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Abstract

In recent years, numerous researchers have been working towards adapting technology

developed for robotic control to use in the creation of high-technology assistive devices

for the visually impaired. These types of devices have been proven to help visually

impaired people live with a greater degree of confidence and independence. However,

most prior work has focused primarily on a single problem from mobile robotics,

namely navigation in an unknown environment. In this work we address the issue

of the design and performance of an assistive device application to aid the visually-

impaired with a guided reaching task. The device follows an eye-in-hand, IBLM visual

servoing configuration with a single camera and vibrotactile feedback to the user to

direct guided tracking during the reaching task.

We present a model for the system that employs a hybrid control scheme based

on a Discrete Event System (DES) approach. This approach avoids significant prob-

lems inherent in the competing classical control or conventional visual servoing mod-

els for upper limb movement found in the literature. The proposed hybrid model

parameterizes the partitioning of the image state-space that produces a variable size

targeting window for compensatory tracking in the reaching task. The partitioning

is created through the positioning of hypersurface boundaries within the state space,

which when crossed trigger events that cause DES-controller state transition that

enable differing control laws. A set of metrics encompassing, accuracy (D), preci-

sion (θe), and overall tracking performance (ψ) are also proposed to quantity system

performance so that the effect of parameter variations and alternate controller con-

figurations can be compared.

To this end, a prototype called aiReach was constructed and experiments

were conducted testing the functional use of the system and other supporting as-

pects of the system behaviour using participant volunteers. Results are presented

validating the system design and demonstrating effective use of a two parameter par-

titioning scheme that utilizes a targeting window with additional hysteresis region

to filtering perturbations due to natural proprioceptive limitations for precise control

ii



Abstract

of upper limb movement. Results from the experiments show that accuracy perfor-

mance increased with the use of the dual parameter hysteresis target window model

(0.91 ≤ D ≤ 1, µ(D) = 0.9644, σ(D) = 0.0172) over the single parameter fixed

window model (0.82 ≤ D ≤ 0.98, µ(D) = 0.9205, σ(D) = 0.0297) while the precision

metric, θe, remained relatively unchanged. In addition, the overall tracking perfor-

mance metric produces scores which correctly rank the performance of the guided

reaching tasks form most difficult to easiest.

iii
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1

Chapter 1 Introduction

In recent years, a number of researchers have been working to adapt technology de-

veloped for robotic control to use in the creation of high-technology assistive devices

for the visually impaired. These types of devices have been proven to help visually

impaired people live with a greater degree of confidence and independence. However,

most prior work has focused primarily on a single problem from mobile robotics,

namely navigation in an unknown environment. The result of which is to either guide

the user along an unobstructed path, or communicate the location of obstacles, and

let the user determine their own path [2, 3]. The latter scheme accounts for the notion

that in the world of mobile robotics, artificial intelligence is the fundamental limiting

factor [4]. With current technology, an autonomous robot’s ability to sense and pro-

cess information about its environment far surpasses its decision-making capability.

In our previous work [5, 6] we presented a prototype assistive device aimed at

providing an initial solution to the largely unaddressed problem of guiding a visually

impaired person’s hand to a target to complete a goal-oriented reaching task. The unit

was a wearable assistive device which performed object tracking and visual servoing

for a visually impaired user. The system captures images from a glove mounted

camera, detects a given object of interest and directs the user’s hand toward that

target via a set of motion cues through a vibrotactile interface. That initial work

is presented here, along with proposed further developments in terms of a model

for the system using a supervisory hybrid control scheme. A significant issue that

is addressed is the difficulty with measuring system performance given that from

one user to another, and even across instances of usage by a given user, expected

performance can vary greatly. So we extend the system model to incorporate a hybrid

feature-space control scheme that provides a formalism allowing for the definition of

new metrics that can consistently show real differences in reaching task performance

for a nominal user.
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1.1 Assistive Device Development in the

Literature

Within the literature various researchers has attempted to address numerous aspects

of improving independent living for the visually impaired community. One subset

of locomotive navigational theme assistive devices constrain their framework to the

recognition of text on signs within the environment (indoor or outdoor) to alert

the user of conventional navigational markers used by sighted individuals position

localization.

Work by Mattar et al. [7] and Silapachote et al. [8] involves detection, recogni-

tion, and identification1 of text based signs within the environment for the purpose of

improved mobility. Their system, named VIDI (Visual Integration and Dissemination

of Information), acquires images from a head mounted camera unit. While sufficient

for whole-body egocentric navigation, that choice of camera placement would be in-

efficient in the interface design for a reaching task as mapping to the reference frame

of the hand would be exceedingly difficult.

Sudol et al. [9] proposed a system named LookTel that captures video from a

mobile phone camera and streamed it to a desktop base station for feature extraction

and object recognition. Object identifier tags were then sent to the mobile applica-

tion which would vocalize the name of the recognized object to the user. With the

assistance of human operator intervention at the base station, the mobile user could

also request assistance with tasks such as identifying their current location and/or

establishing a path to a destination, either directly or via waypoints.

Chen and Yuille [10] also proposed a client-server based architecture for text

recognition on signs for urban navigation, but their work assumes that the visually

impaired user is responsible for first aiming the camera at the text region of the

sign and can take a steady still image (minimal blur) to supply the input for the

recognition application.

Another large proportion of the assistive devices for the visually impaired are

designed as path planning navigational aids. Systems such as the GuideCane [11] and

the NavBelt [12]; use ultrasound, laser rangefinders, or stereoscopic camera rigs [13]

to detect obstacles.

1. Text conveyed to the user through synthesized speech
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Others, such as Coughlan and Manduchi [14] also proposed a similar naviga-

tional aid, but it is based on identification of strategically placed colored markers.

This severely limits the usage of such a scheme in anything other than a controlled

environment. The system developed by Hile et al. [15] chose to integrate GPS-data

with their image based model for the construction of a navigation path for pedestrian

wayfinding.

Zawrotny et al. [16] proposed a novel configuration for a haptic interface to

feel the visual environment surrounding the user. Their system uses light-to-tactile

transducer units mounted on the dorsal surface of each finger. The main transducer

mechanism was comprised of a laser, solenoid, spring, and phototransistor. When a

properly oriented edge is found through a change in the reflectance of the modulated

laser beam, the mechanism begins to vibrate through oscillatory actuation of the

solenoid against the spring mount. The tactile output would provide a constant 10Hz

vibration signal as evidence of textural differences in the environment directly in line

with the beam. The system did not aid the user in locating a desired object within the

immediate environment. Arbitrary textural differences could not readily be identified

as being edges of an obstacle in an open path versus opening in an oblique surface.

That task was wholly dependant on the application of the user’s intelligence.

In a subsequent publication [17] (from the same group of researchers as Za-

wrontny et al. ) Stetten et al. , described an update that replaced the laser with

a miniature camera and a vibrotactor. The system, now called FingerSight
TM

, also

evolved in purpose. They proposed that once an object is identified, gesturing with

the finger can be used to enact remote control of the object. They describe an example

of remotely flicking a light switch at a distance. However, no substantive details are

given regarding which computer vision techniques are used for object identification,

nor how finger movements would be detected and classified as command gestures.

Wanatabe et al. [18] present a “WEarable walKing” (WEK) camera based

assistive system which provides dead reckoning through optical flow of edge features

related to surface structures in the floor. They also attempt to delineate between way-

finding edges in the floor texture and those related to stairs or other architectural

structures. The use of this type of design is predicated on some prior knowledge of

floor surface textures in the intended indoor environment, limiting its use in unfamiliar

indoor locations.

Yuan and Manduchi [19] presented a virtual “white cane” range sensing device
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that employs active triangulation. Its use is modeled upon the characteristic pivoted

sweep of a physical white cane. The authors use an Extended Kalman Filter to

deal with the unknown, but approximately angular velocity of the user’s sweeping

motion. One of the key usability issues with this system is the need for training. The

incremental planar scan depth and detection of obstacles is dependant on a consistent

sweep pattern and rate.

A different white cane scheme, proposed by Kaneko et al. [20], for indoor en-

vironment navigation involved a system reliant on the installation of ceiling mounted

beacons which broadcast localization codes. The user was notified of their current

position within the map, via a receiver unit carrier on their person, as they passed

beneath a beacon. Navigation from beacon to beacon way-points was accomplished

through following a coloured line path marked on the floor. A colour sensor mounted

on the “white cane” produced a vibrotactile output signal when the cane swept over

the coloured guide line, providing an intermittent bearing signal. This, as with many

other approaches in the literature require a significant level of augmentation to ex-

isting building or environment infrastructure which severely limits their likelihood of

adoption.

Bigham et al. presented an assistive system called VizWiz in [21, 22] that heav-

ily relies on remote human interaction. The system encompasses a broad scope of

object and visual scene identification tasks through the data fusion of captured images

and recorded verbal requests. The mobile phone application portion of the system

captured images from the built-in camera and with verbal requests from the visually

impaired user transmitted the data to a remote human assistant for interpretation

within the context of the accompanying image. The requested tasks under investiga-

tion were primarily in the categories of Identification, Description, Spatial, Reading,

and Answering [23]. Their solution (called VizWiz::LocateIt) to Spatial task bears

some similarity to our proposed method in that they direct the hand-held camera to

the target object via motion cues. Similar to our work, they advocate the use of a

scale invariant feature transform (SIFT) based technique for objection recognition.

In contrast, they provide motion cues to the user audibly through their “sonification”

application module. The authors also do not report any detailed performance data

about the usage of the system.

These types of mobile way-finding systems either incorporate the obstacles into

a map of the environment so that an unobstructed path can be communicated to
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the user, or they communicate the location of any immediate obstacles and let the

user choose how to deviate from the current path to avoid the pending obstacle [2,

3]. The prevalence of the latter scheme is based on the notion that, within mobile

robotics, artificial intelligence is the fundamental limiting factor [4]. With current

technology, an autonomous robot’s ability to sense and report far surpasses it ability to

process information about its environment, driving its decision-making capability. As

such, many researchers chose to leave the process of path planning to the much more

versatile decision making capability of the human user. This approach is analogous

to the cooperative interaction of a visually impaired person and their seeing-eye dog

companion. In the partnership between dog and human, the dog provides navigation

information and the human decides how to act upon that information.

Despite past research successes, adaptation of robotics and computer vision

advancements to assistive devices lags behind the state of the art in mobile robotics

research. One of the issues in this lag in research is the difficulty with incorporating

the human user into models of performance and stability of such systems. The human,

as the plant, within the control loop can make it very difficult to design a controller

that provides a measurable, stable system performance. This fundamental issue will

be addressed from multiple perspectives throughout the body of this work.

In this work we present a solution to an alternate, related robotics problem

that is of great significance to the visually impaired; a goal-oriented, guided reaching

task. The goal is very similar to the familiar robotics problem of servoing a robotic

manipulator tool to a target object, but has been greatly under-investigated in the

context of assistive devices. There is little reported in the literature, and the over-

whelming majority of those assistive devices operate under the assumption that the

user is somehow able to accurately aim a still camera at the target object. Or in the

case of processing a video, that the user’s visual survey (camera sweep) of the scene

is systematic so that the camera alignment with the target object will automatically

occur.

Drawing the obvious parallel of the human user’s arm as the robotic manipula-

tor, we approach the solution to this problem by creating a wearable assistive device

that guides the user’s hand to a given target object to complete the reaching task.

There is some work reported in the literature, but with only moderate applicability.

One possible haptic solution to a visual servoing model of the problem could

have an architecture similar to the exoskeleton type of force-feedback devices proposed
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by various researchers (Bergamasco et al. [24]; Gupta and O’Malley [25]; Perry and

Rosen [26]. These type of system essentially force the user’s arm to follow a desired

path for task completion. Consideration of this class of assistive device led us to

pursue a different approach that we feel would be more efficient and considerably

less cumbersome for the user. Assuming that the user’s only impairment is with

their sight, implementing a mechatronic system to physically drive their arm through

a sequence of motions that they are amply capable on their is too intrusive. An

exoskeletal apparatus approach could be highly valuable if the human user has some

degree of motor control infirmity, but for user’s without a motor impairment, the

unnecessary weight and size of the required components restricts their freedom to

interact with the environment instead of enhancing it.

Even though a guided reaching task is quite a different problem than the tradi-

tional locomotive navigation problem mentioned above, we can still use the motivating

example of a seeing-eye guide dog to delineate the interaction between the user and

system. Applying the analogy, we assert that the human retains supervisory control

of the dog-human team, while the dog is only responsible for sensing the environment

and passing that navigation information along to the human. In the same fashion,

the proposed assistive device system identifies the valid target object and provides

generalized guidance cues necessary to complete the guided reaching task. The user

has the freedom to follow or ignore those cues at will. However, assuming the human

chooses to follow those guidance cues provided by the dog, they are free do so with

any arbitrary gait. In the context of a reaching task, the analogy translates to little

or no limitation imposed by the assistive device on the pose and precise path that

the user’s arm follows during the act of the completing the reaching task.

The seeing-eye guide dog analogy also serves to differentiate our approach from

another field of inquiry into assistive devices for the blind known as sensory substi-

tution. The goal of most sensory substitution devices, (the classic example is the

Optacon [27]) is to generate tactile cues to represent a scene pictorially. Patterns

of raised and lowered pins attempt to give the user a tactile sense of the sampled

scene. In essence, a haptic coding scheme for the image data, representing a visual

scene in a manner the user can perceive via tactile input. Our approach, by contrast,

can be considered the transmission of semantic information about a scene. Instead

of attempting to represent a scene in a tactile format, we focus on conveying mo-

tion cues to the wearer. Some prior work by Tan and Pentland [28, 29] exists in the
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field of sensory substitution that exploits the phenomenon of sensory saltation to give

general direction cues to a user. Sensory saltation is achieved through vibratory stim-

ulation of various cutaneous sites in sequence, the observer perceives the motion of

the stimulus at interpolated points between the stimulus sights. While an interesting

perceptual phenomenon, that technique may not be entirely suitable for the target

tracking motor control cuing required for a guided reaching task.

1.2 Unique Application Considerations

There are three fundamental technical challenges in the system. The first problem

is to design a visual servoing system that will recognize a desired object and gen-

erate motion cues towards it. By itself, this is a familiar problem from robotics

research [30, 31], but with the added complication that the “robot arm” is now, in

fact, a human arm. Since the system is human centric, it can not be easily proven

to be a controllable closed-loop system. Within the loop, there can be significant

issues with user’s perception of control signals and their free will to choose whether

or not to follow commands generated by the controller. Even under the assumption

that the user makes a best effort to obey the control issued, their ability to do so can

be affected by intrinsic physiological and psychological factors such as fatigue, frus-

tration, or confusion. These are certainly not issues inherent in conventional robotic

systems. However, for the purposes of this work we consider it a given that the user’s

intent is to follow the control to the best of their ability and thus refer to it as quasi

closed-loop control system.

The second fundamental challenge is the development of a technique to com-

municate the necessary motion cues to the human user. Since the primary human

sensory input channel (sight) is unavailable, we are forced to choose between lower

bandwidth channels: namely audible input or haptic input. Using audible cues as a

primary input channel is less desirable since the visually impaired already rely ex-

tensively on their hearing. Such additional audible input could be considered more

akin to interference on the channel rather than a desired signal. Accordingly, the

use of tactile cues to direct the motion of the user’s arm was selected as the primary

input channel to the user. The technique of using small forces to influence a user’s

direction has already been proven by other researchers in the field of assistive devices
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(especially in the case of the GuideCane). While this tends to be used in assistive de-

vices for navigation during a locomotion task, the evidence shows that users, visually

impaired or otherwise, are very responsive to tactile cuing schemes.

The third challenge is tightly intertwined with the previous one. It is the design

and/or application of relevant performance measures for this unique class of human

motor-control application. As we discuss in further detail in Chapter 4: Human Motor

Performance, various metrics for human motor performance can be found within the

literature, but none of them fully address the distinct difference inherent in performing

this type of task without normal visual input to the visio- and neuromotor systems

of a human. Previous studies of human motor performance related to reaching tasks

have been conducted with sighted individuals. Those studies initiated by Paul Fitts,

brought about the development of Fitts’ Law [32]. Through Fitts, and numerous other

researchers, Fitts’ Law has been used extensively in the evaluation of goal-oriented

reaching tasks [33, 34, 35, 36, 37], but until recently its use has been with subjects that

are sighted individuals. The lack of the normal human vision within the neuromotor

control feedback loop significantly alters a user’s motion planning capability. Without

a usable set of performance measures, as with any control system, it is difficult to

evaluate the behaviour of the system and then quantify the performance difference

under alternate conditions.

1.3 Research Goal

The purpose of this research is to investigate the nature of guiding a visually impaired

person’s hand towards an object they wish to grasp through the use of an assistive

device. From a basis of the natural process by which a person approaches a sighted

grasping task, we have designed an assistive device system called aiReach (assistive

image-based Reaching) to aid a visually impaired person in performing the initial

stage the process, reaching for the object. To do so, a prototype assistive device was

constructed as an experimental platform. An illustration of the hardware components

that make up the prototype is given in Figure. 1.1(a), and a picture of the wearable

components of the prototype is given in Figure. 1.1(b). Two versions of prototype

were built during the course of this work. The first was an initial proof-of-concept

to investigate general unknown usability issues. The second involved upgrades and

revisions to the microcontroller and vision system software to enable proportional
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control and increased frame rate, respectively. In our prototype the vision system

Primergy

CCD Camera
USB cable

PC

serial cablemicrontoller
uCsimm

(a) (b)

Figure 1.1: The aiReach (pronounced ‘eye-Reach’) system initial prototype: (a)
illustration representing the three hardware components and their interconnection

in the experimental prototype; (b) picture of the wearable portion of the system on
the author’s arm.

consists of a small, lightweight, colour CCD-camera and a PC workstation. The

glove mounted camera is connected to the PC via a Universal Serial Bus (USB) cable.

The glove is also equipped with four vibrating disc motors; one each on the palm,

back of the hand, and either side. The placement of the four motors corresponds

to the intended direction of motion of the user’s hand that generates corresponding

horizontal, vertical, or depth movements in the image plane. The microcontroller

is connected to the PC via a RS232 serial cable and receives the trajectory data to

general the appropriate motion cues.

The investigation includes analysis and a review of various computer vision

techniques for object detection and tracking; using a Discrete Event System (DES)

hybrid control approach to model the system; the development of a framework for

measuring the performance of a goal-oriented reaching task for a non-sighted user;

and a proposed motor performance model for this type of reaching task with the DES

hybrid model.

1.3.1 Scope of the Work

Neither the construction of a commercially viable device, nor a prototype capable of

normal operation outside of the laboratory environment is within the scope of this

work. In either case the significant limiting factor is cost of system components. In

particular, the cost of providing hardware acceleration to minimize the computation
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time of image processing required for the object detection and tracking, and the power

source (high capacity battery) for portability.

The type of limb movement involved is a constrained reaching task, as opposed

to a full grasping task. The delineation being, that a reaching task would terminate

at a point where the hand is sufficiently close to the target that grasping could occur

with minimal probing of the immediate region of the task space. We do not address

the problem of providing any pose control or force control law that can guide the

user’s hand to completion of the subsequent grasping task that would follow. This is

considered a separate problem that is already naturally solvable through the user’s

precise motor control and sensory capability to probe the local area with their fingers

to determine the appropriate pose and force necessary to grasp the object safely and

securely.

Within the scope we present the design, modeling, and performance analysis of

a prototype system used in experiments with voluntary subjects performing guided

reaching tasks under an unsighted condition. The analysis is done on recorded tra-

jectories from the numerous trials of guided reaching tasks performed during the

experiments. The participants in each study are allowed and encouraged to respond

to the motion cues in a manner natural and comfortable to them, so that the system

response is indicative of realistic movement behaviours.

