Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1992

A Reconfigurable Multicomputer System:
Implementation And Performance

Paul Anthony Smeulders

Follow this and additional works at: https://irlib.uwo.ca/digitizedtheses

Recommended Citation

Smeulders, Paul Anthony, "A Reconfigurable Multicomputer System: Implementation And Performance” (1992). Digitized Theses.
2152.
https://irlib.uwo.ca/digitizedtheses/2152

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for
inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca,

wlswadmin@uwo.ca.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/disc?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/2152?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca
mailto:tadam@uwo.ca,%20wlswadmin@uwo.ca

The author of this thesis has granted The University of Western Ontario a non-exclusive
license to reproduce and distribute copies of this thesis to users of Western Libraries.
Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario’s
institutional repository (Scholarship@Western) are solely for the purpose of private study
and research. They may not be copied or reproduced, except as permitted by copyright
laws, without written authority of the copyright owner. Any commercial use or
publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this
thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the
original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information:
E-mail: libadmin@uwo.ca

Telephone: (519) 661-2111 Ext. 84796

Web site: http://www.lib.uwo.ca/

A Reconfigurable Multicomputer System:
Implementation and Performance

Volume 1

by

Paul Anthony Smeulders

Faculty of Engineering Science
Department of Electrical Engineering

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario
July 1992

© Paul Anthony Smeulders 1992

o
nationale
.*' Nahondl.ibrary g’uwm ional
Canadian Theses Service Service des théses canadiennes

Ottawa,
K1A ONa

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduces, loan, distrfbute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis avallable
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irévocable et
non exclusive permettant 4 la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére st sous quelque forme
qQue ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve fa propriété du droit d’auteur
qQui protége sa thése. Nita thése ni des extraits
substantiels de celle-ci ne doivent étre

imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-75380-3

Abstract

Architecture of the computer has always been dictated by the attribute considered the
most important during its design. The classical von Neumann computer system was the
consequence of a quest for reliability; the modern multiple-processor architectures have
resulted from a search for performance. While the modem system’s existence is based on
its relative reliability, its efficiency depends upon the match between the problem’s inherent
structure and the system’s architecture. The architecture of a typical multiple-processor
machine is fixed: essentially it either supports simultancous, or sequential task solutions
with efficiency. Since most computer-tractable problems are neither purely parallel nor
serial, the machine whose architecture can be configured to match the problem would offer
higher performance in a broader range of applications than its fixed-architecture counterpart.
Clearly, a real-time reconfigurable machine would then provide an optimal

problem-architecture match.

This thesis introduces a research-oriented, high performance, Reconfigurable
Multicomputer System (RMCS), which combines versatility, connectivity, and incremental
expandability. The prototype system that has been designed, implemented, and
characterized, comprises an elemental cell of four autonomous processors (slaves), an
Interprocessor Communication Network (ICN) that supports the reconfigurability, and a
network controller mnodule. A supervisory processing unit (the master), provides the slaves
with instructions and data for a task, and synchronizes their activity. The ICN features a
number of Programmable Signal Routers (PSR) which were designed and fabricated at the
silicon chip level to implement the unique architecture. The ICN provides unidirectional
and exclusive data communications among the processors. The system is expandable by
replicating the elemental cell; a single master is employed for systems of any size. The

chosen architecture warrants eventual VLSI implementation of large multi-celled systems.

iii

A prototype of the reconfigurable multicomputer has been built and the characteristics
critical to its performance and future optimization determined. The PSR electrical
behaviour, interprocessor data communications, synchronization overhead, and
computational performance have been tested. The performance tests, chosen to encompass
typical applications, include matrix operations, Fast Fourier Transform computations,
frequency domain filtering, and alternating series calculations. The tests utilize various
computational and control strategies, which exploit the system’s reconfigurability and
demonstrate its efficacy. The performance advantage of the RMCS architecture is compared
to that of a congruent uniprocessor, executing the same task, yielding thus a speed-up factor
as the main measure of the performance increase. The experiments evince the effect of the
ICN and control strategies on overall performance. Results may be scaled for systems of

different size and sophistication.

The RMCS performance speed-up is task, problem-size, and control-strategy sensitive.
Nearly ideal speed-up factors were obtained for parallel matrix multiplication, as well as
for alternating series computations using parallel/pipelined mode. Parallel FFT tests yielded
speed-up factors from 2.7 to0 4.2 for 256-point complex series. The frequency domain
filtering experiments took greater advantage of the system’s reconfigurability, resulting in
improved performance. The experiments provided sufficient data to develop an accurate

performance model.

The study established the viability of the reconfigurable multicomputer architecture

and demonstrated its advantages in scientifically-orierted computations.

iv

Acknowledgements

The author would like to thank his Chief Advisor, Professor Z. Kucerovsky, for his
guidance, enthusiasm, and extraordinary patience throughout the period of study. Professors
LL Inculet and W.D. Greason contributed significantly by serving on the advisory
committee, and for this, the author extends gratitude. Much appreciation is due to the
graduate students of Physics and Astronomy Room 109, who not only contributed to the
success of the project, but enhanced the student-life experience by being good friends
throughout. They are: Kenneth Chum, Adrian Li, Jonathon Reis, Dave Stewart, Frederick
Tang, and Anthony Wu. Dave Sutton’s contribution cannot be overstated, and the author
is forever in his debt. Finally, the author would like to thank his family and friends for their
support and patience.

The author appreciates the financial support provided by NSERC throughout the period

of research.

Table of Contents
Certificate of EXAMINAtIONccciiiiiiinniiiiniecniinrssensseensersaecsessneessessssssseessassnsens ii
ADSITACE ..uvreceecrinirticcesanescsneetossensestassessaesetessesssessnsasseesseessnssasassnasssesssssrasossssans sos iii
ACKNOWIEAZEMENLSocoiiniiiiiiniiniitcen i cctcreesenestente s eraessesssesstssbestassaassssessessens v
Table Of CONIENEScooiiiiiiitiiiniitestie et sece e st seecesesaneasesessssssesesnasssnssnanses vi
LiSt Of FIBUIEScconmminimniiniininiissninnic e sisssessmsamensssesssssssssssssssssnns xii
LiSt Of TADIEScooeeiiiinininiiicccrennntece ettt s sess e s tessstsastsssnsssesesanescansansssennsne xvi
NOMEACIALUTEooiieeccriiettncte e sirtseetee s e et tessasensnesstassasssasssssessnsssnessenansassaessses xviii
1 INOdUCHONocciiriinnmecntiisiinssisniniieneestisinnsssne s sbs s sbsssansessssasssonssssesonssssssnsas 1
1.1 General INtroduCHONcoocvveinieiiinccseeneteniesicentennssnoseeenssnasssasassssesssenne 1
1.2 Von Neumann Class Machinecocevvicoieinrciicnannacinnecnesescnessessaenens 5
1.2.1 Technological Feasibilityccceeevieeiniinirneneenreecineeseeneresseeieresanene 7
1.2.2 Advantages and LIMitationsccccccooveniimieiiriecnvinnnnenrmreeneecesenenns 7
1.3 High Performance COMPUIETSccocciimenninuirinsenncssteieraemsmssescsseestasesases 8
1.3.1 Problem CharaCteristiCscoceevvereeriernniensisraereetssscscesercsnersaesssnes 9
1.3.2 Pipelined SyStemsco.ccuiivviiiirircniictitnetec e scseseceessnc s 12
1.3.3 Synchronous Parallel Systemscoccconmieeniienniiincnniens cevvrrecienene 14
1.3.4 Asynchronous Parallel Systemscoovirinriniiiirniiniecccinciienns 17
1.3.5 Switching Networks and Reconfigurable Systemsccccccceeeceee. 20
1.3.6 The UWO Reconfigurable Multicomputer Systemccccoccevvienanans 26
1.3.7 Objectives Of the StudYcccvvveeecieviirriiteeecieiiinr et e e 30
2 Theory and Backgroundccccecceeiiimnrmceeccensenincricseneioiesesnssssssssesssssenssnnranes 32
2.1 Computer PErfOrmMancecocccimiimnscsissinsnsinsneniiossssssssssssssesisss 32
2.2 Performance Tests for the Reconfigurable Systemc.cocoevnceinurinnennce. 35
2.2.1 Matrix Multiplicationccovvuemeeenivrnsvseveieciiriniisinsessine s cesssens 36
2.2.2 Fourier TransfOrmscceeeeocenicneniirrnienirtesisstansaseesecssesesssnasmesenns 37
2.2.3 Frequency Domain Digital Filteringcccocovvvnvvvvcnnnicninierenees 49
2.2.4 Alteating Series Calculationscocecvciiininicnnnirccinienceiiennnens 52
2.3 Operational Overheadcocvvmeniivnsnenmninnvecnninciiniessiseisssas 54
2.3.1 Reconfiguration Overheadcoovvrnevueenininvninnneniieisnisesnnns 55
2.3.2 Processor Synchronization Overheadccocovvvvnirvivnvinccccnnnen. 56
2.3.3 Data Communication Overheadcoocvevvvcciimirrvncicrnaee. 57
F PTOLOLYPE SYSICITI c.evvisiernsnssnsssnsaisssrsessmssssssnssssssasessnsasssssenesmsnsassnssessassssssssssssnsas 59

3.1 General System DESCTIPUONccccueeirvimeinniisiisininiircsnsssiesssieienseressasnnas 59

3.2 Autonomous ProCesSOr Cellooiiieieeeeiiiiiiaceeiiieeseessseesessssasnsessessssssassassse 61

3.3 Programmable Signal ROULETciiiiiies eoniiniirncsecnessessoneensssennens 66
3.3.1 Functional DeSCTIptioncocccciiineninssseissnnssneissnessssscsssesossassssssne 66
3.3.2 Device OPEIALONocuciceemreccceceeenesscsssssssssssessesassonssssssssssssosssosses 68
3.3.3 Internal Design of the PSR ... 72

3.3.3.1 Input Bonding Pads and ESD Protection Network 72
3.3.3.2 Output Circuits and Bonding Padsccccoueeivienrncsecssscsvesaes 73
3.3.3.3 Data LAICRESccvviiveinnnsiniisniisssnssnssassesassessassasaesansssssssssnssssss 74
3.3.3.4 Data Path Routing Multiplexercuivecniinvrcscscnrasncsenes 74
3.3.3.5 Handshake Feedback Control LOGICccemvvnseeiiinnunsusacranes 75
3.3.3.6 Buffersccccevvveevenunnne ceeesseresessssnsssasesenessassnenssasenssanss 77
3.3.3.7 Power Distribution 77
3.3.4 Implementation and Fabrication ressessesssassases 77
3.3 4.1 Pad Layout ... i secssecetsassensesmsosnessansansasensans 78
3.3.5 Interfacing TeChDiQUEScccovvuineirncmnrrnsncsensiniresnnicnssseessnsssssseresases 78
3.3.5.1 Control Processor INtErfaceccceeveceeevreerscecscvssesecssesssssssnansons 79
3.3.5.2 Data Port INterfacecooceevenrieniecceemniencecsceccscsccsssannneass 79
3.3.5.3 Data Path-Width EXpansioncc.ccccceceriesnssenscesoncnsssnsassancse 80

3.4 Interprocessor Communication NEIWOTKccccvveiiiirniieirsessncssoseneneansasene 81

3.5 Network Controller Cardcoovecesicsneriricsssensessnssosssssessssssssssssnsssonsonns 86

3.6 Service ReqUESE BUScccevriieicieieinersnssenscnsssisnsssssnsosssonssnssnssanssasrassnsssassasse 88

3.7 System Software for the Reconfigurable Multicomputerccueueuee. 92
3.7.1 Gencral DesCIIPLONcococoeiiieecinnnceesienisesensnssssuansessssnrossssssassasase 92
3.7.2 System REQUINCIMIENLScccuccerinenincssnsunssnsissessisssssssnsssssessrsssssssses 94
3.7.3 System Program EXeCUtionccccccececeersuisircnrsnsseccnscessassssossssnsones 96

3.7.3.1 Master Monitor Program Initialization rrsnsersessssnssssssesassssesse DO
3.7.3.2 Master Command Handler ceessessssontssssstorsssrsssonosas 97
3.7.3.3 Master Command Implementationsc.cccccceceevecvemeecrcnenennea. 98
3.7.3.4 Master Serial Data Input, Output, and Code Conversion
ROULINEScoirviivcirsiinectisaiciecesssssscsssssssssossssssssssssnssssonsannss 98
3.7.3.5 Error Handling and System Support cvesnsesssessanas 99
3.7.3.6 Slave System Programcccooceciieiniisnenssssacscescssnssnessossaneses 104
3.7.4 TRAP Exception Service ROULNESccccoueereecninnnnrcrccsrecsnsrnsenanss 108
3.7.4.1 TRAP #0 Function (Master only)ccccoimnissicnsnscvsinnssssinssnns 108
3.7.4.2 TRAP #1 and TRAP #2 Service (Master and Slaves)c...c..uo. 109
3.7.4.3 TRAP #3 Service: SRQASRT (Slaves only)ccccecevviereincreennes 109

vii

3.7.4.4 TRAP #4 Service: ADDRBYT (Master and Slaves) 110
3.7.4.5 TRAP #5 Service: INDATA (Master and Slaves) 110
3.7.4.6 TRAP #6 Service: OUTDATA (Master and Slaves) 110
3.7.4.7 TRAP #7 Service: SNADBYT (Master and Slaves) 11
3.7.4.8 TRAP #8 Service: NETCONF (Master only) ..c.ocoeeviinvrennnenne 111
3.7.4.9 TRAP #9 Service SRQACK (Master only)cccovecveevecennns 111
3.7.4.10 TRAP #14 Service: ABORT (Slaves only)cccceeeevreenannen. 113
3.7.5 Program LiStiNSccccetrrnrucaesnrnssnrossssiessesusasassossssessisesnsaasrssssassasseans 114
3.8 Processor Synchronization SIrategyccccveeeiirerssnerirensserscnsssrescessseeseans 114
4 Experiments ceeesesssteasantesttesanet assaat st eranasnsesetaaasotansaassranans 119
4.1 Hardware SyStem TESIScceccineecierinsacsiisecnnnnnsosananescoressassssnssssassassassssssanns 119
4.1.1 Programmable Signal Router Device Characteristicsc.oceeeercune. 119
4.1.1.1 Propagation Delay Time Measurementsccoociceiivececinivnnnns 120
4.1.1.2 Data Set-up and Hold Time Measurementsccceccervereecnnen. 120
4.1.1.3 Reconfiguration Delay Time Measurementsccccooveeneneen. 121
4.1.1.4 Port Output Enable Delay Measurementsc.cocceveeeevcincnnnene 121
4.1.1.5 PSR Device Characteristics: Test Resultscccevcirencncinenaan. 122
4.1.2 Interprocessor Communication Network Characteristics 122
4.2 Performance Test Measurement Methodooooocerirvvieccnnciecreecenaen, 123
4.3 Data Transfer Rate MEASUICMENLc....coceereerienieneierereierenesnessssesnessnsasnans 125
4.4 Processor Synchronization Overhead Measurementocoececiieccninsenncns 129
4.5 System Performance Testsccccovecrirernnccreresnssnmieninississsmeesesesncsses 129
4.5.1 Matrix Multiplication Performance Testsccccvivvererrnicccrnsennnnae 130
4.5.2 Fast Fourier Transform Performance Testscccocccceveeiiriesnsnesensncncans 140
4.5.3 Frequency Domain Filtering Performance Testscv.ueeeunnenee. 146
4.5.4 Alternating Series Calculation Performance Testsccoccocceeencnnen. 15€
5 Conclusions and Recommendationsccccecervericeseriuosensicsesenesencsessscnosecseosees 160
5.1 Programmable Signal Route: Device and Interprocessor Communication
Network CharacCteristiCscccvrerrerierensssinisitnrenrcssensssssasonssssrsncesens 160
5.2 Data Transfer Rate Performance testscccoveecvrnmvcinsininccsnnciccsnsncne 161
5.3 Processor Synchronization Overhcad measurementsoccovveensvervesnnannne 162
5.4 Matrix Multiplication Performance testsccccccmvmeervivrvrccrvnsicsersncenenns 163
5.5 Fast Fourier Transform Performance testsccceeeuermncennisnsunsvesmnnsassuees 169
5.6 Frequency Domain Filtering Performance testscceeeeririnscreesssrennnnns 175
5.7 Aliernating Series Calculation Performance testsccceccivniicnvnnsssunssnsanenas 176

viii

5.8 CONCIUSIONScocieriiiiiiiinnininrsicsiniiisssssssnmsssnsesssssarsssssnsssnssassssssnassssnsonsesasas
5.8.1 PEIfOIMANCEcuociiianrcccrenncreissessensssstrentsassnssssssessassessesassssssssssssssses
5.8.2 Reconfigurability, Cellularity, and System Expansioncccceenuee.
5.8.3 Suitability of the System for General Computationscceeernenees
5.8.4 Suitability of the System to Other Applicationsccoceveseceiserens

5.9 Recommendations and Future Research ...,
5.9.1 Increasing System PErfOrMANCEc..occcevuenvcnsnrecsnssessssesseesssnassosenes
5.9.2 Other Applications for the Systemccvcninnviinscsicsescreesesnans
5.9.3 Software Issues: Programmability and Controlcoceceueerneecnnas

5.10 Concluding COMMENLScoviivricemsecasiessessisnssnssssssssssssssa- sasaosssensonssnsisese

Appendices

Appendix A Tabulated Experimental results.........c.coeeevinnniscsrmccsersncsssensaenees
Appendix B CPU Card Schematic Diagramscocccvevinisiiscnnscesnnscsvrsnsas
Appendix C Memory and PI/T Card Schematic Diagramscccceveurevncnce
Appendix D Serial Input/Output Card Schematic Diagramsccccecereeveerrriens
Appendix E Printed Circuit Board Designs and Hardware Specifications
Appendix F Interprocessor Communication Network Schematic Diagrams ...
Appendix G Network Controller Card Schematic Diagramscccoueeeeneee.
Appendix H Master Monitor Commands and Trap #15 Utility Routines
H.1 Master Monitor Program Command syntax and functions
H.1.1 Register Examine/Modifyccccccevermimnncencrscmracscnssacsansesnnnsnens
H.1.2 Display Address Space CONENtScccceecrervvossesssracsesssesescssnas
H.1.3 Memory Examine/Modifyccceerererrnniussscnnnascscsncssessssseonnes
H.1.4 Fill Memory with Datacoommrmrcrcenrcressscennraecsesessosens

H.1.5 Talk to a hOSt COMPULETccccevvrmcansencnruerssvsscasessssasaaconces
H.1.6 Load an S-format record into memoOrycccccoevesneneccarcenerene
H.1.7 Breakpoint SEt/REMOVEcocoreereccnennnresrseesssssssssessassssrssssssssseses
H.1.8 Call a Supervisor State Programcccccoccesecssusenscsaesssoesarasens
H.1.9 GO execute a User State ProOgramc.cceeeeerercnsccesaenraccsseoseons
H.2 TRAP#1S Handlereevereciriniiieccnesenesssssionssnsescnnsnsssssessessns

Appendix 1 Master Monitor and Slave Program Listingsccccceeccrvenennen.
L1 Master Monitor Program Listingcccceceveceenvisisussususesnceconsesssssssens
1.2 Slave System Program Listing veotssasstsasssansessssstastsssasesatasaestrsastsatass
Appendix J Data Transfer Rate Measurement Programccoeciiviivsisnennen

ix

Volume II Title PABEcovieiiviniiiiiiniiniiisninessacssssisessnesasesssstsssssesssnsaesassasasnne Xxi
Table of Contents (VOL II) ...ciiiinininiiimieeeniiinsieiinesnssnttmmeesissnssessssssssesesassesessonasans xxii
Appendix K Matrix Multiplication Test Programs and Input Data 333
K.1 Program MATFP1: Uniprocessor Matrix Multiplication 334
K.2 Program MATFPM: Multicomputer Matrix Multiplication, In-order
data COUIECHONcoveneiiceiciritrstirsesnsstneenessneneesscana e seesasnesaetesnanas 340
K.3 Program MATFPFC: Multicomputer Matrix Multiplication:
First-Come, First Served data collectioncccoccaenrirerverernnnnns 351
K.4 Input Data: FPINDAT]ooiniinnniinccnccrcnnenecansserencsenseesasaeenne 363
K.5 Input Data: FPINDAT2c..ooieoineiiniecciieninienrnsessesesssssesassssssesssnsens 369
K.6 Input Data: FPINDAT3cc.coicinrinmnncrcmeeseinmnsessssessaassssssssessesssns 375
Appendix L FFT Performance Test Program Code and Data 381
L.1 Program OPT256 Uniprocessor FFT test programcccceeuevvevennen 382
L.2 Program PFFT1 Multicomputer FFT test program #1.ccoevvenee 388
L.3 Program PFFT2 Multicomputer FFT test program #2. 395
L.4 Program PFFT3 Multicomputer FFT test program #3.cc........ 402
L.5 Program PFFT4 Multicomputer FFT test program #4.coveeurne 409
L.6 Program SLVFFT Multicomputer FFT test program: Slave Programs. a7
L.7 Input data: NULLDCcccoiirviinernnnisnonsescsninscsonssssscsnssnssssssass sesns 433
L.8 Input data: FULLDCoeieeeeeraenrecseeseessesssassnssseserssessnesaens 437
L.9 Input data: MAXDICooiiircecnininneionneeeenaeseecsssssnsssssssssssssnsns 441
L.10 Input data; COST ... cceenreranseescsresest e e st raaesssesasnansesnone 445
L.11 Input data: COSS ... ooeireceiiieeninecenerescsnesesseensstessesesssssnsessanees 449
L.12 Input data: NOISEcoomerecccreecsvnnaececesnesesnrsasieeseaesessane 453
Appendix M Frequency Domain Filtering Performance Test Program Code
ANA DALAoooerrecceineiininnrceeesiirrescisssessaesrcasacesrsnenessanssessasssaesssssenens 457
M.1 Program SNGFNOMS: Uniprocessor Frequency Domain Filtering
PIOZIAIMN ..c.ovoniiecniceiniccncassossnaisnnasesstassesseosssssssssnassesnsnssssnsnsssassn 458
M.2 Program FILTER: Multicomputer ¢ requency Domain Filtering
Program: distributes filt2r coefficients to slave memory 467
M.3 Program PFILNOM1: Multicomputer Frequency Domain Filtering
Program #1Aocvivcmniiciciissiiisnsase s ssassssssssoresensssasseas 470
M.4 Program PFILNOM2: Multicomputer Frequency Domain Filtering
Program #2A ...ttt ettt st srssesserae 476
M.5 Program PFILNOM3: Multicomputer Frequency Domain Filtering
Program #3A ...ttt sttt sissssas st sesa s stnes 482
M.6 Program PFILNOM4: Multicomputer Frequency Domain Filtering
Program #4Accooiviiviiinrnesnnieressisssssasvsssssssssssnsseasssssssssssassansass 488
x

M.7 Program SLVNOMES: Multicomputer Frequency Domain Filtering

Program: Slave programs for PFILNOM?ceeinvinnennenceennas 495
N..8 Program FSTFLiNM: Multicomputer Frequenc; Domain Filtering
Program #1B ..ottt s s e saaetee 520
M.9 Program FSTFL2NM: Multicomputer Frequency Domain Filtering
Program #2B ...t saae s st eassn s snassrans 526
M. 10 Program FSTFL3NM: Multicomputer Frequency Domain Filtering
Program #3B ...ttt se sttt ses s e e saes s 532
M.11 Program FSTFL4NM: Multicomputer Frequency Domain Filtering
Program #4B ... st s snans 538
M.12 Program FSTSLVNM: Multicomputer Frequency Domain Filtering
Program: Slave programs for FSTFL?NMcccccrvnicvnncnnnene. 545
M.13 Filter Data: ALLPASS ... cireeceiienenennesneosnnencassasassseons 572
M.14 Filter Data: NOPASS ... critennnreeenienrecrecenencssasssasessessasseans 576
M.1S Filter Data: LPHLEFooicinecrennensrienneesressecnnesnsssassnsesnases 580
M.16Filter Data: HPHLEF ..o ceereeeeraene e receeecscssnasnssnnssnens 534
Appendix N Alternating Series Performance Test Programsccceceveneanene 588
N.1 Program PI4INFO Uniprocessor Alternating Series Test Program,
Optimized sub-tasks, measured sub-task periods.cccoveeeeenneen. 589
N.2 Program PI4STST Uniprocessor Altemnating Series Test Program,
Optimized sub-tasks, unmeasured sub-task periods.ceerueeeen... 595
N.3 Program PI4MTST Multicomputer Alternating Series Test Program,
Optimnized Sub-tasks.ccccvirciisiirssinrnniesnseesecsaessnseeseereessnesssnaes 599
N.4 Program PI4LSTST Uniprocessor Alternating Series Test Program,
Lengthenec : b-tasks.cccvvviimiinmricicccteccetriciecseeseneeens 610
N.5 Program PIMLMTST Multicomputer Alternating Series Test
Program, Lengthened sub-tasks.ccccrererseveceseecreccrnnnecerecsonens 615
Appendix O Two-Dime asional Fast Fourier Transformsc.ccoveveceennnn. 626
REfEIENCESoveeiiiiniiciiis cvctristssrescee s sisae st esestesesreeas st sssssessensessssessensossersensan 631
VA ottt sttt e s sbssssstasssacsssesea st oste e ss s e ss s sassaesseeassnen s e tessassrenasanen 640
xi

1.2.1
1.3.1.1

1.3.1.2
1.3.2.1
1.33.1
1.3.3.2
1.34.1
1.3.4.2
1.3.5.1
1.3.5.2
1.3.5.3
1.3.54
1.3.5.5

1.3.6.1
1.3.6.2
1.3.6.3
2221

2222

2223

2224

2231
224.1
3.1.1
321
322
323
33.1.1
3321
3322

List of Fi
Organization of von Neumann class machingccceecveeneeeennnne 6
Calculation of Z; using unconnected, sequential adder/multiplier

ClEMENLS ..ttt ettt rr e e et aeans 10
Calculation of Z; using single-function elementsccceeevveenvennnen. 11
A 4-stage linear pipeline and its timing characteristics 13
Generalized SIMD parallel machine organization 15
Mesh, Cube, and Tree interconnectionsc.cceeeeerecsaesesnecsernnans 17
Generalized MIMD parallel machine organization 18
Typical bus-connected multiprocessor systemccccoeceeceeirerennanns 19
Crossbar connected, shared-memory multiprocessorcceu.e. 22
Orthogonal multiproCessor SYSIEMcccceoveceeiiieererseceeseisserieeranssnns 23
Omega network with N=8 ...t 25
Generalized cube network with N=8 ... 23
Rectangular arrangement of processors for Snyder’s

reconfigurable SySemccooviiiiciiiecciii e 25
Reconfigurable Multicomputer System Architecture 28
Interprocessor Communication Networkccoccvveeevveeciiivenccnnnnan, 29
PSR Configurationsc.cvveevevseirenmsennnivenssesreesrsnnssssssersssseesssnsenes 29
Signai flow graph of an 8-point, radix-2 Cooley-Tukey FFT

CACUIALON ...ttt s e ae e 42
Cooley-Tukey 8-point, radix-2 algorithm, data in bit-reversed

OFAET oooiricinitcccrt ittt ctree e st ssstmnsestaeessore s raasae s s assssesaasssnsanses 44
Task assignment among four processors for 8-point FFT

CACUIALON ..ccvrneniiiiiisiiii st st e 45
Signal flow graph of four processor, parallel FFT algorithm

(NZ8B) ettt st sesssr e s anee e s svessssaesneas 47
Frequency Domain Filteringcocoecvvvveecininicvenninveniccesicairnne, 50
System configuration for altemnating series calculation 53
Block diagram of prototype SyStermcoeceveeeecscerveneceiesereccrsnescens 60
Block diagram of APC CPU moduleccocevvivuecvevecvcnrenienrnrnnen, 63
Block diagram of APC Memory and PI/T module 64
Block diagram of Master Processor’s Serial /0 module 65
Programmable Signal Router block diagramccccccevvrnivncneeen. 67
PSR Configuration Control Word bit assignments 69

PSR Configurations and corresponding Control Words (X=don’t

3323
3.3.24

3.3.3.1.1
33.3.2.1
3.3.3.3.1
3.3.34.1
3.3.35.1
3.34.1.1
3.35.1.1
3.35.21
33531
3.4.1

34.2
343
351

36.1

3.6.2

3.7.3.1.1
3.7.3.5.1
3.7.35.2
3.7.35.3
37354
3.7.3.6.1

3.7.3.6.2
3.7.49.1
3.8.1

4.1.2.1
4.3.1

432
433
434

Data Transfer Cycle timingcccomerremiesninninneencinsinsssinnnes

Data Transfer Cycle timing, MC68230 I/O ports (interlocked
handshake MOdE)ccccceeeriieirinninisnsninsiseerinieiresasnnessanssssnsenans

Inpuc Pad circuit diagramoeeiiineincncensiinninninnsesensssnnen
Output Pad circuit diagramceevneenniniiceiicniccnceneee
Transparent Data Latch with active-low enableocovenniennncn.
One-bit, 2 X 2 data MUltPIEXETccovvminiricnnensnrennneeesenressaenesennas
Handshake Feedback Control Circuitoeeeeevvenerrerrneneesensenenees
Simplified Die LaYOULcccccevisrerierrensemsesestcniessesiecsrestessesssnsnsnasans
Typical Control Processor Interfacecooeeevecieeneccrecenicncennen.
MC68230 PI/T connections to a network of PSRscoue....
Typical connection for a 16-bit systemc.ooeeeeeervinecnvinnennn.e

Block diagram of prototype system Interprocessor
Communication Networkccccovnenieenncinnncccinecsisscenn.

Available processor configurationscoeeeceeieneiererrerseenssennnnas
Expanded system with eight slave processors and master

Block diagram of Network Controller Card and SRQbus
INEEITACES ..eovvrererreccccsirarunnsseniiseicsaesessnsissnesssnessssnenessnsesssas sesnessasn

Timing Diagram of SRQbus Protocol: single requestor
Timing Diagram of SRQbus Protocol: multiple requestors
Flowchart of Master Monitor program initialization
Flowcharts of error-condition processingcoccesvecsivsssersssrecrasees
Flowchart of Trace exception proCessingcccccccceeecircrecsscnenens
Flowchurt of ILLEGAL instruction exception processing
Flowchart of Breakpoint Set/Remove command processing

Representation of Slave Program Execution, showing state
LPANSTHONS ...oovroerreniesracrsncrsriosssssrsssasssansssersssecsssssssssassessansssssssns

Flowchart of Slave System Programccoceiiniiiicnecnincnecscecane.
Flowchart of TRAP #9 (SRQACK)) Service Routine

Timing chart of events described in processor synchronization
EXAMPLE ..coovviirninrnreirnisinneesssnosssersssssssnssssnssnsssssnansssssssassnssssnssons

ICN Signal Propagation Delay characteristicsc.ccccecvevurreennnnns
Flowchart of Data Transfer Time measurement program: Master

oo

Flowchart of Data Transfer Time measurement program: Slaves ..
Data Transfer Rate test results: Master—Slave(s)cccccecveuvveuennnee.
Data Transfer Rate test results: Slave—Masteroccvvevervrcvvnnerree

Xiii

435

45.1.1
45.1.2
45.13

45.14

4515

4.5.1.6

45.1.7

45.1.8

45.19

4.5.1.10

45.1.11

45.1.12

4521
4522

45.23

4524

45.2.5
4.5.3.1

4.5.3.2

45.33

45.34

45.35

Data Transfer Rate test results: Average transfer times
Floating-point Number formatcccccoviriininieniinnenicnesneeseans
Matrix Multiplication Slave problem assignment

Simultaneous versus Overlapped execution for Matrix
MultipliCation ... iecninniisnstcnesneeseee s e sa e e e aseas

Flowchart for Uniprocessor Matrix Multiplication performance
BEST c.veeeesteannensieersessstsssssssstensmsneessam e saesasesesssesessssnssansessasassssnsnsnes

Flowchart for Multicomputer Matrix Multiplication performance
test: MaSter PrOBIAMccvieieeenssieiencsesssianerensoranesssessnsaessasennens

Flowchart for Multicomputer Matrix Multiplication performance
test: SIAVE PrOBIAIM ...oueieeiicnesectieneccnteeseeereneseesesranassesanneses

Matrix Multiplication tests, Uniprocessor and Multicomputer
comparisons, input: FPINDATI ...

Matrix Multiplication tests, Uniprocessor and Multicomputer
comparisons, input: FPINDAT2cccoininiineniiicniieeeene

Matrix Multiplication tests, Uniprocessor and Multicomputer
comparisons, input: FPINDAT3 ..o

Matrix Multiplication tests, Multicomputer speed-up factors,
input: FPINDATT ...ttt ercece e e sneeenee

Matrix Multiplication tests, Multicomputer speed-up factors,
input: FPINDAT2 ...

Matrix Multiplication tests, Multicomputer speed-up factors,
input: FPINDAT3cocviericetenrenntisnennecsrsnnssessssasssosanesaneas

Flowchart for Uniprocessor FFT performance testcccceccereren.

Flowchart for Multicomputer FFT performance test: Master
PTOBTAIN ...coueurucaitinenssucsnecsscsrossssssorcanestsreneestsscnsossonsasseenrenssssaes

Flowchart for Multicomputer FFT performance test: Slave
PTOBTAIMN ..couveierrcrcrsenacnsiesssossossnseestines sessanensssossassssesnsensessnssesies

Fast Fourier Transform tests: Uniprocessor and Multicomputer
EXCCULion time COMPATISONccccceciirreniireeeriienesvssanessassonseonene

Fast Fourier Transform tests: Multicomputer speed-up factors

Timing diagram for comparison of S—8 and S—M—S filtering
SITALCZICS cevererrneiserreraruossersossissensnessorassssossesnssssssnanssesasessssssnrestes

Flowchart of Uniprocessor Frequency Domain Filtering
PETTOTMNANCE TESEccveeeriireerierneerienrersseecnnessesansssseesssessssssssesarens

Flowchart of Multicomputer Frequency Domain Filtering
performance test: Master program, S—»M—3S strategy

Flowchart of Multicomputer Frequency Domain Filtering
performance test: Slave program, S—M—S strategy

Flowchart of Multicomputer Frequency Domain Filtering
performance test: Master program, S—S Strategyceeveieaes

xiv

453.6

4.5.3.7

4.5.4.1
4542

4543

4.5.4.4

4545

54.1

54.2

5.5.1

5.5.2
E.l
E.2
E3
E4
0.1

0.2

Flowchart of Multicomputer Frequency Domain Filtering

performance test: Slave program, S—S STAEZY ..cccccovreencnnnaes 152
Frequency Domain Filtering performance tests: summary of
average Multicomputer speed-up factorsccceeeieveccniscinniane. 154

Flowchart for Uniprocessor Alternating Series performance test ... 156
Flowchart for Multicomputer Alternating Series performance test:

MaSIET PTOBTAIMcccoviriiinriensiraniensentessseesassstssssstissessasssnassasanes 157
Flowchart for Multicomputer Alternating Series performance test:

SIAVE PIOGIAMSccccovernirnmirnessessessiassnssresseensassnsssnessncsnssssasanasss 158
Alternating Series Performance tests: Multicomputer speed-up

FACIOTS ...ccceeierreecracisnscnneasasssomescmsiessstessssessssssnssssanssssasssansssassssnese 159
Alternating Series performance tests: Multicomputer speed-up

factors (optimized) and sub-task timescceeveiiincnccncnnns 159

Multicomputer Matrix Multiplication timing: /n-order versus
First-Come, First-Served data collection strategies for unequal

slave execution timeScccccvcemrevinrmecrnennccnenseeeceneesisnensnsesanes 164
Difference between actual and calculated Multicomputer

execution times using the matrix multiplication model 166
Timing Diagram for FFT calculation, data collection strategy as

in program PFFT2c.coiiiivnivinntneniecnienneessseesenneanes 172
Predicted FFT speed-up vs. problem Sizecceiiicinienccnecnnnee. 174
Connector pin numbering CONVENLONScovvrvirvecrnnreireccsesnnnee 246
Serial port ribbon cable conductor assignmentscccceeeeiceereennns 247
Parallel port ribbon cable conductor assignmentscccceevveenienne 247
ConNeCtor iNAEXINE ...covverveiniisnninnnisnssisncssunsnessonssesssssnssessasssnsesasanse 248
2-d Discrete Fourier Transforms using a sequence of 1-d

TTANSTOIMSuveiirievrnnririnericsnererestcrntnsicessrssms s sssanessnessaesssnsanas 628
2-d Fast Fourier Transform calculation using pipelined system 629

Other Appendices (A-F) contain non-annotated diagrams (see table of contents).

xv

2221
3.3.1.1
4.1.1.5.1
44.1
4.5.1.1
4.5.2.1

4.5.2.2
4.5.3.1

54.1

All
A.12
A2l
A3l
A4l

Ad42

A43

Ad4

A4S

A4.6

A47

A48

A49

A4.10

Ad.ll
AS.l

List of Tables

Operation counts for 256-point FFTscccniieniininrnnnniennnas 48
Programmable Signal Router pin designations and descriptions 68
Summary of PSR device characteristicsc.ccccvvvcivecieccrncerenennen. 122
Processor Synchronization Time test resultscocivviicvcrercanccnnn 129
Floating-point Number special €asescvccevvnninnnniiniircceenerenannens 131
Fast Fourier Transform tests: computation time speed-up factors

SUITHNATY ..ocoiinresruneosacnssissonestosantsosssasestossonssessasessans ossesssnsasssasasns 144
Fast Fourier Transform tests: multicomputer speed-up factors 144
Frequency Domain filtering performance tests: summary of

Multicomputer speed-up factorsoovveniiiiiciinniincciieiineenes 153
Expressions for Uniorocessor and Multicomputer Matrix

Multiplication Slave execution timescccccceervveeiccnnnncnnes 168
PSR device characteristiCsc.cccvenveiieiioierinicecsicsnnccenncnecsceenenens 190
Signal Propagation Delay timescccccvviievciiinninnnncccinnnenesenenenenen 191
Data Transfer Rate performancecoooiiiiiiiiiiiiiiiiiiircieeees 192
Processor Minimum Synchronization Time test results 192
Uniprocessor Matrix Multiplication tests: measured execution

THINIES ...ooiniciieeecriei e re e e se e e emae s e sm e et e s e satase s saseeesasssnanes saee 193
Multicomputer Matrix Multiplication tests: measured Slave

exccution times, input data: FPINDATI ..., 193
Multicomputer Matrix Multiplication tests: measured Slave

execution times, input data: FPINDAT2vvvinvnninsevnnea. 194
Multicomputer Matrix Multiplication tests: measured Slave

execution times, input data: FPINDAT3ccocvinnennee. 194
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPM, input data: FPINDAT1 195
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPM, input data: FPINDAT2 195
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPM, input data: FPINDAT3 196
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPFC, input data: FPINDATI 196
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPFC, input data: FPINDAT?2 197
Multicomputer Matrix Multiplication tests: overall execution

times; program MATFPFC, input data: FPINDAT3 197
Multicomputer Matrix Multiplication tests: speed-up factors 198
Fast Fourier Transform tests: Uniprocessor execution times 198

xvi

AS5.2
AS53
AS54

ASS

A5.6

A.6.1

A.6.2

A.6.3

A.64

A.6.5

A1

A2

A3

Fast Fourier Transform tests: Multicomputer execution times 199
Fast Fourier Transform tests: Slave execution time summary 200

Fast Fourier Transform tests: Multicomputer time to solution
SUIMIMATY .eoviiriiiriieessiesississsessnesosstsssessassnessesssssasssassossessssssassnsesses 200

Fast Fourier Transform tests: computation time speed-up factors

.. 200
Fast Fourier Transform tests: Multicomputer average speed-up

7T (oo OO RRO 201
Frequency Domain Filtering performance tests: Uniprocessor

TESHILS ...ecnreninrirerrecentcnisireneterte st sssesnse st nessenssssesnessenassssnassnnes 201
Frequency Domain Filtering performance tests: Multicomputer

TESUIS SM=3S SIACEY ...oeovevrrrcecreccrrerereenreransressrsssssnsesasesses 202
Frequency Domain Filtering performance tests: Multicomputer

TESUlS S8 SIMALERY ..oovrmrecece et e 203
Frequency Domain Filtering performance tests: Multicomputer

results; Slave execution times (common to both S/M—S and

SIS SHAEGIES) ..coeoreerrerceeiciercree s e cre e nee st emeesceseaeaas 204
Frequency Domain Filtering performance tests: summary of

Multicomputer speed-up faCtOrSc.cceecveeerrrrccrerereeseeransssessenes 205
Alternating Series performance tests: execution times of division

and addition sub-tasks (program PI4INFO)ccccceececeueneene 206

Alternating Series performance tests: Uniprocessor and
Multicomputer results; optimized Slave programs (PI4STST
and PIAMTST) ..c..oeiiiiececercireccsncncsccensscse s seensncssssnsosesesans 207

Alternating Series performance tests: Uniprocessor and
Multicomputer results; lengthened Slave programs (PI4LSTST
and PIALMTST) ... eerrrciseecosesenssecrnesnsncesnssnssssnns 208

xvii

Units:

s

ms

Hs

ns

\%
VvVDC
MHz
bit
byte
word
longword
kbyte
Mbyte

Acronyms:

ACC*
ACIA

ASCII
CCwW

CMOS
CPU
DAV*
DFT
DMA
ESC
ESD
ESM
FCFS

seconds

milliseconds (10" seconds)
microseconds (10 seconds)
nanoseconds (10” ssconds)
Volts

Volts Direct Current
Megahertz (10° cycles/second)
Binary Digit

8 bits

2 bytes; 16 bits

2 words; 4 byies; 32 bits
kilobyte; 1024 bytes
Megabyte; 1024 kilobytes

Data Accept signal, active low
Asynchronous Communications Interface Adapter
Autonomous Processor Cell
American Stundard Code for Information Interchange
Configuration Control Word
Caltech Intermediate Format
Canadian Mic.oelectronics Corporation
Complementary Metal-Oxide Silicon
Central Processing Unit
Data Available signal, active low
Discrete Fourier Transform
Direct Memory Access
Escape Character (ASCII code $1B)
Electrostatic Discharge
Expected Service request Mask
First-Come, First-Served
xviit

FLOPS

ICN

IEEE
ILLEGAL
LSI
MIMD
MIPS

MSB; LSB
NCC
NMI
OE

PE
PGA
PUT
PSR
RAM
RFD#
RISC
RMCS
ROM
RTE
RTS

SIMD

SRQ; SRQbus

SRQACK
TRAP

TTL

YCC, YDD
VLSI

VSS

WSI

Fast Fourier Transform

Floating-point Operations Per Second
Input/Output

Interprocessor Communication Network
Institute of Electrical and Electronics Engiicers
Illegal instruction, MC68008

Large Scale Integration

Multiple Instruction stream, Multiple Data stream
Millions Instructions Per Second
Microprocessing Unit

Most Signficant Bit (Byte); Least Significant Bit (Byte)
Network Controller Card

Non-Maskable Interrupt

Output Enable

Processing Element

Pin Grid Amay

Parallel Interface/Timer

Programmable Signal Router

Random Access Memory

Ready for Data signal, active low

Reduced Instruction Set Computer
Reconfigurable Multicomputer System

Read Only Memory

Return from exception instruction, MC68008
Return from subroutine instruction, MC68008; or Request to Send,
RS-232C standard

Single Instruction stream, Multiple Data stream
Service Request; Service Request bus

Service Request Acknowledge

Trap instruction, MC68008
Transistor-Transistor Logic

Power supply voltage, +5 VDC

Very Large Scale Integration

Power supply voltage, 0 VDC

Wafer Scale Integration

Xix

Conventions and Operators

Asserted
Negated
Low
High
SIGNAL

SIGNAL*

(SIGNALY’
A+B

A<B
O(expr)

A modB
Lexpr |

Precedes a quantity which is specified in the Hexadecimal (Base 16)
number system. Valid digits are 0-9 and A-F inclusive.

