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Abstract

In this thesis, we study 4-dimensional weighted projective spaces and homotopy proper-

ties of their symplectomorphism groups. Using these computations, we also investigate

some homotopy theoretic properties of a few associated embedding spaces. In the classi-

cal case of the complex projective plane, Gromov observed that its symplectomorphism

group is homotopy equivalent to its subgroup of Kahler isometries. We find that in the

case of one singularity, the symplectomorphism group is weakly homotopy equivalent to

the Kahler isometry group of a certain Hirzebruch surface, which corresponds to the res-

olution of the singularity. In the case of multiple singularities, the symplectomorphism

groups are weakly equivalent to tori. These computations then allow us to investigate

some properties of related embedding spaces.

Keywords: symplectic orbifold, weighted projective space, symplectmorphism group,

Hirzebruch surface, toric orbifold, toric manifold, symplectic cutting, symplectic blow-

up, Hirzebruch-Jung resolution
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Chapter 1

Introduction

Consider the weighted projective space CP 2
a,b,c for a, b, c relatively prime. This is the

space C3 \ {0} / ∼ , where the equivalence relation ∼ is given by

(z0, z1, z2) ∼ (w0, w1, w2)⇐⇒ (w0, w1, w2) = (λaz0, λ
bz1, λ

cz2)

for λ ∈ C∗. Let’s write the equivalence class of a point (z0, z1, z2) in homogeneous

coordinates as [z0 : z1 : z2] ∈ CP 2
a,b,c without any subscripts that identify the weights

a, b, c. Then CP 2
a,b,c is a 4 dimensional orbifold, and we can put a symplectic form on it

using symplectic reduction; the same way we do for the manifold CP 2. The symplectic

form on CP 2
a,b,c depends on the weights, so we will call it ωa,b,c. The purpose of this

thesis is to investigate the homotopy type of the group of symplectomorphisms of the

symplectic orbifold (CP 2
a,b,c, ωa,b,c) and to use this to probe various embedding spaces.

There is a lot of recent history to the investigation of symplectomorphism groups, at

least for manifolds. It seems that symplectic orbifolds have been discriminated against

and that’s just sad.

Some early results about the topology of symplectomorphism groups are by McDuff

in [34] where she uses the Moser fibration

Symp(M,ω) ∩Diff0(M) −→ Diff0(M) −→ S[ω]

to detect differences in the identity component Diff0(M) of the diffeomorphism group

of a manifold M and its subgroup of symplectomorphisms. Here, S[ω] is the space of

1



2

symplectic forms on M that are isotopic to ω and we require that the symplectic forms

be standard outside some compact set. The two main results in this paper are:

Theorem ([34]). Let (M,ω) be the 1-point blow up of CP 2 with its standard Kahler

form. Then π1Symp(M,ω) does not surject onto π1Diff0(M).

Theorem ([34]). Let M = C2\{0} with its standard symplectic form ω. Then Symp(M,ω)

is not connected.

These results are proved using cellular decomposition methods, and came before the

machinery of Gromov’s theory of J-holomorphic curves was introduced in [18]. The

techniques developed by Gromov proved to be extremely useful in the study of symplec-

tomorphism groups. The following results form the foundation for much of the work that

followed:

Theorem ([18]). Let σ ⊕ σ be the standard split symplectic form on S2 × S2, where σ

gives area 1 to each sphere. Then Symp(S2 × S2, σ ⊕ σ) is homotopy equivalent to the

subgroup (SO(3)× SO(3)) o Z2 of Kahler isometries.

Theorem ([18]). Consider R4 with its standard symplectic form ω0. Then the group

Sympc(R4, ω0) of compactly supported symplectomorphisms is contractible.

Theorem ([18]). Consider CP 2 with the standard Kahler form ωFS. Then Symp(CP 2, ωFS)

is homotopy equivalent to the subgroup PU(3) of Kahler isometries.

In a sequel to Gromov’s paper, Abreu [1] extended some of Gromov’s results by

considering the group

Gµ := Symp(S2 × S2, µσ ⊕ σ) , 1 < µ ≤ 2.

In fact, it was Gromov [18] who warned that the topology of Gµ changes if the spheres

are allowed to have different areas, but he didn’t pursue the details. This task fell to
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Abreu and many of the techniques used in [1] have now become standard. In particular,

they were used to compute

π1(Gµ / SO(3)× SO(3)) and H∗(Gµ / SO(3)× SO(3);R).

Then, in a sequel to this sequel, Abreu and McDuff [4] extended these results some more

by considering the symplectomorphism groups of the manifolds (S2 × S2, µσ ⊕ σ) for

µ > 2, and also the non-trivial bundle

(CP 2#CP 2
, ωµ),

where ωµ gives area µ > 0 to the exceptional divisor and area 1 to each fibre. It was

found that the topology of these symplectomorphism groups changes whenever µ crosses

integer values, but we will not explain the details here.

These early works are only the tip of the iceberg and we will not give a complete

survey here as this would just take too long. Here are some highlights though:

• Anjos [3] extended Abreu’s results and computed the full homotopy type of the

group Symp(S2×S2, µσ⊕σ) for 1 < µ ≤ 2. She also computed its homology group

with Z2-coefficients. These results have since been extended further by various

people.

• Lalonde-Pinsonnault [25] and Pinsonnault [40] extended the results of Abreu-McDuff

to the 1-point blow ups of these manifolds. These are the manifolds (S2×S2)#CP 2 ∼=

CP 2# 2CP 2
with induced symplectic forms from before. They found, as expected,

that the topology of these groups changes as µ passes integer values. These results

were then used to analyze various embedding spaces.

• The previous results were extended again by Anjos-Pinsonnault [6] to the manifold

CP 2# 3CP 2
with the induced symplectic form from before.
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• Seidel [42] computed the homotopy type of the group Sympc(T
∗S2) of compactly

supported symplectomorphisms of T ∗S2 with its canonical symplectic form.

• Evans [14] used the previous result of Seidel to compute the homotopy type of the

group Sympc(T
∗RP 2) of compactly supported symplectomorphisms of T ∗RP 2. He

also considered the symplectomorphism groups of the 3, 4, and 5-point blow ups of

CP 2 with their monotone symplectic forms, and computed their homotopy groups.

• Evans, in the same paper [14] also considered the algebraic variety given as the

solution to the equation x2 + y2 + zn = 1 with a Kahler form induced from C3.

He proved that its symplectomorphism group is homotopy equivalent to its group

of components, and that its group of components injects into the braid group of

n-strands on the disc.

• In a recent work, Hind-Pinsonnault-Wu [21] considered the symplectization s(S3 /Zn)

of the lens space S3 /Zn and computed the homotopy type of the corresponding

group of compactly supported symplectomorphisms. This point of view was then

used the investigate the space of embeddings of a singular ball into a bigger singular

ball.

• Lastly, we should mention another work by McDuff [31] that in many ways in-

spired our approach to this problem. In order to construct certain 6-dimensional

symplectic manifolds with S1-action, she must consider the reduced spaces by the

S1-action, which are symplectic orbifolds. To establish some uniqueness properties,

she must prove that these reduced spaces are “rigid” ([31]-Definition 2.13). One

of these properties of rigidity is the connectedness of an orbifold symplectomor-

phism group. This paper contains the only results that we know of about orbifold

symplectomorphism groups.

We want to investigate orbifolds, not manifolds. But, the useful thing in our case is

that we can resolve the singularities (get rid of them) and then use well-known techniques
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to investigate the symplectomorphism group of the resolution. The idea is to compare

a certain subgroup of the symplectomorphism group in question to a subgroup of the

symplectomorphism group of the resolution.

There is a problem though: Given a symplectic orbifold (O, ω), then how do we

define its symplectomorphism group? This is easy in the case of a symplectic manifold; a

symplectomorphism is just a diffeomorphism that preserves the symplectic form. Maps

between orbifolds become more complicated though. In fact, there seem to be 4 distinct

notions of orbifold map [9], and each of these involve remembering different parts of

the data that we need to define maps on orbifolds in the first place. In this thesis,

we really only care about the weakest possible notion of orbifold map; these are the

reduced orbifold maps as defined in [8] (see also [9]). The focus in [8] is on 2 types

of orbifold diffeomorphism group. First, the group Difforb(O) is defined as a space of

maps of the form (f, {fx}), where f is a continuous map of the underlying topological

space, and {fx} is a set of lifts of f to uniformizing charts; these lifts being parametrized

according to a natural stratification of the orbifold. The group Diffred(O) is defined by

“forgetting the lifts”; that is, by defining a stricter notion of equivalence on the space of

orbifold diffeomorphisms. Thus, the group Diffred(O) is naturally viewed as the quotient

of Difforb(O) by a subgroup that consists of all lifts of the identity map. We choose to

follow the conventions in [8] when defining orbifold symplectomorphism groups: We first

define the group Symporb(O) to be the subgroup of Difforb(O) whose lifts preserve the

symplectic forms on all uniformizing charts. Then we define the group Sympred(O) to

be the quotient of Symporb(O) by the subgroup of all lifts of the identity map.

Our main focus is on the group Sympred(O), where O is the weighted projec-

tive space CP 2
a,b,c equipped with its natural symplectic form ωa,b,c. We call this group

Sympred
a,b,c. It’s important that the weights a, b, c (the orders of the singularities) be rela-

tively prime, otherwise the singularities would not be isolated. In fact, we are only able

to get results when a = 1; thus we consider the groups Sympred
1,b,c for 1 < b < c with b

and c relatively prime. We are confident that we know how to prove the more general
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result for Sympred
a,b,c, but this is not included in the thesis due to lack of time. The work

is done in stages, reflecting our general approach to the problem. We prove the following

results about the symplectomorphism groups:

Theorem 1. The group Sympred
1,1,c is weakly homotopy equivalent to U(2) /Zc, where c > 1.

Here, there is a natural linear action of U(2) /Zc on CP 2
1,1,c given by

A · [z0 : z1 : z2] = [αz0 + βz1 : γz0 + δz1 : z2],

where A is the matrix with entries α, β, γ, δ. We should note that the group U(c) /Zc

can be interpreted as the Kahler isometry group of the Hirzebruch surface Wc, since

blowing up the singularity of CP 2
1,1,c results in the Hirzebruch surface Wc, and there is

a biholomorphism

CP 2
1,1,c \ pc ∼= Wc \ zero section,

where pc ∈ CP 2
1,1,c is the singularity. We should note that this identification can be

made symplectic around arbitrarily small neighbourhoods ([38]-Theorem 2). We prove

Theorem 1 in Section 4.2 by using exactly this idea; that is, we resolve the singularity of

CP 2
1,1,c and show that the subgroup of symplectomorphisms acting as the identity near

pc can be identified, up to weak homotopy equivalence, with the subgroup of symplecto-

morphisms of Wc acting as the identity near the zero section. We then use known results

about the subgroup of symplectomorphisms of Wc acting as the identity near the zero

section (see [11]-Proposition 3.2 and [20]-Lemma 9.1).

The next step in our investigation involves the groups Sympred
1,b,c, where c = bk + 1

and k ≥ 1 is an integer. To investigate the symplectomorphism group in this case, we first

find the resolution and identify it symplectically with a b-fold blow up of the Hirzebruch

surface Wk. This process is arduous and seems unnecessary in light of recent discoveries

by us. Nevertheless, it is still included in Section 3.2, perhaps for cultural reasons, and

also because we didn’t have enough time to re-organize it. Section 3.2 is still informative
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though, because we go through the process of constructing an explicit resolution of the

toric model and then making the proper identifications with the non-toric resolution in

Section 3.1. It is perhaps redundant, though enlightening and informative to see how the

resolutions match up from two different points of view.

The bulk of the computations for the groups Sympred
1,b,c are done in Sections 4.3 and

4.4, where we prove the following results:

Theorem 2a. Sympred
1,b,c is weakly homotopy equivalent to Aut(Tpc) ' T2 /Zc when

c = bk + 1, where Aut(Tpc) is the group of automorphisms of the uniformized tangent

space at pc.

Theorem 2b. Sympred
1,b,c is weakly homotopy equivalent to either Aut(Tpb) or Aut(Tpc)

when 1 < b < c. In this more general case, it turns out that both uniformized tangent

spaces are isomorphic. Up to homotopy, these automorphism groups are just T2.

We should note that Theorem 2a is a special case of Theorem 2b. The proof

of Theorem 2a is given in Section 4.3 and the proof of the latter is given in Section

4.4. Actually, most of the work is contained in Section 4.3, and then we realized that we

could prove the more general result using similar methods, so we decided to include a less

detailed version of this argument in Section 4.4. Let us outline the general approach to the

proof. For the case Sympred
1,b,c with c = bk+ 1, we already described in the last paragraph

that we identify the resolution R symplectically with a b-fold blow up of the Hirzebruch

surface Wk. The resolution creates a chain of embedded symplectic spheres whose self-

intersection numbers are given by the continued fraction expansion of bk+1
b . Let Symp(R)

be the symplectomorphism group of the resolution, where R is equipped with a natural

symplectic form that comes from the resolution process. If Γ is the configuration of

embedded symplectic spheres created from the resolution, then we are interested in the

group Sympcpt(R \ Γ) of symplectomorphisms that are compactly supported away from

the configuration Γ. This group turns out to be homotopy equivalent to the kernel K in

the fibration

K −→ Sympred
1,b,c −→ Aut(Tpb)× Aut(Tpc),
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so the main focus is on computing the weak homotopy type of the group Sympcpt(R \ Γ).

The techniques that we use are standard and are variations on the techniques used in

many previous works; see for instance [1], [14], [26] and [21].

The next chapter (Chapter 5) involves applying the techniques from the previous

chapter to various embedding spaces. We follow the general framework from [26] and [40].

The key idea is to recognize that the groups Sympred
1,1,c and Sympred

1,b,c act transitively on

certain spaces of embedded singular or smooth balls. The first result in this chapter is

in Section 5.1. If =Embε1,1,c is the space of singular balls of size ε < 1 in CP 2
1,1,c modulo

reparametrization, then we have

Theorem 3a. =Embε1,1,c is weakly contractible.

There is a corollary of this result that we mention in Section 5.1 as well. This

is about the corresponding unparametrized space of symplectic embeddings; the space

Embε1,1,c. The relation between the space Embε1,1,c and the space =Embε1,1,c is just

that the latter is the quotient of the former by the group Sympred(Bc(ε)) of reduced

symplectomorphisms of the orbi-ball (singular ball) Bc(ε). We then have the following:

Theorem 3b. Embε1,1,c is weakly homotopy equivalent to U(2) /Zc.

When (M,ω) is a symplectic manifold, let =Emb(B(λ),M) be the space of un-

parametrized embeddings of balls B(λ) of capacity λ in M . This space carries informa-

tion about symplectic blow ups; for instance, if the space =Emb(B(λ),M) is connected,

then two symplectic blow ups of (M,ω) of the same size are isotopic ([35]-Proposition

7.18). It was proved in ([30]-Corollary 1.5) that the space =Emb(B(λ),M) is connected

when M has nonsimple type. Naturally, these embedding spaces should also carry in-

formation about the symplectic orbifolds in question, but it’s not clear to what extent

because there aren’t many general results about symplectic orbifolds.

In Section 5.2, we consider the space =∞Embδ1,1,c of smooth symplectic balls of

capacity δ < 1 embedded into the weighted projective space CP 2
1,1,c. The following

result is proved:
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Theorem 4. Let pc be the singular point of CP 2
1,1,c. Then =∞Embδ1,1,c is weakly homo-

topy equivalent to CP 1 ' CP 2
1,1,c \ pc.

This result is an analogue of Theorem 1.10(1) in [40], where it is proved that the

corresponding unparametrized embedding space of balls into the manifold CP 2 is weakly

homotopy equivalent to CP 2 itself; essentially meaning that balls of capacity less than

1 behave like points, homotopically. In the same theorem, Pinsonnault also proves a

corresponding result for spaces of two disjoint balls in CP 2, showing that this space

is weakly equivalent to the space of ordered configurations of two points in CP 2. It’s

possible that a similar result holds in our case, but we haven’t investigated this yet.



Chapter 2

Preliminaries

2.1 Symplectic Orbifolds

Let’s just start with the definition of uniformizing chart. Let X be a Hausdorff space. A

Cr-uniformizing chart on X is a triple (Ũ , G, π), where

• Ũ is a connected open subset of the origin in Rn.

• G is a finite group acting on Ũ by Cr-diffeomorphisms and fixing 0.

• π : Ũ → X is a continuous map inducing a homeomorphism Ũ /G ∼= U onto an

open set U ⊂ X.

Note that the map π should be G-invariant. We will also assume that G acts effectively

on Ũ .

Definition 2.1.1. A Cr-orbifold atlas on X is a family U of Cr-uniformizing charts

on X such that for each x ∈ X and neighbourhood U of x, there is an element (Ũx, Gx, πx)

in U with πx inducing a homeomorphism Ũx /Gx onto an open neighbourhood Ux ⊂ U

with x ∈ Ux. We also want πx to map the origin 0 to x. The atlas U should satisfy the

following local compatibility conditions:

• For any neighbourhood Uz ⊂ Ux and corresponding uniformizing chart (Ũz, Gz, πz)

in U , there is a Cr-embedding λ : Ũz → Ũx and an injective group homomorphism

10
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θ : Gz → Gx such that λ is θ-equivariant and the following diagram commutes:

Ũz

��

λ // Ũx

��

Ũz /Gz

πz
��

λ // Ũx / θ(Gz)

πx
��

Uz
⊂ // Ux

Remarks:

(1) If gx ∈ Gx, then gx · λ : Ũz → Ũx is also a Cr-embedding that descends to the

same map as λ and is equivariant with respect to the injective homomorphism

θ(gz) = gx · θ(gz) · g−1
x for gz ∈ Gz. For this reason, we regard λ as being defined

only up to composition with elements of Gx and θ defined only up to conjugation

by elements of Gx.

(2) We regard two atlases U and V as equivalent if they can be combined to give a

larger atlas still satisfying the above definition of being locally compatible.

Definition 2.1.2. A Cr-orbifold O is a pair (XO, [U ]), where XO is a paracompact

Hausdorff space (called the underlying space) and [U ] is an equivalence class of Cr-orbifold

atlases.

Given any point x in an orbifold O, by definition there is a neighbourhood Ux of

x and a homeomorphism Ux ∼= Ũx /Gx, where Ũx is a neighbourhood of the origin in

Rn. It is possible to show that the germ of this action in a neighbourhood of 0 ∈ Rn

is unique. We say that Gx is the isotropy group of x. The singular set Sing(O) of

the orbifold O is the set of points x ∈ O with Gx 6= {Id}. We want to move quickly

into symplectic territory, so in analogy with Cr-uniformzing chart let us define what we

mean by symplectic uniformizing chart,
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Definition 2.1.3. Let X be a Hausdorff space and let (Ũ , G, π) be a C∞-uniformizing

chart on X. Suppose Ũ comes equipped with a symplectic form ω̃ that is G-invariant.

Then we call (Ũ , ω̃, G, π) a symplectic uniformizing chart.

Now, a symplectic orbifold (O, ω) is just an orbifold O with a covering by

open sets such that for each U in the covering, there is a symplectic uniformizing chart

(Ũ , ω̃, G, π) such that ω̃ descends to ω on U . Moreover, the symplectic unformizing charts

should satisfy compatibility conditions analogous to those in Definition 2.1.1.

Defintion 2.1.4. Let O be an n-dimensional smooth (C∞) orbifold. The tangent or-

bibundle, p : TO → O, of O is defined as follows: If (Ũx, Gx) is a uniformizing

chart above x ∈ O then p−1(Ux) ∼= (Ũx × Rn) /Gx, where Gx acts on Ũx × Rn by

g · (ỹ, ṽ) = (g · ỹ, dgỹ(ṽ)). The fibre p−1(x) over x ∈ O is called the uniformized

tangent space at x and it is denoted by TxO.

It’s possible to show that TO is itself a smooth orbifold with uniformizing charts

that are just lifts of the charts on the base; ie. they have the form (T Ũx, Gx) with (Ũx, Gx)

a uniformizing chart for O (see [2]-Section 1.3).

If S is a suborbifold of O (as defined in [8]-Definition 16), then we can define the

normal orbibundle to S in O as follows: If s ∈ S, we view the uniformized tangent

space TsS as a subspace of TsO. The normal space at s is defined as the quotient

TsO / TsS. The normal orbibundle is then

νS := {(s, v) | s ∈ S , v ∈ TsO / TsS}.

2.2 Weighted Projective Spaces

Let a, b, c be positive integers that are pairwise relatively prime. From a symplectic

point of view, the most natural way to view the weighted projective space CP 2
a,b,c is
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via symplectic reduction. Consider the symplectic manifold (C3, ωstd) with its standard

symplectic form ωstd =
√
−1
∑3
j=1 dzj ∧ dz̄j . Let S1 act on C3 with weights (a, b, c):

λ · (z0, z1, z2) = (λaz0, λ
bz1, λ

cz2). (2.1)

This action is Hamiltonian with moment map

C3 H−→ R, H(z0, z1, z2) = a|z0|2 + b|z1|2 + c|z2|2.

All non-zero real numbers are regular values of H. Thus, H−1(abc) is a submanifold of

C3; in fact it is the boundary of the ellipsoid

E(bc, ac, ab) :=

{
|z0|2

bc
+
|z1|2

ac
+
|z2|2

ab
≤ 1

}
.