1.3.2 Research Contributions

Summarized below is a list of contributions we propose this work will make to the

assistive device and HCI research communities.

• a proof of concept wearable assistive device to aid visually impaired users in a

guided reaching task

• a feature-space hybrid control model for the system (non-sighted user - assistive

device) behaviour during a reaching task using a somatosenory interface.

• demonstration using Fitts’ Law that non-sighted reaching is not a simple bal-

listic pointing task.

• a proposed set of metrics to measure the guided reaching task performance that

can quantify the effect of altering model parameters.
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• a novel method for distance estimation with calibrated monocular vision using

a non-uniform weighting scheme for relating object size to point-feature scale.

1.4 Organization of the Work

The remainder of this work is structured as follows: Chapter 2 gives an overview of

the breakdown of the system. In that chapter we also provide the reader with some

important insight in the unique considerations that make this problem very complex

and how they motivated particular design considerations. Chapter 3 discusses the

visual feature-space control law we have developed and the Discrete Event System

(DES) model employed. Within that chapter, we address issues of visual feature

extraction techniques and the need for feature-space based hybrid systems controller

because of the absence of a known task-space and ground truth. The chapter outlines

some trade offs between various feature tracking scheme investigated, and proposes

a simple but novel technique for distance estimation employing a scale covariant and

illumination invariant feature tracker.

Chapter 4 reviews the existing literature on human motor performance relating

to reaching tasks and discusses the applicability of Fitts’ Law, from the field of psycho-

motor movement modeling, to measure the degree of success for goal-oriented reaching

tasks. We also provide the development of new performance metrics based on the

hybrid systems feature-space control model presented in the preceding chapter.

Chapter 5 describes the various experiments conducted to justify the mate-

rial presented in this work. Conclusions and recommendations for Future Work are

provided in Chapters 6 and 7, respectively.
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Chapter 2 Describing the System

To create a system that addresses the fundamental aspects of the problem we must

first define the context and scope of the operational task(s) the system must con-

trol. Continuing with the motivating analogy of the human and guide dog team, we

describe in a general way the aspects of each system component.

In the context of a guide-dog pairing, the human receives motion cues for nav-

igation conveyed through the dog’s harness, but retains control of the dog/human

team. The dog is only responsible for sensing the environment and passing naviga-

tion information along to the human through directional motion cues. The human,

having supervisory control, still decides the speed, accuracy, and even whether or not

to respond to the motion cues. As such we endeavor to create a wearable system

that allows a human user to provide high-level planning while the assistive system

generates motion cues based on visual sensory information. In response to a motion

cue from the dog, the human is constrained in the way that they move. In a similar

fashion, it would greatly increase usability across a spectrum of users if the system

allowed for significant variation in arm postures during movement, allowing the user

to determine what is comfortable for them during motion.

Within human motor control research field there are four core problems that

drive the research [38]. They are the degrees of freedom problem, the sequencing and

timing problem, the perceptual-motor integration problem, and the learning problem.

All of these problems play some role in the development of the work presented here

and warrant some explanation and consideration.

The human arm, not including fingers, provides a seven degree of freedom

(DOF) manipulator for solution of a reaching task. In the conscious attempt to

solve the reaching task, the human motor mechanisms will unconsciously produce

kinematic and kinetic solutions that tend to be optimized for comfort. While the

set of probable solutions will be similar to from person to person, each individual

solution per identical reaching task can easily vary each time a repeated attempt is

made for a given person. With some types of complex arm movements, there is a

natural reduction in the number of degrees of freedom. For instance, in a pronated
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or superanated orientation, when the elbow goes through flexion, so does the wrist.

Having an opposing motion of extension at the wrist is possible, but requires conscious

control. These natural coordinated motions can reduce the number of degrees of

freedom that need to be considered for certain movement tasks.

In terms of a reaching task, the sequencing of movements is the main aspect of

the second core problem to consider. A study done by Cohen and Rosenbaum [39]

showed that coarticulation played a direct factor in the selection of point of contact

when subjects had to grasp the handle of a tool, and it was dependant upon the next

task in the sequence of movements. In the experiment, a toilet plunger was placed

upright on a shelf of fixed height from the floor. Subjects were presented with a two

task sequence, the first being to grasp the handle of the plunger and the second task

was to retrieve and place the plunger on one of four shelves that were at different

heights from the floor. Two of the secondary shelves were higher and the other two

were lower than the initial shelf. The results of the experiment showed that vertical

position along the handle where the user grasped was inversely proportional to the

height of the secondary shelf, i.e. subjects grasped near the top of the handle if they

were to move the plunger to the lowest shelf and grasped a low point on the handle

when they were to place the plunger on a high shelf. The implication is that the

sequence of tasks are presented as a coarticulation in the motion plan. Grasping a

preferred point on the handle that minimized the necessary reach for the secondary

task of moving the plunger to the target shelf was an optimal solution. Since the

scope of this work is limited to only the initial reaching task, it is not necessary to

have have apriori knowledge of subsequent tasks that could affect the determination

of target point. It is enough for our solution to consistently aim for the center of mass

of any target object.

The timing aspect of the second core problem does not require much consid-

eration. In a single arm reaching task like this, the person is not attempting to

coordinate more than one appendage, nor attempting to match some external rhyth-

mic reference signal (dancing to music). Asynchronous coordination between motion

cues and response movements are allowable and likely.

The perceptual-motor integration problem relates how perception affects mo-

tor control and vice versa. Perception and motor response are integrated together

through mechanisms of feedback and feedforward control. Nearly all aiming move-

ments proceed through two phases. They are initiated with a ballistic phase and
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then followed by a subsequent corrective phase [40]. The ballistic phase exhibits an

open-loop control behaviour while the corrective phase exhibits a closed-loop feedback

behaviour. Additionally, some of the gross features of aiming movements incorporate

a feedforward mechanism to integrate perception and motor response. The interac-

tion of these mechanisms is not as well understood in the absence of normal human

vision, and even less so in the presence of some form of visual sensory substitution.

The learning problem plays a crucial role in the acquisition and refinement of

new and existing motor skills. It bears consideration in the development of assistive

device research because it can affect the results of any system performance metrics

that do not decouple the user behaviours from the control system behaviour. The

literature [38] describes the learning problem in four different contexts. First is the

process of learning by doing which helps the brain form correlations between the con-

sequence of active motor commands and the resulting perceptual changes. Second is

the learning by deliberate practice which is the frequent repetition of the skill with

focused thought on the aspects of performance that require improvement. Ericsson et

al. [41] showed that the amount of deliberate practice contributes more significantly

to the development of a motor skill than the general hypothesis previously held within

the field, that innate talent1 was the most significant factor. Learning through specific

practice is a similar, but distinct context. Precise specificity of practice of a particular

skill will produce a narrow band performance increase. It is a key aid in the develop-

ment of the kinesthetic sensations related to a particular set of movements. Keetch et

al. [42] demonstrated evidence of this with an experiment conducted with basketball

players shooting baskets at different distances from the hoop. Subjects made shots

at varying distances, nine to twenty-one feet, from the hoop. With the exception of

the foul line distance of fifteen feet, success rate percentage showed a linear relation-

ship to distance for all other cases. The success rate was well above the predicted

performance for attempts from the foul line because that was specific practice point

common for all basketball players. Lastly, learning through neural plasticity is a con-

text for motor skills development. It demonstrates the robustness of human motor

control mechanisms in the presence of disturbance and the adaptation of performing

a learned skill under a new set of environmental conditions; in essence, a capacity

for generalization [38]. This property manifests itself in the reallocation of neural

1. From the viewpoint of performed motor skills such as playing an instrument or athletic
skills
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tissue that was once devoted to less frequently performed motor skill to one that is

more frequently performed. Merzenich et al. [43] demonstrated this phenomenon

through experiments with adult owl monkeys. They recorded neural activity in the

somatosensory cortex before and after amputation of a monkey’s middle finger. They

observed that the segment of neurons that would fire in response to tactile stimuli of

the middle finger gradually began to respond to stimuli at either the ring or index

finger.

All of these learning contexts show evidence that there is an expectation that

user of an assistive device will adapt to and form stronger correlative responses to the

tactile guidance stimulus. This is obviously a desirable result in terms of the efficacy

of the using the assistive technology, but has consequences in terms of being able to

accurately measure the performance of the overall reaching task. Simple metrics such

as time to completion, which are commonly used in the literature for assistive devices

do not adequately separate performance improvements due to learning as opposed to

improvements due to the controller design.

2.1 Reaching and Visuomotor Trajectory

Planning

Research into the processes involved in human motor control related to reaching

tasks has shown that there is a significant amount of flexibility in the mapping of

sensory information, perception, and action between the human neuromotor and vi-

sion systems. Two distinct components of the human visual system are utilized in

the process of aiming: object identification for determination of the target and mo-

tor path planning via visual guidance. Execution of aiming for the reaching task

is accomplished through the coordination of a preprogrammed feedforward control

subtask and a error correction feedback subtask. Target selection, the initial move-

ment plan, and continual updates to the trajectory have been shown to be controlled

by a combined contribution from the posterior parietal cortex (PPC) and superior

parietal lobe (SPL) [44, 45, 46]. Desmurgert et al. [47], in a study involving tran-

scranial magnetic stimulation (TMS) of subjects’ contralateral PPC during reaching

tasks, were able to disable the corrective phase of the movement. Their results in-

dicated that the initial ballistic (feedforward) phase did not require parietal control.
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But when exerted, parietal feedback based corrective movements could override the

current movement in progress. TMS pulses applied when the ipsilateral hand was

performing the reaching task seemed to have no effect. This is a further indication

that the PPC does not act in a solely visual role [44]. Work by Stuphorn [48, 49] and

colleagues showed that there are two groupings of neurons in the superior colliculus

(SC) that respond during arm movements. The indications are that one grouping

corresponds to the use of a gaze-centered reference frame and the other corresponds

to an intrinsic representation of the movement that is either in a muscle and/or joint

reference frame.

A study by Gordan and Ghez [50] on planar accuracy in aiming showed that the

spread of reaching task terminal points was elliptical about the target. The major axis

of the elliptical spread was along the target line connecting the initial point and the

target. The minor axis fell along lines perpendicular to the target line. Those results

imply that the subjects demonstrated a greater accuracy in direction over accuracy

in amplitude. This result also correlates with ballistic phase of a reaching movement.

Thus during the corrective phase, amplitude inaccuracy requires either a correction

for overshoot or for undershoot. Gordon and Ghez also found [50] that for both sets

of the near and far targets presented to the subjects, the velocity profiles were bell-

shaped. Their results indicate that the motor planning mechanism for the aiming

movement relies on a preprogrammed feedforward control scheme for both distance

and direction parameters before the onset of the movement. Prior to that, Vince and

Welford [51] had published results that showed that correction for overshoot is more

costly in time and energy. Some of the earlier work by Rosenbaum [52] showed that

with the reaction time to onset of an aiming movement, subjects took more time to

resolve direction uncertainty than amplitude uncertainty. This could account for why

magnitude of amplitude errors are greater then that of directional errors.

The above studies and many others involved subject with a full clear view of

the targets to which they were aiming. The earliest work that involved the targeting

accuracy of aiming movements with subjects under a non-vision condition was per-

formed by Woodworth [53]. Subjects were asked to perform reciprocal target tapping

movements in time with a metronome. The experiment was performed under two

visual conditions. In one the set of trials the subjects had their eyes open and in the

other their eyes were closed. Woodworth found that under the eye-closed condition

a subject’s movements were entirely preprogrammed and ballistic in nature. As ex-
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pected, under the eyes-open condition a subject’s movements were comprised of both

ballistic and corrective movements. The experiment also produced an interesting re-

sult when he plotted the movement velocity against the mean absolute targeting error.

For the eyes-closed condition, the mean absolute targeting error was approximately

constant across the spread of movement velocities (5cm/s to 50cm/s). However, plot-

ting the same for the eyes-open condition showed that the mean absolute targeting

error increases monotonically as movement velocity increases, and converges to the

same value as the eyes-closed condition trials (approximately 4.5mm). From this

result, Woodworth postulated that if the movement time was short enough so that

the movement was completed before the corrective phase was initiated, then the tar-

geting error would be the same regardless of whether the subject’s eyes were open

or closed. Thus visual feedback would no longer effectively increase targeting accu-

racy. Woodworth calculated that movement time threshold at approximately 200ms.

Keele and Posner [54] also produced a similar estimate of 200ms for the movement

time threshold before visual feedback can be initiated. Subsequent studies by Carl-

ton [55], and later Zelaznik et al. [56] derived estimates as low as 100ms. In any case,

an upper bound of 200ms is accepted within the literature. The material presented

in the previous sections clearly shows that under normal visual condition the human

user performing a reaching task can be modeled as system with both feedforward

and feedback control mechanisms. With normal human vision, the combined appli-

cation of both mechanisms form the initial stages of the reaching task planning and

provide the capability to precisely control the complex multi-joint dynamics required

to complete the movement [57]. The internal model that represents this control law

requires both intrinsic (proprioception and kinesthesia) and extrinsic (perceptual and

task specific) information to form the necessary motor plan. A block diagram of the

combined feedfoward/feedback control for a reaching task, as proposed by Jordan and

Rumelhart [1], is depicted in Figure 2.1.

The reaching plan, RP , is formulated and updated via the difference between

the desired hand position, x̄, and the estimated position of the hand, x̂ = f(x̂m, x̂s).

The desired control, u, drives the arm in an attempt to match the plan, resulting

in an actual hand position, x. The terms x̂m and x̂s are the contributory estimates

of hand position from the forward (predictive) model and from sensory feedback,

respectively [1, 58, 59].

Several researchers have investigated whether the reaching plans are executed
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Figure 2.1: Block diagram of an internal feedforward/feedback model [1] with arm
state estimation for compensatory tracking in a visually guided reaching task.

in joint-space using intrinsic body coordinate frames or in hand-space with extrinsic

coordinate frames. In a series of two-dimensional surface pointing tasks, Morasso et

al. [60, 61] found that subject’s hands tended to move in straight line segments, even

when asked to draw curved paths. In contrast, Soechting et al. [62] found in a set

of experiments where subjects were asked to point from an initial rested, dangling

arm position to a target in a vertical plane in front of them, that the peak angular

velocities of the shoulder and elbow coincided. The results also showed that the ratio

of peak velocities of the two joints was equal to the ratio of radial distances that joints

moved through. Soechting et al. surmised that this relationship of ratios was evidence

that some aspect of the joint-space was taken into account during motion planning.

The literature is unclear as to how or why a hand-space or joint-space solution would

take precedence in the reaching plan, and that it is an area for further investigation.

2.2 Vibrotactile Interfaces

The system is equipped with vibrotactile output transducers to convey the motion

cues to the user. Various studies have been published in the field of Human-Computer

Interfacing (HCI) that try to determine characteristics that significantly affect the

utility of vibrotactile interfaces. A large segment of this work exists in the context of

teleoperation of robotic systems. Some works have produced guidelines for vibrotac-

tile interfaces, but until recently they were primarily concerned with passive displays

such as Braille labels on keyboards and other control interfaces for telecommunica-



Chapter 2: Describing the System 19

tions devices [63]. That is not to say that there isn’t a wealth of different vibrotactile

interface design reported in the literature. In fact, there are too many to list com-

prehensively. However, until recently [64, 65], very little had been published that

compares and contrasts the existing work in the field to formulate a coherent set of

guidelines for use of existing findings.

Verrillo [66, 67, 68] produced some of the earliest studies that showed that

there are four key parameters to consider in vibrotactile interface design: amplitude,

frequency, timing, and placement. The parameters, individually and in combination,

can greatly affect the effectiveness of a tactile interface through comfort, stimulus

detection, and tactile information coding. Design consideration within each of the

categories must make allowance for the high variability of conformance from user to

user, so an ideally designed interface should allow for tuning. As an example, Sherrick

and Cholewiak [69] found that skin is roughly sensitive to vibration in the range of

20-250Hz, with a minimal amplitude detection threshold of 4 microns at 200Hz along

surfaces on the torso, but that spatial and temporal acuity of detection can greatly

degrade with aging.

Comfort is an aspect that is strongly user specific. However, Van Erp [64] did

report some generalized guidelines for comfort thresholds. The author states that

care should be taken to minimize heat transfer from the vibrotactor to the skin,

amplitudes above 0.6-0.8mm can elicit a pain sensation, and that the musculoskeletal

structure of the hand-arm is more susceptible to injury from extended exposure to

signals of approximately 12Hz.

2.2.1 Stimulus Detection

In terms of amplitude, frequency, timing, and placement parameters, not all body

parts have the same degree of sensation acuity. Glabrous skin is more sensitive than

hairy skin, particularly when it come to stimulus localization. Even across the various

hairy skin surfaces of the body such as the arms, face, and trunk, the minimal spacing

for a locus of stimulus points can differ substantially. The highest sensitivity for

stimulation detection occurs across the frequency range of 20-250Hz.

The temporal sensitivity of skin is very responsive, but the psychophysical phe-

nomenon of temporal summation can lower the detection thresholds. Early studies

by Gescheider [70] and then later by Pestrosino and Fucci [71] showed that detection
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was possible at bursts produced by 10ms pulses with 10ms gaps between. However, if

the frequency is ramped, a smoothing effect can occur which perceptually smothers

the temporal sensitivity, thus requiring a slower pattern for coherent detection. This

has implication towards coding and achievable tactile symbol rate.

Stimulus detection can also be negatively affected by temporal masking. So-

matosensory receptors tend to integrate prolonged vibratory stimulus so that the

waveform of frequencies applied can have an effect on stimulus detection thresholds.

There is decreasing sensitivity to stimulus waveform patterns in order of: square,

triangular, and sinusoidal [64]

2.2.2 Tactile Information Coding

Similar to stimulus detection, the four parameters of amplitude, frequency, timing,

and location of vibratory signal affects the way and depth information is coded as

tactile symbols. Beyond a basic binary (on/off) alert messaging scheme, tactile sym-

bols can be coded via subjective detection of signal magnitude (intensity). However,

subjective magnitude is a non-linear function of the applied amplitude and frequency.

Early work by Craig [72] had suggested that no more than four different levels of in-

tensity between detection threshold and comfort threshold should be used to ensure

accurate discernibility of symbols. That followed research by Goff [73] that suggested

coding via frequency variation should not exceed nine different levels, and the differ-

ence between levels should be at least 20 % from the adjacent level. Mutli-element

interfaces can be extend the size of symbol set through coding via location of the

stimulus. A important consideration with this technique is the actuator density of

the interface. Certain regions such as the fingers, hands, and face can accommo-

date dense multi-element arrays of actuators. In some early work by Johnson and

Phillips [74], the authors made the claim that when a minimum spacial acuity of

4mm was acceptable, any locus pattern was acceptable for untrained users. However,

a higher resolution could be achieved with the addition of training. Their experi-

ments dealt with spatial acuity on the glabrous skin of the hand which is known to

have high mechanoreceptive sensitivity. Cholewiak and Collins [75] tested localiza-

tion accuracy around the waist using straps with various sets of equidistantly space

vibrotactors. The three straps were equipped with 12, 8, and 6 vibrotactors at 72mm,

107mm, 140mm inter-actuator spacing, respectively. The results reported average lo-
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calization accuracy rates of 74%, 92%, and 97%, respectively. The ill combination

of certain design choices of location, frequency, and timing parameters can generate

unintended spatial effects in decerning tactile symbols. When simple pattern based

coding schemes are used for symbols and there is an overlap in the timing of neigh-

bouring stimulation sites, spatial masking can occur. It can cause the user to per-

ceive a single apparent location for the stimulus between the neighbouring sites [76].

