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Abstract

In this thesis, we study 4-dimensional weighted projective spaces and homotopy proper-
ties of their symplectomorphism groups. Using these computations, we also investigate
some homotopy theoretic properties of a few associated embedding spaces. In the classi-
cal case of the complex projective plane, Gromov observed that its symplectomorphism
group is homotopy equivalent to its subgroup of Kahler isometries. We find that in the
case of one singularity, the symplectomorphism group is weakly homotopy equivalent to
the Kahler isometry group of a certain Hirzebruch surface, which corresponds to the res-
olution of the singularity. In the case of multiple singularities, the symplectomorphism
groups are weakly equivalent to tori. These computations then allow us to investigate

some properties of related embedding spaces.

Keywords: symplectic orbifold, weighted projective space, symplectmorphism group,
Hirzebruch surface, toric orbifold, toric manifold, symplectic cutting, symplectic blow-

up, Hirzebruch-Jung resolution
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Chapter 1

Introduction

Consider the weighted projective space (CPgb . for a,b, ¢ relatively prime. This is the

space C3\ {0} / ~, where the equivalence relation ~ is given by
(20, 21, 72) ~ (wo, w1, wa) <= (wp, wy,wz) = (X*20, \’z1, \“29)

for A € C*. Let’s write the equivalence class of a point (z(, 21, 22) in homogeneous
coordinates as [zg : 21 : 29| € CP(ib? . Without any subscripts that identify the weights
a,b,c. Then CP(%,Z% . is a 4 dimensional orbifold, and we can put a symplectic form on it
using symplectic reduction; the same way we do for the manifold CP2. The symplectic
form on (CPg’b’ . depends on the weights, so we will call it w,p .. The purpose of this
thesis is to investigate the homotopy type of the group of symplectomorphisms of the
symplectic orbifold (Cpg,b,c’wa,b,c) and to use this to probe various embedding spaces.
There is a lot of recent history to the investigation of symplectomorphism groups, at
least for manifolds. It seems that symplectic orbifolds have been discriminated against
and that’s just sad.

Some early results about the topology of symplectomorphism groups are by McDuff

in [34] where she uses the Moser fibration
Symp(M, w) N Diffg(M) — Diffo(M) — S|

to detect differences in the identity component Diffg(M) of the diffeomorphism group

of a manifold M and its subgroup of symplectomorphisms. Here, S[w] is the space of



symplectic forms on M that are isotopic to w and we require that the symplectic forms

be standard outside some compact set. The two main results in this paper are:

Theorem ([34]). Let (M,w) be the I-point blow up of CP? with its standard Kahler

form. Then mSymp(M,w) does not surject onto w1 Diffo(M).

Theorem ([34]). Let M = CQ\{O} with its standard symplectic form w. Then Symp(M, w)

18 not connected.

These results are proved using cellular decomposition methods, and came before the
machinery of Gromov’s theory of J-holomorphic curves was introduced in [I8]. The
techniques developed by Gromov proved to be extremely useful in the study of symplec-
tomorphism groups. The following results form the foundation for much of the work that

followed:

Theorem ([18]). Let 0 @ o be the standard split symplectic form on 52 % S2 where o
giwes area 1 to each sphere. Then Symp(52 x S2 0@ o) is homotopy equivalent to the
subgroup (SO(3) x SO(3)) x Zo of Kahler isometries.

Theorem ([18]). Consider R* with its standard symplectic form wy. Then the group

Sympc(R4, wg) of compactly supported symplectomorphisms is contractible.

Theorem ([I8]). Consider CP? with the standard Kahler formwpg. Then Symp(CP?, wpg)

is homotopy equivalent to the subgroup PU(3) of Kahler isometries.

In a sequel to Gromov’s paper, Abreu [I] extended some of Gromov’s results by

considering the group
Gy = Symp(S2 x S% po®o), 1<p<2

In fact, it was Gromov [I8] who warned that the topology of G, changes if the spheres

are allowed to have different areas, but he didn’t pursue the details. This task fell to



Abreu and many of the techniques used in [I] have now become standard. In particular,

they were used to compute
(G /SO(3) x SO(3)) and H*(GN/SO(?)) x SO(3); R).

Then, in a sequel to this sequel, Abreu and McDuff [4] extended these results some more
by considering the symplectomorphism groups of the manifolds (S? x 52, uo ® o) for

1 > 2, and also the non-trivial bundle
2, ~52
(CP#CP",wy),

where w;, gives area u > 0 to the exceptional divisor and area 1 to each fibre. It was
found that the topology of these symplectomorphism groups changes whenever p crosses
integer values, but we will not explain the details here.

These early works are only the tip of the iceberg and we will not give a complete

survey here as this would just take too long. Here are some highlights though:

e Anjos [3] extended Abreu’s results and computed the full homotopy type of the
group Symp(52 x 52, puo @ o) for 1 < p < 2. She also computed its homology group
with Zo-coefficients. These results have since been extended further by various

people.

e Lalonde-Pinsonnault [25] and Pinsonnault [40] extended the results of Abreu-McDuff
to the 1-point blow ups of these manifolds. These are the manifolds (S?x S?)# cP' =~
CP2# 2((3_]32 with induced symplectic forms from before. They found, as expected,
that the topology of these groups changes as p passes integer values. These results

were then used to analyze various embedding spaces.

e The previous results were extended again by Anjos-Pinsonnault [6] to the manifold

CP24 ?)C_P2 with the induced symplectic form from before.



e Seidel [42] computed the homotopy type of the group Symp,(T%52) of compactly

supported symplectomorphisms of T*S 2 with its canonical symplectic form.

e Evans [14] used the previous result of Seidel to compute the homotopy type of the
group Sympc(T*RPQ) of compactly supported symplectomorphisms of T*RP2. He
also considered the symplectomorphism groups of the 3, 4, and 5-point blow ups of

CP? with their monotone symplectic forms, and computed their homotopy groups.

e Evans, in the same paper [14] also considered the algebraic variety given as the
solution to the equation 22 + y2 + 2" = 1 with a Kahler form induced from C3.
He proved that its symplectomorphism group is homotopy equivalent to its group
of components, and that its group of components injects into the braid group of

n-strands on the disc.

e In arecent work, Hind-Pinsonnault-Wu [21] considered the symplectization s(S3 / Zj,)
of the lens space S3 / Zyn, and computed the homotopy type of the corresponding
group of compactly supported symplectomorphisms. This point of view was then
used the investigate the space of embeddings of a singular ball into a bigger singular

ball.

e Lastly, we should mention another work by McDuff [31] that in many ways in-
spired our approach to this problem. In order to construct certain 6-dimensional
symplectic manifolds with S1-action, she must consider the reduced spaces by the
Sl action, which are symplectic orbifolds. To establish some uniqueness properties,
she must prove that these reduced spaces are “rigid” ([31]-Definition 2.13). One
of these properties of rigidity is the connectedness of an orbifold symplectomor-
phism group. This paper contains the only results that we know of about orbifold

symplectomorphism groups.

We want to investigate orbifolds, not manifolds. But, the useful thing in our case is

that we can resolve the singularities (get rid of them) and then use well-known techniques



to investigate the symplectomorphism group of the resolution. The idea is to compare
a certain subgroup of the symplectomorphism group in question to a subgroup of the
symplectomorphism group of the resolution.

There is a problem though: Given a symplectic orbifold (O,w), then how do we
define its symplectomorphism group? This is easy in the case of a symplectic manifold; a
symplectomorphism is just a diffeomorphism that preserves the symplectic form. Maps
between orbifolds become more complicated though. In fact, there seem to be 4 distinct
notions of orbifold map [9], and each of these involve remembering different parts of
the data that we need to define maps on orbifolds in the first place. In this thesis,
we really only care about the weakest possible notion of orbifold map; these are the
reduced orbifold maps as defined in [8] (see also [9]). The focus in []] is on 2 types
of orbifold diffeomorphism group. First, the group Diff'™(0) is defined as a space of
maps of the form (f,{fz}), where f is a continuous map of the underlying topological
space, and { f;} is a set of lifts of f to uniformizing charts; these lifts being parametrized
according to a natural stratification of the orbifold. The group Diffred((’)) is defined by
“forgetting the lifts”; that is, by defining a stricter notion of equivalence on the space of
orbifold diffeomorphisms. Thus, the group Diffred(O) is naturally viewed as the quotient
of Diff'P(O) by a subgroup that consists of all lifts of the identity map. We choose to
follow the conventions in [§] when defining orbifold symplectomorphism groups: We first
define the group Symp®P(O) to be the subgroup of Diff*P(O) whose lifts preserve the
symplectic forms on all uniformizing charts. Then we define the group Sympred((’)) to
be the quotient of Symporb(O) by the subgroup of all lifts of the identity map.

Our main focus is on the group Symp™d(©), where O is the weighted projec-

tive space CPgb . equipped with its natural symplectic form w, p .. We call this group
red

a,b,c’

Symp It’s important that the weights a, b, ¢ (the orders of the singularities) be rela-

tively prime, otherwise the singularities would not be isolated. In fact, we are only able
to get results when a = 1; thus we consider the groups Sylrnplieg1  for 1 <b<cwithb

and c relatively prime. We are confident that we know how to prove the more general



result for Sympgeg1 .» but this is not included in the thesis due to lack of time. The work
is done in stages, reflecting our general approach to the problem. We prove the following

results about the symplectomorphism groups:

Theorem 1. The group Sympliei1 . 1s weakly homotopy equivalent to U(2) / Zc, where ¢ > 1.

Here, there is a natural linear action of U(2) / Z. on (CP121 . given by
A-lz0: 211 20) = [z + Bz1 1 y2z0 + 621 & 2],

where A is the matrix with entries «, 3,7,9. We should note that the group U(c) / Z.
can be interpreted as the Kahler isometry group of the Hirzebruch surface W, since
blowing up the singularity of CP12,17 . results in the Hirzebruch surface W, and there is
a biholomorphism

(CP%LC \ pe = We \ zero section,

where p. € CPlQ,LC is the singularity. We should note that this identification can be
made symplectic around arbitrarily small neighbourhoods ([38]-Theorem 2). We prove
Theorem 1 in Section by using exactly this idea; that is, we resolve the singularity of
(CPEL . and show that the subgroup of symplectomorphisms acting as the identity near
pe can be identified, up to weak homotopy equivalence, with the subgroup of symplecto-
morphisms of W, acting as the identity near the zero section. We then use known results
about the subgroup of symplectomorphisms of W, acting as the identity near the zero
section (see [II]-Proposition 3.2 and [20]-Lemma 9.1).

The next step in our investigation involves the groups Sympf&c, where ¢ = bk + 1
and k > 1is an integer. To investigate the symplectomorphism group in this case, we first
find the resolution and identify it symplectically with a b-fold blow up of the Hirzebruch
surface W;,. This process is arduous and seems unnecessary in light of recent discoveries
by us. Nevertheless, it is still included in Section [3.2] perhaps for cultural reasons, and

also because we didn’t have enough time to re-organize it. Section [3.2]is still informative



though, because we go through the process of constructing an explicit resolution of the
toric model and then making the proper identifications with the non-toric resolution in
Section [3.1] It is perhaps redundant, though enlightening and informative to see how the
resolutions match up from two different points of view.

The bulk of the computations for the groups Sympfl‘i . are done in Sections and
[4.4] where we prove the following results:

Theorem 2a. Symprlegc is weakly homotopy equivalent to Aut(Tp,) ~ T2 | Z¢ when

c = bk + 1, where Aut(T),) is the group of automorphisms of the uniformized tangent
space at pe.

Theorem 2b. Sympliegc is weakly homotopy equivalent to either Aut(Tp,) or Aut(T),)

when 1 < b < c¢. In this more general case, it turns out that both uniformized tangent

spaces are isomorphic. Up to homotopy, these automorphism groups are just T2,

We should note that Theorem 2a is a special case of Theorem 2b. The proof
of Theorem 2a is given in Section and the proof of the latter is given in Section
[4.4] Actually, most of the work is contained in Section [£.3] and then we realized that we
could prove the more general result using similar methods, so we decided to include a less
detailed version of this argument in Section[4.4] Let us outline the general approach to the
proof. For the case Syrnpli‘?gl7 . With ¢ = bk +1, we already described in the last paragraph
that we identify the resolution R symplectically with a b-fold blow up of the Hirzebruch

surface W}.. The resolution creates a chain of embedded symplectic spheres whose self-

intersection numbers are given by the continued fraction expansion of bk;‘ L Let Symp(R)
be the symplectomorphism group of the resolution, where R is equipped with a natural
symplectic form that comes from the resolution process. If T' is the configuration of
embedded symplectic spheres created from the resolution, then we are interested in the
group Symp!(R \ T') of symplectomorphisms that are compactly supported away from
the configuration I". This group turns out to be homotopy equivalent to the kernel IC in
the fibration

K— Sympﬁ?&c — Aut(Tp,) x Aut(T).),



so the main focus is on computing the weak homotopy type of the group Symp®!(R\ T).
The techniques that we use are standard and are variations on the techniques used in
many previous works; see for instance [1], [14], [26] and [21].

The next chapter (Chapter [5)) involves applying the techniques from the previous
chapter to various embedding spaces. We follow the general framework from [26] and [40].
The key idea is to recognize that the groups Symprf:(i . and Symplfl‘iC act transitively on
certain spaces of embedded singular or smooth balls. The first result in this chapter is

in Section . If SEmb] ; .. is the space of singular balls of size ¢ < 1 in (CP121 . modulo

reparametrization, then we have
Theorem 3a. SEmb{ ; . is weakly contractible.

There is a corollary of this result that we mention in Section [5.1] as well. This
is about the corresponding unparametrized space of symplectic embeddings; the space
Embi,l,c The relation between the space Embi’l’c and the space %Embil’c is just
that the latter is the quotient of the former by the group Sympred(Bc(e)) of reduced

symplectomorphisms of the orbi-ball (singular ball) B.(e). We then have the following:
Theorem 3b. Emb‘il’c is weakly homotopy equivalent to U(2) / Ze.

When (M,w) is a symplectic manifold, let SEmb(B(X), M) be the space of un-
parametrized embeddings of balls B(A) of capacity A in M. This space carries informa-
tion about symplectic blow ups; for instance, if the space SEmb(B()), M) is connected,
then two symplectic blow ups of (M,w) of the same size are isotopic ([35]-Proposition
7.18). It was proved in ([30]-Corollary 1.5) that the space SEmb(B(\), M) is connected
when M has nonsimple type. Naturally, these embedding spaces should also carry in-
formation about the symplectic orbifolds in question, but it’s not clear to what extent
because there aren’t many general results about symplectic orbifolds.

In Section , we consider the space %OOEmb‘lg’LC of smooth symplectic balls of
capacity 6 < 1 embedded into the weighted projective space CPﬁL . The following

result is proved:



Theorem 4. Let p. be the singular point of (CPELC. Then %OOEmb‘IS’LC 1s weakly homo-

topy equivalent to CP1 ~ CP121 o\ Pe.

This result is an analogue of Theorem 1.10(1) in [40], where it is proved that the
corresponding unparametrized embedding space of balls into the manifold CP? is weakly
homotopy equivalent to CP? itself; essentially meaning that balls of capacity less than
1 behave like points, homotopically. In the same theorem, Pinsonnault also proves a
corresponding result for spaces of two disjoint balls in (CPQ, showing that this space
is weakly equivalent to the space of ordered configurations of two points in CP2. It’s

possible that a similar result holds in our case, but we haven’t investigated this yet.



Chapter 2

Preliminaries

2.1 Symplectic Orbifolds

Let’s just start with the definition of uniformizing chart. Let X be a Hausdorff space. A

C"-uniformizing chart on X is a triple ((7 ,G,m), where

e U is a connected open subset of the origin in R".
e (G is a finite group acting on U by C"-diffeomorphisms and fixing 0.

e 7:U — X is a continuous map inducing a homeomorphism U /G = U onto an

open set U C X.

Note that the map 7w should be G-invariant. We will also assume that G acts effectively

on U.

Definition 2.1.1. A C"-orbifold atlas on X is a family U of C"-uniformizing charts
on X such that for each x € X and neighbourhood U of x, there is an element (ﬁx, Gg,Tz)
m U with T inducing a homeomorphism ﬁx/Gx onto an open neighbourhood U, C U
with x € Uy. We also want 7, to map the origin O to x. The atlas U should satisfy the

following local compatibility conditions:

o For any neighbourhood U, C U, and corresponding uniformizing chart (ﬁz, G, )

inU, there is a C"-embedding A : [72 — [755 and an injective group homomorphism

10
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0 : G, — Gy such that X\ is 0-equivariant and the following diagram commutes:

U, U,

U, /G —2 U, /0(G>)
-k
U, = Uy

Remarks:

(1) If g, € Gy, then gz - A : ﬁz — (753 is also a C"-embedding that descends to the
same map as A and is equivariant with respect to the injective homomorphism
0(g2) = g2 - 0(g2) -g;l for g, € G,. For this reason, we regard A\ as being defined
only up to composition with elements of G and € defined only up to conjugation

by elements of G.

(2) We regard two atlases U and V as equivalent if they can be combined to give a

larger atlas still satisfying the above definition of being locally compatible.

Definition 2.1.2. A C"-orbifold O is a pair (X, [U]), where Xo is a paracompact
Hausdorff space (called the underlying space) and [U] is an equivalence class of C" -orbifold

atlases.

Given any point z in an orbifold O, by definition there is a neighbourhood U, of
x and a homeomorphism U, = (71; / G, where (71; is a neighbourhood of the origin in
R™. It is possible to show that the germ of this action in a neighbourhood of 0 € R"
is unique. We say that G is the isotropy group of z. The singular set Sing(O) of
the orbifold O is the set of points z € O with G, # {Id}. We want to move quickly
into symplectic territory, so in analogy with C"-uniformzing chart let us define what we

mean by symplectic uniformizing chart,
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Definition 2.1.3. Let X be a Hausdorff space and let ((7, G,m) be a C*°-uniformizing
chart on X. Suppose U comes equipped with a symplectic form @ that is G-invariant.

Then we call ([7 ,w, G, m) a symplectic uniformizing chart.