A well-known result of Alan Weinstein (see [45]) provides the reduced spaceH−1(abc) / S1

with a symplectic form ωa,b,c induced from ωstd and gives (H−1(abc) / S1, ωa,b,c) the

structure of a symplectic orbifold (back in the day, they called orbifolds “V-manifolds”,

until Thurston came along and changed it in one of his classes). Our policy will be to

take this reduced space as the definition of (CP 2
a,b,c, ωa,b,c).

The symplectic orbifold (CP 2
a,b,c, ωa,b,c) also comes with a natural toric structure.

To see this, consider the standard T3-action on C3

(t0, t1, t2) · (z0, z1, z2) = (t0z0, t1z1, t2z2).

with corresponding moment map µT3(z0, z1, z2) = (|z0|2, |z1|2, |z2|2). This T3-action

commutes with the weighted S1-action, so there is an induced T3-action on the quotient

H−1(abc) / S1. This action is not effective, but the action of T3 / i(S1) induced by the

inclusion

i : S1 ↪→ T3, λ 7→ (λa, λb, λc)
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is effective. Standard results about symplectic orbifolds (see [28]) show that this new

T2-action makes H−1(abc) / S1 = CP 2
a,b,c into a toric orbifold, whose moment polytope

is given by

{i∗(x, y, z) = abc} ∩ R3
≥0,

where i∗ : R3 → R is dual to the linearization of the inclusion i. Being a linear map, i∗

is just the matrix [a b c]T , so that the moment polytope is just given by the intersection

of the hyperplane ax+ by + cz = abc with the positive orthant in R3.

The orbifold structure of CP 2
a,b,c can be explicitly described as follows. Let

Ua := {[z0 : z1 : z2] ∈ CP 2
a,b,c | z0 6= 0}

Ub := {[z0 : z1 : z2] ∈ CP 2
a,b,c | z1 6= 0}

Uc := {[z0 : z1 : z2] ∈ CP 2
a,b,c | z2 6= 0} .

Then CP 2
a,b,c is covered by these three open sets. Take, for instance, a point [z0 : z1 :

z2] ∈ Ua. Pick an a-th root of z0 and put λ := 1 / z
1/a
0 . Then

[z0 : z1 : z2] = [λaz0 : λbz1 : λcz2] =

[
1 :

z1

z
b/a
0

:
z2

z
c/a
0

]
.

Letting λ vary over all a roots of z0 gives us a homeomorphism

Ua −→ C2 /Za , [z0 : z1 : z2] 7→
[
z1

z
b/a
0

,
z2

z
c/a
0

]
,

with λ acting on C2 as

λ · (z1, z2) = (λbz1, λ
cz2). (2.2)

Similar computations apply to the other neighbourhoods Ub and Uc. Thus, CP 2
a,b,c has

an orbifold structure where all singularities have cyclic structure groups. We should note

that CP 2
a,b,c (as an orbifold) is not a global quotient in the following sense: There is a
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holomorphic map

CP 2 −→ CP 2
a,b,c , [z0 : z1 : z2] 7→ [za0 : zb1 : zc2]

that is invariant under the Za×Zb×Zc ∼= Zabc-coordinatewise action on CP 2. Thus, as

algebraic varieties there is an isomorphism

CP 2 /Zabc ∼= CP 2
a,b,c ,

but they cannot be isomorphic as orbifolds since their singular sets do not coincide. The

question of what it means to be an isomorphism in the orbifold category will be discussed

in Section 4.1.

2.3 Hirzebruch Surfaces

Hirzebruch surfaces are complex, rational, ruled surfaces and symplectic forms on them

have been classified by Lalonde-McDuff in [25]. They are classified by their cohomology

class (any two cohomologous symplectic forms are diffeomorphic) and, after rescaling,

any symplectic rational ruled 4-manifold is symplectomorphic to one of the following:

• (S2×S2, µσ1⊕σ2), the trivial bundle, where σ1 and σ2 give area 1 to each sphere.

• (CP 2#CP 2
, ωµ), the non-trivial bundle, where the symplectic area of the excep-

tional divisor is µ > 0 and the area of each fibre is 1.

At the homology level, we will work with the basis {B,F} of H2(S2 × S2;Z) and

the basis {B∗, F ∗} of H2(CP 2#CP 2
;Z), where B = [S2 × ?] and F = [? × S2]. Also,

B∗ is the homology class of a section in CP 1#CP 2
of self-intersection -1 and area µ,

while F ∗ is the homology class of a typical fibre. The cth Hirzebruch surface is

Wc = {([a : b], [z0 : z1 : z2]) ∈ CP 1 × CP 2 | acz1 = bcz0},
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where c is a positive integer. We give it a symplectic form by restricting the following

form to Wc

Ωµ,c :=


(
µ− c

2

)
ωCP 1 ⊕ ωCP 2 if c is even and µ > c

2(
µ−

(c−1
2

))
ωCP 1 ⊕ ωCP 2 if c is odd and µ > c−1

2

where ωCP 1 , ωCP 2 are, respectively, the standard Kahler forms on CP 1 and CP 2 nor-

malized so that the areas of the embedded CP 1’s are equal to 1. The restriction of the

projection CP 1×CP 2 → CP 1 makes Wc a CP 1-bundle over CP 1 which is, topologically,

S2 × S2 when c is even, and CP 2#CP 2
when c is odd. The zero section is

Z0 := {([a : b], [0 : 0 : 1])}.

It corresponds to a section of self-intersection −c and represents the class B − c
2F if c is

even and B∗ −
(c−1

2

)
F ∗ if c is odd. The section at infinity is

Z∞ := {([a : b], [ac : bc : 0])},

and it has self intersection +c, representing the class B+ c
2F if c is even and B∗+

(c−1
2

)
F ∗

if c is odd.

The relationship between Wc and CP 2
1,1,c is given by the following proposition (for

a proof, see [16]-Section 4).

Proposition 2.3.1 ([16]). Let Vc be the subvariety of CP 1 × CP 2
1,1,c defined as

Vc = {([a : b], [z0 : z1 : z2]1,1,c) ∈ CP 1 × CP 2
1,1,c | az1 = bz0}.

Then Vc is biholomorphic to Wc.
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Thus, Vc is the (complex) blow-up of CP 2
1,1,c at the singular point pc. We put a

symplectic form on Vc in an analogous way; define

Ω̃µ,c :=


(
µ− c

2

)
ωCP 1 ⊕ ω1,1,c if c is even and µ > c

2(
µ−

(c−1
2

))
ωCP 1 ⊕ ω1,1,c if c is odd and µ > c−1

2

and restrict it to Vc. The zero section is the set Z ′0 := {([a : b], [0 : 0 : 1]1,1,c)}, and the

infinity section is now

Z ′∞ := {([a : b], [a : b : 0]1,1,c)}.

2.3.1 Toric Models

The Hirzebruch surfaces (Wk,Ωµ,k) are symplectic toric manifolds, and a very nice prop-

erty of these manifolds is that they are determined, up to equivariant symplectomorphism,

by their moment polytopes (see [12]). Let the torus T2 act on CP 1 × CP 2 by

(t1, t2) · ([a : b], [z0 : z1 : z2]) = ([t1a : b], [tk1z0 : z1 : t2z2]),

and restrict the action to Wk. Then the quotient Wk /T2 appears in Figure 2.1 or Figure

2.2, for k even or odd.1 These are also the images of Wk under the moment map

Φ([a : b], [z0 : z1 : z2]) =

(
|a|2

|a|2 + |b|2
+

k|z0|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
.

The outward normal vector to the slanted edge is (1, k), so that this edge has

slope −1
k . The image of the zero section Z0 is the top horizontal edge, the image of

the infinity section Z∞ is the bottom horizontal edge, and the image of the fibre F is

the slanted edge. These edges are labelled by their homology classes in H2(Wk;Z), and

they encode the symplectic areas and self-intersection numbers of the spheres Z0,Z∞,

1. The only difference between the two pictures is the labelling of homology classes
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Figure 2.1: The Hirzebruch trapezoid (k even).
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B∗ − k−1
2 F ∗

B∗ + k−1
2 F ∗

F ∗
�
�
��

(1, k)

Figure 2.2: The Hirzebruch trapezoid (k odd).

and F . We should mention a convention we are going to use throughout the rest of

this thesis. In subsequent sections, we will be talking a lot about various blow ups of

the Hirzebruch surfaces Wk and their resulting homology classes. Since these classes are

different depending on whether k is even or odd, it would be annoying to have to repeat

our arguments for two separate cases, and it turns out that this distinction is not so

important. In fact, blowing up S2 × S2 or CP 2#CP 2
leads to diffeomorphic smooth

manifolds (see [13]-page 13). This diffeomorphism produces an isomorphism in homology

H2( (S2 × S2)#CP 2
;Z) ∼= H2(CP 2# 2CP 2

;Z) with the following identification of basis
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elements:

F ↔ F ∗ (2.3)

B ↔ B∗ + F ∗ − E∗1

E1 ↔ F ∗ − E∗1

B − E1 ↔ B∗

F − E1 ↔ E∗1

where {B,F,E1} is a basis for H2( (S2 × S2)#CP 2
;Z) and {B∗, F ∗, E∗1} is a basis for

H2(CP 2# 2CP 2
;Z). Here, the classes E1, E

∗
1 are exceptional classes whose homological

self-intersection is -1. Thus, in subsequent sections when we speak about “blowing up

the manifold Wk”, our arguments will be carried out fully for the case k is even and

we will be careful to point out that the case “k odd” follows with similar arguments by

swapping the homology classes in the above fashion.

We will now recall some facts about toric geometry (see [23]-Section 2). A polygon

∆ ⊂ R2 is called a Delzant polygon if for each vertex p of ∆, the edges emanating from

p have the form p+ tvi, t ≥ 0, where vi ∈ Z2, and the vi (i = 1, 2) can be chosen to be a

Z-basis of the lattice Z2 (this last condition is called being smooth). Let e be an edge

of ∆ with rational slope. The rational length of e is the largest positive number ` such

that 1
` ·e has its endpoints on the lattice Z2. Let e1, e2, e3 be three consecutive edges in a

Delzant polygon, ordered anti-clockwise, and let n1, n2, n3 be outward primitive normal

vectors to these edges, respectively. Then each of {n1, n2}, {n2, n3} is an oriented Z-basis

for Z2. Thus, there is an integer m such that n1 +n3 = mn2. Define the combinatorial

self-intersection number of e2 to be −m.

Propostion 2.3.1.1 ([23]). Let (M,ω) be a compact connected symplectic toric 4-manifold.

Let Φ : M → R2 be the moment map for a toric action, and let ∆ = Φ(M).

(1) If e is an edge of ∆ of rational length `, then the pre-image Φ−1(e) is a symplecti-

cally embedded 2-sphere in M , invariant under the torus action, and with symplectic
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area ∫
Φ−1(e)

ω = 2π`

(2) If e is an edge of ∆ and S = Φ−1(e) is its pre-image in M , then the combinatorial

self-intersection number of e is equal to the self-intersection of S in M .

(3) The pre-images of the edges of ∆ generate the second homology group of M . The

number of vertices of ∆ is equal to dimH2(M ;Z) + 2.

2.4 J-Holomorphic Spheres

At a few crucial points in this thesis, our arguments explicitly use J-holomorphic spheres

(though implicitly our whole house of cards would collapse without them). We will briefly

mention what they are and a few results about them without getting bogged down in all

the analysis. Some good references are [5], [25], and [36]. All maps are C∞-smooth and

spaces of maps have the C∞-topology.

An almost complex structure on a manifold M is an automorphism J : TM → TM

such that J2 = −Id. The almost complex structure is tamed by a symplectic form ω if

ω(v, Jv) > 0 whenever v 6= 0.

If ω is also J-invariant, then J is said to be compatible with ω. The spaces of all

compatible with ω, respectively tamed by ω, almost complex structures on M are both

contractible spaces ([35]-Chapter 2.5), but it’s often more convenient to work with the

bigger space of tamed ones because this space is open in the space of all almost complex

structures on M .

For a fixed symplectic manifold (M,ω), let J be the space of all almost complex

structures J on M that are tamed by ω. A (parametrized) J-holomorphic sphere in M

is a map u : (CP 1, j) → (M,J) that is a solution of the generalized Cauchy-Riemann
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equations

du ◦ j = J ◦ du.

It is simple if it can’t be factored through a branch covering of CP 1. An embedded

J-sphere C ⊂ M is the image of a J-holomorphic embedding. Note that C must be

a symplectic submanifold because the restriction of ω to TC is non-degenerate by the

taming condition. If C is an embedded J-sphere, then we will usually just say that C is

J-holomorphic, or that C is a J-sphere.

Let A ∈ H2(M ;Z) be a homology class. We say that a J-sphere C is represented

by A if u∗[CP 1] = A, where u is a parametrization of C. We should emphasize that all of

our almost complex structures J come from the space J = J (ω) consisting of those that

are tamed by a fixed symplectic form ω. Here are some nice properties of J-holomorphic

spheres that will be important in the work we do:

• Positivity of area: Write [ω] · A for the cohomology-homology pairing. If A ∈

H2(M ;Z) can be represented by a J-holomorphic sphere for some J ∈ J , then

[ω] · A =

∫
u(CP 1)

ω =

∫
CP 1

u∗ω > 0.

• Positivity of intersections (only true in dimension 4): Let A,B be homology classes

in H2(M4;Z) that are represented by distinct simple J-holomorphic spheres for

J ∈ J . Write A · B for their homological intersection number. Then A · B ≥ 0.

Furthermore, if CA, CB are distinct J-holomorphic representatives of the classes

A, respectively B, then A · B = 1 if and only if CA and CB intersect exactly once

transversally. Also, A ·B = 0 if and only if CA and CB are disjoint.

• Adjunction formula (only true in dimension 4): Let [c1(TM)] ∈ H2(M ;Z) be the

first Chern class of the complex vector bundle (TM, J) for any J ∈ J . It is a fact

that [c1(TM)] is independent of J . Let A be a class in H2(M ;Z). We give the
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number

gv(A) := 1 +
1

2
(A · A− [c1(TM)] · A)

a special name. It’s called the virtual genus of A. Then for any J ∈ J , if

A ∈ H2(M) is represented by a simple J-sphere CA, we have gv(A) ≥ 0 with

equality if and only if C is embedded.

Now let’s focus on the case where (M4, ω) is a symplectic 4-manifold. We say

that a homology class E ∈ H2(M ;Z) is exceptional if it is represented by an embedded

symplectic sphere with self-intersection -1. If C is a J-holomorphic sphere that represents

an exceptional homology class, then C is unique by positivity of intersections. Here are

some facts about exceptional homology classes that will also be important in the work

that we do (see [41]-Lemma 2.1):

• Let JE ⊂ J be the space of ω-tame J for which there exists an embedded J-

holomorphic sphere in class E. Then JE is open, dense, and path-connected in

J .

• Corollary of Gromov compactness : If J ∈ J , then any exceptional class E is

represented by either an embedded J-holomorphic sphere or a connected union of

possibly multiply-covered J-spheres (called cusp-curves) of the form

C = m1C1 ∪ . . . ∪mnCn , n ≥ 2

where miCi stands for a multiply covered (ie., non-simple) J-sphere with multi-

plicity mi.

• Any two exceptional classes intersect non-negatively.
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2.5 Quotient Singularities and Continued Fractions

This section will describe the Hirzebruch-Jung method for resolving singularities. Some

good references for this material are ([10]-Section 2) and ([15]-Chapters 2.2 and 2.6).

We should start by describing cyclic quotient singularities and their local toric models.

Cyclic quotient singularities are just the special type of orbifold singularities that we care

about in this thesis. Suppose a cyclic group Zc acts on C2 as follows

ξ · (z0, z1) = (ξz0, ξ
bz1) , 0 < b < c (2.4)

with b, c relatively prime. Then the quotient is an orbifold with an isolated singularity

of order c at the origin. If we put a Zc-invariant symplectic form on C2, then this form

descends to the quotient C2 /Zc which naturally becomes symplectic. Let’s consider the

standard T2-action on C2 given by (z0, z1) 7→ (t0z0, t1z1). The image under the moment

map

(z0, z1) 7→ (|z0|2, |z1|2)

is the first quadrant in R2. Since the T2-action commutes with the Zc-action on C2,

there is an induced T2-action on C2 /Zc that we get by composing with an isomorphism

T2
∼=→ T2 /Zc. We want to describe the moment map and its image. Consider the

surjective homomorphism

T2 −→ T2

(t0, t1) 7→ (tc0, t
−b
0 t1). (2.5)

Its kernel is isomorphic to Zc ↪→ T2 viewed as the inclusion ξ 7→ (ξ, ξb) , so we have an

isomorphism

T2 /Zc
∼=−→ T2
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via the map (2.5). The inverse map is given by

T2 −→ T2 /Zc , (t0, t1) 7→ (t
1/c
0 , t

b/c
0 t1).

Therefore, T2 acts on C2 /Zc via this map, and the corresponding moment map is given

by

(z0, z1) 7→ (
|z0|2

c
+
b|z1|2

c
, |z1|2).

Its image is the convex subset of R2 spanned by the vectors (1, 0) and (b, c). If we

go back to the image of the moment map for the standard T2-action on C2, then this

new picture transforms the old one by the matrix

 1
c

b
c

0 1

 .
This is a local toric model for the order c singularity given by the action (2.4). The vertex

vc in this picture corresponds to the singularity of order c. In ([15]-Chapter 2.6), Fulton

describes how to resolve such a singularity using Hirzebruch-Jung continued fractions

and by adding rays to a convex cone. We prefer to view this process as “corner cutting”

at a vertex using co-normal vectors because this is the symplectic way of doing things,

though in this section we won’t specify the sizes of the cuts.

The co-normals to the edges with vertex vc are (0,−1) and (−c, b). If we put the

tails of these vectors together at the origin, they will span a convex cone. To make our

picture correspond to Fulton’s picture on ([15]-page 45) we have to rotate this cone by

180 degrees, so just use the matrix

 −1 0

0 −1

 .
Then the cone spanned by (0,−1) and (−c, b) is sent to the cone spanned by (0, 1) and
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(c,−b).

The Hirzebruch-Jung continued fraction expansion of cb is computed as follows: Let

a1 = dcbe be the least integer bigger than or equal to c
b . If b = 1, then a1 = c so we stop.

Otherwise, there are positive integers k1 < m1 such that

c

b
= a1 −

k1

m1
= a1 −

1
m1
k1

,

and we set a2 = dm1
k1
e. If k1 = 1, then stop. Otherwise, we can write

m1
k1

= a2 −
k2
m2

for

positive integers k2 < m2. Thus,

c

b
= a1 −

1

a2 − 1
m2
k2

and so on. This process will eventually stop. In the literature, this type of continued

fraction is often written as c
b = [a1, a2, . . . , ak]. To resolve the singularity corresponding

to the vertex vc, set ~n0 = (0,−1) and ~n1 = (−1, 0). Now recursively define

~ni+1 = ai~ni − ~ni−1

for i = 1, . . . , k. The normals ~n1, . . . , ~nk specify k new edges in the toric picture originally

determined by the edges with co-normals (0,−1) and (−c, b). These new edges correspond

to a chain of embedded spheres C1∪ . . .∪Ck intersecting positively and transversely with

self-intersection numbers Ci ·Ci = −ai. Note that since ai ≥ 2 this resolution is minimal

in the sense that it contains no (-1)-spheres.



Chapter 3

Resolving Singularities

3.1 Blowing up Orbifold Singularities

Recall that the blow up of a symplectic 2n-manifold at a point x is obtained by removing

an embedded ball around this point and then squishing the boundary (which is an S2n−1)

along the fibres of the Hopf fibration. A similar situation happens in the orbifold case,

except it now involves removing a singular orbi-ball and similarly squishing its boundary.

A more general approach is the weighted blow up (see [17]) which involves removing an

embedded ellipsoid and collapsing the boundary. The approach we describe here involves

symplectic cutting, a technique developed by Lerman in [27]. For a good reference on

how to use symplectic cutting in the orbifold case, see [38].

3.1.1 Resolving CP 2
1,1,c

Let us start with the simplest possible case: The single isolated singularity pc of the

weighted projective space (CP 2
1,1,c, ω1,1,c). This singularity is modelled by the following

Zc-action on the uniformizing chart Ũc:

ξ · (z, w) = (ξz, ξw), ξ ∈ Zc.

Define an S1-action on C2 by λ · (z, w) = (λz, λw). This S1-action commutes with

the Zc-action, so there is an induced action on C2 /Zc though this action is not effective

26
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(it has a global Zc stabilizer). We can fix this by taking the quotient by Zc and defining

a new S1
c := S1 /Zc-action on C2 /Zc

µ · [z, w] = [λ · (z, w)] = [λz, λw] for µ ∈ S1
c ,

where µ = λc for some λ ∈ S1. This action is Hamiltonian with corresponding Hamilto-

nian function

H1 : C2 /Zc −→ R, [z, w] 7→ |z|2 + |w|2.

Now perform a symplectic cut with respect to this S1
c -action: Take the product,

( (C2 /Zc)× C , ω1,1,c ⊕−idw′ ∧ dw′), with the effective S1
c -action

µ · ([z, w], w′) = (µ · [z, w], µ−1w′) = ([λz, λw], λ−cw′), λc = µ. (3.1)

This action is also Hamiltonian; it’s Hamiltonian function is

H2([z, w], w′) = |z|2 + |w|2 − c|w′|2

= H1([z, w])− c|w′|2.

