distributional assumption of

the innovation process. One can construct a QMLE without knowing the ex-

act distribution of the process. It proceeds in a similar fashion of the standard

ML estimation: we start by appointing a hypothetical distribution to ηt. This

distribution does not necessarily coincide with the true one but simply serves

as an ancillary tool to construct the quasi-likelihood function. Then the quasi-

likelihood function can be calculated based on this postulated distribution. For

instance, given observations ε1, . . ., εn of a GARCH(p, q) process, one may con-

struct a Gaussian quasi-likelihood by deriving the log-likelihood function as if

εt|Ft−1 ∼ N(0, σ2
t ), which yields:

In(θ; ε1, . . . , εn) =
1

n

n∑
t=1

lt(θ; εt) =
1

n

n∑
t=1

(
ε2t
σ2
t

+ log σ2
t )

apart from some constants. Here θ is the parameter vector containing ω, α1, . . . , αq

and β1, . . . , βp. We want to point out that the above construction is based on

Gaussian QMLE. For the purpose of estimation, other non-Gaussian density func-
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tions can also be used to construct the estimator and may have positive or neg-

ative impact on the efficiency of estimation. See Berkes and Horváth (2004) for

discussion of non-Gaussian QMLEs for GARCH models. In the GARCH-in-mean

context, since very limited knowledge is available about its estimators, we start

by only considering the Gaussian QMLE in this work.

The term σ2
t from the above equation is calculated by the recursive relation

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j.

Since the volatility process is never observed, we need to estimate σ2
1, . . ., σ2

n to

construct the quasi-likelihood. To do so one needs to iterate the above equation

based on a set of initial values - we will explain the estimating procedure in more

detail in Chapter 3. For now we just essentially view the QML estimator θ̂n as

the minimizer of the quasi log-likelihood function In(θ) 1. We want to emphasize

that although this quasi-likelihood is derived based on the Gaussian (or other

specific distributions) assumption, it does not imply that ηt is indeed normally

distributed. Objects like In(θ) and lt(θ) are simply functions to work with. For

this reason In(θ) is known as the “quasi-likelihood” or “pseudo-likelihood” instead

of just “likelihood”.

Statisticians are curious to know whether asymptotic properties found in stan-

dard MLEs may somehow be extended to QML estimators. To be more specific,

1In fact I(θ) is obtained as the negative of quasi-likelihood apart from some other constants.
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denoting the true value of the parameter by θ0, we are interested in the following

two properties:

Consistency: θ̂n → θ0 a.s when n→∞.

Asymptotic Normality:
√
n(θ̂n − θ0)

D→ N(0,Σ) when n→∞,

where
D→ indicates the convergence in distribution.

It is well known that under a set of regularity conditions, a standard MLE

will have the above two properties with the covariance matrix being the inverse

of the Fisher information matrix, cf. Newey and McFadden (1994). Establish-

ing similar results for the QMLEs of GARCH-type models has thus attracted a

great amount of attention. Pioneering work includes Weiss (1986) which devel-

oped asymptotic results for ARCH models under the assumption that the process

has finite moments up to the 4th order. Lee and Hansen (1994) further studied

the QMLE of GARCH(1, 1) based on a re-scaled variable defined as the ratio of

the disturbance to the conditional standard deviation. This variable was then

assumed to have a bounded 4th moment and the asymptotic theory was estab-

lished under such condition. However, their approach does not naturally extend

to the GARCH(p, q) case.

The QMLE of the GARCH(p, q) model was first rigorously studied by Berkes

et al. (2003) under the assumption that the process is strictly stationary and

ergodic. Also refer to Berkes and Horváth (2003) and Berkes and Horváth (2004)

for further studies of this estimator. Their approach requires the parameter space
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to be restricted in accordance with the stationarity theorem given by Bougerol

and Picard (1992a). A moment condition involving the finiteness of the (1 + s)th

moment of the squared process ε2t was also imposed (with s being an arbitrarily

small positive number). Their result was improved by Francq and Zaköıan (2004)

who removed this moment condition on the observed process and instead required

a finite 4th moment of the innovation process. This is by far known as the weakest

condition leading to asymptotic properties for QMLEs of GARCH(p, q) processes.

Escanciano (2009) followed closely with this approach and extended the result to

semi-strong GARCH models with non-i.i.d but martingale difference innovations.

On the other hand, Jensen and Rahbek (2004a) and Jensen and Rahbek (2004b)

considered the QMLEs of non-stationary ARCH(1)/GARCH(1,1) models and

found that some of the parameters could be consistently estimated while fixing

some other parameter. A few results are also available for ARMA-GARCH mod-

els: see Ling and Li (1998), Ling and McAleer (2003), Ling (2007) and Francq and

Zaköıan (2004) for asymptotic theories established for both local and global QM-

LEs. Refer to Straumann (2005) for a monograph on the parameter estimation

for general heteroscedastic models.

Compared to pure GARCH and ARMA-GARCH cases, the theoretical work

focused on the GARCH-in-mean model is very limited, and its statistical proper-

ties are still largely unknown. Hong (1991) studied the autocorrelation structure

of the GARCH-in-mean model and concluded that the autocorrelations behave

similar to the autocorrelations of a pure GARCH model and are nonnegative un-



1.2 Estimation Theory 13

der conventional parameter restrictions for GARCH. Arvanitis and Demos (2004)

considered the autocovariances for both the GARCH-in-mean process and its

squared process. Sufficient conditions for 4th-order stationarity of the process

were proposed. Iglesias and Phillips (2012) investigated the finite sample proper-

ties of the QMLE of a restricted ARCH-M model and conducted numeric exper-

iments on the estimator, but no asymptotic theory was established. Christensen

et al. (2012) obtained asymptotic results for a modified version of the conditional

heteroscedastic in mean model by combining both parametric and non-parametric

approaches. However, the result is based on a few high-level assumptions that are

difficult to verify, and it does not apply to the original GARCH-in-mean model

specified by Engle et al. (1987).

Due to the lack of an asymptotic theory, empirical studies involving GARCH-

in-mean models tend to either overlook the issue that the parameters may not

be consistently estimated, or simply assume that the asymptotic result obtained

under the pure GARCH setting also applies to GARCH-in-mean models automat-

ically, for examples cf. Devaney (2001), Kontonikas (2004). The goal of this thesis

is to fill in this gap by developing a proper asymptotic theory for the QMLE of

the GARCH-in-mean process. Establishing such a result will not only help prac-

titioners to better understand the validity of their estimates, but also serve as a

cornerstone in developing further inference tools such as various goodness-of-fit

tests of the innovation process.
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1.3 Organization of Thesis

In practice, p = 1, q = 1 is the most popular specification for GARCH-type

models as it provides both accurate and parsimonious fit. Therefore, in the fol-

lowing chapters we restrict our illustration to GARCH(1,1) and correspondingly

GARCH-M(1,1) cases for a more straightforward and concise presentation. Note

that apart from some added algebraic complexity, our approach applies to models

of higher orders in the almost same fashion.

To establish asymptotic results for the QMLE we start by studying relevant

statistical properties of the GARCH-M process. The next chapter will focus on its

stochastic stability properties including stationarity and ergodicity. Those prop-

erties are essential for us to apply a specific type of ergodic theorem and central

limit theorem later. Bougerol and Picard (1992a) established such properties for

the pure GARCH models but their approach is not transferrable to GARCH-M

models due to certain nonlinearity issues. Instead the general Markov model

approach introduced by Meyn and Tweedie (2009) will be applied to obtain the

desired result.

The procedure of quasi-maximum likelihood estimation is thoroughly dis-

cussed Chapter 3, with two main asymptotic results established including the

consistency and asymptotic normality of the estimator. Those results are based

on the geometric ergodicity theory obtained in Chapter 2, with addition of some

other parameter restrictions that are common for GARCH-type models.
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In Chapter 4 we conduct a number of simulation studies. By studying the QM-

LEs obtained under different sample sizes we investigate the overall convergence

trend of the estimates. We also simulate t-distributed innovations to generate

non-Gaussian GARCH observations and fit the model by Gaussian QMLE so the

impact of the true distribution could be evaluated. Some final discussions and

comments are included in Chapter 5.



Chapter 2

Stochastic Stability

Before diving into any specific estimation problems, the stochastic properties of

the GARCH-in-mean process need to be well understood. Ideally we would like

the process to be stochastically “stable” in some sense so that certain versions of

limit theorems (law of large numbers, CLT) can be applied.

Strict stationarity and ergodicity are two key properties that are closely re-

lated to the asymptotic theories of GARCH-type models. Their definitions (cf.

Appendix A, Definitions A.1 and A.2) may be easily found in a number of ref-

erences, for examples Brockwell and Davis (1987), Francq and Zaköıan (2010).

Broadly speaking, stationarity requires that the joint distribution of the process

is unchanged when shifting the process over time. Ergodicity requires the process

exhibiting the same behavior averaged over time as averaged over the state space.

We start this chapter by reviewing some existing results for the pure GARCH

model.
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2.1 Stability of GARCH Models

A pure GARCH(1,1) process εt is defined by the following equations:

εt = σt(θ0)ηt, ηt ∼ IID(0, 1) (2.1)

σ2
t (θ0) = ω0 + α0ε

2
t−1 + β0σ

2
t−1(θ0) (2.2)

with the parameter vector denoted by θ0 = (ω0, α0, β0)′. Throughout the thesis

we assume the following parameter restriction:

ω0 > 0, α0 > 0, β0 > 0. (2.3)

The above condition is quite standard in the GARCH literature. Some papers

including Bollerslev (1986) may specify the condition as α0 ≥ 0 and β0 ≥ 0.

However, noticing that when β0 = 0 the model reduces to an ARCH case and

when α0 = 0 it becomes rather trivial, we want to exclude these senarios by using

the strict inequality as in (2.3).

In equation (2.2) we use the notation σ2
t (θ0) instead of just σ2

t to emphasize

the fact that it is the “true” conditional variance process driven by the true

parameter θ0. For the purpose of estimation we also need to introduce another

“parametric form” of this process denoted by σ2
t (θ), which is the solution of the
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following recursive relation

σ2
t (θ) = ω + αε2t−1 + βσ2

t−1(θ) (2.4)

where εt is the GARCH observation and the parameter vector is θ = (ω, α, β)′.

This process is defined conditionally on a realization of the process {εt}, and it

directly relates to the construction of the QMLE which will be explained further

in the next chapter. Here θ is just the argument of the quasi-likelihood function

that needed to be minimized be minimized to obtain the QMLE, which is also

sometimes known as the “dummy variable ”. On the contrary, θ0 denotes the

true parameter value that defines the underlying model which generates observa-

tions. Notice that when θ = θ0, equations (2.2) and (2.4) coincide and they both

represent the true conditional variance process.

To better understand properties of this GARCH process we want to ask the

following two questions:

• Do the equations (2.1) - (2.2) yield an unique strictly stationary and ergodic

solution of εt and σ2
t (θ0) ?

• If the above is true, does equation (2.4) yields a strictly stationary and

ergodic solution of σ2
t (θ)?

Consider equations (2.1) - (2.2) first. Substituting the εt−1 term in the second
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equation by σt−1(θ0)ηt−1 gives us

σ2
t (θ0) = ω0 + α0σ

2
t−1(θ0)η2

t−1 + β0σ
2
t−1(θ0)

= ω0 + (α0η
2
t−1 + β0)σ2

t−1(θ0).

This is in the form of a random coefficient AR(1) process. The solution of σ2
t (θ0)

could be found by repeatedly applying the recursive formula above. Nelson (1990)

studied this process and obtained the following result.

Proposition 2.1. If

−∞ ≤ E log {α0η
2
t + β0} < 0 (2.5)

then σ2
t (θ0) has an unique strictly stationary and ergodic solution

σ2
t (θ0) = {1 +

∞∑
i=1

b(ηt−1) . . . b(ηt−i)}ω0,

where b(z) = α0z
2 + β0. Moreover, εt = σt(θ0)ηt is the unique strictly stationary

and ergodic solution of the GARCH(1, 1) model specified by equations (2.1) -

(2.2). On the other hand, when

E log {α0η
2
t + β0} ≥ 0

there exists no strictly stationary solution.

Proof. See Nelson (1990).
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Taking a closer look at condition (2.5), by Jensen’s inequality we know that

E log {α0η
2
t + β0} ≤ logE(α0η

2
t + β0) = log{α0 + β0}.

Therefore, when

α0 + β0 < 1 (2.6)

we have E log {α0η
2
t + β0} < log 1 = 0 in which case the GARCH process εt is

strictly stationary and ergodic. In fact, condition (2.6) has its own important

implication, cf. Bollerslev (1986):

Proposition 2.2. The GARCH process defined by (2.1) - (2.2) is 2nd-order

stationary with

V ar(εt) =
ω0

1− (α0 + β0)

if and only if condition (2.6) holds.

Proof. See Bollerslev (1986).

From the above result we see that for a GARCH(1,1) process, 2nd-order sta-

tionarity actually requires more restrictive parameter conditions than the strictly

stationarity. This is consistent with empirical studies which often found the exis-

tence of higher moments of financial series questionable. For the stationarity and

ergodicity of a general GARCH(p, q) model, refer to results obtained by Bougerol

and Picard (1992a), Bougerol and Picard (1992b) using techniques developed by
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Brandt (1986).

As already mentioned, we also need to understand the stability properties of

the parametric form process σ2
t (θ) defined by (2.4) since it is directly connected to

the quasi-likelihood function. Note that this equation resembles an ARMA(1,1)

equation if viewing squared processes as stand-alone objects, although it is tech-

nically not true since ε2t does not play the role of innovations. Nevertheless, we

may still re-write equation (2.4) by introducing the lag operator L:

(1− βL)σ2
t (θ) = ω + αε2t−1.

From the well-developed linear time series theory, we know that the lag polyno-

mial on the left hand side of the equation could be inverted given the condition

β < 1, cf. Brockwell and Davis (1987), which gives us the following infinite past

representation:

σ2
t (θ) =

ω

1− β
+ α

∞∑
i=1

βi−1ε2t−1−i, (2.7)

where these εt−1−i terms represent the strictly stationary and ergodic solution

given by Proposition 2.1. This form is also known as the ARCH(∞) representa-

tion of the GARCH process as it greatly resembles an ARCH conditional variance

equation with infinitely many parameters. Berkes et al. (2003) established an

ARCH(∞) presentation for the general GARCH(p, q) process. Under such repre-

sentation, σ2
t (θ) is expressed as an measurable function of the strictly stationary
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and ergodic process {εt}. Therefore σ2
t (θ) is also strictly stationary and ergodic,

cf. Billingsley (1995).

Based on the above discussion we see that under relatively simple conditions,

both the conditional variance process σ2
t (θ0) and the parametric form σ2

t (θ) of a

pure GARCH process are strictly stationary and ergodic.

2.2 Stability of GARCH-M Models

Now we consider the same stability problem under the GARCH-in-mean context.

Recall the definition of a GARCH-M(1, 1) model:

yt = λ0 + δ0σt(θ0) + εt (2.8)

εt = σt(θ0)ηt, ηt ∼ IID(0, 1) (2.9)

σ2
t (θ0) = ω0 + α0ε

2
t−1 + β0σ

2
t−1(θ0), (2.10)

where θ0 = (λ0, δ0, ω0, α0, β0)′ is the true parameter vector, with restrictions

specified by (2.3). Same as in the pure GARCH case, we define the following

parametric form σ2
t (θ) to construct the quasi-likelihood later:

σ2
t (θ) = ω + α(yt−1 − λ− δσt−1(θ))2 + βσ2

t−1(θ). (2.11)
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For convenience we may denote

at(θ) = yt − λ− δσt(θ). (2.12)

Notice that when θ = θ0, according to (2.8) - (2.10):

at(θ0) = yt − λ0 − δ0σt(θ0) = εt.

Therefore equation (2.11) coincides with (2.10) at the true parameter value θ0.

Consider the stability properties of σ2
t (θ0) and σ2

t (θ). First of all notice that

equations (2.9) - (2.10) independently define a pure GARCH process, i.e. εt ∼

GARCH(1, 1). Hence existing results such as Proposition 2.1 will still apply to

processes εt and σ2
t (θ0) here. Secondly, by equation (2.8) yt is simply a measurable

function of σ2
t (θ0) considering the fact that εt = σt(θ0)ηt. In this case yt is strictly

stationary and ergodic if σ2
t (θ0) also has such property. To sum up we have the

following corollary.

Corollary 2.3. If condition (2.5) holds then the GARCH-M(1, 1) process defined

by equations (2.8) - (2.10) admits an unique stationary and ergodic solution

yt = λ0 + (δ0 + ηt)σt(θ0),

where σt(θ0) =
√
σ2
t (θ0) and σ2

t (θ0) is the strictly stationary and ergodic solution
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defined in Proposition 2.1.

Proof. By Proposition 2.1, equations (2.9) - (2.10) yield an unique stationary

and ergodic solution σ2
t (θ0), which is a measurable function of lagged values of

ηt. Therefore yt is a measurable function of ηt, ηt−1, . . . which is also strictly

stationary and ergodic, cf. Billingsley (1995).

The uniqueness of the solution is related to the identifiability issue of the

GARCH-M parameters. Given yt and σ2
t (θ0), the model is identifiable if there

exists only one set of parameters such that equation (2.8) holds. This issue is

discussed later in the proof of Lemma 3.3.