Now, a symplectic orbifold (O,w) is just an orbifold O with a covering by
open sets such that for each U in the covering, there is a symplectic uniformizing chart
((7 ,w, G, ) such that w descends to w on U. Moreover, the symplectic unformizing charts

should satisfy compatibility conditions analogous to those in Definition [2.1.1]

Defintion 2.1.4. Let O be an n-dimensional smooth (C°°) orbifold. The tangent or-
bibundle, p : TO — O, of O is defined as follows: If ((793,Gx) is a uniformizing
chart above x € O then p~Y(Uy) = (Uy x R"™) /Gy, where Gy acts on Uy x R by
g (y,v) = (9 -Yy,dgy(v)). The fibre pU(z) over x € O is called the uniformized

tangent space at x and it is denoted by T,O.

It’s possible to show that T'O is itself a smooth orbifold with uniformizing charts
that are just lifts of the charts on the base; ie. they have the form (TU,, G;) with (U, Gy)
a uniformizing chart for O (see [2]-Section 1.3).

If § is a suborbifold of O (as defined in [8]-Definition 16), then we can define the
normal orbibundle to § in O as follows: If s € S, we view the uniformized tangent
space TsS as a subspace of TsO. The normal space at s is defined as the quotient

TsO / TsS. The normal orbibundle is then

vS :={(s,v)|s € S,veTsO/TsS}.

2.2 Weighted Projective Spaces

Let a,b,c be positive integers that are pairwise relatively prime. From a symplectic

point of view, the most natural way to view the weighted projective space CPgb o I8



13

via symplectic reduction. Consider the symplectic manifold (C3,wgg) with its standard

symplectic form wg;g = \/—_12?:1 dzj Ndz;. Let S1act on C3 with weights (a, b, c):
A (20,21, 22) = (A %20, Az1, AC29). (2.1)
This action is Hamiltonian with moment map
C* 5 R, H(x,21,2) = al2|* +blz1|* + clz2)*

All non-zero real numbers are regular values of H. Thus, H~!(abc) is a submanifold of

C3; in fact it is the boundary of the ellipsoid

2 2 2
E(be,ac,ab) := {|ZO| + 1] + 22| < 1}.

be ac ab

A well-known result of Alan Weinstein (see [45]) provides the reduced space H ~!(abc) / S!
with a symplectic form w,j, . induced from wgy and gives (H_l(abc)/Sl,wmb’c) the
structure of a symplectic orbifold (back in the day, they called orbifolds “V-manifolds”,
until Thurston came along and changed it in one of his classes). Our policy will be to
take this reduced space as the definition of ((CPC%J)’ o Wabe)

The symplectic orbifold ((CPgb ¢ Wa,b,c) also comes with a natural toric structure.

To see this, consider the standard T3-action on C3

(to.t1,t2) - (20,21, 22) = (to20,t121,1222).

with corresponding moment map fip3(20, 21, 22) = (J20/%, |211%, |22/?). This T3-action
commutes with the weighted S Laction, so there is an induced T3-action on the quotient
H~Y(abc) / S'. This action is not effective, but the action of T3 /i(S!) induced by the
inclusion

i ST T3 A (AN
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is effective. Standard results about symplectic orbifolds (see [28]) show that this new
T2-action makes H _1(abc) /S 1 (CPgb . into a toric orbifold, whose moment polytope
is given by

{i*(x,y,z) = abc} N R;O,

where i* : R? — R is dual to the linearization of the inclusion 4. Being a linear map, 7*
is just the matrix [a b C]T, so that the moment polytope is just given by the intersection
of the hyperplane az + by + ¢z = abe with the positive orthant in R3.

The orbifold structure of CP(% p.c can be explicitly described as follows. Let

Us = {lz0:21: 2] € CPy |20 # 0}
Uy = {[z0:21:20] € (CP;M | 21 # 0}
Ue = {[z0:21:20] € Cpg,b,c | 290 # 0} .

Then (CPgb . 1s covered by these three open sets. Take, for instance, a point [20 : 21 :

z9] € Uy. Pick an a-th root of zy and put A :=1/ Zé/a. Then

[20 ¢ 21 @ 22] = [M%%0 : AP2y 1 \o2] = [1 L 22 ]

b/a "~ c/a
0 0

Letting A vary over all a roots of 2 gives us a homeomorphism

<1 <2
Ua—>C2/Za> [ZO:Zl:zQ]H[W7m:|7
00 A0
with A acting on C? as
A (21, 29) = (A2, \2). (2.2)

Similar computations apply to the other neighbourhoods Uj and U,.. Thus, (CPgb . has
an orbifold structure where all singularities have cyclic structure groups. We should note

that CPgb . (as an orbifold) is not a global quotient in the following sense: There is a
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holomorphic map
2 2 . . a. b. _c
CP? —CPy ., [20: 21022 [25 0 27 @ 2]

that is invariant under the Zq X Zy X Z¢ = Zgp~coordinatewise action on CP2. Thus, as
algebraic varieties there is an isomorphism

CP? ) Z g, = CP?

7b7c ?

but they cannot be isomorphic as orbifolds since their singular sets do not coincide. The
question of what it means to be an isomorphism in the orbifold category will be discussed

in Section [4.11

2.3 Hirzebruch Surfaces

Hirzebruch surfaces are complex, rational, ruled surfaces and symplectic forms on them
have been classified by Lalonde-McDuff in [25]. They are classified by their cohomology
class (any two cohomologous symplectic forms are diffeomorphic) and, after rescaling,

any symplectic rational ruled 4-manifold is symplectomorphic to one of the following:

° (52 x 52, o1 @ o9), the trivial bundle, where o1 and o9 give area 1 to each sphere.

° (CP2# (C_Pz,wu), the non-trivial bundle, where the symplectic area of the excep-

tional divisor is > 0 and the area of each fibre is 1.

At the homology level, we will work with the basis {B, F'} of Hy(S? x S?;Z) and
the basis {B*, F*} of HQ((CPQ#@Z;Z), where B = [S? x +] and F = [x x S?]. Also,
B* is the homology class of a section in (CPl#(C_P2 of self-intersection -1 and area pu,

while F* is the homology class of a typical fibre. The ¢! Hirzebruch surface is

We = {(la:0],[20 : 21 : 22]) € CP! x CP?| a2 = b2},
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where ¢ is a positive integer. We give it a symplectic form by restricting the following

form to W,

(u — %)W(C]Dl D W p2 if ¢ is even and p > §

(M — (%))wcpl D wepe if cis odd and p > %

where wrp1,wep2 are, respectively, the standard Kahler forms on CP! and CP? nor-
malized so that the areas of the embedded CPL’s are equal to 1. The restriction of the
projection CP! x CP%2 — CP! makes W, a CP!-bundle over CP! which is, topologically,

52 % $2 when c is even, and (CP2#(C_P2 when ¢ is odd. The zero section is

Zy:={([a:0b,[0:0:1))}.

It corresponds to a section of self-intersection —c and represents the class B — §F if c is

even and B* — (%)F *if ¢ is odd. The section at infinity is
Zoo = {([a:0],[a® : b°: 0]},

and it has self intersection +c, representing the class B+§F' if ¢ is even and B*+ (%) F*
if ¢ is odd.
The relationship between W, and CP121 . is given by the following proposition (for

a proof, see [16]-Section 4).

Proposition 2.3.1 ([16]). Let V. be the subvariety of CP! x CP?, . defined as
Ve={(la:b],[20 21 : 22]11,c) € CP' x CP{y .| azy = bzo}.

Then V. is biholomorphic to W.
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Thus, V¢ is the (complex) blow-up of (CP121 . at the singular point p.. We put a

symplectic form on V. in an analogous way; define

)W(CP1 D wi e if ¢ is even and p > §

[\l

_ (-
Qe = c—1 e c—1
(,u — (T))WCPl ©wy e ifcisoddand p> 5=

and restrict it to Ve. The zero section is the set Z := {([a : b],[0:0: 1]1 1)}, and the

infinity section is now

Zlo={(a:b],la:b:0]11.)}

2.3.1 Toric Models

The Hirzebruch surfaces (Wy,, Q,, ;) are symplectic toric manifolds, and a very nice prop-
erty of these manifolds is that they are determined, up to equivariant symplectomorphism,

by their moment polytopes (see [12]). Let the torus T2 act on CP! x CP? by

(t1,ta) - ([a: b, [20: 21 ¢ 20]) = ([t1a : b, [th20 : 21« tazo)),

and restrict the action to Wj,. Then the quotient W}, / T2 appears in Figure or Figure
, for k even or oddE These are also the images of W}, under the moment map

|a|? k|zo|? |29 )
a2+ [b]2 2012 + |21] + 222 7 |2012 + |21]? + |22)?

B(a: b, [0 1 : 29]) = (

The outward normal vector to the slanted edge is (1, k), so that this edge has
slope —%. The image of the zero section Z is the top horizontal edge, the image of
the infinity section Z4, is the bottom horizontal edge, and the image of the fibre F is
the slanted edge. These edges are labelled by their homology classes in Ho(W}.; Z), and

they encode the symplectic areas and self-intersection numbers of the spheres Zy, Z,

1. The only difference between the two pictures is the labelling of homology classes
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B+ip
Figure 2.1: The Hirzebruch trapezoid (k even).

(1, k)

F*

k—1
B* 4 5= F*
Figure 2.2: The Hirzebruch trapezoid (k odd).

and F. We should mention a convention we are going to use throughout the rest of
this thesis. In subsequent sections, we will be talking a lot about various blow ups of
the Hirzebruch surfaces W}, and their resulting homology classes. Since these classes are
different depending on whether k is even or odd, it would be annoying to have to repeat
our arguments for two separate cases, and it turns out that this distinction is not so
important. In fact, blowing up S2 x $2 or CP2# (C_P2 leads to diffeomorphic smooth
manifolds (see [I3]-page 13). This diffeomorphism produces an isomorphism in homology

Hy( (5% x S2)# C_PQ; Z) = Ho(CP?# 2(C_P2; Z) with the following identification of basis
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elements:

F + F* (2.3)
B < B'4+F"—Ejf
E, < F*—E}

B-E < B

F-E « E}

where {B, F, E1} is a basis for Ho( (5% x 52)#C_P2;Z) and {B*, F*, E]} is a basis for
HQ((CP2# 2@2; Z). Here, the classes Fy, E] are exceptional classes whose homological
self-intersection is -1. Thus, in subsequent sections when we speak about “blowing up
the manifold W;”, our arguments will be carried out fully for the case k is even and
we will be careful to point out that the case “k odd” follows with similar arguments by
swapping the homology classes in the above fashion.

We will now recall some facts about toric geometry (see [23]-Section 2). A polygon
A € R? is called a Delzant polygon if for each vertex p of A, the edges emanating from
p have the form p + tv;, t > 0, where v; € 72, and the v; (1 =1,2) can be chosen to be a
Z-basis of the lattice Z? (this last condition is called being smooth). Let e be an edge
of A with rational slope. The rational length of e is the largest positive number ¢ such
that % -e has its endpoints on the lattice Z2. Let e1, €2, e3 be three consecutive edges in a
Delzant polygon, ordered anti-clockwise, and let nq,n9,ns be outward primitive normal
vectors to these edges, respectively. Then each of {n1,no}, {ns,n3} is an oriented Z-basis
for Z2. Thus, there is an integer m such that n; +n3 = mny. Define the combinatorial

self-intersection number of e9 to be —m.

Propostion 2.3.1.1 ([23]). Let (M, w) be a compact connected symplectic toric 4-manifold.
Let & : M — R? be the moment map for a toric action, and let A = ®(M).
(1) If e is an edge of A of rational length ¢, then the pre-image CID_l(e) 1S a symplecti-

cally embedded 2-sphere in M, invariant under the torus action, and with symplectic
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area
w =27/

®~1(e)

(2) Ife is an edge of A and S = ®~1(e) is its pre-image in M, then the combinatorial

self-intersection number of e is equal to the self-intersection of S in M.

(3) The pre-images of the edges of A generate the second homology group of M. The
number of vertices of A is equal to dim Ho(M;Z) + 2.

2.4 J-Holomorphic Spheres

At a few crucial points in this thesis, our arguments explicitly use J-holomorphic spheres
(though implicitly our whole house of cards would collapse without them). We will briefly
mention what they are and a few results about them without getting bogged down in all
the analysis. Some good references are [, [25], and [36]. All maps are C°°-smooth and
spaces of maps have the C'*°-topology.

An almost complex structure on a manifold M is an automorphism J : TM — T M

such that J2 = —Id. The almost complex structure is tamed by a symplectic form w if
w(v, Jv) > 0 whenever v # 0.

If w is also J-invariant, then J is said to be compatible with w. The spaces of all
compatible with w, respectively tamed by w, almost complex structures on M are both
contractible spaces ([35]-Chapter 2.5), but it’s often more convenient to work with the
bigger space of tamed ones because this space is open in the space of all almost complex
structures on M.

For a fixed symplectic manifold (M, w), let J be the space of all almost complex
structures J on M that are tamed by w. A (parametrized) J-holomorphic sphere in M

is a map u : (CP,j) — (M, J) that is a solution of the generalized Cauchy-Riemann
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equations

duoj=Jodu.

It is simple if it can’t be factored through a branch covering of CP'. An embedded
J-sphere ' C M is the image of a J-holomorphic embedding. Note that C' must be
a symplectic submanifold because the restriction of w to T'C' is non-degenerate by the
taming condition. If C' is an embedded J-sphere, then we will usually just say that C'is
J-holomorphic, or that C' is a J-sphere.

Let A € Hy(M;Z) be a homology class. We say that a J-sphere C' is represented
by A if ux[CP'Y = A, where u is a parametrization of C. We should emphasize that all of
our almost complex structures J come from the space J = J(w) consisting of those that
are tamed by a fixed symplectic form w. Here are some nice properties of J-holomorphic

spheres that will be important in the work we do:

e Positivity of area: Write [w] - A for the cohomology-homology pairing. If A €

Hy(M;7Z) can be represented by a J-holomorphic sphere for some J € 7, then

WA= / w:/u*w>0.

u(CPY) cp!

e Positivity of intersections (only true in dimension 4): Let A, B be homology classes
in Ho(M 4;Z) that are represented by distinct simple J-holomorphic spheres for
J € J. Write A - B for their homological intersection number. Then A - B > 0.
Furthermore, if C'y,Cp are distinct J-holomorphic representatives of the classes
A, respectively B, then A- B =1 if and only if Cy and Cp intersect exactly once

transversally. Also, A- B = 0 if and only if C4y and Cp are disjoint.

e Adjunction formula (only true in dimension 4): Let [c;(TM)] € H?(M;Z) be the
first Chern class of the complex vector bundle (T'M, J) for any J € J. It is a fact
that [cq(TM)] is independent of J. Let A be a class in Ho(M;Z). We give the
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number

go(4) = 14 5(A- A~ e (TAD)] - )

a special name. It’s called the virtual genus of A. Then for any J € 7, if
A € Ho(M) is represented by a simple J-sphere Cy, we have g,(A) > 0 with

equality if and only if C' is embedded.

4,w) is a symplectic 4-manifold. We say

Now let’s focus on the case where (M
that a homology class E € Hy(M;7Z) is exceptional if it is represented by an embedded
symplectic sphere with self-intersection -1. If C'is a J-holomorphic sphere that represents
an exceptional homology class, then C' is unique by positivity of intersections. Here are

some facts about exceptional homology classes that will also be important in the work

that we do (see [4I]-Lemma 2.1):

o Let Jp C J be the space of w-tame J for which there exists an embedded J-

holomorphic sphere in class E. Then Jg is open, dense, and path-connected in

J.

o Corollary of Gromov compactness: If J € J, then any exceptional class F is
represented by either an embedded .J-holomorphic sphere or a connected union of

possibly multiply-covered J-spheres (called cusp-curves) of the form
C=mCiU...UmpCy,, n>2

where m;C; stands for a multiply covered (ie., non-simple) J-sphere with multi-

plicity m;.

e Any two exceptional classes intersect non-negatively.
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2.5 Quotient Singularities and Continued Fractions

This section will describe the Hirzebruch-Jung method for resolving singularities. Some
good references for this material are ([10]-Section 2) and ([15]-Chapters 2.2 and 2.6).
We should start by describing cyclic quotient singularities and their local toric models.
Cyclic quotient singularities are just the special type of orbifold singularities that we care

about in this thesis. Suppose a cyclic group Z. acts on C? as follows

£ (20,21) = (€20,€21), 0<b<ec (2.4)

with b, ¢ relatively prime. Then the quotient is an orbifold with an isolated singularity
of order ¢ at the origin. If we put a Ze-invariant symplectic form on C2, then this form
descends to the quotient C2 / Z¢ which naturally becomes symplectic. Let’s consider the
standard T2-action on C? given by (2, 21) — (t9z0,t121). The image under the moment
map

(20, 21) = (120, |21]?)

is the first quadrant in R2. Since the T2-action commutes with the Z.-action on C2,
there is an induced T2-action on C2 / Z that we get by composing with an isomorphism
T? S T?/Z.. We want to describe the moment map and its image. Consider the

surjective homomorphism

T — T2
(to.t1) = (£t 1) (2.5)
Its kernel is isomorphic to Z. < T2 viewed as the inclusion & (&, £b) , so we have an

isomorphism

T2/ Z, —> T2
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via the map ([2.5). The inverse map is given by
T — T2/ Z¢, (to.t1) — (t(l)/c,tg/ctl)

Therefore, T2 acts on C2 / Z via this map, and the corresponding moment map is given

by
(20, 21) = (M + M |21).
c c
Its image is the convex subset of R? spanned by the vectors (1,0) and (b, ¢). If we
go back to the image of the moment map for the standard T%-action on C2, then this

new picture transforms the old one by the matrix

19
c ¢
0 1

This is a local toric model for the order ¢ singularity given by the action ([2.4)). The vertex
ve in this picture corresponds to the singularity of order ¢. In ([I5]-Chapter 2.6), Fulton
describes how to resolve such a singularity using Hirzebruch-Jung continued fractions
and by adding rays to a convex cone. We prefer to view this process as “corner cutting”
at a vertex using co-normal vectors because this is the symplectic way of doing things,
though in this section we won’t specify the sizes of the cuts.

The co-normals to the edges with vertex v, are (0, —1) and (—¢,b). If we put the
tails of these vectors together at the origin, they will span a convex cone. To make our
picture correspond to Fulton’s picture on ([I5]-page 45) we have to rotate this cone by

180 degrees, so just use the matrix

Then the cone spanned by (0, —1) and (—c, b) is sent to the cone spanned by (0,1) and
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(c,=0).
The Hirzebruch-Jung continued fraction expansion of IQ) is computed as follows: Let
a] = (%] be the least integer bigger than or equal to % If b= 1, then a1 = ¢ so we stop.