Let ε > 0 be a regular value of H2. Then

H−1
2 (ε) = {([z, w], w′) ∈ C2 /Zc × C |H1([z, w])− c|w′|2 = ε}

= {([z, w], 0) | H1([z, w]) = ε}⊔ {
([z, w], w′) | H1([z, w]) > ε, |w′|2 =

H1([z, w])− ε
c

}
∼= H−1

1 (ε) t (H−1
1 (ε,∞)× S1

c ).

The symplectic quotient via the action (3.1) is H−1
1 (ε) / S1

c t {H1 > ε}. The manifold

{H1 > ε} embeds into H−1
2 (ε) / S1

c as an open dense symplectic submanifold, and the

remaining set H−1
1 (ε) / S1

c is called the exceptional divisor and has codimension 2. A
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priori, the exceptional divisor may not be smooth, but in this case it is because S1
c acts

freely on H−1
1 (ε) = {([z, w], 0) |H1([z, w]) = ε}.

Another way to look at the above construction is as follows. The map

ϕ : (S3 /Zc)× C −→ H−1
2 (ε)

(x,w′) 7→ ( (ε+ c|w′|2)1/2x,w′)

is an S1
c -equivariant diffeomorphism. Hence,

(
(S3 /Zc)× C

)
/ S1

c
∼= H−1

2 (ε) / S1
c .

Let τ = ω1,1,c|Uc ⊕−idw
′ ∧ dw′. Observe that, away from the origin, ω1,1,c|Uc = i

2(dz ∧

dz + dw ∧ dw) is standard. A simple computation shows that

ϕ∗τ |S3 /Zc×{0} = ε · i
2

(dx1 ∧ dx1 + dx2 ∧ dx2)|S3 /Zc

so the restriction of this form to the exceptional divisor is ε times the standard form on

CP 1.

3.1.2 Resolving CP 2
1,b,c for c = bk + 1

Consider first the order c singularity pc ∈ CP 2
1,b,c. As explained in Section 2.2, it is

locally modelled by the Zc-action

ξ · (z, w) = (ξz, ξbw), ξ ∈ Zc. (3.2)

As in the previous section, let S1
c := S1 /Zc act on C2 /Zc in the same way as (3.2).

The action is Hamiltonian with moment map

H1 : C2 /Zc −→ R, [z, w] 7→ |z|2 + b|w|2.
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Now perform the symplectic cut with this S1
c -action. The product (C2 /Zc) × C

admits the effective S1
c -action

µ · ([z, w], w′) = (µ · [z, w], µ−1w′) = ([λz, λbw], λ−cw′), λc = µ

that is Hamiltonian with moment map

H2([z, w], w′) = |z|2 + b|w|2 − c|w′|2

= H1([z, w])− c|w′|2.

Letting α1 > 0 be a regular value of H2, we have

H−1
2 (α1) / S1

c
∼= H−1

1 (α1) / S1
c tH−1

1 (α1,∞) ∼= CP 1
1,b t {H1 > α1},

so this time the exceptional divisor is not smooth, but is the weighted projective space

CP 1
1,b. Thus, we’ve removed a neighbourhood of pc and replaced it with CP 1

1,b, hence

reducing the order c singularity to an order b singularity. Give this new singularity the

designation qb.

We would like to compute the cohomology class of the resulting symplectic form

on the exceptional divisor. This is done by Godinho in [17] (see the very end of the

paper), so we will explain her computation. Put Σα1 := H−1
1 (α1) / S1

c and let ωα1 be

the form obtained by symplectic reduction. Observe that Σα1 is the quotient of the

ellipsoid boundary {|z|2 + b|w|2 = α1} by the weighted S1
c -action. This is a weighted

blow up in the context of [17]. After quotienting, there is a residual S1-action on the

exceptional divisor whose moment map is given by projecting to the vertical coordinate.

This can be seen by looking at the local toric picture in Section 2.5. The local toric model

for the singularity given by the action (3.2) is the open convex subset of R2 generated by

the edge vectors (1, 0) and (b, c). Making the symplectic cut at level α1 adds a new edge

with x-coordinate α1 and co-normal vector (−1, 0). This S1-action has two fixed points:
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The singularity qb, and a smooth point that we’ll call p. Let Hα1 be the Hamiltonian for

this new S1-action; thus, Hα1 is just projection to the vertical coordinate. Let ψs be the

corresponding Hamiltonian flow. Also, let γt be a smooth path from qb to p. Consider

the function

[0, 2π]× [0, 1]
f−→ H−1

2 (α1) / S1
c

(s, t) 7→ ψ−1
s (γt).

Then we have

[ωα1 ](Σα1) =
1

2π

∫
Σα1

ωα1

=
1

2π

∫
[0,2π]×[0,1]

f∗ωα1

=
1

2π

∫
[0,2π]×[0,1]

ωα1(ψ̇s, γ̇t) ds ∧ dt

=
1

2π

∫
[0,2π]×[0,1]

dHα1(γ̇t) ds ∧ dt

= Hα1(qb)−Hα1(p) =
c α1

b
.

Hence, the symplectic area of the exceptional divisor is
c α1
b .

Points of the form ([0, w], 0) ∈ H−1
2 (α1) have stabilizer Zb, so they collapse to the

order b singularity in the quotient H−1
2 (α1) / S1

c . Let q be a point in the S1
c -orbit of

([0, w], 0). By the orbifold slice theorem ([28]-Proposition 2.2), an S1
c -invariant neigh-

bourhood of the orbit

S1
c · q := {([0, λbw], 0) | λ ∈ S1

c } ∼= S1
c /Zb

is equivariantly diffeomorphic to a neighbourhood of the 0-section in the associated orbi-
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bundle

S1
c ×Zb (νq /Zb),

where νq is normal to the uniformized tangent space at q. The normal direction to the

orbit S1
c · q is

{([z, 0], w′) | (z, w′) ∈ (C /Zc)× C},

and is equipped with the Zb-action ξ · ([z, 0], w′) = ([ξz, 0], ξ−cw′). This provides a new

orbifold chart around the singularity qb ∈ H−1
2 (α1) / S1

c . Note that

−c = b− 1− b(k + 1)
mod b≡ b− 1 .

Thus, our new singularity can be locally modelled by a neighbourhood of the origin

in C2 with the Zb-action ξ · (z, w) = (ξz, ξb−1w), and we can repeat the same process as

above. There is an S1-action that commutes with this Zb-action, and so again we have

an induced effective action of S1
b := S1 /Zb on C2 /Zb. This action is Hamiltonian with

moment map J1(z, w) = |z|2 + (b− 1)|w|2. Perform another symplectic cut: S1
b acts on

the product C2 /Zb × C by

µ · ([z, w], w′) = (µ · [z, w], µ−1w′) = ([λz, λb−1w], λ−bw′), λb = µ (3.3)

with moment map J2([z, w], w′) = |z|2 +(b−1)|w|2−b|w′|2 = J1([z, w])−b|w′|2. Choose

a regular value α2 of J2. This time, the reduced space via the action (3.3) is decomposed

as

J−1
2 (α2) / S1

b
∼= J−1

1 (α2) / S1
b t {J1 > α2}.

Put Σα2 := J−1
1 (α2) / S1

b and note that Σα2 is isomorphic to the weighted pro-

jective space CP 1
1,b−1. Also, let Σ̂α1 be the proper transform of the earlier exceptional

divisor Σα1 . If ωJ2,α2 is the induced symplectic form on J−1
2 (α2) / S1

b , then a similar
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computation to that above shows that [ωJ2,α2 ] ([Σα2 ]) =
b α2
b−1 , and so

[ωJ2,α2 ] ([Σ̂α1 ]) = [ωJ2,α2 ] ([Σα1 ]− [Σα2 ]) =
c α1

b
− b α2

b− 1
=: `b(α1, α2). (3.4)

Using the slice theorem again, we can produce a new orbifold chart with Zb−1

acting as (z, w) 7→ (ξz, ξ−bw). Noting that

−b = b− 2− (b− 1) · 2 mod b−1≡ b− 2,

we see that the new singularity can be modelled with Zb−1 acting as (z, w) 7→ (ξz, ξb−2).

Yes, there is a pattern here. The reader who has looked at Section 2.5 should realize that

each singularity reduction is governed by the continued fraction expansion of bk+1
b =

[k + 1, 2, . . . , 2] where the number of 2’s in the string is b − 1. More details about this

will be explained in the next section.

Thus, we can resolve the singularity pc with b symplectic cuts at levels α1, . . . , αb

with sizes
c α1
b and (

b− (i− 2)
)
αi

b− (i− 1)
for i = 2, . . . , b.

This produces a chain of embedded symplectic spheres Σ̂α1 ∪ Σ̂α2 ∪ . . . Σ̂αb−1 ∪Σαb with

respective sizes `b(α1, α2), `b(α2, α3), . . . , `b(αb−1, αb), 2αb, where `b(α1, α2) is given in

(3.4) and

`b(αi, αi+1) =

(
b− (i− 2)

)
αi

b− (i− 1)
−
(
b− (i− 1)

)
αi+1

b− i
, i = 2, . . . , b− 1. (3.5)

A similar procedure shows that we can resolve the order b singularity pb ∈ CP 2
1,b,c by

performing only one symplectic cut, at level αb+1, and resulting in a smooth exceptional

divisor Σb+1. Let’s call the resulting symplectic form on the resolution ω̃α1,...,αb+1
.
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3.2 Toric Models

Recall from Section 2.2 that CP 2
a,b,c is a toric orbifold whose moment polygon is given

by the intersection of the hyperplane ax + by + cz = abc with the positive orthant in

R3. Now assume that a = 1, so that the vertex (bc, 0, 0) corresponds to a smooth

point in CP 2
1,b,c. Then P := {x + by + cz = bc} ∩ R3

≥0 intersects the coordinate axes

at (bc, 0, 0), (0, c, 0), (0, 0, b). We want to identify this moment polygon with the one in

Figure 3.1.

H
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HHH

�
�
�
��
~n

(c, 0)

(0, b)

(0, 0)

Figure 3.1: The moment polygon ∆b,c. Note that ~n = (b, c).

Consider the matrix

A =

 b −1 0

c 0 −1


as a map A : R3 → R2. This matrix comes from the Delzant construction. If we let

A : R2 → R3 be the affine map

A(x, y) = AT (x, y)− (bc, 0, 0),

then A is an affine embedding, so is a bijection onto its image. It is then easy to check

that A(∆b,c) = −P , and this allows us to identify P with the polygon ∆b,c from Figure
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3.1, up to a change of sign. The moment map that gives the polygon ∆b,c is

[z0 : z1 : z2] 7→ bc

|z0|2 + b|z1|2 + c|z2|2
(|z1|2, |z2|2).

In fact, this polygon determines (CP 2
1,b,c, ω1,b,c) up to equivariant symplectomorphism:

Theorem 3.2.1 ([28]). Compact symplectic toric orbifolds are classified by convex ratio-

nal simple polytopes with a positive integer label attached to each facet.

In dimension 2, a convex polygon is always simple (2 edges meeting at each vertex).

It is rational if the edges emanating from p have the form p+ tvi, t ≥ 0, where vi ∈ Z2.

Unlike Delzant polygons though (see Section 2.3.1), the smoothness condition is not

satisfied. Instead, we have the following: For each vertex p, the vi (i = 1, 2) can be

chosen to be a Q-basis for the lattice Z2. Let ∆ be a rational polygon in R2. For any

vertex p ∈ ∆, let ~m = (m1,m2), ~n = (n1, n2) be the primitive outward pointing co-

normals to the edges emanating from p, oriented anti-clockwise. If ~m and ~n are a Z-basis

of Z2, then the matrix having these vectors as rows is an element of GL(2,Z). Thus, we

have that p is smooth if and only if

det

 m1 m2

n1 n1

 = ±1.

Otherwise, p corresponds to an orbifold singularity of order the absolute value of this

determinant. In the Lerman-Tolman classification theorem, the positive integer labels

attached to each facet in our picture should be 1, since only the vertices correspond to

non-smooth points; hence we can just omit the labels. In Figure 3.1, we have

det

 0 −1

b c

 = b and det

 b c

−1 0

 = c

so the vertex (c, 0) corresponds to an orbifold point of order b and (0, b) corresponds to
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an orbifold point of order c (this can be somewhat confusing). Obviously, the origin is a

smooth point.

We will now describe the resolutions of (CP 2
1,b,bk+1, ω1,b,bk+1) in terms of their

toric models (for b ≥ 2 and k ≥ 1) and show that the resolution (R1,b,bk+1, ω̃α1,...,αb+1
)

is symplectomorphic to a manifold obtained by blowing up a certain Hirzebruch sur-

face b times. Recall from Section 3.1.2 that the symplectic form ω̃α1,...,αb+1
on the

resolution is obtained from making b + 1 symplectic cuts (blow ups): The singularity

pbk+1 ∈ CP 2
1,b,bk+1 is resolved by b consecutive symplectic cuts at levels α1, . . . , αb and

the singularity pb ∈ CP 2
1,b,bk+1 is resolved by making 1 symplectic cut at level αb+1.

Let’s start with the case of (CP 2
1,2,2k+1, ω1,2,2k+1). Recall from Section 2.5 how

we use continued fractions to resolve singularities. The singularity p2k+1 ∈ CP 2
1,2,2k+1

corresponding to the vertex with co-normals (−1, 0), (2, 2k + 1) is resolved by making

corner cuts determined by the continued fraction expansion of 2k+1
2 . Observe that

2k + 1

2
= k + 1− 1

2
= [k + 1, 2],

so p2k+1 is resolved by a chain of two spheres C1, C2 such that [C1] · [C1] = −(k+ 1) and

[C2] · [C2] = −2 and C1, C2 intersect once transversely. Set ~n0 = (−1, 0) and ~n1 = (0, 1).

Define

~n2 = (k + 1)~n1 − ~n0 = (1, k + 1)

~n3 = 2~n2 − ~n1 = (2, 2k + 1).

Then the moment polygon for the resolution of the singularity p2k+1 appears in Fig-

ure 3.2. Observe that all the vertices are smooth, except the one with co-normals

(0,−1) and ~n3. This corresponds to an orbifold singularity of order 2 because

det

 0 −1

2 2k + 1

 = 2 .
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Figure 3.2: The resolution of the singularity p2k+1.
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Figure 3.3: The full resolution of ∆2,2k+1.

Observe also that the edge with co-normal ~n3 = (2, 2k+ 1) is what remains after making

two cuts to the polygon ∆2,2k+1 in Figure 3.1.

The remaining singularity can be resolved by cutting the vertex labelled 2 with co-

normal ~n4 = (1, k) and it is easy to check that this results in a smooth polygon (Figure

3.3), hence it corresponds to a smooth symplectic manifold which is the resolution. We

also have

(0,−1) + ~n3 = 2~n4,



37

so the new edge with co-normal ~n4 corresponds to an embedded symplectic sphere C4 with

self-intersection −2. It is also easy to check that the edge with co-normal ~n3 corresponds

to a sphere C3 with self-intersection −1. To make things coherent with Section 3.1.2, we

will be identifying the chain C1∪C2 with Σ̂α1 ∪Σα2 and the sphere C4 with Σα3 so that

[ω̃α1,α2,α3 ](C1) = `2(α1, α2) =
c α1

2
− 2α2

[ω̃α1,α2,α3 ](C2) = 2α2

[ω̃α1,α2,α3 ](C4) = 2α3.

In terms of cutting the polygon, this means that we resolve the vertex labelled 2k+ 1 so

that our first corner cut has size
c α1

2 and the next corner cut has size 2α2. Similarly, the

vertex labelled 2 should be cut with size 2α3. The remaining sphere C3 corresponds to

an unnamed symplectic sphere from Section 3.1.2. Since the diagonal vertex in Figure

3.1 has rational length1 equal to one, the remaining sphere C3 must satisfy

[ω̃α1,α2,α3 ](C3) = 1−
(
c α1

2
+ 2α2 + 2α3

)
.

We now show how to resolve the singularities of (CP 2
1,b,bk+1, ω1,b,bk+1) using toric

models. The arguments are completely analogous to the previous case. The singularity

pbk+1 ∈ CP 2
1,b,bk+1 corresponding to the vertex with co-normals (−1, 0), (b, bk + 1) is

resolved by making corner cuts determined by the Hirzebruch-Jung continued fraction

1. See the end of section 2.3.1 for the meaning of rational length.



38

expansion of bk+1
b . We have

bk + 1

b
= k + 1−

(
b− 1

b

)
= k + 1− 1

2− b−2
b−1

= k + 1− 1

2− 1

2− b−3b−2

= k + 1− 1

2− 1
2−···−1

2

so the continued fraction expansion is given by the string [k + 1, 2, 2, . . . , 2], where the

number of 2’s in the string is b− 1. This tells us that the resolution of pbk+1 produces a

chain of embedded spheres C1, C2, . . . , Cb such that [C1] · [C1] = −(k+1) and [Ci] · [Ci] =

−2 for i = 2, . . . , b. Moreover, [Ci]·[Cj ] = 1 if |i−j| = 1. Set ~n0 = (−1, 0) and ~n1 = (0, 1).

Define ~n2 = (k + 1)~n1 − ~n0 = (1, k + 1) and

~ni+1 = 2~ni − ~ni−1 = (i, ik + 1) for i = 2, . . . , b. (3.6)

The moment polygon for the resolution is a generalization of that in Figure 3.2 with b new

co-normals ~n1, ~n2, . . . , ~nb. The edge with co-normal ~nb+1 = (b, bk + 1) is what remains

after making b cuts to the polygon ∆b,bk+1. It is easy to check that all vertices are smooth

except the one with co-normals (0,−1) and ~nb+1 which corresponds to the remaining

order b singularity. This one resolved by making a cut with co-normal ~nb+2 = (1, k) and

this new edge corresponds to a smooth symplectic sphere Cb+2 satisfying [Cb+2]·[Cb+2] =

−b. Finally, the edge that corresponds to what remains of the diagonal in Figure 3.1

corresponds to a smooth symplectic sphere Cb+1 such that [Cb+1] · [Cb+1] = −1. The

new polygon is a generalization of that in Figure 3.3; it has b+4 edges and corresponds to

a smooth symplectic manifold, which is the resolution R1,b,bk+1. Again, to make things

coherent with Section 3.1.2, we identify the chain of spheres C1 ∪ . . . ∪ Cb−1 ∪ Cb with
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Σ̂α1 ∪ . . . ∪ Σ̂αb−1 ∪ Σαb and the sphere Cb+2 with Σαb+1
so that

[ω̃α1,...,αb+1
](Ci) = `b(αi, αi+1) i = 1, . . . , b− 1 (3.7)

[ω̃α1,...,αb+1
](Cb) = 2αb

[ω̃α1,...,αb+1
](Cb+1) = 1−

(
c α1

b
+

b∑
i=2

(
b− (i− 2)

)
αi

b− (i− 1)
+ b αb+1

)
[ω̃α1,...,αb+1

](Cb+2) = b αb+1.

Recall from (3.5) that `b(αi, αi+1) =

(
b−(i−2)

)
αi

b−(i−1)
−
(
b−(i−1)

)
αi+1

b−i .

Lemma 3.2.2. There exists ε1 > ε2 > . . . > εb > 0 (depending on αb, . . . , αb+1)

and a symplectic form Ωµ,k,ε1,...,εb on Wk# bCP 2
such that (R1,b,bk+1, ω̃α1,...,αb+1

) is

symplectomorphic to (Wk# bCP 2
,Ωµ,k,ε1,...,εb), where the symplectic form on Wk# bCP 2

comes from the form Ωµ,k on Wk by blowing up with sizes ε1, . . . , εb.

Proof. We will first establish that R1,b,2k+1 and Wk# bCP 2
are isomorphic as toric

varieties. Then we’ll see how to put a symplectic form Ωµ,k,ε1,...,εb on Wk# bCP 2
so that

[Ωµ,k,ε1,...,εb ] = [ω̃α1,...,αb+1
]. By ([30]-Corollary 1.3), any two blow up forms in the same

cohomology class must be diffeomorphic. Hence, this will prove Lemma 3.2.2.

Step 1. R1,b,bk+1 and Wk# bCP 2
have the same fan.

A rational polygon in R2 determines a fan by its primitive co-normal vectors. This

fan determines a toric variety. Note that the co-normal vectors do not encode the sizes

of their respective edges, which means that they cannot determine the symplectic form

on the resulting toric variety. The fan corresponding to R1,b,bk+1 is determined by the

co-normals ~n1, . . . , ~nb+2 described previously, in addition to (0,−1) and (−1, 0). We’ll

show that the moment polygon of Wk# bCP 2
has the same co-normal vectors.

To see this, go back to Figure 2.1 or 2.2 in Section 2.3.1. The co-normal to the

diagonal edge in the Hirzebruch trapezoid is ~nb+2 = (1, k) and the co-normal to the

top horizontal edge is ~n1 = (0, 1). To get the moment polygon for Wk# bCP 2
we make
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b consecutive corner cuts, starting at the vertex meeting at the edges with co-normals

~n1, ~nb+2. The first cut produces a new co-normal ~n∗2 satisfying

~n∗2 = ~n1 + ~nb+2 = (1, k + 1).