Carrasco and Chen (2002) also studied the stationarity and ergodicity of

GARCH-M processes following a Markov modeling approach which we will dis-

cuss in more detail in the next section. However, the result only applies to the

true processes yt and σ2
t (θ0) but not the parametric form σ2

t (θ).

Now consider the parametric form σ2
t (θ) defined by equation (2.11). One

might want to try the same arguments that worked for the pure GARCH process.

Assuming β < 1, by the invertibility property we can re-write the equation and

obtain

σ2
t (θ) =

ω

1− β
+ α

∞∑
i=1

βi−1a2
t−1−i(θ), (2.13)

where the at(θ) process is defined by (2.12).

Although the above equation has the same form of (2.7), one can not conclude

the stability property of σ2
t (θ) by the same argument used in the GARCH case.
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For equation (2.7), we have an infinite past representation in terms of the lagged

values of εt, whose stability properties has been well-established via Proposition

2.1. However, it is not the same story for equation (2.13). The stability properties

of at(θ) are largely unknown since at(θ) is still defined as a function of σt(θ).

Only when θ = θ0, we know that at(θ0) = εt is a stationary and ergodic sequence

under condition (2.5), and in this case equation (2.13) will admit a stationary

and ergodic solution since it defines a measurable transformation of a stationary

and ergodic process. Unfortunately, this argument only works for this particular

scenario. We are not able to conclude the stability properties of σ2
t (θ) at any

arbitrary θ within the parameter space.

For this reason we need to seek an alternative approach when studying the

process σ2
t (θ). Our main tool is the general Markov model technique introduced

by Meyn and Tweedie (2009). The rest of this chapter will be heavily based on

their theories. One may also refer to other related literatures such as Feigin and

Tweedie (1985), Tjøstheim (1990), Doukhan (1994) as needed.

2.3 The Markov Model Approach

As discussed in the last section, the major problem we encountered when deal-

ing with the GARCH-M structure is the nonlinear recursion given by equation

(2.11). This nonlinear structure obstructed us from obtaining an infinite past

representation as in (2.7). Alternatively, the nonlinear state space (NSS) model
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introduced by Meyn and Tweedie (2009) provides us a suitable framework to deal

with this nonlinear process.

2.3.1 Nonlinear state space model

We begin with the definition of the NSS model.

Definition 2.4 (Nonlinear State Space Model). Suppose a stochastic process

Φ = {Φk}. Φ is called a nonlinear state space model if the following two conditions

are satisfied:

(NSS1) for each k ≥ 0, Φk and Wk are random variables on Rn and Rp respec-

tively, satisfying inductively for k ≥ 1,

Φk = F (Φk−1,Wk),

for some smooth (C∞) function F : S ×O → Φ, where S is an open subset

of Rn and O is an open subset of Rp.

(NSS2) the random variables {Wk} are an i.i.d. disturbance sequence on Rp,

whose marginal distribution Γ possesses a density γ which is supported on

an open set O.

This nonlinear state space model is Markovian since Φt only depends on the

past information through Φt−1. Note that σ2
t (θ) defined by equation (2.11) does

not directly fit into this structure because yt is not an i.i.d sequence thus can
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not be treated as the innovation process Wt. However, based on equations (2.8)

- (2.10) we see that yt and σ2
t (θ0) can be completely determined by their lagged

values yt−1, σ2
t−1(θ0) considering εt = yt − λ0 − δ0σt(θ0). We also know that

according to (2.11), σ2
t (θ) can be completely determined by yt−1 and σ2

t−1(θ).

Therefore if we set-up a three-dimensional process:

Yt = (yt, σ
2
t (θ0), σ2

t (θ))
′, (2.14)

then we have:

Yt = F (Yt−1, ηt),

where F indicates the function with the mapping rules determined by equations

(2.8) - (2.11). This Yt process is in the form of the NSS model.

Meyn and Tweedie (2009) proposed a systematic approach to study the sta-

bility properties of NSS models. Our goal is to utilize their tools to establish a

set of conditions under which the process Yt is strictly stationary and ergodic.

To be more specific, we want to consider a particular form of ergodicity known

as the geometric ergodicity.

Loosely speaking, the concept of ergodicity describes the behavior of Markov

chains “stabilizing” as the time progresses. Geometric ergodicity is a stronger

form of ergodicity which does not only require the chain to stabilize as the time

progresses, but the chain also needs to converge to its “stabilized stage” geometri-
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cally fast. To formally define this concept we introduce the total variation norm:

for some measure ν defined on the state space (S,B(S)), the total variation norm

is defined as

‖ν‖TV := sup
f :|f |≤1

|ν(f)| = sup
f :|f |≤1

∣∣∣∣∫
S

f(x)ν(dx)

∣∣∣∣ .
The definition of geometric ergodicity is given below. Related definitions such as

transitional probability kernel and invariant measure of a Markov Chain can be

found in A.3 and A.9 of Appendix A.

Definition 2.5 (Geometric Ergodicity). A Markov Chain Xt is geometrically

ergodic if there exists an invariant measure π and a constant r ≥ 1 such that

lim
n→∞

rn‖P n(x, ·)− π‖TV = 0,

where P n(·, ·) denotes the n-step transitional probability kernel.

We want to establish the geometric ergodicity property because it has im-

portant implications such as the Harris recurrence property (cf. Appendix A,

Definition A.8), which will enable us to use a specific form of the ergodic theo-

rem and central limit theorem in the next chapter. To establish the geometric

ergodicity property for a Markov chain, one needs to verify a few lower-level

stability properties for the chain including ψ-irreducibility (cf. Appendix A, Def-

inition A.4), T-chain property (cf. Appendix A, Definition A.5), aperiodicity (cf.

Appendix A, Definition A.6). Their connections are explained in the following
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result.

Proposition 2.6. Suppose {Φt} is a ψ-irreducible, aperiodic T-chain. The chain

is geometrically ergodic if there exists some compact set C, a nonnegative function

V ≥ 1 bounded on C, and positive constants c1 < 1, c2 <∞ satisfying:

∫
P (x, dy)V (y) ≤ c1V (x) + c2IC(x), x ∈ S, (2.15)

where S is the appropriate state space for the Markov chain and IC(x) = I(x ∈ C)

is the indicator function.

Proof. Theorem 6.0.1 of Meyn and Tweedie (2009) showed that for a ψ-irreducible

T-chain, every compact set is petite (cf. Appendix A, Definition A.5). This result

is then obtained by combining this property with Theorem 19.1.3 of Meyn and

Tweedie (2009), which applies to a ψ-irreducible, aperiodic chain with C being a

petite set.

This proposition is the main tool for us to establish the geometrically ergodic

property. We also want to point out that it is actually not necessary to cast this

result directly on the Yt process defined in (2.14). Considering equations (2.8) -

(2.11), we notice that

σ2
t (θ0) = ω0 + α0ε

2
t−1 + β0σ

2
t−1(θ0)

= ω0 + α0σ
2
t−1(θ0)η2

t−1 + β0σ
2
t−1(θ0)
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= ω0 + (α0η
2
t−1 + β0)σ2

t−1(θ0) (2.16)

and

σ2
t (θ) = ω + α(yt−1 − λ− δσt−1(θ))2 + βσ2

t−1(θ)

= ω + α{λ0 + δ0σt−1(θ0) + σt−1(θ0)ηt−1 − λ− δσt−1(θ)}2 + βσ2
t−1(θ)

= ω + α{λ0 − λ+ (δ0 + ηt−1)σt−1(θ0)− δσt−1(θ)}2 + βσ2
t−1(θ). (2.17)

Therefore, recognizing that yt is in fact a function of σt(θ0), we can reduce the

original three dimensional process Yt to a bivariate process Xt, defined by

Xt = (σ2
t (θ0), σ2

t (θ))
′ (2.18)

with each component defined by recursions (2.16) and (2.17) respectively.

The processes Xt as in (2.18) and Yt as in (2.14) are closely related. In

fact their components follow the same recursive rule except that Yt incorporates

one extra element yt which could be completely determined by Xt. This type of

structure was noticed by a few authors including Carrasco and Chen (2002), Meitz

and Saikkonen (2008). The former paper named such processes “generalized

hidden Markov” models. Their finding is that for those processes, the ergodic

properties of the “hidden part”, meaning the non-observable portion such as Xt

in our case, will carry over to the full process that includes both the hidden part



2.3 The Markov Model Approach 31

and the observable part, like the Yt process. Therefore we have:

Proposition 2.7. If the Markov chain Xt defined by (2.18) is geometrically er-

godic, Yt defined by (2.14) also has such property.

Proof. This is a direct application of Proposition 4 of Carrasco and Chen (2002).

In this light our approach will focus on the “reduced” process Xt instead of

the three-dimensional process Yt.

2.3.2 Control model

To study the properties of the Xt process we will make use of the “control model”

technique introduced by Meyn and Tweedie (2009). For a generic 2-dimensional

column vector Z = (Z1, Z2)′ and a constant u ∈ R, we define two functions

f1(Z, u) = ω0 + (α0u
2 + β0)Z1

f2(Z, u) = ω + α{λ0 − λ+ (δ0 + u)
√
Z1 − δ

√
Z2}2 + βZ2.

Comparing with equations (2.16) and (2.17), it is not difficult to see that for

process Xt we have

Xt+1 = F (Xt, ηt) =

f1(Xt, ηt)

f2(Xt, ηt)

 . (2.19)
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In the view of Definition 2.4, Xt is a nonlinear state space model. To study its

stability property we define its associated “control model”. Generally speaking,

the control model is a deterministic version of the original stochastic model. Let

x0 = (x0,1, x0,2)′ be a bivariate column vector and u1, . . . , uk be a sequence of

constants constrained in an open set O in R. Thus we define recursively:

x1 = F (x0, u1)

xk = F (xk−1, uk), k = 2, 3, . . .

where the function F is defined by (2.19). The sequence {xt : t ≥ 0} is called

the associate control model of the stochastic model Xt. Note that this sequence

is essentially depending on x0 and u1, . . . , uk. Therefore we may also defined a

group of functions {Fk, k = 1, 2, . . .} and re-write the above as:

x1 = F1(x0, u1) = F (x0, u1) (2.20)

xk = Fk(x0, u1, . . . , uk) = F (Fk−1(x0, u1, . . . , uk−1), uk). (2.21)

The original stochastic model and its associate control model are closely re-

lated: Meyn and Tweedie (2009) have shown that properties of the stochastic

model could be studied via its deterministic counterpart. Given x0 ∈ S with S

being the state space and a control sequence {uk : uk ∈ O, k ∈ Z+}, we define
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the following matrices:

Ak+1 =

 2α0xk,1uk+1

2α
{

(λ0 − λ)
√
xk,1 + (δ0 + uk+1)xk,1 − δ

√
xk,1xk,2

}
 (2.22)

and

Bk+1 =

α0u
2
k+1 + β0 0

a21(xk, uk+1) a22(xk, uk+1)

 , (2.23)

where

a21(xk, uk+1) = α(δ0 + uk+1)2 − αδ(δ0 + uk+1)

√
xk,2
xk,1

+
α
√
xk,1

(δ0 + uk+1)(λ0 − λ)

a22(xk, uk+1) = β + αδ2 − αδ(δ0 + uk+1)

√
xk,1
xk,2
− αδ
√
xk,2

(λ0 − λ)

with xk,1, xk,2 indicate the 1st and 2nd component of the 2-dimensional vector xk

defined by the control model (2.20) - (2.21). We are now in a position to present

the main result of this chapter.

2.3.3 Geometric ergodicity

Assumptions:

A1 The marginal distribution of ηt possesses a density γ on R which is sup-

ported on an open set and lower semi-continuous with respect to the Lebesgue

measure. η2
t has a non-degenerate distribution with Eη2

t = 1.
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A2 For any initial value x0 within the state space, there exists k ∈ Z+ and a

sequence (u1, . . . , uk) ∈ Ok such that the matrix

Ck
x0

(u1, . . . , uk) = [Bk · · ·B2A1|Bk · · ·B3A2| · · · |BkAk−1|Ak]

has full rank. Here this matrix is written in blocks of 2 dimensional column

vectors separated by vertical lines, with matrices Ai and Bi defined by

equations (2.22) - (2.23). O is some open set in R.

A3 There exists some value u∗ such that for any xk within the state space:

ρ(B∗k+1) < 1,

where B∗k+1 is the Bk+1 matrix defined in (2.23) evaluated at xk and uk+1 =

u∗. ρ(·) is the spectral radius of a matrix.

A4 α0 + β0 < 1.

The above assumptions lead to the geometric ergodicity of the process Xt

defined in (2.18). The first assumption is about distributional properties of the

innovation process. Being lower semi-continuous is a prerequisite for using the

control model technique. The unit second moment is a quite standard assumption.

It in fact also connects to other issues such as parameter identifiability, which we

will see in the next chapter.
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Assumptions A2 and A3 are necessary as they will constrain the parameter

space in a way so that the original Markov chain Xt will have certain stability

properties such as irreducibility, aperiodicity, etc. The last assumption is related

to equation (2.15). From Proposition 2.2 we know that A4 actually ensures the

underlying GARCH(1,1) process is second order stationary, which is necessary

since the left-hand side of (2.15) is an expectation and will involve the existence

of certain moment of the process.

The geometric ergodicity of Yt will then follow, which also implies the process

being Harris recurrent. The result is formally stated below.

Theorem 2.8 (Geometric Ergodicity). Under the Assumptions (A1) - (A4),

the process Yt defined by (2.14) is geometric ergodic and Harris recurrent.

Proof. See the next section.

This geometrically ergodic process is critical for us to establish asymptotic

results later. In the next chapter we will illustrate how this property can facilitate

our study of the QML estimator.

2.4 Proof of Theorem

According to Proposition 2.6, in order to show Xt is geometrically ergodic we

need to establish two intermediate results:

• Xt is a ψ-irreducible aperiodic T-chain.
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• Xt satisfies condition (2.15).

Those two steps will be illustrated in the first two subsections. Following those

we will also establish the Harris recurrence property.

2.4.1 Irreducibility, aperiodicity and T-chain property

Lemma 2.9. Under the conditions (A1) - (A4), the bivariate process Xt as

defined in (2.18) is a ψ-irreducible aperiodic T-chain.

Proof. We will study the properties of Xt via its associated control model defined

by (2.20) - (2.21). We will establish the following three properties:

• The control model xt is forward accessible.

• The control model xt has a globally attracting point.

• The control model xt is aperiodic.

Forward Accessibility

Forward accessibility is in some sense a counter part of the irreducibility property

for a Markov model. For x0 ∈ S, k ∈ Z+, we define Ak+(x0) to be the set of

all states reachable from x0 at time k by the control model (2.20) - (2.21), i.e.

A0
+(x0) = {x0} and

Ak+(x0) = {Fk(x0, u1, . . . , uk) : ui ∈ O, 1 ≤ i ≤ k}.
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We also define A+(x0) to be the set of all states that are reachable from x0 at

some time in the future, given by

A+(x0) =
∞⋃
k=0

Ak+(x0).

The control model is called forward accessible if for each x0 ∈ S, the set A+(x0) ⊂

S has non-empty interior.

Now we proceed to verify the forward accessibility property of the control

model. Given x0 ∈ S and a control sequence {uk : uk ∈ O, k ∈ Z+}, calculate the

partial derivatives of function F defined in (2.19) and evaluate at xk, uk+1:

A(xk, uk+1) =

[
∂F

∂u

]
(xk,uk+1)

=


[
∂f1
∂u

]
(xk,uk+1)[

∂f2
∂u

]
(xk,uk+1)



=

 2α0xk,1uk+1

2α
{

(λ0 − λ)
√
xk,1 + (δ0 + uk+1)xk,1 − δ

√
xk,1xk,2

}
 ,

where xk,1, xk,2 are the first and second element of the bivariate vector xk. Sup-

pose that ∂f
∂x(1)

and ∂f
∂x(1)

are the partial derivatives of the function f(x, u) over

the first and second element of x, then we have another object:

B(xk, uk+1) =

[
∂F

∂x

]
(xk,uk+1)
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=


[
∂f1
∂x(1)

]
(xk,uk+1)

[
∂f1
∂x(2)

]
(xk,uk+1)[

∂f2
∂x(1)

]
(xk,uk+1)

[
∂f2
∂x(2)

]
(xk,uk+1)



=

α0u
2
k+1 + β0 0

a21(xk, uk+1) a22(xk, uk+1)

 ,

where

a21(xk, uk+1) = α(δ0 + uk+1)2 − αδ(δ0 + uk+1)

√
xk,2
xk,1

+
α
√
xk,1

(δ0 + uk+1)(λ0 − λ)

a22(xk, uk+1) = β + αδ2 − αδ(δ0 + uk+1)

√
xk,1
xk,2
− αδ
√
xk,2

(λ0 − λ).

Denote the block matrix Ck
x0

(u1, . . . , uk) by

Ck
x0

(u1, . . . , uk) = [Bk · · ·B2A1|Bk · · ·B3A2| · · · |BkAk−1|Ak] ,

where Ak = A(xk−1, uk), Bk = B(xk−1, uk). The vertical lines above separate the

individual blocks which are 2 dimensional column vectors. By Proposition 7.1.4

of Meyn and Tweedie (2009), the control model is forward accessible if for any

x0, there exists k ∈ Z+ and a sequence (u1, . . . , uk) ∈ Ok such that

rank(Ck
x0

(u1, . . . , uk)) = 2.