Otherwise, there are positive integers k1 < mq such that

and we set ag = (?—H If k1 = 1, then stop. Otherwise, we can write % =ay — % for

positive integers kg < mo. Thus,

- — al -
N
2

and so on. This process will eventually stop. In the literature, this type of continued

fraction is often written as % = la1,a9,...,a]. To resolve the singularity corresponding

to the vertex v, set ©g = (0, —1) and 7iy = (—1,0). Now recursively define
Tjp1 = Tl — T

forv=1,...,k. The normals 7y, ..., specify k new edges in the toric picture originally
determined by the edges with co-normals (0, —1) and (—¢, b). These new edges correspond
to a chain of embedded spheres C7 U...UC}. intersecting positively and transversely with
self-intersection numbers C; - C; = —a;. Note that since a; > 2 this resolution is minimal

in the sense that it contains no (-1)-spheres.



Chapter 3

Resolving Singularities

3.1 Blowing up Orbifold Singularities

Recall that the blow up of a symplectic 2n-manifold at a point x is obtained by removing
an embedded ball around this point and then squishing the boundary (which is an S27—1)
along the fibres of the Hopf fibration. A similar situation happens in the orbifold case,
except it now involves removing a singular orbi-ball and similarly squishing its boundary.
A more general approach is the weighted blow up (see [I7]) which involves removing an
embedded ellipsoid and collapsing the boundary. The approach we describe here involves
symplectic cutting, a technique developed by Lerman in [27]. For a good reference on

how to use symplectic cutting in the orbifold case, see [38].

3.1.1 Resolving (CPfLC

Let us start with the simplest possible case: The single isolated singularity p. of the
weighted projective space ((:1[’121 o W1,1,¢)- This singularity is modelled by the following

Zc-action on the uniformizing chart [70:

£ (z,w) = (§2,6w), & € Ze.

Define an S'-action on C2 by A - (z,w) = (Az, \w). This S'-action commutes with

the Z-action, so there is an induced action on C2 / Z though this action is not effective

26
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(it has a global Z. stabilizer). We can fix this by taking the quotient by Z. and defining
anew S! := S/ Z.-action on C? ) Z

pefzw] =\ (z,w)] = Mz, Aw] for pe S

where = A€ for some \ € S 1 This action is Hamiltonian with corresponding Hamilto-

nian function

Hy:C%/Z¢ — R, [z,0] — |2 + |w|>.

Now perform a symplectic cut with respect to this S%—action: Take the product,

((C?/Z¢) x C, wy 1,0 ® —idw' Adw'), with the effective St-action
K ([Z,UJ], w/) = (N ’ [Z, w]nu’ilw/) = ([)\Z, )‘w]a )\*Cw’% A = M- (31)
This action is also Hamiltonian; it’s Hamiltonian function is

Hy([z,w),w') = |2 + |w]* = cw

= Hy([z,w]) - o/
Let € > 0 be a regular value of Hy. Then

Hyle) = {([z,w],w') € C*/Ze x C| Hy([2,w]) — c|uw'|* = €}
= {([z,w],0) | Hi([z,w]) = €}

|_| {([z,w],w’) | Hy([z,w]) > e, |w’|2 _
= Hy H(e) U (Hy (e 00) x Sp).

Hy ([, w)) —6}

C

The symplectic quotient via the action 1) is Hy Y(e)/SY U {H; > €}. The manifold
{H1 > €} embeds into Hy L(¢) / S as an open dense symplectic submanifold, and the

remaining set H L(e) / S} is called the exceptional divisor and has codimension 2. A
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priori, the exceptional divisor may not be smooth, but in this case it is because Scl acts
-1
freely on H; " (e) = {([z,w],0) | H1([z,w]) = €}.

Another way to look at the above construction is as follows. The map

0:(S%)Z) xC — Hyl(e)

(,0)) = (et cu'P) P, u)
is an Scl—equivariant diffeomorphism. Hence,
((5%/2e) x C) / 5¢ = Hy ' () / Se.

Let 7 = wi 1.y, © —idw’ A dw’. Observe that, away from the origin, Wi,1,elU. = %(dz A

dZ + dw A dw) is standard. A simple computation shows that

i _
(p*T|S3/Zcx{O} =€- §(dx1 A dx1 + dxog N dfg)‘sg/zc

so the restriction of this form to the exceptional divisor is € times the standard form on

cpl

3.1.2 Resolving (CPib’C for c=0k+1

Consider first the order ¢ singularity p. € (CP12 pe As explained in Section [2.2} it is

locally modelled by the Z.-action

€ (z,w) = (&2, 80), €€ Ze. (3.2)

As in the previous section, let Sg .= S /7. act on C?/Z. in the same way as (3.2).

The action is Hamiltonian with moment map

Hy:C?/Zc — R, [z,w] — |2|? + blw]?.
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Now perform the symplectic cut with this Scl—action. The product ((C2 /Z¢) x C

admits the effective S}-action
p ([, w], ’LU/) = (1 [z w]>ﬂ_1w/) = ([Az, Abw]v )\—cwl)’ A=
that is Hamiltonian with moment map

Hy([z,w],w') = |2 + bw]® — c|u/|?

— Hy((z,u]) — o/
Letting ay > 0 be a regular value of Hs, we have
Hy'(a1)/ Se = Hy Ya1) /¢ U HY M a,00) 2 CPLy U {H) > ar},

so this time the exceptional divisor is not smooth, but is the weighted projective space
Cpll,b' Thus, we’'ve removed a neighbourhood of p. and replaced it with (CPib, hence
reducing the order ¢ singularity to an order b singularity. Give this new singularity the
designation gp.

We would like to compute the cohomology class of the resulting symplectic form
on the exceptional divisor. This is done by Godinho in [I7] (see the very end of the
paper), so we will explain her computation. Put ¥,, := Hl_l(ozl) / Sg and let wq, be
the form obtained by symplectic reduction. Observe that Y4, is the quotient of the
ellipsoid boundary {|z|> + blw|?> = a1} by the weighted Sl-action. This is a weighted
blow up in the context of [I7]. After quotienting, there is a residual S'-action on the
exceptional divisor whose moment map is given by projecting to the vertical coordinate.
This can be seen by looking at the local toric picture in Section [2.5, The local toric model
for the singularity given by the action (3.2)) is the open convex subset of R? generated by
the edge vectors (1,0) and (b, ¢). Making the symplectic cut at level a1 adds a new edge

with z-coordinate «; and co-normal vector (—1,0). This S L_action has two fixed points:
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The singularity g, and a smooth point that we’ll call p. Let Hq, be the Hamiltonian for
this new Sl—action; thus, Hq, is just projection to the vertical coordinate. Let s be the
corresponding Hamiltonian flow. Also, let 74 be a smooth path from ¢, to p. Consider

the function

0,27] % [0,1] L5 Hyaq)/ Sk

(s.8) = o5 ().

Then we have

o)(Ear) = 5= [ woy

Yay
1
= % / f*woq
[0,27] % [0,1]
1 C
[0,27] % [0,1]
1 .
= o / dHeq (V¢) ds A dt
[0,27] % [0,1]
caq
= Hay(qp) — Hay(p) = 7

Hence, the symplectic area of the exceptional divisor is %.

Points of the form ([0, w],0) € H2_1(a1) have stabilizer Zj, so they collapse to the
order b singularity in the quotient Hy 1(a1)/ Scl. Let ¢ be a point in the S}-orbit of
([0,w],0). By the orbifold slice theorem ([28]-Proposition 2.2), an Sl-invariant neigh-

bourhood of the orbit
Se - q:={([0,\w],0) | X € S} = S}/ 7,

is equivariantly diffeomorphic to a neighbourhood of the 0-section in the associated orbi-
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bundle

Se Xz, (vq | Ty),

where v is normal to the uniformized tangent space at ¢. The normal direction to the
orbit S! - ¢ is
{([z,0],w') | (z,w) € (C/Zc) x C},

and is equipped with the Zj-action ¢ - ([z,0],w') = ([¢2,0], £ w’). This provides a new

orbifold chart around the singularity g, € Hy Y(a1)/ Sk Note that

db
—e=b—1-bk+1)"E"b—1.

Thus, our new singularity can be locally modelled by a neighbourhood of the origin
in C? with the Zy-action ¢ - (z,w) = (£2, fb_lw), and we can repeat the same process as
above. There is an S'-action that commutes with this Z-action, and so again we have
an induced effective action of Sl} .= S /7y on C? / Zy. This action is Hamiltonian with

moment map J1(z,w) = |2|? + (b — 1)|w|?. Perform another symplectic cut: Sl} acts on

the product C? / Z; x C by
- (2wl ') = (e [z 0] 1) = (A2 e A7), AP = (3:3)

with moment map Jo([z, w], w') = 2> + (b—1)|w|? = b|w'|? = J1([z, w]) — bJw'|?. Choose
a regular value ag of Jo. This time, the reduced space via the action (3.3)) is decomposed

as

Ty Hag) /S = 07 Hag) / ShU{L > ag}.

Put Xq, = Jl_l(ozg)/Sg and note that X, is isomorphic to the weighted pro-
jective space CPll p_1- Also, let ial be the proper transform of the earlier exceptional

divisor X¢;. If wy, o, is the induced symplectic form on Jy Yag)/ Sg, then a similar
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Using the slice theorem again, we can produce a new orbifold chart with Zj,_;

acting as (z,w) — (£z,€ %w). Noting that

S

mod

h=b-2-(b—1) 2™ o

we see that the new singularity can be modelled with Z;_; acting as (z,w) — (£z,€072).

Yes, there is a pattern here. The reader who has looked at Section [2.5]should realize that
bk+1 _
f b

each singularity reduction is governed by the continued fraction expansion o
[k +1,2,...,2] where the number of 2’s in the string is b — 1. More details about this
will be explained in the next section.

Thus, we can resolve the singularity p. with b symplectic cuts at levels aq, ..., ap

with sizes % and

(b—(i—2)a

fori=2,...,b.
b—(i—1) ort T
This produces a chain of embedded symplectic spheres ioq U i\]az U... io‘b—l U Eab with
respective sizes lp(aq, @), (g, ag), ... ly(ap_1,ap), 204, where £p(aq, ) is given in
B4) and
(b—=(—2); (b= (i—1))p1
(o, oy = — =2,...,b—1. 3.5
b(alﬁal+1) b_ (7/_ 1) b_Z I ? ) ) ( )

A similar procedure shows that we can resolve the order b singularity p, € CP12 be DY
performing only one symplectic cut, at level oy 1, and resulting in a smooth exceptional

divisor ¥ 1. Let’s call the resulting symplectic form on the resolution @al,m,ab -
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3.2 Toric Models

Recall from Section that CPg’b’c is a toric orbifold whose moment polygon is given
by the intersection of the hyperplane ax + by + cz = abc with the positive orthant in
R3. Now assume that a = 1, so that the vertex (be,0,0) corresponds to a smooth
point in CPIQ,b,c' Then P := {x + by + cz = bc} N R%O intersects the coordinate axes
at (be,0,0),(0,¢,0),(0,0,b). We want to identify this moment polygon with the one in
Figure

St

(0,0) (¢,0)

Figure 3.1: The moment polygon Ay .. Note that 77 = (b, c).

Counsider the matrix

A:

as a map A : R3 — R2. This matrix comes from the Delzant construction. If we let

A :R% - R3 be the affine map
A(z,y) = AT (z,y) — (bc,0,0),

then A is an affine embedding, so is a bijection onto its image. It is then easy to check

that Z(Ab,c) = —P, and this allows us to identify P with the polygon Ay . from Figure
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, up to a change of sign. The moment map that gives the polygon Ay . is

be

2 2
‘ZO|2+b|21’2+C‘22’2 (|21| ,|22| )

(20 : 21 : 29] —

In fact, this polygon determines ((CPIQb o W1b,c) UP to equivariant symplectomorphism:

Theorem 3.2.1 ([28]). Compact symplectic toric orbifolds are classified by convex ratio-

nal simple polytopes with a positive integer label attached to each facet.

In dimension 2, a convex polygon is always simple (2 edges meeting at each vertex).
It is rational if the edges emanating from p have the form p + tv;, t > 0, where v; € Z2.
Unlike Delzant polygons though (see Section , the smoothness condition is not
satisfied. Instead, we have the following: For each vertex p, the v; (i = 1,2) can be
chosen to be a Q-basis for the lattice Z2. Let A be a rational polygon in R2. For any
vertex p € A, let m = (mq1,m9),n = (n1,n2) be the primitive outward pointing co-
normals to the edges emanating from p, oriented anti-clockwise. If m and 77 are a Z-basis
of Z2, then the matrix having these vectors as rows is an element of GL(2,7Z). Thus, we
have that p is smooth if and only if

m m
det | 8T 24

ny ni
Otherwise, p corresponds to an orbifold singularity of order the absolute value of this
determinant. In the Lerman-Tolman classification theorem, the positive integer labels
attached to each facet in our picture should be 1, since only the vertices correspond to
non-smooth points; hence we can just omit the labels. In Figure 3.1, we have

0 -1 b ¢
det =b and det =c

b ¢ -1 0

so the vertex (¢, 0) corresponds to an orbifold point of order b and (0,b) corresponds to
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an orbifold point of order ¢ (this can be somewhat confusing). Obviously, the origin is a
smooth point.

We will now describe the resolutions of (CPIQ,b,bk 41 Wb pk+1) in terms of their
toric models (for b > 2 and k > 1) and show that the resolution (Ry jpg11: Doy, 1)
is symplectomorphic to a manifold obtained by blowing up a certain Hirzebruch sur-

face b times. Recall from Section m that the symplectic form ©g, . on the

- O+1
resolution is obtained from making b + 1 symplectic cuts (blow ups): The singularity
Pok+1 € CPlz,b,bk 4118 resolved by b consecutive symplectic cuts at levels aq, ..., a; and
the singularity pp € CPﬁ bbl+1 is resolved by making 1 symplectic cut at level agyq.
Let’s start with the case of (CP1272’2k+1,w1)272k+1). Recall from Section how
we use continued fractions to resolve singularities. The singularity pog41 € CP1272’2]€ 41

corresponding to the vertex with co-normals (—1,0),(2,2k + 1) is resolved by making

corner cuts determined by the continued fraction expansion of @ Observe that

2%k +1
— =

1
k;+1—§:[/<:+1,2],

SO pok11 is resolved by a chain of two spheres C1, Cy such that [C1] - [C1] = —(k+1) and
[C9] - [C2] = —2 and C7, Cy intersect once transversely. Set 7ig = (—1,0) and 77 = (0, 1).

Define

ny = (k+1)n; —7g=(L,k+1)

ng = 2n9 —11 = (2,2k+1).

Then the moment polygon for the resolution of the singularity poj,| appears in Fig-
ure [3.2l  Observe that all the vertices are smooth, except the one with co-normals

(0, —1) and 7i3. This corresponds to an orbifold singularity of order 2 because
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Figure 3.2: The resolution of the singularity pog. 1.

Figure 3.3: The full resolution of Ag o, 1.

Observe also that the edge with co-normal 7ig = (2, 2k + 1) is what remains after making
two cuts to the polygon Ag 911 in Figure .

The remaining singularity can be resolved by cutting the vertex labelled 2 with co-
normal 77y = (1, k) and it is easy to check that this results in a smooth polygon (Figure
, hence it corresponds to a smooth symplectic manifold which is the resolution. We
also have

(0, —1) + g = 21y,
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so the new edge with co-normal 774 corresponds to an embedded symplectic sphere Cy with
self-intersection —2. It is also easy to check that the edge with co-normal 773 corresponds
to a sphere C'3 with self-intersection —1. To make things coherent with Section [3.1.2] we

will be identifying the chain C] UCy with ial U2, and the sphere C4 with ¥, so that

w ca
[wa1,a2,a3](ol) = lo(ag,a9) = Tl — 209
[wa17a27a3](02) = 20[2
[Way,a9,03](C1) = 2a3.

In terms of cutting the polygon, this means that we resolve the vertex labelled 2k + 1 so
that our first corner cut has size c#'} and the next corner cut has size 2a9. Similarly, the
vertex labelled 2 should be cut with size 2a3. The remaining sphere Cg corresponds to
an unnamed symplectic sphere from Section [3.1.2] Since the diagonal vertex in Figure

m has rational lengthﬂ equal to one, the remaining sphere Cg must satisfy

~ ca
[Way,a9.a3](C3) =1 — <Tl + 2009 + 2043).

We now show how to resolve the singularities of (Cpf,b,bk 11> W1,bpk+1) using toric
models. The arguments are completely analogous to the previous case. The singularity
Ppkt1 € (CPlzb pit1 corresponding to the vertex with co-normals (—1,0), (b, bk + 1) is

resolved by making corner cuts determined by the Hirzebruch-Jung continued fraction

1. See the end of section [2.3.1] for the meaning of rational length.
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expansion of bk;' L We have

1 -1
bk—+ — k+1_(b_>

b b
1
= k+1 73
2 - b—1
= k+1- })
-3
273
1
= k+1- 1 :
2——5
so the continued fraction expansion is given by the string [k + 1,2,2,...,2], where the

number of 2’s in the string is b — 1. This tells us that the resolution of ppj 1 produces a
chain of embedded spheres C1, Co, ..., C} such that [C1]-[C1] = —(k+1) and [C;] - [C;] =
—2fori =2,...,b. Moreover, [C;]-[C;] = 1if [i—j| = 1. Set 7ig = (—1,0) and 77y = (0, 1).
Define 7ig = (k4 1)riy — g = (1,k+ 1) and

ﬁi—l—l =2n; — ;1 = (’i, 1k + 1) fori=2,...,b. (3.6)

The moment polygon for the resolution is a generalization of that in Figure [3.2] with b new
co-normals 7i1, 79, ..., 1. The edge with co-normal 77,1 = (b, bk + 1) is what remains
after making b cuts to the polygon Ay pr.11. It is easy to check that all vertices are smooth
except the one with co-normals (0,—1) and 7,1 which corresponds to the remaining
order b singularity. This one resolved by making a cut with co-normal 77;,9 = (1, k) and
this new edge corresponds to a smooth symplectic sphere Cy o satistying [Cy1 9] [Chio] =
—b. Finally, the edge that corresponds to what remains of the diagonal in Figure [3.1
corresponds to a smooth symplectic sphere Cy 1 such that [Cy 4] - [Cp1q] = —1. The
new polygon is a generalization of that in Figure|3.3} it has b+4 edges and corresponds to
a smooth symplectic manifold, which is the resolution Ry j px41. Again, to make things

coherent with Section we identify the chain of spheres Ch U ... U (}_1 U Cp with
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Yoy U... U iab—l U Xq, and the sphere Cp 19 with Xq, | so that

[@al,._.,abﬂ](@) = Eb(ozi, 04i+1) 1= 1, ce ,b —1 (37)
[@a1,-~-,ab+1](cb) = 2
b .
- caq (b= (i —2))a
R e e S o b
Do,y (Chy2) = bapyq.
Recall from 1} that (o, aj11) = (b;_(l(i)l))az - (b_(i;i)i)aiﬂ.
Lemma 3.2.2. There exists €1 > €9 > ... > ¢, > 0 (depending on ay,...,ap11)

and a symplectic form ¢ e, on Wi# bCP° such that (Rl,b,bk+17¢~doz1,...,o¢b+1) 8
symplectomorphic to (Wi # 6@2, Qﬂukvglv"'7€b)’ where the symplectic form on Wy.# bCP

comes from the form §Y, ;. on Wy, by blowing up with sizes €1, ..., .