This perceptual phenomenon can be avoided if distinctly different frequencies, dur-

ing temporal overlap, are used at the neighbouring stimulation sites [77]. If the use

of apparent locations is intended, the spatial masking can be enhanced by ensuring

that the stimulus frequencies are matched and in phase. This would require a precise

actuator tool (contact surface) with a fixed home position. This is often achieved in

the literature using rectilinear vibrotactors that act normal to the skin surface, as

opposed to the tangential forces induced by disc motor with eccentric weighting on

the rotor.

It is desirable to design an interface with minimal complexity between the sym-

bols conveyed and their corresponding motion cues so that user does not have to ex-

pend much cognitive effort to track the intended trajectory. It has been documented

that the performance of motor tasks can suffer when a person focuses too much at-

tention on the precision of their movements [78]. Simplicity can be accomplished

through orthogonal basis signals which maximize the discernibility of the symbol’s

signal components . Perceptually orthogonal signals can be produced through a num-

ber of methods including spatial location of the stimuli, frequency of vibration, and

burst rate (vibration pattern).

Phong Pham and Chellali [79] investigated the tactile cue signalling performance

in the context of a vibrotactile interface for teleoperated robotic control. The purpose

was to investigate the mapping between the robot’s sensory-motor space and the

human user’s sensory-motor space.

2.3 Modeling a Visually Impaired User as the

Plant

Conventionally, the initial step in designing a control system is to model the dynamics

of the plant. There are numerous proposed models in the neuromotor movement



Chapter 2: Describing the System 22

modeling literature. The literature provides evidence of that the human neuromotor

system is easily capable of solving the inverse dynamics or kinematics for an extreme

large scope of complex arm movement tasks. The human neuromotor system can

almost effortlessly solve the inverse dynamics problem of a typical reaching task.

Regardless of the various proposed models, the focus within this section is to describe

the high-level issues that relate to designing a controller for a human plant.

The key notion that must be clear is that we wish to fully leverage the physical

acuity of the user and issue motion cues that specify a stable trajectory between the

reaching task terminal points. This should includes allowance for user comfort during

the movement task.

The obvious initial inclination is to model the system as a visual servoing prob-

lem, but there are some natural constraints that must be taken into account. Even

though the human arm can be viewed as a +6-DOF manipulator with differing sets of

holonomic constraints on the various joints, there are some natural movement tenden-

cies the allow for a significant reduction in the number of DOFs for object tracking.

As a simple example, consider the lateral flexion and extension of the wrist. While

it is possible to laterally move the wrist through a moderate extension arc and a

very limited flexion arc, in a pronated position the wrist is normally axially aligned

with the forearm because it requires minimal exertion. Given this natural movement

behavior, we can reduce the problem by 1-DOF under the reasonable assumption

that the user will maintain a wrist orientation that has minimal deflection from the

forearm axis. Similar cases can be made for further reductions.

Regardless, we still find it valuable to examine the system in the context

of a visual servoing problem. Using the taxonomy introduced by Sanderson and

Weiss [80] which classifies visual servoing systems into four main categories: Dy-

namic Position-based Look and Move (PBLM), Dynamic Image-based Look and Move

(IBLM), Position-based Direct Visual Servo (PBVS), Image-based Direct Visual Servo

(IBVS); this type of visually guided reaching task is considered to be an IBLM sys-

tem. It is categorized as such because the feature-space controller uses point features

extracted from each image to generate the set-points for the joint-space controller (the

user) even though that error signal is in terms of camera motion, in feature-space, as

opposed joint-space variables. The IBLM model is illustrated in Figure 2.2.

Thus we can view the overall system in layers, where the plant for the assistive

device control system is the human user, but that human plant is viewed as servoing
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Figure 2.2: A block diagram modeling the assistive application at an high level
abstraction as a generic Image-Base Look and Move visual servoing system

manipulator with an unconventional joint-space control scheme. In this way, the

block diagram given in Figure 2.1 is contained within the USER-GLOVE Joint-Level

Controller block of Figure 2.2.

The system uses a monocular vision eye-in-hand configuration and the user’s

hand is considered to be the end-effector. Eye-in-hand systems are said to be end-

point open-loop because the system only observes the target object, while visual

servoing systems that employ a camera at a distance to the end-effector are said

to be end-point closed-loop as both the target object and end-effector are seen [31].

Without an external reference camera, precise contact registration between the end-

effector and the target cannot necessarily be achieved. An external reference view is

generally desirable for a servoing task, but for a wearable assistive device it can be

untenable. There are a number of issues with providing a second camera view. It is

cumbersome and impractical to rigidly mount a second camera to some other part of

the user’s body that can clearly provide an external reference view of the end-effector

proximity to the target. Providing a second camera view entirely external to the

user is counter productive as it constrains the use of the assistive device to only that

locale. However, we can leverage the user’s intelligence and fine motor control ability

in place of a number of key control processes. If we redefine the reaching task target

position as some region in task-space that is very close to, but not in contact with

the target object, then the goal is get the end-effector close enough. Once the end-

effector reaches a point within that target region, the system can “transfer” control

to the user to probe for the physical object; determine the appropriate orientations

and forces for the tool (fingers) necessary to grasp the physical object.
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Generally, an image based visual servoing system follows an proportional error

control law that compensates for the difference between the goal-view feature vector

f̂ and the current-view feature vector, f , through camera motion given by

ṗ = K · J+
v (p)(f̂ − f) (2.1)

where K is a gain matrix, J+
v is the pseudo-inverse of the image Jacobian, and ṗ is

the velocity screw of the terminal point on the end-effector. It can be advantageous

to use moments of image feature within the feature vector as IBLM visual servoing

from point features alone can result in infeasible camera motion due to the coupling

between translational and rotational degrees of freedom in orientation errors and

trajectory traversal [81].

In a conventional visual servoing application we have known, consistent, and

precise physical dimensions for the manipulator, focal length of the camera, etc. So

assignment of various coordinate frames; tool, camera, joint(s), base, and world are

made. Thus the velocity screw can be defined as

ṗ =
[
Tx Ty Tz ωα ωβ ωγ

]T
(2.2)

with Tx, Ty, Tz denoting the translation velocities of the end-effector terminal point

with respect to the manipulator’s base frame and ωα, ωβ , ωγ denoting the rotational

velocities about the base frame’s X-, Y -, Z-axis, respectively. In this kind of wear-

able application there is no consistency of physical parameters from one manipulator

unit to another (different users). In essence the only physical parameters that are

consistent are the camera related parameters: resolution, focal length, angle of view,

etc. Hence we can only rely on a consistent image-space.

The transforms between the base and various joint frames are not known, but

as everyday experience tells us, they are not required for a movement solution. The

transforms are part of our internalized neuromotor representation for the movement.

Given that we are working with a visually impaired person in an unmapped envi-

ronment, the task space is not fixed. It can extend beyond the arms length to any

distance at which the target object is identifiable. Since visually impaired persons’

perceptual frame of reference is themselves, the task space is anchored by a egocentric

frame of reference and can easily move within the external environment.

Since the users themselves inherently act as the robust joint-space controller for
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the manipulator (arm), all torque control is also handled by the user, and the end-

effector (hand), during natural movements, moves in hand-space coordinate frame,

we can view the problem as control of 6-DOF kinematic point at end-effector.

In previous sections reductions in degrees of freedom related to natural coar-

ticulations and sequencing of movement tasks, but we can also employ functional

reductions in the number of degrees to simply the problem. Consider the functional

task space for the reaching task. There is no need for the system to guide the user’s

hand toward their own body. Thus postures of the arm-hand that are not directed

outward from the body are unnecessary. Therefore in the context of the reaching

task, the plant in this problem should be viewed as a 3-DOF kinematic point.

2.4 Designing a Controller for a Human Plant

It is an extraordinarily difficult task to create a system that can provide the high

capability of a human to identify a target, localize the relative position of the hand,

localize the terminal points of the reaching task, and calculate the entire trajectory

of the movement in real-time.

While the neuromotor system as a joint-space controller is very robust in the

presence of disturbances, its accuracy is not deterministic. The user’s cognitive ability

is highly robust, but the stability of the “actuators” and joint “sensors” (neuromotor

muscle activation, kinesthesia, and proprioception) can be susceptible to physiological

and psychological factors. For example, a conventional robotic manipulator becomes

neither tired nor frustrated.

Consequently it is important to first determine what are the crucial state vari-

ables and what aspects of the system need to be controlled. It is beyond the scope of

this work to create a system the can incorporate a sequence of additional motor tasks

after the reach itself. Thus, we can ignore the coarticulation issue of the timing and

sequencing problem and specify the terminal point of the reaching task as being in the

immediate vicinity of the target object. Consequently, the controller does not need to

determine a preferred contact point on the target to mimic the natural behaviour for

sequenced tasks exhibited in Cohen’s and Rosenbaum’s [39] study, described earlier.

As such, it is reasonable to specify the centroid of the projected surface as the optimal

point to target for contact proximity to the object.
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In the previous section we argued the merits of modeling the system as a 3-

DOF kinematic point. Proceeding upon that notion, we must specify what level of

kinematic control is achievable through a tactile interface.

For the design of the aiReach (pronounced eye-Reach) system we have chosen

to codify the motion cues issued to guide the hand as a series of mechanical vibration

signals conveyed through somatosensation; creating a vibrotactile interface from the

aiReach controller to the plant (user). Since we wish to maximize tactile symbol

Figure 2.3: Image shows the glove portion of the aiReach prototype to illustrate the
placement of vibrotactors and camera. The dorsal and ulnar ipsilateral vibrotactors

are visible in this right-handed configuration.

discernibility, we have chosen an orthogonal signal locus for the interface, consisting

of four small variable-input DC vibrotactors (eccentric imbalanced disc motors). The

vibrotactors are mounted on a fingerless glove in pairs on the lateral, dorsal, and

palmar parts of the hand. These orthogonal pairs form a planar axis orthogonal to

the medial metacarpal bone and the plane is approximately parallel to the image

plane of the camera mounted on the glove distally ahead of the vibrotactors. They

are clearly visible in the close up picture of the aiReach glove shown in Figure. 2.3.

The individual vibrotactors are used to convey a set of symbols relating motion cues

to the user. The language consists of six symbols indicating the following motion cues:

Move-Right, Move-Left, Move-Up, Move-Down, Move-Forward, and Stop.

There is no need for a Move-Backward symbol as that implies that the camera is
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past the target, which also implies that the target is not visible. Quite simply, if the

target is not visible the required motion cue to acquire it is indeterminate.

The four vibrotactors, individually actuated, convey intended motion in two

degrees of freedom within image space. The Move-Forward and Stop symbols are

conveyed through simultaneous actuation of all four in different patterns. Continuous

actuation indicates a Move-Forward cue, and a pattern of four uniform intervals

of pulses indicate the motion cue of Stop. It should be noted that the mapping of

the dorsal surface of the hand to the direction up is based on an imposed convention

for the pose of the hand; that it is in a pronated orientation. For the remainder of

this work, we will adhere to that convention as the nominal pose for the hand. It it

worthwhile to mention that by defining the motion cues in this way, in the direction

of the surface normal at those points on the hand, a correct trajectory to the target

object can still be followed regardless of the whether the hand is in a pronated,

supinated, or neutral orientation because the transformation from the camera frame

to the image frame to the hand frame is fixed and the user’s proprioceptive capability

makes it a trivial task to intuit the transform from hand frame to egocentric frame.

The technique of resolving the error in each axis separately was selected because

of the difficulty in issuing a motion cue in polar form: (|r|, θ, φ) to the user through

a glove mounted vibrotactile interface. Responding to a signal of magnitude |r|, as

a motion cue, is no more difficult to interpret than a magnitude in one of the axial

directions, but interpreting its direction consistently would be problematic across

various subjects. The problem lies in the subject’s ability to interpret and track a

precise values of both θ and φ. While it is possible to issue values of θ = nπ4 , with

n ∈ {0, . . . , 7} using the four vibrotactile outputs employed, the visually impaired

user does not have access to the feedback necessary to confirm (closed-loop) that

their hand is precisely following a trajectory along that initial directional component.

The problem is even more pronounced with the other directional component, φ, out

from the image plane. The feedback, which we take for granted, is the ability to

see the motion of our hand in reference to the horizon. Without that visual horizon

reference, a user would need to have a precise kinesthetic perception and substantial

training and practice to effectively track the motion cues indicating trajectories other

than horizontal, vertical, or frontal.

Furthermore, taking in account the difficulty for the user to resolve any angular

trajectory motion cues it becomes apparent that trajectory generation must be calcu-
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lated on an axis by axis basis per image, in some sequential manner. The necessity of

sequencing a trajectory traversal between terminal points of the reach, or ”tracking”

state on an axis by axis basis leads us to adopt state automata based scheme for our

control. The details of that model and a detailed discussion of the hybrid control

driven by feature-space parameters is given in Chapter 3.

It should be noted that no force control scheme for grasping the target object is

necessary. The goal of the controller is to guide the user’s hand to within a reasonable

distance just short of collision with the target object. Then the user determines2 the

appropriate end-effector pose and level of force used to grasp the target object.

Another crucial application consideration stems from the perspective of a hu-

man plant is a lack of precise position control of the end-effector (hand). Since it

is impossible for a user to hold their hand perfectly steady so that the centroid of

the target projection and the center of the image frame align with precise registra-

tion, we use a broader definition of being “On-Target”. This is accomplished by

mapping the precise target position, p(t) = [px py]T , to an approximate target error,

v(t) = [vx vy]T , within the image frame. The mapping produces a variable sized

targeting region within image-space given by equation (2.3).

v(t) = n(l)p(t) (2.3)

The scalar function n(l), given in equation (2.4), creates a deadband region, presuming

that as long as the centroid of target object projection, p(t) is within ±lIx away from

the horizontal center of the image and/or ±lIy away from the vertical center of the

image, the user is considered to be “close enough” to On-Target. The parameters

Ix and Iy are the horizontal and vertical image dimensions in pixels, respectively.

2. Through systematically feeling the shape, orientation, texture, etc of the object to
determine the best way to grasp it.
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Figure 2.4: An illustration of the approximate target region within image space
defined by l. The region dimensions are 2lIx by 2lIy

The On-Target region, centered at [Ix2 ;
Iy
2 ]T is illustrated in Figure (2.4).

n(l) =



1 if 0 < ox(t) < Ix
2 − l Ix,

0 < oy(t) <
Iy
2 − I2

0 if Ix(1
2 − l) ≤ ox(t) ≤ Ix(1

2 + l),

Iy(1
2 − l) ≤ oy(t) ≤ Iy(1

2 + l)

1 if Ix(1
2 + l) < ox(t) < Ix,

Iy(1
2 + l) < oy(t) < Iy

(2.4)

We define the value of l such that 0 ≥ l ≥ 1
2 so that it corresponds to a per-

centage of an image-space dimension. Thus lIx, a given number of pixels, translates

into the physical size of the target region plane in task-space at a particular distance

from the real target object. This allows on-target region in task-space to vary

hyperbolically with distance from the camera3 to the real target object. Thus, when

the user’s hand is a moderate distance from the real target the registration accuracy

is quite broad, but narrows as the camera approaches the real object in depth along

the optical axis.

The target object location is only resolved in image space using the feature

set parameters describe in Chapter 3. Regardless of the feature extraction technique

employed, all that is required is the calculation of the moment based feature that

represents the centroid of the object projection in the image. The image-space coor-

dinates for the centroid of the target object are given by p(t)

3. Assuming the use of a pinhole camera model
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Once the target object is identified, the displacement of its centroid from the

center of the image is used as a measure for generating control signals which gives

the motion cues to the user’s hand. The same procedure is followed with each subse-

quent image, thus creating a quasi-closed loop. We use the term quasi-closed loop to

represent the idea that whereas we are generating the appropriate control signals for

compensatory tracking, the plant (user) is free to ignore them. The control signals

are resolved as two components: image space horizontal and vertical offset from the

center of image and the distance from the camera frame to the surface plane of the of

the object normal to the optical axis of the camera. The controller input ei = f̂ − f ,

where f̂ =
[
Ix
2

Iy
2 fζ

]T
and f =

[
px py fz

]T
. The depth estimations of fζ and fz are

given by some moment generating function, g(fi), i = 1, . . . , n, of the image features

used to identify the object. The function is specific to the particular set of features

extracted based on the specific computer vision technique used. In Chapter 3 we

describe the three techniques used in this work and describe the corresponding g(fi).

2.4.1 Image Acquisition and Processing

Only a few basic criteria were used in the selection of a camera for the system.

Ideally, it should be an inexpensive, light-weight, off-the-shelf camera with acceptable

image quality and capable of full motion video frame rate. Two classes of cameras

were initially investigated as possible candidates. The first was a camera capable of

generating images with a resolution of 1024x768 at 30 frames per second (fps) with

IEEE1394 connectivity. The second was a webcam capable of generating images with

a resolution of 320x240 at 30 fps and transferred to the PC via a USB 2.0 interface.

Some issues related to the comparative performance results for the two cameras are

discussed in Chapter 5

Another key criteria that has been chosen is that the system will only employ

monocular vision for sensing. This choice was made due to a number of factors

that were a natural consequence of the application being a wearable assistive device,

some of which are: minimizing weight, size, cost, and obtrusiveness of the wearable

device; allowing for unique physical dimensions of each user; and that the pose of the

end-effector (hand) is not controllable.

Intuitively, the choice of monocular vision might seem to be irregular as ranging

data is necessary for determining the depth movement into the task space towards
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the target. Two of the typical methods for obtaining range data for an eye-in-hand

configuration when visually servoing towards a target within an undefined task space

are the use of stereoscopic vision, or a laser range finder in conjunction with a single

camera. Stereoscopic vision rigs suffer from the constraints in the first two factors

listed above and the effectiveness of a laser range finder is severely hampered by the

third factor. Using simple computer vision techniques for approximating object size

with a monocular vision configuration provides sufficient ranging accuracy to achieve

the broader performance criteria of “close enough”.

2.5 System Performance Criteria

As with any control system it is essential to develop and describe metrics charac-

terizing the performance of the system. We have proposed that the system can be

decoupled into a coordinated set of one-dimensional problems, each with simple a

state equation, ẋ = Ax + Bu. However, as it is hopefully becoming clear, the plant

(human user) is not actually controllable. Thus, any performance metrics must in-

corporate the notion that measuring the responsiveness of the system includes the

variability of contributing factors in the inherent physical acuity of a particular sub-

ject and expected performance of the system in relation to the all potential subjects.

Thus, instead of a continuous performance metric we propose a discrete set of

performance levels that quantize a range of continuous values into a behavioural class.

These proposed, generalized classes are:

Ideal indicates that user followed the motion cues with a high level of precision and

accuracy;

Well-behaved indicates that the user had followed the motion cue with a reasonable

degree of precision and accuracy;

Ill-behaved indicates that the user exhibited, cumulatively over the entire trajec-

tory, a significant deviation from the motion cues issued.

The definitions of the three classes are given in vague terms at this point be-

cause the description of our proposed hybrid control systems model based on a finite

automata is not provided until midway through Chapter 3. The material presented
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in those sections is necessary before further detail definition of the behavioural class

can be discussed.