Therefore in view of Assumption A2, this control model is forward accessible.
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Globally Attracting Point

If for any starting value x0, we can find a control sequence uk such that xt → x∗,

then x∗ is known as a globally attracting point of the control model.

Now we consider the difference xt−xt−1. Under the control sequence {ut = u∗}

as in Assumption A3, we can apply the mean value theorem:

‖xt+1 − xt‖ = ‖F (xt, u
∗)− F (xt−1, u

∗)‖

=

∥∥∥∥∥(xt − xt−1) ·
[
∂F

∂x

]
(x∗t ,u

∗)

∥∥∥∥∥
= ‖B(x∗t , u

∗) · (xt − xt−1)‖ . (2.24)

where x∗ is on the cord of xt and xt−1. Given some vector norm ‖ · ‖ on Rn we

can always induce the following norm for a n× n matrix A:

‖A‖op = sup

{
‖Ax‖
‖x‖

: x ∈ Rn, ‖x‖ 6= 0

}
. (2.25)

In general, the spectral radius ρ(A) is bounded above by the operator norm

of A. Therefore, we can select a particular vector norm such that its induced

matrix norm is very close to the spectral radius. By assumption A3 we know

that ρ (B(xk, u
∗)) < 1 for all xk in the state space. Thus there exists some small
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positive value ε such that

sup
xk∈S
{ρ (B(xk, u

∗))}+ ε < 1,

where S represents the state space. Denote ρ0(ε) = sup
xk∈S
{ρ (B(xk, u

∗))} + ε. We

select the vector norm which leads to an induced matrix norm satisfying:

‖B(xk, u
∗)‖op ≤ ρ0

for all xk ∈ S. By (2.25) the above inequality implies:

‖B(xk, u
∗)x‖ ≤ ρ0‖x‖.

Substituting the above result back to equation (2.24) we have:

‖xt+1 − xt‖ = ‖B(x∗t , u
∗) · (xt − xt−1)‖

≤ ρ0‖xt − xt−1‖

≤ ρ2
0‖xt−1 − xt−2‖

≤ ρt0‖x1 − x0‖,

with ρ0 < 1 as we previously discussed. Therefore we know

‖xt+1 − xt‖ → 0, as t→∞.
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Therefore, for any integers n, k we have that

‖xn+k − xn‖ = ‖xn+k − xn+k−1 + xn+k−1 · · ·xn−1 − xn‖

≤ ‖xn+k − xn+k−1‖+ · · ·+ ‖xn−1 − xn‖

≤ ‖x1 − x0‖ ·
n+k−1∑
t=n

ρt0 → 0, n→∞

Hence xt is a Cauchy sequence and the globally attracting point exists.

Aperiodicity

According to Proposition 7.2.5 of Meyn and Tweedie (2009), the control model is

called M-irreducible if it is forward accessible and has a globally attracting point.

M-irreducible chains have a set M known as a minimal set (in a sense of being

the smallest closed and invariant reachable set, cf. p154 of Meyn and Tweedie

(2009)).

Set M has a partition M =
⋃
Ui. Those Ui sets are called the “periodic orbit”.

They are essentially a deterministic counterpart of the d-cycle of a stochastic

model (cf. Appendix A, Definition A.6). Since xt → x∗ where x∗ is the globally

attracting point, x∗ is reachable at almost any time, which means it belongs to

each of the Ui orbits. This indicates that only one such Ui set exists. Hence the

model is aperiodic.

By Theorem 7.3.5 of Meyn and Tweedie (2009), the NSS model Xt as defined

in (2.18) is a ψ-irreducible aperiodic T-chain.
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2.4.2 Drift condition

Lemma 2.10. Under the conditions (A1) - (A4), the bivariate process Xt as

defined in (2.18) satisfies condition (2.15).

Proof. Inequality (2.15) is also known as the Foster-Lyapunov drift criteria. For

the Markov chain Xt and some non-negative measurable function V, define the

drift operator by:

∆V (x) :=

∫
P (x, dy)V (y)− V (x) = E{V (Xt+1)|Xt = x} − V (x), x ∈ S,

then (2.15) has the following equivalent form:

∆V (x) ≤ −c3V (x) + c2IC(x),

where c3 > 0, c2 < ∞. Note that the drift condition needs to be verified on the

stochastic model Xt instead of the control model xt.

Under Assumptions A1 and A4, we know from Jensen’s inequality that

E{log (α0η
2
t−1 + β0)} ≤ logE(α0η

2
t−1 + β0) < 0

since E(α0η
2
t−1 + β0) = α0 + β0 < 1. Hence there exists some s ∈ (0, 1) such that
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(cf. Lemma 2.2 of Francq and Zaköıan (2010)):

E{(α0η
2
t−1 + β0)s} < 1.

Now for a bivariate random vector Z = (Z1, Z2) we define the function V as

V (Z) = 1 + |Z1|s. Suppose within the state space we have x = (x1, x2) ∈ S, by

equations (2.16) - (2.17) we obtain:

E{V (Xt)|Xt−1 = x} = E{1 + σ2s
t (θ0)|Xt−1 = x}

= 1 + E
{[
ω0 + (α0η

2
t−1 + β0)x1

]s}
≤ 1 + ωs0 + xs1E{(α0η

2
t−1 + β0)s}. (2.26)

The last inequality above is due to the Cr-inequality and the fact that s ∈ (0, 1).

We already know that E
{

(α0η
2
t−1 + β0)s

}
< 1. Therefore we can set an

arbitrary positive number c1 such that E
{

(α0η
2
t−1 + β0)s

}
< c1 < 1 and define

the following compact set:

C =

{
x ∈ R : 0 ≤ x ≤ 1− c1 + ωs0

c1 − E
{

(α0η2
t−1 + β0)s

}} .
By construction, x1 is restricted to a state space of non-negative numbers
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since it represents the conditional variance. Therefore for any x1 6∈ C we know

x1 >
1− c1 + ωs0

c1 − E
{

(α0η2
t−1 + β0)s

} ,
which indicates:

(
c1 − E

{
(α0η

2
t−1 + β0)s

})
xs1 > 1− c1 + ωs0.

Rearranging the terms we obtain:

1 + ωs0 + xs1E
{

(α0η
2
t−1 + β0)s

}
< c1(1 + xs1).

Considering equation (2.26) we have shown that when x1 6∈ C,

E{V (Xt)|Xt−1 = x1} ≤ c1V (x1)

for some c1 ∈ (0, 1).

Now consider the case x1 ∈ C. We define

c2 = 1 + ωs0 + xs1E{(α0η
2
t−1 + β0)s}.
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It is not difficult to verify that 0 < c2 <∞. By (2.26) we have for all x1 ∈ C

E{V (Xt)|Xt−1 = x1} ≤ c2 ≤ c1V (x1) + c2.

Combining both cases we have shown that the drift condition (2.15) holds.

2.4.3 Harris recurrence

Lemma 2.11. Geometrically ergodic Markov chains are also Harris recurrent.

Proof. Theorem 15.0.1 of Meyn and Tweedie (2009) points out that condition

(2.15) is in fact necessary and sufficient for the geometric ergodicity property.

Therefore if some chain Φt is geometrically ergodic, (2.15) has to be satisfied, i.e.

there exists c1 < 1, c2 <∞, V ≥ 1 and a compact set C such that:

∫
P (x, dy)V (y) ≤ c1V (x) + c2IC(x).

Note that this compact set C is not necessarily the set we defined in the last

subsection, as we are dealing with a general Markov Chain now. Let V ∗(x) =

V (x)− 1, then

∫
P (x, dy)V ∗(y) =

∫
P (x, dy)V (y)− 1

≤ c1V (x) + c2IC(x)− 1

≤ c1V
∗(x) + c2IC(x)− 1 + c1
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≤ c1V
∗(x) + s(x)− f(x),

where f(x) = 1− c1, s(x) = c2IC(x). Since c1 ∈ (0, 1) we have:

∫
P (x, dy)V ∗(y) ≤ V ∗(x)− f(x) + s(x).

Now denote the hitting time for the chain Φt to reach C: τ = inf{t ≥ 1 : Xt ∈ C}.

By the Comparison Theorem 14.2.2 of Meyn and Tweedie (2009):

Ex0

[
τ−1∑
k=0

f(Φk)

]
≤ V ∗(x0) + Ex0

[
τ−1∑
k=0

s(Φk)

]

≤ V (x0) + Ex0

[
c2

τ−1∑
k=0

IC(Φk)

]

= V (x0) + Ex0 [c2IC(x0)]

<∞,

where x0 ∈ S is some initiating point for the chain. The second last line holds

since Φk will not enter C again until time τ . Ex0 indicate the expectation is taken

based on initial distribution Φ0 = x0.

On the other hand, since f(x) = 1− c1 we know

Ex0

[
τ−1∑
k=0

f(Φk)

]
= (1− c1)Ex0(τ).
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Therefore we have Ex0(τ) <∞ which indicates:

P (τ <∞|X0 = x0) = 1.

By Theorem 9.1.7 of Meyn and Tweedie (2009), the chain is Harris recurrent.

2.4.4 Conclusion

Based on Lemmas 2.9 and 2.10, we can use Proposition 2.6 to conclude that Xt

defined by (2.18) is a geometrically ergodic chain. By Proposition 2.7 the process

Yt defined by (2.14) is also geometrically ergodic. The Harris recurrence property

follows from Lemma 2.11.



Chapter 3

Asymptotic Theory

In this chapter we will establish two important asymptotic results for the QMLE

of the GARCH-in-mean model: strong consistency and asymptotic normality. We

will show that under certain conditions, the QMLE will converge almost surely to

the true parameter value as the sample size increases. Moreover, the distribution

of this estimator suitably scaled around the true parameter will also converge to

a Gaussian distribution.

3.1 Quasi-maximum Likelihood Estimator

The quasi-maximum likelihood estimation is very popular amongst various GARCH-

type models. This approach has the advantage that it does not rely on the distri-

bution information of the process. The procedure starts by imposing a postulated

distribution on the i.i.d. innovation process ηt, whose actual distribution is un-
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known. In practice, the most common substitute is the Gaussian distribution

thus the obtained estimator is known as the Gaussian QMLE.

Suppose we have observations y1, . . . , yn generated from a GARCH-M model

defined by equations (2.8) - (2.10), with the true parameter being

θ0 = (λ0, δ0, ω0, α0, β0)′.

To estimate θ0 we now construct a Gaussian quasi-likelihood function. Since the

distribution of ηt is unknown, we assume that

ηt ∼ N(0, 1).

In this case equations (2.8) - (2.10) imply that

yt|Ft−1 ∼ N
(
λ0 + δ0σt(θ0), σ2

t (θ0)
)
,

where Ft−1 is the information set up to time t − 1. Denoting fyt as the density

for this conditional distribution, we have

log fyt(x) = −(x− λ0 − δ0σt(θ0))2

2σ2
t (θ0)

− 1

2
log 2πσ2

t (θ0).

Notice that although we have observations y1, . . . , yn, the conditional variance

σ2
t (θ0) is still unknown since it is never observed. In order to construct a quasi-
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likelihood, one needs to estimate this conditional variance first. The estimation

is based on the parametric form (2.11):

σ2
t (θ) = ω + α(yt−1 − λ− δσt−1(θ))2 + βσ2

t−1(θ),

where θ = (λ, δ, ω, α, β)′ is the vector of dummy variables. This object is

defined in a similar fashion to the true process σ2
t (θ0). By equations (2.8) - (2.10)

we may easily verify that σ2
t (θ) = σ2

t (θ0) when θ = θ0.

Now we construct the Gaussian quasi-likelihood based on the density of yt|Ft−1

derived above. Define

lt(θ) =
(yt − λ− δσt(θ))2

σ2
t (θ)

+ log σ2
t (θ), (3.1)

where σ2
t (θ) is defined by (2.11). This object is calculated based on the conditional

density apart from some constants 1. The Gaussian quasi-likelihood function can

then be constructed based on the joint density of y1, . . ., yn, conditional on F0:

In(θ) =
1

n

n∑
t=1

lt(θ). (3.2)

In practice we do not work directly with In(θ) because it involves σ2
1(θ) which

needs to be calculated based on y0 and σ2
0(θ) according to equation (2.11). We

1As mentioned in Chapter 1, we work with the negative of the quasi-likelihood. i.e. lt =
−2 log fyt(x) + log 2π where f denotes the Gaussian density.
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do not have information regarding their values. To start the iteration we need

to set two initial values y0 and σ̃0(θ). The choice of these two values are almost

arbitrary as long as σ̃0(θ) takes some positive values considering it represents the

volatility. For instance we may use:

y0 = σ̃0 =
√
ω

or

y0 = y1, σ̃0 = |y1|.

Based on the initial values we could start the following iteration

σ̃2
t (θ) = ω + α(yt−1 − λ− δσ̃t−1(θ))2 + βσ̃2

t−1(θ). (3.3)

This equation is exactly the same as equation (2.11) except that it is based on

arbitrarily assigned initial values y0 and σ̃0(θ), while (2.11) is assumed to have

an infinite past. It will be shown that the choice of those two initial values does

not have any impact on the asymptotic properties of the estimator. However, we

want to point out that a good choice of initial values does have its practical value

on other aspects such as computational cost, efficiency, etc.

Based on (3.3) we define the following two objects

l̃t(θ) =
(yt − λ− δσ̃t(θ))2

σ̃2
t (θ)

+ log σ̃2
t (θ) (3.4)
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Ĩn(θ) =
1

n

n∑
t=1

l̃t(θ) (3.5)

which are essentially counterparts of (3.1) and (3.2) but directly workable as they

can be explicitly calculated based on assigned initial values. We call Ĩn(θ) our

Gaussian quasi-likelihood function 1. The quasi maximum likelihood estimator is

then defined as

θ̂n = arg min
θ∈Θ

Ĩn(θ), (3.6)

where Θ is the parameter space. Notice here the estimator is a minimizer of

the quasi-likelihood function instead of a maximizer. This is because our quasi-

likelihood function is constructed based on the negative of the postulated density

function apart from some other constants.

3.2 Consistency

The first asymptotic property we want to investigate is the strong consistency.

We are interested in conditions under which the QMLE θ̂n defined by (3.6) will

converge to the true parameter value θ0 almost surely.

We make the following assumptions:

B1 θ0 ∈ Θ and the parameter space Θ is compact.

B2 β < 1 for ∀β ∈ Θ.

1Sometimes we may also call (3.2) the quasi-likelihood by context.
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B3 Denote that Mt(θ) = ∂lt(θ)
∂θ

and B(θ, k) is some open ball within the interior

of Θ with center θ and radius k. Then supθ∗∈B(θ,k) Mt(θ
∗) is a geometrically

ergodic sequence and

E

(
sup

θ∗∈B(θ,k)

‖Mt(θ
∗)‖

)
≤M <∞.

To establish the consistency of the estimator we need to make use of both

pairs lt(θ), In(θ) and l̃t(θ), Ĩn(θ). Based on the result obtained in Chapter 2,

lt(θ) is strictly stationary and ergodic under Assumptions (A1) - (A4). Therefore

some type of ergodic theorem could apply, which gives us

In(θ) =
1

n

n∑
t=1

lt(θ)
a.s.→ E(l1(θ)).

We also want to show that θ0 is a minimizer of E(l1(θ)). This will as well in-

volve some parameter identifiability issue and the invertibility of the conditional

variance equation, which is related to Assumption (B2). On the other hand, the

QMLE θ̂n minimizes In(θ) by definition. We then conclude the convergence of θ̂n

to θ0 using a compactness argument, where Assumption (B1) is needed.

Also note that the QMLE is defined in terms of Ĩn(θ) which starts with an arbi-

trarily appointed initial measure, instead of In(θ) which starts with the stationary

measure. The geometric ergodicity and Harris recurrence property established in

Chapter 2 will play an important role in connecting these two objects.
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Lastly, Assumption (B3) is needed to ensure the equicontinuity of function

Ĩn(θ), which is necessary for us to use the compactness argument to conclude the

consistency. This conditional might be difficult to verify directly, but one can

study it by simulation techniques relatively easily.

Our first main result is stated below.

Theorem 3.1. Under Assumptions (A1) - (A4) and (B1) - (B3), the quasi-

maximum likelihood estimator defined by (3.6) is strongly consistent, i.e

θ̂n → θ0 a.s, n→∞.

Proof. See Section 3.4.

3.3 Asymptotic Normality

In the last section we established a number of conditions under which the QMLE

θ̂n is strongly consistent. In this section we further investigate this estimator

by studying its distribution. We are interested to see whether under certain

conditions, the distribution of θ̂n around the true parameter approaches a normal

distribution as the sample size increases. In other words, suppose J is some

matrix representing the asymptotic covariance structure. We would like to find
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conditions that lead to the following property:

√
n(θ̂n − θ0)

D→ N(0, J),

where θ0 is the true parameter and θ̂n is the QMLE defined by (3.6). The notation

D→ indicates the convergence in distribution.

The approach to study this problem involves the Taylor’s expansion of the

quasi-likelihood function Ĩn(θ̂n) around the true parameter value θ0. Since θ̂n

is the minimizer of Ĩn(θ) by definition, we know that its first order derivative

evaluated at this minimizer should be zero under suitable conditions. In other

words we have:

1

n

n∑
t=1

∂l̃t(θ̂n)

∂θ
= 0,

where ∂l̃t(θ̂n)
∂θ

is the partial derivative ∂l̃t(θ)
∂θ

evaluated at θ = θ̂n.