Proof. We will first establish that Ry popy1 and Wi# bCP° are isomorphic as toric

varieties. Then we’ll see how to put a symplectic form €2 e, o0 WiHf bCP* so that

M,k,51,...,
[Qker,ney) = Way,. a4 ]- By ([30]-Corollary 1.3), any two blow up forms in the same

cohomology class must be diffeomorphic. Hence, this will prove Lemma [3.2.21
Step 1. Ry prr1 and Wi bCP? have the same fan.

A rational polygon in R? determines a fan by its primitive co-normal vectors. This
fan determines a toric variety. Note that the co-normal vectors do not encode the sizes
of their respective edges, which means that they cannot determine the symplectic form
on the resulting toric variety. The fan corresponding to Ry p pj41 is determined by the
co-normals 71, ..., 7,19 described previously, in addition to (0, —1) and (—1,0). We'll
show that the moment polygon of W # bC_P2 has the same co-normal vectors.

To see this, go back to Figure or in Section [2.3.1] The co-normal to the
diagonal edge in the Hirzebruch trapezoid is 7,9 = (1,k) and the co-normal to the

top horizontal edge is 717 = (0,1). To get the moment polygon for W}.# b(C_P2 we make
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b consecutive corner cuts, starting at the vertex meeting at the edges with co-normals

71, Mp+o. The first cut produces a new co-normal 775 satisfying
My =71 + fipyo = (1, k+1).

Therefore, 715 = 7ip above. Next we cut at the vertex with co-normals 79 and 79,

producing a new co-normal 75 such that
fig = Ty +fipyo = (2,2k + 1),

so that 775 = 73 in (3.6) above. In general, the ith cut is made at the vertex with

co-normals 7i; and i}y 9, and makes a new co-normal 77} ; with
—k — — .. .
ni+1:ni+nb+2=(l,zk‘+1), t=1,...,b.

Comparing this with 1’ it’s easy to see that Ry j ppqq1 and Wi# TP~ have the same

fan, hence they are isomorphic as toric varieties.
Step 2. Finding a suitable cohomology class.

We will start with (Ry p pry1,Waq,.. and show how to blow down b times with

'7O‘b+1>
specific sizes in order to obtain a symplectic form on W;, in the same cohomology class
as {1, from Section 2.3.1} Let’s assume that k is even; we will explain later how to
modify the argument for the odd case. Let {B,F, Fq,...,Ep} be the natural basis of
Ho(W# b(C_P2;Z). The embedded spheres C1, ...,y 9 obtained from the resolution

process each represent homology classes in Ho(Ry p pp41;2Z) = Ho(Wy# b@Q;Z) and
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we will make the following identifications

] B—%F—El
€] —— Ej 1 —FE (i=2,...b)
[Cop1] «— Ey
b
[Chig] «— F—) E
i=1

The sizes of these spheres are given in ({3.7)). Set

ca b (b= (i—2 a;
52::1—(71—1—2(1)_((2,_1)) —|—bozb+1>.

1=2

Now blow down the sphere Cp 1. This cuts out a neighbourhood of Cj, 1 and glues in a

4-ball. Set
5271 = [wozl,...,Oéb+1]<Cb) + 8?)
B caq (b — (i — 2))@1-
~- 1 ( ; +% a1 Treen)

and note that gg_l > 5?). The blow down process transforms Cp, 1 into a sphere of size

52}_1. In general, for j =2,...,b— 1, we put

8; = [Wal,...,ab+1](cj+1)+€;+1
- con (b—(i—2))oy
i#j+1

producing a sequence 5'1 > 5'2 > 0> e;) > 0. The sphere Cp 9 is sent by the b-fold

anti-blow up to a sphere F C Wy, of size

bab+1+€/1+"‘+€,b.



42

The sphere (1 is sent by the blow down to a sphere Zy C Wj. of size n := % — Z_i% + e’l.

Now we will scale the symplectic form; put

/
i k &;

W= 5 + - and ¢; = 5 .
bapyr + 1€ 2 bopi1 + 2515

The symplectic form €2, on W in cohomology class PD(B + pF') now satisfies

uil(Z0) = 1= b and [2,)(F) = 1

ok

Therefore, by blowing up (W}, 1) consecutively with sizes €1 > --- > ¢, we get a
symplectic form Qu’kﬁl’_._’gb in cohomology class PD(B + uF — Zg'):l g; ;). Scaling this

form then gives a form in class [&0‘17-~-70¢b +1]‘ This proves Lemma m O

Remark: When £ is odd, we start with the basis { B*, F'*} of Ho(W},; Z) given in Section
. Then we let {B*, I, ET, ..., E;' } be the corresponding basis for Hy(W},# bC_PQ; Z),
where E7, ..., EZ are the classes of the exceptional divisors. Make the swaps in of
Section combined with the swaps E <+ E; for i = 2,...,b which allows us to make

the following identifications:

0] o B—(%ﬁ

[C9] +— F—E1—E»

[C;] «— E; 1—E; (i=3,...,b)
[Chi1] «— Ep
[Chio] ¢— E1—Ey—---— E,

Again, the sizes of these spheres are given in (3.7). Now set

e = [Bagmapyy)(Cia1) + €5y
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for j = 1,...,b — 1 just like before. This time the spheres will be blown down in a

different order, but a similar computation will go through.

Before finishing up this chapter, there is an important notion about homology
classes that needs to be discussed. Let X, = CP2# (b + 1)(C_P2. Then Xpq is
diffeomorphic to both Ry p, pr41 and Wy# bCP°. Scale the Fubini-Study form on CP? so
that the symplectic area of CP' ¢ CP? is 1. Now blow up CP2 b+1 times symplectically

with sizes 01, ...,0p41 and call the resulting symplectic form wgy . Then we have

0p 417

b+1
PD[W(SL...,(S(H_I] =L- Z 5Z‘/Z )
=1

where {L,V7,...,V, 11} is the standard basis of Ho(Xp1;7Z). Since Xy is diffeomor-
phic to the b-fold blow up of 52 x S2, we get an isomorphism in homology that acts on

basis elements as follows

Hy(Xpi1Z) — Ha((S2 x %) #06CP"; Z) (3.8)
L — B+F-E
— B —-E
Vo = F—-E
>

E3

I

Vi1 Ey.

Again by [30], two blow up forms in the same cohomology class are diffeomorphic, so

by scaling and comparing cohomology classes, we see that (Xb+1,w517“ ) is sym-

0p41
plectomorphic to the b-fold blow up of (5’2 x 52 voy + o9) with sizes 71, ...,7, such

that
1—109 1—01—02 041

V_1_51771: 1—61 772_1_61
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fori=1,...,b.

Definition 3.2.3. We say that a homology class A = agL — Y ; a;V; is reduced with

respect to the basis {L,V1,...,Vpi1} ifar > a2 > ... > a1 > 0 and ag > a1 +az +as.

We should check what the conditions are for a homology class to be reduced in
the new basis {B, F, Eq,..., Ep}. To do this, reverse the isomorphism (3.8)). Now the
ordered basis {B, F, E1, ..., Ep} is sent to the ordered basis {L — Vo, L — V|, L — V] —
Vo, V3, ..., Vyrq}. Writing B+ vF — ;v E; in terms of the other basis, we get

b

Q+v—y)L— =)V -1 =7)Vo =) Vi1
i—2

The conditions for this homology class to be reduced are then

v—-m =2 1l=-vm 27 =2 ... 2%

l+v—ym > (v—m) + 1=m) + 7.

Putting these together gives v > 1 > v + 72 > 71 > ... > 7. It is now easy to check
the following (this will be important in Section

Lemma 3.2.4. The Poincare dual of the cohomology class [ka’gl’m,gb] from Lemma

is reduced with respect to the basis {B, F, E,..., Ep}.



Chapter 4

The Symplectomorphism Groups of CP;,

4.1 Orbifold Diffeomorphisms and
Symplectomorphisms

We begin by discussing orbifold maps and reduced orbifold maps, as defined in Borzellino
and Brunsden’s paper [§]. Let O be a C"-orbifold (r > 0) with isolated singular points.
Recall that this means that O is a Hausdorff space such that for each = € O, there is
a C"-uniformizing chart around x and satisfying certain compatibility conditions. Let
Sing(O) be the singular set of O and Reg(O) the complement of the singular set. Note
that Reg(O) is open and dense in @. We should mention that in [8], they are dealing
with more general orbifolds where the singular points are not necessarily isolated, so our

definitions differs from theirs in some small details.

Definition 4.1.1. Let O be a C"-orbifold with isolated singular points. Then O comes

equipped with a natural partition
O = Reg(0) U Sing;, U Sing;, UI... L Sing; .

where Singik consists of all singularities whose local groups have a fixed isomorphism type
and Sing; U ...USing; = Sing(Q). For any x € O, let Py be the piece of the partition

containing .

Definition 4.1.2. Let O, Oy be C"-orbifolds. A C°-orbifold map (f, {f;c}) from Oy

to Oy consists of the following:

45
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(1) A continuous map f : Xo, — Xo, of the underlying topological spaces.

(2) Foreachy € Py, there are uniformizing charts (ﬁy, Gy, my) aroundy and (Vf(y), Gry) Try)
around f(y) with f(ﬁy) C f/f(y), along with a group homomorphism Oy, : Gy —
G

y) such that the following diagram commutes:

b, —1

Vi)
Uy | Gy ——=V(y)/ O14(Gy)
Ty Tf(y)

Y)

3) Each local lift f, is required to be O ¢, -equivariant.
Yy [y

(4) Two orbifold maps (f, {]?;E}) and (g,{gx}) are considered equivalent if for each x €
O1, there exists a uniformizing chart (Uy, Gy) around @ such that J};C’ﬁx = §x|l7x

Note that this implies that f = g.

It is a fact (see [§]-Lemma 23) that a local lift f, chosen on a particular uniformizing
chart around z uniquely specifies a local lift on any other chart around . Thus, the ﬁ’s,
once chosen, are independent of the choice of local charts.

We say that an orbifold map (f,{fz}) is C"-smooth if cach f; can be chosen to
be C"-differentiable. The set of C"-smooth orbifold maps from O to Oy is topologized
as in ([8]-Section 4), and we denote this space by Cq?rb(Ol, 03). Now put O = 01 = O»,
so that C™(O) is the space of C"-orbifold maps from O to itself.

Definition 4.1.3. Let O be a C"-orbifold. We define the following subspaces ofC’{.”"b(O):
o Diff?(0) := {(f,{fa}) € CZP(O) | f 71 € C7(0)}

o Diff'P(©) := Diff(O)
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Theorem 4.1.4 ([§]). Diffo™®(0) is a Fréchet manifold.

In fact, Difforb(O) is a Fréchet Lie group where the group operation is composition:

(f, {fx}) o (9,{9z}) = (f oy, {fx o gz}), but for our purposes we only care that it’s a

topological group. Consider the following subgroup of Diff™(0):

2(0) = {(f. {fz}) € Difi*(0) | f = 1d}.

This is the subgroup consisting of all lifts of the identity map. It follows from the

definition of orbifold map that this subgroup is finite if O is compact.

Definition 4.1.5. The quotient group Difforb(O) /Z(O) is called the group of reduced
orbifold diffeomorphisms of O, and we denote it by Diffred(O). Note that Diﬂ?md((’))

inherits a topological group structure from Diffo™?(©).

Two elements (f, {fz}), (¢, {Gz}) lie in the same coset of Z(O) if and only if f = g
and fx = ZE o gz, Where fx is some lift of the identity over x. Thus, the images of
(f, {fx}), (9,{gz}) are equal in the quotient if and only if f = g and their lifts are
related by composition with elements from Z(O). For this reason, we denote the image
of (f, {fx}) € Difforb(O) in the quotient simply by f, where it should be understood
that f : Reg(O) — Reg(O) is a diffeomorphism and for each = € Sing(O), there are
uniformizing charts, along with a group homomorphism and suitable lifts (as in Definition

4.1.2) making a commutative square. Note that we have a short exact sequence
1 — Z(O) — Diff"™(0) — Diff"*d(0) — 1.

Now let (O,w) be a symplectic orbifold. Recall, this means that each local uni-
formizing chart ([7 ,G,m) comes equipped with a G-invariant symplectic form @ that
descends to w on U = U /G and transforms correctly under overlapping maps. The

quadruple ((N] ,G,m,w) is a called symplectic uniformizing chart. We often simply denote

it by (U,®).
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Definition 4.1.6. Let (O, w) be a symplectic orbifold and (f,{f:}) € Diff*™P(0) a C*-
orbifold diffeomorphism. We call (f, {ﬁc}) an orbifold symplectomorphism if the
following holds:

o For each y € Py, there are symplectic uniformizing charts (ﬁy,&y) around y and
(Vf(y),fuf(y)) around f(y) such that f;&jf(y) = wy. There should also be a group
homomorphism and a commutative diagram similar to that in Definition [{.1.3 Note
that this implies that f*w = w on Reg(O).

For a symplectic orbifold (O,w), let Symp®™®(O) be the subgroup of Diff™®(0) con-
sisting of orbifold symplectomorphisms. Similarly, let Sympred((’)) be the quotient group
Symp°™(©) / Z(O). Note that both Symp°®™(O) and Symp*d(0O) are topological groups.

Now consider the weighted projective spaces ((CP2

Wb Wabe) where a,bc > 1,

and they are pairwise relatively prime. Recall that Sing(Cpgb ) = {Pa, pp; pc}, where
Pa=1[1:0:0,pp=100:1:0],pc=1[0:0:1].

Definition 4.1.7. Let Sympgfac be the group of orbifold symplectomorphisms of CP(ib?C
with the symplectic form wy p .. Similarly, we use Sympffg’c to denote the group of reduced

orbifold symplectomorphisms of ((CPgb o Wabe)-

Elements of Sympgfa . have the form ( f,fva,ﬁ, fvc), where ]?;l, f;,, fc fit into equivariant

diagrams
7, o 7, 7,7, AL
VQLUG %LUZ) VCLUC

where 17@, Vb, ‘76 are, respectively, uniformizing charts above the singular points pg, pp, Pe
and the lifts of course preserve the corresponding symplectic forms (that we have not
written). Here it should be noted that f fixes each of the points pg, pp, pe since we
are assuming that these singular points have different order. As before, we will denote

a reduced symplectomorphism simply by f, with the understanding that around each
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singular point there exist diagrams like those above where the lifts are defined only up

to composition by elements from I((CPgb o) 2L X Ly X Le = Lgpe-

4.2 The Groups Sympf‘ic

The goal of this section is to prove the following theorem:

Theorem 4.2.1. Symplie‘lic is weakly homotopy equivalent to U(2) / Z. for any positive

mteger c.

Start by considering the map

U Symp(l)ﬁ)’c — Aut?(TyU,),

(f.fe) —  dfe(0).

where Aute (Tofjc) is the group of linear Z.-equivariant automorphisms of the tangent
space 1 0(70. This map is a well-defined group homomorphism. Also, it is easy to see that
the induced Z.-action on 71 0(76 is the same as the Z.-action on (70, namely the diagonal
action: (z,w) +— (£z,&w). It follows that any linear automorphism of Tofjc is equivariant

under this action. We therefore have
Aut?e(TyU,) = Aut(C?) = Sp(4)%e ~ U(2),

where the last relation is a homotopy equivalence since Sp(4)ZC retracts onto U(2) Let

Ky := ker ¥, so that we have an exact sequence of topological groups

1 — Kg — Symp{'P, — Sp(4)% — 1. (4.1)

We claim that ¥ is a locally trivial fibration. To establish this, we make use of a result

of Richard Palais (see [39]-Theorem A),

1. This can be proved using the same argument as the Claim right after Theorem 4.3.1}
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Proposition 4.2.2 ([39]). If G is a topological group and X is a G-space admitting local

sections, then any equivariant map of a G-space into X is locally trivial.

Recall that if z( is an element of a G-space X, then a local section for X at xg is a map
o:U — G (U a neighbourhood of x) such that o(u) - 29 = u for all u € U. Observe

that Sp(4)ZC becomes a Symp(l’r}) .~space under the action

(f fe) - A=dfe(0)A, (4.2)

where A € Sp(4)ZC and the action is by matrix multiplication. Also, Symp(fh . acts on

itself (on the left) by composition

(ga’§0) ’ (f?.fc) - (gof7§COfC)a

and it’s easy to see that the map VU : Sympcl’r{) e Sp(4)ZC is equivariant with respect to

both these actions. Thus, by Palais’ result, to prove that W is a locally trivial fibration it
suffices to find a local section over any element Ay € Sp(4)%e. In fact, it suffices to find
local sections in a neighbourhood of Id € Sp(4)ZC, since Sp(4)ZC is a topological group

and we can get to any other neighbourhood by conjugation.

Lemma 4.2.3. Given Id € Sp(4)%e, there is a continuous map

o: N — Symp(l)f}),c

such that o(A)-1d = A for all A € Niq, where Niq is a contractible neighbourhood of the
identity in Sp(4)%e.