Therefore, ~n∗2 = ~n2 above. Next we cut at the vertex with co-normals ~n2 and ~nb+2,

producing a new co-normal ~n∗3 such that

~n∗3 = ~n2 + ~nb+2 = (2, 2k + 1),

so that ~n∗3 = ~n3 in (3.6) above. In general, the ith cut is made at the vertex with

co-normals ~ni and ~nb+2, and makes a new co-normal ~n∗i+1 with

~n∗i+1 = ~ni + ~nb+2 = (i, ik + 1) , i = 1, . . . , b.

Comparing this with (3.6), it’s easy to see that R1,b,bk+1 and Wk# bCP 2
have the same

fan, hence they are isomorphic as toric varieties.

Step 2. Finding a suitable cohomology class.

We will start with (R1,b,bk+1, ωα1,...,αb+1
) and show how to blow down b times with

specific sizes in order to obtain a symplectic form on Wk in the same cohomology class

as Ωµ,k from Section 2.3.1. Let’s assume that k is even; we will explain later how to

modify the argument for the odd case. Let {B,F,E1, . . . , Eb} be the natural basis of

H2(Wk# bCP 2
;Z). The embedded spheres C1, . . . , Cb+2 obtained from the resolution

process each represent homology classes in H2(R1,b,bk+1;Z) ∼= H2(Wk# bCP 2
;Z) and
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we will make the following identifications

[C1] ←→ B − k

2
F − E1

[Ci] ←→ Ei−1 − Ei (i = 2, . . . b)

[Cb+1] ←→ Eb

[Cb+2] ←→ F −
b∑
i=1

Ei.

The sizes of these spheres are given in (3.7). Set

ε′b := 1−
(
c α1

b
+

b∑
i=2

(
b− (i− 2)

)
αi

b− (i− 1)
+ b αb+1

)
.

Now blow down the sphere Cb+1. This cuts out a neighbourhood of Cb+1 and glues in a

4-ball. Set

ε′b−1 := [ωα1,...,αb+1
](Cb) + ε′b

= 1−
(
c α1

b
+
∑
i6=b

(
b− (i− 2)

)
αi

b− (i− 1)
+ b αb+1

)
,

and note that ε′b−1 > ε′b. The blow down process transforms Cb+1 into a sphere of size

ε′b−1. In general, for j = 2, . . . , b− 1, we put

ε′j := [ωα1,...,αb+1
](Cj+1) + ε′j+1

= 1−
(
c α1

b
+
∑
i6=j+1

(
b− (i− 2)

)
αi

b− (i− 1)
+ b αb+1

)
,

producing a sequence ε′1 > ε′2 > . . . > ε′b > 0. The sphere Cb+2 is sent by the b-fold

anti-blow up to a sphere F ⊂ Wk of size

b αb+1 + ε′1 + · · ·+ ε′b.
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The sphere C1 is sent by the blow down to a sphere Z0 ⊂ Wk of size η :=
c α1
b −

b α2
b−1 + ε′1.

Now we will scale the symplectic form; put

µ :=
η

b αb+1 +
∑b
i=1 ε

′
i

+
k

2
and εi :=

ε′i
b αb+1 +

∑b
i=1 ε

′
i

.

The symplectic form Ωµ,k on Wk in cohomology class PD(B + µF ) now satisfies

[Ωµ,k](Z0) = µ− k

2
and [Ωµ,k](F) = 1.

Therefore, by blowing up (Wk,Ωµ,k) consecutively with sizes ε1 > · · · > εb, we get a

symplectic form Ωµ,k,ε1,...,εb in cohomology class PD(B+µF −
∑b
i=1 εiEi). Scaling this

form then gives a form in class [ω̃α1,...,αb+1
]. This proves Lemma 3.2.2.

Remark: When k is odd, we start with the basis {B∗, F ∗} of H2(Wk;Z) given in Section

2.3. Then we let {B∗, F ∗, E∗1 , . . . , E
∗
b } be the corresponding basis for H2(Wk# bCP 2

;Z),

where E∗1 , . . . , E
∗
b are the classes of the exceptional divisors. Make the swaps in (2.3) of

Section 2.3.1 combined with the swaps E∗i ↔ Ei for i = 2, . . . , b which allows us to make

the following identifications:

[C1] ←→ B −
(
k + 1

2

)
F

[C2] ←→ F − E1 − E2

[Ci] ←→ Ei−1 − Ei (i = 3, . . . , b)

[Cb+1] ←→ Eb

[Cb+2] ←→ E1 − E2 − · · · − Eb.

Again, the sizes of these spheres are given in (3.7). Now set

ε′b := [ω̃α1,...,αb+1
](Cb+1)

ε′j := [ω̃α1,...,αb+1
](Cj+1) + ε′j+1
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for j = 1, . . . , b − 1 just like before. This time the spheres will be blown down in a

different order, but a similar computation will go through.

Before finishing up this chapter, there is an important notion about homology

classes that needs to be discussed. Let Xb+1 = CP 2 # (b + 1)CP 2
. Then Xb+1 is

diffeomorphic to both R1,b,bk+1 and Wk# bCP 2
. Scale the Fubini-Study form on CP 2 so

that the symplectic area of CP 1 ⊂ CP 2 is 1. Now blow up CP 2 b+1 times symplectically

with sizes δ1, . . . , δb+1 and call the resulting symplectic form ωδ1,...,δb+1
. Then we have

PD[ωδ1,...,δb+1
] = L−

b+1∑
i=1

δiVi ,

where {L, V1, . . . , Vb+1} is the standard basis of H2(Xb+1;Z). Since Xb+1 is diffeomor-

phic to the b-fold blow up of S2 × S2, we get an isomorphism in homology that acts on

basis elements as follows

H2(Xb+1;Z) −→ H2( (S2 × S2) # bCP 2
;Z) (3.8)

L 7→ B + F − E1

V1 7→ B − E1

V2 7→ F − E1

V3 7→ E2

...
...

Vb+1 7→ Eb .

Again by [30], two blow up forms in the same cohomology class are diffeomorphic, so

by scaling and comparing cohomology classes, we see that (Xb+1, ωδ1,...,δb+1
) is sym-

plectomorphic to the b-fold blow up of (S2 × S2, νσ1 + σ2) with sizes γ1, . . . , γb such

that

ν =
1− δ2
1− δ1

, γ1 =
1− δ1 − δ2

1− δ1
, γi =

δi+1

1− δ1
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for i = 1, . . . , b.

Definition 3.2.3. We say that a homology class A = a0L −
∑
i aiVi is reduced with

respect to the basis {L, V1, . . . , Vb+1} if a1 ≥ a2 ≥ . . . ≥ ab+1 ≥ 0 and a0 ≥ a1 + a2 + a3.

We should check what the conditions are for a homology class to be reduced in

the new basis {B,F,E1, . . . , Eb}. To do this, reverse the isomorphism (3.8). Now the

ordered basis {B,F,E1, . . . , Eb} is sent to the ordered basis {L − V2, L − V1, L − V1 −

V2, V3, . . . , Vb+1}. Writing B + νF −
∑
i γiEi in terms of the other basis, we get

(1 + ν − γ1)L− (ν − γ1)V1 − (1− γ1)V2 −
b∑
i=2

γiVi+1 .

The conditions for this homology class to be reduced are then

ν − γ1 ≥ 1− γ1 ≥ γ2 ≥ . . . ≥ γb

1 + ν − γ1 ≥ (ν − γ1) + (1− γ1) + γ2 .

Putting these together gives ν ≥ 1 ≥ γ1 + γ2 > γ1 ≥ . . . ≥ γb. It is now easy to check

the following (this will be important in Section 4.3)

Lemma 3.2.4. The Poincare dual of the cohomology class [Ωµ,k,ε1,...,εb ] from Lemma

3.2.2 is reduced with respect to the basis {B,F,E1, . . . , Eb}.



Chapter 4

The Symplectomorphism Groups of CP 2
a,b,c

4.1 Orbifold Diffeomorphisms and

Symplectomorphisms

We begin by discussing orbifold maps and reduced orbifold maps, as defined in Borzellino

and Brunsden’s paper [8]. Let O be a Cr-orbifold (r ≥ 0) with isolated singular points.

Recall that this means that O is a Hausdorff space such that for each x ∈ O, there is

a Cr-uniformizing chart around x and satisfying certain compatibility conditions. Let

Sing(O) be the singular set of O and Reg(O) the complement of the singular set. Note

that Reg(O) is open and dense in O. We should mention that in [8], they are dealing

with more general orbifolds where the singular points are not necessarily isolated, so our

definitions differs from theirs in some small details.

Definition 4.1.1. Let O be a Cr-orbifold with isolated singular points. Then O comes

equipped with a natural partition

O = Reg(O) t Singi1 t Singi2 t . . . t Singin ,

where Singik consists of all singularities whose local groups have a fixed isomorphism type

and Singi1 t . . . t Singin = Sing(O). For any x ∈ O, let Px be the piece of the partition

containing x.

Definition 4.1.2. Let O1,O2 be Cr-orbifolds. A C0-orbifold map (f, {f̃x}) from O1

to O2 consists of the following:

45
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(1) A continuous map f : XO1 −→ XO2 of the underlying topological spaces.

(2) For each y ∈ Px, there are uniformizing charts (Ũy, Gy, πy) around y and (Ṽf(y), Gf(y), πf(y))

around f(y) with f(Ũy) ⊂ Ṽf(y), along with a group homomorphism Θf,y : Gy →

Gf(y) such that the following diagram commutes:

Ũy

��

f̃y // Ṽf(y)

��

Ũy /Gy

πy

��

// Ṽf(y) /Θf,y(Gy)

πf(y)
��

Uy
f // Vf(y)

(3) Each local lift f̃y is required to be Θf,y-equivariant.

(4) Two orbifold maps (f, {f̃x}) and (g, {g̃x}) are considered equivalent if for each x ∈

O1, there exists a uniformizing chart (Ũx, Gx) around x such that f̃x|Ũx = g̃x|Ũx.

Note that this implies that f = g.

It is a fact (see [8]-Lemma 23) that a local lift f̃x chosen on a particular uniformizing

chart around x uniquely specifies a local lift on any other chart around x. Thus, the f̃x’s,

once chosen, are independent of the choice of local charts.

We say that an orbifold map (f, {f̃x}) is Cr-smooth if each f̃x can be chosen to

be Cr-differentiable. The set of Cr-smooth orbifold maps from O1 to O2 is topologized

as in ([8]-Section 4), and we denote this space by Corbr (O1,O2). Now put O = O1 = O2,

so that Corbr (O) is the space of Cr-orbifold maps from O to itself.

Definition 4.1.3. Let O be a Cr-orbifold. We define the following subspaces of Corbr (O):

• Difforb
r (O) := {(f, {f̃x}) ∈ Corbr (O) | f−1 ∈ Corbr (O)}

• Difforb(O) := Difforb
∞ (O)
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Theorem 4.1.4 ([8]). Difforb(O) is a Fréchet manifold.

In fact, Difforb(O) is a Fréchet Lie group where the group operation is composition:

(f, {f̃x}) ◦ (g, {g̃x}) = (f ◦ g, {f̃x ◦ g̃x}), but for our purposes we only care that it’s a

topological group. Consider the following subgroup of Difforb(O):

I(O) := {(f, {f̃x}) ∈ Difforb(O) | f = Id}.

This is the subgroup consisting of all lifts of the identity map. It follows from the

definition of orbifold map that this subgroup is finite if O is compact.

Definition 4.1.5. The quotient group Difforb(O) / I(O) is called the group of reduced

orbifold diffeomorphisms of O, and we denote it by Diffred(O). Note that Diffred(O)

inherits a topological group structure from Difforb(O).

Two elements (f, {f̃x}), (g, {g̃x}) lie in the same coset of I(O) if and only if f = g

and f̃x = Ĩx ◦ g̃x, where Ĩx is some lift of the identity over x. Thus, the images of

(f, {f̃x}), (g, {g̃x}) are equal in the quotient if and only if f = g and their lifts are

related by composition with elements from I(O). For this reason, we denote the image

of (f, {f̃x}) ∈ Difforb(O) in the quotient simply by f , where it should be understood

that f : Reg(O) → Reg(O) is a diffeomorphism and for each x ∈ Sing(O), there are

uniformizing charts, along with a group homomorphism and suitable lifts (as in Definition

4.1.2) making a commutative square. Note that we have a short exact sequence

1→ I(O)→ Difforb(O)→ Diffred(O)→ 1.

Now let (O, ω) be a symplectic orbifold. Recall, this means that each local uni-

formizing chart (Ũ , G, π) comes equipped with a G-invariant symplectic form ω̃ that

descends to ω on U ∼= Ũ/G and transforms correctly under overlapping maps. The

quadruple (Ũ , G, π, ω̃) is a called symplectic uniformizing chart. We often simply denote

it by (Ũ , ω̃).
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Definition 4.1.6. Let (O, ω) be a symplectic orbifold and (f, {f̃x}) ∈ Difforb(O) a C∞-

orbifold diffeomorphism. We call (f, {f̃x}) an orbifold symplectomorphism if the

following holds:

• For each y ∈ Px, there are symplectic uniformizing charts (Ũy, ω̃y) around y and

(Ṽf(y), ω̃f(y)) around f(y) such that f̃∗y ω̃f(y) = ω̃y. There should also be a group

homomorphism and a commutative diagram similar to that in Definition 4.1.2. Note

that this implies that f∗ω = ω on Reg(O).

For a symplectic orbifold (O, ω), let Symporb(O) be the subgroup of Difforb(O) con-

sisting of orbifold symplectomorphisms. Similarly, let Sympred(O) be the quotient group

Symporb(O) / I(O). Note that both Symporb(O) and Sympred(O) are topological groups.

Now consider the weighted projective spaces (CP 2
a,b,c, ωa,b,c), where a, b, c ≥ 1,

and they are pairwise relatively prime. Recall that Sing(CP 2
a,b,c) = {pa, pb, pc}, where

pa = [1 : 0 : 0], pb = [0 : 1 : 0], pc = [0 : 0 : 1].

Definition 4.1.7. Let Symporb
a,b,c be the group of orbifold symplectomorphisms of CP 2

a,b,c

with the symplectic form ωa,b,c. Similarly, we use Sympred
a,b,c to denote the group of reduced

orbifold symplectomorphisms of (CP 2
a,b,c, ωa,b,c).

Elements of Symporb
a,b,c have the form (f, f̃a, f̃b, f̃c), where f̃a, f̃b, f̃c fit into equivariant

diagrams

Ṽa

��

f̃a // Ũa

��
Va

f // Ua

Ṽb

��

f̃b // Ũb

��
Vb

f // Ub

Ṽc

��

f̃c // Ũc

��
Vc

f // Uc

where Ṽa, Ṽb, Ṽc are, respectively, uniformizing charts above the singular points pa, pb, pc

and the lifts of course preserve the corresponding symplectic forms (that we have not

written). Here it should be noted that f fixes each of the points pa, pb, pc since we

are assuming that these singular points have different order. As before, we will denote

a reduced symplectomorphism simply by f , with the understanding that around each
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singular point there exist diagrams like those above where the lifts are defined only up

to composition by elements from I(CP 2
a,b,c)

∼= Za × Zb × Zc ∼= Zabc.

4.2 The Groups Sympred
1,1,c

The goal of this section is to prove the following theorem:

Theorem 4.2.1. Sympred
1,1,c is weakly homotopy equivalent to U(2) /Zc for any positive

integer c.

Start by considering the map

Ψ : Symporb
1,1,c −→ AutZc(T0Ũc),

(f, f̃c) 7→ df̃c(0).

where AutZc(T0Ũc) is the group of linear Zc-equivariant automorphisms of the tangent

space T0Ũc. This map is a well-defined group homomorphism. Also, it is easy to see that

the induced Zc-action on T0Ũc is the same as the Zc-action on Ũc, namely the diagonal

action: (z, w) 7→ (ξz, ξw). It follows that any linear automorphism of T0Ũc is equivariant

under this action. We therefore have

AutZc(T0Ũc) ∼= Aut(C2) = Sp(4)Zc ' U(2),

where the last relation is a homotopy equivalence since Sp(4)Zc retracts onto U(2)1 Let

KΨ := ker Ψ, so that we have an exact sequence of topological groups

1 −→ KΨ −→ Symporb
1,1,c −→ Sp(4)Zc −→ 1. (4.1)

We claim that Ψ is a locally trivial fibration. To establish this, we make use of a result

of Richard Palais (see [39]-Theorem A),

1. This can be proved using the same argument as the Claim right after Theorem 4.3.1.
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Proposition 4.2.2 ([39]). If G is a topological group and X is a G-space admitting local

sections, then any equivariant map of a G-space into X is locally trivial.

Recall that if x0 is an element of a G-space X, then a local section for X at x0 is a map

σ : U → G (U a neighbourhood of x0) such that σ(u) · x0 = u for all u ∈ U . Observe

that Sp(4)Zc becomes a Symporb
1,1,c-space under the action

(f, f̃c) · A = df̃c(0)A , (4.2)

where A ∈ Sp(4)Zc and the action is by matrix multiplication. Also, Symporb
1,1,c acts on

itself (on the left) by composition

(g, g̃c) · (f, f̃c) = (g ◦ f, g̃c ◦ f̃c),

and it’s easy to see that the map Ψ : Symporb
1,1,c → Sp(4)Zc is equivariant with respect to

both these actions. Thus, by Palais’ result, to prove that Ψ is a locally trivial fibration it

suffices to find a local section over any element A0 ∈ Sp(4)Zc . In fact, it suffices to find

local sections in a neighbourhood of Id ∈ Sp(4)Zc , since Sp(4)Zc is a topological group

and we can get to any other neighbourhood by conjugation.

Lemma 4.2.3. Given Id ∈ Sp(4)Zc, there is a continuous map

σ : NId → Symporb
1,1,c

such that σ(A) · Id = A for all A ∈ NId, where NId is a contractible neighbourhood of the

identity in Sp(4)Zc.

Proof. Let sp(4)c be the Lie algebra of Sp(4)Zc and consider the exponential map

exp : sp(4)c −→ Sp(4)Zc ,
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which is a local diffeomorphism from a neighbourhood U0 of the origin in sp(4)c onto a

neighbourhood NId of Id ∈ Sp(4)Zc . Thus, we can define a local inverse log : NId → U0

which gives a deformation retraction

NId −→ NId , A 7→ exp(t · log(A))

that defines a canonical (equivariant) path At from any A ∈ NId to the identity. The

vector field

X =
d

dt
At = log(A)At.

must be invariant under the Zc-action because the path At is equivariant. Since Ũc

is contractible, all 1-forms on Ũc are exact, hence there exists a smooth Hamiltonian

H : Ũc → R such that ıX ω̃c|0 = dH|0, and the functions H must be invariant under the

group action. Now let ρ : Ũc → R be a smooth bump function satisfying

• supp(ρ) ⊂ Ũc.

• ρ ≡ 1 on a smaller neighbourhood Ũ ′c ⊂ Ũc containing 0.

By averaging we can make ρ invariant under the Zc-action. Now define G : Ũc → R

by G(x) = ρ(x)H(x). Again, this function remains invariant under the group action.

Define a vector fields Y by ıY ω̃c = dG, and let g̃t : Ũc → Ũc be the corresponding

Hamiltonian isotopy. Then g̃1 satisfies dg̃1(0) = A. Since g̃1 is equivariant, it descends

to to a symplectic map g : Uc → Uc which extends by the identity to give a global

symplectomorphism on CP 2
1,1,c having g̃1 as a local lift over the singularity pc. We can

now define a local section by σ(A) := (g, g̃1). Via the action (4.2), it’s easy to see that

it satisfies the requirements of the lemma.

Recall that the group Sympred
1,1,c is the quotient of Symporb

1,1,c by its subgroup con-

sisting of lifts of the identity map. This subgroup is isomorphic to Zc. Thus, we have an

exact sequence

1 −→ Zc −→ Symporb
1,1,c −→ Sympred

1,1,c −→ 1,
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and we denote the image of an element (f, f̃c) ∈ Symporb
1,1,c in the quotient simply by f .

Notice that we have another map

Sympred
1,1,c

Φ−→ Sp(4)Zc /Zc

f 7→ [df̃c(0)] .

This map is well-defined because above the singular point pc, any two local lifts of f are

related via an action of Zc. Thus, all local lifts above pc are equivalent in the quotient.

Let KΦ := ker Φ, so that we have another exact sequence of groups

1 −→ KΦ −→ Sympred
1,1,c −→ Sp(4)Zc /Zc −→ 1. (4.3)

In fact, the two sequences (4.1) and (4.3) fit nicely into a diagram where everything

commutes:

KΨ

��

// Symporb
1,1,c

��

Ψ // Sp(4)Zc

��

KΦ
// Sympred

1,1,c
Φ // Sp(4)Zc /Zc

(4.4)

Lemma 4.2.4. The map Φ is also locally trivial.