Logically active state.

Logically inactive state.

A low TTL Voltage, <0.8 V.

A high TTL Voltage, >2.4 V.

Indicates that signal denoted as SIGNAL is a logically active high
signal.

Indicates that signal denoted as SIGNAL* is a logically active low
signal.

Indicates that signal denoted as SIGNAL is logically complemented.
A OR B (Logical operator OR).

A AND B (Logical operator AND).

f(n)=0(g(n))if f(n) < Kg(n) for some fixed number K and n
sufficiently large.

the modulo function; returns the remainder of A/B.

floor operator: returns greatest integer less than or equal to expr.

XX

1 Introduction

This chapter describes the motives that underlie the presented study, and briefly
discusses modern computer architectures. The last part of the chapter defines the goals,
objectives and scope of the thesis.

1.1 General Introduction

Since scientists first established that nature could successfully be described using
mathematics, they have sought machines with which to diminish the time and labour required
to complete the characteristically complex computations. Pascal built a mechanical device
for addition and subtraction in 1642; Leibniz (1646-1716) developed a system which could
also multiply and divide. Charles Babbage (1792-1871) is perhaps the best-known pioneer
of the mechanical calculator for his difference and analytical engines. By the early twentieth

century, electromechanical calculators were common (Wulforst 1, 82) (Tanenbaum 1, 90).

The vanguards of electronic computing were scientists and mathematicians dissatisfied
with the performance of mechanical devices in solving problems of meteorology,
spectroscopy, geophysics, and geomagnetics. J.V. Atanasoff developed an arithmetic unit
in 1939, to aid in solving partial differential equations. The super-secret Colossus, dedicated
to cryptanalysis, was used by the British to decipher German Enigma-encrypted
communications as ea.ly as 1943. The team of J.P. Eckert and J. Mauchly are widely
recognized for building the first general-purpose electronic computer, the ENIAC. It was
10 be used for calculating weapons firing tables during World War II, but the war ended
prior to the machine’s completion. ENIAC was configured to perform various functions
by physical rewiring. Von Neumann proposed the first stored program machines, wherein

a sequence of orders was stored in the same memory organ as the data upon which they

operated. The principles he put forth have survived, and to this day, we refer to a certain
type of machine using his name (Shurkin, 84) (Hodges, 83) (Wulforst 2, 82)
(Von Neumann, 45) (Burks, 46).

Since the invention of the transistor, integrated circuit, and microprocessor (1948,
1959, 1971, respectively), electronic computing has become dominant in information
processing. In a competitive marketplace, the original 4-bit microprocessor used mostly in
calculators, has grown to 32-bits, with performance and capabilities rivalling that of earlier
mainframe systems. Today, not only scientists and mathematicians, but people in business,
bankers, and publishers make use of the technology; a personal computer or video display
terminal is a familiar fixture on any productive desktop. Household appliances and
automobiles use computers which are effectively hidden from the user, yet they are
considered to be necessary. Sporting, recreational, and medical machines are used todirectly
enhance human health, well-being and performance. It is hard to find a human endeavour

that would not be irrevocably altered by the computer.

The computer not only is a tool for solving complex scientific problems, it has also
spawned new disciplines such as graphics and image processing, simulation, language
design, fractal geometry, chaos theory, neural networks, artificial intelligence, and
knowledge-based systems. The new tool has provided humans with the ability to explore
new concepts at an accelerated rate. The computing machine has truly transgressed its

original purpose, manipulating not only numbers, but also letters, symbols, and ideas.

As the power and performance of computing machines increases, the scope of their
utility expands. Man’s capacity for knowledge exceeds the rate of technological advances;
our capability for proposing increasingly complex problems exceeds the ability of current
systems to solve them within reasonable time. For this reason, the scarch for faster machines

is one of the most challenging quests of our time.

While mostly adhering to the classical computer architecture, a wide variety of
strategies aimed at increasing their performance are being studied, proposed, and
implemented. Reduced feature-size in integrated circuits, new materials, higher clock

frequencies and hierarchical memory structures are used extensively in state-of-the-arnt

uniprocessor systems. Phenomena such as wave reflection and signal propagation speed
place limits on the ultimate performance of these machines, and optical rather than electrical

systems are being rescarched (Stone, 91) (Sawchuck, 87).

Alternative, non-classical approaches to the problem of increasing cormputer
performance often utilize several, cooperating processing units. A typical multiple processor
system is organized into identical or dissimilar cells possessing a varying degree of
complexity and autonomy, that allows the system to execute the given task in less time than
with a single cell. The task allocation, interconnection and synchronization of the various
units are important factors affecting the performance of such systems. A problem which is
partitionable into identical sub-problems, each with independent data, may be solved by
processing clements simultaneously, in parallel. A problem characterized by sequences of
dependent operations may be performed efficiently by a pipeline of specialized units. Today,
it is rare to find uniprocessor designs which do not incorporate some degree of pipelining

or parallelism in their architectures.

To some extent, all machines, including uniprocessor general purpose systems, are
designs which strike a compromise among a number of factors, such as arithmetic
performance, memory addressing, looping efficiency and subroutine linkage. The
interaction of these factors ultimately determines the scope of problems for which the
machine is most adept. Likewise, for multiple processor systems with fixed interprocessor
connections, the range of applicability is sacrificed to favour optimum performance in a

particular class of problem.

The presented thesis proposes and studies a reconfigurable computer architecture,
that enables a broader class of problems to be solved efficiently by a single machine. The
architecture can be altered while the problem is being solved, while the principles of
pipelining and parallel processing are exploited to various degrees, according to the attributes

inherent in the application. The dynamic nature of the system architecture not only allows

an optimal topology to be used in solving a large problem, but its sub-problems may
themselves be executed in distinctly different configurations. The configurations used for
a given problem may be entirely predetermined by the programmer according to inherent
problem structure, or they may be dynamically determined according to intermediate
conditions. That is, subsequent optimum processor configurations may be dependent upon
the results of a previous computation. The thesis experiments focus upon the former case.
The structure of the machine is proposed with future VLSI implementation in mind; a cellular

design is stressed. Expanded systems may be realized through replication of the basic cell.

The remainder of this chapter discusses classical and non-classical computer
architectures, problem classification, and the match between the problem and machine. The
reconfigurable cell concept is described in further detail, the prototype system architecture

is presented, and the objectives and original contributions of the thesis are stated.

Chapter 2 addresses issues of computer performance measurement and
characterization. The algorithms used to examine the system’s performance are described
in general terms, and maximum theoretical performance increases are calculated for each.
Descriptions of the actual performance test programs are deferred to Chapter 4, since they

are easier to appreciate after the system’s hardware and control software are reviewed.

Chapter 3 describes hardware and software implementation details of the prototype
Reconfigurable Multi-Computer System (RMCS), encompassing the autonomous processor
cells, programmable signal router devices, interprocessor communication network, and

system control methodologies.

Chapter 4 presents adetailed description of the various tests used to characterize system
performance, as well as the results. Chapter 5 presents analyses of the performance tests
and conclusions of the presented study, with emphasis on the performance advantages
offered by the RMCS over similar, uniprocessor applications. The thesis concludes with

recommendations for future research.

1.2 Von Neumann Class Machine

The most common computing systems have their foundations in an architecture
proposed by Jdnos (John) von Neumann in the mid 1940°s. Fundamentally, he proposed
storage of a computation’s instruction sequence in the same memory unit as the data upon
which they operate. Instructions and data were indistinguishable, and were accessed
identically by a control unit. The control discerned instructions from data according to its
current state. The system did not require rewiring for each new application, since
re-programming was facilitated by writing a different sequence of instructions into the
memory. Computations consisted of arithmetic operations carried out in the arithmetic unit
and accumulator, and modifications to memory contents. Memory cells of 40 binary digits
were individually addressaole. The control e.icoded the binary address on a set of signals
linking the memory, where they were decoded to select the cell whose contents were to be
read or over-written. Address information for instructions was integrated with the operation
codes. The repertoire of basic operations included addition, subtraction, multiplication,
division, data movement between memory and control registers, absolute value, negation,
bit shifting, and both conditional and unconditional branching of control (Von Neumann, 45)

(Burks, 46).

Interaction between the computer and its operator utilized an Input/Output (I/O) system
consisting of a modified teletypewriter, magnetic wire storage units, and a set of viewing
tubes. Von Neumann linked the control and I/O via the machine’s accumulator. He required

additional, dedicated instructions to perform I/O operations, and observed that computation

and I/O could not be concurrent. Von Neumann'’s early papers on computers discuss
arithmetic and memory access in both bit-serial and bit-parallel forms, hierarchical memory
structures, instruction tracing mechanisms, and fault tolerance through redundancy. What
is commonly known today as a "von Neumann" class machine is characterized by a single
central processing unit (CPU), and a memory system linked by a bus of address, data, and
control signals. The I/O system is connected to the CPU in a similar manner, often utilizing
the same bus. The organization is inherently sequential; only a single transaction may occur
between bus-attached units at any one time. Figure 1.2.1 illustrates the structure of typical

systems.

Figure 1.2.1 Organization of von Neumann class machine.

Processor Memory Inpuv/
Output
A | T [Y)
[l Data
Bus ! Address

| Y Control

1.2.1 Technological Feasibility

Von Neumann'’s designs were technologically feasible at the time of their proposal,
despite their complexity. Bit-parallel memories were made possible by development of the
Selectron tube. Since then. magnetic core and semiconductor memories have had

considerable influence on both the power and economics of computing devices.

Other technological advances have led to increased performance of the basic
von Neumann class machine. The processor unit has been integrated in silicon, with cache
memory incorporated. Instructions still encode address information, but more flexible means
with which to specify them have evolved (addressing modes). A number of modermn
processors have instructions which operate on multiple operands. Multiple bus masters,
such as direct memory access controllers, are often used to improve the I/O and memory
systermn transaction rates. The most common multiple processor systems available are
extensions of the classical concept; a number of processors may access a memory or other
resonrces via a bus interconnection, with arbitrated access to shared resources. Despite the
fact that many of the improvements described encroach upon the fundamentals of the original
concept, the majority of modern machines can still be classified as von Neumannian, and

the term has become synonymous with bus-based organizations.

1.2.2 Advantages and Limitations

The von Neumann architecture’s advantage lies in its overall simplicity with respect
tohardware and programming. Many of its advantages stem from the technological advances
made since von Neumann, the related economics, and the evolution of programming
principles. Faster, smaller, and more energy efficient devices have made systems available

with extremely high performance and sophistication. The shortcomings of the older

implementations are recognized and alleviated, new principles incorporated, but much of
the original concept is left intact'. The basic sequential properties are perpetuated in tcday’s

most powerful microprocessors.

Although the classical machine owes much of its early feasibility and success to its
simple, serial nature, that very attribute is at the root of its limitations. Often, a computation
arises where a number of operations may be performed concurrently, since their respective
operands exhibit varying degrees of independence. Higher performance may be achieved
by systems which permit concurrent operations. Such systems generally' comprise a
collection of processing units of varying sophistication and interconnection topologies.
Depending on the problem complexity and data interdependence, system configurations can
be specified for optimal performance. High-performance system organizations and the
match between the problem class and the architecture will be discussed in the following

section.

1.3 High Performance Computers

The performance of computer systems may be enhanced using a variety of means.
Most methods exploit some degree of parallelism, whether specific to algorithms for which
the system is intended, or the lowest-level system operations. The strategies require not
only additional resources, but also interconnection and control schemes which ensure that
available resources are utilized efficiently. What follows is a brief discussion of high
performance, multiple processor systems, and the methods employed to increase

performance. A number of taxonomical classifications for multiple processor systems are

1 For examples, witness the evolution of microprocessor "families” from Intel and
Motorola.

proposed in the literature. Terminology published elsewhere is used here to clarify
characteristics of several machine types, without concern to arguments about the merits of

the various author’s classifications. (Flynn, 72) (Gajski, 85) (Skillicorn, 88) (Duncan, 90)

1.3.1 Problem Characteristics

A fundamental concem in achieving high performance in a computer system is the
method for distributing data among the functional units. The von Neumann machine
accesses operands individually through a single channel, retaining intermediate results
within the processing unit. Operations are sequential, utilizing one functional element at
any given time; the data are routed to the appropriate element according to the current
operation code. Given additional functional units and a system structure which fosters
availability of operands to them, simultaneous operations may be conducted. However,
most algorithms have intrinsic properties and data dependencies which make it necessary
to perform computations in a certain order. Ultimately, algorithm-specific properties,
functional element capabilities, and system control strategy are combined to determine the
interconnections among elements, and the optimum system organization. The effect of the

former two concepts may be illustrated by the vector calculation of equation 1.3.1.1.

The calculation of both product A,B; and C.D; must be completed prior to the addition
step to form Z;, however each Z, is independent of any other input term and other Z,. The
calculation for each Z, may be individually assigned to a processing element with both
multiplication and addition abilities. If NV is greater than the number of available
processors, p, a number of calculations of Z; must be performed sequentially in each. The
elements require no direct interconnection nor communications with the other processors
throughout the computation. Figure 1.3.1.1 shows a system of four elements, and the

operations required to compute Z; for i=0,1...7. The computation strategy is essentially

parallel.

Figure 1.3.1.1 Calculation of Z; using unconnected, sequential adder/multiplier elements.

AO,A1 A2.A3 A4,AS ABA?
80,81 B2.83 B4.BS B6.B7
Co.Ct c2C3 CaCS cscC?
D0,D1 02.03 D4.DS D6.07
PEO ‘ PE1 ‘ PE2 ‘ PE3 ‘
'
X=A0B0 X=A282 X=A4B4 X=A6B6 :
Y=C0DO Y«C202 YoCaD4 Y<C6D6 :
20aX+Y 22aX+Y Z4=XoY 26aXeY :
XeA1B1 X«A383 X«ASBS X=A7B7 E bme
Y=C1D1 Y=C303 Y«C505 Y=C7D7 |
Z1u=X+Y Z3aX+Y Z25uX+Y Z7=X+Y :
'
20.24 2223 2425 2627

The computation may alternatively be accomplished by a system consisting of
single-function processing elements. Each calculation of Z, involves two multipliers and
an adder. The algorithm structure and processor capability directiy stipulate the necessary
interprocessor connections, since the output of each multiplier must connect to an input of
the adder. Note also that while a multiplication is taking place, the adder is idle, and
vice-versa. The multiplication of A,,,B,,, and C,,,D,,, may be initiated at the same time as
the addition of AB; and C.D,. Figure 1.3.1.2 shows computation of Z, using two parallel
multipliers in series with an adder. Computation is essentially serial, with operations

occurring simultaneously on distinct problems to utilize the available resources efficiently.

10

Figure 1.3.1.2 Calculation of Z; using single-function elements.

m'"A7 \

B80..87
C0..C7 >®/ 20..27
00...07

A hybrid implementation of the two organizations yields higher performance for the
given problem for cases with N>p. A parallel system similar to that of figure 1.3.1.1 may

be employed, where each processing element consists of a serial unit as in figure 1.3.1.2.

For the described problem, a2 number of system organizations were possible.
Algorithms exhibit varying degrees of adaptability to different architectures. The simple
example was selected to illustrate how the relationship between the processors, the
interconnections among them, and the problem specification must be considered to optimize

the calculation procedure.

Problem character also influences system control strategies, and the example is used
to illustrate. In the parallel implementation, the instructions executed in each element are
identical in every respect, and occur in the same order. The elements may be designed to
respond to a common instruction stream, broadcast from some control unit. Alternatively,
a separate instruction stream may exist for each element, permitting asynchronous operation.
The common instruction stream permits high performance and simplified system control
for this algorithm, however, flexibility of the system is compromised for algorithms wherein
elemental instruction sequences are dissimilar. Since the system awaits completion of the

slowest element at each step, maximized performance requires that the processors be

11

matched, and data-dependence of instruction execution time not exist.

Algorithms may be classified in a number of ways, and terminology is largely context
specific. Stone considers whether they are full information algorithms or not (Stone 1, 90);
Hoshino distinguishes physical computations as being either continuum or particle models
(Hoshino, 86). Locally and globally recursive are distinctions made by Kung (Kung, 1, 88)
in the context of array processors. For multiprocessors and multicomputers, algorithms are
categorized as synchronous, asynchronous, and macropipelined by Hwang (Hwang 1, 84),
whereas Quinn adopts the terminology partitioned, relaxed, and pipelined for corresponding

concepts (Quinn 1, 87).

Further clarification of the link between algorithms and architectures (interconnections
and control strategies) is facilitated by discussion of various types of multiple processor

systems in the literature.

1.3.2 Pipelined Systems

Pipelined systems utilize overlapped parallelism to achieve high performance. Inits
most general form, a sequence of commonly used operations is subdivided into itselementary
operations, each performed by a separate functional unit. Data flows serially through the
elements. The terminal elements have access to the external system, such as the memory.
Since at any time a particular problem occupies only a single element, the remaining units
are available to process subsequent problems, analogous to an assembly line. Itis common
for pipelined systems to operate synchronously, with a clock signal timing operations and
transitions of data from one stage to the next. Optimal performance is achieved when stages
complete their function in equal time; otherwise, performance is limited by the slowest
element. Figure 1.3.2.1 shows a 4-stage linear pipeline, and a timing diagram to illustrate

pipeline activity.

12

Figure 1.3.2.1 A 4-stage linear pipeline and its timing characteristics.

. ...{ s Hsz Hss H s J.. "

Rt R2 R M

%
§
XXX

P2 [P3| Pa l sse
P3 Ps ese
Pa

P1
P1 P2
P P2 | P

2 3|8 =

P

Throughput of a system is defined as the number of results completed per unit time.
A linear synchronous pipeline will produce a result for every clock cycle once the pipeline
has been filled; the time required to fill it is the product of its length and the clock period.
The speed-up factor (or simply speed-up) for a system is defined as the ratio of the best
serial-processor speed to the multiple processor system speed. If a serial processor requires
a clock period, t, for each elementary operation, then a sequence of k operations executed
n times requires nkt time to complete. The speed-up of a pipeline of length k is given by

equation 1.3.2.1. It is clear that speed-up approaches k as n increases.

Speed _ nkt (1.3.2.1)
PEEAUP pipeine = 1 (1 = DI

Various types of pipeline exist, and they are generally classified according to the degree
to which operations are subdivided. Arirhmetic pipelines divide operations into elementary

arithmetic steps: a floating point multiplication consists of exponent addition, fraction

multiplication, normalization, and round-off stages. Often, the functional units in a pipeline
may be utilized by a number of operations. Timing and control of multifunction pipelines
is a significant problem, since optimal performance depends on efficient utilization of the

available elements without conflicts between instructions (Stone 2, 90) (Hwang 2, 84).

Elementary operations common to all instructions may be pipelined as well (op-code
fetch, decode, operand fetch, and execution). This form of instruction pipelining is common
in modern microprocessors (M68020, 87) (i80386, 89). Efficient operation depends on the
pipeline remaining full, and branch instructions cause temporary stalls. RISC architectures
(Reduced Instruction Set Computers) implement a simplified instruction set with emphasis
on internal register operations and limited memory referencing modes to permit increased
efficiency in their instruction pipelines (A29000, 90) (Patterson, 82) (M88100, 88). Finally,
macropipelining represents the opposite extreme, where many complex operations of a
larger task are assigned to individual processors. While flexibility for problem sub-division
is high, maintaining equal execution times among the processors in the pipeline can be
challenging. Communication time may be significant, and thus each task-division strategy
must strike a balance between minimized communications and equalized processor

execution times.

1.3.3 Synchronous Parallel Systems

Various system organizations may be broadly classified as synchronous parallel.
Flynn’s taxonomy categorizes most of these as SIMD parallel systems (Single [nstruction
stream, Multiple Data stream). A number of processing elements respond to a single
instruction stream broadcast by a control unit. The processors perform their operations on
different data, which may be stored in local memories, global memory, or provided by the
other processing elements via an interconnection network. Figure 1.3.3.1 shows a

generalized SIMD machine organization.

14

Figure 1.3.3.1 Generalized SIMD parallel machine organization.

instruction PO Data stream 0
stream - -

Data stream 1

Control - P

Data stream 2

In its most simplified form, a parallel machine with k processors may conceivably
provide a speed-up of k; however, interprocessor communications and algorithm mapping
are important limiting factors. It is unusual for a computation to be entirely parailel, and
some degree of serial operation is necessary to complete most problems. The serial
operations are executed by the control unit, or a single processing element. The serial
operations prevent indefinite increases in speed-up with increases in the number of
processing clements. Amdahl’s law (eq. 1.3.3.1) (Quinn 2, 87) expresses the phenomenon
for a k-processor parallel system executing an algorithm with a fraction, £, of the operations
necessarily sequential.

1 (1.3.3.1)

Speed-up < m

Since by definition, a uniprocessor algorithm requires no interprocessor
communications, speed-up provided by a multiple processor system is diminished by
communications time. Complete interconnection networks which link elements directly
and independently to all others are optimum, since results produced by one element are
readily accessed by all others. However, the number of links in a complete interconnection

network grows as the number of processors squared, and the network cost quickly becomes

prohibitive. Numerous incomplete interconnection networks have been proposed and a
number of systems implemented. Data produced by one element which is required by an
indirectly linked element must be passed through intervening units. The advantage of
matching an algorithm to the interconnection topology is evident: it serves to decrease

communication time.

Interconnection networks may be either static, (unchangeable) or dynamic, where
interconnections may be reconfigured in response to a control methodology. Section 1.3.5
discusses switched and reconfigurable systems in greater depth. A number of
interconnection topologies are cited in the literature, such as mesh array, multidimensional
cubes, shuffle-exchange, and switching network arrangements. Many of the interconnection
networks are also utilized in asynchronous parallel systems (section 1.3.4). Figure 1.3.3.2

shows common mesh, 4-d hypercube, and hypertree interconnections for array processing.

Synchronous parallel systems are known by many names, which generally refer to the
types of problem for which they are suited, or distinctive aspects of their operation. Array
processors are most widely used where operations on array and vector-data predominate.
Array and vector processors often exploit pipeline and parallel processing techniques, where
vector operations are performed either by multiple pipelines operating simultaneously
(Charlesworth, 86), or by utilizing a pipeline to process elements within a vector
(Hwang 3, 84) (Stone 3,90). Systolic array architectures consist of many identical
processing elements interconnected in a regular fashion (linear, rectangular, hexagonal,
octagonal meshes), with the edge elements providing the only connection to the external
system. Data flow and computation is rhythmic and regular throughout the network
(Kung, 82). Associative memory processors generally belong to the synchronous class, as

well (Lea, 91).

16

17

Eigure 1.3.3.2 Mesh, Cube and Tree interconnections.

g L
s

S

A
]

1.3.4 Asynchronous Parallel Systems

The set of asynchronous parallel systems encompasses those categorized by Flynn as
MIMD (Multiple Instruction stream, Multiple Data stream), as well as data-flow and
reduction architectures, and wavefront arrays (Duncan, 90). A generalized MIMD parallel
system is depicted in figure 1.3.4.1. The figure indicates that centralized control is
non-existent; system control operations may be distributed, or assigned to a designated unit.

In practice, the control and processor elements shown in the diagram are integrated.

Figure 1.3.4.1 Generalized MIMD parallel machine organization.

Control 0 instruction stream 0 o Po Data stream 0
Control 1 Instruction stream 1 P1 Data stream 1
Control 2 Instruction stream 2 P2 Data stream 2

The processing elements in MIMD systems execute instruction sequences (which have
varying degrees of disparity) which are usually stored in the local memory of each element.
Processes or tasks are assigned to the various elements, and data may be exchanged between
processes using both static interconnection networks similar to those described in the

previous section, as well as dynamic networks, discussed in section 1.3.5.

Mulncomputer systems utilize message passing strategies to transfer data between
interconnected nodes, each of which consists of a processor, local memory, and a number
of communications channels (Reed, 87). See Seitz and Althas for discussions on
multicomputer hypercube systems, and Agrawal and Reed for performance issues (Seitz, 85)
(Athas, 88) (Agrawal, 86) (Reed, 86). The term multiprocessor is used to describe MIMD
organizations with shared memory. Multiprocessor systems with bus-oriented connections
to the shared memory and other shared resources are commo~. The von Neumann
interconnection philosophy is extended to permit multiple bus masters, and numerous
multiprocessing bus standards exist (VMEbus, Microchannel, Multibus, Nubus, etc.)
(Cornejo, 86) (Del Corso, 86) (Dexter, 86). Multiprocessors of this type are economical,
since processing power can be enhanced inexpensively. Utilization of peripherals is small
for computationally intensive tasks, and may be efficiently shared by the various processes.

In multi-user systems, distinct user tasks are often assigned to separate processors, enabling

18

a larger user load to be accommodated. The strategy requires little data exchange between
processors, and therefore less bus traffic. Figure 1.3.4.2 shows a multiprocessor system
with a bus interconnection to shared resources. Multiprocessor systems may also utilize
multi-port memories for data exchange in order to reduce individual bus activity and to

alleviate bus arbitration overhead and complexity (Jagadish, 89).

Eigure 1.3.42 Typical bus-connected multiprocessor system.

p———
Shared Globa! SheredO0 [™
Memory Sysam —
[
1 Systam Bus
Sysism Bus System Bus Systom Bus Systsm Bus
interface interface Interface interface
PE |w—ed PE oo PE e PE o=
Local Local Local Local
Memory [Memory [+ Memory [Memory [*]
Loca! Bus Local Bus Local Bus Local Bus

Since the processors execute separate instruction streams, some synchronization
between communicating processes is necessary. In multicomputers, transmitting processors
await the intended destination processor(s) to become ready to receive a message. In
multiprocessors, access to shared memory space is regulated by semaphore strategies
(Stone 4, 90). The grain-size of a parallel comput- * *n refers to the amount of computation
which occurs between synchronizations (Taner .um2,90). Multiprocessors with
high-bandwidth communications paths between elements (tightly-coupled) are suitable for
fine-grained tasks. Loosely coupled systems are more suited to coarse-grained tasks, since
communications are more time-consuming. Under the given definition, the SIMD systems

of the previous section have very fine-grained parallelism.

19

Data-flow and reduction architectures are asynchronous parallel systems of a different
nature; the concept of a program counter does not exist. In a data-flow machine, operations
are enabled for execution upon the availability of operand data. Concurrency can be very
high, and execution closely follows operations specified in a data flow graph (figure i.3.2.1)
(Watson, 82) (Srini, 86). Reduction architectures are seemingly opposite to data-flow
architectures, since execution of an operation is enabled upon demand of its results by
previously enabled operations. In primitive terms, demand tokens are propagated through
a network of functional units until they reach terminal units. Operations are initiated, and
results propagate back toward the demand source in a manner akin to that in the data-flow

strategy (Dunca, 90).

Wavefront arrays are similar in structure to systolic arrays, however, activity and
communication among elements is asynchronous. Operations are therefore enabled by the
availability of data, and for this reason, wavefront arrays represent a combination of both

systolic and data-flow principles (Kung 2, 88).

1.3.5 Switching Networks and Reconfigurable Systems

Since a fixed interconnection network can limit the scope of applications for which a
machine is suited, networks that can be reconfigured in some manner are attractive. Issues
of network control magnify the complexity and cost of such systems, however, their
increased flexibility and performance can make them cost-effective. Many of the networks

discussed in this section may interconnect processors operating under SIMD or MIMD

paradigms.

A commonly referenced dynamic interconnection system is the crossbar-switch
network. Processors are connected to memories via buses logically arranged in a rectangular
grid, with switches straddling the crossing points. Switches connect processors to memories

upon request. Figure 1.3.5.1 illustrates a crossbar connected, shared-memory

20

mulriprocessor. Asin the single-bus standard, simultaneous access toa memory is forbidden,
but the effects of the von Neumann single-bus bottleneck are diminished by the presence
of multiple buses. Concurrent memory requests must be arbitrated, and problem-specific
datu distribution techniques are applied to minimize conflicts. The crossbar network has
complexity which increases as the square of the number of processors, and network cost is
a prohibitive factor for large systems (Van de Goor, 89). An orthogonal multiprocessor
system which switches access to the rows and columns of a memory array is a related
alternative. It combines an efficient data-sharing methodology, simple control strategy, and
high communications bandwidth to yield performance comparable to more complex

networks (Hwang 1, 89).

Eigure 1.3.5.1 Crossbar connected, shared-memory multiprocessor.

- gwitch
” ¥ I I ¢
- ¢« I K ¢
N
- « I I I«
e v v I«

A number of interrelated switching networks with more modest growth in complexity
have been developed. They are known as multistage switching, shuffle-exchange, Omega,
generalized cube, Benes, and Banyan networks (Lawrie, 75) [Tanenbaum 3, 90)
(Haynes, 82) (Padmanabhan, 83). Each provides interconnections to system resources

utilizing diverse inter-stage connections, and variety of crossbar switches (fan-in, fan-out,

21

Figure 1.3.5.2 Orthogonal multiprocessor system.

PO Pt P2 P3 Processors
® ® ® ——e
Memory Access
MO0 MOY Mo2 MO3 Memories
BRO
/ M1 1 1 M1
Buses 0 M Mi2 3
BR1
M20 M21 M22 M23
BR2
M30 M31 M32 - mM33
1§
Tavacararaaa l Y
BCO B8C1 BC3

and broadcast capabilities vary). Figures 1.3.5.3 shows an Omega network connecting eight

processors to eight memories. Figure 1.3.5.4 shows a generalized cube network of eight

processing elements. Both networks employ 2 x 2 crossbar switches.

23
Figure 1.3.5.3 Omega network with N=8,

/ 2x2 switch

pO m0
P! — mi
p2 m2
p3 =~ m3
pd mé
5 I~ m5
pe me
p7 — m7
switch configurations
ﬂ ol
<]l
Eigure 1.3.5.4 Generalized Cube network with N=8.
itch

Inputs / 2z swi Outputs

° . 0

1 T]

: '\ ><)

3 3

4 4

5 —

[] \]

7 e 7

swilch configurations

Routing decision and message enqueuing circuits are sometimes integrated with each

switch. Control and routing methods are discussed in the references. Implementations may

utilize cither packet or circuit switching. In packet-switched systems, a path through a

switch or stage is locally enabled according to the eventual destination of the current packet
of data, without reference to the state of other switches in the system. Circuit-switched

systems establish complete paths from source to destination throughout a transaction.

The generalized cube network is particularly interesting for its partitionability, wherein
an Nsized cube can be configured into independent cubes of smaller dimension
(Siegel 1, 81) (Siegel 2, 81). The multistage switching networks share O(logN) and
O(NlogN) growthrates in number of stages and switches, respectively. The networks provide
at least one path between any pair of elements in the systems, and unless sufficient
redundancy exists, blocking of paths will occur. Many applications have been shown to
execute efficiently using these networks, in particular, the FFT, matrix computations, and
numerous sorting algorithms. Siegel discusses various multistage interconnections
networks, their interrelationships, and fault-tolerant enhancements [Siegel 1, 90). See also
(Quinn 3, 87), (Cvetanovic 1, f.,),(Stone, 71), (Lang, 76), (Chen, 81),(Siegel, 92). Popular
and successful examples of this class of reconfigurable archite..ture are the Connection
machine (Tanenbaum 4, 90), (Tucker, 88), and the IBM GF-11, which comprises
576 processors operating in SIMD mode, using 24 x 24 crossbar switches arranged in three

stages, with shuffle interconnections between stages. (Hwang 2, 89).

The multistage interconnection networks share another attribute: they are not
incrementally expandable. As the number of processors increases, the interconnection
networks must be re-specified and extensively rewired. Even some static networks, such
as a fixed-cube (Seitz, 85) may not be expanded by replication of elementary cells, sincc
ports must be added toall processing elements in the system (Goodman, 81). Implementation
of components for the systems in LSI or VLSI technology is necessary due to their
complexity. However, VLSI implementation is most attractive and most efficiently
accomplished when elemental cells may be identically replicated to form larger, more

powerful systems; static systolic and wavefront arrays are more suitable.

24

Another approach to reconfigurability was introduced by Snyder which directly
addresses issues of VLSI augmentation (Snyder, 82). The proposed system consists of a
regular structure of processing elements attached to a programmable switch lattice at regular
intervals. Each processor comprises four or eight bidirectional communications ports to
link them to the switch lattice. Each switch incorporates a configuration memory, where
configuration codes are loaded prior to program execution, via some skeleton network. The
skeleton network also permits a controller to access processing element local memory, for
program and data loading. Switch settings change in response to the controller’s signals.
The system may be reconfigured throughout a program to permit maximum efficiency.
Snyder also determined issues of corridor width (the number of switches between rows and
columns of processors), and related it to overall degree of reconfigurability which the system
could achieve. The possibility for fan-out on the switches was discussed (broadcast settings),
however, most subsequent studies have focussed on 2 x 2, bidirectional switches without

broadcast abilities. Figure 1.3.5.5 is an example of the organization suggested by Snyder.

Eigure 1.3.5.5 Rectangular arrangement of processors for Snyder’s reconfigurable system.

Switch

Processing
Element

25

Implementation required high-yield wafer scale integration to support the complexity
of processor envisioned (even today, most studies yield simulated results). The ideas have
found widespread acceptance in the areas of fault tolerance and WSI yield improvement.
Reconfiguration is most commonly utilized for routing signals such that they do not link
faulty processing elements and switches (which can alsofail). Spare elements may be linked
in, resulting in logically regular, fixed processing arrays. After fabrication and identification
of faulty cells, the switches may be permanently configured by custom metallization, laser
or clectrical surgery, or non-volatile programming techniques (Kung 3, 88)
(Boubekeur, 92). Alternatively, reconfiguration may occur as a result of a run-time fault,
in which case, the switch matrix must maintain programmability. Reconfiguration
methodologies and algorithms concentrate on casting a network into its original logical
topology in the presence of a fault. See for example (Chean, 90), (Belkhale, 92),
(Balasubramanian, 87), (Sami, 86) (Choi, 91) (Li, 91). Hwang exploits reconfiguration to
achieve increased performance using pipeline nets, which is a technique related to

pipeline-chaining in supercomputers (Hwang, 88).

1.3.6 The UWO Reconfigurable Multicomputer System

The presented thesis focusses on a novel reconfigurable multicomputer architecture.
A prototype system is specified and implemented, and its performance characterized
experimentally. The system was designed for high flexibility and connectivity, making it
suitable for computations belonging to a wide range of problem classes. Many features of
the design are inspired by incremental expandability considerations, warranting eventual
VLSI implementation of systems with similar architecture. Since the main goal was to test
architectural concepts, a complexity limit was imposed on the processing cells and network
elements. The chosen restrictions encumber the system performance, however, the penalty

is slight, due to efficiency in the system control and its flexibility.

26

The system consists of autonomous processor cells, interconnected with an array of
2 x 2 programmable signal router (PSR) devices. The PSR devices bear resemblance to
crossbar switches, but are not identical, hence distinguishing terminology is adopted. The
PSR array is called the]nterprocessor Communication Network or ICN. The system is
controlled by another autonomous cell designated the system master. The remaining slave
cells are identical in both hardware and ROM resident software. All processor cells comprise
a commercial, high performance microprocessor, local memory, and two data
communications ports; one permanently dedicated to input transactions, the other to output.
The ports provide the only data communications link between a cell and the rest of the
system. The master cell fulfills the network configuration, slave synchronization, and task
supervision functions, as well as user and host interface operations. It is also responsible
for loading the slave memories with their program code and initial input data, which it
accomplishes via the ICN. Slave task synchronization is facilitated using a service request
bus (SRQbus), which indicates slave status to the master (not to other slaves), and blocks
slave processes pending acknowledgement by the master. The master cell may also be
employed forcomputations if its essential obligations are met. System operation is decidedly
MIMD, however quasi-MIMD may be employed (Hoshino, 86), and sven SIMD may be
emulated. Data communications throughout the system are asynchronous, and require
sender-receiver interlocked handshakes, which provides a complementary process

synchronization method.

The four-slave system (and associated ICN) is itself designed as an elementary cell,
and system expansion is accomplished through replication. Cells may be appended in a
number of locations, and only connections on the network periphery are modified to
accommodate new units. The prototype system s fully connected and has high redundancy.
Selection of expansion-cell interface sites influences configurations available in larger

systems. In all system expansions, only a single master is necessary, which always

27

communicates with slaves utilizing the ICN. Slave SRQ request and acknowledge signals
tap into the SRQbus, following the usual shared-parallel bus paradigm. Figure 1.3.6.1isa
block diagram showing the architecture of the reconfigurable multicomputer, figure 1.3.6.2
presents the interprocessor interconnection network topology, and figure 1 3.6.3 shows valid

PSR configurations.

Figure 1.3.6.1 Reconfigurable Multicomputer System Architecture

user I I host
terminal y ¢ (VAX.PS/2)
serial
o
T Ce"BUS : .
[1 Configuration
|
M Network Controls
Controller

SRQbus H

/’, 4 1
z” 4 ’= ! :
e A b Interprocessor
e A I Communication —
g e 4 i ! Network |
red g /’l \ f !
' —— dslavecel - '
Coltus /
."
Processor Memory . |
m i f
MC68008 PUT | SRQbus |/
interface |!
FIK P
Output lnput f

28

Figure 1.3.6.2 Interprocessor Communication Network

Unit Cell

O

OO

e

i:E
D
—

1

~f

¢

(
{

OO

.—-.-1_..

Eigure 1.3.6.3 PSR Configurations

-0 {; O
& {I> &

1.3.7 Objectives of the Study

The thesis has several objectives. A four-slave, single-cell prototype system is
designed and constructed using commercially available devices, wherever possible. The
PSR devices are custom-designed and fabricated using a 2-metal layer, 3-micron CMOS
VLSI process. The prototype system addresses and resolves all issues of hardware system
control and operation, as well as the necessary system-level control software, user and host
interface code, and debugging facilities. The resulting system is therefore a complete,
operating and reliable multicomputer system with unique flexibility and adaptability, that

provides high-performance in a wide range of applications.

The experiments focus on the performance increase provided by the architecture, and
determine the operational overhead incurred due to inherent features of the design. Since
the practice of performance-benchmarking computers of different classes is generally
problematic, the multicomputer performance is compared to that of a uniprocessor system.
Physically, the uniprocessor is identical to the constituent slave processors in the system;
in fact, it is used as the master cell itself. The performance tests are carefully defined, and
comparisons are made using clearly-specified frames of reference. Problems which utilize
different topologies are of interest, since the intention was to show that efficiency was high
for numerous configurations. Of special interest are problems which benefit from dynamic
system reconfiguration throughout the computation of a problem. Operational overhead
costs for data communication (including signal propagation delay), and slave process
synchronization are investigated. The significance of the incurred overhead is analyzed
with respect to overall task time. The goal of the work is to determine whether or not the
system organization offers significant speed-up factor and efficiency in a broad range of
tasks and configurations. The study shall also indicate aspects of the system design which
are most critical to performance, and will suggest improvements which could be made to

enhance performance of subsequent designs. Finally, the results of the study are scalable,

so that performance of systems comprising more or less sophisticated processing elements
may be predicted based on the knowledge accumulated by the presented thesis. Processor,
commumication and reconfiguration speeds have implications to task granularity, applicable
topologies, and control strategies. The thesis seeks to determine the performance-relevant
factors in reconfigurable systems, and to show the relation between the system architecture

and performance.

The original contributions of the thesis include the cellular reconfigurable architecture
of the multicomputer system, the PSR design and its implementation, the slave
synchroni~ation strategy via the SRQbus, and the overall system control strategy which has
been adopted (which incorporates the control software component of the system). The thesis
investigates the efficacy of the selected architecture in solving a range of r-oblems from
different classes of scientific computations, and determines the effect vn performance of
various control strategies for a given problem. The thesis also demonstrates the importance
of the match between the algorithm and the architecture in achieving maximum
computational performance, and thus the desirability of a dynamically reconfigurable

multicomputer system for scientific research-oriented applications.

31

2 Theory and Background

This chapter focusses on issues of computer performance and its measurement. The
algorithms used to characterize the reconfigurable multicomputer’'s performance are
outlined, as well as their uniprocessor counterparts. Theoretical limits of performance
increase are determined for each application. System overheads, inseparable from the

multicomputer operation, are also described.

2.1 Computer Performance

As the efficiency with which a computer performs a task depends on the attributes of
the given task, the term performance is difficult to define; an absolute unit of performance
may be impossible to formulate. It follows that the interpretation of performance test results

is not unequivocal. The performance rating is task sensitive.