Proof. Let sp(4)¢ be the Lie algebra of Sp(4)ZC and consider the exponential map

exp : sp(4)¢ —> Sp(4)Ze,
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which is a local diffeomorphism from a neighbourhood U of the origin in sp(4)€ onto a
neighbourhood Njq of Id € Sp(4)%e. Thus, we can define a local inverse log : Njq — Uy

which gives a deformation retraction
Nig — Nig, A explt - log(4))

that defines a canonical (equivariant) path A; from any A € Npq to the identity. The
vector field

d
X =—A; =log(A)A:.
ey og(A) A

must be invariant under the Z.-action because the path A; is equivariant. Since U,
is contractible, all 1-forms on ﬁc are exact, hence there exists a smooth Hamiltonian
H : U. — R such that ¢ XWe|o = dH|p, and the functions H must be invariant under the

group action. Now let p : U, — R be a smooth bump function satisfying

o supp(p) C Ue.
e p =1 on a smaller neighbourhood ﬁé c U, containing 0.

By averaging we can make p invariant under the Z.-action. Now define G : U. — R
by G(z) = p(x)H(z). Again, this function remains invariant under the group action.
Define a vector fields Y by 1yw. = dG, and let g : ﬁc — (~]c be the corresponding
Hamiltonian isotopy. Then gy satisfies dg;(0) = A. Since g; is equivariant, it descends
to to a symplectic map g : U, — U, which extends by the identity to give a global
symplectomorphism on CP12717 . having g1 as a local lift over the singularity p.. We can
now define a local section by o(A) := (g,91). Via the action , it’s easy to see that

it satisfies the requirements of the lemma. n

Recall that the group Sympiefl . is the quotient of Symp‘fqD . by its subgroup con-

sisting of lifts of the identity map. This subgroup is isomorphic to Z.. Thus, we have an
exact sequence

1—Ze — Symp(ffh o Sympf‘li’c — 1,
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orb

and we denote the image of an element (f, ﬁ) € Symp{';{ . in the quotient simply by f.

Notice that we have another map

(0]
Sympi, = Sp(4)”¢/ Z,

o= [dfe(0)].

This map is well-defined because above the singular point p., any two local lifts of f are
related via an action of Z.. Thus, all local lifts above p. are equivalent in the quotient.

Let K¢ := ker @, so that we have another exact sequence of groups

1 — K¢ — Symp}, — Sp(4)%e /Z, — 1. (4.3)

In fact, the two sequences (4.1) and (4.3) fit nicely into a diagram where everything

commutes:

orb

v
Ky —= Symp§'p, ——>Sp(4)” (4.4)

| |

P
Ko —Sympitf, ——Sp(4) / Z
Lemma 4.2.4. The map P is also locally trivial.
Proof. This is also a consequence of Proposition [4.2.2l Again, let Njq be a contractible

neighbourhood of the identity in Sp(4)ZC with A € Njq. By the previous lemma, a local

section for W over A is given by

o:Nig — Symp§P,

A = (9,91),

where (g,g1) depends continuously on A from the previous construction. Let @) be the

quotient map given by the Z.-action. Then Q(g,g1) = g. Let [A] be the image of A
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under the Z.-action. We want to find a map

7: N/ Ze — Sympf’ic

such that 7[A] - [Id] = [A] for any [A] € N1q/Zc. It seems reasonable to define 7[A] :=
Q(c(A)), but we must check that this is independent of the representative A. This follows

from the following

Claim. For any A € Niq and § € Ze, if 0(A) = (g,91), then

o(§A) = (9,€ - 91)

Proof. Go back to the proof of Lemma [£.2.3] replace the path A; with £A; and just carry
everything through. Notice that the neighbourhood Nq is replaced by Ng.1q. Also notice

that z(fx)fuc = d({H), and we can use the same partition of unity. ]

Back to the original proof. Let A’ be another representative of [A]. Then A’ = A
for some & € Z, thus we have o(A4’) = 0(€A) = (9,£-91). Hence, Q(c(4")) = Q(o(A)) =

g, so we have found a local section

7: N/ Ze — Sympfic.

By Proposition 4.2.2] the map & is locally trivial. O
Now we want to understand the fibration

Ko — Sympif . — Sp(4)%¢ / Z.

To do this, we first consider the other kernel, Ky, in the top sequence of (4.4]), and the

following subspace of Ky:

K3 == {(f, fe)| fe = 1d near 0}.
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Lemma 4.2.5. The inclusion Ki, — Ky is a weak homotopy equivalence.

Proof. See Section [6.1] O

Let K3 := Q(KY), and consider the following extension of diagram (4.4):

Ky Ky — SympgiP , —— Sp(4)% (4.5)

o, b |

Ke—— Ko Symp!“{ . —Sp(4)%¢ / Z,

J

The fact that ¢ is a weak homotopy equivalence implies the same for the map j. Also,

it’s clear that if (f, fc) € K%, then f = Id near p.. This means that

5 ={f € Sympi{ .| f = Id near p}.

Lemma 4.2.6. K7 is weakly contractible.

Recall from Section that blowing up (CP121 . at the singularity p. gives a variety
Ve = {([a : 0],[z0 : 21 : 22J1,1,¢) € CP! x (CP1210|(121 = bzp} that can be identified

symplectically with the Hirzebruch surface
We ={(la:b],[20: 21 : 20]) € CP* x CP?| a2 = 0%}

Let Symp(V;) denote the group of symplectomorphisms of V. (with the form from Sec-
tion acting as the identity on homology. Let So(V¢) be the subgroup of Symp(V)
consisting of those f € Symp(V;) for which f = Id near the zero section, Zj. There is
another lemma we need before proving Lemma [4.2.6]

Lemma 4.2.7. S(Ve) and K3 are weakly homotopy equivalent.

Proof. Recall that the symplectic blow up operation removes a ball and collapses its

boundary along the Hopf fibration. In the case of (CP121 > Symplectically blowing up at
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pe amounts to removing an orbi-ball (singular ball) centred at p. and similarly collapsing
its boundary, which is now a lens space d(B* [ Ze) = S3 ) 7.
Let fy, A € S, be a compact family of symplectomorphisms in K that smoothly

vary with A. For each fixed \g € S, there is an open ball B )\ containing pe such that

f)\0|B)\0 =Id.

Consider the function S — R, A — Vol(B)). It is smooth because f) varies smoothly
with A. Since B) is parametrized by a compact set, the function Vol must have a

minimum that is non-zero. Therefore, there exists B,,;, such that
Bin € By, forall Ae S.

The point is that we want to blow up with a small enough ball so that it is contained
in B,,;n; then the compact family f) lifts to a compact family fv)\ : Ve — V. such that
f)\ = Id on a neighbourhood N,,,;;, of the zero-section in V.. So we have a commutative
diagram

Ve \Nmm L Ve \Nmm

)| I

C]312,1,c \ Brin T; C1312,170 \ Bin »

where f) and f)\ restrict to the identity on the respective neighbourhoods. Theorem 2 in
[38] guarantees that the blow down map £ is a symplectomorphism for arbitrarily small
neighbourhoods. Thus, the correspondence fy s~ lo f) o B sends compact families of
symplectomorphisms in K3 to compact families in So(V¢). Similarly, any compact family

in So(Ve) will descend to an compact family in Kg. This proves Lemma |4.2.7, O

To finish the proof of Lemmal4.2.6] we’ll show that the space Sg(Ve) is contractible.
This follows from ([20]-Lemma 9.1) because V, is a ruled symplectic 4-manifold. We will

briefly sketch the argument.
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Let Z be the infinity section in V. and let A := [Zx] € Ho(Ve; Z) be its homology
class. We define a space of symplectic spheres in V. on which Sq(V) acts: Let CA(VC \
Z) be the space of symplectic spheres in V. representing the homology class A and
disjoint from Zj. It follows from ([20]-Theorem 1.2, see also Theorem 8.1) that the set
CA(V,\ Zp) is contractible. Observe that So(V,.) acts on the space CA(V,. \ Zp). It
also follows from (][20]-Theorem 8.1) that this action is transitive. Let Stab(X) be the

stabilizer of a sphere ¥ € CA(V,. \ Z) under this action. Then we have a fibration
Stab(%) — Sp(Ve) — CA(Ve \ Z0).

so Stab(X) is the subgroup of Sy(V¢) consisting of symplectomorphisms that leave X
invariant. It follows from ([L1]-Propostion 3.2) that this stabilizer is contractible. Hence,
So(Ve) is contractible as well.

Now Theorem follows easily. The fibration

K§ ~ Ko — Sympf, — Sp(4)%e / Ze ~ U(2) / Z

with K3 weakly contractible gives the result.

4.3 The Groups Symplfz‘ic for c=bk+1

In this section we prove
Theorem 4.3.1. Sympﬁ‘?&c is homotopy equivalent to Aut(Tp.) ~ T2/ZC when ¢ =
bk + 1. Here, Aut(Ty,.) is the linear automorphism group of the uniformized tangent

space at pe € (CPIQb . and T2 is the diagonal torus inside U(2).

Start by considering the map

U Sympcl’fg)’c — Aut?(TyU,) x AutZe(TyU.) (4.6)
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given by U(f, fp, fe) = (df,(0), dfe(0)) where AutZb, respectively, AutZe denote Zy, Ze-
equivariant linear automorphisms. This is a well-defined group homomorphism, and
using the techniques of the previous section it follows that this map is a locally trivial

fibration. Note that we have AutZb(TyUy) = AutZs(C2) = Sp(4)%b.
Claim. AutZe(TyU.) = AutZe(C2) retracts onto T2, the diagonal torus inside U(2).

Proof. In the non-equivariant case, we know that Aut(C?) = Sp(4) retracts onto U(2).
This retraction is given by the polar decomposition: Let P be the space of symmetric
positive definite matrices. Then for every A € Sp(4) there is a unique U € U(2) and
P € P such that A = UP; just let P = (AAT)1/2 and U = A(AAT)=1/2. Then we have
a diffeomorphism

Sp(4) — U@2)xP, A—UP,

and the map Oy : A — A(AAT)~1/2 is a deformation retraction of Sp(4) onto U(2). Let

D¢ be the image of the diagonal matrix diag(¢, €% in Sp(4), ie. write
diag(¢,€") = Re +il,

where R¢ and ¢ are the diagonal matrices consisting of real, respectively imaginary parts

of &, fb € Z¢. Then Dy is the block matrix

Re —I¢

De =
¢
Ie R

Let Sp(4)Zec be the subspace of Sp(4) whose elements commute with Dy (this is the
subspace that is equivariant under the Z.-action). If A € Sp(4)ZC, then we want to see

that ©¢(A)D¢ = D¢©¢(A). This follows because:

e Since D¢ commutes with A, then we have (since D¢ is orthogonal) that D¢ com-

mutes with AAT
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e Since D¢ and AAT commute, they can be simultaneously diagonalized, where

we are considering them as operators on C*. From this it’s easy to check that

(AAT)=t2D; = De(AAT) 712,

Therefore, ©; also retracts Sp(4)ZC onto the equivariant subspace of U(2). Now identify
U(2) C Sp(4) with 2 x 2 unitary matrices and check that a matrix U € U(2) is Z-
equivariant if and only if U is a diagonal matrix, ie. iff U € T2. This proves the

claim. =

Now consider the map
@ : Symptet  — AwtZy(TyU,) [ Zy, x AutZe(TyUy) | Ze (4.7)

given by ®(f) = ([dfy(0)],[dfe(0)]). Again, as follows from the previous section, this

map is a locally trivial fibration. Up to homotopy, (4.7 becomes
Symp!%, — U(2) / Zy x T/ Z¢,

Let Kg be the kernel of the map ®. Then Kg is weakly homotopy equivalent to its
subspace

Kf{):{feKq) | f =1d near py and f = Id near p.},

so that the we have the homotopy fibration
K < Ko — Sympls . — U(2) / Zy x T2/ Z.

Let (Rqp ¢, Way,.. ¢ = bk + 1, be the resolution of (CP12,b,c as described in

.,Olb+1)7
Sections and 3.2 For the rest of this section, we'll refer to Ry . simply as R.

The resolution creates a chain of embedded symplectic spheres I' := C1 U ... U Cp 9, and

the symplectomorphism R = W}.# bC_P2 from Lemma [3.2.2] produces an isomorphism

Hyo(R; Z) 2 Ho(Wy# bCP”; Z) such that for k even
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o () «—B-LF—E
o [C;]«— E; 1 —E; (i=2,...,b)
o [Chi1] «— By
o [Chao] «— F =301 E;
and for k odd (see in Section

o (1) «— B (MLF

[Cg]<—>F—E1—E2

[Ci]HEi—l_Ei (i:?),...,b)

[Chi1] +— By

[Chpyo)l «— Ey — Ey— -+ — E

As mentioned before, we focus on the case where k is even. The odd case is
analogous and gives the same answer. Let I'fy 47 := I'\ (11 and let SympCpt(R\F[b+1])
be the subgroup of Symp(R) whose symplectomorphisms are compactly supported away

from I'f41). An argument similar to the proof of Lemma gives the following:
Lemma 4.3.2. K3 is weakly equivalent to Symp®P!(R \ F[bJrl]).

So we will focus our efforts on the group SympCPt(R\F[b +1))- Most of the remaining

work in this section is aimed at proving the following:

Lemma 4.3.3. Symp®! (R \ Lpy1)) is weakly equivalent to Q(U(2) / Zyp), the loopspace
of U(2) | Zy,.

We now focus on proving Lemma . Let Symp(R, Iy +1]) be the subgroup of
Symp(R) that leaves each sphere in F[b 1] invariant, but not necessarily pointwise. Let

J be the space of wq,q,. -tame almost complex structures on R. We define a space

of symplectic spheres on which Symp(R, Iy, Jr1]) acts
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e Let Cb{_b 12[Cp11] denote the space of embedded symplectic spheres in class [Cp 1]

that satisfy the following properties:

— Any S € CbJj) 1 2[Cpy1] intersects Cj, exactly once and Cp o exactly once. Also,

we require these intersections to be symplectically orthogonal.

—-If S e CbﬁHQ[CbJrl], then S must be disjoint from each sphere in the set
{C1,Co,...,Cy_1}.

— For each S € Cb#)+2[cb+1]v there is a J € J making C1,...,C}, S, Cpyo

simultaneously J-holomorphic.
Lemma 4.3.4. Symp(R, ', 1)) acts transitively on Cbe)+2 [Cpa1)-

Proof. We will see later that the space ij,_b 12[Cpy1] is contractible, hence it is path-
connected. If S € CbJ,B+2 [Cpiq], then it is easy to see that f(S) € CbJ,‘b+2[Cb+1]: First
of all, there exists J € J such that Cq,...,(},S,Cy 9 are all J-holomorphic. Let
Jpi=dfoJo (df)~1: then f(9) is Jg-holomorphic. Further, C1, ..., Cy, Cy o are Jy-
holomorphic as well because f leaves these spheres invariant. The fact that f(95) is
disjoint from all the spheres C1,...,C,_1 is a consequence of positivity of intersections
for Jy-holomorphic spheres (see Section . Hence, there is a well-defined action. Let

Sp, S1 be any two elements of Cb{_b+2 [Cpaq] with Sy a path connecting them. Put
Sp:=CLU---UC,US;UChpo.

By the symplectic neighbourhood theorem, the isotopy §t extends to an isotopy ¢ :
Ny — Ni where Ny is a small neighbourhood of §t- Since §t leaves the other spheres
invariant, so will the isotopy ¢¢. We can choose the neighbourhoods N; so that they
retract onto §t for each . Then H?(R, §t;R) = 0, so ¢ extends to R by Banyaga’s
isotopy extension theorem ([35]-Theorem 3.19). The time 1-map of this extension sends

Sp to S, proving the lemma. n
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The stabilizer (of Cp1) of the action of Symp(R,I',q)) on CbJjH_g[Cb—H] is the
subgroup Symp(R,I") C Symp(R) leaving each sphere in the configuration I' invariant.

Hence, we have a fibration
Symp(R,T') — Symp(R, ') — Cb{_b+2 [Chaql- (4.8)

Let Cbﬁ,]b 12[Cp1] be the space of embedded symplectic spheres in class [Cp, 1] sat-
isfying exactly the same properties as those in Cblb 1o [Cpa1] except now we require that

any S € dejb +Q[CbJrl] intersects Cp, and Cp,9 once transversely and positively.

Lemma 4.3.5. Cbr?b+2[cb+l] is weakly homotopy equivalent to Cb{_b+2[cb+1]'

Proof. See Section [6.2 O
Lemma 4.3.6. Cb@b+2[cb+1] is weakly contractible.

Let J1. pp+2 © T be the subset of J’s for which the spheres C1, ..., Cy, Cppo are

simultaneously J-holomorphic. We will define a map

. h
T N, b2 — Cb,bJrz [Ch1l

and show that it is a weak homotopy equivalence. Note that Jj_jp49 is weakly con-

tractible by ([14]-Appendix A), so the lemma will follow from this.

Claim 1. For every J € Jq__pp42, there is a unique embedded J-holomorphic sphere in

class Ey = [Cpy1].

Proof. The symplectic form Way .. is diffeomorphic to the form Qﬂak7517"'75b from

Lemma whose Poincaré dual PD(B + pF — ), &;E;) is a reduced homology class
(see Definition [3.2.3). Therefore, by ([24]-Corollary 7.12), for every J € Jy_p p42 there
exists an embedded J-holomorphic sphere in class Ej,. This sphere is unique by positivity

of intersections. [
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Claim 2. The map © that sends J € Jy_ppio to the unique J-sphere in class Ej is a

fibration.

Proof. First of all, for the map 7 to even exist we need Claim 1 to be true. The image
is unique because J-spheres intersect positively. By ([37]-Corollary 13), 7 will be a
fibration if: (i) It is a smooth submersion; and (ii) Its fibres are weakly contractible.
To see (ii) is straightforward, since for Cy, 1 € Cbr?b+2 [Chiq], the fibre 7= 1(Cyyq) is the
space of J € J_ppto such that Cp, ..., Chyq, Cpyo are simultaneously J-holomorphic,
and this is weakly contractible by ([I4]-Appendix A). To see (i), recall that J;_p 42 and
dejb +2[Ob+1] are spaces of smooth maps, so that they are naturally infinite dimensional
Fréchet manifolds. The tangent space T;J1 ppio at J € Ty ppeo is the space of
endomorphisms A € Aut(TR) such that AJ = —JA. The space dejb 12lCpy] 1s a
subspace of the space C™°(S?, R) / Diff(52), so the tangent space TSCbrerrQ[C’bJrl] is a
subspace of the space of sections of a pullback bundle, modulo reparametrization (See

[7]-Section 1.2). We want to show that the derivative

dry: TyJi. ppro — TW(J)Cbr?b-FQ [Cpt1]

is surjective. Given v € TSCbmb +2[Cb+1], we can think of v as an equivalence class of

smooth curves

0,1] — 1 olChai]

t — St

with Sy = S. Then a representative Sy generates an isotopy ¢; in Symp(R, F[b +1]). For
Jen1(89), let
Jy = dgyp o J o (dpy) .