Proof. This is also a consequence of Proposition 4.2.2. Again, let NId be a contractible

neighbourhood of the identity in Sp(4)Zc with A ∈ NId. By the previous lemma, a local

section for Ψ over A is given by

σ : NId −→ Symporb
1,1,c

A 7→ (g, g̃1),

where (g, g̃1) depends continuously on A from the previous construction. Let Q be the

quotient map given by the Zc-action. Then Q(g, g̃1) = g. Let [A] be the image of A
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under the Zc-action. We want to find a map

τ : NId /Zc −→ Sympred
1,1,c

such that τ [A] · [Id] = [A] for any [A] ∈ NId /Zc. It seems reasonable to define τ [A] :=

Q(σ(A)), but we must check that this is independent of the representative A. This follows

from the following

Claim. For any A ∈ NId and ξ ∈ Zc, if σ(A) = (g, g̃1), then

σ(ξA) = (g, ξ · g̃1)

Proof. Go back to the proof of Lemma 4.2.3, replace the path At with ξAt and just carry

everything through. Notice that the neighbourhood NId is replaced by Nξ·Id. Also notice

that ı(ξX)ω̃c = d(ξH), and we can use the same partition of unity.

Back to the original proof. Let A′ be another representative of [A]. Then A′ = ξA

for some ξ ∈ Zc, thus we have σ(A′) = σ(ξA) = (g, ξ · g̃1). Hence, Q(σ(A′)) = Q(σ(A)) =

g, so we have found a local section

τ : NId /Zc −→ Sympred
1,1,c.

By Proposition 4.2.2, the map Φ is locally trivial.

Now we want to understand the fibration

KΦ −→ Sympred
1,1,c −→ Sp(4)Zc /Zc.

To do this, we first consider the other kernel, KΨ, in the top sequence of (4.4), and the

following subspace of KΨ:

K∗Ψ := {(f, f̃c) | f̃c = Id near 0}.
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Lemma 4.2.5. The inclusion K∗Ψ ↪→ KΨ is a weak homotopy equivalence.

Proof. See Section 6.1.

Let K∗Φ := Q(K∗Ψ), and consider the following extension of diagram (4.4):

K∗Ψ
� � i //

Q
��

KΨ

Q

��

// Symporb
1,1,c

��

// Sp(4)Zc

��

K∗Φ
� � j // KΦ

// Sympred
1,1,c

// Sp(4)Zc /Zc

(4.5)

The fact that i is a weak homotopy equivalence implies the same for the map j. Also,

it’s clear that if (f, f̃c) ∈ K∗Ψ, then f = Id near pc. This means that

K∗Φ = {f ∈ Sympred
1,1,c | f = Id near pc}.

Lemma 4.2.6. K∗Φ is weakly contractible.

Recall from Section 2.3 that blowing up CP 2
1,1,c at the singularity pc gives a variety

Vc = {([a : b], [z0 : z1 : z2]1,1,c) ∈ CP 1 × CP 2
1,1,c | az1 = bz0} that can be identified

symplectically with the Hirzebruch surface

Wc = {([a : b], [z0 : z1 : z2]) ∈ CP 1 × CP 2 | acz1 = bcz0}.

Let Symp(Vc) denote the group of symplectomorphisms of Vc (with the form from Sec-

tion 2.3) acting as the identity on homology. Let S 0(Vc) be the subgroup of Symp(Vc)

consisting of those f ∈ Symp(Vc) for which f = Id near the zero section, Z0. There is

another lemma we need before proving Lemma 4.2.6.

Lemma 4.2.7. S 0(Vc) and K∗Φ are weakly homotopy equivalent.

Proof. Recall that the symplectic blow up operation removes a ball and collapses its

boundary along the Hopf fibration. In the case of CP 2
1,1,c, symplectically blowing up at



55

pc amounts to removing an orbi-ball (singular ball) centred at pc and similarly collapsing

its boundary, which is now a lens space ∂(B4 /Zc) ∼= S3 /Zc.

Let fλ, λ ∈ S, be a compact family of symplectomorphisms in K∗Φ that smoothly

vary with λ. For each fixed λ0 ∈ S, there is an open ball Bλ0 containing pc such that

fλ0|Bλ0
= Id.

Consider the function S → R, λ 7→ Vol(Bλ). It is smooth because fλ varies smoothly

with λ. Since Bλ is parametrized by a compact set, the function Vol must have a

minimum that is non-zero. Therefore, there exists Bmin such that

Bmin ⊆ Bλ for all λ ∈ S.

The point is that we want to blow up with a small enough ball so that it is contained

in Bmin; then the compact family fλ lifts to a compact family f̃λ : Vc → Vc such that

f̃λ = Id on a neighbourhood Nmin of the zero-section in Vc. So we have a commutative

diagram

Vc \ Nmin
β
��

f̃λ // Vc \ Nmin
β
��

CP 2
1,1,c \Bmin fλ

// CP 2
1,1,c \Bmin ,

where fλ and f̃λ restrict to the identity on the respective neighbourhoods. Theorem 2 in

[38] guarantees that the blow down map β is a symplectomorphism for arbitrarily small

neighbourhoods. Thus, the correspondence fλ 7→ β−1 ◦ fλ ◦ β sends compact families of

symplectomorphisms in K∗Φ to compact families in S 0(Vc). Similarly, any compact family

in S 0(Vc) will descend to an compact family in K∗Φ. This proves Lemma 4.2.7.

To finish the proof of Lemma 4.2.6, we’ll show that the space S 0(Vc) is contractible.

This follows from ([20]-Lemma 9.1) because Vc is a ruled symplectic 4-manifold. We will

briefly sketch the argument.
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Let Z∞ be the infinity section in Vc and let A := [Z∞] ∈ H2(Vc;Z) be its homology

class. We define a space of symplectic spheres in Vc on which S 0(Vc) acts: Let CA(Vc \

Z0) be the space of symplectic spheres in Vc representing the homology class A and

disjoint from Z0. It follows from ([20]-Theorem 1.2, see also Theorem 8.1) that the set

CA(Vc \ Z0) is contractible. Observe that S 0(Vc) acts on the space CA(Vc \ Z0). It

also follows from ([20]-Theorem 8.1) that this action is transitive. Let Stab(Σ) be the

stabilizer of a sphere Σ ∈ CA(Vc \ Z0) under this action. Then we have a fibration

Stab(Σ) −→ S 0(Vc) −→ CA(Vc \ Z0),

so Stab(Σ) is the subgroup of S 0(Vc) consisting of symplectomorphisms that leave Σ

invariant. It follows from ([11]-Propostion 3.2) that this stabilizer is contractible. Hence,

S 0(Vc) is contractible as well.

Now Theorem 4.2.1 follows easily. The fibration

K∗Φ ' KΦ −→ Sympred
1,1,c −→ Sp(4)Zc /Zc ' U(2) /Zc

with K∗Φ weakly contractible gives the result.

4.3 The Groups Sympred
1,b,c for c = bk + 1

In this section we prove

Theorem 4.3.1. Sympred
1,b,c is homotopy equivalent to Aut(Tpc) ' T2 /Zc when c =

bk + 1. Here, Aut(Tpc) is the linear automorphism group of the uniformized tangent

space at pc ∈ CP 2
1,b,c and T2 is the diagonal torus inside U(2).

Start by considering the map

Ψ : Symporb
1,b,c −→ AutZb(T0Ũb)× AutZc(T0Ũc) (4.6)
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given by Ψ(f, f̃b, f̃c) = (df̃b(0), df̃c(0)) where AutZb , respectively, AutZc denote Zb,Zc-

equivariant linear automorphisms. This is a well-defined group homomorphism, and

using the techniques of the previous section it follows that this map is a locally trivial

fibration. Note that we have AutZb(T0Ũb)
∼= AutZb(C2) = Sp(4)Zb .

Claim. AutZc(T0Ũc) ∼= AutZc(C2) retracts onto T2, the diagonal torus inside U(2).

Proof. In the non-equivariant case, we know that Aut(C2) = Sp(4) retracts onto U(2).

This retraction is given by the polar decomposition: Let P be the space of symmetric

positive definite matrices. Then for every A ∈ Sp(4) there is a unique U ∈ U(2) and

P ∈ P such that A = UP ; just let P = (AAT )1/2 and U = A(AAT )−1/2. Then we have

a diffeomorphism

Sp(4) −→ U(2)× P , A 7→ UP ,

and the map Θt : A 7→ A(AAT )−t/2 is a deformation retraction of Sp(4) onto U(2). Let

Dξ be the image of the diagonal matrix diag(ξ, ξb) in Sp(4), ie. write

diag(ξ, ξb) = Rξ + iIξ,

where Rξ and Iξ are the diagonal matrices consisting of real, respectively imaginary parts

of ξ, ξb ∈ Zc. Then Dξ is the block matrix

Dξ =

 Rξ −Iξ
Iξ Rξ

 .
Let Sp(4)Zc be the subspace of Sp(4) whose elements commute with Dξ (this is the

subspace that is equivariant under the Zc-action). If A ∈ Sp(4)Zc , then we want to see

that Θt(A)Dξ = DξΘt(A). This follows because:

• Since Dξ commutes with A, then we have (since Dξ is orthogonal) that Dξ com-

mutes with AAT .
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• Since Dξ and AAT commute, they can be simultaneously diagonalized, where

we are considering them as operators on C4. From this it’s easy to check that

(AAT )−t/2Dξ = Dξ(AA
T )−t/2.

Therefore, Θt also retracts Sp(4)Zc onto the equivariant subspace of U(2). Now identify

U(2) ⊂ Sp(4) with 2 × 2 unitary matrices and check that a matrix U ∈ U(2) is Zc-

equivariant if and only if U is a diagonal matrix, ie. iff U ∈ T2. This proves the

claim.

Now consider the map

Φ : Sympred
1,b,c −→ AutZb(T0Ũb) /Zb × AutZc(T0Ũc) /Zc (4.7)

given by Φ(f) = ([ df̃b(0) ], [ df̃c(0) ]). Again, as follows from the previous section, this

map is a locally trivial fibration. Up to homotopy, (4.7) becomes

Sympred
1,b,c −→ U(2) /Zb × T2 /Zc ,

Let KΦ be the kernel of the map Φ. Then KΦ is weakly homotopy equivalent to its

subspace

K∗Φ = {f ∈ KΦ | f = Id near pb and f = Id near pc},

so that the we have the homotopy fibration

K∗Φ
'
↪→ KΦ −→ Sympred

1,b,c −→ U(2) /Zb × T2 /Zc.

Let (R1,b,c, ω̃α1,...,αb+1
), c = bk + 1, be the resolution of CP 2

1,b,c as described in

Sections 3.1.2 and 3.2. For the rest of this section, we’ll refer to R1,b,c simply as R.

The resolution creates a chain of embedded symplectic spheres Γ := C1 ∪ . . . ∪ Cb+2, and

the symplectomorphism R ∼= Wk# bCP 2
from Lemma 3.2.2 produces an isomorphism

H2(R;Z) ∼= H2(Wk# bCP 2
;Z) such that for k even
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• [C1]←→ B − k
2F − E1

• [Ci]←→ Ei−1 − Ei (i = 2, . . . , b)

• [Cb+1]←→ Eb

• [Cb+2]←→ F −
∑b
i=1Ei

and for k odd (see (2.3) in Section 2.3.1)

• [C1]←→ B − (k+1
2 )F

• [C2]←→ F − E1 − E2

• [Ci]←→ Ei−1 − Ei (i = 3, . . . , b)

• [Cb+1]←→ Eb

• [Cb+2]←→ E1 − E2 − · · · − Eb

As mentioned before, we focus on the case where k is even. The odd case is

analogous and gives the same answer. Let Γ[b+1] := Γ\Cb+1 and let Sympcpt(R\Γ[b+1])

be the subgroup of Symp(R) whose symplectomorphisms are compactly supported away

from Γ[b+1]. An argument similar to the proof of Lemma 4.2.7 gives the following:

Lemma 4.3.2. K∗Φ is weakly equivalent to Sympcpt(R \ Γ[b+1]).

So we will focus our efforts on the group Sympcpt(R\Γ[b+1]). Most of the remaining

work in this section is aimed at proving the following:

Lemma 4.3.3. Sympcpt(R \ Γ[b+1]) is weakly equivalent to Ω(U(2) /Zb), the loopspace

of U(2) /Zb.

We now focus on proving Lemma 4.3.3. Let Symp(R,Γ[b+1]) be the subgroup of

Symp(R) that leaves each sphere in Γ[b+1] invariant, but not necessarily pointwise. Let

J be the space of ω̃α1,...,αb+1
-tame almost complex structures on R. We define a space

of symplectic spheres on which Symp(R,Γ[b+1]) acts
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• Let C ⊥b,b+2[Cb+1] denote the space of embedded symplectic spheres in class [Cb+1]

that satisfy the following properties:

– Any S ∈ C ⊥b,b+2[Cb+1] intersects Cb exactly once and Cb+2 exactly once. Also,

we require these intersections to be symplectically orthogonal.

– If S ∈ C ⊥b,b+2[Cb+1], then S must be disjoint from each sphere in the set

{C1, C2, . . . , Cb−1}.

– For each S ∈ C ⊥b,b+2[Cb+1], there is a J ∈ J making C1, . . . , Cb, S, Cb+2

simultaneously J-holomorphic.

Lemma 4.3.4. Symp(R,Γ[b+1]) acts transitively on C ⊥b,b+2[Cb+1].

Proof. We will see later that the space C ⊥b,b+2[Cb+1] is contractible, hence it is path-

connected. If S ∈ C ⊥b,b+2[Cb+1], then it is easy to see that f(S) ∈ C ⊥b,b+2[Cb+1]: First

of all, there exists J ∈ J such that C1, . . . , Cb, S, Cb+2 are all J-holomorphic. Let

Jf := df ◦ J ◦ (df)−1; then f(S) is Jf -holomorphic. Further, C1, . . . , Cb, Cb+2 are Jf -

holomorphic as well because f leaves these spheres invariant. The fact that f(S) is

disjoint from all the spheres C1, . . . , Cb−1 is a consequence of positivity of intersections

for Jf -holomorphic spheres (see Section 2.4). Hence, there is a well-defined action. Let

S0, S1 be any two elements of C ⊥b,b+2[Cb+1] with St a path connecting them. Put

Ŝt := C1 ∪ · · · ∪ Cb ∪ St ∪ Cb+2.

By the symplectic neighbourhood theorem, the isotopy Ŝt extends to an isotopy φt :

N0 → Nt where Nt is a small neighbourhood of Ŝt. Since Ŝt leaves the other spheres

invariant, so will the isotopy φt. We can choose the neighbourhoods Nt so that they

retract onto Ŝt for each t. Then H2(R, Ŝt;R) = 0, so φt extends to R by Banyaga’s

isotopy extension theorem ([35]-Theorem 3.19). The time 1-map of this extension sends

S0 to S1, proving the lemma.
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The stabilizer (of Cb+1) of the action of Symp(R,Γ[b+1]) on C ⊥b,b+2[Cb+1] is the

subgroup Symp(R,Γ) ⊂ Symp(R) leaving each sphere in the configuration Γ invariant.

Hence, we have a fibration

Symp(R,Γ) −→ Symp(R,Γ[b+1]) −→ C
⊥
b,b+2[Cb+1]. (4.8)

Let C tb,b+2[Cb+1] be the space of embedded symplectic spheres in class [Cb+1] sat-

isfying exactly the same properties as those in C ⊥b,b+2[Cb+1] except now we require that

any S ∈ C tb,b+2[Cb+1] intersects Cb and Cb+2 once transversely and positively.

Lemma 4.3.5. C tb,b+2[Cb+1] is weakly homotopy equivalent to C ⊥b,b+2[Cb+1].

Proof. See Section 6.2.

Lemma 4.3.6. C tb,b+2[Cb+1] is weakly contractible.

Let J1...b,b+2 ⊆ J be the subset of J ’s for which the spheres C1, . . . , Cb, Cb+2 are

simultaneously J-holomorphic. We will define a map

π : J1,...b,b+2 −→ C tb,b+2[Cb+1]

and show that it is a weak homotopy equivalence. Note that J1...b,b+2 is weakly con-

tractible by ([14]-Appendix A), so the lemma will follow from this.

Claim 1. For every J ∈ J1...b,b+2, there is a unique embedded J-holomorphic sphere in

class Eb = [Cb+1].

Proof. The symplectic form ω̃α1,...,αb+1
is diffeomorphic to the form Ωµ,k,ε1,...,εb from

Lemma 3.2.2 whose Poincaré dual PD(B + µF −
∑
i εiEi) is a reduced homology class

(see Definition 3.2.3). Therefore, by ([24]-Corollary 7.12), for every J ∈ J1...b,b+2 there

exists an embedded J-holomorphic sphere in class Eb. This sphere is unique by positivity

of intersections.
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Claim 2. The map π that sends J ∈ J1...b,b+2 to the unique J-sphere in class Eb is a

fibration.

Proof. First of all, for the map π to even exist we need Claim 1 to be true. The image

is unique because J-spheres intersect positively. By ([37]-Corollary 13), π will be a

fibration if: (i) It is a smooth submersion; and (ii) Its fibres are weakly contractible.

To see (ii) is straightforward, since for Cb+1 ∈ C tb,b+2[Cb+1], the fibre π−1(Cb+1) is the

space of J ∈ J1...b,b+2 such that C1, . . . , Cb+1, Cb+2 are simultaneously J-holomorphic,

and this is weakly contractible by ([14]-Appendix A). To see (i), recall that J1...b,b+2 and

C tb,b+2[Cb+1] are spaces of smooth maps, so that they are naturally infinite dimensional

Fréchet manifolds. The tangent space TJJ1...b,b+2 at J ∈ J1...b,b+2 is the space of

endomorphisms A ∈ Aut(TR) such that AJ = −JA. The space C tb,b+2[Cb+1] is a

subspace of the space C∞(S2, R) /Diff(S2), so the tangent space TSC tb,b+2[Cb+1] is a

subspace of the space of sections of a pullback bundle, modulo reparametrization (See

[7]-Section 1.2). We want to show that the derivative

dπJ : TJJ1...b,b+2 −→ Tπ(J)C
t
b,b+2[Cb+1]

is surjective. Given v ∈ TSC tb,b+2[Cb+1], we can think of v as an equivalence class of

smooth curves

[0, 1] −→ C tb,b+2[Cb+1]

t 7→ St

with S0 = S. Then a representative St generates an isotopy φt in Symp(R,Γ[b+1]). For

J ∈ π−1(S), let

Jt := dφt ◦ J ◦ (dφt)
−1.

Since J tames ω̃α1,...,αb+1
, it is easily checked that Jt tames φ∗t ω̃α1,...,αb+1

= ω̃α1,...,αb+1
.

Also note that C1, . . . , Cb, Cb+2 are Jt-holomorphic, since φt leaves these spheres in-
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variant; hence Jt ∈ J1...b,b+2. So, Jt represents a vector w ∈ TJJ1...b,b+2 such that

dπJ (w) = v.

Lemma 4.3.7. Symp(R,Γ) is weakly equivalent to T2.

Proof. Recall that Γ = C1 ∪ C2 ∪ . . . ∪ Cb+2. Let qi be the unique point of intersection

of Ci and Ci+1 for i = 1, . . . , b + 1. Write Symp(C1, q1) and Symp(Cb+2, qb+1) for the

symplectomorphism groups of C1, respectively Cb+2 that fix the points q1, qb+1. Also

write Symp(Ci, qi−1, qi) for the symplectomorphism group of Ci fixing both qi−1, qi for

i = 2, . . . b+ 1. The product of restriction maps,

Symp(R,Γ) −→ Symp(C1, q1)×
( b+1∏
i=2

Symp(Ci, qi−1, qi)

)
× Symp(Cb+2, qb+1)

f 7→ (f |C1 , f |C2 , . . . , f |Cb+2
) (4.9)

is a fibration by the orbit-stabilizer theorem, since the restriction of f to each sphere acts

transitively. Since each factor in the base is homotopy equivalent to S1 ([14]-Section 4.2),

this means that the base is homotopy equivalent to (S1)b+2. The fibre over (Id, . . . , Id) of

the above map is the subgroup Fix(Γ) ⊂ Symp(R,Γ) that fixes the entire configuration

Γ pointwise. Let G(C1, q1) and G(Cb+2, qb+1) be the symplectic gauge groups of the

normal bundles of C1, respectively Cb+2 that act as the identity over the points q1, qb+1.

Also, let G(Ci, qi−1, qi) be the symplectic gauge group of the normal bundle of Ci acting

as the identity over both points qi−1, qi for i = 2, . . . , b + 1. From ([14]-Section 4.1),

we have G(C1, q1) ' G(Cb+2, qb+1) ' ? (both contractible), and G(Ci, qi−1, qi) ' Z for

i = 2, . . . , b+ 1. Now consider the product of restrictions map to the gauge groups

Fix(Γ) −→ G(C1, q1)×
( b+1∏
i=2

G(Ci, qi−1, qi)

)
× G(Cb+2, qb+1) (4.10)

f 7→ (df |ν(C1), df |ν(C2), . . . , df |ν(Cb+2)).

This map is a fibration (see [14]-Section 6.2). The fibre over (Id, . . . , Id) of (4.10) is
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weakly equivalent to the subgroup Sympcpt(R \ Γ) ⊂ Fix(Γ) of symplectomorphisms that

are compactly supported away from Γ.

Claim. Sympcpt(R \ Γ) is contractible.