We also present a description of human motor performance models, namely

Fitts Law, in Chapter 4. We describe its relevant application to reaching tasks in the

field of Human Computer Interfacing (HCI) found in the literature, primarily with

sighted users. We then show through analysis of experimental data how it is applied

in comparison to the use of the hybrid control model proposed in Chapter 3.
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Chapter 3 Hybrid System Model for

Visual Control

In this chapter we discuss the various computer vision techniques that were employed

for feature extraction and object identification. Different image feature sets were

investigated for this work. The computer vision component of the system has been

designed to be highly decoupled from the movement control component of the system.

It allows for easy interchange of image feature extraction and matching techniques.

The core requirement is that from the matched features, the moment based features

can be calculated from the corresponding moment generating functions, g1(f) =[
px py

]T
and g2(f) = fz that will produce the image feature vector, f =

[
px py fz

]T
that gives the terminal point for the current straight line trajectory of the reaching

task.

We also introduce our hybrid control systems model based on a finite automata

discrete event system (DES) that switches between the various controllers to perform

the compensatory tracking of the axial components of the trajectory to the target.

We also describe the tracking performance metrics proposed in the context of the

DES model framework.

The computer vision component of the system resides on a personal computer

and carries out the tasks of acquiring the sequence of images, analyzing each frame

to detect the target object, and calculate the moment based features that determine

the target’s position within the image and distance from the camera.

A block diagram of the image analysis process for the vision system to perform

object detection and control signal generation is given in Figure 3.1.

Image
Frames

Noise
Removal

Feature
Extraction

Feature
Matching

Object
Local-
ization

Control
Input

Generation

Figure 3.1: Image Processing Flow
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3.1 Image Feature Extraction

Feature extraction is a important aspect of a visual control problem. When speci-

fying the image features set, we must consider its use for both object identification,

through feature matching, and object tracking/localization. For either purpose, var-

ious methods can be used employing point features, edge features, or region-based

features; either separately or in combination.

The architecture for this system allows for a nearly complete decoupling of

the image feature extraction and matching method from the rest of the system so

that various algorithms can be used, interchangeably. The only necessary criteria is

that, after matching is determined, a single three-element feature vector, f , can be

calculated as the control input for servoing. The elements of the vector are the image

plane coordinates of the centroid of the target object and a feature representative of

the distance from the image to the target object along the optical axis. This will be

discussed further in following sections of this chapter.

We examined various image feature sets in the development of this system.

Since the focus of this work is to investigate the control for a reaching task through

an assistive the device, our primary concern was not the development of any new fea-

ture extraction or matching techniques, but demonstrating the efficacy of the overall

system. Three techniques used or examined were: colour segmentation, a combina-

tion of geometric shape features and colour segmentation, and Scale Invariant Feature

Transform (SIFT).

3.2 Shape-Colour Feature Set Detection

The object detection approach is based on contour detection and geometrical shape

classifications. The images acquired from the camera are passed through both a

pyramid-up and pyramid-down operation for noise filtering prior to edge detection

process. After which, Canny [82] edge detection is used to identify and index the

resultant contours. Geometric shape identification is then carried out based on those

contours. For example, a rectangle is characterized by four straight edges approxi-

mately at right angle to each other and four vertices. Due to inherent characteristics

of image acquisition in an uncontrolled environment, for each object present in the

scene more than one geometrical shape could be assigned. Therefore the list of shapes



Chapter 3: Hybrid System Model for Visual Control 35

initially identified is filtered to eliminate those that are collocated. The subsequent

list of geometrical objects is then compared with a predetermined target object to

identify which detected object has the highest priority of interest.

The level of importance of each feature was taken into consideration by as-

signing weights to features. For example if hue, saturation, and value are used as

a subset of features, value has to be assigned a smaller weight as it varies signifi-

cantly depending on the ambient lighting conditions. Using the feature values and

the weights indicating the level of importance of each feature, a similarity measure

can be calculated to determine which of the detected objects in the image has the

highest priority of interest. The similarity measure, M , is given in (3.1).

M = min
k

N∑
j=0

(wj(fdkj − ftj)2) (3.1)

where fdkj is the value of the jth feature of the kth detected object; ftj is the value

of the jth feature of the target object; wj is the weight assigned to the jth feature;

and N is the number of features considered. The feature values for the target object

are static and set manually in advance.

The object found within the image with the lowest value of M is the best

match (highest priority of interest) to the target object and thus becomes the object

of interest. Having selected the object of interest, its features as well as location

information with respect to the camera coordinates are extracted and the object is

tracked in subsequent images.

The moment generating functions used to generate the feature vector, f , for

the controller input are given by equation (3.2).

mij =
∑
x

∑
y

xiyjI(x, y) (3.2)

The centroid of the target object is then g1(f) = [m10 m01]T. The term I(x, y)

is the intensity values of the within the bounds of the target object. The depth

estimate feature is g2(f) =
m00
α , where 0 ≤ α ≤ 1. In essence the value of α

determines what portion of the mass of pixels with the bounds of target object fills

the image frame so that the camera is sufficiently close to the target object for the

reaching task to be considered complete. This scheme is quite limited in terms of
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rotation of the target object pose and scale covariance, and requires calibration of the

target object size to camera view at the task completion distance. However it does

allow for target object detection in a moderately complex scene.

3.3 Feature Extraction and Tracking Using

Scale-Space Theory

This visual feature tracker provides the control input to feature space controller. The

task of this tracker is to detect the object of interest in the current frame and send

the location and scale information to the controller, which is an image based look and

move system. Given a particular object is of interest, the tracker detects the closest

matching object in the current frame and keeps track of its location in subsequent

frames. This is a challenging task. The appearance of the object of interest changes

due to viewpoint and illumination. Moreover, occlusions are detrimental. Viewpoint

change in general manifests locally in the form of an affine distortion [83]. Illumination

changes are due to varying lighting itself and shadows. We disregard major affine

distortions as the motion of the user is usually (by design) toward the object of

interest. This prompts us to use a scale covariant and illumination invariant1 feature

detector.

Lack of scale covariance was one of the major drawbacks of our initial configura-

tion [5] using the feature set scheme presented in the previous section. In that version

of object detection, a pyramidal implementation of a polygon detector was used. As

a result, only planar geometrical objects could be detected with that approach. Al-

though a crude approximation of the scale was present in the level of pyramids used

for contour extraction, that information was not effectively used. Therefore the sys-

tem was not scale invariant. As a result the system had trouble in localizing the

object of interest due to increased scale as the user moved toward the object. Color

information complemented this drawback which itself needed illumination invariance.

Consequently, the system was not robust. A scale and illumination invariant tracker

which can handle general features is a desired solution.

Scale and illumination invariant feature detection techniques have improved

tremendously during the last few years. Lindeberg, in his seminal work [84, 85],

1. From this point on we merely use the term invariant.
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showed that features need to be detected within a scale-space framework for scale

invariance. There are several well known methods for feature detection, computing

local descriptors, and matching. Interested readers are referred to the recent surveys

by Schmid et al. [86], Mikolajczyk and Schmid [87], Mikolajczyk et al. [88] and Moreels

and Perona [89]. We adopt the so called difference-of-Gaussians for scale invariance

as used by Lowe in his pioneering scale invariant feature transforms (SIFT) [90, 91].

In this section we outline the scale-space formulation and describe our adaptation of

scale invariant object detection.

3.3.1 Scale-space Detection

In real images features exist in specific scales. Therefore, features need to be detected

within the scale-space framework. The usual approach taken by feature detectors,

especially in the case of distinctive features, is to find the local extremum in the

scales-space [85]. Distinctive features such as SIFT [91] and gradient location and

orientation histogram (GLOH) features [87] use the notion of scale-space to detect

all the interest points (features) in an image. This approach has the advantage of

being able to look at the image at different scales and a large number of features

are detected. In a typical complex scene the number of features can range of in the

thousands, so the approach is very computationally intensive. For example finding

features in a typical 640 × 480 image would take an order of magnitude longer as

compared to non-distinctive features [92] (∼300 ms vs. ∼10 ms).

As indicated above, feature detection in real images needs to be done within a

scale-space framework. It is even more critical when the need arises to match them

to a different view. As in the case of this application the movement of the camera

generates different views of the object. Features are seen only when viewed at a

meaningful scale. Some features are seen at coarse scales and others are seen only

at fine scales. For example, in an indoor scene, a door may be detected at a certain

coarse scale. However, we need a finer-scale view to detect a name-plate on the door.

Character or Braille data on the name-plate needs a finer scale. Even finer scales

are needed to observe the texture on the door. Scale-space theory provides a general

framework for dealing with images (multi-dimensional signals in general) at different

scales in a well principled manner. However, the scale at which a particular feature

is seen is unknown apriori. Therefore an automatic scale selection mechanism is used
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to select the appropriate scale for each feature. This is done by finding local extrema

with respect to scale in terms of Gaussian derivatives. Interestingly, the selected

scale corresponds to the actual size of the structure (target object) in the image.

This gives us the added advantage of being able to feed the scale of the object along

with the location information to the feature space controller. Here we briefly outline

the sale-space theory and automatic scale selection. A comprehensive description of

this theory is given by Lindeberg [84, 85]. A general description is found in Bigun

[93]. We follow Lindeberg’s D-dimensional formulation. Adaption to 2-dimensional

images is straight forward.

3.3.2 Scale-space Representation

Given any continuous signal f : RD → R, its linear scale-space representation L :

RD × R+ → R is equivalent to the convolution of the function (image), f(x), with

Gaussian kernels, h(x; t), of various widths, t:

L(x; t) = h(x; t) ∗ f(x), (3.3)

where h : RD → R is given by,

h(x; t) =
1

(2πt)D/2
exp

(
−
x2

1 + · · ·+ x2
D

2t

)
(3.4)

and x = [x1, . . . , xD]. Scale-space derivatives are defined as

Lxα(x; t) = (∂xαL)(x; t) = ∂xα (h(x; t) ∗ g(x)) (3.5)

where α = [α1, . . . , αD] and ∂xαL = L
x
α1
1 ...x

αD
D

constitute multi-index notation for

the derivative operator ∂xα . Commutation implies

Lxα(x; t) = (∂xαh(·; t)) ∗ g(x). (3.6)

So a set of Gaussian derivative kernels ∂xαh can be used to calculate scale-space

derivatives efficiently. It is possible to obtain directional derivatives in the direction

β by

∂nβ = (cos β∂x + sin β∂y)nL. (3.7)
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Figure 3.2: Local orthonormal coordinate frame

Equation (3.7) can be used to come up with a descriptor for a feature in an image.

However, this will not make the descriptor rotational invariant. The way to define

rotational invariant scale-space derivative based descriptors is by using a local co-

ordinate system which is aligned with the local image feature itself. In particular,

this defines a local orthonormal coordinate system (x′, y′) as shown in Fig. 3.2. The

y′-axis is parallel to OL with ey′ = (cosϕ + sinϕ) and ex′ = (sinϕ − cosϕ), where

ϕ = tan−1(Lx/Ly). Now, quantities such as Lx′ = 0, Ly′ = |OL| =
√
L2
x + L2

y,

L2
y′Lx′x′ , etc. can be calculated. These quantities are invariant with respect to the

rotation of image plane.

3.3.3 Automatic Scale Selection

Lindeberg [85] showed with examples that the local level of the scale crucially affects

the performance of feature detectors. Therefore it is essential to perform the feature

detection within a framework which automatically adapts the scale levels to the local

image structure. A proven approach to perform this adaptation is by detecting local

extrema over scales of normalized differential entities giving rise to a characteristic

scale. Normalization is required due to the property that the scale-space spatial

derivatives decrease in magnitude with increasing scale. The γ-normalized derivative

operator defined by

∂ξ,γ−norm = tγ/2∂x (3.8)

is used for this purpose. With this normalization, maxima over scales of normalized

derivatives reflect the scales over which spatial variations take place in the signal.
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Therefore, the scale selection principle [85, 94] is, in the absence of other evidence,

assume that a scale level, at which some (possibly non-linear) combination of nor-

malized derivatives assumes a local maximum over scales, can be treated as reflecting

a characteristic length of a corresponding structure in the data. Automatic scale

selection makes an interest point scale invariant. However, affine invariance is not

guaranteed and feature repeatability decreases with large viewpoint changes [83].

3.3.4 SIFT Features

Automatic scale selection by scale-space extrema detection is what drives the interest

point identification known as Scale Invariant Feature Transform (SIFT) scheme de-

veloped by Lowe [91] . These ‘good’ features [95] are called key points. Once the key

points are identified, the accurate location and scale is determined. The next step is

the orientation assignment. Finally, a local image gradient based descriptor, which is

a 128-dimensional vector, is calculated. SIFT does the scale-space extrema detection

by approximating equation (3.6) using the difference between L(x; k2t) and L(x; t),

where k is a constant multiplicative factor. This quantity is called the difference of

Gaussian and is expressed by,

D(x; kσ) =
(
h(x; k2σ2)− h(x;σ2)

)
∗ f(x)

= L(x, k2σ2)− L(x;σ2),
(3.9)

where σ2 = t. Lowe [91] shows that

h(x; k2σ2)− h(x;σ2) ≈ (k − 1)σ2O2h (3.10)

which means this variant inherently incorporates the t = σ2 normalization required

for scale-invariant Laplacian. A constant k−1 is the same for all scales and therefore

does not affect the extrema detection. The Difference of Gaussians are calculated

by computing a stack of Gaussians and then doing image subtraction. A resampling

process is used when moving from one octave to the next, which reduces computations.

Interested readers are referred to Lowe’s paper for details [91]. Local extrema are

detected within this stack of difference of Gaussian images. This is done by comparing

each sample point D(x, kσ) against its 26 neighbors. Such a local extrema is an

interest point. However, the accurate key point location is further refined by fitting a
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3-D quadratic function to the nearest sample points and interpolating. The resulting

key point location is therefore sub-pixel accurate [96]. Key points which correspond

to low contrast points and those on edges are not useful. These can be rejected by

computing the autocorrelation matrix [97] of D(X; kσ) (call this AD) and ensuring

the trace-to-determinant ratio,

T(AD)

|AD|
<

(r + 1)2

r
(3.11)

where r is the threshold for the eigenvalue ratio of AD. Lowe [91] choose to use

r = 10. What remains to be assigned is the orientation. Orientation is assigned

by finding the parabolic-interpolated dominant gradient direction calculated using a

32-bin gradient location and orientation histogram.

Scale-space extrema detection automatically assigns a scale to every key point.

We outlined above how the location and orientation of a key point is found. The next

step is to compute a distinctive descriptor2 for the local image region which can also

be matched in a view-point invariant manner. First the image gradient magnitude

and orientations are samples around the key point location. Orientation invariance

is achieved by transforming the gradients on to the local coordinate frame oriented

along the dominant gradient direction calculated in the orientation assignment phase.

In addition, the gradient magnitudes are Gaussian weighted. The descriptor is a

summary of the gradient magnitude orientations: a 3-D histogram of gradient location

and orientations. In practice, a 16 × 16 region, 4 × 4 subregions, and 8 orientation

bins are used [91]. This gives rise to the infamous 4× 4× 8 = 128-dimensional vector

descriptor. This vector is thresholded and normalized to unit length to suppress the

effects of illumination changes, resulting in partial illumination invariance.

3.3.5 Implementation

We described how SIFT features are a good candidate as features for the visual

tracker in complex natural scenes. However, the features need to be strategically

used in order to be useful for our system. First we assume that we know what the

object of interest is. In other words, features corresponding to the object of interest

2. See Mikolajczyk 2005 for a comparison of local region descriptors [87]. They found
that gradient location and orientation histogram used in SIFT to be a good descriptor.
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on the initial video frame are assumed to be known. Recent work on video google

[98, 99] provides an interesting method of automating this task. To that end, a bag

of features for objects are stored on disk. Once the target object is indicated by user,

potential features that correspond to this object can be selected. Once the presence

of these features in a geometrically coherent manner on the current image is verified,

object tracking can take place. Since our implementation requires manual selection,

we assume the features corresponding to the object of interest are known. We locate

them on subsequent images only within a subspace of the scale-space. This subspace

is selected using the knowledge of the scale of the object on the current image and the

approximate location. Approximate location selection is valid only if the motion of

the user’s arm is small. If the features corresponding to the object is not found within

this subspace, we search a larger space containing the whole image plane. When there

is more than one feature corresponding to the object of interest, we treat the centroid

of the set of features as the location. The scale of the coarsest feature is used as the

nominal scale of the object of interest.

3.4 Colour Segmentation based Feature Set

Detection

A third, fairly simplistic feature set was employed for the purpose of maximizing

the visual tracker frame rate. Since motion cues are issued on a per frame basis the

purpose was to minimize any response rate limitations on the resulting arm movement

by the user. Target object detection was done by simple colour segmentation and the

scene was tightly constrained to a set of uniformly coloured spheres.

The moment generating functions used to generate the feature vector, f , for the

controller input are similar to that previously given in equation (3.2). The centroid of

the target object is then g1(f) = [m10 m01]T. The term I(x, y) is the intensity values

of the target colour within the bounds of the target object. The depth estimate feature

is g2(f) =
m00
α , where 0 ≤ α ≤ 1. Similar to the feature set describe in Section 3.2,

the mass of pixels with the bounds of target object that fills the image frame directly

relates to a sufficiently close distance from the target object to consider the reaching

task as complete. It also still requires calibration of the target object size to camera

view at the task completion distance. However, since the objects are spheres there is
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no longer the same limitations with rotation and scale invariance allowing for greater

freedom in experimental trials.

3.5 Camera Geometry and Scale

When we attempt to use the scale parameter of a feature to be representative of the

size of the object, we treat the camera as a measurement device. We assume that

the rays pass through the optical center of the camera. Such a camera is a central

projection device. In this section we outline the central projective geometry, and

show how the scale of feature (or an object) varies with the camera configuration.

We follow Hartley and Zisserman [100] in this section.

3.5.1 Camera Models

A camera maps 3-space world points to 2-space points in the image. In central

projection, the world point, the camera center, and the image of the world point are

collinear. Figure 3.3 shows the central projection (pinhole) camera model. Point C is

the camera center (center of projection or optical center). The camera center coincides

with the world coordinates origin3. The optical axis is the line through this point

that is perpendicular to the image plane. The point at which the optical axis meets

the image plane, P, is the principle point. Focal length f is the distance from the

camera center to the principle point. This camera maps a world point X = [X, Y, Z]T

to the point x = [fX/Z, fY/Z]T in the image plane, if we assume that P is the image

origin. Now we can express this mapping in homogeneous coordinates as
X

Y

Z

1

 7→
fXfY
Z

 =

f 0

f 0

1 0



X

Y

Z

1

 . (3.12)

3. This assumption does not harm the generality.
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Figure 3.3: Camera geometry – C is the camera center and CZ is the optical axis. x
is the image of the world point X. f is the focal length and x has image coordinates

(fXZ , f
Y
Z ) if the image center is P and image coordinate axes are X and Y .

The 3 × 4 matrix [diag(f, f, 1)|0] is called the camera matrix [100]. If P has image

coordinates
[
px, py

]T
, then the mapping is

X 7→

fX + Zpx

fY + Zpy

Z

 =

f px 0

f py 0

1 0



X

Y

Z

1

 . (3.13)

Rearranging,

X 7→

fX + Zpx

fY + Zpy

Z

 =

f px

f py

1

 [I|0]


X

Y

Z

1

 . (3.14)

The matrix

K =

f px

f py

1

 (3.15)

is called the camera calibration matrix. Note that we have assumed equal focal lengths

(f in pixels) and no skew parameter for simplicity.