Since J tames wq, . it is easily checked that J; tames ¢} wWay ..

Qg1 Syl = Wag,.,apg -

Also note that C,...,Cy, Cpi9 are Ji-holomorphic, since ¢ leaves these spheres in-
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variant; hence Ji € Jy_ppqo- So, J¢ represents a vector w € T;J1 ppyo such that
dr j(w) = v. O

Lemma 4.3.7. Symp(R,T) is weakly equivalent to T?.

Proof. Recall that I' = C7 UCy U ... U Cyyo. Let ¢; be the unique point of intersection
of Cj and Cjyq fori =1,...,b+ 1. Write Symp(C1,¢q1) and Symp(Cp9,qp11) for the
symplectomorphism groups of C7, respectively (o that fix the points q1, gy 1. Also
write Symp(C}y, ¢;_1, ¢q;) for the symplectomorphism group of C; fixing both ¢;_1, ¢; for

1=2,...b+ 1. The product of restriction maps,

b+1

Symp(R,I') — Symp(C1,q1) % (HSymp Ciy gi— 1;%)) x Symp(Ch2, Gb41)
1=2
fo= Fleys floys - flo, ) (4.9)

is a fibration by the orbit-stabilizer theorem, since the restriction of f to each sphere acts
transitively. Since each factor in the base is homotopy equivalent to S ([I4]-Section 4.2),
this means that the base is homotopy equivalent to (S 1)b+2. The fibre over (Id, ..., 1d) of
the above map is the subgroup Fix(I') C Symp(R,I") that fixes the entire configuration
I' pointwise. Let G(C1,q1) and G(Cpy9,qp11) be the symplectic gauge groups of the
normal bundles of C, respectively (.9 that act as the identity over the points q1, gy 1-
Also, let G(C;, ¢;—1,q;) be the symplectic gauge group of the normal bundle of C; acting
as the identity over both points ¢;_1,¢; for ¢ = 2,...,b+ 1. From ([I4]-Section 4.1),
we have G(C1,q1) ~ G(Cpao,qpr1) =~ * (both contractible), and G(Cy, ¢;—1,¢;) ~ Z for

1=2,...,b+ 1. Now consider the product of restrictions map to the gauge groups

b+1
Fix(l) — G(Ch.q1) (Hg o 1qz)xg<cb+2,qb+1> (4.10)

[ = (d.ﬂycl’df|1/027""df|1/0b+2))'

This map is a fibration (see [14]-Section 6.2). The fibre over (Id,...,Id) of (4.10) is
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weakly equivalent to the subgroup Symp®* (R \ I') C Fix(I") of symplectomorphisms that

are compactly supported away from I'.
Claim. Symp®(R\T) is contractible.

This works by thinking of the toric picture. Recall from Section that the
moment polygon zb,bk—i—l of the resolution has b + 4 edges. The configuration I' =
C1U...UCy 9 is the moment map pre-image of the edges e U...Uep o with respective
co-normals 7i1, ..., 79 in the toric model. Hence, R\ I" is the moment map pre-image
of A" := Ab,bk—s—l \ (e1U...Uepio), which is an open convex subset of R2. So, the open
set R\ I is contained in a larger Darboux ball B4(7’), viewed as an equilateral triangle
minus the diagonal edge in the toric picture. Let mq_; : B*(r) — B*(r) be the map
mi—¢(z) = (1 —t)z for t € [0,1). Then when ¢ is sufficiently close to 1, mj_4 retracts
B*(r) (and hence R\T) onto a smaller ball B(¢) contained in the open set R\ I'. This
shows that R\ I is symplectically star-shaped, therefore Symp®*(R \ I') is contractible
by ([36]-Theorem 9.5.2). This finishes the proof of the claim.

Now that we know Symp®(R\ I) is contractible, let’s write
e Symp®t2 for the product of symplectomorphism groups in (4.9).
o G'*2 for the product of gauge groups in (4.10)).

Then the fibration 1) tells us that Fix(I") is weakly equivalent to G0t2 ~ 7b hence

we have the fibration

Fix(I') — Symp(R, ") — Sympb+2

where the fibre is weakly equivalent to ZP and the base is weakly equivalent to (S 1)b+2.

The long exact sequence of this fibration reduces to

0 —s mSymp(R,T) —s z0*2 24 75 s roSymp(R,T) — 0,
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so we want to understand the boundary map 0. The boundary map comes from 0 :
71 Symp?t? — moFix(l) = T0G*2. Evans had a groovy idea ([14]-4.3, see also 6.3),

which is to understand the composition
722 =~ 7 Symp?t? — mFix(D) — moGP 2 = 70 (4.11)

by thinking purely locally in a neighbourhood of I'. There is a Hamiltonian circle ac-
tion that rotates each sphere C; in the configuration I" around the intersection points.
These generate loops in Symp(C1, q1), Symp(Cpy9, gpr1) and Symp(C;, ¢;—1, ¢;) for each
1, hence they generate 71 Sympb+2. Let 01, ..., 019 be these generators. For each 0, lift
the S1-action to a path vf in the normal bundle v(C;). By the symplectic neighbourhood
theorem, this is a local model for R near C;. The path 7%5 is generated by a Hamiltonian
that we can cut off by a compactly supported bump function to get a symplectic isotopy
¢£, 0 <t < 2m, supported in a neighbourhood of C;. Then qb%w € Fix(T"). These gbéw
represent the images of the #; € mSymp(C;, %) under the boundary map above. The
idea now is to identify generators for wogb” and determine the images of | z%] under the
map moFix(I') — m9G?T2. For each sphere C; (i = 2,...b+ 1) in I, there are evaluation

fibrations

evg  G(Ci,qi-1) — Sp(2)

evg. 4 :G(Ci ;) — Sp(2)
with fibre over the identity equal to G(C;, g;_1,¢;) in each case. This gives two maps
aqia a‘]i—l : 71-1Sp(2) - WOQ(C@, qi—1, Qi)'

Let g, (¢i): 90,(¢i—1) be the images of 1 € Z = m;Sp(2) under dy;, dy;_; respectively.
Both of these are generators of 79G(Cj,q;—1,¢;) for i = 2,...,b+ 1, but they are not
independent. By ([I4]-Lemma 20, see also 6.3), the composition map (4.11)) acts in the
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following way

01 = go,(@1) € MG(C2, q1, 42)
O — (0,9¢4(q2)) € m0G(C1,q1) x 70G(C3, g2, ¢3)
Op+1 = (9¢,(a),0) € m0G(Ch, ap—1, @) * TG (Ch12: ap+1)
Op+2 = 9oy, (@b+1) € T0G(Chi1, @b G+1)-
Moreover, for ¢ = 3,...,b we have

0i = (9¢;_1(ai-1): 90,1 (a)) € T09(Ci1,4i—2, ¢i—1) X 70G(Cit1, G, Git1)-
Therefore, the map (4.11)) is surjective. From this, it follows that
moSymp(R,I') =0 and 7 Symp(R,T") = 72,

while all the other homotopy groups vanish. So, we have a weak equivalence
T 5 Symp(R,T"), where T2 is the toric action on R. This finishes the proof of Lemma
437 O

Recall that F[b 1) = I' \ Cpyq1. Given the previous lemmas, we now conclude
from the fibration 1' that Symp(R, F[b +1]) is weakly homotopy equivalent to T2, Let

I'1 3 :=C1U...UC} and define the following subgroup of Symp(R):

e Let Symp®(R\T_y, Cyro) be the subgroup of Symp(R) consisting of symplecto-

morphisms that are compactly supported away from I';_; and leave Cp; o invariant.
Lemma 4.3.8. Symp®!(R\Ty_y,Cj o) is weakly contractible.

Proof. Let’s start with Symp(R, I'j, +1]) ~ T2 and consider the fibration that results from

restriction to the spheres C1,...,C}

Fix(I'y_p) — Symp(R, 'jpqq)) — Symp(C1,q1) X -+ - x Symp(Cy, gp),
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where Fix(I'y_) is the subgroup fixing I'y _ pointwise. The long exact sequence of this

fibration reduces to
0 — mFix(Ty ) — 722 25 720 — myFix(Ty_,) — 0,

where p comes from the map 71 Symp(R, F[b+1]) — mSymp(C1, q1) % - -xm1Symp(Ch, qp)-
Clearly this map is injective, hence mFix(I'y ;) is trivial and moFix(I'y ;) = ZV~=2.
Therefore, Fix(I'y ;) is weakly equivalent to Z?~2. Next restrict to the normal bundles
of the spheres C1,...,C}

b—1

Fix(I'y_p) — G(C1,q1) % <H g(cia%'la%)> x G(Cp,ap-1) -
i—2

[ S/

~ 762

It follows that the fibres are weakly contractible. But, the fibre over Id is the subgroup
of Fix(I'1_ ;) whose derivatives are the identity on v(C1) U ... Uv(Cp). This is weakly

equivalent to Symp® (R \ I';_;, Cpy0), so we are done. O

Proof of Lemma [4.3.3; Write Aut(v(C.9)) for the group of automorphisms of v(Cp, 9)

that are symplectic, linear, and preserve the zero section Cjp 9. The map

SympP (R\ Ty p,Cyra) —> Aut(v(Cyis))

fo= dflre,.,

is a surjective group homomorphism, and the kernel K consists of the symplectomor-
phisms whose derivatives act as the identity on v(C7) U... Uv(Cy) U v(Chio); thus K
is weakly equivalent to Symp®(R \ Iy Jr1]). Since the total space is contractible, it
follows that Symp®!(R \ I'p41]) is weakly equivalent to the loopspace QAut(v(Cpy2))
([19)-Proposition 4.66). Also, since Cj9 has self-intersection —b, its normal bundle is

isomorphic to O(—b), the complex line bundle with Chern number -2. Therefore, by
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([21)-Proposition 2.5), Aut(v(Cp1o)) is isomorphic to the Kahler isometry group of the

Hirzebruch surface Wj,. In particular, we have
Aut((Chra)) = U(2) | Zy,

so the proof is finished.

Proof of Theorem Consider the map
Symplfg’c — Aut(Tp,), f+— [df.(0)].

Letting KCp,. be its kernel, we want to show that k). is weakly contractible. Evaluating

at the other singularity, we get another fibration
Ko — Kp, — Aut(pr) = U(2) ) Zy, (4.12)

whose kernel is exactly Kg from (4.7). By Lemma {4.3.2] Kg is weakly equivalent to

SympCpt(R\F[bJrl]), which is in turn weakly equivalent to Q(U(2) /Zp) by Lemma 4.3.3]

Therefore, K¢ is weakly equivalent to the loopspace of the base in (4.12)). Since
WZQ(U(Q) /Zb) = 7TZ'_1Q(U(2)/Z[)) for all i,

the homotopy long exact sequence of (4.12) implies that /Cp,. is weakly contractible. This

proves Theorem [4.3.1}

4.4 The Groups Symp,,. for 1 <b<c

Now we have the most general result:

Theorem 4.4.1. Sympiegc is weakly homotopy equivalent to either Aut(Tp,) or Aut(Tp,)

when 1 < b < ¢ and b, c are relatively prime.
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We will give a quick description of how the symplectomorphism group can be
computed using the same process as the last chapter. Most of our arguments from
the Section [4.3] go through almost identically, and it further seems that many of our
constructions (especially from Section can be greatly simplified. Write ¢ = bk +r for
k a positive integer and 0 < r < b. Then the combinatorics of the polygon corresponding
to the resolution Ry j pj4 are favourable in the sense that the resolution creates a chain of
embedded symplectic spheres with a (—1)-sphere in between. To see this, we must resolve
both singularities according to the Hirzebruch-Jung continued fraction expansions. To

resolve the first one, write
bk +r
b

= la1,...,am].

Then the resolution of pyy., creates a chain of embedded spheres C1U...UCy, such that
(Ci] - [C;] = —a; for i = 1,...,m. We also create chain of m new edges in the polygon

Ap p+1 with respective co-normals 7y, . .. iy, satisfying

Njy1 = A7 — 1.

Now we must resolve the other singularity. This requires that we first transform
the respective corner into the standard model from Section do the corner cutting in
this local model, and then transform it back. The vertex corresponding to the order b

singularity pp has co-normals (b, bk + r) and (0, —1). Consider the transformation

Then A(b, bk + 1) = (b,r) and A(0,—1) = (0, —1). After composing A with a reflection,
the co-normals are put into the local toric model of Section [2.51 We now do the corner

cuts as described in that section. Write
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so that the resolution creates a chain of embedded spheres S1 U ... U Sy such that
[S;] - [S;] = —d; for i = 1,...n. We also have n new edges in the local toric model with

respective co-normals myq, ..., my satisfying
M1 = dim; — mj_q.

Now, reflect these co-normals back over the y-axis and compose with the matrix A~
These are exactly the co-normals we need to resolve the remaining corner in the polygon
Ap prr- Hence, the resolution transforms the diagonal edge in Ay, into a chain of
m+1+n edges. These new edges correspond to a chain of smooth embedded symplectic
spheres

CLU...UCRLUEUS,U...USY,

where & is the sphere corresponding to what remains of the diagonal edge after making

the corner cuts. Let R be the resolution of (CP12b o

Claim. & is an exceptional sphere. Moreover, it’s homology class has minimal area

among all exceptional classes in Ho(R;Z).

Proof. The first statement follows from ([23]-Lemma 2.16(3)). This Lemma says that any
Delzant polygon with 5 or more edges is AGL(2, Z)-congruent to a Delzant polygon that
comes from a Hirzebruch trapezoid by a sequence of smooth corner cuts. At each stage,
these corner cuts add an edge with combinatorial self-intersection -1. Hence, Ay .,
must contain at least one edge of this type. Let eg be the edge corresponding to £. Then
no other edge but ec can have combinatorial self-intersection -1. The reason for this is
straightforward: Recall from Section that each resolution in the local toric model is
minimal in the sense that it contains no (-1)-spheres. Hence, none of the added edges in
the resolution can correspond to (-1)-spheres. The two remaining edges are the vertical
and horizontal, and it is easy to check that these are not -1. This proves that £ is an

exceptional sphere.
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To see that its homology class is minimal, we use ([24]-Theorem 1.5) and the
considerations at the end of Section [3.2, Together, these imply that on R it is possible

to put a symplectic form wp such that
N
PD[wp] = B+ uF — ) &E;.

1=1

Furthermore, this class is reduced with respect to the basis { B, F, Eq, ..., Ex} of Hy( (5’2 X

S2)# N(C_P2; Z) in the sense of Lemma [3.2.4] (see also the discussion before the Lemma).

This means that the homology class of £ must be Ey, which is minimal by ([24]-Corollary
7.10). O

Remark: The above argument that shows the homology class of £ has minimal area
depends on a specific basis of Ho(R;Z). There is another more intrinsic way to see this
though. We know that any exceptional class E' with minimal area among all exceptional
classes is always represented by a unique embedded J-sphere for any tame J, in particular
any compatible J ([4I]-Lemma 1.2). Any compatible J defines a metric via g(v,w) =
w(v, Jw) that we can average over the TZ?-action to make it invariant; this gives a new
almost complex structure that we’ll call J;,,,. Associated to J;,, is a sphere Cj;,, that
is invariant under the T2-action, and this sphere lies in the same minimal homology
class E. Since Cj,, is T2-invariant, it must be the pre-image of an edge in the polygon
Ap pltr- It follows that Cjyy,, and € are the same sphere, since there is only one edge with
combinatorial self-intersection -1. Therefore, £ represents a homology class with minimal
area.

Now that we have the required information about the resolution, we consider the

group Symp{egc and the sequence

Kg — Sympl, = Aut?(C2) /7 x Aut?e(C?) ) Z (4.13)

with kernel Kg. Again, this kernel will be weakly homotopy equivalent to a certain
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subgroup of Symp(R). Let

'e = Ciu...uUCpy

I' = Tocul'gU¢.
The arguments in the last chapter can be used to show that
T2 ~ Symp(R,T) ~ Symp(R, T\ &),

where these symplectomorphisms are the subgroups of Symp(R) that, respectively, pre-
serve I and I" \ €. The crucial thing that we need here is that the exceptional class
E = [€] is always represented by a J-holomorphic sphere for every tame J. This is

because the class £ has minimal area (see [4I]-Lemma 1.2). Now let
Symp®*(R\T'¢c,T's)

be the subgroup of symplectomorphisms that are compactly supported away from I'o

and preserve ['g. Then we have

Lemma 4.4.2. Symp®!(R\ I'c,T'g) is weakly contractible.

Proof. Same argument as the proof of Lemma |4.3.8 n

Let Aut(v(S;)), i = 1,...,n be the group of automorphisms of v(S;) that are linear,
symplectic, and preserve the zero section. Let p; = S; N S;41 be the unique point of

intersection of S;, Sj41, and define the following subset of Aut(r(S1)) x ... x Aut(v(Sp)):

e Over an intersection point p;, write the differential of an element ¢; € Aut(v(5;))
as a sum of its tangent and normal components: dg;|p, = (dqﬁﬂpi, dgbZN p;)- Now

let Aut(rv(I'g)) be the set of pairs (¢1,...,0n) € Aut(r(Sy)) X ... x Aut(v(Sy))
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such that

T N T N
do; |p; = dd;’ 1lp;, and do;,qlp, = de;" |p,

Since the tangent and normal directions intertwine over the intersection points, the re-

striction to Aut(I'g) via the map f — (df|TR|Sl’ ce df|TR|S ) gives a fibration
n
K — Symp® (R\T'o,Tg) — Aut(v(T'g). (4.14)

The kernel K above is the subgroup of Symp®!(R\ T'¢;,T'g) whose derivatives fix both
the tangent and normal directions of each sphere in the configuration I'g. We therefore

have a weak homotopy equivalence
K = Symp®'(R\ (T¢ UTg)),

Let’s now analyze the sequence (4.14)).
Lemma 4.4.3. Aut(v(I'g)) is weakly equivalent to T2.