This works by thinking of the toric picture. Recall from Section 3.2 that the

moment polygon ∆̃b,bk+1 of the resolution has b + 4 edges. The configuration Γ =

C1∪ . . .∪Cb+2 is the moment map pre-image of the edges e1∪ . . .∪ eb+2 with respective

co-normals ~n1, . . . , ~nb+2 in the toric model. Hence, R \ Γ is the moment map pre-image

of ∆′ := ∆̃b,bk+1 \ (e1 ∪ . . . ∪ eb+2), which is an open convex subset of R2. So, the open

set R \ Γ is contained in a larger Darboux ball B4(r), viewed as an equilateral triangle

minus the diagonal edge in the toric picture. Let m1−t : B4(r) → B4(r) be the map

m1−t(z) = (1 − t)z for t ∈ [0, 1). Then when t is sufficiently close to 1, m1−t retracts

B4(r) (and hence R \ Γ) onto a smaller ball B4(ε) contained in the open set R \ Γ. This

shows that R \ Γ is symplectically star-shaped, therefore Sympcpt(R \ Γ) is contractible

by ([36]-Theorem 9.5.2). This finishes the proof of the claim.

Now that we know Sympcpt(R \ Γ) is contractible, let’s write

• Sympb+2 for the product of symplectomorphism groups in (4.9).

• Gb+2 for the product of gauge groups in (4.10).

Then the fibration (4.10) tells us that Fix(Γ) is weakly equivalent to Gb+2 ' Zb, hence

we have the fibration

Fix(Γ) −→ Symp(R,Γ) −→ Sympb+2

where the fibre is weakly equivalent to Zb and the base is weakly equivalent to (S1)b+2.

The long exact sequence of this fibration reduces to

0 −→ π1Symp(R,Γ) −→ Zb+2 ∂−→ Zb −→ π0Symp(R,Γ) −→ 0,
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so we want to understand the boundary map ∂. The boundary map comes from ∂ :

π1Sympb+2 → π0Fix(Γ) ∼= π0Gb+2. Evans had a groovy idea ([14]-4.3, see also 6.3),

which is to understand the composition

Zb+2 ∼= π1Sympb+2 −→ π0Fix(Γ) −→ π0Gb+2 ∼= Zb (4.11)

by thinking purely locally in a neighbourhood of Γ. There is a Hamiltonian circle ac-

tion that rotates each sphere Ci in the configuration Γ around the intersection points.

These generate loops in Symp(C1, q1), Symp(Cb+2, qb+1) and Symp(Ci, qi−1, qi) for each

i, hence they generate π1Sympb+2. Let θ1, . . . , θb+2 be these generators. For each θi, lift

the S1-action to a path γti in the normal bundle ν(Ci). By the symplectic neighbourhood

theorem, this is a local model for R near Ci. The path γti is generated by a Hamiltonian

that we can cut off by a compactly supported bump function to get a symplectic isotopy

φit, 0 ≤ t ≤ 2π, supported in a neighbourhood of Ci. Then φi2π ∈ Fix(Γ). These φi2π

represent the images of the θi ∈ π1Symp(Ci, ∗) under the boundary map above. The

idea now is to identify generators for π0Gb+2 and determine the images of [φi2π] under the

map π0Fix(Γ)→ π0Gb+2. For each sphere Ci (i = 2, . . . b+ 1) in Γ, there are evaluation

fibrations

evqi : G(Ci, qi−1) −→ Sp(2)

evqi−1 : G(Ci, qi) −→ Sp(2)

with fibre over the identity equal to G(Ci, qi−1, qi) in each case. This gives two maps

∂qi , ∂qi−1 : π1Sp(2)→ π0G(Ci, qi−1, qi).

Let gCi(qi), gCi(qi−1) be the images of 1 ∈ Z ∼= π1Sp(2) under ∂qi , ∂qi−1 respectively.

Both of these are generators of π0G(Ci, qi−1, qi) for i = 2, . . . , b + 1, but they are not

independent. By ([14]-Lemma 20, see also 6.3), the composition map (4.11) acts in the
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following way

θ1 7→ gC2(q1) ∈ π0G(C2, q1, q2)

θ2 7→ (0, gC3(q2)) ∈ π0G(C1, q1)× π0G(C3, q2, q3)

θb+1 7→ (gCb(qb), 0) ∈ π0G(Cb, qb−1, qb)× π0G(Cb+2, qb+1)

θb+2 7→ gCb+1
(qb+1) ∈ π0G(Cb+1, qb, qb+1).

Moreover, for i = 3, . . . , b we have

θi 7→ (gCi−1(qi−1), gCi+1
(qi)) ∈ π0G(Ci−1, qi−2, qi−1)× π0G(Ci+1, qi, qi+1).

Therefore, the map (4.11) is surjective. From this, it follows that

π0Symp(R,Γ) = 0 and π1Symp(R,Γ) ∼= Z2,

while all the other homotopy groups vanish. So, we have a weak equivalence

T2 '↪→ Symp(R,Γ), where T2 is the toric action on R. This finishes the proof of Lemma

4.3.7.

Recall that Γ[b+1] = Γ \ Cb+1. Given the previous lemmas, we now conclude

from the fibration (4.8) that Symp(R,Γ[b+1]) is weakly homotopy equivalent to T2. Let

Γ1...b := C1 ∪ . . . ∪ Cb and define the following subgroup of Symp(R):

• Let Sympcpt(R \Γ1...b, Cb+2) be the subgroup of Symp(R) consisting of symplecto-

morphisms that are compactly supported away from Γ1...b and leave Cb+2 invariant.

Lemma 4.3.8. Sympcpt(R \ Γ1...b, Cb+2) is weakly contractible.

Proof. Let’s start with Symp(R,Γ[b+1]) ' T2 and consider the fibration that results from

restriction to the spheres C1, . . . , Cb

Fix(Γ1...b) −→ Symp(R,Γ[b+1]) −→ Symp(C1, q1)× · · · × Symp(Cb, qb),
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where Fix(Γ1...b) is the subgroup fixing Γ1...b pointwise. The long exact sequence of this

fibration reduces to

0 −→ π1Fix(Γ1...b) −→ Z2 ρ−→ Zb −→ π0Fix(Γ1...b) −→ 0,

where ρ comes from the map π1Symp(R,Γ[b+1])→ π1Symp(C1, q1)×· · ·×π1Symp(Cb, qb).

Clearly this map is injective, hence π1Fix(Γ1...b) is trivial and π0Fix(Γ1...b)
∼= Zb−2.

Therefore, Fix(Γ1...b) is weakly equivalent to Zb−2. Next restrict to the normal bundles

of the spheres C1, . . . , Cb

Fix(Γ1...b) −→ G(C1, q1)×
( b−1∏
i=2

G(Ci, qi−1, qi)

)
× G(Cb, qb−1)︸ ︷︷ ︸

' Zb−2

.

It follows that the fibres are weakly contractible. But, the fibre over Id is the subgroup

of Fix(Γ1...b) whose derivatives are the identity on ν(C1) ∪ . . . ∪ ν(Cb). This is weakly

equivalent to Sympcpt(R \ Γ1...b, Cb+2), so we are done.

Proof of Lemma 4.3.3: Write Aut(ν(Cb+2)) for the group of automorphisms of ν(Cb+2)

that are symplectic, linear, and preserve the zero section Cb+2. The map

Sympcpt(R \ Γ1...b, Cb+2) −→ Aut(ν(Cb+2))

f 7→ df |TCb+2

is a surjective group homomorphism, and the kernel K consists of the symplectomor-

phisms whose derivatives act as the identity on ν(C1) ∪ . . . ∪ ν(Cb) ∪ ν(Cb+2); thus K

is weakly equivalent to Sympcpt(R \ Γ[b+1]). Since the total space is contractible, it

follows that Sympcpt(R \ Γ[b+1]) is weakly equivalent to the loopspace ΩAut(ν(Cb+2))

([19]-Proposition 4.66). Also, since Cb+2 has self-intersection −b, its normal bundle is

isomorphic to O(−b), the complex line bundle with Chern number -2. Therefore, by
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([21]-Proposition 2.5), Aut(ν(Cb+2)) is isomorphic to the Kahler isometry group of the

Hirzebruch surface Wb. In particular, we have

Aut(ν(Cb+2)) ∼= U(2) /Zb,

so the proof is finished.

Proof of Theorem 4.3.1: Consider the map

Sympred
1,b,c −→ Aut(Tpc) , f 7→ [df̃c(0)].

Letting Kpc be its kernel, we want to show that Kpc is weakly contractible. Evaluating

at the other singularity, we get another fibration

KΦ −→ Kpc −→ Aut(Tpb)
∼= U(2) /Zb, (4.12)

whose kernel is exactly KΦ from (4.7). By Lemma 4.3.2, KΦ is weakly equivalent to

Sympcpt(R \Γ[b+1]), which is in turn weakly equivalent to Ω(U(2) /Zb) by Lemma 4.3.3.

Therefore, KΦ is weakly equivalent to the loopspace of the base in (4.12). Since

πiΩ(U(2) /Zb) ∼= πi−1Ω(U(2) /Zb) for all i ,

the homotopy long exact sequence of (4.12) implies that Kpc is weakly contractible. This

proves Theorem 4.3.1.

4.4 The Groups Symp1,b,c for 1 < b < c

Now we have the most general result:

Theorem 4.4.1. Sympred
1,b,c is weakly homotopy equivalent to either Aut(Tpb) or Aut(Tpc)

when 1 < b < c and b, c are relatively prime.
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We will give a quick description of how the symplectomorphism group can be

computed using the same process as the last chapter. Most of our arguments from

the Section 4.3 go through almost identically, and it further seems that many of our

constructions (especially from Section 3.2) can be greatly simplified. Write c = bk+r for

k a positive integer and 0 < r < b. Then the combinatorics of the polygon corresponding

to the resolution R1,b,bk+r are favourable in the sense that the resolution creates a chain of

embedded symplectic spheres with a (−1)-sphere in between. To see this, we must resolve

both singularities according to the Hirzebruch-Jung continued fraction expansions. To

resolve the first one, write

bk + r

b
= [a1, . . . , am].

Then the resolution of pbk+r creates a chain of embedded spheres C1∪ . . .∪Cm such that

[Ci] · [Ci] = −ai for i = 1, . . . ,m. We also create chain of m new edges in the polygon

∆b,bk+1 with respective co-normals ~n1, . . . ~nm satisfying

~ni+1 = ai~ni − ~ni−1.

Now we must resolve the other singularity. This requires that we first transform

the respective corner into the standard model from Section 2.5, do the corner cutting in

this local model, and then transform it back. The vertex corresponding to the order b

singularity pb has co-normals (b, bk + r) and (0,−1). Consider the transformation

A =

 1 0

−k 1

 .
Then A(b, bk + r) = (b, r) and A(0,−1) = (0,−1). After composing A with a reflection,

the co-normals are put into the local toric model of Section 2.5. We now do the corner

cuts as described in that section. Write

b

r
= [d1, . . . , dn],
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so that the resolution creates a chain of embedded spheres S1 ∪ . . . ∪ Sn such that

[Si] · [Si] = −di for i = 1, . . . n. We also have n new edges in the local toric model with

respective co-normals ~m1, . . . , ~mn satisfying

~mi+1 = di ~mi − ~mi−1.

Now, reflect these co-normals back over the y-axis and compose with the matrix A−1.

These are exactly the co-normals we need to resolve the remaining corner in the polygon

∆b,bk+r. Hence, the resolution transforms the diagonal edge in ∆b,bk+r into a chain of

m+ 1 +n edges. These new edges correspond to a chain of smooth embedded symplectic

spheres

C1 ∪ . . . ∪ Cm ∪ E ∪ Sn ∪ . . . ∪ S1,

where E is the sphere corresponding to what remains of the diagonal edge after making

the corner cuts. Let R be the resolution of CP 2
1,b,c.

Claim. E is an exceptional sphere. Moreover, it’s homology class has minimal area

among all exceptional classes in H2(R;Z).

Proof. The first statement follows from ([23]-Lemma 2.16(3)). This Lemma says that any

Delzant polygon with 5 or more edges is AGL(2,Z)-congruent to a Delzant polygon that

comes from a Hirzebruch trapezoid by a sequence of smooth corner cuts. At each stage,

these corner cuts add an edge with combinatorial self-intersection -1. Hence, ∆b,bk+r

must contain at least one edge of this type. Let eE be the edge corresponding to E . Then

no other edge but eE can have combinatorial self-intersection -1. The reason for this is

straightforward: Recall from Section 2.5 that each resolution in the local toric model is

minimal in the sense that it contains no (-1)-spheres. Hence, none of the added edges in

the resolution can correspond to (-1)-spheres. The two remaining edges are the vertical

and horizontal, and it is easy to check that these are not -1. This proves that E is an

exceptional sphere.
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To see that its homology class is minimal, we use ([24]-Theorem 1.5) and the

considerations at the end of Section 3.2. Together, these imply that on R it is possible

to put a symplectic form ωR such that

PD[ωR] = B + µF −
N∑
i=1

εiEi.

Furthermore, this class is reduced with respect to the basis {B,F,E1, . . . , EN} ofH2( (S2×

S2)#NCP 2
;Z) in the sense of Lemma 3.2.4 (see also the discussion before the Lemma).

This means that the homology class of E must be EN , which is minimal by ([24]-Corollary

7.10).

Remark: The above argument that shows the homology class of E has minimal area

depends on a specific basis of H2(R;Z). There is another more intrinsic way to see this

though. We know that any exceptional class E with minimal area among all exceptional

classes is always represented by a unique embedded J-sphere for any tame J , in particular

any compatible J ([41]-Lemma 1.2). Any compatible J defines a metric via g(v, w) =

ω(v, Jw) that we can average over the T2-action to make it invariant; this gives a new

almost complex structure that we’ll call Jinv. Associated to Jinv is a sphere Cinv that

is invariant under the T2-action, and this sphere lies in the same minimal homology

class E. Since Cinv is T2-invariant, it must be the pre-image of an edge in the polygon

∆b,bk+r. It follows that Cinv and E are the same sphere, since there is only one edge with

combinatorial self-intersection -1. Therefore, E represents a homology class with minimal

area.

Now that we have the required information about the resolution, we consider the

group Sympred
1,b,c and the sequence

KΦ −→ Sympred
1,b,c

Φ−→ AutZb(C2) /Zb × AutZc(C2) /Zc (4.13)

with kernel KΦ. Again, this kernel will be weakly homotopy equivalent to a certain
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subgroup of Symp(R). Let

ΓC = C1 ∪ . . . ∪ Cm

ΓS = Sn ∪ . . . ∪ S1

Γ = ΓC ∪ ΓS ∪ E .

The arguments in the last chapter can be used to show that

T2 ' Symp(R,Γ) ' Symp(R,Γ \ E),

where these symplectomorphisms are the subgroups of Symp(R) that, respectively, pre-

serve Γ and Γ \ E . The crucial thing that we need here is that the exceptional class

E = [E ] is always represented by a J-holomorphic sphere for every tame J . This is

because the class E has minimal area (see [41]-Lemma 1.2). Now let

Sympcpt(R \ ΓC ,ΓS)

be the subgroup of symplectomorphisms that are compactly supported away from ΓC

and preserve ΓS . Then we have

Lemma 4.4.2. Sympcpt(R \ ΓC ,ΓS) is weakly contractible.

Proof. Same argument as the proof of Lemma 4.3.8.

Let Aut(ν(Si)), i = 1, . . . , n be the group of automorphisms of ν(Si) that are linear,

symplectic, and preserve the zero section. Let pi = Si ∩ Si+1 be the unique point of

intersection of Si, Si+1, and define the following subset of Aut(ν(S1))× . . .×Aut(ν(Sn)):

• Over an intersection point pi, write the differential of an element φi ∈ Aut(ν(Si))

as a sum of its tangent and normal components: dφi|pi = (dφTi |pi , dφ
N
i |pi). Now

let Aut(ν(ΓS)) be the set of pairs (φ1, . . . , φn) ∈ Aut(ν(S1)) × . . . × Aut(ν(Sn))
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such that

dφTi |pi = dφNi+1|pi and dφTi+1|pi = dφNi |pi

Since the tangent and normal directions intertwine over the intersection points, the re-

striction to Aut(ΓS) via the map f 7→ (df |TR|S1
, . . . , df |TR|Sn ) gives a fibration

K −→ Sympcpt(R \ ΓC ,ΓS) −→ Aut(ν(ΓS). (4.14)

The kernel K above is the subgroup of Sympcpt(R \ ΓC ,ΓS) whose derivatives fix both

the tangent and normal directions of each sphere in the configuration ΓS . We therefore

have a weak homotopy equivalence

K ' Sympcpt(R \ (ΓC ∪ ΓS)) ,

Let’s now analyze the sequence (4.14).

Lemma 4.4.3. Aut(ν(ΓS)) is weakly equivalent to T2.

Proof. First consider the restriction map

Aut(ν(ΓS)) −→ Aut(ν(S1))

(φ1, . . . , φn) 7→ φ1.

If K1 is the kernel, then we’ll show that K1 is contractible and that Aut(ν(S1)) is ho-

motopy equivalent to T2. To see the latter statement, let φ ∈ Aut(ν(S1) be a generator.

Since φ preserves the zero-section S1, the restriction φ|S1 generates a symplectomorphism

that fixes the intersection point p1 := S1 ∩ S2. Since Symp(S1, p1) ' S1, homotopically

φ will generate this S1-action on S1. The fibre over the identity of the map φ 7→ φ|S1
consists of bundle maps ν(S1)→ ν(S1) that cover Id; hence, the fibre is the gauge group

G(S1) ' S1, so φ generates an S1×S1, homotopically. This shows that Aut(ν(S1)) /T2

is contractible, hence Aut(ν(S1)) ' T2.
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Now we show that K1 is weakly contractible. Note that K1 is the subgroup of

Aut(ν(ΓS)) that acts as the identity on ν(S1), so it consists of n-tuples φ = (Id, φ2, . . . , φn)

whose tangent and normal components intertwine at the intersection points. An element

φ ∈ K1 will have φ2|S2 ∈ Symp(S2, p1) with dφT2 (p1) = Id. We can thus perturb

φ2|S2 so that it is the identity near p1, so homotopically it will generate an element of

Sympcpt(S2 \p1), and these are just the symplectomorphisms of the disk D2 that are the

identity near the boundary. This group is contractible by Smale’s result ([44]-Theorem

B). The fibre over the identity of the map φ2 7→ φ|S2 is the group of gauge transforma-

tions that act as the identity over p1, i.e. the group G(S2, p1). This is contractible by

([14]-Section 4). Hence, K1 fibres over a contractible space with kernel K2:

K2 −→ K1 −→ ? ,

where K2 is the subgroup that acts as the identity on ν(S2) ∪ ν(S1). Similiarly, we can

show that K2 fibres over a contractible space and so on, until we get to the very last

fibration

Kn −→ Kn−1 −→ ? ,

where Kn is the subgroup that acts as the identity everywhere, so Kn = {Id}. Thus, if

we work backward through the fibrations we see that K1 must be contractible.

Good, now go back to the fibration (4.14). Since the total space is contractible,

and also by Lemma 4.4.3, we have weak equivalences

K ' ΩAut(ν(S2)) ' ΩT2 ,

and we also know that K ' Sympcpt(R \ (ΓC ∪ ΓS)). This last group fits into the

homotopy fibration

Sympcpt(R \ (ΓC ∪ ΓS)) −→ Sympred
1,b,c −→ Aut(Tpb)× Aut(Tpc)
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that comes from the fibration (4.13). Now Theorem 4.4.1 follows by restricting to each

of Aut(Tpb) and Aut(Tpc) one at a time. The argument is the same as the very last step

in the proof of Theorem 4.3.1 at the end of Section 4.3, except now it doesn’t matter

which automorphism group we restrict to first.



Chapter 5

Embedding Spaces

5.1 Embedding Singular Balls into CP 2
1,1,c

Consider the standard orbi-ball Bc(ε) := B4(ε) /Zc, where B4(ε) ⊂ C2 is the standard

(smooth) 4-ball of capacity ε containing the origin and Zc acts diagonally. The symplectic

form on B4(ε) is the restriction of the standard form ω0 on C2. This form is Zc-invariant,

so it descends to the quotient Bc(ε). Let Embε1,1,c be the space of reduced symplectic

embeddings of Bc(ε) into the weighted projective space CP 2
1,1,c. Thus, f is in Embε1,1,c

if and only if f : Bc(ε)→ f(Bc(ε)) ⊂ CP 2
1,1,c is a reduced orbifold diffeomorphism in the

sense of Definition 4.1.5, and f pulls back ω1,1,c to the symplectic form on Bc(ε). We

define the space of unparametrized symplectic embeddings =Embε1,1,c as the quotient

=Embε1,1,c := Embε1,1,c / Sympred(Bc(ε)).

Our goal is to use the general framework developed in [26] to study the homotopy type

of the space =Embε1,1,c and Embε1,1,c based on the correspondence between embeddings

of balls and symplectic blowups. The main results are

Theorem 5.1.1. =Embε1,1,c is contractilble.

Corollary 5.1.2. Embε1,1,c is homotopy equivalent to U(2) /Zc.

Note that in order to deduce this corollary, we need information about the group

Sympred(Bc(ε)), ie. that it is homotopy equivalent to U(2) /Zc; this will be proved in a

forthcoming lemma. In [26], they show that in the smooth case the symplectomorphism

76
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group acts transitively on the space of embeddings and use the resulting fibration to

glean information about the embedding space. In [40], Pinsonnault uses this general

framework to find information about the embedding space of balls in CP 2. It is natural

then, to try to generalize this approach to weighted projective spaces.

Lemma 5.1.3. Sympred
1,1,c acts transitively on =Embε1,1,c.