This first order derivative can be further expanded around θ0 by applying

Taylor’s expansion. This gives us the following second-order condition:

1

n

n∑
t=1

∂l̃t(θ̂n)

∂θ
=

1

n

n∑
t=1

{∂l̃t(θ0)

∂θ
+
∂2l̃t(θ

∗)

∂θ∂θ′
(θ̂n − θ0)}

= 0,
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where θ∗ is on the cord of θ0 and θ̂n. Rearranging the terms we have:

√
n(θ̂n − θ0) =

[
− 1

n

n∑
t=1

∂2l̃t(θ
∗)

∂θ∂θ′

]−1

· 1√
n

n∑
t=1

∂l̃t(θ0)

∂θ
. (3.7)

Therefore the limiting distribution of
√
n(θ̂n − θ0) can be studied if we can un-

derstand the properties of both objects on the right-hand side.

The ergodic theorem and central limit theorem for martingale difference se-

quences are the most important tools we need to study processes on the right

hand side of equation (3.7). The Harris recurrence and geometrically ergodicity

property established in Chapter 2 will help to eliminate the asymptotic impact

of arbitrarily assigned initial values. The distribution of
√
n(θ̂n − θ0) could then

be derived following the Slutsky’s theorem.

Introduce the following two matrices:

A = E

(
∂2lt(θ0)

∂θ∂θ′

)
, B = E

(
∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

)
(3.8)

and we assume that:

C1 θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

C2 E(ηt) = 0, E(η4
t ) <∞.

C3 β2
0 + α2

0δ
2
0 < 1 and 3α2

0 + 2α0β0 + β2
0 < 1.

C4 The matrix A defined in (3.8) is nonsingular.
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Our second main result of this chapter is stated below.

Theorem 3.2. Under Assumptions (A1) - (A4), (B1) - (B3) and (C1) - (C4),

the QMLE θ̂n defined by (3.6) has an asymptotic normal distribution around the

true parameter value θ0, and

√
n(θ̂n − θ0)

D→ N(0, A−1BA−1),

where
D→ indicates the convergence in distribution and A, B are matrices defined

in (3.8).

Proof. See Section 3.5

Strong consistency is necessary for us to further conclude the asymptotic

normality of the estimator, therefore assumptions (A1) - (A4), (B1) - (B3) are

necessary. (C1) is more restrictive than B1 as it precludes θ0 from being on

the boundary so that the first-order condition will hold. (C2) is quite standard

in the literature, cf. Francq and Zaköıan (2004), Berkes et al. (2003). It is a

necessary moment condition to ensure certain objects in matrices A and B have

finite expectations. Assumption (C3) concerns certain moment properties of our

GARCH-M model. Studying the second order derivatives will involve solving a

random coefficient AR type of structure. For us to conclude the convergence of

such a structure we will require the existence of the 4th moment of the process,

which is ensured by the second part of Assumption (C3). On the other hand, the
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first part of the Assumption (C3) is related to the AR parameter and will lead

to a solution of the random coefficient process with desired properties. Together

with Assumption C2 they ensure the matrices A and B are well-defined. The last

assumption is necessary for us to apply the Slutsky’s theorem.

We will see later that the matrices A and B are limits related to the first order

and second order derivatives of the quasi-likelihood. It is sometimes difficult to

obtain closed form solutions of A and B. However, certain numerical analysis can

be applied to approximate those derivatives and an estimate of the asymptotic

covariance matrix A−1BA−1 can be obtained. The algorithm will be discussed in

more detail in Chapter 4.

3.4 Proof of Consistency

In this section we prove Theorem 3.1. Two intermediate results will be established

to facilitate the proof. First of all we want to show a certain expectation is well-

defined, and it is minimized at the true parameter value θ0. This expectation will

be our limit criterion. Secondly, we will show that the quasi maximum likelihood

function Ĩn(θ) converges to this limit criterion under any appointed initial values.

To ease our presentation we introduce an additional notation:

ãt(θ) = yt − λt − δtσ̃t(θ), (3.9)
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where σ̃t(θ) =
√
σ̃2
t (θ) with σ̃2

t (θ) defined by equation (3.3). Notice that ãt(θ) is

essentially defined in the same way as at(θ) of equation (2.12), but starts with

arbitrarily assigned initial values instead of an infinite past.

3.4.1 Limit criterion

Lemma 3.3. Under Assumptions (A1) - (A4) and (B1) - (B2), the expectation

Eθ0l1(θ) is well defined in R ∪ {+∞} for ∀ θ ∈ Θ and in R at θ = θ0. Moreover,

Eθ0l1(θ) > Eθ0l1(θ0) for ∀ θ 6= θ0, θ ∈ Θ.

Proof. We establish the following three steps in sequence:

• Eθ0l1(θ) is well-defined.

• It is minimized at σ2
1(θ0) and a1(θ0).

• The parameters are identifiable.

The Expectation is Well Defined in R ∪ {+∞}

Define notations x− = max(−x, 0) and x+ = max(x, 0). Then we have

Eθ0l
−
1 (θ) = Eθ0{max(− log σ2

1(θ)− a2
1(θ)

σ2
1(θ)

, 0)}

≤ Eθ0{max(− log σ2
1(θ), 0)}

≤ max(− logEθ0σ
2
1(θ), 0)

≤ max(− logω, 0)
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<∞,

where at(θ) is defined by (2.12). Note that the third step above involves the

application of Jensen’s inequality on the logarithm function.

Since Eθ0l
−
1 (θ) < ∞, we know that Eθ0l1(θ) 6= −∞. Therefore Eθ0l1(θ) ∈

R ∪ {+∞} for any parameter value within the parameter space. Now consider

the particular case when θ = θ0:

Eθ0l1(θ0) = Eθ0

{
a2

1(θ0)

σ2
1(θ0)

+ log σ2
1(θ0)

}
= Eθ0

{
σ2

1(θ0)η2
1

σ2
1(θ0)

+ log σ2
1(θ0)

}
= 1 + Eθ0 log σ2

1(θ0).

Assumption A4 ensures the underlying GARCH process is second order sta-

tionary. Hence there exists some positive number s ∈ (0, 1), such thatEθ0σ
2s
1 (θ0) <

∞. By Jensen’s inequality we have

Eθ0 log σ2
1(θ0) = Eθ0

1

s
log σ2s

1 (θ0) ≤ 1

s
logEθ0σ

2s
1 (θ0) <∞,

which implies that Eθ0l1(θ) is finite at θ = θ0. In summary, Eθ0l1(θ) is well defined

in R ∪ {+∞}.
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The Expectation is Minimized at a1(θ0) and σ2
1(θ0)

Now for an arbitrary θ ∈ Θ, we have

Eθ0l1(θ)− Eθ0l1(θ0) = Eθ0

{
a2

1(θ)

σ2
1(θ)
− a2

1(θ0)

σ2
1(θ0)

}
+ Eθ0 log

σ2
1(θ)

σ2
1(θ0)

= Eθ0

{
a2

1(θ)

σ2
1(θ)
− σ2

1(θ0)η2
1

σ2
1(θ0)

}
+ Eθ0 log

σ2
1(θ)

σ2
1(θ0)

= Eθ0
a2

1(θ)

σ2
1(θ)
− 1 + Eθ0

{
log

σ2
1(θ)

σ2
1(θ0)

+
σ2

1(θ0)

σ2
1(θ)

− σ2
1(θ0)

σ2
1(θ)

}
= Eθ0

{
a2

1(θ)

σ2
1(θ)
− σ2

1(θ0)

σ2
1(θ)

}
+ Eθ0

{
log

σ2
1(θ)

σ2
1(θ0)

+
σ2

1(θ0)

σ2
1(θ)

− 1

}
.

First consider the second term on the righthand side. Notice the fact that

log x ≤ x− 1, ∀x > 0

with the equality if and only if x = 1. Therefore:

Eθ0

{
log

σ2
1(θ)

σ2
1(θ0)

+
σ2

1(θ0)

σ2
1(θ)

− 1

}
≥ Eθ0

{
log

σ2
1(θ)

σ2
1(θ0)

+ log
σ2

1(θ0)

σ2
1(θ)

}
= 0

with equality holds if and only if

σ2
1(θ0)

σ2
1(θ)

= 1, i.e. σ2
1(θ) = σ2

1(θ0).
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Now consider the first term

Eθ0

{
a2

1(θ)

σ2
1(θ)
− σ2

1(θ0)

σ2
1(θ)

}
= Eθ0

{
a2

1(θ)

σ2
1(θ)
− a2

1(θ0)

σ2
1(θ)

+
a2

1(θ0)

σ2
1(θ)

− σ2
1(θ0)

σ2
1(θ)

}
= Eθ0

{
a2

1(θ)

σ2
1(θ)
− a2

1(θ0)

σ2
1(θ)

}
+ Eθ0

σ2
1(θ0)η2

1 − σ2
1(θ0)

σ2
1(θ)

= Eθ0

{
a2

1(θ)

σ2
1(θ)
− a2

1(θ0)

σ2
1(θ)

}
+ Eθ0

σ2
1(θ0)

σ2
1(θ)

Eθ0(η
2
1 − 1)

= Eθ0
a2

1(θ)− a2
1(θ0)

σ2
1(θ)

= Eθ0
(a1(θ)− a1(θ0))2

σ2
1(θ)

+ Eθ0
2a1(θ)a1(θ0)− 2a2

1(θ0)

σ2
1(θ)

= Eθ0
(a1(θ)− a1(θ0))2

σ2
1(θ)

+ Eθ0
2η1σ1(θ0)(a1(θ)− a1(θ0))

σ2
1(θ)

.

Note that for the third step above we used the fact η1 is independent of σ2
1(θ0)

and σ2
1(θ). We know for the first term on the righthand side of the equation:

Eθ0
(a1(θ)− a1(θ0))2

σ2
1(θ)

≥ 0

with equality holds if and only if a1(θ) = a1(θ0). We also know that σ1(θ0) and

σ1(θ) belong to the information set at time t = 0, as well as a1(θ) − a1(θ0) =

λ0 − λ+ δ0σ1(θ0)− δσ1(θ). Hence

Eθ0

{
2η1σ1(θ0)(a1(θ)− a1(θ0))

σ2
1(θ)

}
= Eθ0(η1)Eθ0

{
2σ1(θ0)(a1(θ)− a1(θ0))

σ2
1(θ)

}
= 0.



3.4 Proof of Consistency 63

Therefore

Eθ0

{
a2

1(θ)

σ2
1(θ)
− σ2

1(θ0)

σ2
1(θ)

}
≥ 0

with equality holds if and only if a1(θ) = a1(θ0). Along with the previous results

we have shown that

Eθ0l1(θ)− Eθ0l1(θ0) ≥ 0, ∀ θ ∈ Θ

with equality holds if and only if

a1(θ) = a1(θ0), σ2
1(θ) = σ2

1(θ0).

Identifiability of The Parameters

The last step is to show the above equations imply θ = θ0. Denote σ2
1(θ) =

σ2
1(θ0) = σ2

1. Since a1(θ) = a1(θ0) we have

y1 − λ− δσ1 = y1 − λ0 − δ0σ1,

which implies

λ− λ0 = (δ0 − δ)σ1.

If δ0− δ 6= 0 then σ1 = λ−λ0
δ0−δ is a constant. Because σ2

t (θ0) is a strictly stationary

and ergodic process we know σ2
t (θ0) remains to be a constant at all time. On the
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other hand, based on the GARCH-in-mean specification:

σ2
t (θ0) = ω0 + α0ε

2
t−1 + β0σ

2
t−1(θ0) = ω0 + α0σ

2
t−1(θ0)η2

t−1 + β0σ
2
t−1(θ0).

If σ2
t (θ0) is a constant, from the above relation η2

t needs to be a constant as

well. This contradicts the assumption that η2
t has a non-degenerate distribution.

Therefore we have δ0 − δ = 0, i.e. δ0 = δ and as a result, λ0 = λ.

Now we consider the other parameters within the θ. Define polynomials

Aθ(z) = αz, Bθ(z) = 1− βz

Aθ0(z) = α0z, Bθ0(z) = 1− β0z.

Denote L the lag operator, we have the following representations:

Bθ(L)σ2
1(θ) = ω + Aθ(L)a0(θ)

Bθ0(L)σ2
1(θ0) = ω0 + Aθ0(L)a0(θ0).

Notice a1(θ) = a1(θ0) = ε1. Along with the invertibility assumption β < 1 we

have the following representations:

σ2
1(θ) =

ω

Bθ(1)
+

Aθ(L)

Bθ(L)
ε21

σ2
1(θ0) =

ω0

Bθ0(1)
+

Aθ0(L)

Bθ0(L)
ε21.
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Based on the fact that σ2
1(θ) = σ2

1(θ0) we have:

{
Aθ(L)

Bθ(L)
− Aθ0(L)

Bθ0(L)

}
ε21 =

ω0

Bθ0(1)
− ω

Bθ(1)
.

If Aθ(z)
Bθ(z)

− Aθ0 (z)

Bθ0 (z)
6= 0 within the unit circle, there would exist a constant linear

combination of the ε21−j, j ≥ 0. In this case ε21|ψ0 would be a constant and it

would imply

ε21 − Eθ0(ε21|ψ0) = 0,

where ψ0 denotes the information set at time t = 0. However, this contradicts the

condition that η2
1 has a non-degenerate distribution as we recognize under such

assumption

ε21 − Eθ0(ε21|ψ0) = σ2
1(θ0)(η2

1 − 1) 6= 0 with positive probability.

Therefore for all |z| < 1:

Aθ(z)

Bθ(z)
=

Aθ0(z)

Bθ0(z)
,

ω

Bθ(1)
=

ω0

Bθ0(1)
.

Under Assumption A4 the polynomials Aθ(z) and Bθ(z) do not have common

roots. Therefore it follows that Aθ(z) = Aθ0(z), Bθ(z) = Bθ0(z) and ω = ω0.
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Thus we have shown that σ2
t (θ) = σ2

t (θ0) implies

(ω, α, β)′ = (ω0, α0, β0)′

Together with the previous results, we have shown that a1(θ) = a1(θ0) and

σ2
1(θ) = σ2

1(θ0) imply θ = θ0.

To sum up, the expectation Eθ0l1(θ) is uniquely minimized at θ = θ0.

3.4.2 Convergence to the criterion

Lemma 3.4. Under Assumptions (A1) - (A4) and (B1) - (B2),

Ĩn(θ)→ Eθ0l1(θ) a.s. , θ ∈ Θ

Proof. Under the above assumptions, we know from Theorem 2.8 that the multi-

variate process (yt, σ
2
t (θ0), σ2

t (θ))
′
is stationary and geometrically ergodic. Since

lt(θ) is a measurable function of this process, it is also ergodic.

From lemma 3.3, there are two cases that require consideration, depending on

whether the expectation Eθ0l1(θ) is finite.
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Case 1: when Eθ0l1(θ) is finite

Due to the stationarity and ergodicity of lt(θ), we can incur the standard ergodic

theorem for a stationary sequence, cf. Doob (1990), which yields:

1

n

n∑
t=1

lt(θ)→ Eθ0l1(θ) a.s. ,

where lt(θ) is assumed to start with the invariant measure π.

l̃t(θ) is exactly the same sequence except that it starts with some arbitrarily

assigned initial measure. According to Proposition 17.1.6 of Meyn and Tweedie

(2009), the above convergence result also holds for any initial distribution pro-

vided the chain is Harris recurrent and geometrically ergodic. Therefore we have

1

n

n∑
t=1

l̃t(θ)→ Eθ0l1(θ) a.s. .

Case 2: when Eθ0l1(θ) is positive infinite

When Eθ0l1(θ) = +∞ the ergodic theorem does not apply directly. We consider

the following truncated sequences

lt(θ, k) = lt(θ)I{lt(θ)≤k}, l̃t(θ, k) = l̃t(θ)I{lt(θ)≤k},



3.4 Proof of Consistency 68

where k > 0 and k → +∞. For all k > 0 we have lt(θ, k) ≤ k, and hence the

expectation of lt(θ, k) is finite. By the standard ergodic theorem we know

1

n

n∑
t=1

lt(θ, k)→ Eθ0l1(θ, k) a.s. (n→∞).

We apply the same argument in the previous case and Proposition 17.1.6 of Meyn

and Tweedie (2009) yields:

1

n

n∑
t=1

l̃t(θ, k)→ Eθ0l1(θ, k) a.s., (n→∞).

When k →∞, notice that l̃1(θ, k)→ l̃1(θ). Therefore by Beppo Levi’s theorem

Eθ0l1(θ, k)→ Eθ0l1(θ) = +∞, (k →∞).

Hence we conclude that

1

n

n∑
t=1

l̃t(θ) ≥
1

n

n∑
t=1

l̃t(θ, k)→ +∞, (k →∞, n→∞).

In summary, when Eθ0l1(θ) ∈ R ∪ {+∞}, then

1

n

n∑
t=1

l̃t(θ)→ Eθ0l1(θ), (n→∞).
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3.4.3 Equicontinuity of quasi-likelihood

Lemma 3.5. Under Assumptions (A1) - (A4) and (B1) - (B3), the function

Ĩn(θ) defined in Equation (3.2) is equicontinous.