Proof. First consider the restriction map

Aut(v(Tg)) — Aut(v(S))

(@1,--- 0n) — o1

If KC1 is the kernel, then we’ll show that Ky is contractible and that Aut(v(S7)) is ho-
motopy equivalent to T2. To see the latter statement, let ¢ € Aut(v(S7) be a generator.
Since ¢ preserves the zero-section S, the restriction ¢| S, generates a symplectomorphism
that fixes the intersection point p; := 51 N So. Since Symp(St, p1) =~ st homotopically
¢ will generate this St-action on S;. The fibre over the identity of the map ¢ — 0] S
consists of bundle maps v(S57) — v(S7) that cover 1d; hence, the fibre is the gauge group
G(S1) ~ S1, so ¢ generates an ST x S1, homotopically. This shows that Aut(v(S;)) / T2

is contractible, hence Aut(v(S])) ~ T2.
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Now we show that Ky is weakly contractible. Note that K; is the subgroup of
Aut(v(I'g)) that acts as the identity on v(.S), so it consists of n-tuples ¢ = (Id, ¢9, ..., ¢p)
whose tangent and normal components intertwine at the intersection points. An element
¢ € Ky will have ¢o|s, € Symp(Sa,p1) with dngT(pl) = Id. We can thus perturb
o S, so that it is the identity near pj, so homotopically it will generate an element of
Sympt(Sy \ p1), and these are just the symplectomorphisms of the disk D? that are the
identity near the boundary. This group is contractible by Smale’s result ([44]-Theorem
B). The fibre over the identity of the map ¢o — ¢| S, 18 the group of gauge transforma-
tions that act as the identity over py, i.e. the group G(S92,p1). This is contractible by

([14]-Section 4). Hence, K1 fibres over a contractible space with kernel Ka:
Ko — K1 — %,

where Ko is the subgroup that acts as the identity on v(S9) U v(S7). Similiarly, we can
show that KCo fibres over a contractible space and so on, until we get to the very last
fibration

where ICj, is the subgroup that acts as the identity everywhere, so K, = {Id}. Thus, if

we work backward through the fibrations we see that 1 must be contractible. O]

Good, now go back to the fibration (4.14). Since the total space is contractible,

and also by Lemma [4.4.3] we have weak equivalences
K ~ QAut(v(S2)) ~ QT?,

and we also know that K ~ Symp®!(R\ (I'c UT'g)). This last group fits into the

homotopy fibration

Symp®! (R \ (I'¢ UTg)) — Symp{%s, — Aut(T},) x Aut(Tp,)
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that comes from the fibration (4.13). Now Theorem follows by restricting to each
of Aut(7p,) and Aut(T)p,) one at a time. The argument is the same as the very last step
in the proof of Theorem {4.3.1] at the end of Section 4.3, except now it doesn’t matter

which automorphism group we restrict to first.



Chapter 5

Embedding Spaces

5.1 Embedding Singular Balls into CP12,1,C

Consider the standard orbi-ball B.(e) := B*(€) / Z¢, where B*(¢) ¢ C? is the standard
(smooth) 4-ball of capacity e containing the origin and Z. acts diagonally. The symplectic
form on B*(e) is the restriction of the standard form wy on C2. This form is Z-invariant,
so it descends to the quotient B.(e). Let EmbiL . be the space of reduced symplectic
embeddings of Be(€) into the weighted projective space CP12,1,C' Thus, f is in Emb‘iLc
if and only if f : Be(e) — f(Be(e)) C CP12,1, . is a reduced orbifold diffeomorphism in the
sense of Definition , and f pulls back wq 1. to the symplectic form on Be(e). We

define the space of unparametrized symplectic embeddings SEmb] ; . as the quotient
SEmb] | . :=Embj ./ Symp™d(B.(¢)).

Our goal is to use the general framework developed in [26] to study the homotopy type
of the space SEmb‘iL . and EmbiL . based on the correspondence between embeddings

of balls and symplectic blowups. The main results are
Theorem 5.1.1. SEmb{ ; . is contractilble.
Corollary 5.1.2. Emb{ ; . is homotopy equivalent to U(2) / Ze.

Note that in order to deduce this corollary, we need information about the group
Sympred(Bc(e)), ie. that it is homotopy equivalent to U(2) / Z; this will be proved in a

forthcoming lemma. In [26], they show that in the smooth case the symplectomorphism

76
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group acts transitively on the space of embeddings and use the resulting fibration to
glean information about the embedding space. In [40], Pinsonnault uses this general
framework to find information about the embedding space of balls in CP2. Tt is natural

then, to try to generalize this approach to weighted projective spaces.

Lemma 5.1.3. Symplfic acts transitively on %Embil’c.

The proof requires a few preliminary steps. What we first need to show is that any

embedded ball can be isotoped to be disjoint from the line at infinity
Soo ={[z1:22:0] € CP12,1,C}7

as this will allow us to work in a single orbifold chart.

Claim 1. Let Ly,Ly C (CPIQIC be any two embedded symplectic spheres in homology
class [(CPl]. Then Ly and Lo are isotopic. Thus, swapping Soo with a symplectic sphere

disjoint from a given orbi-ball B¢ will allow us to work in a single orbifold chart.

Proof. First note that given any embedded orbi-ball B¢ C CP1271, .» there exists an em-
bedded symplectic sphere in homology class [CPl] that is disjoint from B€¢; this is easily
seen by passing to the blowup, which is a Hirzebruch surface W,.. We will sketch the argu-
ment of why L1 and Lo are isotopic.. Since these spheres have the same self-intersection
numbers (4c), by the symplectic neighbourhood theorem we can find neighbourhoods
Uy O L1,Uy D Lo and a reduced diffeomorphism f : CP12,1,C — (CPELC such that
[ Uy — Uy is a symplectomorphism. The pullback form f*wq 1 . is then equal to wy 1 .
near the boundary of (CP12’1’ o\ L1 = B¢ which is an orbi-ball centred at the singular
point p.. We now assert that there is a diffeomorphism 1 : B¢ — B¢ that is the identity
near the boundary and is such that ¢*(f*wy 1 ) = wy 1. For this it is sufficient to find
a Ze-equivariant lift fc : B — B of f and having the same properties on the smooth
ball B. This follows from a Zc-invariant version of Gromov’s theorem about compactly

supported diffeomorphisms of the ball (see, for instance [33]-Lemma 2.4; the proof can
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be made Z.-equivariant). Given the existence of this diffeomorphism f, the composition
f o is a symplectomorphism sending L1 to Lg. What this shows is that Sympff’ . acts
transitively on the space of embedded non-singular symplectic spheres in class [CPl].
Since Symplief1 . is path-connected, it follows that the same is true for the space it acts

transitively on. Hence, any L1, L9 in this space are always isotopic. O

Given this, we can assume that any B¢ € SEmb{ ; . lies in a single orbifold chart.

Our result will now follow from the following:

Claim 2. The space of reduced symplectic embeddings of Be(¢€) into the open unit orbi-ball
Be(1) € C? / Z is path-connected.

Proof. This is the orbi-ball analogue of McDuft’s result ([33]-Theorem 1.1). The way she
proves it is by noticing that this statement about embeddings is equivalent to a state-
ment about uniqueness up to diffeomorphism of certain symplectic forms on the space
CP2# @2, which is the smooth blow up of CP2. In our case, we are dealing with an
embedding of a singular ball B.(¢), so the statement now becomes equivalent to a certain
uniqueness property of symplectic forms on the A" Hirzebruch surface W,. In particular,

we have bijective correspondences between the following sets ([33]-Proposition 1.4):
(1) The set of isotopy classes of reduced symplectic embeddings Bc(€) < Be(1).

(2) The set of equivalence classes of symplectic forms w on W, such that each w gives
area € to the zero section Z and area 1 to the infinity section Z~,. Moreover, we

should assume that Zy and Z4, are w-symplectic.

Let Diff(W,, 2y, Z5) be the group of all diffeomorphisms of W, that stabilize
Zy and Z4. In the statement (2) above, two forms wy, w9 are equivalent if there exists
f € Diff (W, Zy, Zx) such that f*wy = wy. The equivalence of statements (1) and (2)
follows from the blow up construction in ([35]-Proposition 7.17). Specifically, to any
symplectic embedding g : Be(e) < Be(1), it’s possible to put a symplectic form wy on

We, and this form depends on the embedding g. We claim that in the statement (2)
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above, there is only one such equivalence class of symplectic forms on W; this follows

from the following points:

e By the Lalonde-McDuff classification theorem [25], any two cohomologous symplec-
tic forms are diffeomorphic. Hence for any two forms wq, w9 in the same cohomology

class, there exists a diffeomorphism f : W, — W, such that f*w9 = wj.

e By [43] (see Section 1.4.2), the space of smooth holomorphic curves representing
the class [Z0] is connected. In this case, we can take an isotopy of Ji-holomorphic
curves where each J¢ is compatible with wy. Hence, we can find a Hamiltonian
isotopy whose time 1-map ¢ preserves wi and satisfies ¢(Z) = f_l(ZOO). It

follows that f o ¢ preserves Zx.

e By ([20]-Theorem 8.1), the space of w-positive embedded symplectic spheres in class
[Zp] (and disjoint from Z4) is contractible. This means that we can find another

Hamiltonian isotopy whose time 1-map 1 preserves wsg, fixes Zo,, and satisfies
vH(20) = f o 6(2).

From these three points, it follows that ¢ o f o ¢ € Diff (W, 2y, Z) and also pulls back
wo to wy. So the forms w; and wo are equivalent in the sense describe above. We are
now done, because the equivalence of statements (1) and (2) above implies that there is

only one isotopy class of symplectic embeddings Be(€) < Bc(1). ]

Proof of Lemma : Let B§, B{ € %Embilp By Claim 1, we can assume that
B§ and B{ are contained in an orbi-ball of size 1. Choose parametrizations gg, g :
Be(€) = Be(1). By Claim 2, there is a 1-parameter family g; : Be(€) — B(1) of reduced
symplectic embeddings connecting gy and g;. Now lift the family g; to a uniformizing

chart, which is just a smooth ball B(1)
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The family ¢; is generated by a Zc-invariant vector field, which in turn generates
a Ze-invariant Hamiltonian H : B(e) — R that we can extend to B(1) = U, using
an invariant bump function. The corresponding isotopy is equivariant and has as its
time 1-map a symplectomorphism ;EC : (76 — (76 supported in a neighbourhood of B(e).
Hence, &50 descends to a symplectomorphism ¢ € Sympfi . that sends go(Bc(€)) = Bf
to g1(Bc(e)) = BY, proving that the action is transitive.

Moving on. The stabilizer of an element B¢ € %Emb‘il,c under the action of
Sympfi . 1s the subgroup Stab(B¢) consisting of those f € Symplief7 . that leave invariant
the orbi-ball B¢, where B€ is the image of a symplectic embedding B.(¢) — CP12,1, . We

therefore have a fibration

Stab(B¢) — SymplfiC — SEmb | ., (5.1)
and restricting Stab(B¢) to the orbi-ball gives another fibration

Fix(B¢) —s Stab(B®) — Symp"4(B°). (5.2)

Lemma 5.1.4. Fix(B°) is contractible.

Proof. Here, Fix(B€) are the reduced symplectomorphisms that are the identity on B€.
If we blowup the singular point p. with a size that is smaller than the capacity of B¢,
then Fix(B€) can be identified with the group of symplectomorphisms of the Hirzebruch
surface W, that fix a neighbourhood of the zero section Z;. This is contractible by
([20]-Lemma 9.1). O

Lemma 5.1.5. Symp™d(B) is homotopy equivalent to U(2) / Ze.

Proof. Just evaluate the derivative at the singularity to get the fibration

K — Symp™d(B®) — Aut(Tp,) ~ U(2) / Ze.
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Hence, we want to show that the kernel K is contractible. Note that I is weakly equiv-
alent to the subgroup of symplectomorphisms of the orbi-ball that are the identity near
the singularity. If we blow up the singular point p. € B¢, then the resulting space is a
disk bundle inside the complex line bundle O(—c¢) that can be equipped with a standard
Kahler form. A compact family f) of symplectomorphisms that are the identity near p.
will lift to a compact family fy : O(—c) — O(—c) that are the identity near the zero
section. In ([II]-Lemma 3.3), Coffey uses symplectic cutting to show how to compactify a
disk bundle into a symplectic sphere bundle while preserving the areas of the ﬁbresﬂ Let
Symp(O(—c), [Zy]) be the group of symplectomorphisms of the unit disk bundle inside

O(—c) that are the identity near Z. Then Coffey’s construction gives a homeomorphism
Symp(O(—c), [Z0]) = Symp®' (We \ 2o, Zoc),

where the latter group consists of symplectomorphisms of the Hirzebruch surface W,
that are compactly supported away from Z; and stabilize Z,,. This latter group is

contractible by ([I1]-Proposition 3.2). O

Proof of Theorem [5.1.1: The previous two lemmas and the fibration (5.2 all imply
that Stab(B¢) is weakly homotopy equivalent to U(2) /Z.. Therefore, the long exact

homotopy sequence of 1' implies that SEmb] ; . is (weakly) contractible. Done.

Proof of Corollary : Consider the evaluation map from Embil’ . to %Emb‘iLc
that sends an embedding g onto its image g(Bc(€)). The fibre over an element B¢ €

SEmb] ; . is the reparametrization group Symp™d (B, (e)). Now the fibration
Symp™®(Be(e)) — Emb{; , — SEmb ;

implies the result.

1. There can be some confusion here: Coffey’s compactification adds a section of self-
intersection —c that he calls Z,,, but our convention has always been to declare the zero
section Z; to be of self intersection —c.
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5.2 Embedding Smooth Balls into CPELC

Now consider the smooth 4-ball B(d) C C2 of capacity 0 < 1 equipped with the restriction
of the standard form on C2. Let SEmb‘ls,L . be the space of smooth symplectic embeddings
of B(9) into (CPE 1 equipped with the C'*°-topology. Note that the embeddings are
required to miss the singular point p., so really SEmb‘ls’Lc is the space of symplectic
embeddings of B(J) into (CP12’ 1.c \ Pe. We define the space of unparametrized smooth

symplectic embeddings as
S*©Emb] | . := SEmb{ | . / Symp(B(0))

The main result of this section is
Theorem 5.2.1. %OOEmbfls,Lc is homotopy equivalent to CP1 ~ CP12,1,0 \ pe-

The proof is a bit more complicated compared to the last section, but the overall

approach is quite similar to what we’ve been doing throughout this thesis. An argument

that mimics the proof of Lemma |5.1.3| (but easier) can be used to show that Sympﬁei1 .

acts transitively on %ooEmb(il’c. Let p1 € (CP12,1,C be the smooth point [0 : 1 : 0], and
let Bs = Bs(p1) € %OOEmb‘ls’Lc be an embedded ball centred at this point. We will
consider the stabilizer Stab(Bg) of this ball under the action of Sympf‘li, o+ Then we have
the fibration

Stab(Bg) — Symplf(li,c e %ooEmbjS’Lc. (5.3)

Note that there is no loss of generality in assuming that Bj is centred at p; because
all the fibres are homotopy equivalent. We will eventually conclude that Stab(By) is
homotopy equivalent to T2.

Let’s now blow up <CP12’ 1, at the two points p. and py. This two-point blow up
of (CPﬁL . 1s diffeomorphic to the one-point blow up Wc of the Hirzebruch surface W,

at the point of intersection of the infinity section and fibre. We can equip Wc with the
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symplectic form €2, ¢ ¢, described in Lemma from Section . Recall that

The embedded singular sphere {[0 : z1 : 29|} C CP121 . 1s sent via the blow up to a

configuration of smooth spheres I'1 9 3 := C1 UCo U C3 in WC, such that for ¢ eve

C1) = B—3F
[Co] = F—E
[C3] = En.

Put I'y 3 := C1 U C3, and let Symp(Wc, I'1.3) be the subgroup of Symp(wc) that
stabilizes I'; 3. In the same way, let Symp(/ch,Fl,gjg) be the subgroup that stabilizes
I'1 2.3. The following lemma shouldn’t be very surprising because we’ve seen the same

phenomenon in Section [4.3]

Lemma 5.2.1. Symp(Wc,Fl,g) is weakly equivalent to Symp(Wc,Fl,Zg), which is in

turn weakly equivalent to T2.

Proof. The fact that Symp(Wc, I'1,2.3) is weakly homotopy equivalent to T2 follows from
Lemma[4.3.7in Section [4.3] so we will work on proving the first statement. Let J be the
space of €, ¢ ,-tame almost complex structures on WC and let 71 3 C J be the subset
of J’s for which (7 and C3 are J-holomorphic. For any J € J1 3, well see that there is
a unique embedded J-holomorphic sphere in class F' — E7, and this will imply the first
statement of the lemma.

Specifically, let 01%3[02] be the space of embedded symplectic spheres in homology
class [C5] = F — E7 that intersect C,C3 once in a symplectically orthogonal way. We

should also assume that for every S € ClLS[CQ], there exists J € J such that (7,5, and

2. Again, the odd case is analogous. See Section [2.3.1
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Cs are J-holomorphic. Then Symp(Wc, I'1,3) acts transitively on this space, giving a
fibration

Symp(We, T'1,2.3) — Symp(We, 'y 3) — €3]],

so we should prove, as before, that the base is contractible. Let Clmg [Ca] D Cllg[C’g] be
the bigger space of embedded symplectic spheres in class [C9] that now only intersect
(1, (5 transversely and also satisfy the same property with respect to J-holomorphic

spheres.

Claim. For every J € J1 3, there is a unique embedded J-sphere in class [Cy] = F — Ey.

Proof. To see this, recall from Section that the subset of J for which the exceptional
class F' — Fj is represented by an embedded .J-sphere is open and dense in J. By
the corollary of Gromov compactness (Section , F — Fj is either represented by an
embedded J-sphere or a cusp-curve. We’ll show that it can’t degenerate into a cusp-curve.

Write

n

F—E =) (piB+qF —riEy), (5.4)
i=1

where each of the classes B, F, £ have simple representatives. It follows that the p; must

sum to zero. By the adjunction formula (Section ,
2piq; — 17 +2 > 2p; + 2q; — 7.

Rearranging things, we have 2g, = 2(p; — 1)(¢; — 1) — r;(r; — 1) > 0. By positivity of
area,

Qe piB + ¢ F —riEy) = pp; +q; —e1ry > 0,

and from this it follows that ¢; —1 > e17; — up; — 1. Now we claim that these conditions

force p; > 0. Let’s mimic the proof in ([6]-Lemma 2.4). Assume, for a contradiction,
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that p; < 0. Then p; < %, which implies that —2(p; — 1) > 1. So, we have

=290 = —2(pi —1)(¢; — 1) +ri(ri — 1)
> ¢ —1+ri(ri —1)
> ep —ppi — L+ ri(ri — 1)
> ey +ri(r; — 1) (5.5)

= TZ'(61 +r; — 1) > 0.