Advertisements, press releases, and trade journals which introduce new machines
regularly use terms such as MIPS (millions of instructions per second) and FLOPS
(floating-point operations per second) as units with which to specify a computer’s
capabilities. The MIPS rating has largely been discredited as a valid unit, since execution
time of all instructions in a processor’s repertoire is rarely equal. Current RISC architectures
which boast single cycle execution for all instructions depend heavily on continuous
instruction flow through their pipelines to achieve such performance. Additionally, the
work potential of the individual instructions must be regarded. A raw MIPS comparison,
without some indication of the overall task performed, may be of limited usefulness. The
FLOPS unit partially addresses the task-sensitivity issue by categorizing instructions into a
particular class. It is somewhat useful as a comparative measure for applications where
floating point operations predominate. As with the MIPS rating, the matter of instruction

execution time equivalence cannot be ove.i00ked. It is essential that computer performance

is specified with respect to the task or overall work performed.

In an effort to quantify system performance, several "benchmark tests” have been
developed. BYTE magazine used programs specified in the C language to compare systems
(BYTE, 87). The validity of the t=sts was immediately questioned, since not only was system
performance being compared, but also compiler efficiency (Grehan, 88). The magazine has
since revised its benchmarks, and now includes tests which use commercial software
packages such as AUTOCAD, LOTUS 1-2-3, etc., to solve well-defined problems. The
microprocessor’s performance affects results, but so does disc speed, operating system
overhead, and graphics sub-systems. The authors achieve their stated goals of
"demonstrating product improvements” and to “help us decide which products to buy"”
(BYTE, 87). The use of specific application software limits comparisons to machines of
the same genre: IBM PC and compatible machines, or Apple Macintosh-series machines.
The authors recognize the problem in comparing the two breeds of machine fairly, and their
procedure prevents comparisons of these machines to common mainframes or

minicomputers.

Electronics Design News (EDN) magazine adopted a set of benchmark programs

originally presented by S.H. Fuller et al, of Carnegie-Mellon University. The tests exercise
processor abilities in tasks which stress [/O device interrupt handling, character searching,
bit operations, sorting, and matrix transpositions. The test algorithms are coded in assembly
language, often by competing device manufacturers. Microprocessor companies frequently
use the EDN benchmarks in their literature (Motorola 1, 86) (Motorola 2, 86) (Intel, 85),
but despite apparent standardization, disparate conclusions are drawn. Results are often
quoted for input data, data structure, or data size which are selected to obscure a device’s
shortcomings. With the advent of extremely high performance microprocessors,
incorporating cache memory and basic operating system paradigms, benchmarking has
become more complex. Competing systems are compared using similar operating systems

(i.e., all systems running a UNIX implementation for the given processor), and "newest

33

available" optimizing compilers (Motorola, 88). Although the method may be a practical
way to compare dissimilar systems, the effects of compiler and operating system efficiency,
as well as peripheral performance, degrade the tests as indicators of processor performance.
The inherent difficulties of UNIX benchmarking are described in further detail, in Hinnant
(Hinnant, 88), and the many loopholes which may be used to obfuscate results are outlined;

Weick and Price provide similar insight (Weick, 91) (Price, 89).

The benchmarking process presents a fundamental problem, due to the flexibility of
the encoding method. A programmer may opt for faster, memory-wasteful, in-line code as
an alternative to slow=r, but memory-efficient looping, or structured code. Compromises
must be struck between absolute maximumn:-performance coding, memory usage, program
and data structure, subrontine linkage, and programming ease. Considerably different
instruction sequences may be specified to realize similar functions, and dissimilar
performance among them will be obsei1ved. Incompatibility of test results is a consequence

of the lack of unification in test standards among competing manufacturers.

For multiple processor systems, benchmarking difficulties are compounded. Since
systems are often designed for specific problem classes, general benchmark tests may not
be applicable. The elements which complicate uniprocessor benchmarks remain, and the
necessity to assign tasks to the various processing elements provides an additional level of
complexity. Algorithms may have to be radically modified to convert them into parallel
forms, and some component of the performance rating is attributable to algorithmic
efficiency. The programs, in general, are not directly transportable between systems of
dissimilar processor organization and interconnection topology. Worlton attempts to fc m
a taxonomy for performance metrics for multiple-processor systems, in which it is

undoubtedly proven that the undertaking is indeed complex (Worlton, 91).

34

When comparing uniprocessor performance to that of a multiple processc: system,
tests and measurement intervals must be clearly defined. It is not always practical to define
a problem’s starting time as the instant input data is available to all elements, nor to define
the end as the instant each element has produced results. In many multiprocessors, input
dta must first be made available to the processing elements, and this may require a number
of operations and time to achieve. Similarly, local memory-resident results may not be
readily accessible to the user, or subsequent subroutines; some further operations may be
necessary to establish the desired final state. Performance tests must be clearly defined,
and measurement intervals unequivocally stated so that fair, practical, and useful conclusions

may be drawn.

2.2 Performance Tests for the Reconfigurable System

The RMCS performance tests recognize the intrinsic difficulties with the
benchmarking process described preceding; comparison with other architectures is not
undertaken. Absolute performance of a system is implementation specific, dependent upon
clement performance and sophistication, control strategy, and system topology. A fair
comparison between systems requires a degree of standardization in both hardware and
program implementations which is impractical and perhaps impossible. Comparison of the
actual performance of the RMCS with theoretical performance of other architectures would
likewise be illusory. The goal of the work is to determine the performance advantage, if
any, that the RMCS offers over uniprocessor performance, where the uniprocessor is
identical to an RMCS constituent processing element. Using this procedure, the
interconnection network, synchronization, and system control overheads may be observed.
The results may be scaled to estimate performance of systems comprising processing
elements of higher sophistication or greater number. Algorithms must be modified to be
executed on the uniprocessor or multicomputer to facilitate efficient utilization of available

resources. In the performance test programs, a degree of similarity between uniprocessor

35

and multiprocessor algorithms was purposely maintained wherever possible, practical or
informative. Although some programs could have been more heavily optimized using in-line
coding etc., judicious use of available library functions (for data communication and
processor synchronization) was made, instead. The method used more closely reflects
typical system application. The tests are specified such that initial and final states of the
system are similar for related tests, to mitigate ambiguity in test definitions and measurement
intervals. Intermediate phases of execution are also measured to permit comparisons under
various problem definitions. The following sections briefly describe the tests used to
characterize the RMCS’s performance, and concentrate on theoretical maximum
performance increases offered by the multicomputer applications, based on arithmetic
operation tally. Details of actual program implementations and test variations are deferred
until chapter 4, since the programs should not be evaluated in isolation from the system

operation, which is described in chapter 3.

2.2.1 Matrix Multiplication

Martrix multiplication is frequently required in the area of numerical analysis, and it
is often time consuming to accomplish for matrices with large dimension. Equation 2.2.1.1

summarizes the multiplication of two n X n matrices [C]=[A][B].

LS . . . (2.2.1.1)
C(‘v.’)=t§0A(‘:k)xB(k,j) l,j=0,1,...,n"l

To calculate the result requires n* multiplications and (n-1)n* additions.

The computation of the product is readily partitioned for concurrent processing, and
numerous algorithms have been devised for systems with diverse organizations
(Quinn 4, 87). The selected parallel algorithm assigns each processor evaluation of specific

rows of the resultant matn <. Theindividual processors require access to the entire matrix [B],

36

and the entries of the rows in [A] corresponding to the rows in [C] for which they are
responsible. For a system with 7 processors where n/r is a positive integer, each processor

performs n*/r multiplications and (n-1)n’/r additions, yielding a theoretical maximum

speed-up factor of r.

2.2.2 Fourier Transforms

Caiculation of the Fourier transform is frequently required in signal and image
processing, vibration analysis, and applied geophysics. The discrete Fourier transform
(DFT) and the fast Fourier transform (FFT) are numerical methods for computing the Fourier
transform. The arithmetic operations required are numerous, and consume a considerable
amount of processing time. For decreasing the overall FFT calculation time, special multiple
processor system architectures and algorithms have been proposed, developed and studied
(Cvetanovic 1, 87) (Cvetanovic 2, 87) (Pease, 68) (Kirk, 87) (Bi, 89) (Singleton, 67)
(Viswanath, 87) (Huang, 91) (Averbuch, 90). This section discusses calculation of the
one-dimensional FFT using a uniprocessor system, and an algorithm suitable for execution

on a globally parallel, multiple processor system.
The continuous Fourier transform is defined by:
- 22.2.1
Hx(0)}=X() = f x(t)e *ds ()
t = time, and

f = frequency

37

The discrete Fourier transform is similarly defined by:

FxkAn} =X(nAf)= I:i;x(km)e-ﬂumm

where:

Af is frequency interval,

At is time interval,

nk are integers = 0,1,2,. N-1, and

N is the number of sample points.

With Ar = 1/(N Af), the DFT equation is more commonly expressed as:

Hxk)}=Xn)= l:z:’_;x(k)e RN (2.2.2.2)

Equation 2.2.2.2 can be written in matrix form for /v=4 and using the substitution:
W = e ?*N (22.23)

the following matrix formulation results:

o) (W° w® w® w')(x (0 (22.2.4)
ml_(w* w w wilx 1)
@) {w w2 w wex
G W w ow Wi O

B¢ ¢ > X

The system of equation 2.2.2.4 requires N complex multiplications and N(N-1)
complex additions to calculate a complete solution. The radix-2, Cooley-Tukey FFT

algorithm for N=2" will be presented, with the N=4 case used in the examples.

38

39

Indices n and k are rewritten in their binary form:
n=n,_n_;...mn n,=0 or 1 m=0,1,..,v-1

k=k,_ k.. kiko k,=0 or 1 m=0,1,...,y-1

giving:
n=2""n_,+2"n _,+...+n,
k=2"""k_ +27%, 4 ... +ky

The DFT equation can be written using these substitutions as:

Loy 2225
Xty pe)= I % T X k)W (2.2.23)

ky20k, 20

p=nk=Q""n_ +2 7 _,+ ... +n) (@ k + 27k) (2.2.2.6)

Since:
Wt =we xwt
W” may be expressed as:
W = w(z"".,,_,n"’;,_ﬂ em(ar ‘ﬁ,_,)wiz""av_,+2"’n,_24 ...n,)(:*"g,,)‘) 2.22.7)

Equation 2.2.2.7 may be factored using the relations:

W= (2.2.2.8)
W™ = yrmedV (2.2.29)
to give:
We=w? ey, (22.2.10)

XW(ZY' '%_ Yia 2"7—: *... "'"o}'n

Taking the sums individually, and successively factoring the W” terms yields the

following set of equations:

. 1 (2.2.2.11)
xi(nOkY—Z' . 'ku) = K, Z’O[xu(k.!_ ,k.r_z. . -ku) x ‘V27 ky- l)]
! et ? (2.2.2.12)
Xk s ko) = HZ’ o[x,(nukY_z. ..kg) x ot ’]
-2
: R o S (2.2.2.13)
Xf("o"n---"y-:)-_'ko{:o[x.,_,(non,...ku)x W et e “f"]

Using N=4, the above equations may be expressed in matrix form:

(x, 0,00) (1 0 w° 0)% 00) (2.2.2.14)
x O}l o1 0o wW'lx O
x (LO| |1 0 w* o |[lx (1,0
\ K1 (l:l)) \0 1 0 szkxo (1»1))

(x, 0,0) (1 w* 0 0)(x (0.0) (2.2.2.15)
n O |1t w0 0{x O
xx2 ,00[1o o 1 w'x (1,0
e (L) {0 0o 1 W liln (LD)

Recalling cquation 2.2.2.9, equation 2.2.2.15 is the same as equation 2.2.2.4 with:

X (1,) = X,(ng, 1,) (2.2.2.16)

In general,

X(ny_ny_p...M) = x{nony...ny_y) 2.2.2.17)

The FFT algorithm is essentially a matrix factorization process, often described using
a signal flow graph, as in figure 2.2.2.1. The graph is interpreted as follows: an array is
represented by a vertical column of nodes; the arrows transmit quantities from a previous
node, multiplied by the factor adjacent to the arrow. Products entering a node are added to

form an entry in the next array (Brigham, 74).

41

Figure 2.2.2.1 Signal flow graph of an 8-point, radix-2 Cooley-Tukey FFT calculation.

[l= Intermediate arrays J Unscrambled
input array k output array
x0(k) x1(k) X2(k) x3(k) X{n)

x0(0) O 292 —= x(0)
C\ wo wo wo

x0(1) O x(1)
ANV

x0(2)

N O

x0(3) O I | v O x(3)

x0(4) 0 AA O x(4)

x0(5) *O QO x(5)

w2 wo \O

x0(6) X(6)
w3

xO(7) 9 O x7)
wt w6 w’

The symmetries of the signal flow graph may be exploited to yield additional
computational efficiency. Calculation of two node values requires a single complex
multiplication, since in every array there are two nodes whose arrows stem from the same
pair of nodes in the previous array, and their multipliers differ only in sign. Dual node pairs

are related by:

x(k)=x,_,(k)+W*x,_,(k+N2" (2.2.2.18)

x(k+N2'y=x,_,(k)-W?x,_ ,(k +N72') (2.2.2.19)

The exponent of W is determined by employing a binary shift, bit-reversal procedure.

Unscrambling the final result is also a bit-reversal operation on the array indices. The FFT

algorithm for N=2" points will calculate the DFT using only y21-! complex multiplications
and ¥2"complex additions. This compares to 2”and 2'(2" - 1) multiplications and additions,
respectively, required to evaluate the DFT defining equation directly (Eq. 2.2.2.2). Notonly
does the FFT significantly decrease the number of operations, it also reduces memory
requirements. The calculation is performed “in place”, since computation of each dual node
pair is independent of other nodes. A number of FFT algorithms which use different radices
are in widespread use, as well as special-case algorithms, which claim some advantage over
the general radix-2 algorithm in terms of efficiency or memory requirements. For this study,
a modified form of the radix-2, Cooley-Tukey algorithm was adopted which requires fewer
bit-reversal operations. Calculation of the exponent of W requires bit reversal, and the result
is used as an index to a table of sine and cosine values. The table could be arranged in
bit-reversed order, eliminating the need for the bit-reversal operations altogether.
Alternatively, a canonic form of the FFT may be used in which the input array is shuffled
into bit-reversed order, the exponents of W occur in natural order, and the output array is
automatically naturally ordered. Since ordering the tables naturally is more usual,
convenient, and intuitively pleasing, the canonic form was selected for the tests. A signal
flow graph of the algorithm is shown in figure 2.2.2.2. A scaling factor of 1/N is used

throughout the study for forward transforms, as well.

Calculating the FFT on a multiple processor system is more complex. Methods exist
for performing the function on shared memory multiprocessors (Cvetanovic 1, 87), and
many variations of multistage switching networks (Cvetanovic 2, 87), (Stone 5, 90). Some
implementations arc based on dividing the tasks among processors in an obvious manner,

such as that shown in figure 2.2.2.3.

43

Figure 2.2.2.2 Cooley-Tukey 8-point, radix-2 algorithm, data in bit-reversed order.

Scrambled l[: Intermediate arays :l'
input array input array oulput anay
x0(k) x0(k) x1(k) x2(k) x3(k)j=X(n)
x00) O X(0)
/‘3
x0(1) O\ /O X(1)
W‘
x0(2) O ' O x2)
wz
x0(3) O n®; ’ O X(3)
w4 wé "w’
x04) O O ’ % A O x(4)
wo wl ’ wt
x0(5) O O X(5)
o/ X;
%0(6) X(6)
N
x07 O 3 XD

w

It is evident that the arrangement of figure 2.2.2.3 requires a high degree of
interprocessor communication, and some authors use intermediate shuffles and "twiddle
factors” in an attempt to decrease the number of transactions. An algorithm for a globally
parallel system, proposed by Bergland and Wilson (Bergland, 69), requires nointerprocessor
communication during the main computation period. The method requires supplemental
arithmetic operations to achieve the parallelism, but the potential performance increase
remains substantial. In the experiments, the multiprocessor FFT calculation tests adopt their

procedure, which is summarized below.

Figure 2.2.2.3 Task assignment among four processors for 8-point FFT calculation.

x(0) C\ 2O X(0)
x(1) C\ N ~7 X(4)
A

x(2) X(2)

Starting from equation 2.2.2.2, the DFT defining equation, it is necessary that N is
factorable, as N=r,r,. The procedure requires each processing unit to have enough memory
and computational ability to perform an r,-point FFT. The following notational substitution

is made:

W= e-ﬂﬂ’l

3

45

Indices n and & are reformulated as:
n=nr,+n,
k =k,r,+k,
where:
npke=0,1,...,r,-1

no.k,=0,l,...,r|—l

The DFT equation can then be expressed as:

-1 =1
kg ok,
X(ny,ng) = %2’20 w,! W,“’,:' kZ x(k, k)W,

=0

] (2.2.2.20)

Equation 2.2.2.20 suggests the following computation strategy: Using r, processors,
the memory of each is loaded with th. zntire input data array (the FFT is a full-information
function, section 1.3.1.). The inner summation is performed sirnultaneously by each
processor, requiring a number of multiplications. Each processor then performs
multiplication of the widdle factors, W,:‘L:’, on the resulting r, points. Finally, the outer
summation is an r,-point Fourier transform of the twiddled data, which may be evaluated
using any fast algorithm. The results appear in scrambled order, distributed among the r,
processors, and a complete r,-shuffle of N elements must be performa=d in order restore them
to natural order’. A signal flow graph of the algorithm is shown in figure 2.2.2.4 fora system

with four processors.

1 5,.(i),the g-shuffle function for N=qgc objects, is defined by:

o i
S, (i)=qi mod(qc)-o-lLCJ

46

47

Eigure 2.2.2.4 Signal flow graph of four processor, parallel FFT algorithm (N=8)

Input array Twicdie FFT Unshutfle
1,
X(k1.40) wioko L ’:i"_:“”

HE 2 2 H H
| 0)=x00) | > O rO| X(0.01=X(0)

! B !]

! 1
a0, | i | X(O.1)eX(1)

e HI - '

R T e — :
‘f MEexi10) | | X0.2)4X2)

| | | |
L x@exrn) | | X(0.3)X(3)

e b- A i

fTTo 1 g
| x(4)=x(2,0) | | X(1.0)eX(4)

I || |

| l '
 x(S)=x(2,1) | :xu,n.x(S)

[, T — !

o — - e e - I
E ~6)=x(3,0) i ! : X{1.2)=X(6)

i

! 1

! |
| x(M=xan) | O I X(1.3)X(N

| . e e e e] | I—

All processors Outer Sums
“ e
have input array rz . m.uo;w:‘f"“ L___-‘: Operations inside box are assigned ™ 1 processor
k1=0

Analysis of the number of complex arithmetic operations follows.

Let r; = 2° to permit radix-2 FFT’s for each r,-point FFT per processor. The number

of multiplications and additions required in the r,-point transforms is p2°~' and p2°,

respectively, as in the uniprocessor version, assuming the same FFT algorithm is used. The

outermost summation requires r, — 1 additions and r; multiplications per input datum by

each processor, for a total of 2°(r, = 1) additions and 2°r, multiplications. The twiddle factor

multiplication phase requires 2° additional multiplications per processor. The number of

operations for the parallel and uniprocessor algorithms may be compared when:

N=2=rr=r2 (2.2.2.21)

which necessitates:

n=2 q=y-p (22.2.22)

The total numoer of complex multiplications is:

pzr—l +27 4P (2.2.2.23)

and the number of additions is:

p2° +2°(27 = 1) (2.2.2.29)

If N=256, r,=4,and r,=64, a parallel system requires 512 multiplications per processor,
compared to 1024 on the uniprocessor, a speed-up factor of only two. However, the

summation phase of the algorithm yields exceptional cases when g=1 or ¢=2, since:
W' = +1 r=2 (2.2.2.25)

wnﬂll =+l +j ’_l = 4 (2.2.2.26)

The multiplications degenerate to negations and real-imaginary transpositions,
eliminating 2°2? muliiplications. Total operation counts are as shown in table 2.2.2.1. If
multi~!"; ~tions are the significant limiting operations, a maximum speed-up factor of four

may be achieved.

Table 2.2.2.1 Operation coun s for 256-point FFT

Operation (complex) Uniprocessor count Parallel Processor count
4 processors

Muitiplication

Addition

48

2.2.3 Frequency Domain Digital Filtering

Frequency domain filtering of sampled signals is a common application for which the
Fourier transform is used. Filtering allows isolation or suppression of selected frequency
components in a signal in order to perform son:e function, or to clarify information otherwise
obscured. For example, an object present in an image may have its edges emphasized by
high-pass filtering. Low-pass filtering may be employed to reduce the effects of
high-frequency noise, enabling meaningful components of the signal to become evident.

Filtering permits frequencies of interest to be amplified or attenuated (Gonzalez 1, 87).

Filtering may be accomplished by operating on the signal entirely in its native domain
by the convolution method. Alternatively, the signal may be transforme -+ 2 another domain,
permitting subsequent operations to be performed using simpler, algebraic methods. The
new signal must eventually be inverse transformed to its oniginal domain (Dudgeon 1, 84).
The convolution method, although conceptually simpler, requires a large number of
arithmetic operations for large data sets. Since the Fourier transform can be computed using
significantly fewer operations, the transform method of filtering is preferred. The term
"frequency domain filtering" refers to the transform method of filtering time-domain signals,
butitis applied to spatial signals as well (Gonzalez 1, 87). Equations 2.2.3.1 through 2.2.3.5
show the operations necessary to filter a time domain signal, x(z), with a filter described in
the frequency domain by G(f), to yield a filtered, time domain signal A(z). The sequence

of operations is depicted in figure 2.2.3.1.

49

50

X(H = FHx(@)} (2.2.3.1)
HO =X xG) (2.2.3.2)
h()= F{H(N} (2.2.3.3)
where:
1 (- 2234
FUHO = h0) =5 [He s (2:2.34)
or.
(2.2.35)

NGt 2%nk /N
S H(n)e™

T'{H(n)}=h(k)=,lvm

Eigure 2.2.3.1 Frequency Domain Filtering

A

Ime signa Complex spectrum
Gt A l
‘ t
Filter specirum
H(Y) A

hit) ‘

Fitered spectrum '

Fitered ime signal

Frequency domain filtering may be accomplished using a parallel configuration of
processors. The Fourier transform of the input signal is calculated using the algorithm
described in section 2.2.2. The filter’s spectral coefficients are pre-loaded into the various
processors’ local memories, and are distributed such that they reside in the memory of the
processor which will calculate corresponding frequency components of the input signal.
Filtering is performed as a series of complex multiplications. Given N points and r,
processors, the number of multiplications per processor is N/r,. New frequency-domain

data result, and an inverse transform must be computed to represent the filtered signal in its

original domain.

Before the filtered signal can be inverse-transformed using the same parallel algorithm
as the forward transformation, each processing elementrequires the entire siltered-data array.
The redistribution of data may be accomplished in a number of ways. The first strategy
requires that each processor report filtered spectral data (N/r, points) to a designated
processor. That processor rebroadcasts the accumulated spectrum back to the remaining
processors (following any necessary data reordering), and the inverse process commences.
A second strategy recognizes that the first incurs unnecessary processor idle time while they
await an open channel to the designated processor. In the alternate method, a transmitting
processor broadcasts its data to all of the other processors. Eventually, each unit has a local
copy of the entire data array. Potential time savings may be significant, but the strategy
requires an interconnection network with complete broadcast modes, and each processing
unit must perform the data-reordering procedure. The inverse transformation proceeds as
in the forward transform, with the usual sign-change in the exponential term. Finally, the
filtered-signal data is extracted from the processing units by the designated processor, and

reordered. The number of arithmetic operations required by the inverse transformis identical

51

to that of the forward transform. If the number of input data is N=256, r,=4, and r,=64 as
in the previous examples (section 2.2.2), the theoretical speed-up factor (based on number

of multiplications) is four.

2.2.4 Alternating Series Calculations

Calculation of infinite alternating series is rarely performed in application-oriented
computing, since many series converge to known solutions, which are more efficiently
computed using other means. However, alternating series exhibit properties which may be
exploited for efficient calculation on the RMCS using a different configuration than in the
previously described tests. The experiment is included to demonstrate and investigate the

system’s performance in such a configuration.

The series in equation 2.2.4.1 converges to some finite limit L if the conditions stated

in equations 2.2.4.2 and 2.2.4.3 are satisfied.

< 224.1
g-a,+a,—a,+...= X (-1)a, ()
A=0
A, 20,282 dy2 (2.24.2)
lim a,=0 (2.2.4.3)

A~y

The limit L is known to be between s, and s, ,, for all n, where {s,} is the sequence

of partial sums (Shockley, 82). The rate at which alternating series converge depends on
how quickly the progression in equation 2.2.4.2 converges. Equation 2.2.4.1 is separable,
and therefore alternating series can be calculated as the difference of two sums, as shown

in equation 2.2.4.4.

- = s (2.2.44)
z (_1).aa = Zoa?.n - ngoabhrl

a=0

52

The series summation may be computed by a system of processors configured in a
parallel-pipelined fashion. Two parallel paths are established, each ore consisting of a
number of processors connected in series. The two sums of equation 2.2.4.5 may be
calculated simultaneously, one in each parallel branch. The first processor in each branch
launches new terms, or some intermediate form of them, into the pipeline, with subsequent
processors calculatingeach ¢, terminthe series. Theresults finally arrive at the last processor
in the branch, which adds the incoming data to form a cumulative sum. After a predefined
number of terms have been added, a designated processor collects the two partial sums, and
performs the final subtraction. Figure 2.2.4.1 shows a system of five processors configured
with two parallel paths, and two processors in series per path. The fifth processor is assigned

to perform the final subtraction.

Figure 2.2.4,1 System configuration for alternating series calculation.

Even terms o""“""“ o"":"’“
Final
Operation
o | P opoen ||

Maximum theoretical performance assumes that each stage in the pipeline executes
its task in equal time, T. The pipelines each consist of p processors, and the total number
of terms to be included in the computation is N, where N is even. Time for each pipeline

to generate its partial sum is given by equation 2.2.4.5.

53

|

time,, = (p s), (2.2.4.5)

The final subtraction is also assumed to require t time, and thus overall time is given

by equation 2.2.4.6.

. N N (2.2.4.6)
HmMe gy s =| P — 1 +-2— +T=|p +5

The uniprocessor calculation time may be expressed in terms of T as well, if each
arithmetic operation is also assumed to take t time. The uniprocessor must perform p
operations per series term, for each of N terms, save one, yielding an execution
time (Np - 1)1. Equation 2.2.4.7 expresses the speed-up factor as a function of N and p.
Equation 2.2.4.8 shows that the maximum speed-up factor attainable is equal to twice the

number of processors in the individual pipelines.

- (2.2.4.7
speed-up = Np Nl)
p+3
- (2.2.4.8)
lim Np Nl =2p
N «po p +3

2.3 Operational Overhead

The previous sections discuss relative performance issues based solely on arithmetic
operation totals. It is a prevalent technique in estimating maximum relative performance
increase between systems, or in comparing different algorithms for a single system. It
assumes that the operations counted are the most time-consuming. Invariably, supplemental
operations are necessary; simpler arithmetic functions, address caiculations, loop counter

modifications, and conditional-branch tests are common. The ancillary operations are

54

considered either to require insignificant time, or they are performed in constant proportion
to the number of counted operations. When the assumptions are thus justified, predictions

based on operation count are reasonably accurate.

When multiple processor systems are considered, additional conditions must be
satisfied to utilize the same technique accurately. Multiple processor applications generally
require data communication among processing elements, which often requires extra
(overhead) time due to memory arbitration, ssmaphore maintenance, communications
bandwidth, message framing, and processing element synchronization, all of which are
implementation or architecture dependent. If the overheads are insignificant compared to
the counted operations, then the operation count-based theoretical speed-up may closely

match the observed speed-up. Itis rare that the overheads can be ignored entirely, however.

There are three major sources of operational overhead in the RMCS: reconfiguration
time; processor synchronization time; and data communication time. All are
hardware-related functions, however, they are controlled by software resident in each cell’s
ROM, and are accessed using various software traps (section 3.7.4). Hence, some degree
of operating system overhead is associated with the hardware factors. The following sections

briefly describe the sources and nature of the RMCS’s operational overheads.

2.3.1 Reconfiguration Overhead

Every application executed on the RMCS involves some network reconfiguration
overhead. Chapter 3 describes how reconfigurability is achieved and controlled. All data
communications between processing elements in the system utilize the reconfigurable
interconnection network, whose topology is controlled by a single processor, designated the
master, the remaining processors are referred to as s/aves. The master configures the network
by writing configuration control words to a set of registers residing in its memory map.

Reconfiguration of the network may be overlapped with slave execution time, since

55

communication paths may sometimes be altered, without interfering with slave computation;
otherwise, reconfiguratior occurs sequentially. Reconfiguration overhead time is equal to
the execution time of the instructions which modify the registers (assuming minimal PSR
device reconfiguration delay, see section 3.3.1 and 4.1.1.3), and do not execute concurrently
with slave processes. The programiner may modify the registers using individual memory
modification instructions, or a monitor service routine may be called which overwrites all

of the network configuration control registers on each invocation (section 3.7.4.8).

2.3.2 Processor Synchronization Overhead

The processing elements in the RMCS are autonomous. Since the master must not
reconfigure the network at mid-transaction, some independent means to monitor and control
slave processing is necessary. The service request bus (SRQbus) and its protocol
(section 3.6) fulfills the function. The slaves signal the master at critical points in the
program, such as priorto, or following, a data transfer cycle. When the masteracknowledges
the request, the slave continues processing; otherwise the slave is compelled to wait. The
SRQbus does not allow slaves to monitor nor signal other slaves. The SRQbus strategy
empowers the master with absolute control over program execution and data

communications throughout the system.

Programs for the RMCS necessarily include code for execution by the master, as well
as the slave processors. A slave requests service of the master using a TRAP call, which,
upon entry, asserts a request, and retums after acknowledgment has been received (the
SRQASRT trap, section 3.7.4.3). The master program likewise uses a TRAP call to service
the various requests using any desired priority (the SRQACK trap, section 3.7.4.9). In both
cases, the processor synchronization nverhead includes the TRAP exception vector
processing time, and the time to execute the instructions which implement prioritization. It
is difficult to precisely measure the processor synchronization overhead; the time between

call and return from the SRQACK routine may be measured at the master, however, if an

SRQ from a particular slave is expected, and it is not immediately forthcoming (the slave
may be busy completing another task), the observed time is longer than the minimum time.
A test program that does not call the SRQACK routine until the expected SRQs are known
to be pending may be used; the execution time observed s for "guaranteed-pending" requests.
However, typical behaviour is like that of the firstcase; the master calls the SRQACK routine
concurrently with slave execution time, and it may spend much of its time awaiting requests,
since it is normally not utilized for computations. The acknowledge time is slightly
dependent on the number of requests to be serviced in each TRAP exception call, and it
may fluctuate due to the asynchronous nature of the system. In the experiments, the

guaranteed-pending request procedure was used to obtain approximate results.

2.3.3 Data Communication Overhead

Data communication overhead is theoretically the most significant overhead factor in
the RMCS’s performance. A message (consisting of a variable number of bytes) exchanged
between processing elements traverses a number of PSR devices. Each byte transferred is
asynchronously handshaken, and thus a transmitter cannot transmit a message until the
receiver signals its readiness. Data transmit and receive programs for block oriented data
exist in each processor’s I/O subroutine repertoires. The data transfer overhead includes
the time required to call the routines, the transmitter/receiver initial byte synchronization
period, and the actual data transfer time, which is expected to be linearly related to data
block-length for a fixed signal-path length. The path length affects wansfer times since
propagation delays of signals must be considered. The poscibility exists that signal
propagation time is significantly smaller than the time required by a processor to perform
an iteration in the block transfer program; a byte could be completely transferred within the
iteration time. In such cases, the limiting factor is not the network bandwidth, but the

processor and I/O port performance. The effect of signal propagation delay is

57

inconsequential, and transfer time will be independent of path-length below some limit. The
data transfer overhecad may be expressed as a linear equation of the form shown in

equation 2.3.3.1.

Lisa - wansfer = (DYLE count)xm +b (2.3.3.1)

where b represents the fixed overhead cost incurred per block transfer, and m is the time
per byte transferred. Analogous to the processor synchronization overhead, the value of b
is difficult to measure accurately. A number of tests may be conducted using various
data-block length transfers, and regression analysis used to determine the fixed penalty. The
accuracy of the measurement is affected by receiver and transmitter synchronization. In
the experiments, data transfer times and overheads are measured in cases where receivers
are always ready priorto transmitters calling their data-output routines. When measurements
are made at a receiver, a similar provision is made. The procedure standardizes the tests,
and minimizes the synchronization time. The fixed synchronization cost is nonetheless
expected to be small compared to transfer times of even moderate block lengths (10°s of
bytes), so some small amount of error may be inconsequential to calculating predictive

estimates of system performance.

58

3 Prototype System
This chapter focusses on the hardware and software of the reconfigurable
multicomputer system developed for the thesis. The major hardware components are
described in detail, and overview is given of the multicomputer system topology and
operating principles. The system-level programs developed to control the multicomputer

are presented.

3.1 General System Description

The prototype reconfigurable multicomputer system: (RMCS) consists of five
processing elements or cells, four of which are designated as slave cells, the remaining one,
the master. The slave cells are comprised of identical hardware and system software, and
they can perform equivalent tasks. The master cell consists of the same core hardware as
the slaves, with additional modules to provide host computer and user terminal interfaces,
and network control. The master cell incorporates system software similar to that of the
slaves, with supplementary routines to facilitate supervision of slave processing. All
processor cells exchange data via the interprocessor communication network (ICN), which
embodics an array of custom-designed programmable signal router (PSR) devices. The
ICN and network contreller card (NCC), make the system reconfigurable. Under the control
of the master, communication channels among processor cells may be altered to optimize
the interconnection topology for the current program. Reconfiguration may occur within
the framework of a program, to optimize performance of sub-tasks within more complex,
larger tasks. Data transfers are synchronized by the participating processing elements using
an asynchronous, 2-wire handshake prutocol; data transfers do not require master
supervision. There is no shared memory in the RMCS, nor a common clock signal; all

interprocessor transactions are asynchronous.

Each slave processor accesses a service request bus (SRQbus) via a parailel I/O port,

and an interface circuit. The master processor monitors the processing state of the various

59

slaves using the SRQbus. Data is not exchanged using the SRQbus; it implemnents a

“ready/continue” signalling strategy only. The SRQbus enables the master to maintain slave

processor synchronization throughout execution of a program. The bus protocol does not

include facilities for slaves to exchange status information with other slaves. The strategy

strengthens the role of the master processor as system overseer, and provides system control

(and therefore programming) uniformity. Figure 3.1.1 shows a block diagram of the

prototype system.

Eigure 3.1.1 Block Diagram of Prototype System.
user host
terminal_y § (VAX, PS/2)
seriai
Vo
T CellBus i)
f 1 Configuration
Controls
M Network
Controller
SRQbus H
P i g i } R —
” \
[[
L171soy |s1| |s2| |s3| i
A ’]
// : yd] |l
-, b f 1
. % - |
et A I Interprocessor :
g ’ \ !y Communication el
o e ® /| Natwork !
/, rd \ 4+)
” { [}
: —f dslavecell _____ .- /
CesBus |
!
Processor Memory s '
md s [}
. intertace ,’
[] [} 1
Output m ”I Input H

The four-slave system by itself constitutes a unit-cell. Expansion of the system to
include additional processors is accomplished by replication of the four-slave cell and ICN.
Larger systems consisting of many cells are themselves reconfigurable, and intercellular
connections determine the scope of available topologies. The individual system components

are described in detail in the foliowing sections.

3.2 Autonomous Processor Cell

The RMCS consiituent processors are auton.. nous, high-performance microcomputer
systems. Each auton:mous processor cell (APC) comprises an 8 MHz MC68008
microprocessor, an MC68230 parallel interface/timer (PI/T) providing three parallel 1/O
channels, 64 kbytes of RAM and 8 kbytes of ROM. The MC68008 was chosen since the
68000 architecture and instruction setis well accepted as superior to many others, the internal
32-bit register architecture is suitable to perform complex arithretic calculations quickly
and efficiently, programming tools are widely available, and the instruction set allows the
processor to perform well in register, memory and I/O intensive applications. The 8-bit
external data bus matches the ICN data-path width; it also reduces the hardware cost of the
prototype system, while providing a performance level comparable to that of processors

with 16-bit buses (Motorola 1, 86).

Physically, each cell consists of a CPU board, a memory and parallel I/O board, and
a kackplane bus. The bus (here:nafter referred to as Cellbus) is an asynchronous, expanded
local bus of the microprocessor, with seven interrupt priority levels, external systen reset
and halt signals, address translation, synchronous bus cycle capability, bus cycle re-run, and
three-wire daisy-chain bus arbitration to accommodate alternate bus masters. The CPU
board de..ign and bus structure permit system expansion boards to consist solely of memory
and peripherals, and necessary interface logic to implement either asynchronous or

synchronous processor accesses, and interrupts.

61

The APC hardware is similar to that described in Smeulders (Smeulders, 88) with the
addition of an MC68230 PI/T device, and its Cellbus interface. Block diagrams of the APC
CPU card and Memory & PI/T card are shown in figure 3.2.1 and figure 3.2.2, respectively.
Schematic diagrams for the subsystems are presented in Appendix B and Appendix C.
Details of the APC hardware (bus signal descriptions, bus protocol, and system
performance), are the subject of Smeulders (Smeulders, 88). Due to the MC68230’s timing
characternistics and Cellbus interface, read operations by the processor occur in four system

clock periods, while write operations require five.

Slave processor cells do not require a host/terminal interface; only the master processor
incorporates a serial /O card for those purposes. The master is responsible for providing
the slave processors with the instructions and data for a task. Programs stored on a
host-computer system are downloaded to the master; the programs include instructions for
distributing slave programs and data, as well as the master’s system control code for the
application. A single terminal interface exists as well, enabling the user to communicate
directly with the master. The serial /O module is completely described in Smeulders
(Smeulders, 88). Figure 3.2.3 isablock diagramof the master’s serial I/O module; schematic

diagrams are presented in Appendix D.

Since a number of identical system units are used repeatedly to implement the RMCS,
two-layer printed circuit boards for the CPU, Memory and PUYT, bus backplane, und senal
I/O modules were designed and fabricated for the study. All pnnted circuit board designs,

device placement, bus and connector pinout specifications are shown in Appendix E.

63

SNgN30

00 00

ST

sIMHLDIA
“YIAKD

-IB1¥OV
+IBL0AS

PH

- Ao

HAXL
AN

"NG vAVD

CELT
AN

2§ S8 NIQOY,

N

HADH

RLLTC S

MLV |

«MIVING

- 1MoV NN

>

NOULVIINDUHHOINAS

(Lo

ALIOND LS 3 INI

HAJH

B e |

HINAB 19 INO I

HADY

TETVY

“IRTERY

YOMANDD
ROLYIO1IW BO LD IA

«4 WL I8N

13870 YWY

y3nm0 [

R

|

AN

BIVRTHN SNAVLS

Wm0] 43O]__
i

300030 || 30003Q

3npowi NdD D4V Jo weiderp yooig

D4
(31
ad4

NdN 800830W

SOvma
~cOu

SXOVLIQ

<MOVING

sNgT130

2y ov

Qo0

.DIHYNQ
201
ouTd o
B}
HWLO Ld w Ilw
2
HIVIONOY NOVIONYY
SV
21901 i — 21901 - -
3903 TMONNIY ONIWIL M
1dNHUYIINI Y iv §$5300v n
SNONOUHONASY —l
<30M0Y
A35IUSAS Y
WIDSAS o B
1oL e R o}
Tasnvy 9
.S22NOY m
e _.uu.aox _I..
} [$08 $5I900Y 2 K N
o
- ESINECINNESY
NOILLONNS @ nd
ALYNYILTY 0E2e9ON Nr9 Ay bR 4
[314-] ZNOoY 84,0]
118YNI
7< © C ua
—V. U O _/_ - -
/ M\ _ P N 2K
o |] \J
180d AHOd 1HOd

npow 1/id pue Aowd DV jo weiderp yoolg

65

%0018

103138

vy

HOLYH3INID
3ivy ONvE

S

FOVANILN

Z VIov
05890

40 00

HIAIQ

___| NOLLVHINID
»INILO3IA

ov 300230 | N

SISOV

FOVINUN

ATy "

IO

;

U%UUCU

4090

HAOY

3718¥YN3

HADH

HAXL

_!F

A/P

—

"d[npowt /] [BLIAG §,10S$3001 191seN JO ureiderp yooig

<ANILDOIA

fta R4

JSAOVLN

SV
o3

<YRA

K]

a0a

SIRICRRE

3.3 Programmable Signal Router

The reconfigurability of the RMCS is achieved via an array of programmable signal
router (PSR) devices designed and fabricated specifically for the project. This section
presents the functional description, operational principles, and implementation details for
the device. A brief section is devoted to applications and interfacing strategies for the PSR.

It emphasizes the generality of the device design, and its versatility.

3.3.1 Functional Description

The PSR is similar in many ways to the crossbar switch commonly referred to in the
literature describing muitistage interconnection networks {section 1.3.5], but it incorporates

fundamental differences which make it unique, and highly flexible.

The device comprises two 9-bit input ports: eight bits for data, one for asynchronous
data ransfer handshaking, designated as duata available (DAV*), and two, 9-bit output ports.
The device may be configured to transmit data (and DAV *) from an input to either or both
output ports. Another signal, data accepted, (ACC*) is controlled by the receiving system
to signal the transmitter that a transfer has been completed, or may commence (in the latter
case, it may be referred to as ready for data). The design allows single and multistage
interconnection networks to be implemented with reduced circuit board area and hardware.
The PSR does notprovide : *‘directional processor-to-memory interface, nordoes it arbitrate
multiple access requests or enqueue messages, as some multistage networks require; it is
unidirectional. The RMCS urchitecture does not call for bidirectionality. Multiple PSR’s

and additional hardware may be used to implement the specialized crossbars.

The configuration of data paths within the device is controlled by a 4-bit configuration
control word (CCW). Two bits determine internal data path routing, the remainder control
enabling of the ou. uts, which allows isolation of selected ports. An external unit controls

configuration of the data paths among processors, and the data transfer synchronization is

provided by the sending and receiving units. The external control strategy introduces
sufficient flexibility to permit alternate configuration control methodologies to be utilized
(supervisory processor control, address dependant routing, etc.). Figure 3.3.1.1 shows a
block diagram of the PSR. A summary of the pin designations and their functions is given

in table 3.3.1.1.