When we consider, for example, the x-values of the image point x, we notice

that the graph between x and Z is a rectangular hyperbola in the first quadrant. If

we consider a world sphere of diameter D, the diameter of its image (a circle) d is

related to the distance Z by

d =
fD

Z
. (3.16)
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In this equation fD is a constant for a given sphere and a camera. One verifies

this by noting that the presence of the principal point in (3.14) does not affect the

diameter. In other words, diameter of the sphere seen in the image varies reciprocally

with the distance form the optical center. If we can approximate the diameter with

a scale parameter, we can make approximations to the distance once a scale-distance

calibration is done.

3.6 Hybrid Control System Model Using Image

Features

From the material presented in the previous chapters it should be evident that a

conventional continuous time-invariant model cannot appropriately capture the be-

haviour of this system. Without an accurate dynamic model of the plant during the

reaching nor the ability to drive the plant through a desired trajectory we must model

the system in a manner that captures what the user is “attempting” to do in terms

of the compensatory tracking task. This can be delineated as a set of events occur-

ring throughout a basic set of spatial tracking operation states: resolving horizontal

alignment error, resolving vertical alignment error, and resolving depth alignment

error. Thus a problem can be modeled using hybrid system approach to describe

the tracking operation tasks as discrete automaton and actuating the appropriate

continuous-time control law for a particular tracking task.

We have chosen to use a hybrid control scheme to model the system’s behaviour

and we provide a brief description of it in this section so that the reader can form

a clear picture of the overall system architecture. The formalism and notation used

here is adopted from the class of supervisory control based Discrete Event Systems

(DES) models proposed by Stiver and Antsaklis in several papers [101, 102, 103, 104,

105, 106], with an expanded treatment provided Koutsoukos et al. [107] a few years

later. The reader is referred there for further details of the formalism.

A block diagram of the hybrid control system model components is provided

in Figure 3.4. The system consists of three components: a continuous-time plant,

a DES-controller, and the interface between the two which converts between the

requisite continuous-time signals and discrete symbols for each corresponding input

and output.
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DES Controller

γ(r̃) Interface α(x(t))

Continuous Time Plant

r̃[n]

r(t) x(t)

x̃[n]

Figure 3.4: Block diagram of the discrete-to-continuous mapping functions
(interface) between continuous-time plant (CT-plant) and discrete event system

controller (DES-controller)

The continuous-time plant and the Interface taken together as one unit form the

DES-plant paired to the DES-controller. First we will describe each of the three com-

ponents of the model formalism and their interaction in general terms, then provide

details specific to the control problem we are addressing in this work.

A) Continuous-Time Plant (CT-plant): is generally a nonlinear, time-invariant

system expressed as

ẋ = f(x, r) (3.17)

y = g(x) (3.18)

where xεRn, rεRm, and yεRp are the state, input, and output vectors, respectively.

The input, r(t), is a piecewise continuous signal issued by the interface and based on

the DES-controller output symbols. Unless otherwise explicitly stated elsewhere, we

take the output function to be, g(x) = x.

B) Interface: the interface between the DES-controller and the CT-plant con-

sists of two memoryless mapping functions that preform the continuous signal to

discrete symbol conversion and vise versa. The actuator function, γ : R̃→ Rm, given

by

r(t) = γ(r̃) (3.19)

maps the sequence of DES-controller output symbols to a piecewise-continuous input
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signal for the CT-plant. Similarly, the generator function, α : Rn → X̃, given by

x̃ = α(x(t)) (3.20)

maps the state-space of the CT-plant to the set of plant event symbols for the DES-

plant.

C) DES-controller: the DES controller is specified by a quintuple, {S̃, X̃, R̃, δ, φ},
where S̃ is the set of DES-controller states, X̃ is the set of DES-plant event symbols,

and R̃ is the set of DES-controller output symbols. The DES-controller state transi-

tion function, δ : S̃ × X̃ → S̃, and the DES-controller output function, φ : S̃ → R̃,

describe the behaviour of the DES-controller and are given by the following equations,

s̃[n] = δ(s̃[n− 1], x̃[n]) (3.21)

r̃[n] = φ(s̃[n]) (3.22)

Where s̃[n] ε S̃, x̃[n] ε X̃, r̃[n] ε R̃, and n indexes the order of symbols occurring

in the sequence of events. The symbols in R̃ represent the DES-controller action to

be taken and symbols in X̃ correspond to events occurring in the CT-plant state-

space. DES-plant event symbols are generated when the state of the CT-plant crosses

from one region of its state-space into another region. The regions are partitioned

by hypersurfaces that are specified as the boundary, which when crossed, triggers

the occurrence of the corresponding DES-plant event. The set of DES-plant events

recognized by the generator function are defined by the set of hypersurface functions,

{hi : Rn → R, iεI}, that must satisfy the following conditions

∇xhi(ξ) 6= 0, ∀ξεℵ(hi) (3.23)

that stipulate the null-space of the functions, ℵ(hi) = {ξεRn : hi(ξ) = 0}, forms an

n− 1 dimensional smooth hypersurface separating the state-space. Koutsoukos et al.

define that if the hypersurface derivative is nonzero at the crossing, the conditions

can be simplified so that generation of a CT-plant event can be expressed as

hi(x(t)) = 0,
∂

∂t
hi(x(t)) 6= 0 (3.24)

The following subsections will describe the various components of our hybrid control
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system using the formalism provided above.

3.6.1 The 1-D DES-Controller Model

Since the user follows an egocentric reference frame, terms such as left, right, up,

down, and forward with be used to reference directional motion. We start by con-

structing a model for a one dimensional compensatory tracking problem in the context

of horizontal movement in the image. The state-space is simply a line segment that

is partitioned by two hypersurfaces (points) bounding the approximate target region.

We define the line to be Ix in length (width of the image) and specify the precise

target registration point at Ix
2 . The position of the hypersurface boundaries on the

line segment are specified by the parameter, l, and given by, xp1 = Ix
2 (1 − l) and

xp2 = Ix
2 (1 + l). An illustration is shown in Figure 3.5, with 0 < l ≤ 1. With this

we conform to the need for allowing for an approximate targeting region discussed

previously in Section 2.4. As l→ 0 the On-Target region reduces to a single point,

and conversely as l→ 1 the On-Targetregion becomes the entire image width.

Ix
2

x = xp1 x = xp2

x̃1 x̃3

x̃2 x̃4

Figure 3.5: State space diagram for 1D approximate targeting model

Two hypersurface functions are defined at each boundary point to support the

events triggers that correspond to crossings in a specific direction. The four functions,

h1(x) through h4(x) are given by

h1(x) = x− Ix
2

(1− l) (3.25)

h2(x) =
Ix
2

(1− l)− x (3.26)

h3(x) =
Iy
2

(1 + l)− x (3.27)

h4(x) = x−
Iy
2

(1 + l) (3.28)
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The set of DES-plant events, X̃, that are trigger upon crossings are defined as

x̃1 On-Target occurs after crossing h1(x) by a movement Left;

x̃2 Off-Target occurs after crossing point h2(x) by a movement Right;

x̃3 On-Target occurs after crossing point h3(x) by a movement Right;

x̃4 Off-Target occurs at crossing point h4(x) by a movement Left;

The set of DES-controller states for this model consist of the following symbols

(descriptions): s̃1 (On-Target), s̃2 (Off-Target-Right), and s̃3 (Off-Target-

Left). The DES-controller output function, φ, given by equation (3.22) will generate

the corresponding output symbols (descriptions): r̃1 (Stop), r̃2 (Move-Left), and

r̃3 (Move-Right). The DES-controller state transitions defined by the function, δ,

are illustrated in Figure 3.6. Since this is a compensatory tracking problem in which

the target is stationary (object on a shelf) and the end-effector is moving into align-

ment, we define the controller output symbols to reference the direction of movement

of end-effector. Thus when the centroid of the target object within the image frame

is left of center the end-effector (camera) must move to the left to align center of the

frame. The transitions from s̃2 and s̃3 to s̃1 depict DES-controller state transitions

s̃1

s̃3s̃2

·
r̃1

x̃1
r̃2

x̃3
r̃3

·
r̃3

·
r̃2

x̃2
r̃2

x̃4
r̃3

Figure 3.6: DES-controller state transition diagram for 1D approximate targeting
l-model

from Off-Target regions to the On-Target region. The transition of s̃1 looping

back upon itself indicates that the DES-controller maintains an On-Target state

regardless of slight position jitter of the CT-plant as the user attempts to hold their

arm steady within the target region. This is considered part of the ideally-behaved
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set of state transitions as it is an expected and acceptably stable result of the plant

dynamics.

In close proximity to either hypersurface, position jitter and susceptibility to

other disturbances can cause a problem similar to precise alignment to a single point.

If the user is tracking at a sufficiently slow rate and is able to respond to a controller

output of r̃1 (Stop) just within the bounds of the target region, there is a reasonable

possibility that the user could drift back over the target region boundary, generating

an Off-Target based event. This results in an inefficient, possibly unstable trajec-

tory through the state-space. The problem can be amplified by successive response,

and drift back and forth across the boundary producing an oscillating sequence of

DES-plant events and DES-Controller symbols in result.

Unstable behaviours such as overshoot of the target region cannot be repre-

sented by direct state transition as in equation (3.21). Overshoot with a well-behaved

user can occur if l is sufficiently small and/or end-effector velocity is sufficiently large

so that momentum carries it across the opposite hypersurface before the DES-plant

can respond to the r̃1 (Stop) control symbol. This result would be shown after

either of the sequences of state transitions:
(s̃2:x̃1)
r̃2

→ (s̃1:x̃4)
r̃1

or
(s̃3:x̃1)
r̃3

→ (s̃1:x̃2)

2̃2
.

The same could occur for an ill-behaved user if the dynamics were sufficiently slow so

that the DES-plant could respond to the Stop command, but did not out of choice4.

Regardless of which scenario was the cause of an overshoot, DES-plant events and

DES-controller states are queued and processed in sequence.

Since the direction of the state-space trajectory at a hypersurface crossing de-

termines the DES-plant event symbol, certain direct state transitions are impossible.

In this case, (s̃2, x̃2) and (s̃3, x̃4) as they represent the trajectory of approaching one

side of a hypersurface boundary yet instantaneously crossing in the opposite direction

from the other side.

3.6.2 The 2-D DES-Controller Model

Extending the description of the state-space to the 2-D image frame and using the

parameter, l, in a similar fashion to equation (2.4) we can define the four pairs

of coincident state-space partitioning functions that create an approximate target

4. We do not attempt to chart the possible reasons when a user chooses to not respond
to a control signal, only that it is a form of disturbance that can occur
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region. We define x = [x1 x2]T as the position state vector and using Ix and Iy as

the image dimensions in pixels, the hypersurface boundaries are given by equations

(3.29) through (3.36).

h1(x) = x1 −
Ix
2

(1− l) (3.29)

h2(x) =
Ix
2

(1− l)− x1 (3.30)

h3(x) =
Ix
2

(1 + l)− x1 (3.31)

h4(x) = x1 −
Ix
2

(1 + l) (3.32)

h5(x) = x2 −
Iy
2

(1− l) (3.33)

h6(x) =
Iy
2

(1− l)− x2 (3.34)

h7(x) =
Iy
2

(1 + l)− x2 (3.35)

h8(x) = x2 −
Iy
2

(1 + l) (3.36)

A diagram of the image state-space partitioned by the eight hypersurfaces (lines)

is provided in Figure 3.7. It shows which DES-plant events are trigger as the target

point pxy = [x1(t) x2(t)]T moves through the image. Individual events are defined

for unidirectional crossing of hypersurface segments bounded by either the image

boundaries or the intersections with the other hypersurfaces. The descriptions of the

DES-plant events and related camera motion are given in Table 3.1.

The DES-controller state symbols, S̃, the controller state, and descriptions of

the target’s relative position are given in table 3.2. There are ten DES-Controller

states, with s̃1 through s̃9 representing the various states of tracking towards the

target point pxy and s̃10 representing the absence of a target. The mapping for the

DES-controller output function, φ : S̃ → R̃, is given in Table 3.3. The second and

third rows of the table indicate that multiple DES-controller states produce the same

output symbol. This indicates how we prioritize horizontal target alignment over

vertical alignment in the two dimensional case.

A state transition diagram for the DES-controller is given in Figure 3.8. Both

the DES-plant event symbol and corresponding DES-controller output symbol are

provided for each transition. Each transition arc is colour coded to indicate which
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Table 3.1: DES-plant event (X̃) symbol table for two dimensional tracking with the
l-model

Symbol DES-Plant Event Symbols Hypersurface Camera
Move-
ment

x̃1, x̃5, x̃9 On-Target in horizontal (x1(t)) h1(x) > 0 left
x̃2, x̃6, x̃10 Off-Target in horizontal (x1(t)) h2(x) < 0 right
x̃3, x̃7, x̃11 On-Target in horizontal (x1(t)) h3(x) > 0 right
x̃4, x̃8, x̃12 Off-Target in horizontal (x1(t)) h4(x) < 0 left
x̃13, x̃17, x̃21 On-Target in vertical (x2(t)) h5(x) > 0 down
x̃14, x̃18, x̃22 Off-Target in vertical (x2(t)) h6(x) < 0 up
x̃15, x̃19, x̃23 On-Target in vertical (x2(t)) h7(x) > 0 up
x̃16, x̃20, x̃24 Off-Target in vertical (x2(t)) h8(x) < 0 down

of the three behavioural classes it corresponds to. Green transitions label ideally-

behaved state transitions which follow the horizontally prioritized tracking trajectory

to the target region. Blue arcs label transitions of well-behaved tracking that break

from the horizontal priority, but still minimize the overall planar distance to the

target. The transitions that are labeled in red specify the ill-behaved state transitions

where the motion of the hand/camera actually increases the planar distance to the

target. While it is likely the non-ideal transitions are likely due to minor unintentional

horizontal and/or vertical position drift of the camera, it is also possible that they

could be attributed to intentional movements that are in contradiction to the DES-

controller output commands. The Halt state, s̃10, and the loop back transition on

s̃1 were omitted from the diagram for to avoid visual clutter. All states can transition

to s̃10 through at any time, with or without a triggered plant, ·r̃6 , if the target object

is lost from the image.
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Table 3.2: DES-controller state (S̃) symbol table for two dimensional tracking with
the l-model

Symbol State Description Relative Target Position
s̃1 On-Target pxy in target region
s̃2 Off-Target-Right pxy Left of target region
s̃3 Off-Target-Left pxy Right of target region
s̃4 Off-Target-Above pxy Below of target region
s̃5 Off-Target-Right-Above pxy Left-Below of target region
s̃6 Off-Target-Left-Above pxy Right-Below of target region
s̃7 Off-Target-Below pxy Above of target region
s̃8 Off-Target-Right-Below pxy Left-Above of target region
s̃9 Off-Target-Left-Below pxy Right-Above of target region
s̃10 NO-Target

Table 3.3: Table of DES-controller output (R̃) symbols, given by equation (3.22),
for two dimensional tracking with the l-model

Symbol DES-controller Output Symbols
φ(s̃1) = r̃1 Stop: successful reach

{φ(s̃2), φ(s̃5), φ(s̃8)} = r̃2 Move-Left
{φ(s̃3), φ(s̃6), φ(s̃9)} = r̃3 Move-Right

φ(s̃4) = r̃4 Move-Down
φ(s̃7) = r̃5 Move-Up
φ(s̃10) = r̃6 Halt: no target
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Figure 3.7: Image state-space diagram for two dimensional approximate targeting
using the l-model
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Figure 3.8: DES-controller state transition diagram for two dimensional l-model.
Green indicates-ideally behaved transitions, blue indicates well-behaved transitions,

and red indicates ill-behaved transitions
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3.6.3 The 1-D DES-Controller Model with Hysteresis

To alleviate the potential drift instability an alternate method of partitioning the

state-space can be used. We call this the l2-model. It involves additional hypersur-

faces and redefinition of the generator function, α(x(t)) (equation (3.20)), so that the

sequence of DES-plant event symbols can represent two types of events based on the

direction in which a hypersurface is crossed. The new definition is given in equation

(3.37),

x̃[n] =

{
α(x(τe[n])) non-silent event

εi silent event
(3.37)

where τe[n] is the time stamp of the n-th event in the trajectory traversal sequence.

The symbol ε denotes a null symbol (silent event). With this definition the generator

function triggers non-silent events when a hypersurface is crossed in a one direction,

but a silent event when it is crossed in the opposite direction. Silent events have

no effect on DES-controller state transitions, so x̃[n] = α(x(τe[n − 1])). To provide

an example we partition the one-dimensional state-space with a set of four hyper-

surfaces given in equations (3.38) through (3.41), below. The placement of the four

hypersurfaces are specified by the two parameters l1 and l2. Similar to Section 3.6.1,

0 < l1, l2 ≤ 1.

h1(x) = x− Ix
2

(1− l1) (3.38)

h2(x) =
Ix
2

(1− l1 + l1l2)− x (3.39)

h3(x) =
Ix
2

(1 + l1)− x (3.40)

h4(x) = x− Ix
2

(1 + l1 + l1l2) (3.41)

They are illustrated in Figure 3.9. The two On-Target events are triggered at

the crossing of either h1(x) or h3(x) towards the center point, but only a silent

event is generated if the trajectory were to drift back over either hypersurface, so

the DES-controller state remains as s̃1. This imposes a hysteresis on the target

acquisition trajectory through the state-space. The hysteresis effect also applies with

overshoot of the target region. If tracking On-Target from a crossing of h1 and a

subsequent crossing of h3 occurs before the plant responds to the Stop command,

the On-Target state would still be valid as long as h4 was not crossed.
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With non-silent events taking precedence over simultaneous silent events and

letting l2 → 0, the hysteresis partitioning reduces to the basic one-dimensional

l-model previously described in Section 3.6.1. When l1 → 0, the set of hyper-

surfaces align to the center of the frame so that the generator function triggers

On-Target events as if the plant were an ideal robot capable of precise target

registration.

Ix
2

xp1 xp3xp2 xp4

x̃1
ε1

x̃3
ε3

x̃2
ε2

x̃4
ε4

Figure 3.9: State space diagram for the one dimensional l2 model for target region
hysteresis.

The DES-controller state transition function, δ and DES-controller output func-

tion, φ, for the hysteresis partitioning are illustrated in Figure 3.10. As in the l-model

case, the DES-controller states are still represented by the symbols: On-Target (s̃1),

Off-Target-Left (s̃3), and Off-Target-Right (s̃2). But there is the addition of

loop-back transitions based on the silent event crossings.

s̃1

s̃3s̃2

x̃1,ε1,x̃3,ε3
r̃3

x̃1
r̃3

x̃3
r̃3

x̃4,ε4
r̃1

x̃2,ε2
r̃2

x̃2
r̃2

x̃4
r̃1

Figure 3.10: DES-controller state transition diagram for the one dimensional
l2-model for target region hysteresis.
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3.6.4 The 2-D DES-Controller Model with Hysteresis

We can extend the DES to an l2-model for two dimensions by specifying the following

functions (equations (3.42) through (3.49)) for partitioning the state-space. In a

similar manner to the one dimensional case, the hypersurface position parameters are

0 ≤ l1, l2 ≤ 1. An illustration of the state-space with both the non-silent and silent

DES-plant event symbols labeling the directional crossing is given in Figure 3.11.

h1(x) = x1 −
Ix
2

(1− l1) (3.42)

h2(x) =
Ix
2

(1− l1 + l1l2)− x1 (3.43)

h3(x) =
Ix
2

(1 + l1)− x1 (3.44)

h4(x) = x1 −
Ix
2

(1 + l1 + l1l2) (3.45)

h5(x) = x2 −
Iy
2

(1− l1) (3.46)

h6(x) =
Iy
2

(1− l1 + l1l2)− x2 (3.47)

h7(x) =
Iy
2

(1 + l1)− x2 (3.48)

h8(x) = x2 −
Iy
2

(1 + l1 + l1l2) (3.49)

The partitioning of the state-space forms two rectangular bounding regions.