The proof requires a few preliminary steps. What we first need to show is that any

embedded ball can be isotoped to be disjoint from the line at infinity

S∞ = {[z1 : z2 : 0] ∈ CP 2
1,1,c},

as this will allow us to work in a single orbifold chart.

Claim 1. Let L1, L2 ⊂ CP 2
1,1,c be any two embedded symplectic spheres in homology

class [CP 1]. Then L1 and L2 are isotopic. Thus, swapping S∞ with a symplectic sphere

disjoint from a given orbi-ball Bc will allow us to work in a single orbifold chart.

Proof. First note that given any embedded orbi-ball Bc ⊂ CP 2
1,1,c, there exists an em-

bedded symplectic sphere in homology class [CP 1] that is disjoint from Bc; this is easily

seen by passing to the blowup, which is a Hirzebruch surface Wc. We will sketch the argu-

ment of why L1 and L2 are isotopic.. Since these spheres have the same self-intersection

numbers (+c), by the symplectic neighbourhood theorem we can find neighbourhoods

U1 ⊃ L1 , U2 ⊃ L2 and a reduced diffeomorphism f : CP 2
1,1,c → CP 2

1,1,c such that

f : U1 → U2 is a symplectomorphism. The pullback form f∗ω1,1,c is then equal to ω1,1,c

near the boundary of CP 2
1,1,c \ L1

∼= Bc, which is an orbi-ball centred at the singular

point pc. We now assert that there is a diffeomorphism ψ : Bc → Bc that is the identity

near the boundary and is such that ψ∗(f∗ω1,1,c) = ω1,1,c. For this it is sufficient to find

a Zc-equivariant lift f̃c : B̃ → B̃ of f and having the same properties on the smooth

ball B̃. This follows from a Zc-invariant version of Gromov’s theorem about compactly

supported diffeomorphisms of the ball (see, for instance [33]-Lemma 2.4; the proof can
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be made Zc-equivariant). Given the existence of this diffeomorphism f , the composition

f ◦ψ is a symplectomorphism sending L1 to L2. What this shows is that Sympred
1,1,c acts

transitively on the space of embedded non-singular symplectic spheres in class [CP 1].

Since Sympred
1,1,c is path-connected, it follows that the same is true for the space it acts

transitively on. Hence, any L1, L2 in this space are always isotopic.

Given this, we can assume that any Bc ∈ =Embε1,1,c lies in a single orbifold chart.

Our result will now follow from the following:

Claim 2. The space of reduced symplectic embeddings of Bc(ε) into the open unit orbi-ball

Bc(1) ⊂ C2 /Zc is path-connected.

Proof. This is the orbi-ball analogue of McDuff’s result ([33]-Theorem 1.1). The way she

proves it is by noticing that this statement about embeddings is equivalent to a state-

ment about uniqueness up to diffeomorphism of certain symplectic forms on the space

CP 2#CP 2
, which is the smooth blow up of CP 2. In our case, we are dealing with an

embedding of a singular ball Bc(ε), so the statement now becomes equivalent to a certain

uniqueness property of symplectic forms on the cth Hirzebruch surface Wc. In particular,

we have bijective correspondences between the following sets ([33]-Proposition 1.4):

(1) The set of isotopy classes of reduced symplectic embeddings Bc(ε) ↪→ Bc(1).

(2) The set of equivalence classes of symplectic forms ω on Wc such that each ω gives

area ε to the zero section Z0 and area 1 to the infinity section Z∞. Moreover, we

should assume that Z0 and Z∞ are ω-symplectic.

Let Diff(Wc,Z0,Z∞) be the group of all diffeomorphisms of Wc that stabilize

Z0 and Z∞. In the statement (2) above, two forms ω1, ω2 are equivalent if there exists

f ∈ Diff(Wc,Z0,Z∞) such that f∗ω2 = ω1. The equivalence of statements (1) and (2)

follows from the blow up construction in ([35]-Proposition 7.17). Specifically, to any

symplectic embedding g : Bc(ε) ↪→ Bc(1), it’s possible to put a symplectic form ωg on

Wc, and this form depends on the embedding g. We claim that in the statement (2)
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above, there is only one such equivalence class of symplectic forms on Wc; this follows

from the following points:

• By the Lalonde-McDuff classification theorem [25], any two cohomologous symplec-

tic forms are diffeomorphic. Hence for any two forms ω1, ω2 in the same cohomology

class, there exists a diffeomorphism f : Wc → Wc such that f∗ω2 = ω1.

• By [43] (see Section 1.4.2), the space of smooth holomorphic curves representing

the class [Z∞] is connected. In this case, we can take an isotopy of Jt-holomorphic

curves where each Jt is compatible with ω1. Hence, we can find a Hamiltonian

isotopy whose time 1-map φ preserves ω1 and satisfies φ(Z∞) = f−1(Z∞). It

follows that f ◦ φ preserves Z∞.

• By ([20]-Theorem 8.1), the space of ω-positive embedded symplectic spheres in class

[Z0] (and disjoint from Z∞) is contractible. This means that we can find another

Hamiltonian isotopy whose time 1-map ψ preserves ω2, fixes Z∞, and satisfies

ψ−1(Z0) = f ◦ φ(Z0).

From these three points, it follows that ψ ◦ f ◦ φ ∈ Diff(Wc,Z0,Z∞) and also pulls back

ω2 to ω1. So the forms ω1 and ω2 are equivalent in the sense describe above. We are

now done, because the equivalence of statements (1) and (2) above implies that there is

only one isotopy class of symplectic embeddings Bc(ε) ↪→ Bc(1).

Proof of Lemma 5.1.3: Let Bc0, B
c
1 ∈ =Embε1,1,c. By Claim 1, we can assume that

Bc0 and Bc0 are contained in an orbi-ball of size 1. Choose parametrizations g0, g1 :

Bc(ε)→ Bc(1). By Claim 2, there is a 1-parameter family gt : Bc(ε)→ Bc(1) of reduced

symplectic embeddings connecting g0 and g1. Now lift the family gt to a uniformizing

chart, which is just a smooth ball B(1)

B(ε)

��

g̃t // B(1)

��
Bc(ε)

gt // Bc(1)



80

The family g̃t is generated by a Zc-invariant vector field, which in turn generates

a Zc-invariant Hamiltonian H̃ : B(ε) → R that we can extend to B(1) ∼= Ũc using

an invariant bump function. The corresponding isotopy is equivariant and has as its

time 1-map a symplectomorphism φ̃c : Ũc → Ũc supported in a neighbourhood of B(ε).

Hence, φ̃c descends to a symplectomorphism φ ∈ Sympred
1,1,c that sends g0(Bc(ε)) = Bc0

to g1(Bc(ε)) = Bc1, proving that the action is transitive.

Moving on. The stabilizer of an element Bc ∈ =Embε1,1,c under the action of

Sympred
1,1,c is the subgroup Stab(Bc) consisting of those f ∈ Sympred

1,1,c that leave invariant

the orbi-ball Bc, where Bc is the image of a symplectic embedding Bc(ε)→ CP 2
1,1,c. We

therefore have a fibration

Stab(Bc) −→ Sympred
1,1,c −→ =Embε1,1,c, (5.1)

and restricting Stab(Bc) to the orbi-ball gives another fibration

Fix(Bc) −→ Stab(Bc) −→ Sympred(Bc). (5.2)

Lemma 5.1.4. Fix(Bc) is contractible.

Proof. Here, Fix(Bc) are the reduced symplectomorphisms that are the identity on Bc.

If we blowup the singular point pc with a size that is smaller than the capacity of Bc,

then Fix(Bc) can be identified with the group of symplectomorphisms of the Hirzebruch

surface Wc that fix a neighbourhood of the zero section Z0. This is contractible by

([20]-Lemma 9.1).

Lemma 5.1.5. Sympred(Bc) is homotopy equivalent to U(2) /Zc.

Proof. Just evaluate the derivative at the singularity to get the fibration

K −→ Sympred(Bc) −→ Aut(Tpc) ' U(2) /Zc.
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Hence, we want to show that the kernel K is contractible. Note that K is weakly equiv-

alent to the subgroup of symplectomorphisms of the orbi-ball that are the identity near

the singularity. If we blow up the singular point pc ∈ Bc, then the resulting space is a

disk bundle inside the complex line bundle O(−c) that can be equipped with a standard

Kahler form. A compact family fλ of symplectomorphisms that are the identity near pc

will lift to a compact family f̃λ : O(−c) → O(−c) that are the identity near the zero

section. In ([11]-Lemma 3.3), Coffey uses symplectic cutting to show how to compactify a

disk bundle into a symplectic sphere bundle while preserving the areas of the fibres1. Let

Symp(O(−c), [Z0]) be the group of symplectomorphisms of the unit disk bundle inside

O(−c) that are the identity near Z0. Then Coffey’s construction gives a homeomorphism

Symp(O(−c), [Z0]) ∼= Sympcpt(Wc \ Z0,Z∞),

where the latter group consists of symplectomorphisms of the Hirzebruch surface Wc

that are compactly supported away from Z0 and stabilize Z∞. This latter group is

contractible by ([11]-Proposition 3.2).

Proof of Theorem 5.1.1: The previous two lemmas and the fibration (5.2) all imply

that Stab(Bc) is weakly homotopy equivalent to U(2) /Zc. Therefore, the long exact

homotopy sequence of (5.1) implies that =Embε1,1,c is (weakly) contractible. Done.

Proof of Corollary 5.1.2: Consider the evaluation map from Embε1,1,c to =Embε1,1,c

that sends an embedding g onto its image g(Bc(ε)). The fibre over an element Bc ∈

=Embε1,1,c is the reparametrization group Sympred(Bc(ε)). Now the fibration

Sympred(Bc(ε)) −→ Embε1,1,c −→ =Embε1,1,c

implies the result.

1. There can be some confusion here: Coffey’s compactification adds a section of self-
intersection −c that he calls Z∞, but our convention has always been to declare the zero
section Z0 to be of self intersection −c.
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5.2 Embedding Smooth Balls into CP 2
1,1,c

Now consider the smooth 4-ball B(δ) ⊂ C2 of capacity δ < 1 equipped with the restriction

of the standard form on C2. Let SEmbδ1,1,c be the space of smooth symplectic embeddings

of B(δ) into CP 2
1,1,c equipped with the C∞-topology. Note that the embeddings are

required to miss the singular point pc, so really SEmbδ1,1,c is the space of symplectic

embeddings of B(δ) into CP 2
1,1,c \ pc. We define the space of unparametrized smooth

symplectic embeddings as

=∞Embδ1,1,c := SEmbδ1,1,c / Symp(B(δ))

The main result of this section is

Theorem 5.2.1. =∞Embδ1,1,c is homotopy equivalent to CP 1 ' CP 2
1,1,c \ pc.

The proof is a bit more complicated compared to the last section, but the overall

approach is quite similar to what we’ve been doing throughout this thesis. An argument

that mimics the proof of Lemma 5.1.3 (but easier) can be used to show that Sympred
1,1,c

acts transitively on =∞Embδ1,1,c. Let p1 ∈ CP 2
1,1,c be the smooth point [0 : 1 : 0], and

let Bδ = Bδ(p1) ∈ =∞Embδ1,1,c be an embedded ball centred at this point. We will

consider the stabilizer Stab(Bδ) of this ball under the action of Sympred
1,1,c. Then we have

the fibration

Stab(Bδ) −→ Sympred
1,1,c −→ =

∞Embδ1,1,c. (5.3)

Note that there is no loss of generality in assuming that Bδ is centred at p1 because

all the fibres are homotopy equivalent. We will eventually conclude that Stab(Bδ) is

homotopy equivalent to T2.

Let’s now blow up CP 2
1,1,c at the two points pc and p1. This two-point blow up

of CP 2
1,1,c is diffeomorphic to the one-point blow up W̃c of the Hirzebruch surface Wc

at the point of intersection of the infinity section and fibre. We can equip W̃c with the
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symplectic form Ωµ,c,ε1 described in Lemma 3.2.2 from Section 3.2. Recall that

[Ωµ,c,ε1 ] = PD(B + µF − ε1E1).

The embedded singular sphere {[0 : z1 : z2]} ⊂ CP 2
1,1,c is sent via the blow up to a

configuration of smooth spheres Γ1,2,3 := C1 ∪ C2 ∪ C3 in W̃c, such that for c even2

[C1] = B − c

2
F

[C2] = F − E1

[C3] = E1 .

Put Γ1,3 := C1 ∪ C3, and let Symp(W̃c,Γ1,3) be the subgroup of Symp(W̃c) that

stabilizes Γ1,3. In the same way, let Symp(W̃c,Γ1,2,3) be the subgroup that stabilizes

Γ1,2,3. The following lemma shouldn’t be very surprising because we’ve seen the same

phenomenon in Section 4.3.

Lemma 5.2.1. Symp(W̃c,Γ1,3) is weakly equivalent to Symp(W̃c,Γ1,2,3), which is in

turn weakly equivalent to T2.

Proof. The fact that Symp(W̃c,Γ1,2,3) is weakly homotopy equivalent to T2 follows from

Lemma 4.3.7 in Section 4.3, so we will work on proving the first statement. Let J be the

space of Ωµ,c,ε1-tame almost complex structures on W̃c and let J1,3 ⊂ J be the subset

of J ’s for which C1 and C3 are J-holomorphic. For any J ∈ J1,3, we’ll see that there is

a unique embedded J-holomorphic sphere in class F − E1, and this will imply the first

statement of the lemma.

Specifically, let C ⊥1,3[C2] be the space of embedded symplectic spheres in homology

class [C2] = F − E1 that intersect C1, C3 once in a symplectically orthogonal way. We

should also assume that for every S ∈ C ⊥1,3[C2], there exists J ∈ J such that C1, S, and

2. Again, the odd case is analogous. See Section 2.3.1.
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C3 are J-holomorphic. Then Symp(W̃c,Γ1,3) acts transitively on this space, giving a

fibration

Symp(W̃c,Γ1,2,3) −→ Symp(W̃c,Γ1,3) −→ C ⊥1,3[C2],

so we should prove, as before, that the base is contractible. Let C t1,3[C2] ⊃ C ⊥1,3[C2] be

the bigger space of embedded symplectic spheres in class [C2] that now only intersect

C1, C3 transversely and also satisfy the same property with respect to J-holomorphic

spheres.

Claim. For every J ∈ J1,3, there is a unique embedded J-sphere in class [C2] = F −E1.

Proof. To see this, recall from Section 2.4 that the subset of J for which the exceptional

class F − E1 is represented by an embedded J-sphere is open and dense in J . By

the corollary of Gromov compactness (Section 2.4), F − E1 is either represented by an

embedded J-sphere or a cusp-curve. We’ll show that it can’t degenerate into a cusp-curve.

Write

F − E1 =
n∑
i=1

(piB + qiF − riE1), (5.4)

where each of the classes B,F,E1 have simple representatives. It follows that the pi must

sum to zero. By the adjunction formula (Section 2.4),

2piqi − r2
i + 2 ≥ 2pi + 2qi − ri.

Rearranging things, we have 2gv = 2(pi − 1)(qi − 1) − ri(ri − 1) ≥ 0. By positivity of

area,

[Ωµ,c,ε1 ](piB + qiF − riE1) = µpi + qi − ε1ri > 0,

and from this it follows that qi− 1 > ε1ri−µpi− 1. Now we claim that these conditions

force pi ≥ 0. Let’s mimic the proof in ([6]-Lemma 2.4). Assume, for a contradiction,
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that pi < 0. Then pi <
1
2 , which implies that −2(pi − 1) > 1. So, we have

− 2gv = −2(pi − 1)(qi − 1) + ri(ri − 1)

> qi − 1 + ri(ri − 1)

> ε1 − µpi − 1 + ri(ri − 1)

> ε1ri + ri(ri − 1) (5.5)

= ri(ε1 + ri − 1) ≥ 0.

Here, the last inequality is because ri is an integer and the inequality (5.5) is because

both µ > 1 and pi < 0. From all this we conclude that gv < 0, which is a contradiction.

So, our assumption that pi < 0 was incorrect, which means that pi ≥ 0.

Now go back to the decomposition (5.4). Since
∑
i pi = 0 and each pi ≥ 0, the

only possibility is that pi = 0. Therefore, F − E1 decomposes as

F − E1 =
n∑
i=1

(qiF − riE1). (5.6)

For J ∈ J1,3, both the classes [C1] = B− c
2F and [C3] = E1 are represented by embedded

J-spheres, so it follows from positivity of intersections that

(qiF − riE1) · E1 = ri ≥ 0

(qiF − riE1) · (B − c

2
F ) = qi ≥ 0,

and from the adjunction inequality combined with qi ≥ 0, we get

0 ≤ 2qi ≤ 2− ri(ri − 1).

• If ri > 2, then qi < 0 which is a contradiction.

• If ri = 2, then qi = 0, and this contradicts positivity of area.
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• If ri = 0, then qi = 1, and (5.6) gives a decomposition of F − E1 into a bunch of

F -spheres, which is not possible.

The only remaining case is ri = 1. Then qi = 1 as well, and this is the only possibility

that doesn’t lead to conflicting information. It follows that the class F − E1 cannot

degenerate, and this proves the claim.

To complete the proof of Lemma 5.2.1, we proceed in the same way as before. The

space J1,3 is weakly contractible by ([14]-Appendix A) and the obvious map J1,3 →

C t1,3[C2] is a fibration with contractible fibres. Therefore, C t1,3[C2] is contractible, and

Symp(W̃c,Γ1,2,3) is weakly equivalent to Symp(W̃c,Γ1,3).

Lemma 5.2.2. Symp(W̃c,Γ1,3) is weakly equivalent to its subgroup consisting of sym-

plectomorphisms that act U(2)-linearly near C1 and C3.

Proof. Let Aut(ν(Γi)), i = 1, 3, be the group of linear symplectic automorphisms of the

normal bundle ν(Γi) that preserve the zero section. Then we have a fibration

K −→ Symp(W̃c,Γ1,3) −→ Aut(ν(Γ1))× Aut(ν(Γ3))

that we get by evaluating the derivative on TW̃c|Γi for i = 1, 3. Let Symp(W̃c,Γ
U(2)
1,3 )

be the other subgroup in the statement of the lemma. Since elements in this group act

linearly near Γ1,3, we can restrict to each sphere to get another fibration

K∗ −→ Symp(W̃c,Γ
U(2)
1,3 ) −→ U(2)× U(2),

where K∗ consists of symplectomorphisms acting as the identity near Γ1,3. Putting these

together gives a map of fibrations, and we know that K is weakly equivalent to K∗

from Section 6.1. So, to prove the lemma it suffices to show that Aut(ν(Γi)) ∼= U(2)

for i = 1, 3. Actually, this follows from ([21]-Proposition 2.5) which says that these

automorphisms groups are each homotopy equivalent to the Kahler isometry groups of

W1,W3 respectively, so they are homotopy equivalent to U(2) in each case.
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Via the symplectic blowdown map, a neighbourhood of C1 is sent to a singular

ball Bε(pc) ⊂ CP 2
1,1,c centred at the point pc, and a neighbourhood of C3 is sent to the

smooth ball Bδ centred at p1. Any symplectomorphism f̃ ∈ Symp(W̃c,Γ
U(2)
1,3 ) descends

to a symplectomorphism f : CP 2
1,1,c → CP 2

1,1,c that acts U(2) /Zc-linearly near Bε(pc)

and U(2)-linearly near Bδ. Give this latter subgroup the beastly designation

Sympred
1,1,c(Bε(pc)

U(2)c , B
U(2)
δ ).

We see, conversely, that any symplectomorphism in Sympred
1,1,c(Bε(pc)

U(2)c , B
U(2)
δ ) will

lift to a symplectomorphism in Symp(W̃c,Γ
U(2)
1,3 ). This shows that

Symp(W̃c,Γ
U(2)
1,3 ) is homeomorphic to Sympred

1,1,c(Bε(pc)
U(2)c , B

U(2)
δ ).

Now recall the group Stab(Bδ) from the fibration (5.3). It is the subgroup of

Sympred
1,1,c that stabilizes Bδ. Here is the final lemma in this section

Lemma 5.2.3. Stab(Bδ) is weakly homotopy equivalent to Sympred
1,1,c(Bε(pc)

U(2)c , B
U(2)
δ ).

Proof. First, it’s possible to show that Stab(Bδ) is weakly equivalent to its subgroup

that acts linearly near an orbi-ball Bε(pc) centred at pc; call this group Stab(Bδ, p
U(2)c
c ).

Now consider the composition of fibrations

Stab(Bδ, p
U(2)c
c ) −→ Symp(Bδ) −→ Symp(Bδ) /U(2).

Since the base is contractible, this shows that Stab(Bδ, p
U(2)c
c ) is weakly equivalent to its

subgroup Sympred
1,1,c(B

U(2)
δ∗ , p

U(2)c
c ) that acts linearly near a slightly smaller ball Bδ∗ ⊂

Bδ. This is fine, since we can always blow up using a slightly smaller ball. Observe that

the group

Sympred
1,1,c(B

U(2)
δ∗ , p

U(2)c
c )

consist of symplectomorphisms that, in particular, act linearly near an orbi-ball centred
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at pc. This can be identified with Sympred
1,1,c(Bε(pc)

U(2)c , B
U(2)
δ ) in the statement of the

lemma by possibly varying the sizes of our blow ups, ie. we can show that they are each

weakly equivalent to T2 by blowing up with slightly different sizes.