Eigure 3.3.1.1 Programmable Signal Router block diagram.

l I D
ADAV® — P : 7 - COAV®
DATA v
a7 Fet—at T e E , coc
c R 7 7
8 MULTIPLEXER
H 8
AMCC® -] - lt——— CACC*
——
0
HANDSHAXE <-J --—{: S DDAV"
BOAV* - L FEEDBACK |
A CONTROL v ,
8087 S wr—e 2 'a - 00-07
8 ¢
y | IR
i DACC’
aacc: -

M

PORT CONTROL BITS T Y COE DOE

67

Table 3.3.1.1 Programmable Signal Router pin designations and descriptions.

Pin# | Designation Description
3-10 AQ-A7 Port A data input

57-64 BO-B7 Port B data input

48-41 Co-C7 Port C data output

31-24 DO-D7 Port D data output

11 Apav* Port A (B) data available input. Signals port A (B) data

65 Bpav* available and latches data currently on A0-A7 (B0-B7) to the
internal data laiches.

<0 Coav* Port C (D) data available outputs. Reflects state of Ap,* or

23 Doav* Bpav* depending on the current data path configuration.

39 Cacc* Port C (D) data accepted. Asserted by a receiver at Port C (D)

22 Dacc* to signal that data has been accepted, or receiver is ready for
new data.

12 Aot Port A (B) data accepted. Reflects the state of Cy.* or D,y(*

66 Bacc* or both, depending on the current data path configuration.

13-16 PCO-PC3 |Por configuration control bits 0-3. The state of the PC bits
(Z,Y,Coe, |det .mines the current data-path configuration.

OE)
21,56 vDD +5 V power supply
55,32 VSS 0 V power supply (ground)

3.3.2 Device Operation

The PSR may be configured to provide all possible connections between the two input
ports and two output ports. The active configuration is determined by the state of four port
configuration control bits (PCO-PC3) comprising the configuration control word (CCW),

defined in figure 3.3.2.1.

The configuratio.s corresponding to valid control words are shown in figure 3.3.2.2.

Eigure 3.32.1 PSR Configuration Control Word bit assignments.

PC3 PC2 PCY PCO
Doe Coe Y ¥4
Port D PortC Path Contsol Path Control
Output Enable Output Enable Bit1 Bito
1=Enabied 1=Enabled

O=Disabled O=Disabled

Figure 3.322 PSR Configurations and correspondir . Control Words (X=don’t care).

A A A
B C 8 [+ B c
%00XX %1100 %1111
o $0-%3 o $C o $F
A A A
8 [+ 8 < 8 [+
%0100 %0111 %1101
o %4 o $7 o S$D
A
8 ¢ 8 c 8 ¢
%1000 %1011 %1110
o $8 o $8B o SE

The remaining seven control words result in repeated or illogical port configurations.
Invalid words presented to the device cause output port data and DAV * signals to be driven
to the high state, as well as the input side ACC* signal. The same states exist when an

output port is disabled.

A data transfer cycle between ports is summarized in the following paragraphs,
assuming a transmitter connected to port A, a receiver at port C, and a configuration which

provides a path from port A to port C.

The transmitter applies data to pins A0-A7. The data is transparently reflected to
pins CO-C7 with a small delay. When data is stable, the transmitter asserts Ap,v* low,
latching data at the device, hence locking the data valid at CO-C7. The transmitter may
allow its data to become iivalid at any time thereafter, but it must keep Ap,v* asserted to
maintain valid data at C0-C7. The Ap,v* signal is reflected to Cpv*, which the receiver
may use to latch the currently available data. Upon acceptance, the receiver assents Cooc*
low. This signal is reflected to A,cc* and thus to the transmitter, signalling that data was
accepted, and Ap,,* may be negated. Negation of Ap,* is reflected to Cpay* as usual, and
the receiver may negate Cycc®. Aacc* is negated at the transmitter side, finally indicating
to the transmitter that the transfer cycle is complete, and another may commence. Correct
operation of a series of PSR devices along a given data communication path requires that
the delay imposed by the device on data signals is equal to or less than that imposed on the

corresponding DAV* signal.

All transfers follow the described process. including broadcast transfers, in which case
both Cacc* and D,oc* must be asserted low before the input port Aec® or Bec® signal is

asserted low.

The data transfer cycle is asynchronous; timing is controlled by the DAV* and ACC*
protocol, and no maximum transfer time is imposed. Figure 3.3.2.3 shows the data transfer
cycle timing described above. Tests were performed to determine critical timing

characteristics of the device. Results are presented in section 4.1.1.5.

The flexible design of the PSR permits variations of the protocol described above,

depending on the peripheral used for data transfer between system units. In particular, the

70

FEigure 3.32.3 Data Transfer Cycle timing.

INO-7

INDAV*

ouT 0-7

OUTDAV" e

QUTACC®

INACC®

MC68230 PUT lends itself better to a protocol where the A ,oc*/C.cc* pair indicates ready
lo accept data. The negative edge of Cp,v* negates the receiver’s C,oc* immediately, and
it is reasserted after the receiving processor has read the newly available data from its PI/T
data register. The negative edge of A,cc* at the transmitter immediately negates the
Apav*/Cpav* signal, and the next transfer may commence. The protocol is shown in
figure 3.3.2.4. The necessary connection between two MCt8230 PI/T’s is shown in

figure 3.3.5.2.1, as part of a later section on data-port interfacing.

Some implementations may take advantage of input data latch transparent operation
when Apav* or Bpay* signals are negated. The PSR may be used in systems without
asynchronous handshaking if some other method of data synchronization between
communicating devices is employed, such as acommon clock. Since the internal data latches
are transparent, a synchronous data transfer pipeline cannot be implemented without

additional sequencing hardware and signals. Such pipelining was specifically not desired

71

Figure 3.3.2.4 Data Transfer Cycle timing, MC68230 1/O ports (interlocked handshake
modes).

IN 0-7

INDAV*

OouTo0-7

OUTDAV"
OUTACC® l [

INACC* |

in the system, since it imposes potentially unnecessary delays and increased complexity.
Transmitted data propagates directly to the receiver(s); the latches are provided only to
permit transmitter invalidation of data signals following assertion of DAV*, which may be
the case with certain peripheral devices. The transmitter may assert its output data signals

for the next byte to be transmitted, and control its subsequent propagation with DAV*,

3.3.3 Internal Design of the PSR

This section discusses elements of the PSR’s internal design.

3.3.3.1 Input Bonding Pads and ESD Protection Network

All input signals of the PSR device are high impedance loads. Each input circuit
incorporates an electrostatic discharge (ESD) protection network comprising two d.odes
and a diffused resistor. The pad circuitry provides the input signal to the internal circuits

in inverted and non-inverted conditions.

Figure 3.3.3.1.1 Input pad circuit diagram.

vDD

INPUT PAD

Lfe
lws T

-

3.3.3.2 Output Circuits and Bonding Pads
All output signals of the PSR are buffered by 2-state output pad circuits. Each consists
of four series-connected inverters with successively larger gate areas, providing increased

output current with minimized propagation delay.

The signals driving CO-C7, D0O-D7, Cp,v* and Dp,v* are logically ORed with the
inverted Coe and Dgg port configuration control bits. When a port is enabled, the logical
state of the transmitting input appears on the corresponding output, otherwise, the output

signals are driven high.

Eigr.e 3.33.2.1 Output pad circuit diagram.

INPUT QuUTPYT

ENABLE" PAD

Gate Areas Successvely Larger

73

74

3.3.3.3 Data Latches

The data latches used totemporari’_ tore input data for the duration of a ransfer cycle
are transparent latches with active-low enable signals. The circuit diagram for a one-bit

latch is shown in figure 3.3.3.3.1.

Figure 3.3.3.3.1 Transparent Data Latch with active-low enable.

BDa

(Enable*)

Do_o.

A set of eight latches is used for each input-port data latch (figure 3.3.3.1), with the
enable signals connec:ed to each. The latch enable signals are A, * and By, * input signals

for the Port A and B data latches, respectively.

3.3.3.4 Data Path Routing Multiplexer

Data path routing is controlled by port configuration control bits Y and Z, and is
realized using a multiplexer circuit. Boolean expressions for C,, and D, outputs which
result in the correct control, data input, and data output relationship (reduced to NAND,

NOR, and INVERT functions for fabrication purposes) are as shown:
Caan=((Agea®Baaa”* Y’) (A g B Y)Y (A *Bu) 'Y’
Da=((Aga®Baaa’ *Z) (A4 *Buaia®Z’) (A 1 Bu) ')’

A one-bit data multiplexing cell is shown in figure 3.3.3.4.1.

75

Figure 3.3.7.4.1 One-bit, 2 x 2 data mulriplexer.

=

o

MICT 1]

} ——
D

The circuit shown was repeated a total of nine times: eight for data path routing, and
an additional unit to route DAV* signals. The block of nine multiplexers implements the

Data Multiplexer unit of figure 3.3.3.1.

3.3.3.5 Handshake Feedback Control Logic

Since input data can be transmitted to either a single output port, or both (broadcast
mode), routing of the handshake signals C,cc* and D, c* 10 A cc* and B,c* is more
complex than data path routing. Provision exists for broadcast modes, where both C,c*
and D, c* must be asserted for the appropriate A o™ or B o¢* to be activated. The following
Boolean expressions (reduced to NAND, NOR and INVERT functions for fabrication

purposes) for output signals A,cc* and B,-* describe the necessary logical relations.
Ancc*=({Cacc*+Cop’+Y+Z} +{Dpcc*+Dop +Z7+([Y e Cop'I'e[Y ¢Cocc*I')'})

Bucc*=({Dacc*+Dog '+ Y+Z} +{Cacc*+Cop +Y ' +(Z'*Dog’|"*[Z7*Dacc*13'}')’

The handshake feedback control circuit prescribed by the above expressions is shown

in figure 3.3.3.5.1.

Eigure 3.3.35.1 Handshake Feedback Control circuit.

-

DACC* DOE COEZ 2 ¥

= 3 =
J
\d AACC*
\
—@ H
+ D‘}r
Al
L 4 -
‘]
BACC®
¢
& + =
-
[
cAcee

From the preceding discussion, a Muller-C element (Mead 1, 80) is an apparently
suitable element for incorporation with the handshake feedback control circuitry, and would
aid in synchronization of data transfers in the broadcast mode. The standard C-element
introduces a potential timing hazard when the MC68230 PI/T is utilized in its interlocked
handshake modes, since the signalling is not the standard 4-cycle protocol (Mead 2, 80). A
related, but more easily accommodated hazard may occur when a C-element is not provided.
The potential hazard exists when two processors are receiving broadcast data while executing
receive instruction loops of significantly different lengths (i.e. one receiver is executing
intervening instructions between input register read operations), or the data path length

between receivers and the broadcasting device is significantly different (a path length with

76

delay approxi'r..:ly equal to a one-byte transaction time with the nearest receiver). It is
unreasoi i+ vy processors toexecute different data receive loops, since the slowest receiver
causes th otiers to wait, reducing efficiency. Thus, all receivers should execute an
optimized receive-loop, and extra operations required of selected processors are performed
subsequently. The hazard is not encountered if broadcast path length differences are below
the limit. A latched version of the C-element is required if the hazard is to be eliminated
altogether when the MC68230 PUT is used. The specialized element was not incorporated
to preserve the generality of the device design, and therefore its applicability for use with
a wide range of peripheral devices. The restricticns on processor timing and propagation

paths must therefore be observed in the prototype system.

3.3.3.6 Buffers

Since Port Control bits Y,Y’ and Z,Z’ drive many gates each, the signals are buffered

before connection to the data path multiplexer by two series-connected inverters.

3.3.3.7 Power Distribution

The power connections labelled VDD and VSS are facilitated by the usual square
metal pads. The I/O pad circuitry is powered separately from the internal circuitry. All of
the external power pins mu:. .erefore be connected to VDD and VSS supplies for proper

device operation.

3.3.4 Implementation and Fabrication

The PSR design is specified in the CIF geometrical specification language (Hon, 80),
and is implemented using 3-micron, 2-metal layer CMOS technology. The design rules and

fabrication restrictions are described in CMC (CMC, 89).

77

78

The devices are fabricated by Northern Telecom (Canada) on 4 mm square silicon
dies, and are packaged in ceramic, 68-pin PGA chip carriers. Details of the 1/O pad
characteristics are documented in Chum (Chum, 89). whose library of pad and logic cell

designs was made available to the author.

3.3.4.1 Pad Layout
The 1/O pad designations are shown in a simplified diagram of the actual die in
figure 3.3.4.1.1.

Figure 3.34.1.1 Simplified Die Layout.

[HEOOOUDEEEEEEEL
e]
Dm. IOAV'D
EJoowr]
] (o]
=] =]
(e] [
L] =]
[e]
]
(]
Ec&c' coav E

DO BEEEEEEEF

3.3.5 Interfacing Techniques

This section briefly discusses control processor and data channel interfacing, and data

path-width expansion techniques.

79

3.3.5.1 Control Processor Interface

The port control bits PCO-PC3 must be controlled externally. A suggested method
employs aread/write latch (suchas a74ALS666) which resides in the memory or I/O address
map a control processor. Since only four bits are necessary to control a PSR, a single

74ALS666 may control two devices, while occupying only a single system address.

Figure 3.35.1.1 Typical control processor interface.

-
< DATA BUS > 8-8T |———— PCO-PC3
READ/ | :
WRITE PSR #1
CONTROL
ADDRESS LATCH
MPU
| DECODE
ADDRESS A
BUS
l t -
TIMING | —% PCO-PC3
& S
CONTROL
BUS PSR #2
CoNTROL | INTERFACE
BUS

Integration of the read/write latch with the PSR device was considered, to reduce the
need for external hardware. One was not included, however, to keep the module usefulness

in systems with increased bus-width (section 3.3.5.3), and different timing specifications.

3.3.5.2 Data Port Interface

The data transfer timing specifications are non-restrictive. Any I/O device with or

without handshaking capabilities may be used, since communication device-specific

circuitry does not exist in the PSR. The Motorola MC68230 PI/T implements an
asynchronous 2-wire handshaking protocol which the device accommodates.

Figure 3.3.5.2.1 shows how the MC68230 PI/T may b= connected to a network of PSRs.

Figure 3.3.5.2.1 MC68230 PI/T connections to a network of PSRs.

Contfig. Control
Signals Not Shown
ST T T ';
PBO-PB7 o AO-A7 CO-C7 | ___ ol AO-A7 CO-C7 L____ 1 PA0-PA7
He | I ADAV® CDAV® | ___i ADAV* CDAV" L__ H2
W3 o | Aaccr cace [T1aace cacet [X] Hi
i
B0-B7 DO-D7 18087 DO-D7 | @@®
Mces230 BDAV® DDAV’ | BDAV* DDAV* | MCes230
PUT BACC* DACC* | BACC® DACC® | PUT
b e J
Any number of
Programmable Signal Routers
and various interconnections
TRANSMITTING among them. RECEIVING
SYSTEM Port B and D connections not shown SYSTEM

3.3.5.3 Data Path-Width Expansion

The PSR is an 8-bit device, but may be used in 16-, 32-, and other multi-bit systems
by incorporating additional devices connected in parallel. Since only -1 DAV* and one
ACCH* line per port is necessary, no suppiemental circuitry is necessary. All of the DAV*
input signals must be connected, since they are used to latch data internal to the device.

Figure 3.3.5.3.1 shows a typical connection for 16-bit systems.

80

81

Figure 3.3.5.3.1 Typical connection for a 16-bit system.

CONTROL MPU
—
vy ¢
INTERFACE
REGISTER
TRANSMITTER A h Lﬁlh RECEIVER C
ADO-AD1S ADO-AD? Y €D0-CD7 CDO-CD1S
ADAV* —7—X 7= a0-A7 cocr [T
el -9 - ADAV* PSR CDAV* > CDAV'
—— ARCC® Low CcAcc [cacc
- . 0Do-007 DDO-DDIS
8008015 BOCA0T gl go.g7 BYTE pop7 (—F—o - o
B0AV" * # BoAV" DOAV* -— DDAV*
Bace — BaCC" DACC® [DACC
TRANSMITTER B RECEIVER D
\| | AD8-AD1S ‘I“ cDa-co15
7 B A0-A7 co-C? e —
e ADAV® PSR COAV* [
~-———— AACC* H CACC® [————
BD8.AD1S HIG DD8.0D15
¥ 80-87 BYTE 00-D7 '——f—>—’~/
P BDAV* DDAV* [P
~a—— gacc’ DACC* |@————

3.4 Interprocessor Communication Network

The interprocessor communication network (ICN) was designed to fulfill three major
objectives: conflict-free communications among slaves in a 4-processor cell; physical
geometric regularity of the cell; and external access to all slaves in the cell. Communications
between slaves and the master processor utilize the network, as well. Slave processors
possess a single input data port, and a single output data port, which are realized by the PI/T
ports A and B, respectively. The network topology, which has been implemented for the
study, is an offset ladder-like array of twenty PSRs. A block diagram of the prototype
system’s ICN is shown in figure 3.4.1. A schematic diagram of the ICN is shown in

Appendix F. The PSR’s are shown as circles, processor cells as rectangles, and data paths

82

as arrows, indicating their fixed direction. The hexadecimal addresses shown adjacent to
the PSP s correspond to the master processor’s memory addresses to which the devices are
mapped; "L" indicates the lower order 4-bits of data at that byte address, and "H" indicates
the most significant 4-bits. Data transfers across the ICN between processors obey the

protocol indicated in figure 3.3.2.4.

Eigure 3.4.1 R ram of prototype system Interprocessor Communication
Ne

Master

%\i JL Unit Cell

- - oy

| Slave Slave

S ks T, Tyl S P [,

The elements shown inside the dotted lines in figure 3.4.1 constitute the 4-slave cell.
Data path arrows crossing the line are considered extra-cellular connections. Expansion of
the system is facilitated by replicating the four-slave cell and interconnecting them at the
extra-cellular connection points. The choice of connection sites has an influence on the
simultaneous configurations which are possible in expanded systems. A full analysis of
possible configurations for expanded systems, and their relation to the selection of
connection sites is beyond the scope of the presented thesis; Snyder (Snyder, 82) theorizes
that the number of configurations possible is related to the switch corridor width, and thus
full reconfigurability of expanded systems can only be achieved by increasing the corridor
width. Clearly, this is not possible with a fixed, cellular design, and some compromise must
be settled upon. The network has distinct input and outpui sections, necessitated by the
unidirectionality of the communication paths. The path from a given output to an input
appears as a multi-branched, expanding and collapsing tree; branching is determined by
PSR settings. Figure 3.4.1 shows the extra-cellular connections used in the prototype,
unit-cell system. In the prototype system, the extra-cellular connections are such that any
slave may output data to any of the five outputs at the lower-right comner of the figure,
wiihout limiting communicatior by other slaves to the remainder of the outputs. Likewise,
any input signal at the upper left of the diagram can be routed to any of the slaves without
conflict. Figure 3.4.2 shows a number of possible processor configurations; the slave indices
are not distinguished in the figure since any slave can assume any position for a given
topology. A rigorous, mathematical proof of the interconnection patterns available is beyond
the scope of the presented thesis; the 4-processor combinations have been individually and
explicitly verified. Figure 3.4.3 shows an eight-processor, two-cell system organization,
with cells connected "end-to-end". Note that only a single master is used in systems of any
size. When a4-slave cellis considered, any slave transmitting has a choice of three remaining

slaves for reception, and thus only three output signals must be routed back to the input

83

84

section of the ICN. What results is a four-slave cell with two input and two output channels,
resembling the PSR device organization itself. The strategy has reduced redundancy,
however it provides the same set of interconnection patterns for a 4-3’ .ve system (some
restrictions on slave positions within a topology may apply). Thus, expanded systems may
utilize such 2-input, 2-output cells, structured in a rectangular array. Due to the limited
connections between cells, the number of possible configurations will be reduced; however,
the structure of the system would still be suitable for a wide range of problems, and would

resemble an array processor with locally reconfigurable node elements.

Eigure 3.4.2 Available processor configurations.

PR mmE

LLLI
-

—g— s
TEE el B2

85

ey

‘13)58W puR $10553001d 9AR[S IYB12 Yaim wIAsAs papuedxy

3.5 Network Controller Card

The network controller card (NCC) interfaces the master processor with the
configuration control signals of the twenty PSRs in the ICN. The design is based on that
presented in section 3.3.5.1. Ten 8-bit latches with read-back capability (74ALS666) are
used as a register block for control of the network configuration. The registers occupy
addresses $12FB0 to $12FB9 in the master’s memory map. Their contents are continuously
present on the latch output signals which are connected to the configuration control signals
of the ICN. Since only four bits are required to control a PSR, a single latch controls two
PSRs and occupies only a single memory address. The read-back ability of the latches is
not entirely necessary, since the master could trace the history of register write operations.
Incorporating read-back makes tracing non-compulsory. More importantly, the registers
existas read/write memory locations; programming flexibility is enhanced since all available
instructions and memory addressing modes may be used to modify the register contents.
From both hardware and software perspectives, the registers are treated as fast memory

locations, and performance and flexibility is maximized.

The NCC also contains the necessary circuitry to implement the Service Request bus
(SRQbus) interfaces. Alternatively, each slave processor could incorporate its SRQbus
interface directly as part of its Memory and PI/T card, and a simple bus-backplane connection
could be made among processors. The strategy causes slave cells to become non-identical
by virtue of their SRQbus address decoder. It compromises the cellular nature of the slaves,
and topologically constrains their design. Therefore, the SRQbus interfaces were located

on the network controller card. The next section discusses the SRQbus and its operation in

detail. Schematic diagrams of the NCC and SRQbus interfaces are shown in Appendix G.

86

87

«1383YX3 £3AVIS TV O1 L3ISIUSAS WIALSYN
O31D3INNOD SIAVTS 1TV HOJ AN
1408V g
ONY 13834 4 43733
m
IYNNYN W3LSAS n N
‘NIO R 1]
HIV10
$32A30 01
ALY
NOVEaYIY ._oa_pz%o 8 ..dmmm
-] - > >
S1NdM Lo k] AV
SIHIN
T0U1NOD
n8se P
usd oL m
-
, -
7 ! @
| 2
[©e 124 o 14 [TV 0 ‘
YoV
't P | P | P | g
3oV VN VMU 0VIUM m
ous ous ous ous s
s T3AIS i 3AV1S 03AVYS
—nll.go
TYSAY
IIVIUILN OUS swwa || wa
0 140d
H3ILSVN
g o _SMY)vQ V w A”v e
_.||||| 83

2
*$90BLAU] SNQOYS puk preDd) II[JONUC) YIOMIIN JO wiriSerp Yooig Tt NIy

3.6 Service Request Bus

The SRQbus provides the means whereby slave processors signal status information
to the master. The information is used by the master to determine when a network
reconfiguration may safely be performed. Modifications to logical interconnections must
not occur while processing cells are using the path to exchange data. Since the master
communicates with the slaves using the ICN as well, the very act of polling for status
information via the ICN requires potentially hazardous reconfigurations. The SRQbus is a
necessary element in the asynchronous system design. The SRQbus does not exchange data
between system units; it implements a streamlined "ready/continue” signalling system.
Slaves cannot determiue the status of other slaves using the bus, information flow is limited

to individual slave-master transactions. Operation of the bus is described below.

A slave interfaces to the SRQbus using its PI/T port C data port. Bit PCO is the
SRQSTROBE* output, and bit PC1 is the SRQACK input. A slave signais the master by
momentarily asserting SRQSTROBE* Ic v A flip-flop in the SRQbus interface is toggled,
asserting the SRQbus SRQ* signal continuously, as well as resetting SRQACK iow. The
slave monitors its SRQACK signal, until i is asserted (high) when the master acknowledges
the request. The SRQ* signal (master bit "C0) is driven by all slave interfaces using
onen-collector devices; when the SRQ* signal is asserted, the master must resolve which
slave has asserted the request. The master places an address on the SRQbus using its PC2
and PC3 outpuis, and an "address valid" (TSTCYCLE*; bit PC4 output) signal is asserted.
Each slave occupies a unique address on the SRQbus. If the currently addressed slave has
requested service, that slave’s SRQbus interface will assert TSTACK* (master bit PC1 input,
alsodriven by all slave interfaces using open-collector devices). The master reads the state
of TSTACK*, and negates TSTCYCLE*. This in turn toggles the audressed slave’s
SRQACK high. The siave recognizes that its request has been acknowledyed by the master,

and it returns to executing its program. Meanwhile, the master has recognized which slave

88

R

had asserted the request, and it updates its internal assessment of the application program’s
degree of completion. Timing diagrams showing typical operation of the SRQbus under
single- and multiple-pending requests are shown in figure 3.6.1 and figure 3.6.2,
respectively. The SRQbus interfaces are designed such that if a request is made by a slave
during a period when the master happens to be polling that slave (TSTCYCLE* is active),

the request is not acknowledged until the next polling cycle.

Consistent control must be exercised due to the streamlined nature of the signalling.
A slave does not report why, how often, nor for how long it has been requesting service. A
well-defined operating strategy for process synchronization must be adopted which
necessarily couples both the hardware and software control of the system. A discussion of

process synchronization and programming conventions employed in the system is deferred

to a later section (section 3.8), after a description of the system software has been presented.

89

peoejep | soisenbes ‘eagoe

MHOVISL j=ippehn _ MOVISL god sejeqin
sejdures iesely ‘aARoR JOU sojdues Jaysep 1sonbo) S39816p JeISe
I { |
\ﬂ ! T “ ” (19d y3LSVN)
_ _ | Lg¢ MHOVISL
. | "
[.. u | g
v ' ' ! (€0d'20d U3LSVN)
SlEowIP \ | e ” 0=ppe r.\ el 1HOQY0HOOY
| { | | w
| ". | |
! K 1 “ (v0d H31SVN)
! ! ! +JT0A0USL
i \
WM 55 (00d H3LSVI)
| ,] (
I ; i I 19d 3AV1S)
pebBpepmownoe
_. %4 “ “ . NOVOUS
urebe jsenbes Aew ‘enuguoo ‘eagoe llem .osoac_K\ yem .oso”_sK
:saydues | oA :sepdwes | oAe) :sopdwes | 8A (©0d 3VTS)
w \ +J80UHLSOUS
| Jppe oARyS Wwoy

-101s9nbaz o(Buts :j0201014 snqDYS Jo wreaSerp Surun], 7ot sy

91

\=ippe AR
9ARIE NS .DYS S9SUDS 10ISBN
9
PoI81%p | loisenbel peldejep 0 ioi1senba

SI0VLSL H0VLSL
sedures Joisen sophwies Jaisen

\] '

nod sejetut
1Senba) 8100)18p 1BISON

\

e
:T
]

el

9490 LuUop \ 1=ippe _

9182 Juop

N
v
H
3
HY
by
2
B
s
1)
H
.
s
’
i
.
¢

! 1 1
| potpomace | i
uretu jsenbes Asw enujuED ‘eAow \ Hem ‘eAjIeLy \ Hom !5...,1:.
:soidwins | eAuls :sodwes | oARs :sodwes | oapy

\
\
—s5]

J 1 Jppe sAwe Woy

/

}
:
1

umOe 1senbe) AvW SNURUOD ‘eARIe
:sodwies g ea

0 Jppe sAw wioy

s101s3anbaz sjdunu :jos0i014 snqdYS Jo weaderp Sunur),

{19d YALSYN)
HAJVYISL

{€3d"'20d HILSYW)
OOV oHaQyY

{vDd HIISYW)
I1DA04SL

{02d HIASYW)
LOus

(12d 3AVTS)
AOVYOUS

(00d 3AVIIS)
-380HLSDUS

{12d 3AVS)
ADVOHS

(00d 3AVTS)
+3804LSDHS

79T amany

3.7 System Software for the Reconfigurable Multicomputer

This section focusses on the system-level programs developed for the RMCS as part
of the thesis. The programs not only provide system control and supervisory functions, but
make available a number of service routines via TRAP exception vectors, which may be
utilized to simplify applications programming. Due to the unique nature of the RMCS, a
commercially available operating system was not used. Such systems can place unsuitable
and unnecessary restrictions on system design and control (memory requirements, system
routine linkage, programming languages), and apply principles based on existing
architectures and paradigms. Additionally, such packages invariably offer supplemental
utilities unsuitable to the objectives of the prototype system; those which are useful often
require slight modifications to adapt them to a unique system like the RMCS. The software
for the RMCS is therefore optimized for the given sys:em, and includes only those utilities

and subroutines necessary to achieving the goals of the presented thesis.

3.7.1 General Description

The system software for the RMCS encompasses both the master and slave processors’
ROM-based programs. Since the master processor is used for overall system control, and
for providing the user and host interface, its system-level programs incorporate routines for
/O, exception handling, and ICN control. The master processor’s monitor provides a
versatile program development and debugging environment for the RMCS. Since the slave
processor cells lack a user terminal or host interface, their system software is comparatively
streamlined. The slave software does not incorporate error-condition exception processing
(such as bus-error, address error, divide by zero, etc.). Slave tasks must execute without
encountering those errors, unless custom exception handling routines are specified. Slave

routines may be tested and debugged using the master processor during program

development.

92

Overall system operation can be described as a sequence of processing states, to which
all of the slave processors adhere. Processing state information is passed between slaves
and the master using the SRQbus. The formalization is limited to the most basic processing
phases of execution which are common to all programs. Individual programs require various
degrees of interprocessor synchronization throughout their execution, and supplementary
synchronizationcycles are specified as partof the application program. The master processor
monitors slave processing states throughout program execution, and thus all programs

require code for both master and slaves.

The master processor’s monitor program provides the RMCS with the necessary
system initialization instructions, exception processing routines, and a comprehensive user
interface. The combination of user commands, error-condition exception routines, and
informative error messages, provides a powerful, straightforward program evaluation and

debugging environment.

Programs executing on the master processor are permitted access to a subset of the
monitor’s serial input/output and code conversion routines in an address independent manner
via the TRAP #15 service. The feature simplifies and shortens user programs, eliminating
the need for 1/O device drivers and code conversion subroutines to be included in each
program. A series of TRAP utilities are included for the slave processors as well. Functions
which facilitate block transfers of program code and data, address and byte count
specifications, and user/supervisor state switching, are common to the master and slave
utility-program repertoires. Slave processors have additional TRAP routines to request
service from the master and await acknowledgement. Both hardware- and
software-controlled means exist whereby processing states may be changed. The master

processor has unique TRAP service routines for ICN configuration control, as well as

detection and acknowledgement of slave service requests.

The master monitor program executes in the MC68008 supervisor state at all times.
The user state is entered upon a GO command (to execute a user program) being issued. A
safe transition back to the supervisor state occurs upon execution of the TRAP #Q instruction,
which must be the last in a program. The master monitor program regains control, and

further commands are accepted.

The starting addresses of the vectored exception service routines are copied to the
exception vector table in RAM after a system power-on or hardware reset condition. The
contents of the vector table may be modified directly, enabling the user todefine and relocate
custom exception service routines, in lieu of the existing routines in the monitor ROM.
Since the ROM devices are significantly slower than the system RAM, routines which are
preferred to execute at maximum speed are copied to RAM upon system restart. They may
be accessed using the appropriate TRAP instructions (section 3.7.4). The feature is included
to increase overall performance while maintaining ease of programming for the user. Itis
recognized that higher performance may be attained by executing the system utility routines
as in-line code within an application, thereby eliminating the TRAP/RTE (call and return)
instruction overhead. Under such conditions, however, code length is significantly
increased, and a compromise in performance m'ay be made in exchange for memory usage

efficiency and programming ease.

3.7.2 System Requirements

The RESET vector consists of the initial program counter and the initial supervisor
stack pointer. The RESET vector occupies the first eight bytes of the respective ROMs,
and these locations are accessed during the first eight bus cycles after a power-on or hardware
resetcondition. The contents of the vector specify the absolute addresses of the initial system

stack pointer (INITSSP) and the initial program counter (RESTART), which is the address

of the first instruction of the monitor program.

94

The exception vector tables are located at memory addresses $UC through $3FF of
each processor in the system, as required by the MC68008. A RAM workpage is required
by the master monitor for temporary storage, and to hold copies ¢ performance critical
routines. It is located at an offset of -$210 from the first byte of ROM. In the APC’s the
ROM s are located at $10000 to $11FFF, and thus valid RAM must exist from $00 to $3FF,
from $FDFO to $FFFF, and from $FDF0 down to accommodate at least 128 bytes for the
system stack. Slave system programs also use a RAM workpage to hold their copies of
performance critical routines. It resides at an offset of -$110 from the first byte of ROM;

slave processors begin their supervisor stacks at $FEDOQ.

The master monitor program addresses two MC6850 ACIA peripheral devices; one
assigned to the console terminal (at $12FFC and $12FFD), another assigned to a host
communication link (at $12FFE and $12FFF). The serial communications protocol is
defined as 8-bit, no parity, one stop-bit, clock +16, RTS low, receive interrupts disabled.
Communication via the ports is non-interlocked, with no XON/XOFF protocol implemented.
Both master and slave system routines initialize and access an MC68230 PI/T device, which
incorporates three parallel I/O ports and a programmable timer. Port A is configured as an
8-bit input port in the interlocked input handshake inode, while port B is an 8-bit output
port in the interlocked output handshake mode (MC68230, 83). Port C of the master and
slaves are configured differently, since the slaves use the port to assert SRQSTROBE*, and
todetecta SRQACK, while the master uses its por: C to sense and acknowledge slave SRQs.
The slave processors configure PCO as an output, with PC1-PC7 defined as inputs. The
master defines PCO, PC1 and PC5-PC7 as inputs; PC2-PC4 are outputs. The timer section
of the PI/T is not addressed by the system code, since its configuration after RESET is

passive. Timer programming and utilization are left as application program-specific

functions.

95

3.7.3 System Program Execution
This section describes master monitor program execution and content, and the slave

system program execution.

3.7.3.1 Master Monitor Program Initialization

Execution of the master monitor program begins after a power-on or hardware reset
condition, and the MPU’s RESET vector fetch sequence is invoked. The addresses of the
first instructions of the exception service routines are loaded into the exception vector table
inRAM ($00-$3FF). The serial and parallel communication ports are configured, and initial
values in the RAM workpage established. The MPU’s status register is written to establish
tracing off, supervisor state processing, and condition codes clear. Performance-critical
routines are copied to RAM, and the first service request (RESET SRQ) signals from the
slaves are all acknowledged. The command handler is entered upon completion of the
initialization phase. The RMCS ICN configuration control registers are not explicitly
written: they are automatically cleared by the hardware RESET, and therefore all processors

in the system are isolated. A flowchart depicting master monitor program initialization is

in figure 3.7.3.1.1.

96

Eigure 3.7.3.1.1 Flowchart of Master Monitor program initialization.

Restart
Reset Serial
Ports
y
Load Vector Table
Copy cnitical routines
to RAM
Configure /O Ports
[]
Sertvice Slave Restart SRQ
® >~ Command Handler
Receive Command Keyword
and delimiter
Message —
grrors Match keyword with
errors Command Table
1 Memory Examine, Modily
Compute offset to Me Display
Command Iu'tplementanon Reg‘ lnl:xe‘ " Examine, Modily
Call Command Load S-Record trom Host
Implementation Call Program (supervisor)
— Go Program (user)
Breakpoint Set, Clear
Fill Memory
Talk to Host Computer

3.7.3.2 Master Command Handler

The system prompt ">" is sent to the console terminal port upon entry to the command
handler routine, to indicate that a user command is expected, and the system waits for it.
Characters entered via the terminal keyboard are stored in the workpage at CMDSTK until
anon-alphanumeric characteris received. Valid command delimiters are space and carriage
return. Aninvaliddelimiter input results in an error message being issued, and the command

handler is restarted.

Upon receipt of a valid delimiter, the input character sequence is compared with the
command table in ROM. Command strings are one to three characters in length; extra

characters are ignored. Upon recognition of the input command, the address offset to the

command implementation routine is computed, and execution resumes as a subroutine call

97

to that location. Command implementations terminate with the RTS instruction to return
control to the command handler, or, in the case of a system error, to the supervisor stack
initialization sequence. The command handler ultimately regains control. The contents of
internal registers are modified by a command call, with the exception of "Register
display/modify"”, which necessarily does not affect register contents unless the user

explicitly wishes to do so.

3.7.3.3 Master Command Implementations

The command implementation routines are called upon receipt of the command
key-word string and a valid delimiter. If further input parameters are required, it is the first
responsibility of the command implementation routine to acquire such data, and to respond
to, and recover from, user-input errors. When the necessary input has been received, with

appropriate delimiters, the command function is performed.

The available commands, command syntax, and their function, are listed in

Appendix H.
3.7.3.4 Master Serial Data Input, Output, and Code Conversion

Routines
A set of subroutines for I/O and code conversion are called by most of the higher level
monitor routines. In most cases, the I/O functions modify only registers DO and A0, but
exceptions exist. For functions in which register contents are volatile, vital data must be

preserved prior to invoking the routine.

Mostof the /O and code conversion routines can be accessed in an address independent
manner via the TRAP #15, <utility #> instruction sequence. A detailed discussion of the

TRAP #15 service, the available routines, parameter passing conventions, and register usage,

can be found in Appendix H.

98

3.7.3.5 Error Handling and System Support

The MC68008 incorporates a variety of exception vectors that allow vectored
"exception handler” service routines to execute following master processor error conditions,

interrupts, instruction traps, or to facilitate software tracing.

The most serious exceptions are group 0 exceptions (RESET, address error, bus error),
and as such, they precipitate a processing environment storage procedure that differs from
those which occur following group 1 and 2 exceptions. A detailed discussion of group 0, 1,

and 2 exceptions can be found in the MC68008 documentation (MC68008, 85).

The RESET operation is well understood from the previous discussion

(section 3.7.3.1), causing an entire system restart and re-initialization.

After a bus error or address error occurs, the exception routine sends a message to the
console describing the error, and the contents of the group 0 exception stack frame are
displayed, with informative annotation. The system is re-initialized, and the command

handler re-entered.

Exceptions such as trap on overflow, boundury check, zero divide, privilege violation,
spurious interrupt, and uninitialized interrupt are all handled ina similar manner. The register
contents at the time of the exception are displayed on the console terminal, along with a
message informing the user of the fault encountered. The supervisor stack pointer is
re-initialized, and the command handler re-entered. Figure 3.7.3.5.1 shows flowcharts

depicting error condition processing.

The MC68008 implements single-instruction tracing using a status register bit (“T")
which, when set, causes a vectored service routine to be invoked following execution of
cach instruction in a program. The RMCS utilizes the trace option for single instruction,

as well as selected breakpoint tracing. Breakpoint tracing also utilizes the ILLEGAL

Figure 3.2.35.1 Flowcharts of error condition processing.

Zero Divide \
Bound Check

Address Error Trap on Overtiow
Bus Error Privilege Violation f"

Spurious Interrupt

OUIM MM‘ Uninitialized 'meﬂup‘ Store R.glﬁaf Contents
to Terminal at REGSTK
[] Y
Output Exception 0 Output Message
Stack Frame Contents to Terminal
10 Terminal (2
K1 Output REGSTK Contents
| Re-initialize SSP | to Terminal
[]
| Command Handler | | Re-initialize SSP |
[Command Handler |

instruction, and therefore the service routines for the Trace option, ILLEGAL instructions,
and the Breakpoint Set/Remove command must be mutually compatible. The functions and

their cooperation are described next.

A userenables the Trace option when calling a program (see Appendix H). Following
execution of each instruction, the current register contents are displayed, and the user is
prompted to type “Esc” to terminate the program, or any other key to continue execution.
Entering "Esc” re-initializes the supervisor stack pointer, and the command handler resumes
control. The routine checks the breakpoint flag and counter, since it also executes to service

breakpoints defined by the user.

The ILLEGAL instruction exception routine executes when an illegal instruction
op-code ($4AFA, $4AFB, $4AFC) is encountered. The breakpoint function of the system

monitor uses the ILLEGAL op-code to cause breakpoint exceptions, along with a flag in

the RAM workpage.

100

If the ILLEGAL instruction op-code is encountered, and no breakpoints are set
(BRKNUM in the workpage is checked), it is treated as an ILLEGAL instruction, registers
are displayed, along with an advisory message, the supervisor stack pointer is re-initialized,

and the command handler re-entered.

If breakpoints are set, the ILLEGAL instruction exception routine searches the
breakpoint address/data table (BRKSTK in the workpage), and replaces all of the original
instructions. Theoriginal instructions were substituted with ILLEGAL op-codes and stacked
by the breakpoint set/remove command implementation. A flagin the workpage (BRKFLG)
is set, tracing is enabled, and an RTE instruction resumes program execution with the original

instruction.

The original instruction is executed with tracing active, and thus the trace exception
routineis invoked. The trace routine checks BRKFLG inthe workpage, determining whether
a normal trace or a breakpoint service is requested. The registers are displayed as usual and
the user is prompted. If BRKFLG is set, the instructions swapped in by the ILLEGAL
instructionexception handler are re-swapped out and replaced by the ILLEGAL instructions.
Tracing is dicabled, and an RTE executes, returning control back to the original program.
Subsequent breakpoint ILLEGAL instructions are handled in the same manner.
Figures 3.7.3.5.2 through 3.7.3.5.4 are flowcharts depicting Trace exception, ILLEGAL

instruction exception, and Breakpoint Set/Remove command processing.

101

102

Figure 3.7.3.52 Flowchart of Trace exception processing.

Trace
Exception Handler
1]

Store Register Contents
at REGSTK

]

Output REGSTK Contents|
to Terminal

Check BRKFLG

Breakpoints
Set ?

No, standard Trace
service

Yes, Breakpoint service

Swap OUT (of program)
original instructions
to BRKSTK
replace with ILLEGAL

|

Y

Qutput prompt to User terminal
Esc=quit or OTHER=continue?

/\ Yes
Esc ?

No

[|
Disable traci

| Re-initialize SSP |
]

QRetum from ExceptioD | Command Hander |

103

Figure 3.7.3.5.3 Flowchart of ILLEGAL instruction exception processing.

Check BRKFLG No. ILLEGAL
Exceptlion
R
Yos, Broakpoint Sanvice | 510 ogiSier Contenis
Swap IN (to prog.) []
original instructions Output Message
from BRKSTK 10 Terminal
[] (]
Adijust Retun Address Output REGSTK Conients
and Siatus Register Contenis 1o Terminal
(enable Tracing)
on Supenisor siack
CReium from Exception) [Command Handler |

Figure 3.7.3.5.4 Flowchart of Breakpoint Set/Remove command processing.