The portion of the state-space within the inner boundary forms the definite approxi-

mate On-Target region and the portion of the state-space outside the outer bound-

ary forms the definite Off-Target region. The portion of the state-space between

the two boundaries is the hysteresis region which is considered On-Target if the

tracking trajectory had previously crossing into the On-Target region through the

proper sequence of DES-controller state transitions. The set of DES-controller state

symbols, S̃, and the DES-controller output function, φ(s̃), are the same as those

defined in Tables 3.2 and 3.3, respectively. The DES-controller state transitions are

illustrated in Figure 3.12 with green paths indicating ideally-behaved transitions, blue

paths indicating well-behaved transitions, and red paths indicating ill-behaved transi-

tions. Ideally-behaved transitions follow trajectories that are moving towards resolv-
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Table 3.4: DES-plant event (X̃) symbol table for one dimensional tracking with the
l2-model

Symbol DES-Plant Event Symbols Hypersurface Camera
Move-
ment

x̃1, x̃5, x̃9 On-Target in horizontal (x1(t)) h1(x) > 0 left
ε1, ε5, ε9 remain On-Targetin x1(t) h1(x) < 0 right
x̃2, x̃6, x̃10 Off-Target in horizontal (x1(t)) h2(x) < 0 right
ε2, ε6, ε10 remain Off-Targetin x1(t) h2(x) < 0 left
x̃3, x̃7, x̃11 On-Target in horizontal (x1(t)) h3(x) > 0 right
ε3, ε7, ε11 remain On-Targetin x1(t) h3(x) < 0 left
x̃4, x̃8, x̃12 Off-Target in horizontal (x1(t)) h4(x) < 0 left
ε4, ε8, ε12 remain Off-Targetin x1(t) h4(x) < 0 right
x̃13, x̃17, x̃21 On-Target in vertical (x2(t)) h5(x) > 0 down
ε13, ε17, ε21 remain On-Targetin x2(t) h5(x) < 0 up
x̃14, x̃18, x̃22 Off-Target in vertical (x2(t)) h6(x) < 0 up
ε14, ε18, ε22 remain Off-Targetin x2(t) h6(x) < 0 down
x̃15, x̃19, x̃23 On-Target in vertical (x2(t)) h7(x) > 0 up
ε15, ε19, ε23 remain On-Targetin x2(t) h7(x) < 0 down
x̃16, x̃20, x̃24 Off-Target in vertical (x2(t)) h8(x) < 0 down
ε16, ε20, ε24 remain Off-Targetin x2(t) h8(x) < 0 up
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Figure 3.11: Illustration of the silent and non-silent events triggered by directional
crossings of the hypersurface boundaries within the 2-D image image state space

ing the compensatory tracking solution in accord with the DES-controller output.

The well-behaved transitions follow trajectories that are moving towards resolving

the compensatory tracking solution not necessarily in accord with the DES-controller

output. An example is the state transition s̃5 → s̃2 on
ε18
r̃2

which resolves the ver-

tical component of the tracking solution even though the axially prioritized control

law attempting to drive the plant towards resolving the horizontal component first.

The ill-behaved transitions follow trajectories that are moving away from resolving

the compensatory tracking solution in contradiction to the DES-controller outputs.

An example is the state transition s̃7 → s̃7 on
ε9
r̃5

which moves outside the definite

horizontal On-Target region subspace under a control law attempting to drive the

plant to resolve the vertical component, erroneously resulting in a larger ||pxy||.
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Figure 3.12: DES-controller state transition diagram for two dimensional l2-model.
Green indicates-ideally behaved transitions, blue indicates well-behaved transitions,

and red indicates ill-behaved transitions

3.6.5 The 3-D DES-Controller Model with Hysteresis

Now we can expand to the three-dimensional task space, keeping in mind that the

state-space is still defined within image feature-space. By extending the state-space

to include a third position component of depth based on the image feature moment,

m00 = −x3, representative of the size of the target object projected within the image,

we can create the boundary that triggers an On-Targetcondition after sufficient

depth motion once horizontal and vertical alignment is achieved.

The set of hypersurfaces is then constructed by taking the eight partitioning

functions specified in equations (3.42)-(3.49) and defining an additional one, given by
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equation (3.50).

h9(x) = x3 + fz (3.50)

To provide a simplified illustration of the DES-controller state transitions, we

overlay the ideal set of state transitions upon an illustration of the hypersurface par-

titioning for the 2-D image-space in Figure 3.11. The depth boundary hypersurface,

h9(x), is not shown but is located fz into the page. The DES-controller state sym-

bols are located within the regions of the state-space that are definite. Similar to the

2-D case above, the DES-controller will take one of two adjacent states within the

regions between the hypersurfaces depending on the CT-plant’s trajectory through

the state-space, with the exception of depth. Once the end-effector initially crosses

the depth boundary it is sufficiently close that the reaching task is complete. The

user can take control of the overall task to probe the vicinity manually to locate the

surface of the object and then further proceed to determine the appropriate grasping

pose and forces.

The configuration of the green state transitions shows that horizontal compen-

satory tracking is prioritized over vertical. Horizontal deviations are resolved first

within each image frame before any vertical motion cues are given. Similarly, vertical

deviations are prioritized over depth deviations.

The DES-controller state, DES-controller output symbol, and DES-plant events

are inherited from the two dimensional model with some minor additions and redefi-

nitions are given in Table 3.5. Since the hypersurface boundary locations are given in

pixels, the size of the physical target region bounded by their projection out into the

task space will vary with the distance to the target. This means that the user is only

required to exhibit precise control over the movement of their hand/camera when

they are very close to the target object. At moderate distances, the optical axis could

possibly be directed at some portion of the target object but not its centroid and still

be On-Target. This method of partitioning prevents the user from unnecessarily

expending energy attempting to attain and maintain precise registration at distances

where small deviations in navigational trajectory are irrelevant to the task.

Depicting the entire state diagram is fairly cumbersome so the diagram in Fig-

ure 3.13 illustrates the transitions between in the subset of DES-Controller states for

the 3D l2 model localized in the lower left quadrant of the image frame. Through

symmetry, the reader can envision the other state transitions from the remaining
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Table 3.5: DES-plant events (X̃), DES-Controller state symbols (S̃), and
DES-controller output symbols, (R̃) that extend the two dimensional l2-model to

three dimensional tracking

Symbols Redefined Symbols Added
x̃25 : On-Target in depth, h9(x) > 0

s̃1 Off-Target-Depth s̃11 On-Target
s̃10 No-Target
φ(s̃1) = r̃1 : Move-Forward φ(s̃11) = r̃7 : Stop

three quadrants of the image frame. The diagram is very similar to the lower left

portion of Figure 3.12 with some distinct differences. The first is the depth tracking

transition, s̃1 → s̃11 on
x̃25
r̃7

, and the second is the loss of target transitions from the

four intermediate tracking states to s̃10.
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Figure 3.13: An illustration that depicts state transitions within the 3-D image
state-space that traverse hypersurface boundaries h1(x) to h9(x)

3.6.6 Continuous-Time Plant Input

The actuator function within the interface, γ : R̃→ Rm, converts the DES-controller

output symbols into a piecewise continuous input signal to the CT-plant. It is given

by

r(t) =
∞∑
n=0

γ(r̃n)I(t, τc[n], τc[n+ 1]) (3.51)

where I(t, τc[n], τc[n+1]) = 1 over the interval τ1 ≤ t < τ2, and τc[n] is the timestamp

of the nth DES-controller output symbol, r̃[n].

The use of vibratory signalling through the plant’s somatosensation input chan-

nel allows for the implementation of either bang-bang and proportional control mech-

anisms. For bang-bang control a constant vibration is applied to the vibrotactor(s)

regardless of the magnitude of error between the center of the frame and the cen-

troid of the target. With a proportional scheme the frequency varies according to the
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magnitude of the error. In either case, the the discrete automaton supervisor still

switches amongst the set of one-dimensional control laws.

The horizontal and vertical controls rx(t) and ry(t) are of the same form for both

the bang-bang and proportional schemes. The control for bang-bang rx(t) is given in

equation (3.52) and the control for proportional rx(t) is given in equation (3.53).

rx(t) = u(x1 − l1Ix)− u(−x1 − l1Ix) (3.52)

rx(t) =
x1 − l1Ix
Ix
2 − l1Ix

u(x1 − l1Ix)− x1 + l1Ix
−Ix

2 + l1Ix
u(−x1 − l1Ix) (3.53)

Given that l1 and l2 are in measured in pixels, the target region bounded by

the hypersurfaces projected out into the task space will vary with the distance to

the target. This means that the user is only required to exhibit precise position

control over the movement of the camera when they are very close to the target

object. At moderate distances, reasonable misalignment is allowable which simplifies

the trajectory traversal.

The depth control rz(t) differs in that there is only a hypersurface at some

point in front of the camera, i.e. the control only drives the plant in one direction.

If the camera view is beyond the target, the system is unstable. Also, moderate

tracking in depth can cause the DES-controller to switch to a horizontal (or vertical)

tracking state if there was moderate target centroid misalignment at the onset of the

depth movement requiring the new horizontal (or vertical) error to be resolved before

the depth tracking state, s̃11, can continue. Under a proportional scheme, upon

a resuming s̃11, r(t) would be at the maximum in its frequency range creating an

ambiguous message to user. In the real sequence of events, they had moved closer to

the target, then resolved some minor horizontal (or vertical) misalignment, resulting

in a depth tracking signal which indicates that their hand is now further away from

the target. As such, only bang-bang control, rz(t), is used for depth track and is

given in equation (3.54)

rz(t) = u(x3 + fz) (3.54)
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3.7 Hybrid Control System Performance

Measures

With the state-space partitioning models described in the previous sections, reaching

task tracking performance can be quantified as discrete event measures that show the

accuracy of response to the control issued and the precision of the response. Using

either separately, or a combination of the two will provide varying degrees of success

in the performance of the assisted reaching task and the behaviour of the plant.

In this section we revisit and expand upon the three behavioural classes of

system performance that were introduced in Section 2.5. The classes are generally

defined as:

Ideally-behaved indicates that the user followed the motion cues with a high level

of precision and accuracy, continually decreasing the compensatory tracking

distance;

Well-behaved indicates that the user followed the motion cues with a reasonable

degree of precision and accuracy, generally decreasing the compensatory track-

ing distance;

Ill-behaved indicates that the user exhibited, cumulatively over the entire trajec-

tory, a significant deviation from the motion cues issued.

In terms of an accuracy measure, traversal through the state-space during the

reaching task triggers the events. The sequence of the events and the composition

of the sequence can describe the plant’s response to the control signal (motion cues)

issued. The diagram in Figure 3.14 shows the regions of the partitioned image state-

space in which each DES-controller state, s̃i, i = 1 . . . 9, operates. Starting within any

particular region, the DES-controller will try to drive the plant through a trajectory

that would produce a specific sequence of DES-plant events. Depending on initial

start position in the state space an ideal trajectory would be described by a sequence

of n symbols composed of one or unique DES-plant event symbols. The symbols

can be divided into the axially prioritized subsets X̃1 = {x̃1, x̃3, x̃5, x̃7, x̃9, x̃11} for

horizontal tracking, then the appropriate symbol from X̃2 = {x̃13, x̃15} for vertical

tracking, and finally X̃3 = {x̃25} for depth. Assuming two tasks have the same start

and and target position in the task space, and each is performed in the the same level
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of accuracy and precision, the length of the sequence, N , is dependent on end-effector

velocity which is solely determined by the user. Thus basing a metric on directly on

velocity profile or completion is not advantageous nor would it necessarily produce

consistent results.

Ix
2

Iy
2

s̃8

s̃2

s̃5

s̃7

s̃1

s̃4

s̃9

s̃3

s̃6

s̃10

Figure 3.14: An illustration of the two dimensional state-space that depicts all the
ideally-behaved DES-controller state transitions triggered from non-silent

DES-plant events that traverse hypersurface boundries h1(x) to h8(x)

Instead, we proposed a set of metrics consist of an accuracy measure, a precision

measure, and an overall performance measure which is a function of both. These

However, within the scope of that string of DES-plant event symbols, portions

of the tracking trajectory could follow winding marginally stable paths within each

of the partitioned regions through the state-space. As such, a minimal sequence of

DES-plant events could be a sample path that is a less efficient completion of the

reaching task than an alternate sequence with a more accurate track of the intended

trajectory specified by the DES-controller output symbols. Thus an additional motion

cue tracking performance measure which specifies precision is described in the next

subsection. We use both accuracy and precision measures to examine the real tra-

jectories recorded from subjects during reaching task experiments using the aiReach

system.

3.7.1 Discrete Event Measures

While the sequence of DES-plant events triggered by traversal of the state-space drives

and is driven by the evolution of DES-controller state transitions, it also describes
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the accuracy of the DES-plant’s response to the DES-controller output. Each DES-

controller output symbol, resulting in a CT-plant input, if followed even with a broad

degree of precision would produce a well-behaved sequence of subsequent plant events

since DES-controller states operate over regions of the state-space.

h1(x)h2(x)

h5(x)

h6(x)

QA

QB

Figure 3.15: Diagram that shows two terminal point equivalent trajectories, QA and
QB , originating from within the lower left quadrant of the image-space

The diagram in Figure 3.15 shows two possible alternate, parallel trajectories,

QA and QB , occurring between times τe[n] and τe[n + k]. Both originate in the

region of the state-space that is driven under DES-Controller state s̃6 and terminate

in the region driven by s̃1. Also included, in green, is the ideal trajectory that should

evolve from the same initial point as QA if the plant (user) DES-plant response to

the DES-Controller output symbols was highly accurate and precise. While each QA

and QB cross the same four hypersurfaces, they do so in a differing order. Thus the

events triggered and the corresponding state transitions will differ by producing the

following plant events / controller states / output symbol sets:

QA: X̃A = {·, ε6, ε18, x̃5, x̃13}, S̃A = {s̃5, s̃5, s̃5, s̃4, s̃1}, and φ(s̃)A = {r̃2, r̃2, r̃2, r̃4, r̃1}

QB X̃B = {·, ε18, ε6, x̃17, x̃1}, S̃B = {s̃5, s̃5, s̃5, s̃2, s̃1}, and φ(s̃)B = {r̃2, r̃2, r̃2, r̃2, r̃1}

In terms of a region basis the accuracy of the two trajectories is equivalent. Yet

examining the individual DES-controller state transitions that differ between the two

trajectories shows that QA has only ideally-behaved transitions, whereas QB has one
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well-behaved trajectory. That difference is at the third state transition in QB where

s̃5 → s̃2 on
x̃17
r̃2

as the non-ideal transition. So we can define a measure to evaluate

the accuracy behaviour of the trajectory evolution by evaluating each sequential state

transition by

δ[n] = m(x̃[n], s̃[n], s̃[n− 1]) (3.55)

and then generate an accuracy behaviour score for the entire trajectory throughout

the reaching task by

D =
1

N − 1

N−1∑
n=1

m(x̃[n], s̃[n], s̃[n− 1]) (3.56)

withm(s̃[n], s̃[n−1]) being a discrete function the produces values from {1, 0,−1}
for state transitions that are ideally-behaved, well-behaved, or ill-behaved, respec-

tively. Equation (3.55) produces the trajectory segment based sequence of state tran-

sition scores that is a term in the reaching task performance metric described later.

The state transition metric, −1 ≤ D ≤ 1, given in equation (3.56) describes how

accurately, on average, the plant reproduced the set of state transitions indicated by

the DES-controller through the motion cues issued. A value of D = 1 indicates that

the fully correct set of state transitions were followed during the trajectory. A value

of D = 0 indicates that the sequence of state transitions replicates the equivalent of a

random set of trajectory segment movements: some portion driven directly towards

the target, some driven indirectly towards the target, and some portion directly away

from the target. A value of D = −1 indicates that the trajectory followed was in op-

position to the intend motion cues. While theoretically possible, scores of D < 0 are

impractical as it would require an artificial termination of the reaching task at some

arbitrary point, assuming an infinite field of view for the camera or at the point the

target leaves the field of view, which would not be considered a successful execution

of the reaching task. Returning to the example provided in Figure 3.15, the sample

trajectories of QA and QB produce state transition accuracy scores of DA = 1 and

DB = 0.75, respectively. With this measure, the state transitions that occur dur-

ing the evolution of each trajectory can be quantified in terms of accuracy towards

appropriate state transitions for the reaching task solution.

The DES-Controller state transitions can be filtered based on various subsets

of silent events that occur during the evolution of a trajectory. The diagram in



Chapter 3: Hybrid System Model for Visual Control 70

Ix
2

Iy
2

h1(x) h3(x)h2(x) h4(x)

h5(x)

h7(x)

h6(x)

h8(x)

ε5 ε7

ε1 ε3

ε9 ε11

ε17

ε19

ε13

ε15

ε21

ε23

Figure 3.16: Region partitioning of the image space that shows silent events
triggering equivalent state transitions.

Figure 3.16 shows three subsets of silent events: {X̃α} = {ε̃1, ε̃3, ε̃13, ε̃15}, {X̃β} =

{ε̃5, ε̃7, ε̃9, ε̃11}, and {X̃γ} = {ε̃17, ε̃19, ε̃21, ε̃23}. To aid the reader in visualizing the

boundaries, the corresponding regions of the state-space in which {X̃α}, {X̃β}, and

{X̃γ} occur are colour coded as green, blue, and red, respectively.

Figure 3.16 show the bounded regions that maintain. The subset {ε̃1, ε̃3, ε̃13, ε̃15}
under the l2 hypersurface model causes the DES-Controller state to maintain a s̃1

in comparison to l1 hypersurface model while would trigger non-silent events and a

corresponding DES-Controller transition to either one of {s̃2, s̃3, s̃4, s̃5}

3.7.2 Motion Cue Tracking Performance

The second element of measuring this system’s performance is the precision with

which the user tracks the intended (motion cues) as the trajectory evolves. Even

though the time interval between DES-controller symbols ([τc[n], τc[n + 1]) is ap-
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proximately constant, with no control applied to the velocity and acceleration of

end-effector movement, there is no reference displacement available each time the

end-effector position changes to compare magnitudes. The DES-plant (user) au-

tonomously determines the end-effector velocity throughout the course of the reaching

task. There is also no available mechanism to maintain consistency of that control

from one task to another, either upon the same user or across different users. How-

ever, what is consistent is the egocentric directional reference frame. Thus we choose

to measure the directional precision of movement for each trajectory segment. To

quantify the directional precision of tracking we defined q[n]εR3 to be the the nth

segment of the user’s actual trajectory through the reaching task in image space.

With the unit vectors in the direction of motion cues axes we can define three scalar

quantities, ρx1, ρx2, ρx3εR, for each trajectory segment given by

ρx1[n] =
q[n] · x̂1
||q[n]||

ρx2[n] =
q[n] · x̂2
||q[n]||

(3.57)

ρx3[n] =
q[n] · x̂3
||q[n]||

Each ρx[n] gives the directional error fraction (DEF) within the range [−1 . . . 1]

per trajectory segment. Similar to the equation (3.55), ρx is the segment based

sequence of movement precision scores. The sequence is constructed from the appro-

priate ρx[n] component corresponding to the current r̃[n]. Essentially it measures

quality of the expended effort in the intended direction of motion. If ρx[n] = 1 then

entirety of the displacement of the end-effector was along the intended direction of

the motion cue, whereas ρx[n] = 0 would show orthogonal movement and ρx[n] = −1

would show opposing movement during the n-th trajectory segment.