Proof. Suppose an open ball B(θ, k) within the interior of Θ, with center θ and

radius k. Then for any θ(1), θ(2) in B(θ, k), we apply the mean value theorem:

∣∣∣Ĩn(θ(1))− Ĩn(θ(2))
∣∣∣ ≤ 1

n

n∑
t=1

∣∣∣l̃t(θ(1))− l̃t(θ(2))
∣∣∣

≤

(
1

n

n∑
t=1

sup
θ∗∈B(θ,k)

∥∥∥M̃t(θ
∗)
∥∥∥) · ∥∥θ(1) − θ(2)

∥∥

where M̃t(θ) = ∂l̃t(θ)
∂θ

. By the law of large numbers for geometric ergodic sequence,

we know that

1

n

n∑
t=1

sup
θ∗∈B(θ,k)

∥∥∥M̃t(θ
∗)
∥∥∥ a.s→ E

(
sup

θ∗∈B(θ,k)

∥∥∥∥∂lt(θ)∂θ

∥∥∥∥
)

= E

(
sup

θ∗∈B(θ,k)

‖Mt(θ
∗)‖

)

which is bounded above by M according to the assumption. On the other hand

‖θ(1) − θ(2)‖ is also bounded above since they are restricted within the same

neighborhood of θ. Therefore we know that

|Ĩn(θ(1))− Ĩn(θ(2))| < M
∥∥θ(1) − θ(2)

∥∥

for any θ(1) and θ(2) within B(θ, k). Thus the equicontinuity property holds.



3.4 Proof of Consistency 70

3.4.4 Conclusion

For all θ ∈ Θ, let Bk(θ) be an open ball with center θ and radius 1/k. Notice

that for any neighborhood V (θ0) of θ0, we have

lim sup
n→∞

inf
θ∗∈V (θ0)

Ĩn(θ∗) ≤ lim
n→∞

Ĩn(θ0) = Eθ0l1(θ0). (3.10)

For some θ 6= θ0, we could apply a similar argument as in the proof of Lemma

3.4. Applying the ergodic theorem on the sequence {infθ∗∈Bk(θ)∩Θ lt(θ
∗)}, we have

lim inf
n→∞

n−1

n∑
t=1

inf
θ∗∈Bk(θ)∩Θ

lt(θ
∗) = Eθ0 inf

θ∗∈Bk(θ)∩Θ
l1(θ∗).

By Beppo Levi’s theorem, when k →∞ we have

Eθ0 inf
θ∗∈Bk(θ)∩Θ

l1(θ∗)→ Eθ0l1(θ). (3.11)

In the view of Lemma 3.3, we know that for any θ 6= θ0, there exists some

neighborhood B(θ) such that

lim inf
n→∞

inf
θ∗∈B(θ)

Ĩn(θ∗) > Eθ0l1(θ0) a.s. . (3.12)

Note that the validity of the above equation also requires the equicontinuity of

Ĩn(θ), which is established in Lemma 3.5.

Since the parameter space is compact it can be covered by unions of finite
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open sets. Suppose Θ is covered by the union of an arbitrary neighborhood B(θ0)

of θ0 and a finite sequence of balls B(θ1), . . ., B(θk) satisfying relation (3.12).

Those balls form a finite subcover of Θ. It is not difficult to see that

inf
θ∈Θ

Ĩn(θ) = min
i=0,1,...,k

inf
θ∈Θ∩B(θi)

Ĩn(θ).

By relations (3.10) - (3.11), we know almost surely θ̂n belongs to V (θ0) when n

goes to infinity. Since this is true for an arbitrary neighborhood of θ0, we know

θ̂n converges to θ0 almost surely. The proof is completed.

3.5 Proof of Asymptotic Normality

In this section we prove Theorem 3.2. To establish the asymptotic normality

property, one important step is to show the matrices A and B as in (3.8) are

well-defined. Then we can apply certain type of limit theorems to the objects on

the right-hand side of (3.7). The proof is concluded by applying the Slutsky’s

theorem.

3.5.1 First order derivatives

Lemma 3.6. Under Assumptions (A1) - (A4), (B1) - (B3) and (C1) - C3)

we have

E

∥∥∥∥∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

∥∥∥∥ <∞. (3.13)
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Proof. Recall the parameter form definitions:

lt(θ) =
a2
t

σ2
t

+ log σ2
t , (3.14)

where

σ2
t = ω + αa2

t−1 + βσ2
t−1 (3.15)

at = yt − λ− δσt (3.16)

and θ = (λ, δ, ω, α, β)′ with the true parameter being θ0 = (λ0, δ0, ω0, α0, β0)′.

Moving forward we will use the following shorthand at = at(θ), σt = σt(θ),

lt = lt(θ) unless stated otherwise.

Now take derivative with respect to θ on both sides of equation (3.14) and it

yields:

∂lt
∂θ

=
2at
σ2
t

· ∂at
∂θ
− a2

t

σ4
t

· ∂σ
2
t

∂θ
+

1

σ2
t

· ∂σ
2
t

∂θ
. (3.17)

From equation (3.16) and the relation
∂σ2
t

∂θ
= 2σt · ∂σt∂θ we obtain:

∂at
∂λ

= −1− δ

2σt
· ∂σ

2
t

∂λ

∂at
∂δ

= −σt −
δ

2σt
· ∂σ

2
t

∂δ

∂at
∂ui

= − δ

2σt
· ∂σ

2
t

∂ui
,

where ui denotes an arbitrary pure GARCH parameter (any parameter other than
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λ, δ). Let d(θ) = (−1, −σt, 0, 0, 0)′, then we may re-write the above results as:

∂at
∂θ

= d(θ)− δ

2σt
· ∂σ

2
t

∂θ
. (3.18)

Now substitute (3.18) back into equation (3.17), then evaluate the derivative at

the true parameter value θ = θ0:

∂lt(θ0)

∂θ
=

2at(θ0)

σ2
t (θ0)

·
[
d(θ0)− δ0

2σt(θ0)
· ∂σ

2
t (θ0)

∂θ

]
− a2

t (θ0)

σ4
t (θ0)

· ∂σ
2
t (θ0)

∂θ
+

1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ

=
2ηt
σt(θ0)

· d(θ0)− ηtδ0

σ2
t (θ0)

· ∂σ
2
t (θ0)

∂θ
+

1− η2
t

σ2
t (θ0)

· ∂σ
2
t (θ0)

∂θ

=
2ηt
σt(θ0)

· d(θ0) +
1− η2

t − ηtδ0

σ2
t (θ0)

· ∂σ
2
t (θ0)

∂θ
.

Note that the above calculation involves the fact that

at(θ0) = εt = σt(θ0)ηt.

Given the above results we have:

∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′
= 4η2

t ·
d(θ0)

σt(θ0)

d′(θ0)

σt(θ0)
+

(1− η2
t − ηtδ0)2

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

+
2ηt(1− η2

t − ηtδ0)

σ2
t (θ0)

·
[
d(θ0)

σt(θ0)

∂σ2
t (θ0)

∂θ′
+
∂σ2

t (θ0)

∂θ

d′(θ0)

σt(θ0)

]
. (3.19)

We consider the above equation term by term. First notice that 1
σt(θ0)k

≤ 1
ωk0
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for any k > 0. Therefore we know

E

∥∥∥∥ d(θ0)

σt(θ0)

∥∥∥∥ = E

∥∥∥∥(− 1

σt(θ0)
− 1 0 . . . 0)

∥∥∥∥ <∞.
It is also not difficult to verify that

E

∥∥∥∥ d′(θ0)

σt(θ0)

∥∥∥∥ <∞, E

∥∥∥∥ d(θ0)

σt(θ0)

d′(θ0)

σt(θ0)

∥∥∥∥ <∞.
Consider the right hand side of equation (3.19). Given Assumption C2, it is not

difficult to realize that the first term, the first parts of the second and third terms

have finite expectations. Assume in addition we have

E

∥∥∥∥∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

∥∥∥∥ <∞,
which would also imply

E

∥∥∥∥∂σ2
t (θ0)

∂θ

∥∥∥∥ <∞, E

∥∥∥∥∂σ2
t (θ0)

∂θ′

∥∥∥∥ <∞.
Therefore one could easily verify that every term on the righthand side of (3.19)

has finite expectations. By applying a simple triangular inequality type of argu-

ment we could show that ‖∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′
‖ has a finite expectation thus inequality

(3.13) holds.
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On the other hand, applying the Cauchy-Schwarz inequality gives us:

E

∥∥∥∥∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

∥∥∥∥ ≤
√
E

∥∥∥∥∂σ2
t (θ0)

∂θ

∥∥∥∥2

·

√
E

∥∥∥∥∂σ2
t (θ0)

∂θ′

∥∥∥∥2

,

which suggests that E‖∂σ
2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′
‖ is finite if we have

E

∥∥∥∥∂σ2
t (θ0)

∂θ

∥∥∥∥2

<∞. (3.20)

Based on the above discussion, we only need to establish equation (3.20) in order

to show that (3.13) holds.

Now, by (3.14) - (3.15) and (3.18):

∂σ2
t

∂ω
= 1 + 2αat−1

∂at−1

∂ω
+ β

∂σ2
t−1

∂ω

= 1 + 2αat−1(− δ

2σt
·
∂σ2

t−1

∂ω
) + β

∂σ2
t−1

∂ω

= 1− αδ at−1

σt−1

∂σ2
t−1

∂ω
+ β

∂σ2
t−1

∂ω

= 1 + (β − αδ at−1

σt−1

)
∂σ2

t−1

∂ω
.

Similarly,

∂σ2
t

∂α
= a2

t−1 + α
∂a2

t−1

∂α
+ β

∂σ2
t−1

∂α

= a2
t−1 + 2αat−1(− δ

2σt−1

∂σ2
t−1

∂α
) + β

∂σ2
t−1

∂α

= a2
t−1 + (β − αδ at−1

σt−1

)
∂σ2

t−1

∂α
,
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∂σ2
t

∂β
= α

∂a2
t−1

∂β
+ β

∂σ2
t−1

∂β
+ σ2

t−1

= σ2
t−1 + 2αat−1(− δ

2σt−1

∂σ2
t−1

∂β
) + β

∂σ2
t−1

∂β

= σ2
t−1 + (β − αδ at−1

σt−1

)
∂σ2

t−1

∂β
,

∂σ2
t

∂λ
= α

∂a2
t−1

∂λ
+ β0

∂σ2
t−1

∂λ

= 2αat−1(−1− δ

2σt−1

∂σ2
t−1

∂λ
) + β

∂σ2
t−1

∂λ

= −2αat−1 + (β − αδ at−1

σt−1

)
∂σ2

t−1

∂λ
,

∂σ2
t

∂δ
= α

∂a2
t−1

∂δ
+ β

∂σ2
t−1

∂δ

= 2αat−1(−σt−1 −
δ

2σt−1

∂σ2
t−1

∂δ
) + β

∂σ2
t−1

∂δ

= −2αat−1σt−1 + (β − αδ at−1

σt−1

)
∂σ2

t−1

∂δ
.

Denote θk an arbitrary element of the parameter vector θ. Observing the above

results we realize that
∂σ2
t

∂θk
satisfies a general recursive equation:

∂σ2
t

∂θk
= bt−1(θ) ·

∂σ2
t−1

∂θk
+ et−1(θ), (3.21)

where bt(θ) = β − αδ · at
σt

and
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et(θ) =



1, if θk = ω

a2
t , if θk = α

σ2
t , if θk = β

−2αat, if θk = λ

−2αatσt, if θk = δ

.

A process defined by the recursion Xt = at−1 + bt−1Xt−1 with at, bt being

random processes is also known as the random coefficient autoregressive process.

Properties of such process has been studied by a few authors, cf. Brandt (1986),

Bougerol and Picard (1992b), Aue et al. (2006). The solution of such a process

can be obtained by repeatedly applying the recursive relation. For our case, we

know that the solution of (3.21) has the following form

∂σ2
t (θ0)

∂θk
=
∞∑
i=1

et−i(θ0)
i−1∏
j=1

bt−j(θ0). (3.22)

Moreover, if {bt(θ0)}, {et(θ0)} are strictly stationary and ergodic processes, and

they satisfy

E(log+ |e0(θ0)|) <∞, E(log+ |b0(θ0)|) <∞, E(log |b0(θ0)|) < 0, (3.23)

where log+ x = max(0, log x), then the solution (3.22) is also strictly stationary
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and ergodic.

From Theorem 2.8 we know that bt(θ0), et(θ0) are indeed stationary and er-

godic under our assumptions. Now we suppose (3.23) does hold thus the station-

ary solution (3.22) exists. By Minkowski inequality we know

{
E

∣∣∣∣∂σ2
t (θ0)

∂θk

∣∣∣∣2
}1/2

=

E
∣∣∣∣∣
∞∑
i=1

et−i(θ0)
i−1∏
j=1

bt−j(θ0)

∣∣∣∣∣
2


1/2

≤
∞∑
i=1

E
∣∣∣∣∣et−i(θ0)

i−1∏
j=1

bt−j(θ0)

∣∣∣∣∣
2


1/2

= {E|e0(θ0)|2}1/2

∞∑
i=1

{E|b0(θ0)|2}(i−1)/2

Therefore, if

E|e0(θ0)|2 <∞, E|b0(θ0)|2 < 1, (3.24)

then we have

E

∣∣∣∣∂σ2
t (θ0)

∂θk

∣∣∣∣2 <∞,

which shows that (3.20) holds.

Compare conditions (3.24) and (3.23). Notice that when E|e0(θ0)|2 < ∞

we know E|e0(θ0)| < ∞, which also implies the first inequality of (3.23) holds

considering E(log+ |e0(θ0)|) ≤ E|e0(θ0)|. Using the same argument we know

E(log+ |b0(θ0)|) is finite whenever E|b0(θ0)| is finite. Suppose E|b0(θ0)|2 < 1, by
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Jensen’s inequality we know:

E(log |b0(θ0)|) =
1

2
E(log |b0(θ0)|2) ≤ 1

2
logE|b0(θ0)|2 < 0.

From the above argument we see that if condition (3.24) holds, conditions (3.23)

are satisfied automatically.

Bollerslev (1986) has shown that the GARCH process has finite 4th moments

given the second inequality of Assumption C3. Along with Assumption C2 they

ensure the validity of the first inequality in (3.24). Also, by the first inequality

of Assumption C3 we know

E|b0(θ0)|2 = E|β0 − α0δ0
a0(θ0)

σ0(θ0)
|2

= E(β0 − α0δ0η0)2

= β2
0 + α2

0δ
2
0E(η2

0)− 2α0β0δ0E(η0)

= β2
0 + α2

0δ
2
0

< 1.

Thus (3.24) is true under the specified assumptions. As already argued (3.20)

will follow thus (3.13) is proved.
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3.5.2 Second order derivatives

Lemma 3.7. Under Assumptions (A1) - (A4), (B1) - (B3) and (C1) - C3)

we have:

E

∥∥∥∥∂2lt(θ0)

∂θ∂θ′

∥∥∥∥ <∞. (3.25)

Proof. To prove this lemma we will need to make use of some intermediate results

from the last section. The first order derivative is given by equation (3.17). Taking

derivative with respective to θ′ yields:

∂2lt
∂θ∂θ′

= (
2

σ2
t

· ∂at
∂θ′

+
2at
σ4
t

· ∂σ
2
t

∂θ′
) · ∂at

∂θ
+

2at
σ2
t

· ∂
2at

∂θ∂θ′

− (
2at
σ4
t

· ∂at
∂θ′
− 2a2

t

σ6
t

· ∂σ
2
t

∂θ′
) · ∂σ

2
t

∂θ
− a2

t

σ4
t

· ∂
2σ2

t

∂θ∂θ′

− 1

σ4
t

· ∂σ
2
t

∂θ′
· ∂σ

2
t

∂θ
+

1

σ2
t

· ∂
2σ2

t

∂θ∂θ′
. (3.26)

In order to study the finiteness of the expectation of this object we will investigate

each term on the right hand side of the above equation. By equation (3.18) we

know that

∂σ2
t

∂θ′
· ∂at
∂θ

=
∂σ2

t

∂θ′
· d(θ)− δ

2σt
· ∂σ

2
t

∂θ′
· ∂σ

2
t

∂θ

∂at
∂θ′
· ∂at
∂θ

=

[
d′(θ)− δ

2σt
· ∂σ

2
t

∂θ′

]
·
[
d(θ)− δ

2σt
· ∂σ

2
t

∂θ

]
= d′(θ)d(θ) +

δ2

4σ2
t

· ∂σ
2
t

∂θ′
· ∂σ

2
t

∂θ
− δ

2

[
d′(θ)

σt
· ∂σ

2
t

∂θ
+
∂σ2

t

∂θ′
· d(θ)

σt

]
.

Notice that 1
σkt
≤ 1

ωk
for some k > 1. Using the same arguments from the last
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section it is not difficult to show that objects like ‖d(θ)
σt
‖, ‖d

′(θ)d(θ)

σ2
t
‖ are well-

bounded above. From the proof of Lemma 3.6, we also know that under our

assumptions:

E

∥∥∥∥∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

∥∥∥∥ <∞, E

∥∥∥∥∂σ2
t (θ0)

∂θ

∥∥∥∥2

<∞.