Breaxkpont SevRemove
Command

Check BRKNUM Check BRKNUM

Yes, too many Yes, 100 tew

¥
Message:
100 Mmany/100 lew

(error? message
and return)

No

Swap Instruction at address
with RLEGAL; put No Address?
insiruction d address
o0n BRKSTK Swap ILLEGAL af address Swap ALL LLEGALS at addresses
(] with onginal Instruction; with onginal Instructions;
remove nstr. and adoress remove all inslr.’s and acoresses
-y et trom BRKSTK from BRKSTK
[Decrement BAKNUM | [(BAKNUM=0_]

BRAKNUM Yo, e

=07 l___:r_]
No Clear BRKFLG

Return

A number of TRAP instructions are interpreted by the system to allow position
independent access to a subset of routines in the master monitor ROM. The routine functions,

input/output parameters, and calling statements are discussed in section 3.7.4.

3.7.3.6 Slave System Program

The slave processors in the system operate autonomously, executing the programs
present in their respective local memories. The actual programs and data, however, are
provided by the master processor. The slaves inform the master of their processing state
by asserting the "service request” (SRQ*) signal, and await acknowledgement from the
master processor (SRQACK) before entering the next processing state. The processing state
transitions follow a prescribed order, of which the master processor keeps track throughout.
There are various methods, both hardware and software, with which the master can force
the slave’s processing state to change, re-initializing the sequence as new programs and data

become available.

After a power-on or hardware RESET signal has been received, the slave processor
enters the restart processing state, which initializes PI/T ports in the same modes as those
described in section 3.7.2. The performance-critical routines are copied to RAM, and the
slave asserts its first SRQ (see section 3.6), and awaits the master’s acknowledgement. After

the SRQACK is received, the slave enters the program accept processing state.

The program accept state begins with an SRQ assertion, and acknowledgment is
awaited. Once received, the slave expects six bytes of data to appear sequentially at its input
port A, the first four bytes specify the program start address (Most Significant Byte received
first), the last two bytes indicate the total block length to follow (MSB first). Data
subsequently received are treated as the slave’s program code, and it is stored at the specified

start address in the slave’s RAM. After the last byte is received, the slave enters the data

accept processing state.

104

The data accept processing state transition is indicated to the master by another SRQ.
Once acknowledgementis received, the slave once again expects an address and block length
specifier, followed by the actual data for the program. If the program requires no input data,
$0000 is specified in the block length specifier, with any valid address specifier (0-$SFFFF).

The execute state is then entered.

As before, the transition to the new state is signified to the master by a service request,
and acknowledgement is awaited. The slave proceeds to execute the newly loaded program
at the program start address. Execution of the program may involve many more
SRQ/SRQACK transactions, and data exchanges with other processing elements.
Transmissions and receptions need not always be preceded by addresses and byte counts;
they are specified if necessary for the problem at hand. Any supplementary SRQ/SRQACK
cycles (those above and beyond those explicitly addressed by the master system software),
must be serviced by the master’s control routine for the particular application program.
Upon completion of the slave program (with an RTS instruction), the slave processor
immediately re-enters the dara accept state. The loop of data accept and execute is
continuously repeated, since it is usual that a program is executed numerous times with

various input data; reloading of the program code each time is unnecessary and undesirable.

There are methods for breaking the data accept-execute processing-state loop. The
obvious one is an entire system RESET, which re-initializes all processors and peripherals,
and causes the restart processing state to be entered by the slaves. The method is not
recommended, however, and should only be used to recover from catastrophic systemerrors.
Resetting the system causes the ICN configuration control registers to clear, which may not
be desired. Use of the system ABORT switch causes the master to report its current register
contents to the terminal, and forces all slave processors to enter the program accept state

without re-initializing the peripherals; they are momentarily disabled and their status

registers are reset by software. Two software methods exist which force selected slaves to

105

re-enter the program accept state. The first one provides an illegal start address
($FFFFXXXX) to a slave which has reached the dara accept state, followed by any byte
count. Illegal addresses are detected by the slave program, and cause the slave to re-enter
the program accept state. Once the state is entered, an SRQ/SRQACK cycle is necessary
before the new program code can be transmitted. Another method uses the TRAP #14
instruction within the slave program which, when encountered, immediately forces the slave
into the program accept state. Whenever the program accept state is entered, the slave’s
supervisor stack pointer is reset to the value INITSSP, (its original value after a power-on
or hardware RESET), and thus the stack does not grow indefinitely as new programs are
loaded. When a program is loaded, the start address of that program is placed on the stack
for future use by the execute state, to recall the original program start address. Since the
slave application program is executed as a subroutine of the slave system program, the retum
address to the calling programis also present on the stack. Itisimperative that slave programs
do not terminate with the supervisor stack pointer content different from that which exists

prior to slave program commencement.

A number of TRAP instructions are interpreted by the system to allow position
independent access to a subset of routines in the slave system ROM. The routine functions,
input/output parameters, and calling statements and conventions arz discussed in

section 3.7.4.

A simplified representation of slave system program execution, showing processing

states and their transitional conditions is shown in figure 3.7.3.6.1. A flowchart of the slave

system program is in figure 3.7.3.6.2

106

107

Eigure 3.7.3.6.1 Representation of Slave Program Execution, showing state transitions.

power-on, RESET

-

RESTART)

ABORT (NMi) _ﬂ

SRQ/SRQACK

——~(_ PROGRAMACCEPT e

SRQ/'SRQACK

get prog stan addr, byte count

load program

start addr=
SFFFFXXXX

iast byte received

C

DATA ACCEPT oy

SAQ/SRQACK

get data start addr, byte count

byte count = 0

byte count nonzero

load data

last byte received

C

SRQ/SROACK
EXECUTE)
RTS

TRAP #14

Eigure 3.2.3.62 Flowchart of Slave System Program.

g
Load vect. table, SPINITSSP

Copy critcal routines 10 RAM ll "READY FOR DATA"
initialize PVT, disabled

lEnabbinpuxpoﬂA]

Trap RESTART SRQ

Trap 3 *READY FOR PROG"

[Enadie nputpona |

[rooee [] e

Tmpos | Program coce

Disable input port A
Put start address on Stack

S

] “READY TO EXECUTE"

More VO defined within Program [Execute Program]

3.7.4 TRAP Exception Service Routines

This section describes the utiiity routines available in the RMCS system software.
Some routines arc available on both master and slave processors; others are processor

specific. Distinctions are denoted throughout the section.

3.7.4.1 TRAP #0 Function (Master only)

The TRAP #0 instruction is used as the last instruction of a program executed in the

user state, and it forces an orderly retum to the supervisor state and monitor program

108

——

109

command handler. The status register contents saved on the stack as a result of the TRAP
call are modified such that upon RTE instruction execution, processing resumes in the

supervisor state, as required by the monitor program.

3.7.4.2 TRAP #1 and TRAP #2 Service (Master and Slaves)

The TRAP #1 and TRAP #2 services provide a convenient means with which a system
programmer may toggle between supervisor and user processing states. The TRAP #1
instruction forces user state processing upon return from the handler routine, while TRAP #2
restores the supervisor state when executed. Valid stack pointers must be maintained

throughout, to preserve system integrity. The instruction handlers compromise the privilege

protection strategy of the MC68008 architecture and system; use of the instructions should
only be undertaken by experienced programmers when specifying system-level or

benchmarking code.

3.7.4.3 TRAP #3 Service: SRQASRT (Slaves only)

The TRAP #3 instruction is used by a slave program to cause an SRQ to be asserted
by that slave processor, and acknowledgement from the master is awaited. It is used to

synchronize activities of the master and slave.

An SRQ is asserted by strobing the PI/T PCO output low, then high again. PCl is
immediately forced low by the SRQbus interface hardware, and it remains low until the
masteracknowledges (SRQACK) the requesting slave. Afterthe SRQACK signal isrestored

high (the slave continuously polls the state of the PC1 signal), the exception subroutine is

terminated, and control is returned to the calling program.

3.7.4.4 TRAP #4 Service: ADDRBYT (Master and Slaves)

The TRAP #4 instruction invokes a routine which reads a start address and byte count
arriving at input port A. The start address is returned in register AQ.L, and the byte count
is returned in register DO.W. Other register contents are unaffected. Input port A must be

enabled before the TRAP #4 instruction executes.

3.7.4.5 TRAP #5 Service: INDATA (Master and Slaves)

The TRAP #5 instruction invokes a routine which reads a sequential data block of
length (in bytes) specified by the contents of DO.W arriving at input port A, and places the
data in increasing contiguous memory, starting at the address specified in register AO.L.
Register contents are unaffected. Input port A must be enabled before the TRAP #5

instruction executes.

An example program sequence to read a start address, byte count, and data block

arriving at port A is as follows:

MOVE.B #ENABLEA, PGCR ;ENABLE PORT A HANDSHAKE PINS
TRAP #4 ;GET START ADDRESS,BYTE COUNT

{validity check address, zerc
check byte count}

TRAP #5 ;GET BLOCK DATA
CLR.B PGCR ;DISABLE PORT A HANDSHAKE PINS

3.7.4.6 TRAP #6 Service: OUTDATA (Master and Slaves)

The TRAP #6 instruction calls a routine to write a data block of length (in bytes)
specified by the contents of D0.W, from contiguous increasing memory addresses starting
at the address specified in register AQ.L, sequentially to output port B. Register contents

are unaffected. Output port B must be enabled before the TRAP #6 instruction executes.

110

3.7.4.7 TRAP #7 Service: SNADBYT (Master and Slaves)

The TRAP #7 instruction is used to call a routine which sequentially writes six bytes
of data to output port B. The first four bytes are the contents of AQ.L, and are sent with
MSB first. The last two bytes are the contents of DO.W, and are sent MSB first. The output
data specify an address and a byte count to the receiving processor. Register contents are

unaffected. Output port B must be enabled before the TRAP #7 instruction executes.

An example program sequence to send a start address, byte count, and data block out via

port B is as follows:

LEA START (PC),AQ ;BLCCK START ADDRESS
LEA END1 (PC),Al ; LAST ADDRESS+1
SUBA.L A0, Al ;CALCULATE BLOCK LENGTH
MOVE.W Al,DO ; LENGTH IN DO.W
MOVE.B #ENABLEB,PGCR ;ENABLE B PORT HANDSHAKE PINS
TRAP #7 ; SEND ADDRESS, BYTE COUNT
TRAP #6 :SEND DATA BLOCK
CLR.B PGCR ;DISABLE B PORT HANDSHAKE PINS
START pc.B 0,1,2,3,4,5,6,7,8
END1 DS.B 1 ;DUMMY FOR END1

3.7.4.8 TRAP #8 Service: NETCONF (Master only)

Ten bytes of data are written to the network configuration control registers located at
memory addresses $12FB0-$12FB9 (inclusive). Register AO contains the start address of
a 10-byte block in memory which contain the desired control words for the new ICN

configuration.

3.7.4.9 TRAP #9 Service: SRQACK (Master only)

The TRAP #9 instruction is used to respond to slave SRQs by detecting which slaves
are currently asserting the SRQ* signal, and causing the appropriate SRQACK signals to
be asserted. A 4-bit expected SRQ mask (ESM) is required by the routine in DO.B, with bit
by set to signify that an SRQ from slave #N is expected, which must be acknowledged before
exiting the routine. Only the expected SRQs are acknowledged. A rotating priority scheme

is used within the routine. First, the routine waits for the SRQ* signal to go active (low),

111

signifying that one or more SRQs are p=nding. Beginning with slave #0, the ESM is
examined to determine whether that slave should be interrogated and acknowledged, or not.
If bit #0 of the mask is not set, slave #0 is not polled, and other bits in the mask are examined.
If the bit is set, the slave is polled as described in section 3.6. If slave #0 was requesting
service, it now has been acknowledged and the bit in the ESM is subsequently cleared. Other
bits of the ESM are tested and the corresponding slaves polled in the same manner,

proceeding with slave #1, then #2 and #3. The subroutine terminates when the ESM has

been cleared.

The possibility exists that a higher-numbered slave may be serviced before a
lower-numbered one, even when both are expected, depending on the order and time between

requests.

The strategy atlows different SRQ priority schemes to be implemented: fixed, rotating
or any variable-order. The exact strategy is determined by manipulation of the ESM and
by appropriate ordering of calls to the TRAP #9 service routine. First-come, first served
strategies are not possible with the TRAP #9 service, when slave-specific intermediate
processing is necessary between requests by competing slaves, but such a protocol is easily

implemented by directly controlling the master SRQbus [/O port.

A flowchart of the TRAP #9 utility routine is shown in figure 3.7.4.9.1.

112

Eigure 3.7.49.1 Flowchart of the TRAP #9 (SRQACK) Service Routine.

Ary SRO'S
{PCO=0?)

Y
BITN(BITN+1) Mod 3 |

PC4a1, [PCI.PC2lBITN
Strobe PC4=0, Read PCY
it PC1=0, SRQ from Slave BITN

3.7.4.10 TRAP #14 Service: ABORT (Slaves only)

The TRAP #14 instruction is used within a slave program to cause a transition to the
program accept state. The supervisor stack pointer is re-initialized to the value INITSSP,
ports A and B are disabled, their status reset, and the program accept processing state
entered, starting with a SRQ/SRQACK cycle, as described above. The TRAP #14 exception

vector is also the slave NMI vector; the same code is executed upon assertion of the

non-maskable interrupt signal (system abort switch depressed).

113

3.7.5 Program Listings

Master and slave system program listings are presented in Appendix I.

3.8 Processor Synchronization Strategy
The prvious sections have described individual elements of the RMCS. This section
focusses on the operation of larger functional blocks of the system, that are used to establish

and maintain processor synchronization throughout a given task.

The processor synchronization hardware in the RMCS is sufficiently flexible to support
a variety of monitoring, scheduling, and control strategies. A programmer may adopt
whatever method provides satisfactory performance and programming ease. Only the issues

and conventions of processing states (and their transitions) must be regarded.

Processor synchronization is required to ensure error-free interprocessor
communications. In the RMCS, processor synchronization is implemented through a
combination of the interlocked data transfer protocol, the SRQbus protocol, and the maskable
SRQ acknowledge service. All transactions are asynchronous; periods of unnecessary

system inactivity may be avoided, and overall performance and reliability are enhanced.

At various times during execution of a program, data transfers between processors are
required. Slave processors have no knowledge (at the hardware level) of the current network
configuration; they simply transmit and receive data via their PI/T ports according to their
programs. Synchronization during message transfers is provided by the slaves’ PUT
hardware handshake protocol, and the ICN. It is the master’s responsibility to keep valid
communications paths available, and to ensure that slaves commence transactions in the
prescribed order. It is necessary to prevent slaves from performing I/O functions until valid
paths are established between the processors participating in the transaction. The SRQbus
and maskable SRQ acknowledge strategy fulfill such a purpose. Processor synchronization

may best be described using a specific example.

114

Suppose that the slaves are to perform a program where slave #0 computes some data,
which must be sent to slave #2, and after more calculation, slave #0 must send data to
slave #1. Slaves #1 and #2 do nothing beforehand, but wait for their respective input.

Inidally no paths exist between processors.

The slaves execute their programs after reaching the execute processing state. Slave #0
calculates, while slaves#1 and #2 request service of the master, and wait for
acknowledgment. The macter’s segment of the application program includes code which
modifies the ESM to specify that requests from slaves #0 and #2 are forthcoming, and the
master waits for both. The SRQ from slave #2 is acknowledged, but not that from slave #1.
Slave #2 continues with its program, in which it attempts to receive data via its input port
by first asserting RFD*. Since no path exists, nor is there a ready transmitter available,
DAV* remains negated, and slave #2 waits. Eventually, slave #0 completes its calculations,
requests service, and is acknowledged by the master. It continues with its program, in which
it attempts to transmit data, by first sensing the state of the RFD* signal. It finds the signal
negated, since a path still does not exist. The master program continues, and eventually, it
reconfigures the network so that slaves #0 and #2 may communicate. Once the path is
established, slave #0 senses an asserted RFD* from slave #2, and a block of data is
transferred according to the interlocked data transfer protocol described in section 3.3.2,
figure 3.3.2.4. The block length may be pre-defined, requiring both slave #0 and slave #2
to have the length specified intheir programs. The block length may alternatively be variable,
in which case slave #0 must provide a block-length specifier, and slave #2 must expect the
specifier at the start of the transmission, which it subsequently uses as the initial value in a

byte counter.

During the transfer, the master proceeds with its own segment of the program, and
reaches a point where it expects SRQs from both slaves #0 and #1 prior to commencing the

second transfer. Slave #1 has had a request pending since the stan, and it is finally

115

acknowledged. Slave #1 attempts to receive data at its port, but once again, no path exists,
so the slave waits. Slave #0 completes its transfer to slave #2, and it requests service again.
The master acknowledges, and once again slave #0 attempts to transfer data. It finds that
it cannot, since although there is a path to slave #2 already established, that slave is presently
not acceoting data'. The master configures the necessary path between slave #0 and #1, and
the data transfer takes place. A timing chart of the various events in the described process

is shown in figure 3.8.1.

In the above example, the slaves reached their respective I/O routines prior to a path
being configured, and thus the transfers took place upon institution of the paths. Often, the
network may already have a correct path established. Suppose that initially a path existed
between slaves #0 and #2. Upon slave #2’s acknowledgement, it asserted RFD*, which
would reach slave #0. Slave #0 is not attempting to send, and it will not until after its SRQ
has been acknowledged. The master program in this case does not reconfigure the network
after acknowledging slave #0’s SRQ, since the proper configuration is already in place. The
transfer commences after slave #0 is acknowledged, and the slave attempts to send data.
Therefore, when paths between system processors already exist, an SRQ/SRQACK cycle
is not necessorily required; the interlocked data transfer protocol is sufficient to establish
and maintain processor synchronization throughout the transaction yntil a change in

—_ | i L ired

In the example, it was irrelevant whether the expected S’ . ,s within the two pairs

occurred in a particular order. [f, for whatever reason, the SRQ from slave #0 had to be

acknowledged first, followed by that of slave #2, the master program must be encoded such

1 As a further complication, suppose that slave #2 was to accept more data after the
slave #0 to slave #1 transaction, and it could reach its receive-data routine before the
network was configured to support that transfer. An error could occur, with slave #2
receiving data that was intended for slave #1. In this case, an SRQ/SRQACK cycle rust
be used to prevent slave #2 from reaching its receive-data routine until the appropriate
time.

116

Eigure 3.8.1

TIME

117

Timing chart of events described in processor synchronization example.

Master Slave 0 Slave 1 Slave 2
et exects aee
apecied SRQ's
) 1 1 t
w2 calculate nequest serice roquast seMoe
‘ - watfor ak wat or ack
aowedge?
» -
fequest sevice ready 10 recanve
watfor ack
J J
acnowledge d ‘
ready t send
corfgure network 0 10 2 ‘
send block to slave 2 dlock transter recamve black from slave 0
expactd SRQsOand t
acknowledge 1) done recenng
ready 1o recee
done sending
request senvice
wait for aok
— |
acknowiedge 0 ‘
ready 10 send
configure network
hock]
send block o siave 1 recemve biock for Slave 0
dong recenning

done sending

that only a request from slave #0 was expected on the first call to the SRQ acknowledge
service routine (TRAP #9). Upon return, the ESM would be re-written so that a request
from slave #2 is expected and acknowledged. The maskable SRQ acknowledge strategy
allows any ordering and combination of SRQs to be serviced, and thus any sequence of

events can be controlled by the master processor cell.

The preceding sections describe the operating principles of the RMCS. The
formalization of basic processing states and state transitions, available I/O subroutines,
asynchronous interlocked data transfer protocol, SRQbus protocol, and maskable SRQ
acknowledgement combine to provide a consistent and flexible processor synchronization
strategy. Shared system busses and their inherent bottlenecks, shared memory (and the
necessity for shared-data protection techniques), and common system clocking aie
non-existent in the RMCS. The system is asynchronous, with all transactions made on an
event-driven or data-availability basis, offering a high degree of reliability, performance

and programming ease.

118

4 Experiments

This chapter centres on the experiments used to characterize performance of the
reconfigurable multicomputer system. The hardware tests focus onthe programmable signal
router devices and the interprocessor communication network. The details of the various
performance test programs are presented. The method of measurement common to all
performance tests is described, as well as the procedures used to determine the system
overhecds. The chapter also presents results obtained in performance testing of the
reconfigurable multicomputer, and its critical functional blocks. Results are summarized
graphically wherever appropriate; complete experimental data are presented in tabular

form in Appendix A.

4.1 Hardware System Tests

The reconfigurable multicomputer system comprises a number of subsystems which
were individually tested at various stages of its design and construction. The processing
clements used in the system are identical to that described in Smeulders (Smeulders, 88),
with the addition of the PI/T device and its Cellbus interface. The subsystems unique to the
RMCS encompass the programmable signal router devices, the interprocessor
communication network, the network controller card, and the SRQbus interconnection. The
following sections describe the procedures used to characterize the PSR and ICN. The
SRQbus response time test procedure is deferred to section 4.4, following presentation of

the common performance test measurement method.

4.1.1 Programmable Signal Router Device Characteristics

The programmable signal router’s electrical characteristics were determined to
facilitate the final system design. Since Chum (Chum, 89) presents the input and output
cell electrical characteristics, his results were used in the presented thesis. However, signal
propagation delays, input set-up and hold times, reconfiguration delay, and output enable

delays were measured, using procedures to be described. The tests were performed on a

119

sample of five devices, and critical minimum and maximum parameters are presented in
table 4.1.1.5.1. All input signals used were CMOS standard for V=5V, with 10 ns rise
and fall times. All measurements were performed at the half-maximum signal amplitude
level. Output signals were loaded with a single LSTTL device input (74L.S244). The

measurement instrument used was a Tektronix 2215A oscilloscope which provides a 1% of

full scale reading accuracy.

4.1.1.1 Propagation Delay Time Measurements

With the port configuration fixed, port output signals enabled, and the input DAV*
latching signal inactive (transparent mode for internal latches), a square wave signal was
applied to a data input, while the corresponding data output was monitored. The time
between transitions of the input «nd output signals was measured (at the half-maximum
voltage level), yielding the cata signal propagation delay times, ty,, for rising signals,

and ty,y, for falliag signals.

The same method was used to determine the input DAV* to output DAV* propagation

delay (tyyp0), as well as the input ACC* to output ACC* propagation delay (tcpd)-

4.1.1.2 Data Set-up and Hold Time Measurements

With the port configuration fixed, and port output signals enabled, a square wave signal
with fixed duty-factor was applied to a DAV* input. A signal with variable pulse width
was applied to a data input, and the corresponding data output was monitored. The time
required from data input valid to DAV* asserted, which ensures that the output signal
matches the input, is the minimum set-up time between data input and DAV* (t). It was

determined by varying the data input pulse width until the input and output signal levels

exhibited disagreements.

120

The hold time was measured in a similar manner, with the variable pulse-width signal
applied to DAV*, and the fixed duty-factor signal applied to a data input. The time required
from DAV* asserted to input data invalid, for which the output data signal matches the input
level prior to assertion of DAV*, is the minimum hold time between data input and DAV*
asserted (t,4,)- It was determined by varying the DAV* pulse width until the output signal

switched following assertion of the DAV* signal.

4.1.1.3 Reconfiguration Delay Time Measurements

With the output ports enabled, a square wave signal was applied to both the PCO and
PC1 configuration control pins, alternately switching the device between "A—C/B—D"
and "A—-D/B—C" configurations. A logical high voltage was applied to a port A datainput,
and alow was applied toa port B data input. The port C data output signal therefore switches
in opposite phase (with some delay) to the input square wave, while the port D vutput is in
phase. The time between the input configuration control signal transition to the output

transitions was measured as the reconfiguration delay time (t).

4.1.1.4 Port Output Enable Delay Measurements

The device was configured in a fixed topological state (PCO, PC1 held at a constant
voltage), with a square wave signal applied to port configuration control bits PC2 and PC3.
Port A and port B data inputs were held low. When a port is disabled, its outputs are driven
high, and thus port C and port D output signals switch in opposite phase to that of the signal
applied at PC2 and PC3. The time between signal transitions represents the port output

enable delay time (t,.,).

121

122

4.1.1.5 PSR Device Characteristics: Test Results
Table 4.1.1.5.1 Summary of PSR device characteristics.

Parameter | Descption | min | max |
(ns) (ns)
0.5 1.0

Data signal propagation y time, rising and falling

Lipar: Lapar
tapa |DAV* signal propagation delay time - 65
tacpd ACC* signal propagation delay time - 50
e Set-up time, data valid to DAV* asserted 40 -
toca Hold time, DAV* asserted to data invalid 40 -
ts Reconfiguration delay time - 90

Output enable delay time

4.1.2 Interprocessor Communication Network Characteristics

The propagation delay of signals traversing the ICN was tested by applying an input
signal to a network input port, and monitoring the output ports of successive PSR devices
in the signal’s path. The network configuration for the test was fixed. Loading for signals
was provided by the successive devices in the network, the same loading condition present

under normal system operation. Results were recorded for both rising and falling transitions,

and are shown in figure 4.1.2.1. Appendix A shows tabulated results.

Figure 4.1.2.1 ICN Signal Propagation Delay characteristics.

Signal propagation delay
vs. Number of device traversals

1200
1000 —f--wmmmmwmmme e 7
% B00 === e e e e
3
&
§ o0 . e SEPRPEEEEPPEP ---
3 Falling edge
g 4o - --
09_ Rising
1 —
200 -~ meee- - ==
o L] L L I LA v v I Al LA r A ¥ A r T T fj
0 4 8 12 16 20

Number of devices traversed by signal

4.2 Performance Test Measurement Method

The experiments presented in the following sections have higher complexity, and often
span longer time intervals than can accurately be observed using the methods of the
previously described experiments. They involve a high degree of software control over the
hardware resources under test. For the data transfer rate and processor synchronization
overhead tests, the measurement method does not necessarily yield absolute maximum
ratings; the ICN and SRQbus have bandwidths much higher than the results imply. The
method measures the actual system operating parameters using optimum control programs;

the processor and PI/T performance is a factor, and must be incorporated.

Each processing element in the system incorporates a programmable timer which is

used to measure program execution time (MC68230, 83). The device must be initialized

to establish the desired counting mode, and an initial count value is written into its

123

"counter pre-load” register. When the timer is enabled, the content of the pre-load register
is copied to the counter register, which is decremented once every 32 cycles of the 8 MHz

system clock; 4 ps precision may be achieved in all measurements.

The master’s timer is initialized during an unmeasured phase of program execution.
Immediately prior to a section of code whose execution time is to be measured, a single
instruction is used to enable the timer. When the program under test has been completed,
the timer is disabled. The content of the counter register is subtracted from the initial count
value todetermine elapsed time. Overhead for timer control is very small (generally < 30us,
depending on the instructions and addressing modes chosen), and is generally insignificant
compared to the execution time of the code under test. The pre-load and counter registers
are 24-bits wide, allowing measurement of programs up to 67.1s long. For longer intervals,
the device may assert an interrupt each time the counter register reaches zero, and the
associated interrupt service routine maintains a count of the “rcll-over” occurrences. Atthe
end of execution, the roll-over count, along with the remaining counter register content may

be used to determine overall elapsed time.

Due to the asynchronous nature of interprocessor communications and the SRQbus,
a program which utilizes those elements may exhibit varying execution times. In other
words, if the same program is performed with the same data repeatedly, the execution times
are likely to be slightly different. The performance test programs (with the exception of the
data-transfer rate programs) were written such that the measured portion of execution time
is repeated 256 times, with the maximum, minimum, and average times logged throughout.
The times are reported to the user terminal upon completion of the test. Tests are measured
by the master processor for entire process execution time. In some tests, slave processor
execution times are also of interest, and are measured by the slave’s resident timers. Atthe

end of a 256-pass test, the master processor extracts the slave times, and reports them to the

user terminal.

124

4.3 Data Transfer Rate Measurement

The data communication rates between processing elements were measured using a
single test program which performs transfers of data from master to individual slaves, slaves
to master, and then once again from the master to all slaves using the broadcast mode. The
tests utilize the TRAP service routines for block data transfers. Elapsed time to transfer
data in blocks of 8,16,32,...,512 bytes is measured by the master processor, and reported to
the user terminal. Flowcharts of the master and slave programs are shown in figures 4.3.1
and 4.3.2, respectively. The program code for the data transfer rate measurement test is

presented in Appendix J.

The data transfer rate performance test results are shown in figures 4.3.3 and 4.3.4,
with best-fit straight line approximations. The master-to-slave and slave-to-master results
were combined to provide an average measure of data transfer rates independent of direction.

A graph of the average data transfer rates with best-fit straight line approximation is shown

in figure 4.3.5. Appendix A shows tabulated results.

125

126
Figure 43.1 Flowchart of Data Transfer Time measurement program: Master.

Counts(l)=$08,$10,$20,$40,$80,$100,$200

S

Load slave programs I=6
count tables — 7 7
i J=3 16
I:G T I
J'_'a SRQSRVC for slave(3-J) SRQSRVC for all siaves
configure path slave(3-J) configure broadcast path
- to master master to slaves
SRQSRVC for slave(3-J)))
configure path Master enable timer enable timer
10 slas:(a-d) T T
!
recv count(6-1) bytes send count(6-| L
enable timer from uﬁvoza-.‘ﬁ to all da(vu) on
1
send count(6-1) bytes to disable imer disable timer
slave(3-J
Calculate elapsed time Calculate elapsed time
disable imer report 10 terminal repon to terminal
Calculate clapsed time ==n
report to terminal n !

127

Eigurc 4.3.2

Flowchart of Data Transfer Time measurement program: Slaves.

Counts{l)=$08,$10,$20,$40.$80,$100,$200

-6 |-] | -6 |
Agsert SRQ Assert SRQ Assert SRQ
wait for SRQACK wait for SRQACK wait for SROACK
1 1 4
recv couni(6-1) bytes send couni(6-1) byles recv couni(6-1) bytes

Figure 4.3.3 Data Transfer Rate test results: Master—Slave(s).
Observed data transfer times
Master to Slave(s)
5000
[7
— 4000 /;ﬂ‘
() //
g -
8 2000 .
N ,/
g 1 7
£ 2000 Y.
2 -
" o e
% 0 20 %0 w ™ o
#oytes transferred

Time = [7.627 x (byte count)+59.16] pus

128

Eigurc 4.3.4 Data Transfer Rate test results: Slave—Master.

Observed data transfer times
Slave to Master

5000
- ’/’
E - / g
E 2000 -
/
g -
1000 Ef/
% W me @ m o
#bytes transferred
Time = [7.607 x (byte count)+48.35] us
Eigurc 4.3.5 Data Transfer Ratc test results: Average transfer times.
Observed data transfer times
AverageMto Sand Sto M
5000
b Pt
—. 4000 /zr/
2 |
§ 3000 /1/
g | /
&, 2000
: | -
‘= 1000 /
% ™ m m w xe

#oytes transferred

Time =[7.617 x (byte count)+53.76] us

4.4 Processor Synchronization Overhead Measurement

Processor synchronization overhead was measured while the matrix multiplication
experiments were conducted. The matrix multiplication measureme.t code was edited to
measure the various processor synchronization intervals present in the code. The procedure
was adopted since it was an opportunity to measure the minimum synchronization period;
where a service request was guaranteed to be pending (see section 2.3.2) prior to the master
processor calling the service request acknowledge routine. Due to the nature of the service
routine code, the time to service arequest is dependent on the source of the particular request,
although differences are expected to be very small. The tests measured time to service single

and multiple simultaneously pending requests. The code to measure the service time is as

shown:
MOVEA.L #7TCR, A4 ;POINTER TO TIMER CONTROL REGISTER
MOVE.B #ENABLTM, (A4) ;ENABLE TIMER TO COUNT
MOVE.B #MASK,DO ;SET UP SERVICE MASK IN DO
TRAP #SRQSRVC ;CALL SRQ ACKNOWLEDGE ROUTINE
CLR.B (A4) ;STOP TIMER

The appropriate mask is used for each of the tests (see section 3.7.4.9). The process

was repeated 256 times, and the average times recorded are shown in table 4.4.1.

Table4.4.1 Processor Synchronization Time test results.

; Number of slaves acknowldgd 1 Synhronizatin time (u) |

4.5 System Performance Tests

The experiments described in sections 4.3 and 4.4 measure "low-level” aspects of

system operation which are common to all multiple processor tasks performed by the RMCS.

129

The experiments described in the following sections are considered "high level" tests, and
reflect system performance in executing typical application programs. The applications
make use of the ICN, and SRQbus, and therefore the performance of those system

components influences overall test results.

4.5.1 Matrix Multiplication Performance Tests

The matrix multiplication performance tests were performed on the RMCS configured
for parallel mcde processing. The task was assigned among the slave processors on a
row-by-row basis, as described in section 2.2.1. Experiments were performed using square
matrices of dimension 4, 8, 12, 16 and 20. Floating-point input and output data were used
in the tests, to preserve 23-bit precision in calculations. The floating-point format adopted
is as shown in figure 4.5.1.1. Normalized numbers (most significant bit of the fraction is
always set) are used throughout the tests, and no hidden bit is assumed. The exponents are
biased by 128. The format permits special-case numbers to be represented, as well as a
unique zero. Floating-point subroutines test input data for special values and attempted
illegal operations. A summary of floating-point number special-cases is given in

table 4.5.1.1.

Figure 4.5.1.1 Floating-point Number format.

sign fraction exponent

(1 bit) (23 bits) {8 bits)

S { J
T T 3

130

Tabled45.1.1 Floating-point Number special cases.

| Fraction | Expoment |
I 0 1254 —2

not used

not used

not used ~1* X (0.F)x2F~1%8
!

The full IEEE floating point standard is not us>d in the tests since the MC68000
instruction set provides simplified and more efficient computation when the standard
outlined above is adopted. The IEEE standard also represents numbers smaller than
1.0 x 277 in non-normalized form, requiring addii.onal operations to test whether a number
is normalized or not, and to accommodate both forms. For the test programs used in the

thesis, the additional instructions are superfluous.

Following the method outlined in section 2.2.1, where r (the number of processors)
is 4, slave #0 calculates the first n/4 rows of the product matrix, slave #1 the next n/4 rows,
and so on. To evaluate the matrix equation [C]=[A][B], all of the elements of matrix [B]
must be available to all slaves. The elements of the n/4 rows of matrix [A], which correspond
to the rows of the product matrix for which the slave is responsible, are required by the

respective slaves. Figure 4.5.1.2 shows the assignment strategy.

The partitionability of the problem, together with the control strategy of the RMCS,
allows matrix multiplication to be performed in an overlapped paralle!l manner, where slave
processors commence execution while others are receiving or awaiting arrival of their input
data. The strategy is potentially faster than postponing calculation until input data has been

received by all slaves. Figure 4.5.1.3 shows a set of timing diagrams comparing the two

methods.

131

Figure 4,5.1.2 Matrix Multiplication Slave problem assignment.

(] (6] = [c]
prse — T p— —
! i T
1 i
same0 |10 1t 2 3 0 1 2 3} 50123,,.,,.o
| —_
i :
sant |14 5 6 7 ¢ 5 6 7! |14 5 6 7! s
; H — | ———
5 ;
]
Swez (18 9 10 11|18 910 11, 8 9 10 11} g2
i i s
H 1
I
Slve3 | 112 13 14 15 12 12 14 15 | 12 13 14 15} | smves
[N _JL : L ______________
Al Siaves

In the diagram, 1, represents the time necessary to broadcast the entire matrix {B] to
all slaves; 1, represents the time to send the matrix [A] data (in the simultaneous case, it is
broadcast, in the overlapped case, 1/4 of the elements in matrix [A] are sent to each slave);
and ¢_ represents the time required for a slave to up-load its results to the master. Processor
synchronization intervals are neglected in the diagram. Clearly, the overlapped execution
strategy will yield lower overall times. The diagram assumes that 7., the slave program
execution time, is the same for each slave processor. In reality, due to the data-dependent
execution time of the processor’s multiply instruction, and special-case number actions in
the floating-point add and multiply subroutines, 7., may be highly dependent on the input
matrix data. For this reason, two multicomputer programs were tested: the first with slave
output data collected in order of increasing slave index (MATFPM); the second collects
data on a first-come, first-served basis (MATFPFC). Tests were performed using different
sets of input data: one with all elements of [A] and [B] equal to O (FPINDAT1), another with
all elements equal to $7FFFFF80 (FPINDAT?2), and a third consisting of elements equal to

132

Figure 4.5.1.3 Simultaneous versus Overlapped execution for Matrix Multiplication.

—'1‘c|’_
SLVO — + $ +—
SLvi | } + 1 -
Simultaneous execution
siv2 } —t - —
SLva | —— $ = —
|—— b —-j-—- ta—+— tex—-l
j . ol
[Ttotal M
] 3 I
} : : time
| a o | diterenco
] | 1
o =
sLvo | - +—
stvt | { — +—
Overiapped execution
SLv2 i — +—
stva b—mm— 1 +—{
r— tb —‘| [’— tex —-—-|
! Ttotal |

.

Ne line represents processor waiting time

cither $7FFFFF80 or SFFFFFF80 (FPINDAT3). The input data files and test programs are
shown in Appendix J. Program flowcharts for the matrix multiplication tests (uniprocessor,
multicomputer master and slave programs) are shown in figures 4.5.1.4 through 4.5.1.6.
The floating-point addition and multiplication algorithms are outlined in Cavanaugh
(Cavanaugh, 84). The multicomputer programs execute 256times, with average, maximum,

and minimum execution times recorded. To aid performance analysis, the slave processors

measure their execution time, 7., and report it to the master at the end of the 256-pass run.

133

134

Figure 4.5.1.4 Flowchart for Uniprocessor Matrix Multiplication performance test.

input Parameters

Addrena of A(0.0} NxN
Address of B(0.0) Matrix Muhiply
Address of C(0,0)
N
Caikculate Olfsets
Intiahze Increment Store Sum
Factors ac(.d)
JaN-1 [5]
1aN-1
N
le-1 ?
KaN-1 Y
Sume0 dut-1
SumaSum+A{l,K)"B(K,J)
{foating pow) N
KaK-1
w17
N Y

135

Figure 45.1.5 Flowchart for Multicomputer Matrix Multiplication performance test,

Master program.
B(0.0) at Ematrix Mullicotppum.N xN
A(0.0) al Bmalrix + 4N? Matrix Multiply
€(0.0) at Bmatrix + 8N2 Master Program
ﬁ’asseounl-zss l Acknowledge SRQ kom
slave #3; executes
Enable timer ‘
Broadcast N and (B] Wat for SRQ's
to all slaves colied! cutput data
Slave #0.1.2.3
or First Come, First Served
Transmit 1/4 of [A)
to slave #0
, A
Calculaie execulion lime
Acknowiedge SRQ trom maintain Mal Min, Sumtime
slave #0; exacules Report time 1o terminal
Transmit 1/4 of {A] Decrement Pas "
to slave #1
Acknowledge SRQ from L N faceriiin.)

slave #1; execules

Transmnt 1/4 ot [A]
to slave #2

Averaga=Sumtime256
Report Average, Max, Min to terminal

Acknowiedge SRQ from
slave #2, executes

Put slaves in Prog Accepl mode
Broadcast Time-exiract commands

Transmit 1/4 of {A]
to slave #3

] Receive slave execution imes
and report 10 terminal

=

1

136

Figure 45.1.6 Flowchart for Multicomputer Matrix Multiplication performance test,
Slave program.
Multicomputer N x N
Matrix Myloply Time extract
Slave Program (program
Deta Accept mode:) ‘
ot o " Assart SRQ, wait for ACK
Recawve N, (B)
and 1/d of [A]
i Transmit contents of
timer count register
Assert SRQ, when ACK'd
oxecute I
i ABORT,
Program Accept Mode
Enable amer I
See uniprocassor algonthm D.:.(:’“‘.;:.“);g;:)

!

Disable smer

}

Assert SRQ, wait for ACK

1

Transter output data. 1/4 of [C}

(Done, Data Accept modD

Uniprocessor and overall multicomputer matrix multiplication performance testresults
are summarized in figures 4.5.1.7 through 4.5.1.12. Appendix A shows complete tabulated

results, including individual slave execution times.

137

Figure 4.5.1.7 Matrix Multiplication tests, Uniprocessor and Multicomputer
comparisons, input: FPINDAT1

Matrix Multiplication
Uniprocessor and Multicomputer (average times)
Input data: FPINDAT1

1000
Uny ssor
| Ve

- 800 I~ Multicomputes T T R
2 || mareeM /
S ""B"'
g 600 -] Multicomputer
= MATFPFC
c [-..--0.--..
0
3
*
w

Matrix dimension

Figure 4 5.1.8 Matrix Multiplication tests, Uniprocessor and Multicomputer
comparisons, input: FPINDAT2

Matrix Multiplication
Uniprocessor and Multicomputer {(average times)

Input data: FPINDAT2
2500

g

g

g

Execution time (ms)

g

Matrix dimension

Figure 4.5,1.9 Matrix Multiplication

tests,

comparisons, input: FPINDAT3

Matrix Multiplication
Uniprocessor and Multicomputer (average times)

input data: FPINDAT3

Uniprocessor and Multicomputer

138

2500
Uniprocessor
[| " —a—
o~ 2000 | Multicomputer
g MATEPM
g 1500 |~} Muticomputer
E MATFPFC
pt e
% 1000
]
500

Matrix dimension

5 Matrix Multiplication tests, Multicomputer speed-up factors, input:

FPINDATI

Matrix Multiplication
Relative Speed-up factors
Input data: FPINDAT 1

Multicomputer
MATFPFC
e

Multicomputer
MATEPM

-

I

12

Matrix dimension

16 20

R ——————————————
139

Eigure 45.1.11 Matrix Multiplication tests, Multicomputer speed-up factors, input:
FPINDAT2

Matrix Multiplication
Relative Speed-up factors

Input data: FPINDAT2
4
r
aas
?
g L
(77)
3
Multicomputer Mullicomputer
MATFPFC MATFPM
—y— e
25 1 i 1 1
4 8 12 16 20
Matrix dimension
Figure 45.1.12 Matrix Multiplication tests, Multicomputer speed-up factors, input:
FPINDAT?3

Matrix Multiplication

Relative Speed-up factors
input data: FPINDAT3

| Multicomputer Multicomputer
MATFPFC MATFPM
—_—— -—--
25 i 1 1 1
8 12 16 20

Matrix dimension

4.5.2 Fast Fourier Transform Performance Tests

The FFT calculations are performed on the RMCS following the theory outlined in
section 2.2.2, for both uniprocessor and multicomputer tests. All experiments are conducted
using a 256 complex-point problem size. Due to the data-dependent multiplication time of
the microprocessor, different input data sets are used to test performance: DC signals of
strengths 0, $3FFF, and $D555 (NULLDC, FULLDC, MAXDC); signals comprising one
and eight sinusoidal components (COS 1, COS8); and a random noise signal (NOISE). All
input signals used are complex, with scaled, 16-bit integer real and imaginary components.