To quantify the movement precision for the entire trajectory we define the

directional tracking error as the average DEF, given by

θe =
1

N − 1

N−1∑
n=1

ρx[n] (3.58)

Values of−1 ≤ θe < 0 indicate ill-behaved tracking since, on average, movements were
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directed away from the intended direction indicated by the DES-controller output

symbols. Values of θe = 0 indicates that the movements were equivalent to an

essentially random sequence, which is considered ill-behaved as there should be some

bias towards movement corresponding to the motion cues given. Values of 0 < θe ≤ β

are considered to be well-behaved and β < θe ≤ 1 are ideally-behaved. The threshold

value of β allows for the realistic notion that ideally-behaved precision is not actually

perfect. From a practical perspective, β is also likely to be unique to each individual

and converges after successive sessions of practice.

The overall tracking response metric which quantifies performance of the reach-

ing task is given by

ψ =
1

N − 1

N−1∑
n=1

δ[n] · ρx[n] (3.59)

Referring back to the example depicted in Figure 3.15 we can then quantify the

tracking response of the three sample trajectories as:

QA: δ[n] = {1, 1, 1, 1}, ρx[n] = {0.707, 0.707, 0.707, 0.707}, and ψ = 0.707

QB δ[n] = {1, 1, 0, 1}, ρx[n] = {0.707, 0.707, 0.707, 0.707}, and ψ = 0.530

Ideal: δ[n] = {1, 1, 1, 1}, ρx[n] = {1, 1, 1, 1}, and ψ = 1

The scoring assignments above maintain the assumption that all motion is within the

plane shown and the sample trajectories are subdivided into four segments, each only

spanning one triggering event.
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Chapter 4 Human Motor Control and

Performance

Reaching task movements can be described in a number of different internal and/or

external coordinate frames representing the trajectory of the hand from initial position

and orientation to final position and orientation at the target. From a neurophysio-

logical perspective, internal coordinate frames can be specified in terms of joint-space

kinematics, joint-space dynamics, or vectorized patterns of actuating muscle activity

at each joint [108]. Measurement of vector quantities for internal coordinate frame

based control can range from moderately to extremely cumbersome (possibly inva-

sive), and external coordinate frame representation is best suited for the work pro-

posed here. We presented a set of proposed metrics in the later portion of the previous

chapter derived from our hybrid control model for guidance of the reaching task. How-

ever there exists a well established metric within the context of natural human motor

performance research which should be examined for completeness. Studies in human

motor performance for pointing, or reaching tasks often employ Fitts’ Law[32, 109] to

quantify the degree of success relative to a subject’s ability track in on a target. As a

metric it quantifies an inherent speed-accuracy trade off that exists in human motor

performance. The trade off manifests through a comparison between the predicted

movement time required to complete the task and the difficulty of performing the

task. The speed-accuracy trade off exhibits a linear proportionality between move-

ment time and task difficulty. For the one dimensional case, the movement time, MT ,

is given by equation (4.1)

MT = a+ b · ID (4.1)

where ID is the index of difficulty for the reaching/pointing task, with a and b being

experimentally derived constants. Fitts’ Law uses an information theoretic approach

to establish a linear relationship between the time required to preform the movement

and the index of difficulty for that movement. The unit for ID, given in equation

(4.2), is ‘bits’. It shows that there is an inversely proportional relationship between
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A, the amplitude of movement, and W , the target width along the line of approach

when determining the index of difficulty for a particular movement.

ID = log2

(
2A

W

)
(4.2)

The diagram in Figure 4.1 illustrates Fitts’ classic reciprocal tapping test [32].

During the test, a subject is required to start at the midpoint of one target region,

then move to and tap the corresponding target point within the opposing target region

as quickly and accurately as possible. Upon the targeting tap, they are to continue

with a reversal of direction and target the previous target region in successive back

and forth motions. This difficulty of the a particular tapping test is determined by the

ratio of movement amplitude between targets, A, and trying to tap within a region

that is W
2 distance on either side of the target line.

Amplitude (A)

Target

Width (W)

Target

Width (W)

Figure 4.1: Illustration of the 1-D Fitts’ reciprocal tapping test configuration

A number of variants to Fitts’ Law have been proposed over the years. One that

has gained wide spread adoption is the Shannon formulation proposed by Macken-

zie [110] which is more closely related to Shannon’s Theorem for the information

capacity of a communications channel, given in equation (4.3),

C = B log2

(
S +N

N

)
(4.3)

where the channel capacity, C, is a function of the signal power, S, and the noise

power, N , given a channel bandwidth, B. The Shannon formulation of Fitts’ Law is

given by

MT = a+ b log2

(
A

W
+ 1

)
(4.4)



Chapter 4: Human Motor Control and Performance 75

This formulation is preferred as it does not produce an erroneously negative value

for ID when the amplitude of the movement is less than half the target width, nor

an infinite value when the starting position for the task happens to be the target

position as well (A = 0). The other notable formulation for targets constrained in

one dimension was proposed by Welford [111] prior to MacKenzie’s formulation, but

is very similar.

The reader is referred to MacKenzie’s paper [112] and a follow up work authored

with Soukoreff [113], which provide an excellent review of the application of Fitts’

Law as a quantitative performance model in the field of human-computer interfacing.

4.1 A Control Theoretic Approach

In this section we examine the approach of modeling the system performance from a

control theoretic perspective in comparison to Fitts’ information theoretic approach.

A detailed discussion of the derivations presented in this section can be found in [114].

Continuing with the established premise that task difficulty corresponds to the

relationship between the movement amplitude and the width of the target, we examine

first- and second-order system models for movement performance.

Starting with a first-order system response to a step input, it can be shown

to display a similar inversely proportional relationship between movement amplitude

and target width. Using the same definitions for amplitude, A, and target width, W ,

given in equation (4.2). The ideal output position is the center of the target region; a

movement amplitude of A from the start position. However, the target has actually

been reached after traversing A − W
2 from the starting position. In the latter case

the output has been driven to the acceptable value, the leading edge of target object.

That is an acceptable target acquisition criteria and thus we get

A− W

2
= A− Ae−kt

Employing some algebraic manipulation and the change of base property for loga-

rithms, we get the result
ln 2

k
log2

(
2A

W

)
= t (4.5)

which is essentially the original formulation of Fitts’ Law with a = 0 and b = ln 2
k .
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Similarly, for a second-order system providing a mass-spring-dashpot model as

the basis for the movement, the motion of the can be described by

F (t)− k2ẋ(t)− k3x(t) =
1

k1
ẍ(t) (4.6)

where F (t) is the input force, 1
k1

is the mass, k2 and k3 are the gains associated

with the countering forces due to friction and the restorative force of the spring (co-

activation), respectively. Since the system (human arm) is not inherently drawn back

to its initial position we can use k3 = 1 and obtain a transfer function of

x(s)

F (s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(4.7)

which takes on the more common convention of the constant parameters being ex-

pressed in terms of the undamped natural frequency, ωn, and the damping ratio,

ζ.

In the context of a reaching/pointing task, Langolf et al. [115, 116] showed

that response for the system is an underdamped solution, so the second order model

produces the exponential form

A− W

2
= A− A

(
e−ζωnt√

1− ζ2

)
(4.8)

After employing similar algebraic manipulation, equation (4.8) can be expressed as

t =
1

−ζωn
ln(

√
1− ζ2) +

ln 2

ζωn
log2

2A

W
(4.9)

In this form we get a = 1
−ζωn ln(

√
1− ζ2) and b = ln 2

ζωn
. One of the key failures in

using first- and second-order dynamic models to quantify reaching/point task per-

formance is the mismatch between the theoretical and experimental velocity profiles

of the movement. Data collected by numerous researchers [55, 50] shows that the

velocity profiles for natural movement exhibits a gaussian (bell) shaped curve as op-

posed to the skewed, peakedness exhibited by the theoretical first- and second- order

dynamic models. The application of the Fitts’ law relationship as a performance mea-

sure describes the subjects capacity to perform an accurate targeting task as opposed
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to attempting to describe that actual motion. In further contrast, the information

theoretic approach of the Fitts law metric captures the variability of targeting in

natural movement.

4.2 Fitts’ Law Adaptations for 2-D and 3-D

Targeting Tasks

Crossman [117] first proposed a two dimensional formulation of Fitts’ Law shortly

after Fitts published his initial work. The proposed model was based on only a pilot

study using two subjects and took the form of

MT = a+ b · log2(
A

W
+ 1) + c · log2(

A

H
+ 1) (4.10)

where a, b, and c are experimentally derived constants. The significance of Crossman’s

model is that it clearly delineates contributions to a movement by separating the

difficulty from the amplitude resolution, A
W , and the difficulty from the directional

resolution, A
H . MacKenzie and Buxton [118] are recognized for the two most widely

accepted 2-D formulations of Fitts’ Law: the apparent-width model and the smaller-of

model.

The first is the more intuitive and an abstraction of a one-dimensional pointing

task. The dimensional reduction is achieved by only considering the line of approach

to the target, as shown in Figure 4.2, when determining the amplitude of movement

and the target width, W ′, The formulation for the apparent-width model is given

in equation (4.11). Even though there are only to independent quantities in the

IDW ′ formulation, it is dependent on four parameters, A, W , H, and θ; which makes

it slightly more complex than the smaller-of formulation given in equation (4.12),

which is only dependent on the parameters A, W , and H.

IDW ′ = log2

(
A

W ′
+ 1

)
(4.11)

IDmin(W,H) = log2

(
A

min(W,H)
+ 1

)
(4.12)
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They also compared three other formulations: IDW×H , IDW+H , IDW (contribution

of H is ignored, referred to as status-quo model). Those three were discounted as

viable models due to statistically significant differences in the pairwise comparison

between the correlation of those models to the experimental data and correlations

of the apparent-width and smaller-of models to the experimental data. Their results

reported that while the smaller-of model showed a slightly stronger correlation to the

experimental data than the apparent-width model, the pairwise comparison between

the two was not statistically significant.

Hoffmann and Sheikh [119] also separately proposed an IDmin model for 2-D

pointing task. In their work, they provided a justifying rationale over the Crossman

model by arguing ”only when the target height is less than the natural vertical scatter

of hits on the target is there likely to be any effect of vertical constraint”(Hoffmann et

al. , pg1073). This is a valuable insight as it prescribes a threshold for the onset of

a directional pointing task component within the overall task. The onset thresh-

old being the outer endpoints of the targeting scatter perpendicular to the line of

approach.

For the purposes of simplicity in notation, from this point on we drop the prime

superscript and adopt the convention that W extends in the direction of movement

which relates to the amplitude task constraint, and H extends orthogonal to the

direction of movement which relates to the directional task constraint.

Other researchers such as Ware and Balakrishnan [120] and Murata [34, 35]

used the Shannon formulation in subsequent work. However, a study of bivariate

pointing tasks by Accot and Zhai [121, 122] showed that there were fundamental

limitations with the both the IDmin and IDW ′ models. One of those limitations

is the inconsistent interaction between the contributions to MT as W and H vary.

At the extreme, when either W → ∞ or H → ∞, both the IDmin and Crossman

models adequately represent either an exclusively directional or exclusively amplitude

pointing task, respectively. However, within the range of nominal values for W and

H the IDmin model does not adequately capture the interaction between the two

dimensions. The model predicts that the value of H is irrelevant to the task difficulty

if H > W and H
W ≈ 1. Similarly, it predicts that W is irrelevant to the task difficulty

if W > H and W
H ≈ 1.

Accot and Zhai also discussed a number of properties missing from the current

models in the literature that are necessary to more accurately capture the behaviour
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of a 2-D Fitts pointing task:

• movement time scale independence when A,W,H are all multiplied by the same

factor;

• regression to a 1-D Fitts model as either W or H goes to infinity;

• the smaller of either W or H should be the dominant factor in the index of

difficulty;

• the duality in the nature of the effect of W and H on the index of difficulty;

• the effect of W and H should be continuous over the range of values.

Accot and Zhai proposed a new 2-D formulation based on vector norms which is

described below. Given a vector x = (x1, . . . , xn), a set of weights w = (w1, . . . , wn),

and pεR the weighted `p-norm of x is defined by:

‖ x ‖p,w=

(
n∑
i=1

wi | xi |p
)1
p

(4.13)

Applying it to the pointing task constraint vector X = ( AW , AH ) results in a bivariate

model for a 2-D Fitts pointing task of the form

T = a+ b log2(‖ X ‖p,w +1) (4.14)

and allows the scaled contribution of both target dimensions in the calculation of the

index of difficulty. In that fairly comprehensive study, they proposed and compared

three formulations of a bivariate 2-D Fitts Law based on the `1-norm ,`2-norm, and

`∞-norm of the constraint vector, Xp,w, in the index of difficulty:

ID`1 = log2

(
w1

A

W
+ w2

A

H
+ 1

)
(4.15)

ID`2 = log2

√w1

(
A

W

)2

+ w2

(
A

H

)2

+ 1

 (4.16)

ID`∞ = log2

(
max

(
w1

A

W
,w2

A

W

)
+ 1

)
(4.17)



Chapter 4: Human Motor Control and Performance 80

The `∞-norm with unary weights can be rewritten as A
min(W,H)

which repre-

sented the prior state of the art in 2-D Fitts Law formulations according to MacKenzie

and Buxton [118], as well as Hoffmann and Sheikh [119]. Their results showed a sig-

nificant difference in the effect on movement time dependent on the ratio of the target

dimensions. When the targeting task is amplitude dominant (HW , W ≤ H) then MT

is essentially constant as H decreases from infinity to W , as opposed to a directionally

dominant targeting task (WH , H ≤ W ) which shows an approximately linear decrease

in MT as W decreases from infinity to H. Using both their experimental data and

the raw data from [119], Accot and Zhai were showed that the weighted Euclidean

formulation given in equation (4.18) was the best fit to the available experimental

data.

T = a+ b log2

√( A

W

)2

+ η

(
A

H

)2

+ 1

 (4.18)

Of key note is the experimentally determined weighting factor, η, on the directional

constraint term; allowing the model to more accurately capture the interdependence

of target dimensions and task amplitude on predicted movement time.

Other extended derivations of Fitt’s Law that apply to 2-D and 3-D targeting

tasks have been proposed by [33, 34, 35, 36, 37] and others. In particular, Grossman et

al. [37] followed up on Accot and Zhai’s work by investigating 3-D variants of the ID`2
and ID`∞ formulations. Those formulations are given in equations (4.19) and (4.20),

respectively.

ID`2 = log2

(√
fW (θ)(

A

W
)2 + fH(θ)(

A

H
)2 + fD(θ)(

A

D
)2 + 1

)
(4.19)

ID`∞ = log2

(
A

min(fW (θ) ·W, fH(θ) ·H, fD(θ) ·D)
+ 1

)
(4.20)

Where weighting parameters are a function of the movement angle, fW,H,D(θ), to-

wards the target. Within their study, they limited pointing task trajectories to a

plane parallel to the transverse plane and used a fixed approach angle of zero so that

approach was parallel to the target width dimension.
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4.2.1 Fitts Law Extended to Trajectory Tracking or

Steering Tasks

One of the fundamental aspects of the Fitts Law relationship is that the target size

constraint is at the terminal point of the movement task. In general, no bound is

placed on the intermediary trajectory along the amplitude until crossing the initial

edge of the target. Accot and Zhai [123] in an earlier study chose to investigate the

application of Fitts Law to trajectory-based tasks that required steering the end-

effector through a “tunnel” region where the was a directional constraint on the path

along the entire amplitude of the movement. To develop and validate a trajectory-

based task the authors first used an experimental setup similar to the standard Fitts

tapping test but with some alterations to the protocol. Subjects started from an initial

position outside the bounds of the tunnel. Employing one-way discrete movements,

the end-effector was tracked as it passed within a given height1, H, perpendicular to

the intended path at the start of the tunnel, then along the straight-line trajectory of

amplitude A until it crossed the end of the tunnel within an identical terminal height

constraint. Given a height constraint at both the initial point and the terminal point,

Accot et al. reclassified this as a two-goal passing task. They verified that the two-

goal passing task had a log-linear relational between A, H, and MT , just as Fitts

Law and then further extended the model to a N + 1-goal passing task with each

success goal being H in height and A
N further along the path. This generates a index

of difficulty, IDN = N log2( A
NH + 1). As lim

N→∞IDN = A
H ln 2 . Thus producing a

linear-linear relationship between A, H, MT so that

MT = a+ b
A

H
(4.21)

Using thirteen subjects in a fully-crossed, within-subjects factorial design in-

corporating four amplitudes and eight tunnel heights the authors were able to get

strong agreement between their model and the experimental data captured. The re-

sults produced a linear fit of MT = −188 + 78 · ID with r2 = 0.968, and average

1. The authors of [123] used the terminology of width (W ) for the constrained size of the
tunnel boundary, but that is in conflict with the convention terminology used in Fitts Law
studies. Width (W ) refers to target dimension along the line of approach not perpendicular
to it. We have adjusted the terminology here, and use “height” (H) where appropriate to
avoid confusion.
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error rate of 6.4%.

Friedlander et al. [124] similarly proposed the use of a linear-linear model

relationship for their non-visual user interface element, called a bullseye menu. The

example configuration is shown in Figure 4.3, and is essentially a goal-passing task

similar to what was described above. While the target(s) are two dimensional, the

height constraint is not strictly imposed given that it expands radially within each

sector. The segment widths bounding each submenu item region within the sector

are constant. Friendlander et al. conducted a series of experiments to determine

employing a Fitts performance model or an alternative linear model for this type of

user interface element. Deriving A = r(x − 0.5) as the amplitude of movement for

target selection of a particular menu item ring, with r being the width of each ring

and x being the index for each ring. The Fitts Law model for a bullseye menu is then

MT = a+ b · log2(x+ 0.5) (4.22)

in comparison to the linear model which is

MT = a+ b · x (4.23)

The authors collected movement time experimental data from 12 subjects performing

a menu item selection task through 2208 trials over four sessions, and found better

agreement between the data and the linear model that with the Fitts model. One of

their key rationales for this result stems from the fundamental difference in targeting

feedback loop. With a non-visual stimulus2, there is a greater sensitivity to the large

amplitudes of required movement.

4.2.2 Application of Fitts’ Law to Non-sighted Reaching

Tasks

Most formulations of Fitts’ law are given in polar form assuming that the subject

performing the reaching task will move their hand along a direct vector from the initial

point to the target. This is a natural consequence of investigating pointing/reaching

tasks undertaken by sighted individuals. We propose to examine a that validity

2. Friendlander et al. tested both tactile and auditory cues for signalling the index of
each menu ring crossed
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of a Fitts’ law based performance measure for this visually assisted reaching task

undertaken by non-sighted subjects.

Given that it is not feasible to issue motion cues that require the user to track

precise joint angles; the motion cues must follow some easily referenced directions

such as the axial components of an egocentric reference frame. This Fitts’ law based

measure could be created from the sum of one dimensional Fitts’ law for each hor-

izontal and vertical axial movement subtasks and Steering law for the depth axial

movement subtask. Thus the total predicted time MTT to complete the reaching

task is given by

MTT = MTx1 +MTx2 +MTx3 (4.24)

where are MTx1 and MTx2 are the expected subtask completion times to resolve the

motions cues given by equation (2.3) and MTx3 is the expected subtask completion

time to resolve the motion cues related to the appropriate depth estimation technique

for the various feature extraction techniques presented in Chapter 3.