Based on those facts it is obvious that:

E

∥∥∥∥ at(θ0)

σ4
t (θ0)

· ∂σ
2
t (θ0)

∂θ′
· ∂at(θ0)

∂θ

∥∥∥∥ ≤ E|ηt|
ω2

0

· E
∥∥∥∥∂σ2

t (θ0)

∂θ′

∥∥∥∥ · E ∥∥∥∥ d(θ0)

σt(θ0)

∥∥∥∥
+
E|ηt|
ω2

0

· δ0

2ω2
0

· E
∥∥∥∥∂σ2

t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥
<∞

and

E

∥∥∥∥ 1

σ2
t (θ0)

· ∂at(θ0)

∂θ′
· ∂at(θ0)

∂θ

∥∥∥∥ ≤ E

∥∥∥∥d′(θ0)d(θ0)

σ2
t (θ0)

∥∥∥∥+
δ2

0

4ω4
0

· E
∥∥∥∥∂σ2

t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥
+

δ0

2ω2
0

·
[
E

∥∥∥∥ d′(θ0)

σt(θ0)

∥∥∥∥ · E ∥∥∥∥∂σ2
t (θ0)

∂θ

∥∥∥∥+ E

∥∥∥∥∂σ2
t (θ0)

∂θ′

∥∥∥∥ · E ∥∥∥∥ d(θ0)

σt(θ0)

∥∥∥∥]
<∞.

Therefore, for the first term on the right-hand side of equation (3.26):

E

∥∥∥∥[ 2

σ2
t (θ0)

· ∂at(θ0)

∂θ′
+

2at(θ0)

σ4
t (θ0)

· ∂σ
2
t (θ0)

∂θ′

]
· ∂at(θ0)

∂θ

∥∥∥∥ <∞.
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We could use similar arguments and conclude that

E

∥∥∥∥2at(θ0)

σ4
t (θ0)

· ∂at(θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥ = E

∥∥∥∥2at(θ0)

σ3
t (θ0)

· ( d
′(θ0)

σt(θ0)
− δ0

2σ2
t (θ0)

· ∂σ
2
t (θ0)

∂θ′
) · ∂σ

2
t (θ0)

∂θ

∥∥∥∥
≤ 2E|ηt|

ω2
0

· E
∥∥∥∥ d′(θ0)

σt(θ0)

∥∥∥∥+
δ0

2ω2
0

· E
∥∥∥∥∂σ2

t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥
<∞

and

E

∥∥∥∥2a2
t (θ0)

σ6
t (θ0)

· ∂σ
2
t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥ ≤ 2E(η2
t )

ω4
0

E

∥∥∥∥∂σ2
t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥
<∞.

Therefore for the 3rd term on the right-hand side of equation (3.26):

E

∥∥∥∥[2at(θ0)

σ4
t (θ0)

· ∂at(θ0)

∂θ′
− 2a2

t (θ0)

σ6
t (θ0)

· ∂σ
2
t (θ0)

∂θ′

]
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥ <∞.
Now consider the 5th term on the right-hand side of equation (3.26), obviously:

E

∥∥∥∥ 1

σ4
t (θ0)

· ∂σ
2
t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥ ≤ 1

ω4
0

E

∥∥∥∥∂σ2
t (θ0)

∂θ′
· ∂σ

2
t (θ0)

∂θ

∥∥∥∥ ,
which is also finite. For the 2nd, 4th and 6th terms on the right-hand side of
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equation (3.26) we know:

E

∥∥∥∥2at(θ0)

σ2
t (θ0)

· ∂
2at(θ0)

∂θ∂θ′

∥∥∥∥ ≤ 2E|ηt|
ω0

· E
∥∥∥∥∂2at(θ0)

∂θ∂θ′

∥∥∥∥ ,
E

∥∥∥∥a2
t (θ0)

σ4
t (θ0)

· ∂
2σ2

t (θ0)

∂θ∂θ′

∥∥∥∥ ≤ 2E(η2
t )

ω2
0

· E
∥∥∥∥∂2σ2

t (θ0)

∂θ∂θ′

∥∥∥∥ ,
E

∥∥∥∥ 1

σ2
t (θ0)

· ∂
2σ2

t (θ0)

∂θ∂θ′

∥∥∥∥ ≤ 1

ω2
0

· E
∥∥∥∥∂2σ2

t (θ0)

∂θ∂θ′

∥∥∥∥ .
Based on the above discussion, inequality (3.25) can be shown by applying a trian-

gular inequality type of argument on (3.26), if we have the following 2 additional

conditions

E

∥∥∥∥∂2σ2
t (θ0)

∂θ∂θ′

∥∥∥∥ <∞, E

∥∥∥∥∂2at(θ0)

∂θ∂θ′

∥∥∥∥ <∞.
First consider the second inequality above. From equation (3.18) we know:

∂2at
∂θ∂θj

=
∂d(θ)

∂θj
− δ

2σt
· ∂

2σ2
t

∂θ∂θj
+

δ

4σ3
t

· ∂σ
2
t

∂θj
· ∂σ

2
t

∂θ
, (3.27)

when θj 6= δ, and

∂2at
∂θ∂δ

=
∂d(θ)

∂δ
− δ

2σt
· ∂

2σ2
t

∂θ∂δ
−
σt − δ

2σt
· ∂σ

2
t

∂δ

2σ2
t

· ∂σ
2
t

∂θ

=
∂d(θ)

∂δ
− δ

2σt
· ∂

2σ2
t

∂θ∂δ
− 1

2σt
· ∂σ

2
t

∂θ
+

δ

4σ3
t

· ∂σ
2
t

∂δ
· ∂σ

2
t

∂θ
. (3.28)
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Notice that according to the definition of d(θ) in (3.18):

E

∥∥∥∥∂d(θ)

∂θ′

∥∥∥∥ = E

∥∥∥∥(0,
∂σt(θ)

∂θ′
, 0, . . . , 0)′

∥∥∥∥
which is finite at θ0 from the proof of Lemma 3.6. For the other objects in

equation (3.27) - (3.28):

E

∥∥∥∥ δ0

2σt(θ0)

∥∥∥∥ ≤ |δ0|
2
√
ω0

<∞, E

∥∥∥∥ δ0

4σ3
t (θ0)

∥∥∥∥ ≤ |δ0|
4ω

3/2
0

<∞.

In the view of (3.27) - (3.28), we know that

E

∥∥∥∥∂2at(θ0)

∂θ∂θ′

∥∥∥∥ <∞,
whenever

E

∥∥∥∥∂2σ2
t (θ0)

∂θ∂θ′

∥∥∥∥ <∞. (3.29)

Therefore to show that inequality (3.25) holds we only need to show the validity

of inequality (3.29).

Denoting θk, θl to be arbitrary elements of the parameter vector θ, we want

to consider objects like
∂2σ2

t

∂θk∂θl
. Based on equality (3.21) we have

∂2σ2
t

∂θk∂θl
=
∂et−1(θ)

∂θl
+
∂bt−1(θ)

∂θl
·
∂σ2

t−1

∂θk
+ bt−1(θ) ·

∂2σ2
t−1

∂θk∂θl
.
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We want to use the same arguments as in the last section. Notice that the above

equation also defines a random coefficient autoregressive model

∂2σ2
t

∂θk∂θl
= bt−1(θ) ·

∂2σ2
t−1

∂θk∂θl
+ e∗t−1(θ), (3.30)

where

e∗t (θ) =
∂et(θ)

∂θl
+
∂bt(θ)

∂θl
· ∂σ

2
t

∂θk

with function et(θ) being defined in (3.21). This representation is in the same

fashion of equation (3.21) of the last section. Applying the same arguments used

before, we know that

E

∣∣∣∣ ∂2σ2
t

∂θk∂θl

∣∣∣∣ <∞
if we have the following:

E|e∗t (θ0)| <∞, E|bt(θ0)| < 1. (3.31)

Those two conditions could be derived by applying the Minkowski’s inequality in

the same fashion as when we were deriving (3.24). To verify the second inequality

above we follow the same argument as in the last subsection given Assumption

A4. To show the first inequality, from the proof of Lemma 3.6 we know that

E|∂σ
2
t (θ0)

∂θk
| <∞
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under the assumed conditions. Therefore to show (3.31) holds we only need to

prove the following:

E|∂et(θ0)

∂θl
| <∞, E|∂bt(θ0)

∂θl
| <∞. (3.32)

First we consider the object ∂bt(θ0)
∂θl

. Based on the definition of bt in (3.21) we can

calculate all of its first order partial derivatives. The particular form varies as

we take θl to be different elements of θ. For example, when θl = ω or θl = λ, we

have

∣∣∣∣∂bt(θ0)

∂θl

∣∣∣∣ =

∣∣∣∣β0 − α0δ0 ·
∂ (at(θ0)/σt(θ0))

∂α

∣∣∣∣
=

∣∣∣∣∣β0 − α0δ0 ·
∂at(θ0)
∂θl
· σt(θ0)− ∂σt(θ0)

∂θl
· at(θ0)

σ2
t (θ0)

∣∣∣∣∣
≤ β0 +

∣∣∣∣ α0δ0

σt(θ0)
· ∂at(θ0)

∂θl

∣∣∣∣+

∣∣∣∣ α0δ0

σ2
t (θ0)

· at(θ0)

2σt(θ0)
· ∂σ

2
t (θ0)

∂θl

∣∣∣∣
≤ β0 +

∣∣∣∣α0δ0√
ω0

∣∣∣∣ · ∣∣∣∣∂at(θ0)

∂θl

∣∣∣∣+

∣∣∣∣α0δ0

ω0

∣∣∣∣ · ∣∣∣∣ηt2 · ∂σ2
t (θ0)

∂θl

∣∣∣∣ .
From the proof of Lemma 3.6, we know that under our assumptions

E

∣∣∣∣∂σ2
t (θ0)

∂θl

∣∣∣∣ <∞
for any θl being ω or λ. In this case |∂at(θ0)

∂θl
| will also have finite expectation due
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to equation (3.18). Therefore when θl = ω or θl = λ we have

E

∣∣∣∣∂bt(θ0)

∂θl

∣∣∣∣ <∞.
Now consider the other cases. When θl = β:

∂bt(θ0)

∂β
= 1− α0δ0 ·

∂ (at(θ0)/σt(θ0))

∂β
.

When θl = α:

∂bt(θ0)

∂α
= β0 − α0δ0 ·

∂ (at(θ0)/σt(θ0))

∂α
− δ0 ·

at(θ0)

σt(θ0)

= β0 − α0δ0 ·
∂ (at(θ0)/σt(θ0))

∂α
− δ0ηt.

Similarly when θl = δ:

∂bt(θ0)

∂δ
= β0 − α0δ0 ·

∂ (at(θ0)/σt(θ0))

∂α
− α0ηt.

We see the key component for those three forms is still the derivative ∂(at/σt)
∂θl

evaluated at θ0. Therefore it is not difficult for us to apply the same argument

as for the θl = ω, θl = λ cases and conclude

E

∣∣∣∣∂bt(θ0)

∂θl

∣∣∣∣ <∞
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for any component θl of vector θ.

Now consider the first inequality in (3.32). According to the definition of et(θ)

from (3.21) we know it has five different forms. For example, if θk in (3.30) is set

as θk = ω, then et(θ) = 1. In this case ∂et(θ0)
∂θl

= 0 for any θl.

When θk = β, we have et(θ) = σ2
t (θ). In this case, we have:

E

∣∣∣∣∂et(θ0)

∂θl

∣∣∣∣ = E

∣∣∣∣∂σ2
t (θ0)

∂θl

∣∣∣∣
for all θl. we could conclude from the proof of Lemma 3.6 that this expectation

is finite.

When θk = α, we have et(θ) = a2
t (θ). Therefore by (3.18):

E

∣∣∣∣∂et(θ0)

∂θl

∣∣∣∣ = E

∣∣∣∣2at(θ0) · ∂at(θ0)

∂θl

∣∣∣∣
= E

∣∣∣∣2εt · (dl(θ0)− δ0

2σt(θ0)
· ∂σ

2
t (θ0)

∂θl

)∣∣∣∣ ,
where dl is the respective component of d(θ) defined in (3.18). One could use

the same argument for the θk = β case to conclude that this expectation is also

finite.

When θk = λ, et(θ) = −2αat. In this case E
∣∣∣∂et(θ0)

∂θl

∣∣∣ will essentially be

determined by ∂at(θ0)
∂θl

, which is has been shown to be finite in the previous case.

The last case is θk = δ, which indicates et(θ) = −2αatσt. Take the derivative
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with respect to θl (θl 6= α) and we have

E

∣∣∣∣∂et(θ0)

∂θl

∣∣∣∣ = E

∣∣∣∣2α0σt(θ0) · ∂at(θ0)

∂θl
+ 2α0at(θ0)

∂σt(θ0)

∂θl

∣∣∣∣
≤ E

∣∣∣∣2α0σt(θ0) · ∂at(θ0)

∂θl

∣∣∣∣+

∣∣∣∣α0ηt ·
∂σ2

t (θ0)

∂θl

∣∣∣∣ .
In previous cases we already discussed terms like ∂at(θ0)

∂θl
and

∂σ2
t (θ0)

∂θl
. Notice that

σt(θ0) also have finite moments due to the 2nd order stationarity of the GARCH

process. Therefore E|∂et(θ0)
∂θl
| is finite in this case. Note that when θl = α the we

have

E

∣∣∣∣∂et(θ0)

∂θl

∣∣∣∣ ≤ E |2εtσt(θ0)|+
∣∣∣∣2α0 ·

∂at(θ0)σt(θ0)

θl

∣∣∣∣ .
The second term on the right hand side is the same object we just considered,

which we know is finite. The first term is also finite due to the 2nd order sta-

tionarity property of the GARCH process. Based on all those scenarios we have

shown that for any θl:

E

∣∣∣∣∂et(θ0)

∂θl

∣∣∣∣ <∞.
Therefore (3.32) is satisfied, which will lead to (3.31). In the view of (3.29), we

have proved (3.25).

3.5.3 Conclusion

Now we proceed to prove the theorem. Denoting the information set up to time

t as Ft, by equation (3.17) it is not difficult to verify that ∂lt(θ0)
∂θ

is a martingale
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difference sequence:

E

(
∂lt(θ0)

∂θ

∣∣Ft−1

)
= E

[
1

σ2
t (θ0)

(
2εt ·

∂at(θ0)

∂θ
− ε2t
σ2
t (θ0)

· ∂σ
2
t (θ0)

∂θ
+
∂σ2

t (θ0)

∂θ

) ∣∣Ft−1

]
=

1

σ2
t (θ0)

{
E(2εt|Ft−1) · ∂at(θ0)

∂θ
− E(1− η2

t ) ·
∂σ2

t (θ0)

∂θ

}
= 0.

Note that this sequence is well-defined in its first and second-order structures

guaranteed by Lemma 3.6. It is also ergodic and stationary. By the central

limit theorem for stationary and ergodic martingale difference sequences from

Billingsley (1961), we can conclude that

1√
n

n∑
t=1

∂lt(θ0)

∂θ

D−→ N (0, B) ,

where B = E(∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

) as given in (3.8). By Lemma 3.6 we know this matrix

is well-defined. We also know that under the specified conditions, our process is

geometrically ergodic by Theorem 2.8. Therefore Proposition 17.1.6 of Meyn and

Tweedie (2009) applies so that the above convergence result also holds for lt(θ)

started from any arbitrary initial values. Applying a similar argument as in the

proof of Lemma 3.4 we have:

1√
n

n∑
t=1

∂l̃t(θ0)

∂θ

D→ N (0, B) , (3.33)
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where B is the matrix defined above.

Next we consider the other part on the righthand side of equation (3.7). Per-

form a Taylor’s expansion around θ0:

1

n

n∑
t=1

∂2l̃t(θ
∗)

∂θi∂θj
=

1

n

n∑
t=1

∂2l̃t(θ0)

∂θi∂θj
+ o(θ∗ − θ0)

where θ∗ is on the cord of θ0 and θ̂n. Since θ̂n is strongly consistent, it converges

to θ0 when n goes large. Therefore θ∗ also converges to θ0 in the meantime. The

second term o(θ∗−θ0) on the right hand side converges to zero faster than θ∗−θ0,

which happens as n becoming larger due to the consistency. For the first term, the

ergodic theorem applies to the sequence ∂2lt(θ0)
∂θi∂θj

. As we have argued previously,

this result does not rely on the choice of initial values due to the geometric

ergodicity property. Therefore we could extend this result and conclude that

1

n

n∑
t=1

∂2l̃t(θ0)

∂θi∂θj

a.s.→ Aij, (3.34)

where Aij is the respective element of the matrix A = E(∂
2lt(θ0)
∂θ∂θ′

) as defined in

(3.8). It is a well-defined object as shown by Lemma 3.7.

To complete the proof we apply the Slutsky’s theorem. In the view of equa-

tions (3.7), (3.33) and (3.34) the theorem is proved.



Chapter 4

Simulation Study

This chapter includes a few examples to examine stylized facts of financial series,

fit data to GARCH-in-mean models and numerically investigate the asymptotic

behaviors of the quasi-maximum likelihood estimator.

4.1 Stylized facts of financial series

We consider the daily log-returns of S&P 500 indices for years 1990 - 2012 1.

Suppose pt is the adjusted close price of the index of day t, the log-return series

could be easily calculated from log (pt/pt−1). Throughout this chapter we work

with a re-scaled series obtained by yt = 100 log (pt/pt−1).

Figure 4.1 shows a time series plot of this re-scaled log-returns of S&P 500

indices.