The imaginary components of input signals are set to $0000.

For each of the input data sets, four test programs were executed, each with a different
data retrieval strategy. The first (PFFT1), uses a fixed-order retrieval strategy which waits
for slave #0 to complete computations, then up-loads its output, then awaits slave #1°s
completion, and so on. Another test program (PFFT2) waits for all slaves to finish
calculations, then up-loads their output data in order of increasing slave index. The third
program (PFFT3) exploits slave #0’s potentially faster completion time due to the absence
of twiddle-factor multiplications in its part of the problem. Afterslave #0’s data is up-loaded
to the master, all the remaining slaves are expected to have finished, their SRQ’s are serviced,
and their output data collected in order of increasing slave index. The last program (PFFT4)
collects data from slaves on a first-come, first-served basis. The program OPT256 is used

to measure uniprocessor performance with all input data sets.

Inall tests, the programs are repeated 256 times, with average, maximum and minimum
times recorded. The slave processor execution times are also measured, and reported at the
end of a 256-pass test. Other related tests include measurement of the 64-point FFTs within
the slave programs, sum-and-twiddle factor multiplication times, as well as the time to

solution, when the frequency domain data has been computed, but has not been reported to

the master. The various processing-phase times are useful for subsequent performance

140

analysis in Chapter 5. Flowcharts for the uniprocessor and multicomputer FFT performance

tests are shown in figures 4.5.2.1 through 4.5.2.3. Program code and input data files used

in the tests are shown in Appendix L.

Figurc 45.2.1 Flowchart for Uniprocessor FFT performance test.

input Parameters
Address of Re{x(0)]
Numgt256

I=N2-1
ol
1
MaINT/K2"NUY)
PaMOD(K2**(Nugam-L),Nump!)
Ra(W*P)=16384{(cos(-2"p' PNumpt)
MW" P} 16384 (32" "PNumpt)

i

Temps((x{K+N2))'WP¥16384

Ba Reverss Shuttle x(K +N2)u{x(K)-Tomp)2
2(K)=(x(K)s Tomp)2
T:mm;i’:(lj)n Noie Compiex Math
w)-Temp2 {

KaKe1
[MY8]

NUtsNugam-1

MU1aNU1 -1
N2sN22
Lat 1

141

142

Flowchart for Multicomputer FFT performance test: Master program.

Figure 4.5.2.2

Input Paramaeters -
Address of Re{x(0)) WM“’:# 256-point
Master Program
Passcounta255)
l —l disable ymer
" Calculate execution tme
maintain Max, Min, Sumtime
Enabdle tmer
©
0)-x(255) Report ime 10 terminal
1 &l siaves {
] Decrament Passcount
Acknowledge SRQ's
Slaves calculate FFT
{ N
Collect siave output
using 1 of 4 strategies: Y
1) siv0 siv1 82 siv3 with separate SRQ's AveragesSumtime/258
2) waut til all assert SRQ, then collect siv0-3 data Report Average, Max, Min 1o terminal
3) fest come, first served; separate SRQ's
4) siv0 SRQ and coliect, then wa:t for all of siv1-3 SRQ, ;
then collect sivi-3 data
Put siaves in Prog. Accept mode
Broadcust Time-extract commands
Y
Do unshutfie of data collected ‘
Recewe slave exacution tmes
and report 10 terminal

Figure 4.5.2.3 Flowchart for Multicomputer FFT performance test: Slave program.

Data Accept mods:
note exceptons

(siave specific. see text)

See uniprocessor algonthm
for 256-points

Results of the FFT performance tests are summarized in tables 4.5.2.1 and 4.5.2.2

and figures 4.5.2.4 and 4.5.2.5. Appendix A shows complete, tabulated results, including

Myltcomputer 256-point
FFT
Slave Program

-
Receve x(0)-x(255) l

1

Assert SRQ, when ACK'd
oxacute

| Enabie dmer

Time extract
program

Assert SRQ, waut for ACK

Transmt contents of
timer count register

Perform il summaton
and Twiddie Facor multphicaton

64-point FFT

Oisable tmer

Assert SRQ, wait for ACK

.

Transter output data lo Master
{64 complex data)

T
Gono. Data Accopt modo)

individual slave execution times.

143

Table4.5.2.1 Fast Fourier Transform tests: computation time speed-up factors
summ.ary.

Input filename i 64-pt FFT M vcragc Slave | Time to solution |
| (average) Jotaltime | \

=

NULLDC

FULLDC

MAXDC
COS!1
COS8

Table 4.5.2.2 Fast Fourier Transform tests: Multicomputer speed-up factors.

-lnput filename ["~ Test program

NULLDC
FULLDC

MAXDC

COSslt
COS8

145

Uniprocessor and Multicomputer

256-point FFT Calculation tests
Uniprocessor and Multicomputer results

Fast Fourier Transform tests:
execution time comparison.

4

"
3 §§x
e ,///,/////// RO ///// a
; 3 8
= e & §\w\§\§§ 3
5 = u /////////////////////////////////////, 3 E
c a €8 & , %
Q w E O o [
E & S w8 RS £ |
S 7 2 S \%\\§§w S o
................................. m ln.m u u-u NO & —H
s r s °© 1 = &
o © 9
\\M\\\\\.\\\\ m : ¢ 88 2 m a
Q Pl b o)
|m|.. m m n 3 :.ﬁ“ =+ Inn.-W &
i H a N [TH m. %
\\\\\\\\\\\\\& B 3 = O 28 -
....... m ﬂ 0 m —_Ur WP-
P f2F .
................................... S s 1o
“.”.”.”.”.“.“.v”.”.”.x.“.”.“.“.“.” . Cﬂ“ 2 .. W
N T N R i T
¢ 8 8 8 8 8 & ° ° w R
(sw) suny 10308} dn-paadg

4

4.5.3 Frequency Domain Filtering Performance Tests

As outlined in section 2.2.3, the frequency domain filtering performance tests were
performed using a parallel configuration. The section described two strategies for
intermediate data redistribution and collection, hereinafter designated as
"slave-to-master-to-slaves” (S—5>M—S) and "slave-to-slaves” (§—S). Sets of tests adopting
cach strategy were performed. Due to the data-dependent multiplication time, different
input signals and filter types were used to observe minimum and maximum execution times.
Two types of input signals were used: a DC signal with 0 amplitude (NULLDC), and a
random noise signal (NOISE) (Appendix L). Several filters were used in the experiments,
namely: an all-pass filter (ALLPASS; multiplies all components by 1), a no-pass filter
(NOPASS; multiplies all components by 0), a low-pass filter, and a high-pass filter. In the
low- and high-pass filters, the cut-off frequency was one-half of the Nyquist frequency
(LPHLF and HPHLF, respectively). Complex data with 16-bit scaled integer components

are used throughout.

As in the FFT performance tests, four data collection strategies may be used following
a transform. For each of the two intermediate data redistribution strategies, all four data
collection strategies were tested. In the S—S strategy, it is necessary to wait for all slaves
tocomplete the forward transform before data redistribution may commence. Figure 4.5.3.1
shows a timing diagram of the filtering process using the two strategies. From the diagram,
it appears that the S—S strategy is faster than the S=>M—S method. However, the S-S
method requires more network reconfigurations, and more slaves must be serviced per
SRQACK cycle. The increased overhead may reduce the savings provided by the S—S

strategy, and therefore, both strategies were tested in the experiments.

The S—-M—S tests use programs PFILNOMI, PFILNOM2, PFILNOM3, and
PFILNOM4 (Appendix M), where in each case, data collection strategies correspond to

those described in the previous section. The programs which employ the S—S strategy are

146

Eigure 4.5.3.1 Timing diagram for comparison of S—8 and S—M-S filtering strategies.

Slave 0

Slave #1

Slave #2

Slave #3

Slave #0

Slave #1

Siave #2

Siave #3

called FSTFLINM, FSTFL2NM, FSTFL3NM and FSTFLANM (Appendix L); ineach case,
the final data collection strategy corresponds to those described in the previous section. To

aid performance analysis, the slave execution times for forward FFT, filtering, and inverse

lLoud(N) \ FFT (N/8 log N/4) : lLond Ny | INVFFT (N'8 log m)' } }
] Ly R
| | | T , T [
Filtar (N/4) | ! || | ! :
l | || !
f i 1 “l |) ‘{ |
Load(Nid) 1 1 ! = Loag (N4) | | ! !
|
1 | [T R o
I | R "I | 1 —' t {
I i
1 L | {
! T 1 1 1 |
[1 b
- - - P
Master Reorder Master Reorder
(a) Siave-Master-Slave strategy
ILoad(N) ’ FFT (N/8 log N/4) ' ' INVFFT (N.8 log N4} ' : }
I | L vy d 1 |
{ i] rF T 1T T 1T IR I
Fiiter (N/a) !) | |
| | IR NN] |
r T A B B R B S I —1 |1
Load (N4) 1 i Load (N/4y + l l
i il
L | ! [11 J]
| i | [IR IR | _4 ol
.
| | Lrrtd | I
[| { IR | |)
- | ;
Siave Reorder "‘1 f"’
Master Rgorder

{b) Siave-Siave strategy

147

148

FFT were individually measured. For measurement of overall process times, the slave
program code excluded self-timing operations, to decrease measurement overhead.
Flowcharts for the frequency domain filtering performance tests (uniprocessor,
multicomputer master and slave programs) are shown in figures 4.5.3.2 10 4.5.3.6. Program

code and filter data for the tests are presented in Appendix M.

Eigurc 4.5.3.2 Flowchart for Uniprocessor Frequency Domain Filtering performance
test.

Input Parameters
Filter256
Address of Relx(0)}

Address of Re{F(0)] titer
Numpt=256

Nugam=8 Do FFT of input signal
x(0)-x{Numpt-1) o
X{0)-X(Numpl-1)

{eNumpt-1

Y(t)=X(1)*F (%)
I=l-1

O

Y

Do inverse FFT of fillered
spectrum
¥(0)-Y(Numpt-1) 1o
y(0)-y(rumpt-1)

o

Figure4.53.3

Input Parameters

Address of Re{x(0})
Filter preloaded o

slaves

Flowchart for Multicomputer Frequency Domain Filtering performance
test: Master program, S—5M—S strategy.

Mulicomputer 256-point
FOF S-M-S strategy
Master Program)

l Passcounts255

Enable timer
Broadcast x(Q)-x(255)
to al slaves

Adwnowledge SRQ's
Slaves do FFT ana titening

Colledt siave output
using 1 of 4 straleges

(see Multicompuiar FFT programs))

Do unshuftie of data collected
[1ered signal y(0)-y{255)]

Do unshutfle of data collected
{hivered spectrum Y(0)-¥(255)}

!

dsable timer
Calculale execyton time
mantan Max, Min, Symtimg
Report time 0 termnal

Dacrement Passcount

Passcouits-1?

!

Broadcast ¥(0)-¥(255)
1o all siaves

Acnowledge SRQ's
Slaves do inverse FFT

Collact slave output
using 1 of 4 stralegies
{see Mutticomputer FFT programs)

l

Average=Sumnme256
Report Average, Max, M to termiral

Put slaves in Prog. Accep! mode
Broadcas! Time-exiract commands

Receive siave axecution limes
and repodt 10 termanal

End

for cases where
slave soll-umng
occuns

149

150

Eigurc 4.5.3.4 Flowchart for Multicomputer Frequency Domain Filtering performance

test: Slave program, S—SM=-3S strategy.
Tima extract
program

Data Accepl mods.
now exceptions
Note: timar operations deieted for Transier fRerad data to master
in overall meas..ements Recewe x({0)-x(255) SRO. wat for
]
Receve reordered fikered spactrum Trangrr time
f Y)
Assert SRQ, when ACK'd rom masir Y10} Y2551 measurement data
[3L=T] 1
|
Assart SRO, wat for ACK
ABORT,
Enable tmer Program Accept Mode
’ Enable tmor
Pertorm Forward FFT |]
(siave spactic: ses mukcompuaer FFT) Perform rwerse FFT Y(0}-Y{255)
¥(0)-y(255)
Y
Drsable tmer,
store forward FFT ume .
) Disable tmer
Enaole timer Store INVFET yme
]
perform fier mukpicaton Assert SRQ, wat for ACK
]
Disable timer: Transier oupig data 1o Master
store fiker tme (64 compiex data)
Assert SAC, wat for ACK (Dom.omkmmmode)
!

Eigure 4.53.5

Input Parameters
Address of Re[x(0))

Filter preloaded to
siaves

Flowchart for Multicomputer Frequency Domain Filtering performance
test: Master program, S—S strategy.

Mulbcomputer 256-point
FOF S-S strategy
Master Program

‘ Passcount=255

Enable tmer
Broadcast x(0)-x(255)
10 afl slaves

Acknowiadge SRQ's
Slaves do FFT and litanng

)

Configure network: siave J to
broadcast to slaves 0.1,2

Wat for all slaves o finish
SRQ from all; Acknowiedge
Slaves do nverse FFT
Y(0)-Y(255) to
#(0)-y(255)

Wait for ali slaves to finish
SRQ from all; Acknowiadge

)

Callect siave output
using 1 ol 4 stateges
(sa-. M.uitcomputer FFT programs)

Configure network siave 0 to
oroadcast 10 slaves 1.2.3

!

Do unshutfie o! data collected
[hitered signal y(0)-y(255)}

Wait for ali slaves o hnish
SRQ from all, Acknowiadge

\

Configure network" siave 1 to
broadcast t0 slaves 0.2.3

Wait for all siaves to finish
SRQ from all; Acknowledge

disable tmer
Caiculate axacution tme
mantain Max, Min, Sumame
Report me to terminal

'

Decrement Passcount

Passcounts-1?

Configure network. siave 2 to
broadcast 10 siaves 0.1.3

\J

AveragesSumtme/256
Report Average. Max, Min to termnal

Wat for all slaves to finish
SRQ from ail; Acknowleoge

=

151

152

EFigure 453.6 Flowchart for Multicomputer Frequency Domain Filtering performance
test: Slave program, S—S strategy.

Mutticomputer 256-point
FOF S-S srategy
Data Accept mode: Siave Program
note excephons !
Note: slaves unbmed recaive fitered cata
Recewve x(0)-x(255) {64 complex data)

7]

Assert SRQ, waut for ACK

Assert SRQ. when ACK'd
execule]

| receive fitered data
{64 complex data)

Perform Forward FFT
(siave specific; see muibcomputer FFT)

|
Assert SRQ, wat for ACK

perform filler multiphcaton V
4 Do unshutfie of
Assert SRQ, wait lor ACK J received data
[Y(0)-Y(255)]
i
ransmit filteved data ‘
(64 complex data) Pertorm inverse FFT Y(0)-Y{25S5) to
y(0)-y(255)

‘ &

Assert SRQ, wait for ACK

Assert SRQ, want for ACK

*** order of rans ™ Vreceve] ;
il: :v: sno;fvc: order shown ':::::::dc:;? Transfer output data to Master
ave (64 compiex cata)

Assert SRQ, wait for ACK Qme Data Acoept mode)

T

The program FILTER (Appendix M) is executed prior to the frequency domain

filtering test programs. It performs a 4-shuffle of the naturally-ordered filter coefficients,

153

and distributes them among the slave processors, as required by the test programs.
Experimental results are summanzed in table 4.5.3.1 and figure 4.5.3.7. Appendix A shows

additional tabulated results.

Table453.1 Frequency Domain Filtering performance tests: summary of
Mulucomputcr specd up factors.

Inputdata| Program 7 Filter
ALLPASS NOPASS. LPHLF HPHLF

LDC | PFILNOM1 |
PFILNOM2

PFILNOMS3 |
PFILNOM4 |
FSTFLINM |}
FSTFL2NM |
FSTFL3NM |

FSTFLANM |
PFILNOMI |
PFILNOM2 }
PFILNOM3 |
PFILNOM4 |
FSTFLINM |
FSTFL2NM

FSTFL3NM |
ESTFLANM) 2

For figure 4.5.3.7, the speed-up factors fora given data collection strategy and all filter

types are averaged to provide an average speed-up factor for each strategy.

Figure 4537 Frequency Domain Filtering performance tests: summary of average
Multicomputer speed-up factors.

Frequency domain filtering: Relative times

Uniprocessor vs. 2 Multicomputer strategies
12

1

g
o

Normalized time
2 s

e
X

o

727 SM-S ¥ &
g Unwprocessor ///4 strategy § sms:wgy

4.5.4 Alternating Series Calculation Performance Tests
As outlined in section 2.2.4, the alternating series calculation performance tests were
performed using a parallel-pipeline configuration, with two processors in each pipeline. For

the tests, calculation of /4 is chosen, where:

LN 0) 1.1 1 1

(e N S

4 S n-1 3'5 79

The series was selected for its slow convergence to its true value. Tests using a large
number of terms may be performied without convergence to 6-decimal places (Microsoft
FORTRAN uses a single precision value of 0.7853982 as tan™'(1.0) = n/4, while a double
precision calculation of the series using 32768 terms, yields a result of 0.7853905). The
sub-tasks are naturally divided among the two processors in each parallel branch. The first

processor uses the index integer to calculate a floating-point representation of successive

154

terms in the series ("divide" sub-task); the second processor computes the sum of the
incoming terms ("add” sub-task); the master processor executes the final subtraction using
the same floating-point addition routine, after collecting results from each adder. The two
sub-tasks can be made very closely equal in execution time, which is the preferred condition
for optimal pipeline performance. A number of programs were used in the tests, and in all
cases, the user specifies the number of terms desired. A uniprocessor program was written
(PI4INFO) which monitors the time for each sub-task to complete: data dependencies on
execution time can be observed, and slave self-timing is not required in the multicomputer
tests. The uniprocessor and multicomputer tests (PI4STST and PIAMTST, respectively)
measure overall calculation time for the series. In the multicomputer program, the
measurement interval begins when the master broadcasts the desired number of terms to the

slaves, and ends following completion of the final subtraction.

In yet another test, the sub-task execution times are artificially increased and more
accurately equalized using a wait loop in each subroutine (uniprocessor) and slave process
(multicomputer). The aim was to observe performance under conditions of very long per-unit
execution time, compared to inter-clement communication time. The addition sub-task
times are increased by 2.397 ms, while the division sub-task times are increased by
24225 ms. The uniprocessor and multicomputer programs PI4LSTST and PI4LMTST,

respectively, were used for the comparison.

The floating-point representation used in the alternating series tests was the same as
that used in the matrix multiplication tests. Similar floating-point addition routines are used
throughout, without application-specific optimizations. Flowcharts for the uniprocessor
and muiticomputer programs (PI4STST and PI4MTST) are shown ia figures 4.5.4.1
through 4.5.4.3. Flowcharts for the extended-time tests are not shown. The program code

for all alternating series tests is presented in Appendix N. Tabulated results are presented

in Appendix A.

155

Eigure 4.5.4.1

Flowchart for Uniprocessor Alternating Series performance test.

input Parameters
Counta{#terms/2)-1

C

Alternating Senes
Calculation

Sums=0
Term=1

Terminve1 0/Term

SumaSum. Teminv

1%
TormaTorm+2

Torminvet O/Tarm

Torminve-Terminy

SumeSum+Terminy

TormaTorms+2 I

Count=Count-1

156

Figure 4.5.4.2 Flowchart for Multicomputer Alternating Series performance test:

Master program.
Input Parameters P .
Counte{Sterms/2)-1 Multicomputer Slaves #0 and #2 do convert
AJ‘:‘:‘?;‘: Slaves #1 and & 1 do add
]
Passcounta255
SUM2.-SUM2
Enable . .er
Broadcast Count 1
1 ali slaves
PUaSUM14+SUM2
Acknowledge SRQ's Y
Slaves sxeculs
disabie tbmer
L] conhgure to paraiielppeline Calculate sxecution tme
mantun Max, Min, Sumbme
Waut for SRQ from RAeport tme 10 Wrminal
Siave #t, ‘
Acknowledge
Decremant Passcount
i
Recave SUM1 trom
Slave #1
(4 bytes)
Wait for SRQ from
Stave 3, Average=Sumime/256
Acknowleage Report Average, Max, Min 10 termenal
Receive SUM2 rom
Slave 13 Put siaves in Prog. Accapt mode
(4 bytes)
_

1

i

157

158

Figure 4543 Flowchart for Multicomputer Alternating Series performance test: Slave

programs.
Multicomputer Multcomputer
Aiternaung series Allemanng series
Siave Program, Slavas #0 and #2 Slave Program, S'aves #t and #3
— —_!L__l
r
! Recewe Count . “ewvg Count
| AssentSRO, . sert SRQ,
l Waittor ACK | Wait for ACK
Slave 80 Terma! SUM=0 Slave #1° SUM1
Slave #2° Terms3 Slave #3. SUM2
|
]
L Terminva1 0/Term Receive Terminv
from input port
(4 bytes)
Transter Terminy
10 output port |
{4 bytes) l SUM=SUM+Terminv

[Count=Count-1 J

Count=Count-1 ‘I

!

[TermaTerm+4

'Y

Asset SRQ,
Wait for ACK

Counis-1?

Gone. Dawa Accept MonD

Transter output
SUM to
output port
(4 bytes}

(Done. Data Accept Mode ,

Experimental results for the alternating series calculation performance tests are

summarized in figures 4.5.4.4 and 4.5.4.5. Appendix N shows complete, tabulated results.

Figure 4544 Alternating Series performance tests: Multicomputer speed-up factors.

Alternating Series Calculations
Relative Speed-up factors

4 --"""-'""""“""“'“"':'_E::'ts;::'ﬁ_::a;;;ﬁ;:-.a:.-:5_-=_a.;;-53;__;a.,u,_.ﬂ.. .

Optmized Lengthened |
sub-lasks sub-lasks
_E.—

0 1 L 1 i }
1 10 100 1.000 10.000 100 000

Number of terms

Figure 454.5 Alternating Series pertormance tests: Multicomputer speed-up factors
(optimized) and sub-task times.

Alternating Series Calculations

Sub-task times and speed-up comparison
l 140

- 130
.. 120
-4 110

- 100

Time (microseconds)

Speed-Up Divide sub-task Add sub-lask ~q 70
b B = m oy e [o s]

0 i A i 1 60
1 i0 100 1,000 10,000 100,000

Number of terms

§ Conclusions and Recommendations

This chapter discusses the experimental resuits and develops a general performance
model for the system. The model is used in analyses of the various tests, which are treated

separately. The chapter concludes with recommendations for future research.

5.1 Programmable Signal Router Device and Interprocessor
Communication Network characteristics

The PSR characteristics were needed prior to finalizing the ICN design. Measured
reconfiguration and output enable delay times indicated that an addressed device is
configured and ready 90 ns following modification of its configuration control register. For
the 8 MHz microprocessors used in the system, reconfiguration and output enable speed is
acceptable; no idle time is necessary 1o stabilize configuration. The observed minimum
set-up and hold times for the latching DAV* signals are compatible with the PI/T

specifications.

The 75 ns data propagation delay time is satisfactory for the ICN design. DAV * signal
propagation delay is considerably shorter, which can cause system errors if compensation
is not provided. Ina network consisting of numerous PSR devices, the delay-time mismatch
can result in a DAV * signal arriving at a destination before its associated data, and invalid
states will be latched. The DAV* signal propagates faster since it bypasses the internal
latch of the PSR. To compensate for the delay-time mismatch, each DAV* signal in the
ICN design is buffered by a non-invorting driver, typically providing a 12 ns delay. Adding
a short delay to each DAV* signal, rather than a few long delays at selected points in the

system, guarantees that requisite timing characteristics are maintained for all configurations.

The linearity of the graph in figure 4.1.2.1 (ICN Signal Propagation Delay
characteristics) confirms that there are negligible delay-time differences among the PSRs;
small variations are manifest as deviations from a straight line on the graph. Such variatior:s

are common for semiconductor devices, as is a dependence on power supply levels. The

160

difference observed in rising- and falling-edge delay times is a function of signal loading,
and output impedance shifts between the two output states. The effect is cumulative with

devices traversed, as confirmed by the diverging trends in the figure.

Since the propagation delay of a signal traversing the network is a function of the
number of PSR devices through which it passes, it is apparent that system performance is
influenced by the selection of minimum-delay paths between processing elements. The
effect of communication path length on overall system performance is addressed in the next

section, since the processor element communication rate must also be considered.

5.2 Data Transfer Rate Performance tests

The data transfer rate tests produced the expected trend of linear increase in
communication time with block length, as shown in figures 4.3.3 and 4.3.4. Regression
analysis of the observed data shows a systematic overheud delay of 59.16 us and 48.35 ps
for output and input transfers, respectively. The dissimilarity is expected, since the TRAP
service routine used for block input transfers comprises fewer instructions than the output
routine. The extra instructions in the output routine establish synchronization with the
receiver. The slopes of the two curves agree within 0.3% of each other; the difference can

be attributed to the precision of the measurements.

The difference in execution time for input and output transfers ot equal block length
complicates efforts to account for, or predict, system performance. Using an average value
for data transfers simplifies matters. Figure 4.3.5 shows the outcome of averaging the
measured input and output characteristics. If the number of block output and block input
transfers differs significantly throughout a program, differences between predictions and

actual execution time may be excessive; under such circumstances, the more exact

formulation is necessary.

161

In the experiments, it was shown that a signal traverses a PSR device in a maximum
o1 ns, while a byte is transferred between communicating processors in approximately
7.617 ps. Communications in the system are processor and PI/T device limited. A processor
exccutes an instruction loop for each byte transferred, which entails polling PUT status,
reading or writing the PI/T data registers, modifying indices, maintaining a loop counter,
and branching conditionally. The hardware data-transfer handshake is completed in
significantly less time than the processor expends to execute the loop. Double buffering of
the transfers also enhances the ¢ “mmunication performance. Because of the high bandwidth
of the ICN compared to a processing cell and its PU/T, an investigation of system performance
as a function of communication path-length was not conducted. For systems in which the
ICN’s bandwidth is close to that of the I/O devices, communication path length can be

expected to affect overall performance.

5.3 Processor Synchronization Overhead measurements

The results of the processor synchronization overhead measurements exhibited the
anticipated trend: an increase in SRQ acknowledge time with number of slaves serviced.
Synchronization time is small in comparison to that required to transfer moderately-sized
data blocks, and therefore, processor synchronization overhead will affect overall
performance minimally. Programs employing frequent synchronization cycles may suffer
performance degradation. It is recommended thar unnecessary synchronization cycles are

avoided.

The measurements represent average times required to service pending requests. A
different synchronization time is observed if the master enters the SRQACK routine before
a slave asserts its service request. The asynchronous nature of the protoceol and system
introduces some variation in synchronization times, and both factors contribute to

uncertainties in predictions of system performance.

162

T

5.4 Matrix Multiplication Performance tests

Both the uniprocessor and multicomputer matrix multiplication tests indicated that
execution time was strongly data dependant. The behaviour is due to exceptional processing
of null operands in the floating-point multiply and add subroutines, as well as the
data-dependent execution time of the microprocessor’s muitiply instruction. The varying
execution time has significance to the multicomputer application, since it has a bearing on

the choice of data collection strategy for maximum efficiency.

The multicomputer speed-up factor was consistently lower when null matrices were
used as input, compared to other data sets. The slave calculation (or execution) time is
significantly lower for the null matrix case, while the data transfer and synchronization
overhead are constant for all input arrays. The larger percentage of overall processing time

expended by overhead in the null data case accounts for the decreased speed-up factor.

Of the two data collection strategics tested (/n-Order: MATFPM, and FEirst-Come,
Eirst-Served: MATFPFC), the FCFS method was generally slower, particularly when slave
execution iimes were equal or nearly equal. The FCFS protocol requires more instructions
to implement. However, in cases where slave execution times differed significantly
(particularly by more than the down-load time of 1/4 of the matrix [A]), the FCFS method
was more efficient. Table A.4 4 (Appendix A) shows that, for matrix size 8 x 8§, the
execution time for slave #1 is more than 5 ms longer than that of the other slaves. Using
the In-Order method, the master awaits slave #1 completion, while other slaves have
completed and are requesting service. The FCFS strategy permits the up-loading of data
from completed slaves to the master, while slave #1 continues to compute. The FCFS
technique is recommended, since the potential benefit outweighs the small penalty paid

when slave execution *' nes are equal. Figure £.4.1 uses the format of figure 4.5.1.3 to

compare the two methods when slave execution times are n1nzqual.

164

Figure 5.4.1 Multicomputer Matrix Multiplication timing: In-Order versus
First-Come, First-Served data collection strategies for unequal slave
execution times.

—— -

swvo |
l-— tex0 —-l
in-order strategy sLvt | - —+ +—
fe tex1 -
tax0=tex2=1ex3 < tex1 stve t { + { —
f— tex2 —=
sLv3 b—————i $ —] —
ot~ f— tex3 —=i
L T J
total -1
i
— l— time difference
— — I-— o
sLvo +
l'——- tex0 —-4
Fust-Come, Fust Served sLvt | { + —+—
strategy b= tex1 —i
tex0=tex2=tex3 < tex1 swv2 | -4 { +—
I'—- tex2 —=i
sLv3 b————— t +—
f— 1 — b tex3 —=
L o
r Ttotal *1

No line represents processor waiting tme

It is appropriate to introduce a model for performance of the multicomputer system.
The model incorporates the measured execution time of the slaves, and the system overhead
parameters determined in separate experiments. The model is used as an estimator of
performance, and may highlight the existence and significance of other overhead thus far

undisclosed. The least complex cases (In-Crder data collection, equal slave times) are used

to de» -.op an approximate model for matrix multiplication.

Following the nomenclature of figure 4.5.1.3, the total execution time is given by:

Toua=t+a,+1, +1 (5.4.1)

where ¢, is the measured slave execution timne, ¢,,f,, and ¢, are data transfer times, which
can be modeled as proposed in section 2.3.3 as:

1, = (byte count)xm+b 5.4.2)

Parameters m and b were determined experimentally in section 4.3. Additional factors

influence T,,,;, which must be considered in the operational model.

Before matrix [B] is broadcast, a header consisting of the destination address and byte
count for the data is sent, requiring a transter of six bytes, and a separate TRAP call. After
matrix [A] datais downloaded toeach siave, a single-processor service request/acknowledge
cycle occurs, initiating slave program execution in that slave. The time required is denoted
as TSYNC,. Another TSYNC, interval precedes the data upload phase from a completed
slave. The overlap of upload operations with slave execution is such that only the TSYNC,
interval from slave #3 contributes to the expression for total execution time. The equation

for T, is developed to include the additional fuctors in equations 5.4.3t05.4.7.

t,=(6m+b)+4N’m +b = (AN’ +6)m +2b (5.4.3)
4N? (5.4.4)
I,=t.=——m+b
4
Tou=1t+41, +4TSYNC, +1, +TSYNC, +1, (5.4.5)

2 2 (5.4.6)
Tooia = (4N’ +6)m + 2b +4(i§-m +b)+ta+i%/—m +b +5TSYNC,

165

Tow = (ON*+6)m +7b + STSYNC, +1,, (5.4.7)

Using the experimentally determined average values for m (7.617 ps/byte),
b (53.76 us), TSYNC, (88 ps), and the measured 1, (Appendix A) times, the difference
between actual multicomputer performance and that predicted by the matrix multiplication

model is plotted in figure 5.4.2.

Figure 5.4.2 Difference between actual and calculated Multicomputer execution
times using the matrix multiplication model.

Comparison of Matrix Model to Experiments

Measured time - Predicted time
165

FPINDAT1
160 —_—T— e e
| | FPINDAT2
A

: - -
& B8 7

Time (microseconds)
g

-
2
w

8
ol

Matrix Dimension

The model underestimates system performance, and some overhead remains to be
accounted for. The error is low (3.5% in the worst case), however, if the model is to be
accepted, the additional delays should be explained. Their sources have been determined

to provide more complete insight into system operation.

Between the end-of-transmission of matrix [B] data and the start-of-transmission of
matrix [A] data to each slave, the master processor performs a network reconfiguration and

a register load instruction. Reconfiguration time is not necessarily equal for each

166

configuration; it is dependent upon the number of PSR ’s modified. A total of 40 ps is spent
on reconfiguration and register re-load, in the time preceding slave #3 execution. A number
of subsequent reconfigurations are concurrent with slave execution. The reconfiguration
delay prior to slave #3's upload phase contributes to the calculaton of T, If
reconfiguration time for the slave-data upload phase is greater than that on the download

phase, slave idle time is introduced. The total reconfiguration delay is approximately 45 us.

The measured slave time, 1,,, does not encompass the time required by the slave’s
supervisory program (section 3.7.3.6) to initiate processing, nor does it include the time to
initialize and arm the slave’s timer. A total of 75 ps are consumed in the slave program for
these purposes. An additional 10 ps can be attributed to the master’s TRAP #7 exception
routine, which is used to transmit the initial address and byte count; it includes additional
instructions not present in the standard block output routine. About 130 us of error in the
matrix model has been explained. Further disagreement with measurements is small (worst
case 0.3%), and apparently correlated with N. The error is likely a consequence of the
accuracy in the data transfer rate parameter, m, used in the calculations. Furthermore, the
TSYNC, value is a measurement of average acknowledge time for pending requests;

asynchronism in the SRQ/SRQACK protocol gives rise to uncertainties.

The model may be modified to account for other types of supervisory operation, such
as FCFS servicing, and for instances of unequal slave execution periods. Complications
occur when differences in slave execution times are shorter than the data download time, ¢,.
Both synchronization strategies would service slaves in the same order, since slave
completions are separated by the difference in the slave execution time plus ¢,. Furthermore,
if 1, is less than 3z, the multicomputer time is completely independent of ¢,,, and is

exclusively a function of communication time and the aforementioned overhead factors.

167

The approximate operational model, although proven to be inexact, provides a
reasonable estimate of system performance. The problem-size dependent factors are
incorporated, as are the significant system overheads. For the matrix multiplication tests,
the model provides from 0.03% to 3.5% accuracy. The quest for further precision is
unreasonable. The general procedure for modelling performance will be applied in

discussions that follow.

The matrix multiplication speed-up factor curves (figures 4.5.1.10 through 4.5.1.12)
may be considered with reference to the operational model. For all tests, the multicomputer
speed-up factor approaches four as matrix size increases. Section 2.2.1 predicts that a
speed-up factor of four is the highest attainable; for small problem sizes, it is observed to
be significantly lower. Regression analysis was performed to determine approximate
expressions for uniprocessor and multicomputer slave execution times. Results of the

analyses are shown in table 5.4.1.

Iable 5.4.1 Expressions for Uniprocessor and Multicomputer Matrix Multiplication
Slave execution times.
Input data set'
FPINDATI FPINDAT2 FPINDAT?3
(ms) (ms) (ms)

Uniprocessor | 0.124A** 0.254N>%
Multicomputer 0.032N*7 0.054N*"°

The approximate behaviour of O(N*) and O(N)/4 for the two methods, as predicted
mathematically in section 2.1.1, is evident. If uniprocessor time is represented as KN°, and

slave execution time, 1,,, for the same input data set as KN*/4, the speed-up curves can be

1 See Appendix K for matrix multiplication programs and input data.

168

described using the operational mode! for multicomputer matrix multiplication performance.

: KN?® (5.4.8)
Mairix s =
—+(9N*+6)m +7b + 5TSYNC,
A}x_.m_ Marrix,,,., = 4 (5.4.9)

The O(N*) terms dominate the speed-up expression for large N. For small N, the system
overhead makes up a more significant proportion of overall time, explaining the non-optimal
speed-up factors for those cases. The consistently reduced speed-up factor of tests with null
input data is rationalized by the lesser K value determined for those tests. The equations
apply to cases with equal or nearly equal slave times, and /a-Order data collection. They
can be shown to closely agree with measurements made using the FCFS data-collection
strategy in particular, but not uncommon, circumstances. It is not within the scope of the
thesis to develop performance models for larger systems, since an expanded prototype
against which to test the hypotheses has not been implemented. However, a larger system
can be described similarly assuming that data transfer rates remain distance independent.
More communication and reconfiguration would be necessary, but the processes remain
eitherlinearly or quadratically increasing with N, and computation time is O(N*). Therefore,
for large problem sizes, expanded systems are expected to yield speed-up factors in matrix

multiplication approaching N.

5.5 Fast Fourier Transform Performance tests

The FFT performance tests exhibited data-dependent execution times, although not
to the degree observed in the matrix multiplication tests. The uniprocessor results differ by
only 4% between best and worst cases. Individual slave execution times show

correspondingly similar data dependence.

169

The four multicomputer programs showed varying performance (even with identical
input data), as a consequence of the data collection strategies utilized. The time to solution,
when the frequency domain spectra have been calculated, but not reported to the master, is
independent of the data collection method. The time to solution measure is important to
problems which require FFTs as sub-tasks of a larger problem, such as frequency domain
filtering. Itis not always necessary to report the output of the slave operations to the master;
the locally determined results may be used by subsequent routines executing on their native

Processor.

Of the four data collection methods tested, best performance was delivered by PFFT3?,
where slave #0 is serviced first, its output data collected, followed by servicing of slaves #1,
#2, and #3 with one SRQACK routine call. The lack of twiddle-factor mu'.')lications
justifies the assumption that slave #0 will complete first, which was observed in all tests.
The first-come, first-served technique (PFFT4) provides nearly equal performance to that
of PFFT?3; it suffers due to the additional SRQACK routine calls. The program PFFT1 uses
a separate SRQACK call for each slave as well, but services slaves in a fixed order. As
observed in the matrix multiplication test, the strategy introduces unnecessary idle time in
some slaves. The same criticism applies to the program which performed least efficiently,
PFFT2, which waits until all slaves have completed before the data collection phase

commences.

The speed-up factors observed in the experiments vary with input data set, and show
slight deviation among three of the data collection methods. The technique of program
PFFT2isnotrecommended: the other strategies provide essentially the same speed-up factor,

with PFFT3 marginally best.

2 See Appendix L for FFT programs and input data.

170

The speed-up factor determined by considering only slave execution times and
uniprocessor time may appear dubious. The interval measured is that required by the slave
to perform the sum-and-twiddle operations, as well as their local 64-point FFT. Theoretical
analysis in section 2.2.2 yields a maximum speed-"p of four, however, values in excess of
that are observed. The incongruity underscores tne shortcomings of performance prediction
based solely on operation count of one particular type, in this case multiplication. The

technique makes one of two assumptions:

» only those operations that dominate the overall execution time are taken into account,

or
« .ne number of auxiliary instructions in a considered procedure is the same.

The latter circumstance is more practical, and applicable. For the sum-and-iwiddle factor
multiplication phase of slave execution, fewer auxiliary instructions per multiplication are

present than in the 64-point FFT calculation phase.

The execution time of 64- and 256-point FFT programs can be discussed and compared
in terms of the number of multiplications, since for these programs, the number of auxiliary
instructions per multiply is nearly equal. Following the discussion of section 2.2.2, the
number of multiplications for an FFT algorithm is O(N log, N). Performance of algorithms

with N and N/4-points may be compared:

Ideal FFT KN log,(N) (5.5.1)
ea speed- = !
peed-up 5;! log{% j

For increasing N, the function approaches four from above; for N=256 as in the
experiments, /deal FFT,,,,, is5.33. Measurements agree closely with this value;

differences are attributable to:

« routine initialization instructions prior to the main computation loops,

171

» some degree of data dependence in the multiply operations, and
» the O(V) process of data shuffling prior to the main calculation loops.

The decreasing trend toward the speed-up factor of four affects the rate at which overall
multicomputer performance approaches its maximum with increasing N. Experiments with
larger data sets were not performed, but a model developed in a manner similar to that
described in the previous section, may be adopted. An average value for K is derived from
the measured FFT calculation times. The data collection strategy of program PFFT2 is used
for the model, to minimize complexity’. A timing diagram for the process is shown in

figure 5.5.1

Eigure 5.5.1 Timing diagram for Multicomputer FFT calculation, data collection
strategy as in program PFFT2.

bo— td —=i et —
SLVO t t i

T 1
p————— tex0 ———=}

SLV1 F t |

SLV2 L, + i —{

SLv3a I $ i — E
trddr

No line represents processor idie time

An expression for total execution time is developed, following the procedure of the previous

section.
Tpua=t;+TSYNC,+ max(s_)+ TSYNC, + 41, +1t,, (55.2)

t,=(4N +6)m+b (5.5.3)

3 Models for the other strategies must consider whether slave #0 completes its data
up-load phase prior to or following the completion of calculations by the other slaves.

173

4N (5.5.4)
t,=——m+b
4
TSYNC, = 172us (5.5.5)
t,, = O(N)=RN =2.269ms R = 8.86ys (5.5.6)
le: = L widdie + YrrTse (5.5.7)
Lmtonias = O(N) = SN =6.824ms S =26.7ys (5.5.8)
N. (N N. (N K=6134 (5.5.9)
'fm="(z'°gz(ﬂ)“‘(7‘°g{z)) :
5.5.10
T, = @8N +6)m +5b + 2TSYNC, +(S +R)N +K(%10&(%D (5.5.10)

The parameter R is derived from the master reorder time per data element; S uses the

maximum sum-and-twiddle time observed (Appendix A).

Substitution of the parameters m, b, TSYNC,, S, R, K, and N give estimates of T,
which agree with measurements within 1.8%. Reconfiguration and other master overhe:xl
has been neglected. The FFT model may be applied to predict system performance in

calculating FFTs with various N.

The O(N log; N) behaviour of the FFT algorithm ensures that the speed-up factor for

the multicomputer problem will increase with increasing problem size, since other system
overheads are O(N) or constant. The rate at which it approaches the maximum will be slower
than that observed for matrix multiplication, where the slave time increased by a factor of N

greater than other operations. The speed-up factor expression for the multicomputer FFT

problem is:
FFT. . = KN log,(N) (5.5.11)
%" (8N +6)m +5b + 2TSYNC, + (S + RN + K Flog{ ¥))
Nli—l;ll FFT.rpud-up = 4 (5.5. 1 2)

Figure 5.5.2 plots FFT model speed-up for various N. Also shown is a speed-up curve
considering only slave execution time (including the sum-and-twiddle step), and an "ideal”

curve based on the Ideal FFT,,,,, ., function.

ed-up

Eigure 5.5.2 Predicted FFT speed-up vs. problem size.