Proof of Theorem 5.2.1: Consider the action of U(2) /Zc on the subset S∞ := {[z0 :

z1 : 0] ∈ CP 2
1,1,c} given by A · [z0 : z1 : 0] = [az0 + bz1 : cz0 + dz1 : 0], where

A =

 a b

c d

 .
Since S∞ ∼= CP 1, this is the same as the action of U(2) /Zc on CP 1, so it is a transitive

action; the reason being that U(2) already acts transitively on CP 1 and Zc ⊂ U(2) is

contained in the stabilizer of any point. The stabilizer of the action of U(2) /Zc is the

torus of diagonal matrices T2
∆ := {diag(a, d) | |a| = |d| = 1}. Then we have a diagram

of fibrations

Stab(Bδ) // Sympred
1,1,c

// =∞Embδ1,1,c

T2
∆

'
OO

// U(2) /Zc

'
OO

// CP 1 ,

OO

where the vertical maps are inclusions. The group U(2) /Zc acts effectively (and sym-

plectically) on CP 2
1,1,c while fixing the singular point pc, so there is a natural inclusion

U(2) /Zc ↪→ Sympred
1,1,c inducing the weak homotopy equivalence. Of course, T∆ acts on

CP 2
1,1,c by restriction, so we just need to check that the action stabilizes embedded balls

centred at p1 = [0 : 1 : 0]. If Bδ is centred at p1 with δ < 1, then we can assume that

Bδ ⊂ U1, where U1 is the smooth chart {[z0 : z1 : z2] | z1 6= 0}. In this chart, we have

Bδ = {[w0 : 1 : w2] | |w0|2 + |w2|2 ≤ δ},

where w0 =
z0
z1

and w2 =
z2
zc1

, so it should be clear that the T∆-action leaves Bδ invariant,

thus we also have a natural inclusion T∆ ↪→ Stab(Bδ).



Chapter 6

Some postponed proofs

6.1 Proof of Lemma 3.2.6

Recall that we had the locally trivial fibration

Sympred
1,1,c

Ψ−→ U(2), (f, f̃c) 7→ df̃c(0)

with KΨ = ker Ψ. We defined the subgroup K∗Ψ ⊂ KΨ as

K∗Ψ = {(f, f̃c) ∈ Sympred
1,1,c | f̃c = Id near 0}.

Our goal is to prove that the inclusion i : K∗Ψ ↪→ KΨ is a weak homotopy equivalence.

Step 1: Let (f, f̃c) ∈ KΨ. Then df̃c(0) = Id. We will first show how f̃c can be isotoped

to the identity near 0; then we will extend this argument to compact families.

We have f̃c : Ũc → Ṽc, where Ũc and Ṽc are Zc-invariant neighbourhoods of the

origin in C2 with f̃c(Ũc) ⊂ Ṽc. Since df̃c(0) = Id, this means that Γ = graph(f̃c) is

tangent to the diagonal ∆ ⊂ Ũc× Ṽc at 0 ∈ C4. Thus, in a neighbourhood of the origin Γ

appears as the graph of a function F over ∆. Choose a smooth bump function ρ : ∆→ R

such that ρ vanishes near the origin and ρ = 1 outside of a neighbourhood of the origin.

Now, average this function to make it Zc-invariant. If we multiply F by ρ, then in

this neighbourhood, the graph of ρ · F corresponds to the graph of a diffeomorphism

g : Ũc → Ṽc such that g = Id near 0 and g = f̃c outside of some larger neighbourhood.

89
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Now set

ωt = (1− t)ω̃c + tg∗ω̃c.

The forms ωt must be cohomologous since H2(Ũc;R) = 0. Since g = Id near 0 and g = f̃c

outside of a larger neighbourhood, the only place where it may fail to be symplectic is in

the region where g can be made C1-small (by suitably bounding the derivative of ρ). Since

non-degeneracy is an open condition, we can assume that the path ωt is non-degenerate

on a small enough neighbourhood.

Now apply Moser’s argument to the family ωt. It follows that there is a smooth

family of diffeomorphisms ψt such that ψ0 = Id and ψ∗t ωt = ω̃c. Moreover, since ωt =

ω near 0, the isotopy will be the identity in this region. Note that by averaging the

generating vector field for ψt, this argument becomes equivariant. It follows that g ◦ψ1 :

Ũc → Ṽc is a symplectomorphism that is the identity near 0 and interpolates to f̃c outside

of this neighbourhood. It is also Zc-equivariant.

Step 2: Now consider a family of symplectomorphisms (fλ, f̃c,λ) ∈ KΨ that is parametrized

by a compact set S. Then df̃c,λ = Id for each λ ∈ S. By Step 1, for each fixed λ0 ∈ S we

can modify f̃c,λ0 to a diffeomorphism gλ0 such that gλ0|Bλ0
= Id for some open ball Bλ0

containing the origin, and all the choices of parameters in Step 1 are made in contractible

spaces. Thus the function

S → R>0 , λ 7→ Vol(Bλ)

is continuous, because the functions gλ can be made to continuously depend on λ. Since

Bλ is parametrized by a compact set, the function Vol must have a minimum that is

non-zero. Hence, there exists Bmin such that Bmin ⊂ Bλ for all λ ∈ S. So, we have

gλ|Bmin = Id for all λ ∈ S.

As before, we can define ωt = (1−t)ω̃c+tg∗λω̃c, and now the Moser argument works

for all λ ∈ S to give a diffeomorphism parametrized by λ such that its composition with
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gλ is a symplectomorphism, and is the identity on Bmin for all λ ∈ S. Thus, we have

shown that compact families in KΦ can be isotoped to compact families in K∗Φ. This

proves that the spaces are weakly homotopy equivalent.

6.2 Making Transverse Intersections Orthogonal

In this section, we describe a standard construction that is used at various points in this

thesis. This construction essentially mimics the one in ([32]-Lemma 3.11) at the most

crucial points. Another nice construction along these lines is given in ([20]-Section 6).

Let C be a fixed embedded symplectic sphere in a symplectic 4-manifold (M,ω) and let

q be a point in C. Consider the space of all embedded symplectic spheres in M that

intersect C transversely and positively at q; let’s call this space C tq . Also consider the

space C ⊥q ⊂ C tq , where C ⊥q is the space of all embedded symplectic spheres in M whose

intersections with C are symplectically orthogonal. These spaces are topologized as

quotients of C∞(S2,M) modulo reparametrization. We want to show that these spaces

are weakly homotopy equivalent. To do this, we should construct a symplectic isotopy

that deforms a sphere S ∈ C tq into one that intersects ω-orthogonally at q; then we will

describe how this construction can be extended to compact families.

Since we only care what happens at the point q, it suffices to choose a Darboux chart

(Uq ∼= R2 ×R2) and work in a neighbourhood of q. Choosing coordinates (x1, x2, y1, y2)

in this neighbourhood, we have

ω|Uq = dx1 ∧ dx2 + dy1 ∧ dy2.

Let S ∈ C tq , so that S intersects the fixed symplectic sphere C transversely and positively

at q. We will assume that the (y1, y2)-plane is orthogonal to TqC. In a possibly smaller

neighbourhood U ′q ⊂ Uq, we can modify S to a sphere S′ so that it coincides with TqS

in this region, and this can be done symplectically (see Section 6.1). Therefore, in this
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neighbourhood S′ appears as a graph of a matrix over the (y1, y2)-plane

S′ ∩ U ′q = {(y1, y2, A(y1, y2)) | detA > −1}

= {(y1, y2, ay1 + by2, cy1 + dy2) | ad− bc > −1},

where A is the matrix with entries a, b, c, d that are smooth functions of x1, x2, and the

condition detA > −1 guarantees that S′ is symplectic. We want to dropkick S′ ∩ U ′q so

that it coincides with the (y1, y2)-plane in this neighbourhood, but do it symplectically.

Let r be the radial coordinate on the (y1, y2)-plane: r2 = y2
1 + y2

2. The projection of

U ′q to the (y1, y2)-plane is given by {r ≤ ε} for a suitable ε > 0. Choose an increasing

function α : R→ R such that

• α(r) ≤ 1 and α(r) = 1 for r ≥ ε.

• α(r) = 1 for r near ε.

• α(r) = 0 for r ≤ ε0 where ε0 ∈ (0, ε).

• α′(r) ≤ δ
r , where δ > 0 satisfies (1 + δ) detA > −1.

Now, let S′
α(r)

be the image of the map

(y1, y2) 7→ (y1, y2, α(r)(ay1 + by2), α(r)(cy1 + dy2)) , r ≤ ε.

Then S′
α(r)

fits together smoothly with S′ when r is near ε and it coincides with the

(y1, y2)-plane when r ≤ ε0. We should check that it is symplectic. A somewhat tedious

computation shows that

ω|S′
α(r)

=
(
1 +

(
α2(r) + rα(r)α′(r)

)
detA

)
dy1 ∧ dy2, (6.1)

so this form is symplectic if and only if
(
1 +

(
α2(r) + rα(r)α′(r)

)
detA

)
> 0. Since
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α′(r) ≤ δ
r and α(r) ≤ 1, it follows that

α2(r) + rα(r)α′(r) ≤ 1 + δ.

If detA is positive, then it’s clear that (6.1) is symplectic. Otherwise, we have

(
α2(r) + rα(r)α′(r)

)
detA ≥ (1 + δ) detA > −1,

showing that (6.1) is still positive. We have therefore shown that we can deform the

original sphere S ∈ C tq in a symplectic way so that it coincides with the (y1, y2)-plane

near q.

Extending the above argument to compact families is equivalent to proving the

homotopy lifting property over compact sets for the following map

C tq −→ Gr2(TqM) \ TqC

that picks out the tangent plane at q. Here, Gr2(TqM) is the Grassmannian of all

symplectic 2-planes in the tangent space TqM . The construction above shows that this

map is surjective, and since all the choices of parameters come from contractible spaces,

the above construction can be made to depend continuously on a compact family of

parameters.. Hence, this map is a fibration and the fibre over the orthogonal plane at

q is the space C ⊥q . It’s not hard to see that the base is contractible: Since Sp(4) acts

transitively on Gr2(TqM) with stabilizer Sp(2) × Sp(2), we can write Gr2(TqM) as a

homogeneous space

Gr2(TqM) ∼= Sp(4) / Sp(2)× Sp(2).

But the latter space is homotopy equivalent to

U(2) /U(1)× U(1) ∼= SU(2) /U(1) ∼= CP 1.
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Therefore, if we remove a point from Gr2(TqM), it becomes contractible. We conclude

that C ⊥q is weakly equivalent to C tq .

6.3 Orbifold Restriction Maps are Fibrations

Suppose we have an embedded orbi ball B(pc) ⊂ CP 2
1,1,c centred at the singular point

pc ∈ CP 2
1,1,c. Let Sympred

1,1,c(B(pc)) be the subgroup of Sympred
1,1,c that leaves B(pc)

invariant. The following holds, just as in the smooth case:

Proposition 6.3.1. The restriction map

Sympred
1,1,c(B(pc)) −→ Sympred(B(pc))

is a locally trivial fibration.

Proof. We will use Palais’ result ([39]-Theorem A) and find local sections for the restric-

tion map. We need to show that for any f ∈ Sympred(B(pc)), there is a neighbourhood Uf
of f and a local section σ : Uf → Sympred

1,1,c(B(pc)) such that σ(u) ◦ f = u for all u ∈ Uf .

In fact, it suffices to find local sections in a neighbourhood of Id ∈ Sympred(B(pc)),

since we can get to any other neighbourhood by conjugation (Sympred(B(pc)) being a

topological group). The identity map Id ∈ Sympred(B(pc)) has a local lift Ĩc (defined up

to an action of Zc) that fits into the commutative equivariant diagram

B0

��

Ĩc // B0

��
B(pc)

Id // B(pc),

where B0 ⊂ Ũc is a smooth ball centred at 0 ∈ C2 in the uniformizing chart Ũc, and

B0 /Zc ∼= B(pc). It’s easy to see that Ĩc must be an element of the local Zc-action, so

we have

Ĩc ∈ Zc ⊂ SympZc(B0).



95

Observe that the group SympZc(B0) is locally contractible because a neighbour-

hood of the identity is homeomorphic to a neighbourhood of the origin in the space of

equivariant closed 1-forms (this follows from an equivariant version of Weinstein’s La-

grangian neighbourhood theorem). Thus, there is a neighbourhood UIc ⊂ SympZc(B0)

of Ĩc that retracts onto it. If we fix a deformation retraction rt, then for any f̃c ∈

SympZc(B0), rt defines a canonical (equivariant) path taking f̃c to Ĩc. This path is

generated by a Zc-invariant Hamiltonian H : B0 → R. Extend H by a bump func-

tion that vanishes outside of a neighbourhood of B0. The corresponding Hamiltonian

isotopy φ̃t : Ũc → Ũc is Zc-equivariant, supported in a neighbourhood of B0, and its

time 1 map restricts to f̃c on B0. Since φ̃1 : Ũc → Ũc is equivariant, it descends to a

symplectomorphism

φ1 : Uc → Uc

that is supported in a neighbourhood of B(pc). Extend it by the identity (still calling

it φ1) to get a global symplectomorphism preserving B(pc), i.e. φ1 ∈ Sympred
1,1,c(B(pc)).

Note that f̃c : B0 → B0 descends to a symplectomorphism f ∈ Sympred(B(pc)) and φ1

is an extension of f . Hence, the above construction produces a local section σ : UId →

Sympred
1,1,c(B(pc)) by defining σ(f) := φ1.



Chapter 7

Concluding Remarks

In this thesis, we’ve primarily been concerned with the weighted projective spaces CP 2
1,b,c

and their reduced symplectomorphism groups Sympred
1,b,c. From this, we were able to probe

some embeddings spaces of balls into these orbifolds. This begs the question: What

about the case Sympred
a,b,c when a 6= 1? Well, we expect it to be homotopy equivalent to

T2. Initially, our opinion was that in order to probe the more general group Sympred
a,b,c

we had to resolve all three singularities and then try to understand the subgroup of

Symp(Ra,b,c) acting as the identity near each configuration of curves resulting from the

resolution process. This is a more difficult problem because:

(1) The complement of this configuration of curves is no longer a nice symplectically

convex domain.

(2) More importantly though, understanding which exceptional curves in the full res-

olution are J-holomorphic for all tame J poses a more difficult problem.

But it turns out that this may not be necessary. In fact, it should be sufficient to resolve

only two of the singularities because then the complement of the resulting configuration

in the resolution is a symplectically convex set that can be retracted into an orbi-ball.

But we now know that compactly supported symplectomorphisms of the orbi-ball form a

contractible space [21]. So it seems that this approach will work, but the details haven’t

been worked out yet.
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Bulletin de la Societe Mathematique de France 116 (1988), 315-339.

[13] S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Oxford

University Press Inc., New York, 1990.

[14] J.D. Evans. Symplectic mapping class groups of some Stein and rational surfaces,

J. Symplectic Geom., 9 (2011), no. 1, 4582.

[15] W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

[16] P. Gauduchon, Hirzebruch surfaces and weighted projective planes, Riemannian

topology and geometric structures on manifolds, Progr. Math., vol. 271, Birkhauser

Boston, Boston, MA, 2009, pp. 25-48.

[17] L. Godinho, Blowing up Symplectic Orbifolds, Ann. Global Anal. Geom. 20 (2001),

117-62.

[18] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82

(1985), no. 2, 307-347.

[19] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

[20] R. Hind and A. Ivrii. Ruled 4-manifolds and isotopies of symplectic surfaces, Math

Zeit., 265 (2010), 639-652.

[21] R. Hind, M. Pinsonnault, and W. Wu, Symplectomorphism groups of non-compact

manifolds, orbifold balls, and a space of Lagrangians, arXiv: 1305.7291.



99

[22] N. V. Ivanov, Mapping Class Groups, in Handbook of Geometric Topology, Elsevier

Science B.V., 2002, pp. 523-633.

[23] Y. Karshon, L. Kessler, and M. Pinsonnault, A Compact Symplectic 4-Manifold

Admits Only Finitely Many Inequivalent Toric Actions, J. Sympl. Geom. Volume

5, Number 2 (2007), 139-166.

[24] Y. Karshon, L. Kessler, and M. Pinsonnault, Symplectic blowups of the complex

projective plane and counting toric actions, Preprint.

[25] F. Lalonde and D. McDuff, J-curves and the classification of rational and ruled

symplectic 4-manifolds, in Contact and symplectic geometry(Cambridge, 1994),

3-42, Cambridge Univ. Press, Cambridge.

[26] F. Lalonde and M. Pinsonnault, The topology of the space of symplectic balls in

rational 4-manifolds, Duke Math. J. 122 (2004), no. 2, 347-397.

[27] E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258.

[28] E. Lerman and S. Tolman, Hamiltonian Torus actions on symplectic orbifolds and

toric varieties, dg-ga/9511008, Trans. Amer. Math. Soc. 349 (1997), 4201-4230.

[29] T.J. Li and A. Liu, Symplectic structures on ruled surfaces and a generalized ad-

junction formula, Math. Res. Lett. 2 (1995) 453-471.

[30] McDuff, D., From Symplectic Deformation to Isotopy, in Topics in symplectic 4-

manifolds, Irvine,CA, 1996, Internat. Press, Cambridge, 1998, pp 85-99.

[31] McDuff, D., Some 6 dimensional Hamiltonian S1-manifolds, Journ. of Topology 2

(2009), 589-623.

[32] McDuff, D., Notes on ruled symplectic 4-manifolds, Trans. Amer. Math. Soc. 345

(1994), 623-639).



100

[33] McDuff, D. Blow ups and symplectic embeddings in dimension 4, Topology, Vol.30,

no.3, pp.409-421, 1991.

[34] McDuff, D., Remarks on the homotopy type of groups of symplectic diffeomor-

phisms, Proc. Amer. Math. Soc. 94 (1985), no.2, 348-352.

[35] Dusa McDuff and Dietmar Salamon, Introduction to Symplectic Topology, Oxford

Science Publications, Oxford, New York, 1998.

[36] Dusa McDuff and Dietmar Salamon, J-Holomorphic Curves and Symplectic Topol-

ogy, Amer. Math. Soc., Providence, RI, 2004.

[37] Meigniez, G., Submersions, Fibrations and Bundles, Trans. Amer. Math. Soc. 354

No. 9 (2002), 3771-3787.

[38] K. Niederkruger and F. Pasquotto, Resolution of symplectic cyclic orbifold singu-

larities, arXiv math/0707.4141 (2007).

[39] R. Palais, Local triviality of the restriction map for embeddings , Gomm. Math.

Helvetici., 34 (1960) 305-312.

[40] M. Pinsonnault, Symplectomorphism groups and embeddings of balls into rational

ruled surfaces, Compositio Math. 144(3) (2008), 787-810.

[41] M. Pinsonnault, Maximal compact tori in the Hamiltonian groups of 4-dimensional

symplectic manifolds, arXiv:math/0612565v1 (2006).

[42] P. Seidel, Symplectic automorphisms of T ∗S2, arXiv:math/9803084v1, 1998.

[43] B. Siebert and G. Tian, Lectures on Pseudo-Holomorphic Curves and the Symplectic

Isotopy Problem, Lecture Notes (2005).

[44] S. Smale, Diffeomorphisms of the 2-Sphere, Proc. Amer. Math. Soc. 10 (1959), no.

4, 621-626.



101

[45] A. Weinstein, Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and

the volume of certain Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977),

no. 2, 265-271.



102

Vita

Name: Martin VanHoof

Post-secondary Trent University
Education and Peterborough, Ontario
Degrees: 2001-2006, B. Sc.

McMaster University
Hamilton, Ontario
2006-2008, M.Sc.

The University of Western Ontario
London, Ontario
2008-2013, Ph.D.

Honors and Robert and Ruth Lumsden Scholarship
Awards Western Graduate Research Scholarship

Ontario Graduate Scholarship in Science and Technology
McMaster Graduate Scholarship
Dean’s Honour Roll (Trent University)
Trent University Entrance Scholorship

Related Work Note Taker
Experience Western University, 2013-2014

Instructor
Western University, Fall 2012

Teaching Assistant
Western University, 2008-2012

Teaching Assistant
McMaster University, 2006-2008


	Symplectomorphism Groups of Weighted Projective Spaces and Related Embedding Spaces
	Recommended Citation

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Preliminaries
	Symplectic Orbifolds
	Weighted Projective Spaces
	Hirzebruch Surfaces
	Toric Models

	J-Holomorphic Spheres
	Quotient Singularities and Continued Fractions

	Resolving Singularities
	Blowing up Orbifold Singularities
	Resolving CP21,1,c
	Resolving CP21,b,c  for  c=bk+1

	Toric Models

	The Symplectomorphism Groups of CP2a,b,c
	Orbifold Diffeomorphisms and Symplectomorphisms
	The Groups Sympred1,1,c
	The Groups Sympred1,b,c for c=bk+1
	The Groups Symp1,b,c for 1 < b < c

	Embedding Spaces
	Embedding Singular Balls into CP21,1,c
	Embedding Smooth Balls into CP21,1,c

	Some postponed proofs
	Proof of Lemma 3.2.6
	Making Transverse Intersections Orthogonal
	Orbifold Restriction Maps are Fibrations

	Concluding Remarks
	Vita