1Online data obtained from yahoo finance: http://ca.finance.yahoo.com/q/hp?s=%5EGSPC
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Figure 4.1: Re-scaled daily S&P 500 log-returns: Jan 1990 - Dec 2012

One preliminary analysis we want to perform is to examine this series and

identify a few properties commonly known for financial series, as we discussed in

the first chapter. From Figure 4.1 one may already notice a few stylized facts here.

First of all, the series is apparently nonstationary. The series has more turbulent

subperiods such as years 2008 - 2010 as well as relatively quiet subperiods such

as 2004 - 2006, which is a fair reflection of the economic states at those times.

Moreover, those subperiods representing high or low financial volatility tend to

appear in clusters, which is consistent with the volatility clustering phenomenon.

Financial series also frequently exhibit interesting properties in their autocor-

relations. For example, a return series generally has very small autocorrelations
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that resembles a white noise process, while strong autocorrelations are frequently

witnessed for higher order structures. The graph below shows the sample acf for

the original series yt and the squared series y2
t .
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Figure 4.2: Sample ACFs: re-scaled S&P 500 log-returns

The graph above clearly shows strong autocorrelations within the 2nd order

structure while such dependence is not as apparent within the original series itself.

We may also want to examine some distributional properties. As already men-

tioned in the first chapter, the marginal distributions of financial series are often

found to be leptokurtic, which indicates sharper peaks and fatter tails compared

to a normal distribution. The graph below shows the estimated density of the yt

series (solid line) along with a reference Gaussian distribution (dashed line) with
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mean and variance equal to the sample mean and variance of the series.
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Figure 4.3: Estimated density of re-scaled S&P 500 returns v.s. fitted Gaussian
density

It is quite apparent that the marginal distribution of the series does not look

like Gaussian. It shows a much sharper peak and slightly fatter tails than Gaus-

sian. The sample kurtosis of the series is found to be 8.464948, which is excessive

comparing to a normal distribution.

GARCH-type processes are usually found helpful for capturing frequently ob-

served stylized facts of financial series. We now fit the GARCH-M(1,1) model

specified by (2.8) - (2.10) by quasi-maximum likelihood estimation discussed in

Chapter 3. The minimizing algorithm often requires a starting value for the pa-
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rameter θ. To find a suitable value the following 3-step algorithm is implemented:

1. Fit the data using a standard GARCH model with a nonzero mean, i.e.

yt = µ+ εt,

where εt ∼ GARCH(1,1) and µ is some constant. Obtain the parameter

estimate ω̂, α̂ and β̂.

2. Estimate the volatility process σ̂t based on the model obtained in the last

step. Then fit the linear regression model

E(yt) = c0 + c1σ̂t.

Obtain parameter estimate ĉ0 and ĉ1.

3. Fit the GARCH-M(1,1) model with the starting value λ = ĉ0, δ = ĉ1 and

ω̂, α̂, β̂.

Applying the above algorithm to the yt series we can obtain GARCH-M(1,1)

parameter estimates. We also fit the data without imposing the “in-mean” struc-

ture by simply performing another fit using a pure GARCH(1,1). The results are

shown below.
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Table 4.1: QMLEs of GARCH-M(1,1) fit

Estimate Std. Error t value Pr(> |t|)

λ 0.042393 0.054499 0.777873 0.436644

δ 0.009726 0.060179 0.161618 0.871607

ω 0.010131 0.003519 2.878911 0.003991

α 0.074515 0.008714 8.550776 0.000000

β 0.917898 0.009408 97.562232 0.000000

Table 4.2: QMLEs of GARCH(1,1) fit

Estimate Std. Error t value Pr(> |t|)

ω 0.009729 0.003467 2.805787 0.005019

α 0.072567 0.008602 8.435850 0.000000

β 0.920160 0.009266 99.301892 0.000000

The estimated value of δ̂ is relatively small suggesting that the GARCH-in-

mean effect is not very strong in the series. This fact is confirmed by relatively

large p-values for first two parameters which are unique to GARCH-in-mean. The

parameter estimates for ω0, α0 and β0 given by both models are found to be quite

close. The GARCH-in-mean model has slightly larger values of ω̂ and α̂ while

getting a slightly smaller estimate β̂. The standard errors of the estimates from

GARCH(1,1) fit are smaller than GARCH-M(1,1) case, but the difference is quite

minor. The results suggest that their performances are very close.
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The standard errors shown in Tables 4.1 and 4.2 are obtained from a para-

metric bootstrap of 5000 repetitions. Common computer packages in R such as

tseries would output standard errors as well, but based on the diagonal ele-

ments of the estimated Hessian matrix. As we are dealing with the QMLE here,

we are no longer able to directly use such numbers, because the variance matrix

now is specified as A−1BA−1 as stated in Theorem 3.2.

Given the parameter estimates above, one important application is to re-

construct the volatility process which is never observed at any time. The fitted

volatility series can be obtained by iterating the following equation:

σ̂2
t = ω̂ + α̂(yt−1 − λ̂− δ̂σ̂t−1)2 + β̂σ̂2

t−1.

The graph below shows the estimated volatility process σ̂t based on our GARCH-

in-mean model obtained above.
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Figure 4.4: Estimated volatilities of re-scaled S&P 500 returns by GARCH-M(1,1)

We see that this graph is consistent with our S&P 500 data series shown in

Figure 4.1. Periods with high volatilities such as years 2008 - 2011 seems to be

more unstable in Figure 4.1. Quiet subperiod such as 2004 - 2006 shows relatively

low volatility values.

The fitted volatility series from the pure GARCH(1,1) model obtained in

Table 4.1 is very close to the series we showed above. It is not distinguishable

if we overlay both series on a single plot. The average difference between the

two volatility series is found to be 0.012372 and it is the pure GARCH model

that has slightly larger estimated volatilities on average. It may due to the fact

that GARCH-M model has additional structure in its mean structure thus some

variability has already been explained in the mean equation.
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The fitted volatilities have important implications in finance since the volatil-

ity represents the financial risk, but its true dynamics are not directly observable.

Estimating the underlying volatilities will help practitioners to better understand

the current state of market and make better decisions accordingly.

4.2 Asymptotic evaluation

The goal of this section is to investigate the asymptotic properties of the QMLE

of GARCH-M models using simulation techniques. Unlike in the last section, we

no longer use the real S&P 500 data because we need to have precise knowledge

of the true parameter value to assess the convergence of QMLEs. Therefore we

simulate the observable data yt according to GARCH-M equations (2.8) - (2.10),

with Gaussian innovations and the true parameter value θ0 given by

λ0 = 0.1, δ0 = 0.1, ω0 = 0.05, α0 = 0.12, β0 = 0.8.

Those values are chosen to be in vicinities of the parameter estimates we obtained

in Table 4.1. We also considerably enlarged the values of λ0 and δ0 in the hope

of magnifying the “in-mean” effects of the generated data.

The experiment starts with repeatedly simulating sample paths of length n

according to the above specification. We denote each sample path by y
(i)
1 , . . . , y

(i)
n

where i = 1, . . . , K with K being the total number of repetitions. For every
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simulated sample path we can obtain a QMLE denoted by θ̂
(i)
n . As n increases,

we may investigate the convergence of the QMLE as well as its distributional

properties.

The choices of initial values are unimportant asymptotically. However, we

need to point out that properly choused initial values do enjoy certain advan-

tages in terms of computational efficiency, speed of convergence etc. All the

experiments below adopt the following initial values: y
(i)
0 = y

(i)
1 , and σ̃

(i)
0 equals

to the sample standard deviation of the corresponding sample path.

4.2.1 Convergence of the estimates

We start with a sample size n = 250 and gradually increase the size up to 5000.

For each n we replicate the simulation-estimation process for 10000 times, i.e.

K = 10000, and calculate the average of the estimates by:

θ̄n =
1

K

K∑
i=1

θ̂(i)
n .

As n increases, we observe the change in |θ̄n − θ0| as well as in the root mean

square error (RMSE). For example, the RMSE with respect to estimates of λ0

can be calculated by

RMSE(λ̂n) =

√√√√ 1

K

K∑
i=1

(λ̂
(i)
n − λ̄n)2.
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The graph below shows 8 estimates of θ0 at different sample sizes: θ̄250, θ̄500,

θ̄750, θ̄1000, θ̄1500, θ̄2000, θ̄3000 and θ̄5000. The respective true value is also marked

in the graph as a dashed reference line.
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Figure 4.5: QMLEs under different sample sizes

From the graph we can see that each parameter converges to the true value as

the size of the sample paths increases. The rate of convergence is also relatively

fast: most of the estimates (except β̄) are within 0.01 of their respective true

values when the sample size n reaches 1000. The table below shows the absolute

difference |θ̄n − θ0| under different sample sizes.
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Table 4.3: Absolute difference |θ̄n − θ0| under different sample sizes

n |λ̄n − λ0| |δ̄n − δ0| |ω̄n − ω0| |ᾱn − α0| |β̄n − β0|

250 0.067083 0.088231 0.123725 0.007393 0.227890

500 0.028497 0.039018 0.042291 0.003708 0.079322

750 0.011245 0.015896 0.017902 0.001454 0.033091

1000 0.004148 0.006584 0.009721 0.001006 0.018704

1500 0.002981 0.004030 0.004718 0.000707 0.009063

2000 0.003058 0.004023 0.003468 0.000370 0.006505

3000 0.001687 0.001978 0.001829 0.000131 0.003305

5000 0.000501 0.000574 0.001207 0.000046 0.002210

The overall convergence trend is quite apparent from the table above. When

the sample size increases to 5000, the estimates of λ0, δ0 and α0 are within 0.001

of their true values while estimates of ω0 and β0 are within 0.01. To evaluate the

QMLEs one could also investigate the RMSE introduced before, which are shown

as below.
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Table 4.4: RMSEs for QMLEs

n RMSE(λ̂n) RMSE(δ̂n) RMSE(ω̂n) RMSE(α̂n) RMSE(β̂n)

250 1.483099 2.041421 0.184566 0.074593 0.315838

500 0.493331 0.674302 0.110266 0.046238 0.200055

750 0.250876 0.339313 0.064250 0.034958 0.121762

1000 0.161955 0.220632 0.038580 0.029880 0.079090

1500 0.120937 0.163953 0.019695 0.024035 0.046832

2000 0.102243 0.138894 0.016318 0.020510 0.039153

3000 0.080994 0.109585 0.011317 0.016524 0.029149

5000 0.060648 0.082361 0.008712 0.012795 0.022430

Table 4.4 clearly shows that the RMSE decreases steadily as the sample size

increases. This observation is consistent with our findings from Figure 4.5. It sug-

gests that a larger sample size enables us to obtain more accurate estimates, and

the estimates will eventually converge to the true value as sample size increases.

4.2.2 Limiting distribution

We are also interested in finite-sample distributions of the QMLEs and want to

investigate whether they converge to normal distributions as our theorem stated.

According to Theorem 3.2, the asymptotic distribution of
√
n(θ̂n− θ0) is a Gaus-

sian distribution with zero mean and variance determined by A−1BA−1, where A

and B are defined in (3.8).
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The first and second order derivatives of the quasi-likelihood lt(θ) have com-

plex forms and are difficult to evaluate algebraically. Nevertheless, we may con-

duct a simulation study and provide estimates of these two matrices. According

to (3.8) we have the definition of matrix A as:

A = E

(
∂2lt(θ0)

∂θ∂θ′

)
.

From Chapter 3 we know that this object is also the limit of 1
n

n∑
t=1

∂2lt(θ0)
∂θ∂θ′

when n

goes to infinity. Therefore to numerically estimate this matrix, we can simulate a

number of GARCH-M observations and take the average of the individual Hessian

matrices. Similarly, to approximate matrix B we need to numerically evaluate

the outer products of the gradients and then take the average. Following this

algorithm we can obtain an estimate of the matrix A−1BA−1, and its diagonal

elements can be regarded as estimates of the asymptotic variances. Below shows

the estimated asymptotic standard deviations for elements of
√
n(θ̂n − θ0) under

different sample sizes.
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Table 4.5: Estimated Asymptotic SDs for each element of
√
n(θ̂n − θ0)

n
√
n(λ̂n − λ0)

√
n(δ̂n − δ0)

√
n(ω̂n − ω0)

√
n(α̂n − α0)

√
n(β̂n − β0)

1000 5.209461 7.012085 1.034789 1.773574 2.991136

2000 4.525709 6.168533 0.726148 1.107946 1.946490

3000 4.368645 5.968818 0.648966 1.001053 1.727769

5000 4.31964 5.894882 0.621891 0.956338 1.644865

7000 4.297810 5.832972 0.608512 0.911009 1.569210

10000 4.283571 5.820551 0.600515 0.902701 1.560754

We see that the estimated standard deviations decreases as the sample size

increases. If we keep increasing the sample size we may still expect some slight

drops in the estimates. However, the differences between n = 10000 case and

n = 7000 case are already relatively small. Therefore we treat the last row of

Table 4.5 as our final estimates of asymptotic standard deviations.

Now we investigate the distributions of QMLEs we obtained. By the design

of our simulation study, we can obtain 10000 estimates of each parameter vector

given a fixed sample size n, which are denoted θ̂
(1)
n , . . ., θ̂

(10000)
n as we mentioned

in the previous subsection. We estimate the sample standard deviation of each

element, for instance
√
n(λ̂n−λ0) based on 10000 data points, and compare them

to our estimated asymptotic standard deviations. Define s1n being the sample

standard deviation of
√
n(θ̂n−θ0) based on QMLEs θ̂

(1)
n , . . ., θ̂

(10000)
n and s2n being
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the standard deviation estimates from the last row of Table 4.5 1. We calculate

the difference s1n − s2n for each parameter and the result is shown below.

Table 4.6: Differences between Asymptotic and Sample Standard Deviations

n
√
n(λ̂n − λ0)

√
n(δ̂n − δ0)

√
n(ω̂n − ω0)

√
n(α̂n − α0)

√
n(β̂n − β0)

250 19.167459 26.455760 2.317871 0.276782 3.433337

500 6.748202 9.255058 1.865242 0.131268 2.912826

750 2.587308 3.469395 1.159121 0.054716 1.773999

1000 0.838151 1.153783 0.619567 0.042243 0.940418

1500 0.400518 0.526637 0.162301 0.028224 0.253129

2000 0.289122 0.388306 0.129300 0.014565 0.190322

3000 0.152898 0.178963 0.019378 0.002399 0.035883

5000 0.058364 0.044462 0.015539 0.002081 0.025378

8000 0.005101 0.000515 0.008559 0.001070 0.016597

The above result clearly shows that the sample standard deviation derived

from QMLEs converges to the asymptotic standard deviations as the sample

size increase. We want to point out that the asymptotic standard deviations

we used here are actually estimates of the true “theoretical” ones hence are not

necessarily quite precise. However, they still provide us valuable insights around

the convergence of sample standard deviations.

Lastly, we want to compare the distributions of QMLEs against respective

1For convenience, we refer those estimates as the asymptotic standard deviations moving
forward
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asymptotic normal distributions. To do this, the kernel density estimation of each

element of
√
n(θ̂n − θ0) is applied based on θ̂

(1)
n , . . ., θ̂

(10000)
n for different n. The

comparable normal distributions are of zero means and variances determined by

the respective elements from the last row of Table 4.5. We plot the distributions

of QMLEs as solid lines, along with a dashed reference line representing the

comparable Gaussian distributions. The results are shown below.
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Figure 4.6: Distribution of
√
n(λ̂n − λ0)

We can see from the graph that the distribution of the estimates converges to

a normal distribution as the sample size increases. At n = 3000 the distribution

of QMLEs is already quite close to a normal distribution. When n = 8000 those

two lines almost coincide.

Similar behavior could be observed from the estimates of
√
n(δ̂n − δ0) as
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well. The figure below shows the situation as the sample size increases. We could

notice that when n = 3000 the distribution of QMLEs quite resembles a Gaussian

distribution. n = 8000 provides a slightly improved approximation.
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Figure 4.7: Distribution of
√
n(δ̂n − δ0)

Following the same procedure we can investigate estimates for the other pa-

rameters. The graph below shows the distributions of
√
n(θ̂n− θ0) for the rest of

the parameters ω, α and β.
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Figure 4.8: Distribution of
√
n(ω̂n − ω0)
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Figure 4.9: Distribution of
√
n(α̂n − α0)
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Figure 4.10: Distribution of
√
n(β̂n − β0)

The results above clearly illustrated the overall convergence trend of QMLEs:

as the sample sizes increases, the solid line becomes more and more smooth and

close to the dashed reference line representing comparable Gaussian distributions.

Notice that when n = 8000 the smoothness of the distribution is not equally

good for each parameter. This indicates the difference in the their speeds of

convergence. We may still notice certain levels of deviation even at n = 8000 but

the overall trend of convergence is quite evident. Given all the results above, it

is very convincing that the distribution of QMLE will eventually converge to a

Gaussian distribution.
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4.2.3 Impact of the true distribution

The observable series yt simulated in the last subsection are based on Gaussian

innovations. As we already discussed earlier, marginal distributions of financial

series are usually deemed non-Gaussian by empirical studies. In this section,

we will re-perform the previous experiment but based on innovations following a

t-distribution.

We adopt the same true parameter values and simulate the GARCH-M inno-

vations based on a t(8) distribution to ensure the process has a finite 4th moment.