Predicted FFT speed-up

2 / B T T T T T T T TY PP TIPS P desssnsssesincacacesntans
1 edoveas PP PRSPPI P I DU PSPP U R

- —— — e s

0 1 1 1 1 J
1E+00 1€4+02 1E.04 1E+06 1E+08 1E+10

Number of points (N)

The diagram shows that the multicomputer performance can be expected to increase
toward a speed-up of four, although very slowly. Problem sizes of the magnitudes suggested
on the graph cannot be undertaken with the RMCS in its present form; additional memory,
well beyond the addressing capabilities of the MC68008 microprocessor, is required. Small
increases in speed-up from that predicted by the model may be achieved by utilizing alternate

data collection strategies, since the model is based upon the least efficient inethod.

5.6 Frequency Domain Filtering Performance tests

The frequency domain filtering performance tests exhibited execution time data
dependence similar to the previous experiments. Not only did input data affect results, but
also filter type. The variations, as before, are a consequence of the multiply instruction

execution time.

Execution times for the inverse FFT were consistently shorter than those of the forward
FFT calculations, in both uniprocessor and multicomputer applications. The inverse FFT
algorithm does not include a 1/N scaling factor present in the forward FFT. The fewer
instructions account for the data-independent proportion of the 5.6 to 10.4% difference in

measured times for the two algorithms.

Of the four slave-to-master data collection strategies tested, the performance ranking
corresponds to that observed in the FFT tests. The ranking remains consistent for both of
the intermediate data distribution strategies, S—=M-3S and S—8. The result is expected,

since the intermediate data distribution strategy for the S—S$ method is the same for all tests.

The tests proved that the S—S intermediate data distribution method was superior to
the S5M~-S strategy. If SRQACK and reconfiguration time were too great, the extra

overhead required to implement the S8 procedure could cause inferior performance. The

overhead has been shown to be sufficiently small so that such behaviour does not occur.

175

The strategy used to synchronize slaves for the intermediate data distribution phase
of the S—S method is the one proven to be least efficient in the FFT tests. It is unavoidable,
however, since all slaves must be ready toreceive the broadcastdata. The method introduces
idle time in the slaves, especiallv slave #0. The data collection strategy selected for the final
data upload phase can exploit differences in execution time of the slaves, as shown in the

FFT performance tests.

The speed-up factors of 2.5to 2.7, exhibited by programs using the S5M—S method,
correspond closely with those observed in the FFT performance tests with similar data
collection techniques. The S—8 procedure shows higher speed up (about 2.8 10 2.9). The
smaller variation in the S—S results are a consequence of using a common intermediate
slave synchronization technique. Since the performance of the test is in many ways similar
to the FFT performance, detailed modelling and analysis follows similar reasoning, and

results show similar trends with problem size changes.

In the frequency domain filtering tests, the reconfigurability of the system was utilized
differently than in the matrix multiplication and FFT experiments. For the latter tests, the
system was cast as parallel; the configuration was modified only to permit slave-to-master
communications. In the filtering tests, the overall process was undertaken as a parallel

problem, however, use of additional communications topologies improved performance.

5.7 Alternating Series Calculation Performance tests

The alternating series performance tests yielded results which confirmed the RMCS’s
suitability to serial problems, while it also demonstrated high performance in a
non-conventional system configuration. The experiments also focus attention on issues of
task equalization, minimization of communications, and effects of varying sub-task

execution time on speed-up factor.

176

The observed speed-up factor approaches the maximum value of four as the number
of terms increases, as is expected for the configuration (figure 4.5.4.4). In the tests with
optimized sub-tasks, maximum speed-up falls short of four, mainly due to communication
overhead. The time to transfer four bytes is approximately one-fifth to one-quarter of the
processing element computation time per term, which is a significant proportion of overall
time. The unequal execution times of the processing elements for each sub-task also reduce
performance. The tests with lengthened and equalized sub-tasks displayed speed-up
approaching the theoretical maximum. The overhead incurred by communication of positive
and negative term results, and the final subtraction operation by the master, had negligible

effect on speed-up factor, except in cases with small problem size.

The varying execution times of the serially connected elements are responsible for the
observed peak in the speed-up factor curve for the optimized experiment. It is well-known
that the throughput of a pipeline is limited by the slowest element. It is also generally
assumed that the throughput of each element remains constant regardless of input data. Data
dependence of execution time is evident in the measurements, and most extreme in the
division process. Not only is the divide instruction data-dependent, but so is the alignment
of the denominator term, which predominates. In the tests, speed-up factor is affected by
the mismatch in element throughput; the disparity is aggravated as problem size increases.
The outcome is a maximum in the speed-up factor plot, indicating a problem size for which
the system and rrogram are optimal (figure 4.5.4.5). In the tests, only two elements per
serial leg are employed; longer pipelines with data-dependent behaviour per unit may give
rise to additional local maxima in the speed-up characteristic. In tests with lengthened
sub-tasks, variation in execution times for the elements is relatively reduced, and peaking
of the speed-up curve is not evident. The behaviour of the speed-up factor curve may be

clarified by examining an analytical expression for the calculation times for both the

uniprocessor and multicomputer processes.

177

Let the divide and add sub-task times be represented by:
D=Wi+X (5.7.1
A=Yi+Z (5.7.2)

Uniprocessor computation time for a problem with N terms is given by:

Nt 5.7.
U= Wi+X)+(Yi+2Z) (57.3)
1=0
Let F represent the time to communicate the maximum number of terms to the slaves, collect
terms and compute the final sum by the master processor, and C represent the fixed

communication time to transfer intermediate results to subsequent pipeline elements. The

multicomputer time can be approximated by:

N-1 57.4
M=F+% Y max(Wi+X +C,Yi+Z+C) ()
120

Nil(Wi +X)+{Yi+2Z) (5.7.5)
1=0

N~

1
F+3 2 max(Wi+X +C,Yi+Z+C)

120

Speed-up = % =

The peak in the speed-up factor characteristic does not appear at exactly the point
where the two sub-task times differ by C, due to the integration effect in the expression for

both uniprocessor and multicomputer execution times.

It may be concluded that, as in any serial design, optimum performance is achieved
when the time for each process step is the same, and communication time is minimized. In
the RMCS, the functional units are of higher complexity than those encountered in more
common, special purpose pipelines. It follows that inherently serial problems can be
subdivided among pipeline stages without restrictions imposed by limited capability of

available elements. The system affords considerable flexibility, and equalized sub-task

178

assignment may be pursued. Sub-task division must also consider the communications

required for various strategies, and a balance must be achieved for optimal system

performance.

5.8 Conclusions

This section presents general conclusions related to the stated objectives of the work.

5.8.1 Performance

The RMCS has been shown to provide an improvement in performance over a
similar-class uniprocessor system. The degree of improvement depends upon a number of
factors, most importantly, the amount of communication required between processing
clements throughout a program. The experiments have shown that issues such as network
reconfiguration time and slave processor synchronization are practically insignificant in
comparison. With the present communications limitations, for some problems, speed-up
approaching the theoretical limits can be achieved. The improvement is not only observed
for a single, particular configuration, but for a number of distinctly different topologies.
The system has displayed a degree of flexibility that contributed to overall performance.
For some problems, modest performance increases were observed. Perfect speed-up in all
tasks is an unrealistic goal, since it is rare that a general-purpose research system would
always match performance of the dedicated system. However, the main objective was to
offer performance enhancement in a range of applications, not just in a limited class of

problems. This objective has been achieved.

At first it would seem that the design philosophy of single, unidirectional
communications ports in each processing element would hinder performance. The trend in
high-performance computing is to increase connectivity and communications bandwidth by
utilizing numerous, bidirectional I/O ports for each processor. Although the strategy is

sound, it is best exploited when the processing element can perform multiple

communications simultaneously. Most microprocessors are restricted in this sense, and thus
if the reconfiguration speed for the network is sufficient, performance of the single port
design can be comparable to that with multiple ports. Adoption of single, unidirectional
channels provides a decrease in hardware and software complexity with minimal

performance penalty, due to the flexibility of the ICN, and efficiency of its control.

5.8.2 Reconfigurability, Cellularity, and System Expansion

The four-slave (single-cell) prototype system offers complete reconfigurability; any
desired interconnection pattern may be established among the slave processing elements
involving a single input and output. Paths form several outputs to a single slave input must
be multiplexed. Analytical proof of interconnection topologies was not within the scope of
the presented thesis; however, the network properties of five input connections and five
output connections and tree-like topology between them provides the desired characteristic
of full reconfigurability. It was determined that reconfiguration of the network is efficient,
and that the process of reconfiguration may overlap with slave operations. Reconfiguration
time is of concern in expanded systems, since it necessarily increases with the number of
PSR devices present. In the experiments, it was infrequent that all configuration control
registers were modified during a reconfiguration cycle; only selected PSR’s were alterzd.
Accordingly, reconfiguration overhead is expected to remain insignificant even for large

systems.

The cellularity component of the design objective has been met; expansion of the
system may be accomplished by replication of the four-slave cell. The cellular nature of
the design makes the system suitable for integration to larger scales. The selection of
interconnection sites for cells influences the number of configurations available, since a
PSR in either of the broadcast modes effectively blocks its remaining input path. It is
recommended that subsequent placement of cells follows a trend toward a square system

topology. The strategy provides a greater abundance of alternate routes whereby signals

180

may circumvent blocked paths. The prototype sysiem comprises twenty PSRs, and
communications paths selected for the experiments were of insufficient length to cause
performance degradation due to signal propagation delays. In expanded systems, demand
for interconnections with longer path lengths is probable. Minimum path length selection

would be a more prominent issue with respect to performance.

The slave processors are cells from both hardware and software perspectives.
Distinctions between slaves do not hinge on their hardware nor software, and logical
designations are not topologically constrained. The SRQbus interface hardware embodies
the single hardware element (an address decoder) which distinguishes slaves from one
another. If the SRQbus interface is physically located on the master’s NCC (as it is in the
prototype system), the slave processor cells may be implemented identically. An alternative
design replicates the SRQbus interface circuitry as part of each slave cell, with only the
address decoder unique to each slave. The slaves would conveniently connect to the SRQbus
using a backplane. In such a design, however, slave hardware assigns to each a fixed
designation, and places intrinsic restrictions on system size. System expansion is limited
by the number of address signals available. The homogeneous slave design adopted for the
prototype system was preferred, since the restrictions are not cast at the slave’s hardware

level.

5.8.3 Suitability of the System for General Computations

The experiments conducted in the study attest to the reconfigurable multicomputer
system’s suitability for general purpose computations. The programs used to characterize
performance were specifically chosen to be diverse. Both parallel configurations and a
parallel-pipeline configuration were tested in the experiments, and a substantial increase in
performance was observed. Testing with every possible configuration and every application

program is certainly impractical. Since the reconfiguration and synchronization strategies

of the system were shown to be efficient, it can be reasonably expected that algorithms

181

which naturally map onto a given topology will be performed efficiently by the RMCS.
Problems which would benefit from reconfiguration at intermediate stages of computation
are also suitable. The constituent processing elements were selected for their general purpose
nature, and therefore slave cor. ,.atations are not limited to a particular class of problem.
Furthermore, the homogeneity of processing elements does not limit nor favour particular
operations to be performed on particular slaves. The control strategy of the system is
sufficiently flexible to permit any sequence of operations to be regulated by the master in

an efficient, coherent manner,

The reconfigurability of the system provides an efficient method by which an
application may be tuned for increased performance. Machines with fixed architectures are
best suited to particular classes of problems. Problems or sub-tasks of larger problems arise
for which the special-purpose machine is ill-suited, but must be solved nonetheless.
Assignment of those tasks to the supervisory unit, a single cell, or a standard uniprocessor
are options. The solutions are subsequently computed in the usual, serial manner. The
RMCS may assume the optimum configuration for the problem at hand, and for each
specialized sub-task, if advantageous. System overhead cannot be ignored, and it must not
offset the benefits offered by redistributing the problem. A broad range of computations
may be undertaken, each completed faster than a comparable uniprocessor, without the need
for a specialized machine for each type of problem encountered. The RMCS may no. equal
the speed of a special-purpose system in executing its intended class of problem, but due 10
its flexibility, it is capable of efficiently solving a broader range of tasks. The RMCS will

surpass special-purpose systems in problem classes beyond their scope.

The RMCS offers an additional degree of freedom for optimizing a task not available

in fixed architectures. A static system requires the programmer to partition a problem

182

according to the machine structure. The RMCS empowers the programmer to subdivide
the problem according to the optimum computation strategy, and to specify the machine

configurations best suited to accomplish it.

5.8.4 Suitability of the System to Other Applications

The thesis has focussed on the RMCS’s performance in arithmetically intensive
applications, issues of ccmputational speed-up factor and system control overhead, and the
system’s flexibility to afford optimal interprocessor configurations. Use of the system as a
general purpose, high performance machine with variable degrees of parallelism has been
stressed. The immediate goal has been to determine the advantages and practical limitations
of the prototype system, providing insight into methods for increasing the performance of
future systems with similar architecture. The RMCS design is useful in applications where
raw computational horsepower is not the most attractive asset. This section briefly discusses

a few of these applications.

The RMCS is suitable as a generalized test platform for investigating optimum
algorithms and structures for proposed, special-purpose machines. The system may be used
as a hardware emulator to experiment with task partitioning, scheduling, and control
strategies. Complications and bottlenecks may be identified. Experiments wiil influence
and validate the special-purpose system design at lower cost than individual prototype

construction.

The autonomous nature of the processing cells may be exploited to perform many,
unrelated functions simultaneously. The experiments conducted for the study emphasize
applications where the slave processors cooperate in fulfilling a single, common objective.
Tasks may be assigned to execute entirely on a slave processor, while other, separate tasks

execute on others. Problems may be assigned to a subset of the available slaves to be solved

183

184

in some parallel fashion, while other sets of slaves collaborate to solve different problems.

The master’s role of single-task overseer would be expanded to multiple-task overseer and

task scheduler.

5.9 Recommendations and Future Research

The thesis has been successful in meeting its objective of investigating the suitability

of the RMCS architecture in achieving high performance in broad range of applications.

The factors which limit performance were identified. Future research may focus on:

increasing performance of the four-slave cell,

increased performance and connectivity by replicated expansion of the system,
increased system integration,

development of applications for which the system is suitable, and

studying system programming methodologies.

This section briefly discusses each, with attention to primary issues and their implications.

5.9.1 Increasing System Performance

A fundamental method for enhancing performance of the RMCS would adopt a higher

performance microprocessor as the elementary processing cell. The results achieved so far

may be approximately scaled. However, available I/O aevices generally do not parallel the

processing performance increase provided by current state-of-the-art processors; the

mismatch complicates direct scaling of the results. Speed-up is hindered more significantiy

by communications speed, and applications with more coarse-grained parallelism are

favoured. The range of applications for which the system is cost-effective (especially

expanded systems with many cells) may be diminished. The systems would be utilized most

often in modes where distinct tasks are assigned to each processor, or to a few processors.

For computation intensive tasks, the combination of processing power and flexiktility would

provide exceptional performance. The study has shown that the most significant obstacle
to overall speed-up is interprocessor data transfer rate. If the system is to maintain its
applicability t0 a very broad range of problems, any increase in processing element
performance must be accompanied by correspondingly augmented communications

bandwidth.

Since the microprocessor chosen offers high performance at low cost, methods fur
increasing performance which do not replace it merit consideration. The speed-up of the
four-slave cell will be improved by decreasing communication overhead, and a direct
memory access controller (DMAC) would serve this purpose. Available devices can sustain
block data transfers between a slave’s memory and PI/T at over ten times the rate attained
under processor control. The DMAC however, introduces increased hardware and software
complexity, making large-scale integration of the system more difficult, and programming
less straightforward. For the experiments performed, speed-up of tasks would achieve
maximum levels for problems of smaller size; problems with even finer-grained parallelism
would benefit. The eftect of data propagation delays while traversing the network would

become more significant at shorter path lengths, as well.

A design objetive for the prototype design was to permit system expansion oy
replication, and it was satisfied. System performance may therefore be enhanced through
replicated expansion. The stretegy does not modify the hardware or software complexity
of the individual processing cell. Not only would more processors be available for
computations, but more complex and varied interconnection patterns would be available.
Practical considerations such as physical size and cable lengths may be limiting factors.
Enhanced integration of the four-slave cell would be essential. Current VLSI technology
does not support the entire cell (as defined in the prototype) on one chip, but reduction to a
single board per cell is possible. Fabrication technology wouid support production of

single-chip, reconfigurable cells comprising processors of lesser complexity and capacity.

185

Multi-cell systems would be inexpensive, and their implementation simplified. Although
the functional capabilities of the processing cells would be reduced, the flexibility and
potentially higher communications rates would yield exceptional performance in systems

with even a modest number of simple cells.

5.9.2 Other Applications for the System

The performance tests conducted in the study utilized parallel and parallel-pipelined
configurations. A test using a single, serial configuration was not conducted. A suitable
application which is related to the previous tests is calculation of two-dimensional fast
Fourier ransforms. Each element in the pipeline computes one or a set of vectors in the
individual row and column transforms. A complete discussion of pipelined,
two-dimensional FFT computation is in Appendix O. Calculation of 2-d FFTs may also be
performed in a parallel mode, where each processor is assigned a fraction of the row and
column transforms. T1he two methods would compete in terms of performance,
communications time and memory requirements being the decisive factors in determining

superiority.

The frequency domain filtering tests exploited the reconfigurability feature of the
system to a higher degree than the others; modifications to interprocessor connections were
made for purposes beyond slave-to-master data reporting. The filtering tests clearly
demonstrated the advantages provided by the system flexibility. The system is uniquely
suited to problems which would benefit from intermediate reconfigurations. Network
alterations can be accomplished efficiently, and introduce little overhead. The problems
sought are those which have various pro~essing phases, of which some phases would be
most suitably performed in a parallel mode, the others in pipelined or alternate modes. Future
research will target algorithms and applications where performance using hybrid modes

exceeds that attainable with a single mode.

186

Aside from the applications outlined herein, the RMCS is suitable for carrying out
various forms of fault-tolerant computations, either through processor redundancy or
dynamic replacement of faulty processors. System software modifications are necessary to

fulfill fault-tolerant control strategies.

5.9.3 Software Issues: Programmability and Control

The RMCS implements a coherent system control strategy with a combination of
specialized hardware protocols and the software constructs of processing states. The control
is sufficiently flexible to permit reliuble and efficient task synchronization for all
configurations and circumstances. The definition of slave processing states, transition
regulations, and TRAP-service routines, combine to provide a cogent software framework

for applications programming.

Programs used throughout the study were written using MC68000 assembly language.
Although the astute programmer can often produce more highly optimized code than the
best compilers, development time is longer than when high-level languages are used. A
first step in easing the programming task is to adopt a language such as C, with compilers
modified to implement code for I/O and system control which corresponds to that required

by the RMCS monitor system.

High-level language support is only a first step, however, and does not address more
fundamental issues of system programmability. Programming of a single computer is
considered a formidable task, no matter what 1anguage is used. Evidence can be seen in the
industry: there is a significant time lag between a hardware advance and the availability of
programs and operating systems which adequately exploit the new capabilities. The RMCS
prototype demands that a programmer write code for not only the master cell, but compatible

programs for four other processors! In some applications, slave programs are identical,

187

however, frequent reconfiguration results in higher programming complexity. Expanded

systems will present magnified difficulties. The solution lies in an advanced or "intelligent”

compiler.

The "intelligent” compiler would generate the appropriate slave and master-control
code automatically. The desired processor configurations for specific sections of code would
be specified by the programmer, using a suitable nomenclature. The compiler would
generate code to download programs and data to the slaves, monitor program execution,
and redistribute data in preparation for subsequent operations. Further evolution of the
"intelligent” compiler would yield the "brilliant” compiler, wherein the userdoes not specify
system configurations. The compiler itself determines optimum topologies based on
program properties and communications delays inherent to competing strategies. The
"brilliant” compiler is a profoundly challenging problem related to artificial intelligence.
Versions with "incomplete insight” (only certain, common constructs are recognized and
optimized) however, could prove to be useful in decreasing program development time for

the RMCS, and in affording access to such a system to a broader range of users.

5.10 Concluding Comments

The reconfigurable multicomputer system embodies concepts which can have an
influence on the future direction of high-performance ¢ smputing. it represents a departure
from the trend of special-purpose, fixed-topology systems. Its flexibility provides high
performance by permitting exploitation of varying degrees of parallelism in a broad range
of applications. The prototype system is only one implementation of the general concept:
details such as processing cell performance and complexity may be modified to realize
systems with varying levels of performance, size, applicability, and cost. The thesis has
established the practical viability of the concept, demonstrated its advantages, as well as

underscored its shortcomings, and suggested methods for their alleviation.

Appendix A: Tabulated Experimental Results

189

A.l1 Hardware System test results

Table A.1.1 PSR device characteristics.

| Parameter Description

DAV* signal propagation delay time

ACC* signal propagation delay time

Set-up time, data valid to DAV* asserted

Hold time, DAV* asserted to data invalid

Reconfiguration delay time

Output enable delay time

Interprocessor Communication Network Characteristics

Table A.1.2 Signal Propagation Delay times.

e —————
i

[~ Numberof PSR device | Delaytime = | Delaytime |
traversals 1 falling signal rising signal
. L (ns) (ns) J

V=R N--N NN K- RV I RV SN

—
o

[T
—

P
~N

—
w

—
E =Y

—
A

e
K=p

A.2 Data Transfer Rate Performance test results

Data Transfer Rate performance.

Transfer Me

master->one slave master—all slaves
time (us)

A.3 Processor Synchronization Time test results

Table A.3.1 Processor Minimum Synchronization Time test results.

slaves acd |

193

A.4 Matrix Multiplication Performance test results

Table A4.1 Uniprocessor Matrix Multiplication tests: measured execution times.
Mawix | Exccutiontimes for various input data
Dimension (ms)
FPINDATI - 7 P[NDA

17916
132.064
478.196
1188.636
2347.8

17.848
145.564
494.924
1174.464

Table A4.2 Multicomputer Matrix Multiplication tests: measured Slave execution
times, input data: FPINDAT].

Matrix ‘ Slave execution times
Dimension (ms)

Slave #0 A _ Slave # 7 lavc # Slave #3

Table A4.3 Multicomputer Matrix Multiplication tests: measured Slave execution
times, input data: FPINDAT?2.

Matrix
Dimension

(ms)
4.492 ‘
36.420

123.760

Slave#o | Slave

36.420
123.760
293.644

575.192

Slave #3
4.492
36.420
123.760
293644 |
575192 |

36.420
123.760
293.644 293.644
75192

Table A44 Multicomputer Matrix Multiplication tests: measured Slave execution

imes, input data: FPINDAT3.
' T " Slave execution times
Dimension | (ms)

4,040

31.382 31.382
120.968 120.896 118.040 122.840
297.188 294.664 296.372 297.188
585.200 590.488 58.828

Table Ad.5

(ms)

Multicomputer Matrix Multiplication tests: overall execution times;
program MATFPM, input: FPINDAT].

Execution times

Average
4.068

Maximum
4.072

4.068

20.632

20.664

20.628

61.972

62.012

61.968

139.324

139.356

139.320

263912

Table A 4.6

Matrix

263.944

(ms)

263.904

Multicomputer Matrix Multiplication tests: overall execution times;
program MATFPM, input: FPINDAT?2.

Execution times

Dimension
Average

6.592

7 Maximum
6.600

41.808

41.836

134.632

134.668

312.204

312.224

603.636

603.668

195

Multicomputer Matrix Multiplication tests: overall execution times:

Table A4.7
program MATFPM, input: FPINDATS3.

Execution times
(ms)

Matrix
Dimension

Average Mimum »
6. 44 6. 144 6.144
42.064 42.076 42.032
133.712 133.744 133.704

315.756 315.768 315.748
618.908

1890 [618952

Table A48 Multicomputer Matrix Multiplication tests: overall execution times;
program MATFPFC, input: FPINDATI.

Execution times
(ms)

Matrix
Dimension

~ Maximum

4184
20.736
62.056
139.416
~263.976

Table A4.9

Matrix
Dimension

Multicomputer Matrix Multiplication tests: overall execution times;
program MATFPFC, input: FPINDAT?2.

Execution times
(ms)

Average Maximum

6.636 6.636

41.896 41.896

134.668 134.676

312308 312.316

603.664 603.672

Multicomputer Matrix Multiplication tests: overall execution times;

program MATFPFC, input: FPINDATS3.

Execution times
(ms)

Average Maximum

6.200 6.200 6.200

40.784 40.784 40.784

133.760 133.768 133.760

315.776 315.784 315.772

618.544 618.552 618.540

197

Table A4.11 Multicomputer Matrix Multiplication tests: speed-up factors.

| Matrix Dimension §

Sed-up factors

FPINDATI

FPINDAT?2

MATFPM | MATFPFC |

FPINDAT3

A.5 Fast Fourier Transform Performance test results

Table A.S5.1 Fast Fourier Transform tests: Uniprocessor execution times.

Inputdata |

ﬂleamc

NULLDC

Execution time |
123.044 ‘

FULLDC

123.300

MAXDC

124.956

COs1

124.320

COs8

126.356

NOISE

128.188 |

Table A5.2

Fast Fourier Transform tests: Multicomputer execution times.

T

Input filename |

" Test program
(ms)

COS1

| NOISE

PFFT2 PFFT3
| Average | 46936 | 48656 | 46780 | 46.884
Maximum | 46.952 48.664 46.788 46.892 |
Minimum | 46.936 48.648 46.772 46876 |
T Average | 47000 | 48656 | 46844 | 47080 |
Maximum § 47012 48.664 46.852 47.088 |
Minimum §| 46.996 48.644 46.835 .
Average | 47412 48656 | 47256 | 47372
Maximum | 47.424 48.664 47.260 . ;
Minimum | 47.408 48.644 47.248 47364 |
“Average || 46972 49288 | 47284 | 47100 |
Maximum | 46.988 49.296 47.308 47.108 |
Minimum | 46.964 49.280 47.260 47092 |
Maximum |
| Minimum | 47. 49.344 47.352 :
| Average | 47972 49.812 47.840 47.940 |
Maximum || 47.984 49.820 47.848 47948 |
Minimum | 47.972 49.800 47.836 47936 |

199

Table AS.3 Fast Fourier Transform tests: Slave execution time summary.

[pur | Slave#0 Slave#1 Slave#2 Slave#3
| filename | (ms) (ms) (ms) (ms)

[Sum & | Total Sum& ; Total {Sumé&| Total |
| Twid | | Twid | | Twid | | Twid ?

vC || 4.880 | 28.184 || 6.824
| 4.880 | 28.248 | 6.824
| 4.880 | 28.656 || 6.824
| 4.880 | 28.216 | 6.824
{ 4.880 | 28. 6.824 3
| 4.880 | 29.108 | 6.824 | 31.284 |

_Input filename _ r'

Table ASS Fast Fourier Transform tests: computation time speed-up factors
summary.

Input ﬁlcnamc p h Avcragc Slave Tunc to solutnon |
| || (average) _Totaltime |]

201

M Fast Fourier Transform tests: multicomputer average speed-up factors.

e

Input filename S Test program T

A.6 Frequency domain filtering performance test results

Table A6.1 Frcquency Domain Fﬂtcnng pcrformance tests: Umproccssor results.

{nput data| Filter | Forward FFT Inverse FFT | Total
(ms) (ms) ; _(ms)_

AL f | 120068 | 263408 |
128.180 . 114844 | 257.280
128.180 . 120416 | 262.852
128.180 14260 | 120436 || 262872 |

I For input data NULLDC, results were identical for all filter types.

Table A.6.2 Frequency Domain Filtering performance tests: Multicomputer results,

S—M-S strategy.
_Int data| Filter | Program 7 “Average | Maximum | Minimun |
. ; (ms) (ms) (ms) ;
PFILNOM2 | ‘
PFILNOMS3 |
| NOISE |ALLPASS| PFILNOMI |
101.100 101.148 101.068
PFILNOM3 § 97.136 97.188 97.100
PFILNOM4 [97.584 97.648 97.52« |
TNoPass | PFILNOMI | 96236 | 96280 | 96.204 |
PFILNOM2 | 99.904 99.952 9572 |
PFILNOM3 | 95932 95.980 95.888 |
| 96.248 96.296 96.176 |
101.072 101.108 101.044 |
97.068 97.136 97.012 |
9739 | 97440 | 97328 |
97.384 97.428 97.348 |
101.028 101.072 100.988
| 97076 97.156 97.0404
| 97376 97.432 97304 |

2 For input data NULLDC, results were identical for all filter types.

203

Table A.6.3 Frequency Domain Filtering performance tests: Multicomputer results,
S-S strategy.

' | (ms) (ms) | (ms) |

FSTFLINM
FSTFL2NM |

T

ALLPASS | FSTFLINM |
FSTFL2NM |

| FSTFLANM |
NOPASS | FSTFLINM
FSTFL2NM |

FSTFLINM |
FSTFL2NM |

FSTFLANM |
FSTFLINM |
FSTFL2NM |
FSTFL3NM

3 For input data NULLDC, results were identical for all filter types.

Table A 6.4 Frequency Domain Filtering performance tests: Multicomputer results;
Slave execution times (common to both S—3M-3S and S—5S strategies).

put data| Filter | Procc Slave #0 | Slave #1 | Slave #2 | |
‘ I N .. N N NN S

f Forward FFT | !
Filter |

|ALLPASS

NOPASS |

Filter :
Inverse FFT | |
Forward FFT .)

Inverse FFT |
Forward FFT

4 For input data NULLDC, results were identical for all filter types.

Table A.6.5

Frequency Domain Filtering performance tests:

Multicomputer specd-up factors.

Input data Program
ALLPASS

LDC | PFILNOM] |

e OPASS

" Filter
" LPHLF

HPHLF _|

summary of

PFILNOM2

PFILNOM3

PFILNOM4

FSTFLINM

FSTFL2NM

FSTFL3NM

PFILNOM1

FSTFLANM |

PFILNOM2

PFILNOM3

PFILNOM4

FSTFLINM

FSTFL2NM |

FSTFL3NM |

JFSTFLANM §

205

207

Table A.7.2 Alternating Series performance tests: Uniprocessor and Multicomputer
results; optimized Slave programs (PI4STST and PIAMTST).

[Number of| Uniprocessor | ~ Multicomputer time
‘ ‘ i ; (ms)

1.224 1.220
1.520 1.516
2.100 2.096
3.212 3.204
5.388 5.376
9.652 9.640

| 17.924 17.916
110932 | . 34.052 34.036
218220 | . 66.424 66.376
428988 | 131272 131.304 131.260
843572 | 260972 260.992 260.948
1656.672 { 520.172 520.188 520.144

| 3253896 | 1039216 | 1039244 | 1039200 |

1 6390.168 . 2079.024 2078.980 |

205

Table A.6.5 Frequency Domain Filtering performance tests: summary of
Multicomputer speed-up factors.

Program ' | Filter

| ALLPASS NOPASS LPHLF
" PFILNOMI |
PFILNOM?2
PFILNOM3
PFILNOM4
FSTFLINM
FSTFL2NM |
FSTFL3NM

PFILNOM] |
PFILNOM2 |
PFILNOM3
PFILNOM4 |
FSTFLINM
FSTFL2NM |
FSTFL3NM

L FSTFLANM B

A.7 Alternating Series Calculation Performance test results

Table A7.1 Altemating Series performance tests: execution times of sub-tasks
division and addition (program PI4INFO).

Divide time
(1))

(n-1)™ term n" term (n-D™ term

[Number of terms |
(hex) ‘

207

rformance tests: Uniprocessor and Multicomputer

Table A.7.2 Alternating Series
results; optimized Slave programs (PI4STST and PI4MTST).

Multicomputer time
(ms)

Max

0392 | 1036 1.040 1.028
0.872 1.220 1.224 1.220
1824 | 1516 1.520 1.516
3.680 2.096 2.100 2.096
7316 3.208 3212 3.204
14.524 5.376 5.388 5.376
28.636 9.640 9.652 9.640
56.376 17.920 17.924 17.916
110.932 34.040 34.052 34.036
218.220 66.404 66.424 66.376
428988 | 131272 131.304 131.260
843.572 260.972 260.992 260.948
1656.672 520.172 520.188 520.144
3253.896 1039216 | 1039244 | 1039.200

Number of| Uniprocessor
time

- 6390.168 | 2079.004 | 2079.024 | 2078.980

Table A73

Number of terms
(hex)

Altemnating Series performance tests: Uniprocessor and Multicomputer
results; lengthened Slave programs (PI4LSTST and PI4LMTST).

Uniprocessor time Multicomputer ' |
(ms) Average time
(ms) K,
3.464 : 2.904

10.060

.

20.208 6.080

40.496 11.240

81.024 21.532

162.004 42.080

323.900 83.132

647.388 165.144

1293.880 328.924

2585.940 655.920

5168.236 1308.976

10329.020 2613.120

20643.640 5217.676

41256.800 10418.690

82424.160 20805.720

164790.700 ~41554.930

Appendix B: CPU Card Schematic Diagrams

209

K,. [RQSET
it
v ~CINPTSET
R6
2rnnl £XRESETn
% R3 +SVO—=AMA-— ulA
L ATk a7 X 4SI3
w1 ¢ U3 9 Wi, aie
Lglp-2] 2 8
0 10 1
>] " —, 1T
— < 00 —
L 740508 3 E g3
= ABORT SVITCH 741500 T
'2 (ABRTe >
_ INTACKE
[9]
8 | _
] 10
5‘ Ré Jas00
47K
245V +5V 3\
? 12 % —
~5V§ R7 ¢ R {8
I SLERRIATEL
| I b
¥ 1
[_L =
. A~ £33
) ‘I‘RSH e 113 BRI
9 wia =
-4 TR 5
cv Ut
L MC3456 _])
SV cB! £82
T? :_[I 1: 1w L_J_J g
{ R '
{ 47K 74HCT4
{ A A
4 L_i.
5 § . 3 REsPUS>
740300 ['—_/ 7ALS00
! 74,508
l [XRESE In
sv2 4 NTACKE
Lolp-3 ! 3 L—@Iﬁﬁ)
24 ot 2
L reser sviten) i 740500
= 47 K

Powl A Sneulders

T.tle

ABORT gpo RESET Cecutry

\ |
1A

S.ze Jocument Numcer

CPy Cora Scremetc Dagram

Dote

Feirugry 26, 1992 Lheet 1 of

210

211

CRGSET } 7 IRQSET
CINUTSET } ~CINPUTSET)
R21
- Eant—onsv
7K 12 3
\EosH o ow - o a0 p2 Hm o -
7|02 2 gy mpe L sl TrT
= 7103 Wi 592 A 2 21—
\IRg1s — 04 04 H] 133 ‘ 12 WT
N Tlos a2 Hj; 6s P n o Pes
D6 06 i
Nigggs o7 o7 (e 26 Bipe o s
ABORT NRQ4r 18155 pg —q7? =
e Ao e 2hcik
*SVO——ANY, LR * Sise CLR
47K 74,5273 74LSITS
RIS
L —tesy
47K
Also to U9 pn 5
U3l pn 3
uaee U3l pn 3
uer pn 13
5 6
16.00000 Mrz 74MC04 Ta US pn 28
U6 U308 29 pn 11
U3 pn 17
puTt 129 . 3 4
S
L8 <
st [£ 74HC04
7/ R4S
Jna Qs
= 74893 =
[RESPULS >— [RESPULS >
TSE7 LUIsET >
Paul A Smeulders
* tle
Clock & Interrupt Sync. Circutry
- Document Number REV|
| » CPU Card Schematc Dagram {
| Date _ Feoruary 26 1992 Sheet 2 of |2

I T

PO ST

(ROSET_} —RASE]
IRPUTSET - 7 INPUTSET
HAL T(N®
{fPLox -
{l (|
fiFtie > 1PL1e g
1PLOx
PLon
u2 ;
9 | MAPE
doLr oH T
. gl B
FL————— CLK OF HE-
3 T
o
2, Rl o
1]8 B3
e Emsm
VINOrIV
47 &
v
| :
| { Re2
{1k
UIB :
1
. B 1
741805 'SV
r—iALT{Nn %
:: R23
usc {
!
2 RESETe >
| AT
741504 740500 741505 fare >
CLKB . LT
QSI MAPN
RS- E—

Paul A Smeulders

[Mw

Hallnd. Mopa Generat.on

S.ze Document Numoer

CPU Card Scrnematc Dagram

REV|

gte:

Moy 23, 1989 [Sheet 3 of

212

213

(IROSET TRGSET
NPUTSET J— 7 7 INPUTSET
VPAR éﬁAcxtﬁil DraCKn
(— >
F ALG.21)
i 4
1PLia
iPLOn
T
\&—55'2‘ A o3
W—-—-—, Al VPA
- S B
2 47
N1 143 1PLo piL—
Nl Ly ey pE
\Aﬁ——g- AS 1PL2 P
b 216
\AL—.g a7 Bcack p22
M8y prac E: 1Y
\A\m——u w1 410 BERR P2 FT0 >
AE
&F a2 reo 15
\Af - A3 FCI 13
\\zé . m; fce
Al
1 35
A6 86
\\3}; 2] 47 .
| A8 £
N\alg_2T 1,19
\azn.T?;:_ A20
2L {5y b
\\ﬁl 2
-1
D2 4
\ﬂ‘ 26 ik} HALT 57‘ ,
NDS 55 D4 RESET o E
s S |
t506 s P25
n7 R/Y 4—1
BO0ED
[RESETA > 3
paTe > X
ek
R/weiDSx SK (SYSCLK (SYSRESETE HALTOUTR CLK QG- :
BT e e \ s>
Paul A Smeulders
Titie
MPU Connec tions
S.ze [Document Number V]
) CPU Cord Schematic Dagram 2
1Date Moy 23 1989 Bheet 4 of |2

214
IROSET —IRGSET |
INPUTSET 7 <(INPUTSET)
Kﬂmm VECTINTR
T >~ T >
g2l >~ BY —fag2n >
+SV
R12 Ez]
a7k ¢ =
B2
I
12 S L1z
RIl 4 1] 15
a7k { 3 §§2 2l whe
L3 el 2
| Y3 he_ 12
= : 3 M3 476 rp- LI v T
Cl o |TSVEMAE—GL Y5 e
co 4 Gea Y6 P ;
A [2 b o3 Y7 4L508
R0 £ R9 785138
a7k L {4rx
rd
.
+SV SV
U
: l
3
CBERR® ,_L 1] "‘—1 |
uld '
74L508 ‘1@7 a | g__ll
or b5
e @ —Z——]
el ®hy
03 3y —
; [2100
13 4pa oo P
| 0x 14
i ‘ 8D
| ! 9 ¢
CLX
- 3 g 1 LR
hISDATE,
SPROE, J4L5175
SUPDATN, 74504
SUPPRO,
INTACKs psE iccu
1SE7_> \ / / {OUTSET >
Paul A Smeulgers
T.tie
Functon Decode, (NTACKS, & BERRE (energton
S.ze {Document Numiber fv|
A CPU Card Schematc Dagram
Late Moy 23, 1989 Bneet Sof I

215
CRGSET } TROSET
INFOTEET | 7 ~ 7 -INPUTSET]
bBooPRE vPAL FXVPAR
OB D0(0.7]
ez A >
u . L {VPA >
L
5
740508
Ul9A l71198
b 741873 41873
VECTINT 6 wi o e 1 oL
4
) 9
—- LK
74L530 &CU:: _—;'m ¢ e
enddis Big { gpBymae
ELLK =
{ RIS
N
{47k
I
+SV
LCLK SYSELK VMAR
1sCT L L -OUTSEY >
Paut A Smeulders
Title
VPAR and VMA Generation Circuitry
Size [Document Numier RE Y]
A CPU Card Schematc Dagran 1
Joter September 28 1989 Sheet 6 of 12]

ROSET RESET]
CINPUTSET 7 NPOTSET)
DTACK éERRNI
QT >— o7 >
BoZn >— e >
U3F
12 +5V *5V 5V
] 113 2 T
13
3
741500 741804 [{RI?7 { RIE (RB
@ TEre ;\4’K$4‘7K:\47K
9 I Y I
g
10 | b uars -
2 9 1?2 2
741520 ua 120p X \” o e
veo 5 My 13 . 1
¢ 8 74L508
U300 740508 CL LG '5V 740537
¢ gks 74574
9 8 L 1 e
74LS74 { R2?
{ 47K
74HC04 l I
1
4 U334
L —a
l,El, PG 3
R
dCLK
c
[N gt
T TTaLsTa
|
!
‘,._______M
|
LMLTDUTI SYSCLK /ASI hnmz
A T
Paul A Smeulders
T tle
Tri-Stote Control on WAL TN, BERKX, DTACKR
ze {Document Number REY
A CPU Card Schematc Dagram {
DaterFegruary 26 1392 [Sreet Tof 12

CRESET — (REET]
{NPUTSET INPUTSET |
QT >— TET >
WiZD > D)
Yo
u30E
11 0 1 N\
2 3 ASTGUAL>
TaHC04 J
741508
s
1
VO U278
a7k
4
7aL504
U27A
1
9
\ 8
Jaiss | 10
TaLst
| 'm .
5 \
GBTC 6
4
5 §
TaLs00
740504
)ac- Asa /a/v-)ns- DS+ Lose e
s>~ \ UTSET

Poul A. Smeulders

mﬂ?
Tr-State Control L Sgnal Ceneration

Sze [Document Number
A CPU Card Schematc Dagranm

REV]
1

Dater Feorwory 26, 1592 Sheet 8 of 12

217

IRGSET } (RS
INFUTSET } —ONPUTSET)
BGACK= [BR¥
> >
NO3L__> {agen >
v 05%\/
% R4 { RS
¢ 47K {ATx
E 7
g, U333 3 L u29a
740804 4 4 et
u27p 12 9 | 6 5 9\
=40 P Q 5 JpQ 8
R 3. X 10 T
NI 9 11 c \
ASEQUAL > LK TS CLK v e
Cqle ¢ gle 740532
74504 U7
Y 74LS74 74.574
3 13 12
741504 !
5 w9
g
c o l
L
1 obeik
-]
U8B 12 0 R 0 9
JW ‘{ 741574
L P
! 741504
SYSCLK I YSRESET® KYSTSE
aE>—L L ST
UISET
Poul A Smeulders
T.tle
Ir-State Bus Control On BReBCEBLACKS
S.ze {Document Numoer TREV]
A CPU Card Schergtc Diogram % |
Dater Moy 23, 1999 Sheet G of 2