Here, the last inequality is because r; is an integer and the inequality is because
both > 1 and p; < 0. From all this we conclude that g, < 0, which is a contradiction.
So, our assumption that p; < 0 was incorrect, which means that p; > 0.

Now go back to the decomposition . Since ) ;p; = 0 and each p; > 0, the

only possibility is that p; = 0. Therefore, F' — £ decomposes as
n
F—E1 =) (4F —riEy). (5.6)
1=1

For J € J1 3, both the classes [C1] = B—§I" and [C3] = Ej are represented by embedded

J-spheres, so it follows from positivity of intersections that

(;F —riEy)-Ey = 1

Y
o

C
(G F —riEy) - (B — §F) = g

v
o

and from the adjunction inequality combined with ¢; > 0, we get

0 < 2¢; SQ—TZ‘(TZ‘—l).

e If r; > 2, then ¢; < 0 which is a contradiction.

o If r;, =2, then ¢; = 0, and this contradicts positivity of area.
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e If r; =0, then ¢; = 1, and ([5.6) gives a decomposition of F' — Ej into a bunch of

F-spheres, which is not possible.

The only remaining case is r; = 1. Then ¢; = 1 as well, and this is the only possibility
that doesn’t lead to conflicting information. It follows that the class F' — Fq cannot

degenerate, and this proves the claim. O

To complete the proof of Lemma [5.2.1 we proceed in the same way as before. The
space [J1 3 is weakly contractible by ([I4]-Appendix A) and the obvious map J13 —
C{hg[CQ] is a fibration with contractible fibres. Therefore, C1m3 [C5] is contractible, and

Symp(Wc, I'1 9,3) is weakly equivalent to Symp(wc, I'13). O

Lemma 5.2.2. Symp(Wc,Fl,g) 1s weakly equivalent to its subgroup consisting of sym-

plectomorphisms that act U(2)-linearly near C1 and Cs.

Proof. Let Aut(v(I';)), i = 1,3, be the group of linear symplectic automorphisms of the

normal bundle v(I';) that preserve the zero section. Then we have a fibration

K — Symp(We,T'1.3) — Aut(v(I'1)) x Aut(v(3))

E(Q))

that we get by evaluating the derivative on TWc|pi for : = 1,3. Let Symp(Wc, I3

be the other subgroup in the statement of the lemma. Since elements in this group act

linearly near I'1 3, we can restrict to each sphere to get another fibration

K* —s Symp(We, FE@)

5) — U(2) x U(2),

where K* consists of symplectomorphisms acting as the identity near I' 3. Putting these
together gives a map of fibrations, and we know that K is weakly equivalent to K*
from Section [6.1] So, to prove the lemma it suffices to show that Aut(v(I;)) = U(2)
for i = 1,3. Actually, this follows from ([21]-Proposition 2.5) which says that these
automorphisms groups are each homotopy equivalent to the Kahler isometry groups of

W1, W5 respectively, so they are homotopy equivalent to U(2) in each case. O
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Via the symplectic blowdown map, a neighbourhood of C is sent to a singular
ball Be(pe) C CP121 . centred at the point pc, and a neighbourhood of C3 is sent to the

ng)) descends

smooth ball By centred at p;. Any symplectomorphism ]7 € Symp(WC, r
to a symplectomorphism f : CPZ, c CP?, . that acts U(2) / Zc-linearly near Be(pc)
and U(2)-linearly near Bs. Give this latter subgroup the beastly designation

U(2
Sympled (Be(pe) Ve, BY).

We see, conversely, that any symplectomorphism in Sympﬁ‘f’ C(Be(pc)U(Q)C,Bg(z)) will

U(2)
1’

lift to a symplectomorphism in Symp(Wc, [ 57). This shows that

5 ) is homeomorphic to Symp{?ic(ge (Pc)U(Q)C, B;j(?)>'

o7 U(2
Symp(We, FL( )

Now recall the group Stab(Bg) from the fibration (5.3). It is the subgroup of

Symplieijl . that stabilizes Bs. Here is the final lemma in this section

Lemma 5.2.3. Stab(Bj) is weakly homotopy equivalent to Symplf‘fl’c(B6 (pe)V@e, B([SJ@)).

Proof. First, it’s possible to show that Stab(Bg) is weakly equivalent to its subgroup
that acts linearly near an orbi-ball Be(p.) centred at p.; call this group Stab(By, pg(Q)c).

Now consider the composition of fibrations
Stab(Bj;, po2¢) — Symp(B Symp(B;) / U(2
5:Pc " ¢) — Symp(Bs) — Symp(Bs) / U(2).

Since the base is contractible, this shows that Stab(By, pg(z)c) is weakly equivalent to its

subgroup Symp{eijl C(B;j*@) , pE(Q)C) that acts linearly near a slightly smaller ball Bgx C

Bg. This is fine, since we can always blow up using a slightly smaller ball. Observe that
the group

red (2)

U U2
Sympl’l,c(Bg* apc( )C)

consist of symplectomorphisms that, in particular, act linearly near an orbi-ball centred
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at pe. This can be identified with Symplie‘lic(B6 (pe)V@e, B(ISJ(Q)) in the statement of the
lemma by possibly varying the sizes of our blow ups, ie. we can show that they are each

weakly equivalent to T2 by blowing up with slightly different sizes. O

Proof of Theorem Consider the action of U(2) /Z. on the subset S := {[20 :

z1:0] € (CPlQ1 oy given by A- [z : 21 : 0] = [azg + b2y : czp + d21 : 0], where

Since Sao 2 CPL, this is the same as the action of U(2) / Z. on CP!, so it is a transitive
action; the reason being that U(2) already acts transitively on CP and Z. C U(2) is
contained in the stabilizer of any point. The stabilizer of the action of U(2) /Z. is the
torus of diagonal matrices TQA := {diag(a,d) | |a] = |d| = 1}. Then we have a diagram
of fibrations

Stab(Bs) — Sympﬁ?ic — %OOEmb‘ls,l,c

1

T U(2) / Z cpr!,

where the vertical maps are inclusions. The group U(2) / Z. acts effectively (and sym-
plectically) on (CPIQ,L . while fixing the singular point pe, so there is a natural inclusion
U(2)/Ze — Symplfi . inducing the weak homotopy equivalence. Of course, T A acts on
(CP12,17 . by restriction, so we just need to check that the action stabilizes embedded balls
centred at p; = [0 : 1:0]. If By is centred at p; with 6 < 1, then we can assume that

By C Uy, where Uy is the smooth chart {[zq : 21 : 29] | 21 # 0}. In this chart, we have
Bs = {[wo : 1: wa] | [wo|* + |wa|* < 5},

where wg = j—(l) and wy = %, so it should be clear that the T a-action leaves By invariant,
1

thus we also have a natural inclusion T < Stab(Bj).



Chapter 6

Some postponed proofs

6.1 Proof of Lemma 3.2.6

Recall that we had the locally trivial fibration
\II ~ ~
Sympil . = U(2), (f. fe) = dfe(0)
with Ky = ker . We defined the subgroup K§, C Ky as

Ky = {(f, fe) € Symp{*{ .| fe = Id near 0}.
Our goal is to prove that the inclusion 7 : Ki, < Ky is a weak homotopy equivalence.

Step 1: Let (f, fC) € Ky. Then dfc(O) = Id. We will first show how fc can be isotoped
to the identity near 0; then we will extend this argument to compact families.

We have fc : (70 — \7@, where (76 and ‘76 are Zc-invariant neighbourhoods of the
origin in C2 with f.(U.) C Ve. Since df.(0) = Id, this means that I' = graph(f.) is
tangent to the diagonal A C Uesx V, at 0 e C. Thus, in a neighbourhood of the origin I"
appears as the graph of a function F’ over A. Choose a smooth bump function p : A — R
such that p vanishes near the origin and p = 1 outside of a neighbourhood of the origin.
Now, average this function to make it Z.-invariant. If we multiply F' by p, then in
this neighbourhood, the graph of p - I’ corresponds to the graph of a diffeomorphism

g: (76 — XN/C such that ¢ = Id near 0 and g = fvc outside of some larger neighbourhood.

89
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Now set

The forms wy must be cohomologous since H 2((70; R) = 0. Since g = Id near 0 and g = fe
outside of a larger neighbourhood, the only place where it may fail to be symplectic is in
the region where g can be made C'*-small (by suitably bounding the derivative of p). Since
non-degeneracy is an open condition, we can assume that the path wy is non-degenerate
on a small enough neighbourhood.

Now apply Moser’s argument to the family w;. It follows that there is a smooth
family of diffeomorphisms v such that ¢y = Id and ¢fw; = W.. Moreover, since w; =
w near 0, the isotopy will be the identity in this region. Note that by averaging the
generating vector field for 14, this argument becomes equivariant. It follows that go ) :
U.— Veisa symplectomorphism that is the identity near 0 and interpolates to fc outside

of this neighbourhood. It is also Z.-equivariant.

Step 2: Now consider a family of symplectomorphisms ( fy, f; \) € Ky that is parametrized
by a compact set S. Then dfvc’)\ = Id for each A € S. By Step 1, for each fixed \g € S we
can modify ]?07 Ao to a diffeomorphism g, such that g, | By, = Id for some open ball By,
containing the origin, and all the choices of parameters in Step 1 are made in contractible
spaces. Thus the function

S = Rsg, A+ Vol(By)

is continuous, because the functions gy can be made to continuously depend on A. Since
By is parametrized by a compact set, the function Vol must have a minimum that is

non-zero. Hence, there exists B,,;, such that B,,;, C B) for all A € S. So, we have
g>\|3mm =1Id forall A€ 5.

As before, we can define wy = (1—1)wc+1tg we, and now the Moser argument works

for all A € S to give a diffeomorphism parametrized by A such that its composition with
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gy is a symplectomorphism, and is the identity on B,,;, for all A € S. Thus, we have
shown that compact families in Kg can be isotoped to compact families in Kg. This

proves that the spaces are weakly homotopy equivalent.

6.2 Making Transverse Intersections Orthogonal

In this section, we describe a standard construction that is used at various points in this
thesis. This construction essentially mimics the one in ([32]-Lemma 3.11) at the most
crucial points. Another nice construction along these lines is given in ([20]-Section 6).
Let C be a fixed embedded symplectic sphere in a symplectic 4-manifold (M,w) and let
q be a point in C. Consider the space of all embedded symplectic spheres in M that
intersect C' transversely and positively at ¢; let’s call this space C 27. Also consider the
space Cql C C{]h, where CqL is the space of all embedded symplectic spheres in M whose
intersections with C' are symplectically orthogonal. These spaces are topologized as
quotients of 000(52, M) modulo reparametrization. We want to show that these spaces
are weakly homotopy equivalent. To do this, we should construct a symplectic isotopy
that deforms a sphere S € C 27 into one that intersects w-orthogonally at q; then we will
describe how this construction can be extended to compact families.

Since we only care what happens at the point ¢, it suffices to choose a Darboux chart
(Uqg = R? x RQ) and work in a neighbourhood of ¢q. Choosing coordinates (z1, z2, y1, y2)

in this neighbourhood, we have
W|Uq = dx1 Ndxo + dyp A dys.

Let SeC (T, so that S intersects the fixed symplectic sphere C' transversely and positively
at ¢. We will assume that the (y1,y2)-plane is orthogonal to 75C. In a possibly smaller
neighbourhood Ué C Uq, we can modify S to a sphere S’ so that it coincides with 145

in this region, and this can be done symplectically (see Section [6.1). Therefore, in this
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neighbourhood S’ appears as a graph of a matrix over the (y1, y2)-plane

S'NU; = {(y1,y2,Ay1,2)) | det A > —1}

= {(y1,y2,ay1 + by, cy1 + dy2) | ad — be > —1},

where A is the matrix with entries a, b, ¢, d that are smooth functions of x1, z9, and the
condition det A > —1 guarantees that S’ is symplectic. We want to dropkick S’/ N Ué SO
that it coincides with the (y1, y2)-plane in this neighbourhood, but do it symplectically.
Let r be the radial coordinate on the (yi,ys2)-plane: r2 = y% + y%. The projection of
Ué to the (y1,y2)-plane is given by {r < e} for a suitable ¢ > 0. Choose an increasing

function o : R — R such that
e a(r) <land a(r)=1forr >ec.
e «(r) =1 for r near ¢.
o o(r) =0 for r < gg where g € (0,¢).
o o/(r) <2, where § > 0 satisfies (1 + 6)det A > —1.

Now, let S;(T) be the image of the map

(y1,y2) — (Y1, Y2, o(r)(ayr + by2), a(r)(cyr + dy2)), r <e.

Then S(’l (r) fits together smoothly with S’ when r is near € and it coincides with the
(y1,y2)-plane when r < 3. We should check that it is symplectic. A somewhat tedious

computation shows that

W|S(/1(r) =(1+ (a2(r) +ra(r)d(r)) det A)dy; A dys, (6.1)

so this form is symplectic if and only if (1 + (aQ(r) + ra(r)d/(r)) det A) > 0. Since
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o(r) < g and a(r) < 1, it follows that
o?(r) + ra(r)d/(r) < 1+6.
If det A is positive, then it’s clear that is symplectic. Otherwise, we have
(042(1") +ra(r)d(r)) det A > (1+6)det A > —1,

showing that is still positive. We have therefore shown that we can deform the
original sphere S € C (rlh in a symplectic way so that it coincides with the (y1,y2)-plane
near q.

Extending the above argument to compact families is equivalent to proving the

homotopy lifting property over compact sets for the following map
Cl — Gro(TyM) \ T,C

that picks out the tangent plane at g. Here, Gro(7,M) is the Grassmannian of all
symplectic 2-planes in the tangent space Ty M. The construction above shows that this
map is surjective, and since all the choices of parameters come from contractible spaces,
the above construction can be made to depend continuously on a compact family of
parameters.. Hence, this map is a fibration and the fibre over the orthogonal plane at
q is the space C qL. It’s not hard to see that the base is contractible: Since Sp(4) acts
transitively on Gro(7T,M) with stabilizer Sp(2) x Sp(2), we can write Gro(T; M) as a
homogeneous space

Gra(TyM) = Sp(4) / Sp(2) x Sp(2).

But the latter space is homotopy equivalent to

U(2)/U(1) x U(1) 2 SU(2) /U(1) = CP.
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Therefore, if we remove a point from Gro(Ty M), it becomes contractible. We conclude

that C qL is weakly equivalent to C{Jh.

6.3 Orbifold Restriction Maps are Fibrations

Suppose we have an embedded orbi ball B(p.) C (CP121 . centred at the singular point
De € CP12,1,c' Let Symprlf’ii’c(B(pc)) be the subgroup of Symplf‘li’c that leaves B(pc)

invariant. The following holds, just as in the smooth case:

Proposition 6.3.1. The restriction map

Sympi .(B(pe)) — Symp™®d(B(pc))

s a locally trivial fibration.

Proof. We will use Palais’ result ([39]-Theorem A) and find local sections for the restric-
tion map. We need to show that for any f € Symp*®d(B(p.)), there is a neighbourhood U [
of f and a local section o : Uy — Symp‘fldjc(B(pc)) such that o(u)o f = u for all u € Uy.
In fact, it suffices to find local sections in a neighbourhood of Id € Sympred(B(pC)),
since we can get to any other neighbourhood by conjugation (Symp'd(B(p.)) being a
topological group). The identity map Id € Sympred(B (pc)) has a local lift I, (defined up

to an action of Z.) that fits into the commutative equivariant diagram

By—<—~ B
B(L)i%(ztac),

where By C [70 is a smooth ball centred at 0 € C2 in the uniformizing chart (70, and
By /Ze = B(pe). It's easy to see that I. must be an element of the local Ze-action, so

we have

Tc € Zc C SympZC(BO)'
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Observe that the group SympZC(BO) is locally contractible because a neighbour-
hood of the identity is homeomorphic to a neighbourhood of the origin in the space of
equivariant closed 1-forms (this follows from an equivariant version of Weinstein’s La-
grangian neighbourhood theorem). Thus, there is a neighbourhood Uy, C SympZe(By)
of jfc that retracts onto it. If we fix a deformation retraction r¢, then for any fc €
SympZC(BO), r¢ defines a canonical (equivariant) path taking fc to I.. This path is
generated by a Zc-invariant Hamiltonian H : By — R. Extend H by a bump func-
tion that vanishes outside of a neighbourhood of By. The corresponding Hamiltonian
isotopy ggt : (70 — (70 is Zc-equivariant, supported in a neighbourhood of By, and its
time 1 map restricts to fvc on By. Since ggl : (76 — (76 is equivariant, it descends to a
symplectomorphism

¢1:UC_>UC

that is supported in a neighbourhood of B(p.). Extend it by the identity (still calling
it ¢1) to get a global symplectomorphism preserving B(p.), i.e. ¢1 € Sympliei1 (B(pe)).
Note that fc : Bp — By descends to a symplectomorphism f € Sympred(B(pc)) and ¢1

is an extension of f. Hence, the above construction produces a local section o : Uyq —

Sympi®{! .(B(pc)) by defining o(f) := ¢1. O
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Concluding Remarks

In this thesis, we’ve primarily been concerned with the weighted projective spaces (CP12 be

and their reduced symplectomorphism groups Sympﬁegc. From this, we were able to probe

some embeddings spaces of balls into these orbifolds. This begs the question: What

red
a,b,c

when a # 17 Well, we expect it to be homotopy equivalent to

red
a,b,c

about the case Symp
T2, Initially, our opinion was that in order to probe the more general group Symp
we had to resolve all three singularities and then try to understand the subgroup of
Symp(R,p ) acting as the identity near each configuration of curves resulting from the

resolution process. This is a more difficult problem because:

(1) The complement of this configuration of curves is no longer a nice symplectically

convex domain.

(2) More importantly though, understanding which exceptional curves in the full res-

olution are J-holomorphic for all tame J poses a more difficult problem.

But it turns out that this may not be necessary. In fact, it should be sufficient to resolve
only two of the singularities because then the complement of the resulting configuration
in the resolution is a symplectically convex set that can be retracted into an orbi-ball.
But we now know that compactly supported symplectomorphisms of the orbi-ball form a
contractible space [21]. So it seems that this approach will work, but the details haven’t

been worked out yet.
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