We also need to satisfy the condition E(η2
t ) = 1. Thus the simulated innovations

are re-scaled by dividing by
√

4/3, i.e. ηt
i.i.d∼ X/

√
4/3 where X ∼ t(8). This

density is shown in the graph below against a standard normal density.
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Figure 4.11: Gaussian density v.s. re-scaled t(8) density

From Figure 4.11 we see the re-scaled t-distribution clearly has a higher peak

and slightly fatter tails than the normal distribution. When fitting QMLEs we will

still stay with the Gaussian kernel so there is a certain level of disparity between

the true distribution of the process and the postulated distribution underlying

the quasi-likelihood. We want to understand whether this disparity will have any

impact on the asymptotic properties of the estimator.

We first investigate the consistency property. Like in Figure 4.5, we plot the

averages of QMLEs θ̄n against the sample size n. The graph below shows the

estimates given the sample size 250, 500, 1000, 2000, 3000 and 5000, with the
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true values indicated by the dashed reference lines.
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Figure 4.12: Convergence of the QMLEs: t-distributed GARCH-M

Comparing Figures 4.5 and 4.12 we see they are very similar. The overall

convergence trend to the true values is quite apparent. This experiment confirms

the fact that QMLEs are consistent even if the true distribution of the process does

not agree with the postulated distribution used to construct the quasi-likelihood.

We may also calculate the biases of our estimates analogous to Table 4.3 and

the results are shown below.
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Table 4.7: Absolute difference |θ̄n − θ0|: t-distributed GARCH-M

n |λ̄n − λ0| |δ̄n − δ0| |ω̄n − ω0| |ᾱn − α0| |β̄n − β0|

250 0.063637 0.087397 0.126976 0.013036 0.242258

500 0.028387 0.038281 0.049856 0.006420 0.097303

750 0.011619 0.015829 0.021258 0.003670 0.041965

1000 0.007834 0.011472 0.011184 0.002376 0.022566

1500 0.003011 0.004496 0.005267 0.001436 0.011016

2000 0.002612 0.003791 0.003557 0.000829 0.007119

3000 0.001778 0.002068 0.002068 0.000603 0.004368

5000 0.000687 0.000955 0.001326 0.000553 0.002812

We have two observations from the above chart. First of all, the difference

between the true values and QMLEs shrinks as we increase the sample size, with

different rate of convergence for each parameter. At n = 5000, each estimate is

within 0.01 away from the true values. The consistency of the estimates is quite

evident. Secondly, comparing with Table 4.3, we see that under the t-distributed

innovations, the rate of convergence is slower in general: for instance at n = 5000,

the differences shown from Table 4.3 are consistently lower than the comparable

numbers above. This fact indicates that although the true distribution of the

innovation does not impact our final asymptotic results, it may have an influence

on other aspects such as efficiency of estimates, rate of convergence, etc.

We can also examine the RMSEs of the estimates which are shown below.
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Table 4.8: RMSEs for QMLEs: t-distributed GARCH-M

n RMSE(λ̂n) RMSE(δ̂n) RMSE(ω̂n) RMSE(α̂n) RMSE(β̂n)

250 1.444368 2.042924 0.185752 0.087721 0.321014

500 0.535705 0.746663 0.119723 0.054628 0.221354

750 0.288251 0.400470 0.071293 0.041222 0.138842

1000 0.200866 0.282390 0.045529 0.034558 0.094269

1500 0.135323 0.186070 0.023441 0.027554 0.055074

2000 0.095475 0.131431 0.016349 0.023598 0.041576

3000 0.075754 0.104347 0.012549 0.019314 0.032999

5000 0.058399 0.080379 0.009476 0.015016 0.025093

Comparing with Table 4.4, the RMSEs shown above are close to what we seen

when studying the Gaussian GARCH-M. Closer examination of the two charts

found that in general, the RMSEs from Table 4.8 are still slightly larger than

those from Table 4.4 especially when the sample size is relatively small. This

finding is consistent with our discussion above. This suggests that although the

choice of the estimation kernel does not matter in terms of the asymptotic results,

it may affect other aspects of the estimator.

Now we study the distribution of the estimators. Following the same approach

of calculating A−1BA−1 as in Table 4.5, we found the estimated asymptotic stan-
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dard deviation of
√
n(θ̂n − θ0) to be

(3.920569, 5.449024, 0.641962, 1.020419, 1.711424)′ (4.1)

when n = 15000. We compare this result to the sample standard deviations

of
√
n(θ̂n − θ0) derived from QMLEs θ̂

(1)
n , . . ., θ̂

(10000)
n . The following result is

obtained.

Table 4.9: Difference: Sample SDs − Asymptotic SDs: t-distributed GARCH-M

n
√
n(λ̂n − λ0)

√
n(δ̂n − δ0)

√
n(ω̂n − ω0)

√
n(α̂n − α0)

√
n(β̂n − β0)

250 18.918034 26.854064 2.280488 0.366646 3.364509

500 8.058753 11.247711 2.020555 0.201170 3.238448

750 3.973891 5.518859 1.295874 0.108556 2.091099

1000 2.431685 3.481370 0.783173 0.072470 1.269764

1500 1.320713 1.757796 0.251263 0.046790 0.421687

2000 0.349394 0.429045 0.074539 0.034981 0.147997

3000 0.228830 0.266585 0.030723 0.037508 0.096116

5000 0.209064 0.234896 0.013456 0.041422 0.063004

8000 0.077187 0.053979 0.008682 0.028557 0.033283

From the table we see that the differences are obviously decreasing as the

sample size increases. It is convincing that the sample standard deviations will

eventually converge to the theoretical ones. Comparing with Table 4.6, one may



4.2 Asymptotic evaluation 118

notice that although they show the same trend of convergence, the differences

shown in Table 4.9 are in general larger than the ones from Table 4.6, which

indicates a difference in the speeds of convergence. This is consistent with our

observations before.

Lastly we investigate the distribution of each element of
√
n(θ̂n − θ0). We

construct reference Gaussian distributions of mean zero and standard deviations

specified by (4.1). Then comparisons are performed between the estimated densi-

ties from QMLEs and those reference distributions in the same fashion as Figures

4.6 - 4.10. The results are shown below, with solid lines representing estimated

densities derived from QMLEs and dashed lines being the reference Gaussian

densities.
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Figure 4.13: Distribution of
√
n(λ̂n − λ0): t-distributed GARCH-M
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Figure 4.14: Distribution of
√
n(δ̂n − δ0): t-distributed GARCH-M
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Figure 4.15: Distribution of
√
n(ω̂n − ω0): t-distributed GARCH-M
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Figure 4.16: Distribution of
√
n(α̂n − α0): t-distributed GARCH-M
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Figure 4.17: Distribution of
√
n(β̂n − β0): t-distributed GARCH-M

The above graphes exhibit similar trend as Figures 4.6 - 4.10. The solid lines
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are getting more smooth as the sample size increases, and their discrepancies from

dashed reference lines become less noticeable. Although certain discrepancies can

still be spotted even at the level n = 8000, the overall trend of converging to the

normal distribution is convincing. To assess the normality, one may choose to

use normal Q-Q plots. Below shows the plot at the level n = 12000.
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Figure 4.18: Normal Q-Q plot for QMLEs: t-distributed GARCH-M

We could notice a low level of deviation from the graph for ω estimates. How-

ever, given the overall trend of convergence shown in previous figures, it is con-

vincing that this parameter will eventually converges to a Gaussian distribution

like the others when we keep increasing the sample size.
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4.3 The rank condition

Geometric ergodicity is the key property we exploited leading to asymptotic prop-

erties of the QMLE. We have imposed a few conditions in Theorem 2.8 to ensure

the process is geometrically ergodic. Amongst those conditions the full-rank as-

sumption A2 is relatively abstract and difficult to examine directly.

The rank condition A2 involves both the true parameter θ0 and the dummy

variable θ. It provides necessary constraints for θ0 which generates the true

process as well as sheds light on what the parameter space Θ should look like.

This condition is not easy to verify directly because of its algebraic complexity. It

involves verifying the existence of some k so the matrix Ck
x0

has full rank. In other

words, in the event of a failure at one level, one can keep increasing the integer

k which decides the dimension of Ck
x0

, which leads to additional mathematical

complexity.

Although it is not easy to study the rank of those matrices algebraically,

we could still check this condition to a certain extent by numeric method. It is

difficult for us to see what does the parameter space Θ exactly look like, but given

a specific value of θ we can check if this value is compliant with Assumption A2.

For example, given the true parameter θ0 specified in Section 4.2, suppose one

wants to verify if the following θ is within the parameter space

λ = 0.5, δ = 0.5, ω = 0.2, α = 0.3, β = 0.6.
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We will start with the simplest case k = 2. Given the values of θ0 and θ we could

evaluate the matrices A1, A2 and B2 defined in (2.22) - (2.23). Therefore, the

matrix C2
x0

becomes a 2×2 matrix depending on the starting value x0 = (x01, x02)′

and control values u1, u2.

We could compute the determinant of C2
x0

using packages that are capable

of symbolic calculations such as Mathematica. The matrix is full-ranked if the

determinant does not equal to zero. Therefore we want to search for roots u1, u2

of the equation ∣∣C2
x0

∣∣ = 0

given any x0 within the state space. We could also use a 3-D plot to assist us

identifying roots. For example, we may set u1 = u2 = 5. the following graph is

based on x01 and x02 in the range of (0.01, 10).

0

5

10 x01

0

5

10

x02

0

200

400

600

Figure 4.19: 3D visualization of |C2
x0 | fixing u1 and u2
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In the graph above, values of x01 and x02 are represented by x and y-axis,

while the values of the determinant of C2
x0

on the z-axis. From the graph we

could tell when we fix the control values u1 = u2 = 5, the determinant seems

increasing as the values of x01 and x02 gets large. We could also tell from the

graph that all values are strictly positive when x01 and x02 is relatively far from

zero.

To investigate what happens for small positive values of x01 and x02, we can

fix x01 and x02 and see how the values of u1 and u2 impact the determinant. The

graph below shows the values of determinant given u1 and u2 ranging from -10

to 10, while fixing x01 = x02 = 0.01.

-10

-5

0

5

10u1

-10 -5 0 5 10

u2

-0.010

-0.005

0.000

0.005

0.010

Figure 4.20: 3D visualization of |C2
x0 | fixing x01 and x02

From the graph we see that there exists multiple control values within (-10, 10)

under which the determinant is nonzero for our fixed starting value. Combined
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with the previous figure we are confident that for any starting values x01 > 0,

x02 > 0 we could find certain control values u1 and u2 to make the determinant

of C2
x0

nonzero. Therefore this particular θ satisfies the full-rank condition A2.

Lastly we want to emphasis that if no nonzero solution could be found for

C2
x0

, it does not imply the condition is violated. We may continue with k = 3

following the same procedure. One may apply Gaussian elimination to check the

rank of this 2 × 3 matrix, or separately check the determinants of the matrices

that consist 2 of the 3 column vectors.



Chapter 5

Concluding Remarks

In this thesis we studied the asymptotic properties of the quasi-maximum likeli-

hood estimator of the GARCH-in-mean process. We have found conditions under

which this QMLE will be strongly consistent and the distribution around the true

parameter will be asymptotically normal.

One difficulty we encountered is the nonlinear structure of the process σ2
t (θ)

that we need to construct the quasi-likelihood. Under the GARCH-in-mean spec-

ification this object is defined by a recursion which does not yield an obvious

infinite-past representation. This reason made us part ways with traditional ap-

proaches that are applicable to GARCH-type models. Instead we constructed

a three dimensional Markov model including the observable process yt, the true

conditional variance process σ2
t (θ0) and its parametric form σ2

t (θ). We tackled this

Markov model following a systematic approach introduced by Meyn and Tweedie

(2009) and concluded its stability properties. The consistency and asymptotic
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normality can then be concluded by applying appropriate limit theorems.

To conclude the geometric ergodicity property we proposed a few conditions in

Chapter 2. The condition A2 is relatively abstract and difficult to verify directly.

However, given specific parameter values we could still verify this condition by

numeric experiment, which is demonstrated in Chapter 4. Note that this rank

condition is in fact related to the ψ-irreducibility of the chain. There’s some

other work available that could help verifying this property, eg. Cline and Pu

(1998). However, their theorem imposed certain assumptions on the innovation

process that seems too restrictive for financial series. Doukhan (1994) also in-

cludes a number of results around the issue of geometric ergodicity which are

more applicable to processes with relatively simpler structures.

The results obtained in this thesis is important for both theoretical research

and practical applications. It helps researchers to further study statistical infer-

ence and other problems for GARCH-in-mean models, as well as assists practi-

tioners to better understand their estimates hence improve their practices.
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Berkes, I. and L. Horváth (2004). The efficiency of the estimators of the param-

eters in GARCH processes. Annals of Statistics 32, 633–655.
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Appendix A

Markov Chain Definitions

First of all we need to define two important stochastic stability properties.

Definition A.1 (Strict Stationarity). The stochastic process {Xt} is strictly sta-

tionary if the joint distributions of (Xt1 , . . . , Xtk)
′ and (Xt1+h, . . . , Xtk+h)

′ are the

same for all positive integers k and for all t1, . . . , tk, h ∈ Z.

Definition A.2 (Ergodicity). A strictly stationary process {Xt} is said to be

ergodic if and only if, for any Borel set B and any integer k,

n−1

n∑
t=1

1B(Xt, Xt+1, . . . , Xt+k)→ P{(X1, . . . , X1+k) ∈ B}

with probability one. Here 1B is the indicator function.

The definition of ergodicity is in fact much more general and could be extended

to nonstationary process, for example cf. Billingsley (1995). However, throughout

this thesis we only deal with strictly stationary and ergodic process.
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Now proceed with definitions around various terminologies used in the Markov

model theory. The main reference here is Meyn and Tweedie (2009).

Definition A.3 (Markov Chain). The time-homogenous Markov chain is defined

as a stochastic process {Xt, t ∈ Z} evolving on a state space X with a σ-algebra

B(X), satisfying

P (Xt+1 ∈ A | Xr, r < t;Xt = x) = P (x,A), ∀t ∈ Z, x ∈ X,A ∈ B(X)

where P = {P (x,A), x ∈ X,A ∈ B(X)} is known as the transition probability

kernel satisfying

(i) for each A ∈ B(X), P (·, A) is a non-negative measurable function on X

(ii) for each x ∈ X, P (x, ·) is a probability measure on B(X)

For our purpose of study, throughout the thesis we only consider Markov

Chains defined on a general state space X, equipped with a countably generated

σ-field B(X).

The first level of the stability of a Markov Chain is related to whether the

chain has the ability to visit any sizable set in the σ-field. Formally it is known

as the irreducibility property.

Definition A.4 (Irreducibility). We call a Markov Chain Xt ϕ-irreducible if
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there exists a measure φ on B(X) such that, whenever ϕ(A) > 0, we have

L(x,A) > 0, ∀x ∈ X

where L(x,A) denotes the probability that the chain starts from x ∈ X and ever

enters A ∈ B(X). Note that whenever a Markov Chain is ϕ-irreducible, there

exists a maximum irreducibility measure (in the sense that it dominates any other

irreducible measures) ψ such that Xt is also ψ-irreducible.

We also want to introduce the the definition of petite sets and the T-chain

concept.

Definition A.5 (Petite Set). A set C ∈ B(X) is νa-petite if the sampled chain

satisfy the bound
∞∑
n=0

P n(x,B)d(n) ≥ νa(B)

for all x ∈ C, B ∈ B(X), where νa is a non-trivial measure on B(X) and

d={d(n)} is a distribution or probability measure on Z+.

The T-chain concept is connected with the so-called sampling chain: the

Markov chain with transitional probability Kd :=
∞∑
n=0

P n(x,B)d(n). A Markov

chain is called a T-chain if there exists a sampling distribution d such that Kd

possesses a continuous component. For a ψ-irreducible T-chain, every compact

set is petite.

Periodicity is another important property for a Markov chain. For a ψ-
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irreducible chain on (X,B(X)), there exists some positive integer d and disjoint

sets D1, . . ., Dd ∈ B(X) (d-cycle), such that

i for x ∈ Di, P (x,Di+1) = 1

ii the set N = [∪di=1Di]
c is ψ-null.

We have the following definition for periodicity.

Definition A.6 (Aperiodic Chain). The largest possible integer d among all d-

cycles of a chain Xt is called the period of Xt. If d = 1 the Xt is said to be an

aperiodic chain.

Next we introduce the concept of recurrence and Harris recurrence.

Definition A.7 (Recurrence). A ψ-irreducible chain is called recurrent if for

every x ∈ X and A ∈ B+(X),

Ex

[
∞∑
t=1

I(Xt∈A)

]
=∞

where B+(X) includes all sets in B(X) that are ψ-positive. Ex indicates the chain

is initiated by X0 = x. I is the indicator function.

Note that the quantity
∞∑
t=1

I(Xt∈A) is also known as the occupation time, repre-

senting the number of visits by Xt to A after time zero. Now we define a stronger

form of recurrence.
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Definition A.8 (Harris Recurrence). A ψ-irreducible chain is called Harris re-

current if for every x ∈ X and A ∈ B+(X),

P (

[
∞∑
t=1

I(Xt∈A)

]
=∞|X0 = x) = 1

where B+(X) includes all sets in B(X) that are ψ-positive. I is the indicator

function.

Lastly we define the invariant measure for a chain. Sometimes it is also called

the stationary measure.

Definition A.9 (Invariant Measure). A σ-finite measure π on B(X) with the

property

π(A) =

∫
X

π(dx)P (x,A), A ∈ B(X)

is called invariant.
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