-CIRGSET

{IRGSET

Ny

—INPUTSET

INPUTSET

741532
DATSE

(LY)

w2 12
A3 1Y3
JLIIRA L
eat 2
2A2 22
2A) 273
2A4 2Y4

ERE

l‘
— e ion]

1

B

A L]

EEE

1L
a0

T4LS244

ug2

&r
3R
B/F

»

)
=
PP

24

(1A 1YL

...._
& |
b
B

w2 e
11A3 Y3
1A 14
Al en
2he 2ve
243 2Y3
A4 2v4

i

i

6 (6 |
o [~

&
Nl
Shalal=

16
20

]

-

T4LS244
3

US|
11a2 12

13 113

‘j?

il

.
)

A4 1Y4
ea1 2vi
2a2 2ve |
2A3 2Y3
cAd 2Y4 |

.
¥

16
eb

-
Ll Kbk
1

L/

i

7405244

&
[}
@
o
=
<

DIR

F

7415245

YSISE)A
T Ay

ST >

\—GET>

—ato 21l >

Pawl A Smeulders

itle

Adoress and Data Bus Drivers

Size
A

ument Number REV]
CPU Card Schematic Dagran 1

ate:

May 23, 1989 Bheet 10 of 12

219

/’—"-L___._W

/CNPLTSET]

4

1Al

1A2
1A3
144
2A1
2A2
2Ad
2A4

:

rgg
)
i
S

=
B
o i)
73
—
~3

d

b5

16
44

7418244

x
rF=s
w

—
=&
g
X1
w5
=
~-z
=

=N NN

=N
-
=8
=

AN N
NN

-0
=&
-
N
0

kY

VAV AN T G

— A
=%

A e G N

LA ETAT A e

V] E—

A !
Eé DIACKS /]
Y3 a3
‘;u 1A4 BERRING /]
v 2Ml sennER-_f
L 2yp 2A2 HALTIN®

Java 283 — BRw
24 FXVPAN_/

16

% AMI2 ond EXRESETH gre
74LS244 NOT pulled up on slaves

uTser >

Paul A Smeulders

Ttie

dus Recewers

B.ze [Pocument Numoer

A CPU Card Scrematc Jogram
Nate Feorvary 26, 1952 Sreet 1l

221

(IRGSET
(INPUTSET J—
u2l
Rye Slw m
182 1¥2
y ~LIse 2 1a3 113
-f—1 A4 1Y4 "
o AL
/—HDE—————TS—ena e
/JSL————fm P&
/-31'—————‘—‘ 2a4 2Y4
t S
G
/—nﬂi-:jgag /
u
TaLS244 e
N
s+
v 18 an
AAMA _ chia v R [wMaxn]
/_HSBRHL_____%. a2 12 3 jm
/-SW'——-——N 3 H3 —~{SUPPROX
T?-' A4 1Y4 -
5 Al 211 5
VJNJAFK!————- a2 2v2 | INTACKS
= 12M 23y)
/-WW' 24 214 JSpaT=
16
1 B4 ac
TaLs2ad
/S.!SRt:SU'
fﬂiﬂuh
UBE U3
, 0 S m P8 FTSRESTo
w2 1y2 - HAL TOUTH
8A ‘ Sy w3 e H'TI}_:;A‘I x
s Fw Grstse]
. L Hea 2= BCx
Hea2 2v2 < AP
Hau3 2133 —ECLK
/m— 741504 AL SYSCLK
] Ul ,
FLIK L) !‘,% v
SYSCEK 3
TR a TR
oI - 450 o7
g2 - 020
Paul A Smeulders
T'ﬂ'
Bus Drver Section
Size (Document Numoer REV]
A CPU Card Schematc Dagram 1
t F r t 12 of

Appendix C: Memory and PU/T Card Schematic Diagrams

222

223

td /_—
L4TH, <A

IRQ}n RQI=
g 1RGN

a1
a2 12
1A Iv3
A8 1Y4
A1 2
are
A3 23|
2ne 2ve

e oLl
3

4 74HCT244

in
1r2
]
174
evl
28 212
28 2N
2v4 |

333

|
—

>
Lt

i

“used by PI/T Ports

'
i
" =
[
=

b
1

L

§

5

74,5244

W B

[1A2 12
311
a4 174
2Al vt
e 2re
2A3 2Y3)
(A4 2Y4

RalR
o
N

Qi

B

g
i

bt

Ji

IG
26

74L.5244
7

1w m
w1y
11A2 1Y)
M Y4
Al 2N
oA 2v2
2A3 23
M 2Y4 |

= Tasoa T5.7] ;
-
7T - Paul A Smeulders
S:ze [Docunent Number r[v
1

L

. REER
i

5

A Memory Cord Schematc Dagram
te F r f

ul
TACKR RAWDIACKH |
a1 |- B w2, {m&g
RO e e I pGEAHINCE
n L i3 Sy
RDLC S1ive 1A FiRG]
\ an 2a Hb BWARE 48]
§]eve M hE ' CONTR AL
—3{273 a3 M3~
—Pve 24 |—
10 g]—;——l
26
—— |
74AS760 =
\ /
7
ROn
A g n w8
A2 B2
%x 4 3 I
/n Slhe 5e LB 13
14 D4
/g‘{ 7 :2 gg 13 15\
/) 8la7 w712 D8,
AL 3iag g ! Dﬂ\
OIR
T4L5245
. i
_— CRDSE 4]
D] g2 >
<> \ I >
Fawl A Smeulders
Swze iJocument Number RE V/
A Memory Card Scherotc Dagrom 4
wer Februgry 26, 1992 Brmeet 2 of)

225

RAMDTACKE })‘ RAMDTACKX
ROMDTACK™ < ROMDTACK=
T/T nmcxi-" <PL/T_DTACKH
QuT} L3007
Rin | :’%IRGI ‘
BMEE_(JQ— DMAREQx

CONTROL v < A2} Al7=0
A ROMZCSH
e lpSa MAPR U4C ROMICS ™
RD= CONTROL
3 3 RAMCS »
741504
U4t
H 0 1 433
|-
[
S 741 504 4
3
741520
745260
U4a
4A 4
1 1 _ys9a 1. 5
3 2 6
2 6 4
741,504 4
74L586 3 74L832
740520
4
B
33 6 4C
Al3 10 9 u9s 9 < ™\
1 10 8
745260 8 10
u7s e
i3 74832
AR 3 4 740520
74,504
U13A 1
2
]
\ 4
~— S
740521
CPORT CSn]
N A[0.21]
/ al0.21) / Pl >
jpu—
e >——— / -
{07 HIUWA
Title
Paul A, Sreulders
Size Document Numoer REV
A Memory Card Schematc Dogram i 2
ater September 9, 1589 Sheet 3 of 8

RANDTACKH

 ROMDTACK® |—

A(0.21)
00 73

P{/7 DIACKE
AUt
/T DTACKE], PIRQ
- DMARELe
r ATATEE >
ROMPCSw
l’— ROMICS®
! PLURT CSn)
N {CoNTROL >
s }a/v- nSx SYSRESETH SYSCLKN +SV RARCEE
‘t&ﬂ_@'
{R3
A +SY {ATK
ré
\ 3 Yz i
1 : { R
L aTK) U9B
741508 u18a il_E t?
1 12 | |3
L Z\ 12 pra
3 —-L ik
741827 E gh8
% TALST4
2 2] : .
1
13 /
7aisi8 17
f i \ 3 N i ,
! H |
[¥
9] N 740820 ned
9 0 L-lacie
1 S / CLK
741508 q 3:
741500 13 D4 G‘;_a_
\ 07 Hi-
£ ipy o34
V‘? e
5 e i
p2 @2
Rl 3
[2oanl 4 a5
SV DT B -
‘_ 47K 7408175 |
I
|
e |
oz |
<Ban_~ i
f
i
|
e]
tie {
Pai A Smeulders j
K.ze Document Numper - M,?i,ul,
A ’ Memory Card Schematc Dogran Pt

L
Hater Septemger

9, 1997 Srees 45

-
e

227

P{/T DIACKR }
T0uT
{CONTROL >
A
i
j 3
2
741832
L3 U133
1]
ﬁg 1 :
All
im : 3 74L82)
/A9 S U4F S5V +5V
/s " :
Al 107 9 13 2 . -
! 7 Ré /
;Aﬁ 1 : a1k 247k
4] 12 741504 b %
6 13 1
V S L] Ul]
1 13 . (oT)
741500 745133 1l =
i; 12 —PRoR |
+5V 741500
U2
Ges v7 pl-
6‘3 G2A Y6 Dm—
€ e ooy -
"y Y4 B
h 3 Y3 I‘TJ]!r ALK >
AP z1e reby
! 0 oRE =
3V 74,8138
A0.21) / {A{O.Ell >
UG 7 > <D0 7 >
Titie
Faul A. Smeulders
Size {Document Numoer REV]
A Memory Cord Schemstc Dagrom 3
Date: Feorugry 26 1992 Sheet S of g

1
PI7T DiACKs s CONTREL >
TMARE Gx — RAMCE®
PI/T CSw 0 IROMCS
{ ROMIC S
{ ROMCL e
) [PLRT A]
| 7 8
CONTROR, ParaLLEL INTERFACE comvecTor T8] (79
/wn[SYSRESETR [SYSCLK UL 5] [u
o PAY —;—J 7 s
| e o 3| 5K
Sl pa3 ! 1
- 2 | rrack pas | ! Lo L
| pas 2 14 PIN_CONN
§ Pae 1 f EaS
5 ;“5 pa7 H& —{U5 812
; H M J {US 1179 i
<h e
iU 7 8
ppo H2 (6] [
+5V ppr L2 1 9 i0
28 ps2 52 L
| !
R7 /A1 291R% Paa 28 | 2] [
+5vo—2AAAL— A2 30503 PBS 122 J N EL L.y
a3l 1ocs Pyg (28 L !
a7k /A0 32 pes py7 122 L 14_PIN TIINN I ’ I
s Y J
AL 3y pey L34 .
Ab_Sing PCl \ ------ -1
Tt} 1 Graals Pca/TN (5 N
e ¢ PCI/TOUT bog N\ &
FRE ——t— D3 PC4/TVARED FE ——
/82 5015, PLS/PTRT 22 PIRT C |
— /AL 95 pegsemare [AR |
48 41 AN 6 9 !
A0_48. py PC7/TTACK r EIgyEE
WC682300 LH_%D o3 bk ‘ o T
! ! 3 12 . !
L el 183y i
PIaCr M >—— Sd-— - - R TS I L ,
JUAL DPT TiP T
TG mj g9 T T 9 14 PIN COWN l - ;
| .
F 87 pet 2eph Yuen ' |
L i . H
T o
L
L § |‘
A2 D>— B,)
Q7> Vi I
Pout A Smeuiders !
Tte) -
Paraliel interfoce/Tmer Deiaid i
S.ze [otument Numcer T T
A | Memory Card Schesstc Dageanm ! !
Zate Teoruery 26 1992 Sreet 6o]

228

-ECUNTRUL ;
\] RAMCE =

R/NE R/wa
uat " u23
10 !
Wt VE
2 12
21 21
rar ot
Ald [.)
rmb_mni A3 A3
20 VA2 6 A2 /a2 L8 A2
oErveP /a1l
18 | / All o i

A0
A9
48
A7

AS

N
—

ain|an i~

A9
A7

, V2
e o —
;:?

AS
3] pe Y

2

&
Er
&

s ool Jenion | ~ujan

TR

M
B___8 /a3

S 05 LRI)

A 08 DAY 2 o HB ;ﬁa a2 o

M m i’ DlQ < a1 5 o " L3

a2 g2 Pl D2 A0 0 Al

Aol 1

~n
[QNOUAL)!:E’U
&%

- 6287 6287

2732
y2e uze
10 10
R Al
uy [n3
uls _ s 2
20 Al @ 8
18 CUE’ v VAl 20 :;f a1e 20 :}f
C
/a3 19 /213
a3 Al
/AI.L__AM! A2 4&@
9
Al 131y, All

A9

UMoN
kot
f-4
(=]

d

LNjos

o Ja- 2 fos o fo 2T e

a7 07 1
ad g6 5

N
oy
z
NS,
EEREEE
»
R

D)

1] /es_” |
/ﬁ—g» s 05 I A6 /Aﬁ___/g
/M——; M0 g&\ S5 /65———%—‘
e N i e
7 Al o J.Q.__E.L\ /AL——J— A2 Dl r—Iz—w fL—}—
/ﬁﬂ___e_‘ AD oo ,_?__m\ H A 2]
773 A—w w2 &ﬁk::::i:
6287
) / Dot) De 2

(o2 >~ A >

Q> / / i

—<B071 >

Mtle
‘ Paul & Smeuiders
Sze [Document Numger IREV
A Memory Card Schemotc Dagram 1 1

L ate: " 989 Shest 7 of 8

CONTROL
RAMCE =

MO,

Q7 >

\

A
L/v-

ugs

4

AlS
Ald
a1l
Al2
All
a0
A9
AB
a7
A6
AS
A4
Al

TSN
EER
i

e fos o
O D

iy

Halwnlo

REE)

Al
A0

Dt
oo

NN N
Er

6cB7

e
rulo
|

[~ L
n

AIS
Ald
tA13
A2
tAlL
Al
A9

(a%]
{2 kot

SN
2R
= [<lels

a7

AS
Al
A3
a2
Al
AD

i

%Ei__m__

]l
]

6287

>

7
|
Y
R/wn
wuu
VE
2
3
/a0 M3
A1 19 :};
a2 18
o
AL 16 0
?9 7 A9
a4
// = a7
/a9
TR P
ﬂ}“%“3 13
/ a2 DI
1% L
;ﬂ Al 00
—
6287
uge
10 ‘
wE !
e |
|
H
-15——: SET AlS ‘*
A st
/_L'I_m‘ Mg !
AL—‘ Al |
An——-—A ‘lz | att |
= A0
ag 14,0 |
/] 8] ;
71A7 i
% l
5 { AS ! :
A a1h | I :
/ A3 11 ‘
A > a2 3l M !
| Al !
fL__LM o0 1~ |
287 i
|
i
5607
/ |
]
/ }
!
| A R
.t i
l Paul A Smeulders :
pize Docurent Nurger ’_*7;?:_7';
f A | Memory Carg Scrematr Dagram . !
} —

ate May 2% 1989 fSreet g f

230

Appendix D: Serial Input/Qutput Card Schematic Diagrams

231

Ve
RG2S 'ﬁ

<VEETRT]

[E800FRx }

- D—

—<IRg2e |
18 L"_@_é@

1AL 1Yt

6

12 12

GO | P

1A3 1Y

14

11114 14

2Al ovl

2A2 ev2

2A3 oYl

D[0.7}

—gd10

il

us

i

M
a2 1v2
A3 113
A4 IY4
oAl 211

2A2 2Y2

2Al 23

“ERE

A

-

il

|
=

g

—
~Ji

Tk

Al 11

cad 2Y4

16
120

-

r
P

Iro

T

3

T4L.5244

w2 12
143 1Y3
1ne 1Y4
12Al 21
oae 2v2
2A3 2N
1204 2Y4

16
26

L —
[A S

Lot

A7

oA

74,5244
u7

1AL 11
a2 1ye
11A3 172

/ala

13

/AIR

13

]

17

):

a3 2v3
204 Y4

16
2t

1A {Y4)
LA
oA 2Y2 |

=

- gl
LA
p—

’li%//

i

745244

._
wluni-ulolv

A4 2Y4

2@
74LSCH4

’

PSSR —{ I A

e ——— —iNTACK O

§
e

Paui A Smeulders

Size

Jp—— -

Document Nurber REV
170 Cera Schemat.c Dogrom vl

gte

Moy 25, i989 Srewt 1 af 6]

CVECTINT }—

44
2Y3
eve
et
e
13
1ve
m

26
10

cA4

4
eM
1A4
1A3
1A2
1A}

b}
2A3 1

ACIAIRQN

000.2)

74AS760

174

= Al

= A2

| A4

| A7

Al

A5
L3

SEECERRE

AB

1]
DR

745245

741532

R

ENTACKI >

74Ls138

poaT >—

{02y >

SYSRESETE >

—SYSRESETE >

Poul A Smeulders

A

Size [Jocunent Numier

1/0 Card Schemstc Dagran

=

1<

february 26, 1992 Sheet 2 of

{ACIAIRGN |- -CACTAIRGY]
T ‘AT
GO D>— lip.2] ORI
user
<G} N
DCLK 741,504 —T>
VR > {via >
a3 >
usan
8
741 S04
1 U61A
2
6 =
5 ‘ s>
S
741821
3L
i
9 1 10 .
74LSEl ‘l>]SF(] /
74504
B>
pﬂ_fi}
J
/ ST
ORI o — !
EYSRESETS >) _J
]
i
- "
T.tie i
Paul A Smeulgers ;
]
Sze [Jocument Numger wE v}
A 170 Cerd Schemotc Jegrenm R
S
late Moy 25 1999 Sreet Ik Yy

(O]

235

ACIATRGE } ACIAIRGR
e
010.7)
N ~ >
L3 £
IVHAI >
{‘-‘HAI >
3
R6
1K
p
BD— ’
vV
55>
LL ED
”m fi>
18 1
RESET g T
Fo 5
1 ixram £5p3-
,? - - F6 e
SELL 2w Duma Wz 113 1 1
3 3 20 F8 % [) 13
k wour B e 3 12
F— Ml (- 5
rp 14 5 10
r13 Ha- 1 € KR
> _L_—_—_B"m e xs’ R
L FiS
T vsvo—28lasp s N JUNPER BLOCK
WLl 5
e
Paul A Smeulders
Sze Document Number REV
A 170 Card Schematic Dagram 3
: 5 1 4 of

R3
ACTAIREn } L —oesv
RV 47K
0.3 20,2
N\
e TapaTA & FXDATATS
o —TED>
= cs1
3 34 cse wr
1 e oo |2 £/
Clraoata D1 g gy
-S4 0co Ty,
3 o4 17 n:/
RXCLK ps {23
{ A bTxcix g6 HE o]
p7 H2-02/
IVNAI >— 13 R/V
6850
—DCDP)
-—<Cisen]
e ——CRAIATAC]
[
BE>
fE2D>— ‘ _
e TXDATA & TXDATAL >
2{csn RTS |2 RTSte
51cst g
£se
B T T > 4 " 22
SRS po (5007 v, [
24 RXDATA u 5[] 12 /]
ers 02 =
234 oen 03 3 0/
pe 18 D¢/
I I hrucL DS}TB-V
‘ TXCLK L6 —nﬁ/ﬁ]
13 07} EEmm— T
%)
6850 W‘—(&__T_Sl_r]
> i <RXTATAl]
|
— e
’.
IT.tte [
Poul A Smeuiders !
[S:ze Document Numper —F:/
A /0 Cord Schematt Dafram i3
v
e S
Jate Moy 235, 1989 Sreet 9 o 4

ARSI

237

44
4
\ 6 1 ££;14
5 2 13
T 3]
1488 [[
4,]
, 3 1
(IXpATA— ‘_j "2V — I
14 PIN CONN
3 7488
¢ R4
{ 47K
v
8 10 I
UASE
1489
6v\\\J ¢
U4SB
< e]
— Jil
RADATAZ 3"\\J 1
U4SA
44 1489
12 JL'JL\\J LCL
1 1 4
13 2
—_/ 3 ?
1488 4 1
5| [
i 5 9 L
7 =
BEE>——— |] B
12V 14 PIN CONN
1488 E
< Ri3
{47«
Fd
1 13 o
Ue6d
1489
<y ——o
U463
IGE, 1489
GHL 1 3 | a
| L
—
1
U46A Title
1489 Paul A Smeulders
ze ument Number REV|
A [/0 Card Schematic Dagrom 3
_ Feorugry ¢ heet f

Appendix E: Printed Circuit Board Designs and Hardware

Specifications

238

Mnemonic

GND
+5VDC

RD*

D§*

UDs*
SYSCLK
EXRESET*
DTACK*

BR*
BGACK*
HALTIN®
BERRIN®
USDAT*
SUPDAT*
IRQI*
IRQ3*
IRQS*
NMI*
INTACK*
SYSTSE*
KILLSYN®*
DMAO*
DMA2*

BG*
DACKO*
DACK2*

+12VDC
GND
+5VDC
GND

Bus Connector Pinout Specification

Direction

""‘OOOOOOOOOOOOOOOSSSS - —

Type

POWER
POWER

3 state
3 state
3 state
3 state
3 state
3 state
3 state
3state
3 state
3 state
3 state
3 state
3 state
3 state
3 state
3 state
3 state
3 state
3 state
2s5tOC
2s5t0C

2stOC
2s10C
2st0C
2s10C
3 state
3 state
2stOC
2stOC
2st0C
2st0OC
3 state
3 state
2st0C

3 siate

POWER
POWER
POWER
POWER

Pin

Mnemonic

GND
+5VDC

D4

DS

D6
D7
A2l
A20
Al9
Al8
Al7
Al6
AlS
Al4
Al3
Al2
All
R/W*
AS*
LDS*
SYSRESET*
ECLK
EXVPA*

VMA*
HALTOUT
MAP*
USPRO*
SUPPRO*
IRQ2*
IRQ4*
IRQ6*
6800PR*
VECTINT*
ADATSE*

DMA]1*
DMA3*

BGCHI*
DACK1*
DACK3*

-12vDC
GND
+5 VDC
GND

Direction

"OOOOOOOOOOOOOOOOSSSS ———

O.——tb-——oooooo

I (slave)

2s5t0OC

POWER
POWER

POWER

239

240

Bus Card schematic diagram

i |
780CT TR 8050 B 1
I l f | ' |
| l £Gt ' REG? ' | REca | { REL4
GND . r ; | ! DL ;
—— 4
w-13 35 l.'jEi[J lcar R | B IC"F | TR ¢
ul ul I l Ul , L :\.q
. N = al = cs el on
10u 1) A~
I Y o TR T T T
10uF by 10uf L—-—- 10uF
1 1] I8] .
3 4 3 [4 3 4 3_4 4
|
I
i
|
) é i
[1
|
S-92 S-92 A S5-92 5-9¢2 | Lach Connec teo
i Vo l | ‘ to Corresaponarg
: ! ‘ [o Pinsg,
b ! ; . bl
1 l P i P P P
| Pt i | ! o i ﬁ
| | i P P '
| . : ' ! Ly !
] . o \ Do P P
1 ' 3
E l I! i \ | [| }
f | I J | ! %
r "%] t YR + Y | %_’ﬂ_ 'j*_]q‘
93 | i | [TS ! I
%s % Fés KT B e L L e
L1187] 9 7_L ' SR ' 197__,_ [98 |97 g |
}l'&z ! 160 U&a : 0 LS89 20 99,0
T - T -
suey pr L N . ‘ -
i ! |
regs | || 1 ‘
i i 100 o \ 136 o 00 on (.0C pn
PWRIPWR3 | : Cara fage Cara tage Cara Eage | Cord tdge
-15V. H EF Connec tor I Conrec tor Comnec tor Cornec tor
] |
2 _\-—0———1 ¢ N : ,
3 1 Dur ,
w0 - = e I
LL_V__;_JT.. - — !
1| e om T iz
—dz | 1w W b | et]
15\ 3 J '.E IT
4 ' !
e —
! i Mo !
! h[f Bus Cord Schemats lagrom |
X ! i ——
781207 S ze Jocument Numper REV!
boa Paul A Smeuigers l
) Tate Septercer B 1989 Bheet o |

Part Reference
REGI1-REG4
REGS5
REG6

Ci,C3,Cs5,C8,
C10,C11

C2,C4,C6,C7,
09,C12

PWRI1
PWR2PWR3

Card Edge
Connectors

Heat Sinks

Female Header
Connectors

Female Header
Connectors

Header
Connector
Covers
Mounting
Hardware

3us Card Parts List

Part Specification, Order Number
LM?7805CT regulator, TO-220 Pkg.
LM7812CT regulator, TO-220 Pkg.
LM7912CT regulator, TO-220 Pkg.
10 uF 35V tantalum capacitor

0.1 uF 35V tantalum capacitor

8-pin header connector, 4 pins used, Panduit MPSS 100-8-1
8-pin header connector, 8 pins used, Panduit MPSS 100-8-1
EDAC 345-100-520-202 100 pin connector

for TO-220 package

Panduit CE100F22-2-1
(wired for +8V and GND to power supply)

Panduit CE100F22-8-1
{wired pin 1 to -15V, pin 4 to gnd, pin 7 to +15V)

Panduit EC100-8-1

screws and nuts etc., as required by mounting chassis of choice

Quantity

[« ST]

241

CPU Card Parts List

Part Reference Part Specitication, Order Number Quantity
U1, u19 74LS73 2
U2 74L8273 1
U3 7415148 1
U4,U14 74LS175 2
Us MCG68008FN8 1
U6 16 MHz oscillator, M-TRON MTOQ-T1-S3-16.000000 1
U7 74L.593 1
U8, U27 74LS04 2
U9 MC3456 1
U10,U34, U35 74LS00 3
Ul 74LS05 1
u12 74LS164 1
U1s,U32 74LS08 2
U16, U17 74LS138 2
U13, U20, U21, 74LS244 8

U23, U24, U2S,

U37,uU38

U22 74LS245 1

U26 74LS32 1

U29,U31,U33 74LS74 3

U30 74HCO4 1

CA1-CA4,CA15 10 pF 35V tantalum capacitor S

CAS-CAl4, 1 uF 35V tantalum capacitor 24

CC1-CC13

CB1,CB2, 0.1 puF ceramic capacitor 3

CAl6

R1-R6, R9-R13, SIP resistor network 4608X-101-472 3

R24-R27

R7,R8 1 MQ, 1/4 Wau resistor 2

R14-R21 SIP resistor network 4610X-101-472 1

R22,R23 1 KQ, 1/4 Walt resistor 2

R37-R44, SIP resistor network 4610X-101-102 2

R28-R36

R45 4700, 1/4 Wau resistor 1

RESET, ABORT Grayhill PC mount pushbutton switches, right angle. 2
39-201R (RESET), 39-201B (ABORT)

14 pin DIP Texas Instruments T1 C-8414-02 19

sockets

16 pin DIP Texas Instruments TI C-8416-02 5

sockets

20 pin DIP Texas Instruments TI C-8420-02 10

sockets

52 pin PLCC AMP 821551-1 52 pin PLCC sockel I

socket

[]

Part Reference
Ul
U2
U3, uz28
U4
Us, U6, U7, U8
U9, U33
[8){4)
Ul
u13
vl4
uis, ule
u17
uUi18
U9
U20-U27
U30
U3l
U32
U4
R12
R1-R7

CA10,CAll,
C12,C13

CAJ

CA1-CA9,
CA14-CA23,
CAA-CAl

SWI1, Sw2

PORT A, PORT
B,PORTC

14 pin DIP
sockets

16 pin DIP
sockets

20 pin DIP
sockets

22 pin DIP
sockets

52 pin PLCC
socket

Memory & PLT Card Parts List

Part Specification, Order Number
T4AS760
7418245
74L5260
74LS04
74L5244
74LS20
74L500
741508
74L521
74L532
TMS 2732A-20JL. EPROMS (or up 10 45JL)
74L8175
74L527
741L.874
MC6287 SRAM
74LS133
MC68230FN8
7415138
74L586
1 KQ 1/4 Watt resistor
SIP resistor network, 4608X-101-472
10 yF tantalum capacitors

0.1yF ceramic capacitor

1 uF tantalam capacitor

Grayhill 2 rocker DPDT w/ raised rockers, 76SD02

Scotchflex 4 wall headers, right angled with long ejectors: 3314-5302, and
female mates 3385-6014, with strain relief.

14 conductor ribbon cable
Texas Instruments T1 C-8414-02

Texas Instruments T1 C-8416-02

Texas Instruments T1 C-8420-02

Texas Instruments T1 C-8422-02 (remove crossbar, use a SIP sockets)
AMP 821551-1 52 pin PLCC socket

mounting hardware: screws, nuts

Quantity

Paus

B . e et et b e OO Pt et D) e et me e N N et DD e

B -

2
3 eatype.

2m
12

3

243

Serial YO Card Parts List

Part Reference Part Specification, Order Number Quantity
u T4AS760 1
u2 74L85245 1
u3 741832 i
U4 74LS138 1
U5,U6,U7,U8 74LS244 4
U42,U43 MC68B50P 2
U4 MC1488 H
U4s, U46 MC1489 2
U47 MC14411 1
Us1 74LS260 1
uUs2 74LS04 1
U61,U62 74LS21 2
X1 M-TRON MP2-2-1.843200 1.843200 MHz crystal 1
R9 1 MQ 1/4 Wau resistor 1
R3,R7,R13, 4.7 K€ 1/4 Watt resistor 4
R14
R6,R8 1.0 K2 1/4 Watt resistor 2

CA10,CAl1, 10 uF tantalum capacitor
C12-C15,CAl4,

CAl17
CA1-CA9, C10, 1 pF tantalum capacitor
Cl11, CAl6
CA18,CA19 0.1 pF ceramic capacitor
14 pin DIP Texas Instruments TI C-8414-02 8
sockets
16 pin DIP Texas Instruments TI C-8416-02 1
sockets
20 pin DIP Texas Instruments T1 C-8420-02 6
sockets
24 pin DIP Texas Instruments T1 C-8424-02 3
sockets
CC1,CC2 Scotchflex 4 wall headers, right angled with long cjectors: 3314-5302,and 2 ea type.
female mates 3385-6014, with strain relicf.
14 conductor ribbon cable 2m

25 pin D-subminiature connector shells
25 pin D-subminiaturc male connector

25 Pin D-subminiature Female Connector
mounting hardware: screws, nuts

W e - D

Barnacle Notes

NOTE: Schematic diagrams presented in the thesis are correct. Barnacles are required on the PC boards to
exactly maich circuit design.

Bus Card:
¢« No Bamnacles

Do not allow mounting bolt for "Controller Slot” card edge connector to short circuit the traces on the
solder side of the board. Use an insulated bolt, or trim the traces before mounting.

CPU Card:

s Break trace connecting Pin 1 (common pin) of Rnet R24-R27 to the GND trace on the component side
of the board. Connect bamacle wire from pin 1 of Rnet R24-R27 to the VCC pin (topmost) of CC1.

» The holes to the RESET and ABORT switches may need (o be widened. This will remove the plating
in the hole, but it is of no consequence, since all connections are made on the solder side to these
components.

« The plating inside the holes of US most upper and left MUST be removed. These are extraneous holes

caused by deficiencies in the layout tools, but traces were routed through them on both sides, and should
not connect. Use a 0.050" drill bit to break the side to side connection.

e Solder in place R45 on non-component side.

« Forslave cells, cut traces to pull-ups for NMI* and EXRESET™, and use barnacle to bypass the resistors.
e Todrive slave NMI* and EXRESET* signals, a 74LS244 driver is employed.

Serial 10 Card:

= If2 wire communications is desircd (Tx and Rx on the RS232 ports), the RTS output must be connecied

to the CTS input. Place bamacle from Pin 2 to Pin 4 of the CC1 connector, and from Pin 2 to Pin 4 of
the CC2 connector.

« Dirill holes for communication port connectors after connectors are in place. DO NOT Drill a hole for
the leftmost hole in the CC1 connector.

e Thecard was shipped slightly 10 tall. Sheer off the top (non-bus side) of the PC board 10 ensure all cards
are the same height, making for easier mounting inside a hardware cabinct.

* Host connector connects to CC1. Use MALE 25 pin D-subminiature connector, and connect Tx to pin
2, Rx to pin 3, GND to pin 7. For IBM PC communications, connect pin 4 to pin 5, and connect pins
6.8 and 20 together.

e Terminal connector connects to CC2. Use FEMALE 25 pin D-subminiature connector, and connect Tx
to pin 3, Rx to pin 2, GND to pin 7.

* Baud rate selection:
 Header JA pin 1 is for Terminal Rx/Tx Clock
» Header JA pin 2 is for Host Rx/Tx Clock

= Pin numbening is left to right
* Header JB:
Pin # Frequency

1 153.6 kHz

2 76.8 kHz

3 19.2 kHz

4 9.6 kHz

S 4.8 kHz

6 1.2 kHz

7 24kHz

Use wire wrap wire to connect appropriate baud rate generator pin 1o Rx/Tx clocks.

245

-,

Memory and PI/T Card

Barnacle GND side of CAA to GND side of CA8, and CAA GND to U20 pin 11

Cut the trace on the SOLDER side of the card to U33 pin 4, close to the pin. Break the trace connecting
U9 pin S to U3 pin 5 (use vertical irace between chips, sec diagrams). Use bamacles to connect U3 pin
5 1o U33 pin 4, and connect U3 pin 6 to U9 pin 5.

Cut traces on the SOLDER side of the card just above AND below U13 pins 9 and 10. Usc bamacles
to connect the following sets of pins:

-R2ZioUlpin8

-R3 10Ul pin 13

- Ul3 pin 9 to U32 pin 12

- U13 pin 10 to U32 pin 14

Cut trace on SOLDER side to U31 pin 45 above the via hole to the left of and between U9 and U28.
Cut the trace on the COMPONENT side to U28 pin 1, between the pin and the via hole.

- U28 pin 1 10 U28 pin 2

- U13 pin 12 OR 13 to U14 pin 2

- Ul4 pin 3 to U31 pin 45

- Ul1 pin 2to U14 pin 1

Cut trace to pin 14 of ports A and B. Usc barnacle to connect pins 6,8,9 and 14 to GND for both ports.

Use barnacles to connect H2 and H4 10 741.5244 driver (US), as shown in schematics.

Figure E.1 Conncctor pin numbering cor.:. entions

Board i

14 1 12 N 10

0000000
0000000

=00

Connector

246

247

Eigure E.2 Serial port ribbon cable conductor assignments

Serial Port Ribbon Cable Connections

Ribbon Cable

GND| GNDI GND! GNDI GND| GND| GND

GND

TX RTS DCD CTS RX

Eigure E.3 Parallel port ribbon cable conductor assignments

Parallel Port Ribbon Cable Connections

Ribbon Cable

o) .
a.-5

: wwmm:z::m
e
T 8
ST — &
S B
B B
]
I —— — 3

PORT A

P6 F4 F2 PO GND GND
GND P7T P5 P P1 GND M4
H3 Pe

H1

F2

F4

PORTB

13 12 1t

14

Pin numbers of female header connector
and ntibon caibe %o IC-socket connecor

Figure E.4 Connector indexing

Connector Detail

Pin 1 index on Cabile

Female Connector

) AERN

A—

Male Connector

Line up Index marks

Component Side View

248

249

Network Controller Card Parts List

Part Reference Part Specification, Order Number Quantity
Us-U13 74ALS666 10
U16 7415245 1
U17-Uu20 7405244 4
U21-u24 74L5138 4
U28,U26,U33 74LS04 3
u27 74L5133 1
u28 745260 1
U29, U5S0-US3 74LS74 5
U30, u47 74AS760 2
U31, U49 74LS00 2
U32 741811 1
U3s, U40, U42, 74LS73 4
U46
uU3e, U43 74L8139 2
U37, U4 74LS08 2

14-pin wire-wrap sockets 20
16-pin wire-wrap sockets 7
20-pin wire-wrap sockcts 14
24-pin wire-wrap sockets (0.3 inch widtn) 10
JP1-JP10 40-pin wire-wrap dip socket 2
U34,U39,U4]1, Scotchflex 4 wall Headers, Right Angled with long Ejectors: 3314-5302, 5 ea type.
U45, U48 and Female Males 3385-6014, with strain relicf.
R13 27 K£2 1/4 Waut Resistor 1
g% R23,R35, 1.0K<Q 1/4 Watt Resistor 4
SW1, Sw2 Microswiich momentary action SPDT pushbuttons 8N 1021 with operators 2
820062,820063
System power Microswiich Power-Duty altemate action DPST-DB N.O. pushbuttons 1
switch AML31EBA4AD with button AMLSIFIOR
10 uF Tantalum Capacitor 2
1 uF Tantalum Capacitor 20
0.1 uF Ceramic Capacitor 20
Wrap-posts Vector T68 asreq’d
Vector wire-wrap perfboard, epoxy glass, 0.1” hole spacing, non clad 225x16cm
Celibus card-edge male PCB to wire-wrap adapter, custom part, 100 1

contacts on .1" spacing

Part Reference
Uo-U19
U20-U37
JP1-1P20

CMI1, CMO, CO0I,
C00, C1i, C10,
C21, C20, C31,
C30

R

Interprocessor Communication Network Parts List

Part Specification, Order Number
WECBS2
74L8244
40-pin wire-wrap socket
14-pin wire-wrap socket

SIP resistor network 4610X-101-331

10 yuF Tantalum Capacitor

1 uF Tantalum Capacitor

0.1 uF Ceramic Capacitor

Ansley ribbon cable to dip socket conncctors, 14-pin 609-M145H
Wrap-posts with screw machine contact Vector R32

Wrap-posts Vector T68

20-pin wirc-wrap sockets

Vector wire-wrap perfboard, cpoxy glass, 0.1* hole spacing, non-clad

250

Quantity
20
18

10

13
2

38
38
10

1000
asreq'd
18
225x20cm

251

-
- J L.
—l b —ho Il_
Mo W 90
il ,_au bl L_& ean An 2n [ce
vrd-/CY 9€ Y-8
COrOrarirm D
£En +ﬂu een #..rco 2&_...8 s2n (g v2n (b
an e1n fmo 2N e2n (¥
en £in *.ﬂu 92n 8n (a4, e i
<28-92y ’
L 1en (%, i 18 1N g%y
= ! N Ovio
12y-v1y
€en +ﬁ en vin 04, oEN
{ o eto
6in 91n &&o sen <mn 20 [¥ &5 cay B
R-1CIrIrIrn
cly-6¥ n ven (| ofn
oet? Sl
L

—

252

s,
P e

*es, CTYTYY YT YT I
e
e

. secoapappe

-o-' e o

..}}. - 9 9

. o - . 2 °oeececccee
‘ecccccccee . & Posececces NPT .
seseecceee o % eesecccces ° sedededeee eccessooes
L J L] L]
cecccecece * cscsssssse ® eseoccseese ° ecsscecses ©
° ® ® [) L) P))
KITR IS . oooo'o\o *® o o . y | ﬁoo
‘sscdecccoe ssccsee , oceceee scssses . o~
. Ff
seescsceee eccoese ® ocecsocee ssccces * o
. ® 0) . * 00000006000
™ % °q o e o .%...0...
L] . L] e ° e o [3.4
s0cceces ° oosceese ¢ cesecee secccee , o o T3
. s *%s ¢ o . “" ”“
secsccee sseeeee * oceseeee eocevee * ' o®
o A . o 9900000000
e, . ® . . o nnwoooonno
YY) Secesce , cocecccece sccceee , N 7
° . ® ssceeee
YY) sccscee ° escoceee ¢
. b . % [2
°a . ° . ° o o S0c00s:
YYD 00000 o 0000000 ‘ecccceee
o . . o . . Y
sceseee ¥, _oeeocece esccccee ¢ ° * ¢
- . M ., YY)
* o . * *® ' * . . . N\
sscocoe , ooooﬂuoo e ©0cceee odbaddd ‘ececsee .
o sssceee | scccecee ° ocecceee eseessee ooooouo .
e o o0 * . ° .
YT « eo000ee
0080000000 %,
YIS

scsodWWWVhoe

L]
scssnssede

LR] [] [[N]
e o e o
[]

|

254

255

6 9 ¢ 9 g v € 2 !
i 1 I 1 i 1 I I 1 -
r— — : L
A Ei)
[1Y-8Y 1190 @ju0
g
n 4y CT P N PN n { a Q= N:L ¥
D) ¥en g " O 9wn 8en € i 9N
21y 4 &
2 en g vin 4 82n [<o 6n een (g¥o
sIn
U &
1399 ein 6L I g19m 8in [YA 37
u-ty WD 2en 1o den (<en I gon ' a2n m 2]
(I g

i 920 | o en f

ans tns 1] jaw | {

ren q g2n 1 & f] 2n 1 %

3 190 0 k 2

q van Wi Mﬁ €2n [gen

iiaaan

256

S
.
_J L

‘.I.I.lll oo . . oo:f

oo % % e o
ecscsese . . .
YYYYYYYYY I sec0000000 o C00ssecece escec0000e o 0000000000 o socececces
L b ..
0000000000 ° 0000000008 ® 0000000008 ® 00000c0oce ® ceccescene ® coccececee *
. e e PO o* "’ o®
. * e % . °* ° . 2
. sescsee secceee o ®0ceccse sssosee sssssesseeee
o *e hd ¢, 0 °
. [YYIryy} (YT Y) ® sececece eccscee °* Co, P
. e . «* ¢ Ml o ¢ * i
° 0e® .
o ®000cce sescese esccece ¢« , °oeccsce edcssee o o T00000cc000e
. . *e e ° . . ssccscccsces
esessee ssssses ., oosscee, o eececse _ oeececes
. o* ® * .
¢ n eeedoee $ eeeneee e ®00eeee XTTITIIT IS | * . °
. . e
. o eosooee YY) S eeeceee ., ®¢esscee o. oooouo.ooﬂooo
TR . R T O 1
e osoccsses seccese *®%ecocececces scsseesenes 4
° . es L .
®) ® ° []
ecscesse * eocscsee . 2000000 b 2o e0000000cee ¢ , toccccscece
ey L4 ‘ 0..
. o ° . .
. . -~ esssccsscees (Y YYYYYY VY Y S
,000000 00000ee “pAcccesese o 7 .
¢« o escessesee, . 00000000000 sescasessse °
se0000e o 00000OO 44 - *% . * o o
e e ¢ ., o,
' °® o 00 o, . L LI
s o o (Y YT Y YT YYY S LYYY YT YYYYY S
eoesccceee °* °
nnooooo“no o o, _ oscccssccee b TYYITITIIYY N
L) []
. oooo . . oooo
. o scscecnscee . secsecncece
000000 0000000 ® eoe000e ee0eesssces * cecsncccsncee ¢
scseese sescese ees000e

L _

257

o90Q00S 000009 (I XXX N XX)
‘) / oo e 90006
. r‘:‘n I‘
SERERRERE RN
o i