4.3 Additional Relevant Literature

One of the notable issues raised in the literature about the appropriate application

of Fitts’ Law centers on the type of movement style in use: discrete or cyclical move-

ments. There tends to be significant differences in the dynamics and perceptual-motor

planning when the type of movement task only requires exerted movement in one di-

rection towards a target as opposed to at least one return in the opposite direction

to a reciprocal target set. Fitts’ original experiments were conducting by subjects

performing a reciprocal tapping test which employed a cyclical movement back and

forth between the two terminal points (target strips).

Buchanan et al. [125, 126] performed a set of studies that investigated the

change in dynamics of the end-effector as the harmonicity of the reciprocal tapping

changed, driven by a change in the ID for the task. They systematically altered the

target width from small (ID = 5.85) to large (ID = 2.85) and vice versa to determine

the point of transition from harmonic (cyclical) to inharmonic (successive discrete)

movement paradigms. Working from Guiard’s [127] prior work which determined

that reciprocal aiming task movements were harmonic when ID > 4 and inharmonic

when ID < 4, Buchanan et al. chose to vary ID during trials every four seconds.



Chapter 4: Human Motor Control and Performance 84

In one subset of trials ID was altered from large to small and in the other subset

ID was altered from small to large, with amplitude remaining constant. They found

that as target width varied from small to large the movement style transitioned from

discrete to cyclical at ID = 3.04, well below the critical boundary (ID = 4). In

contrast, when the varying target with from large to small, the cyclical to discrete

movement transition occurred close more abruptly and close to the critical boundary

at ID = 3.53. Their results show a hysteresis in the transition between harmonic

and inharmonic movements depending on the initial style of movement. In short,

motor planning for discrete movements has greater persistence in the presence of

repetitious, reciprocal motion than cyclical harmonic movements. So in the case of

the end-effector oscillation back and forth across a hypersurface boundary will likely

continue to be a series of discrete movements as opposed to evolving into a transient

cyclical movement.

4.3.1 Postural Issue

Almost the entirety of Fitts’ law related studies of pointing/reaching/aiming based

arm movement tasks are conducted with a range of postural constraints. Subjects are

usually seated and in some cases arm movements are physically bound to a particular

plane through an experimental rig used for measurement and data acquisition. The

experimental rig can range from an affixed splint to a standard computer mouse or sty-

lus pen. Bonnetblanc et al. [128] study investigating the effect on reaching/pointing

task performance of subjects operating from a full upright standing position, sim-

ilar to the postural state of user’s of the aiReach system. They found that hand

movement still exhibited Fitts’ law performance in relation to changes in target size.

Their results also showed a correlated increase in the durations of both the acceler-

ation and deceleration phases and decrease in peak velocity as target size decreased,

which indicates slightly more restrained movement dynamics in the formulated motor

plan.
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Figure 4.2: The alternate target with W ′ measured across the target object along
the line of approach

Figure 4.3: An example of a bullseye menu proposed by Friedlander et al. . The
image is a reproduction from “Selection from a bullseye menu”
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Chapter 5 Description of Experiments

This chapter contains a detailed description of experimentation and testing under-

taken during the development and verification of the aiReach system. Analysis of us-

ability testing, parameter tuning, and performance measurements are provided across

the various sections describing the separate investigations performed.

5.1 Experiment 1: Prototype Construction –

Proof of Concept

As discussed in section 1.1, a number of researchers have published results related to

various designs for locomotive, navigational assistive devices for the visually impaired,

but the specific task of a guidance aid for a reaching task is largely under-investigated.

The initial task of constructing a basic working prototype was necessary to identify

relevant testing factors and conditions.

The control architecture of the initial prototype implemented the 3D DES-

Controller model without hysteresis (l1 parameterization). That specific parameter-

ization was not specifically detailed in Chapter 3, but is a simple extension of the

material presented in section 3.6.2 with the addition of a fifth hypersurface delineat-

ing the state transition from a depth tracking state to the On-Target state within

the DES-Controller.

This initial prototype was implemented using Bang-Bang control through the

vibrotactile input to the CT-plant. The resultant CT-control signal generated while

in the appropriate DES-controller state using equations (3.2), (3.51), and the appro-

priate hypersurface boundary functionals are:

rx1(t) = u(
Ix
2

(1 + l1)−m10)− u(m10 −
Ix
2

(1− l1))

rx2(t) = u(
Iy
2

(1 + l1)−m01)− u(m01 −
Iy
2

(1− l1))

rx3(t) = −u(m00 + αIxIy)
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where u(·) is the heavyside step function.

As an initial prototype, the size of the approximate target region was chosen

by arbitrarily setting l1 = 0.1. The value of α = 0.65 was calibrated empirically

and Ix = 320, Iy = 240 are taken from the resolution specifications of the particular

camera used. A picture of the initial prototype is given in figure 5.1.

Figure 5.1: The initial prototype of the aiReach glove system

5.1.1 Experimental Apparatus

Initial development and testing of the feature extraction and object detection algo-

rithm for simple planar geometric objects, described previously in section 3.2, was

done using a pan-tilt servoing unit from Directed Perception Inc.1 as the plant ap-

paratus to verify the visual servoing of the basic 2D compensatory tracking task.

The wearable portion of the prototype: glove-mounted camera, tactile out-

put transducers (vibrotactors), and controller board were assembled using readily

available, inexpensive components. Both USB1.0 and IEEE1394 based cameras were

tested.

The glove-mounted camera is connected to a PC running Windows with custom

object tracking software written using the OpenCV library. The glove is also equipped

with four vibrotactors; one each on the ventral (palm) and dorsal (back) parts of the

hand, and either side. The placement of the four motors corresponds to the intended

direction of motion of the user’s hand within the x-y image plane; corresponding

to horizontal and vertical movements within the task space. The actuation of the

1. http://www.dperception.com/
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vibrotactors issuing the motion cues was controlled by the µCsimm2 single board

computer from Arcturus Networks; connected to the PC via a RS232 serial cable. The

muCsimm is a Motorola MC68EZ328 (Dragonball EZ) based single board computer

with a port of the Linux 2.0.38 kernel known as µClinux3. Custom control software

was written for the µCsimm to drive the vibrotactors based on tracking data sent

from the object tracking application, specifying the desired hand trajectory.

The glove selected was a sports-utility glove with open finger tips. It was

deemed appropriate that the user’s finger tips should be exposed, so as to not restrict

a visually impaired person’s sense of touch. A sports-utility glove designed for use

during physical activity also provided a durable and sufficiently padded construc-

tion to dampen some of the forces imparted by the vibrotactors. This allowed for

comfortable use of the vibrotactile interface.

5.1.2 Experimental Procedure

Testing of the initial prototype is depicted in Figure 5.2. The environmental condi-

tions for testing were not tightly constrained so that a reasonable approximation for

real world conditions were used. Other than using planar geometric shapes of nearly

uniform colour saturation on a neutral background, the only other environmental

constraint was an attempt to maintain uniform ambient lighting on the target object

field during tracking.

As can be seen in Figure 5.2, an assortment of planar geometric shapes of

different colours are arranged at random on a neutral background; one of which is

the target object. For these trials a red square was preset as the target object. Upon

processing of each image frame, a list of candidate target objects within the scene is

generated. Only closed polygons within the image frame are considered candidates.

For each of the k candidate objects found, a coefficient of matching, M , is calculated

based on the weighted sum described previously in equation (3.1) and show again

below for convenience.

M = min
k

n∑
j=0

(wj(fdkj − ftj)2)

2. http://www.arcturusnetworks.com/ucsimm.dragonball.ez.shtml

3. http://www.uclinux.org
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Figure 5.2: The initial prototype of the aiReach glove system during testing. This
image is a still frame exported from a video recording of one of the initial

experimental trials during the proof of concept testing of the prototype device.

The feature vector of length n associated with each of the k candidate targets

contains elements describing basic geometric and colour space properties defined by

the object model. For the purposes of this experiment those parameters include

number of vertices, angle at each vertex, image coordinate of each vertex, colour value

bounded within the vertices, etc. The associated weights, wj , for each feature were set

to strongly favour colour and allow for minor variations in vertex angle about a desired

value of 90 degrees. The range of acceptable vertex angles mitigated prospective

projection issues caused by the camera axis not being precisely perpendicular to the

background.

For each trial, subjects started from an random initial distance from the target

field with their eyes closed and arm extended in front of them in a comfortable

posture, with the camera was directed toward the field of candidate target objects.

Subjects were instructed to follow the directional motion cues until the vibrotactile

symbol STOP was issued. After which they were to assume independent control for

the remainder of the task and continue movement until contact with the target was

achieved.

After initial system development and testing within our laboratory with five

users, the initial prototype was demonstrated at a showcase booth at the 14th Annual

Canadian Conference on Intelligent Systems. This was the prototype’s first exposure
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to untrained users outside the laboratory, as passers-by were encouraged to test the

system in the unstructured setting of the demonstration booth at Conference’s tech-

nology showcase. More than twenty volunteers participated in unstructured testing

of the system and provided generalized qualitative feedback on the usability of the

prototype.

5.1.3 Results and Discussion

After only a brief training period, nearly all users were able to successfully reach the

target object during a trial by following the motion cues issued through the vibrotac-

tors interface. Those who did exhibited a failed attempt did so by not completing the

guided reaching task voluntarily. The unstructured testing, while encouraging and

fundamentally proving the soundness of the design concept, demonstrated a number

of issues within the system.

The variable lighting level across the background can be caused by a number of

factors in an uncontrolled environment. For instance, shadows being cast by the user

on the trial scene, or the unanticipated colour temperature of the lighting within the

environment. Such variable lighting conditions, causing false positives in object de-

tection, were a significant implementation issue. In addition, even though co-located

objects were eliminated from the candidate list, constellations of several objects could

be incorrectly detected as an single object.

With only an estimate of the typical size of the object of interest being used

to eliminate this effect, the lack of a measured value for distance from the camera

to the object plane, (denoted as the z-axis) was a problem with making an accurate

decision based on size.

In the initial testing, with the camera is mounted on a precision pan-tilt device,

two images acquired at two different poses could be used to estimate z, provided three

or more landmarks registered as matched points within the two images. However, for

the wearable system, this ‘initialization’ phase was not necessarily appropriate.

One of the initial prototype configurations used an IEEE1394 based camera that

provided an image resolution of 1024x768. The overall system performance was not

satisfactory in terms of tracking frame rate (refer to table 5.1). It was determined

that to reduce the processing time, either we needed to adopt the use of a lower

resolution image or reduce the complexity of processing by imposing constraints on



Chapter 5: Description of Experiments 91

scene complexity. After further investigation, both options were implemented by first

reducing the scene complexity with the use of a background that was nearly uniform

in tone, then by switching to a USB1.0 webcam which had an maximum resolution

of 320x240.

It was the lower resolution USB1.0 version that was demonstrated at 14th

Annual Intelligent Systems Conference in Ottawa, Canada.

Table 5.1: Mean processing times in milliseconds (ms) for various stages of the
image analysis software for both the IEEE1394 camera and USB1.0 camera

Camera Image Object Control Total
Capture Detection Signalling Duration

IEEE1394 0.0 ms 738.0 ms 200.1 ms 938.1 ms
USB1.0 224.3 ms 32.0 ms 188.7 ms 445.0 ms

Two ergonomic issues became apparent during the testing. The first is related

to the design choices involve in the selection of a glove. The thickness of the padding

around the glove became a tradeoff between comfort and perceived tactile signal

magnitude strength since some users, especially those with smaller hands, commented

on their difficulty with feeling a distinct vibration pattern, localized to a particular

vibrotactor.

When the object of interest is not present in the image, the present imple-

mentation of the system fails. The solution for this problem is to include an object

search phase. A systematic search phase is easily implemented in a system under

programmed control, however it is a much more complex task to accomplish for the

wearable system since the human user is responsible for the high-level planning, and

would have to be responsible for any “pan” to search the area.

A related observation during testing is the diversity joint position and joint

trajectory configurations that evolve through a given reaching task trail. The joint

configuration can vary significantly from initial to terminal position within the task

space. For instance, if the user starts with an initial Straight-arm configuration, the

evolution of joint angles at the wrist and the elbow exhibits almost no change. The

vast majority of changes in joint angles occurs in the DoFs allocated to the shoulder

joint(s). In contrast, if the user’s initial position is some variation of a Bent-arm

configuration, the evolution of joint angles and joint velocities can change consider-
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ably across all the joint DoFs. This observed behaviour led to the development of

Experiment 5.2.
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5.2 Experiment 2: Static Loading

Characterization

The DES-Controller model described in Section 3.6 specifies a parameter, l1, used

to position the hypersurface boundaries h1(x), h3(x), h5(x), and h7(x). The region

enclosed by those boundaries delineates entry into the approximate target region.

Specifying an approximate target region compensates for the user’s inability to main-

tain a precise On-Target registration in image-space. It is necessary to investigate

the natural motor stability of the user’s arm under static load to determine an appro-

priate range of l1 for steady-state On-Target registration and further compensatory

tracking experimentation.

The purpose of this experiment is to determine the minimum value of l1 that

satisfies the behaviour of a generalized user when their arm is under a static loading

condition. In the context of this work, a static loading condition is defined as the

subject’s attempt to maintain a constant targeting registration of the reaching arm in

relation to an initial (On-Target) image-space location, for an extended duration.

From qualitative observation of user behaviour during initial prototype testing, a

range of nominal arm pose configurations was determined. However, it is unknown

whether differences in arm pose significantly affect target registration stability.

Testing tracking performance at the relatively large or small values of l1 can

bias performance data by forcing a state transition prior to a targeting accuracy

bound that the user is capable of, and cause a higher number of parallax induced

state transitions during depth tracking. Thus this experiment was also designed to

calibrate the useful range of values for l1 in further experimentation relate to tracking

performance.

5.2.1 Experimental Apparatus

The experimental apparatus consists of only the glove-mounted camera segment of the

wearable portion of the aiReach system connected to the tracking control software.

A simple spherical object is used as the target and is mounted on a shelving rig. The

tracking control software was implemented based on the feature set model described

in Section 3.4 to produce sufficiently high frame rate during video processing. The
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image processing and feature extraction was implemented using a the RoboRealm4

computer vision software package to create a RoboRealm application which executes

a series of filter objects as an image processing pipeline to perform image acquisition,

noise removal, colour segmentation, blob detection, and feature extraction for each

frame captured. The pipeline is executed upon request from the control application

via a TCP/IP socket connection. The extracted features correspond to feature vector,

fi =
[
px py fz

]T
, as described in Section 2.4. The control application records all

image plane movement of the subject’s hand by logging the position of the centroid,

pxy = [m10 m01], of the target within the image.

The specific list of filters, in pipelined order, and their parameter values are

given in Table 5.2. It is included for the purpose of replication of experiments. The

parameter values within the camera properties object and RGB filter object are tuned,

through trial and error, for the specific physical camera and ambient lighting condi-

tions and environment within our laboratory where the experiment was conducted.

Use with an alternate camera or under differing lighting conditions would benefit from

manual calibration and parameter tuning before use of the aiReach prototype. The

Blob Size parameter is dependent on both the camera and the physical target object

dimensions selected.

4. Available at www.roborealm.com.
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Table 5.2: Configuration of filter parameters within the RoboRealm image
processing pipeline.

Filter Parameter Value
Camera Properties brightness value 5447

contrast value 3984
software auto exposure FALSE

saturation value 6748
video rate 30

sharp value 5041
gamma value 1512

video size 320 x 240
whitebalance value 5528

video format RGB 24
hue value 4715

RGB Filter channel 2
max value 120
hysteresis 5
result type 1
min value 85

Median filter size 7
Blob Size cutoff 30

limit 1
min area 100

object size 10
mask FALSE

max area 60000
Smooth Hull window size 7
Blob Replace shape index 6

color index 4
fill shape TRUE

Center of Gravity show coord TRUE
color index 7
connect line TRUE
size index 4

density -1
use subpixel FALSE

show box TRUE
shape index 2

show cog TRUE
threshold -1
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5.2.2 Experimental Procedure

The experiment employs a 2x3x4 factorial design. The factors are feedback condi-

tion, pose, and duration. The levels for each of those are vision+proprioception

and proprioception {Eo, Ec}; fully-extended (Straight), pronated vertical bend (Bent),

pronated lateral bend (Wing) {St, Bt, Wg}; and durations of {15, 30 ,45, 60} seconds.

The three levels of the pose factor are depicted in Figures 5.3(a)–(c).

(a)

(b)

(c)

Figure 5.3: Images depicting the three levels of the pose factor variable: (a)
fully-extended, (b) pronated vertical bend, and (c) pronated lateral bend.

Consistency in pose configurations across subjects was maintained by specifying

that the distance between the wrist and shoulder, for both Bt and Wg, at onset of

the trial was 66% of the distance between the wrist and the shoulder at St.
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While in a seated position subjects were instructed to raise their arm to shoulder

height. The subject’s arm was then set to required pose configuration so that the

target object was within the field of view of the camera. The height of the chair was

adjusted prior to the onset of experimental trials, for each subject, so that the plane

containing the dorsal side of the hand and the shoulder was parallel to the transverse

plane while the camera was pointed at the target. As each trial commenced, the

subject attempted to maintain their original position based on the given feedback

condition as the reference throughout the allotted duration.

The experiment was partitioned about the feedback condition. The first part,

employing the Eo feedback, consisted of a sequence of 12 <pose> x <duration>

trials which were randomized to prevent any bias in arm exertion related to pose.

Between each trial within a part, the subject was given a 30 seconds rest period.

The second part required the subject to perform the same sequence of trials

under the Ec feedback condition. The same sequence order was used for both parts

to ensure that exertion levels were similar between subjects over the course of trials in

each part. Parts 1 and 2 of the experiment were conducted on different days to remove

cumulative exertion bias from performing all part 1 trials before commencing part 2.

The subjects were only allowed to participate in the experiment on days when they

did not experience any strenuous arm activity such as an exercise regiment or heavy

manual labour, to minimize exertion bias. For each part, the subject maintained a

nominal distance of 60cm between the end-effector and the target within the task

space to minimize change in pixel pitch.

5.2.3 Results and Discussion

Results were collected from 8 subjects (4 men and 4 women randomly assigned des-

ignations of A01 to A08) ranging in age from 25 to 39 years. During each trial, the

image-space point of registration, pi = (x1, x2), was recorded for each frame cap-

tured. Three measures were calculated from the image-space position data. These

are the instantaneous drift magnitude,||mi||; the instantaneous drift direction, θi; and

the cumulative drift, p̂.

||mi|| = ||pi+1 − pi||

θi = tan−1

(
x2 (i+1) − x2 (i)

x1 (i+1) − x1 (i)

)
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p̂ =
N−1∑
i=1

mi

By defining mi as the instantaneous drift of the target registration for the

i-th frame, we can say that no cumulative drift due to disturbance is observed if∑N−1
i ||mi|| = 0. Since the desired control is to maintain a fixed target registration

which is applied at each frame, we make the assumption that pi+2 and pi would be

uncorrelated in that the movement given by mi+1 is not a necessarily a co-activation

compensating for the movement mi.

Figure 5.4 gives an example of the set of graphs for one trial performed subject

A01. A compass plot giving both magnitude and direction of the instantaneous

drift vectors is provided in Figure 5.4(a). Since the multiple instances of equivalent

instantaneous drift vectors are plotted over top of each other, histograms of the

corresponding magnitude, ||mi||, and direction, θi, are provided in Figures 5.4(b)–

(c), respectively. It is important to note that the direction is calculated based on the

image-space coordinates of a target which is stationary in task-space so the actual

task-space camera movement is the negative of mi. Thus an angle of θi = 0 represents

a horizontal movement of the camera to the medial line of the body (leftward) for

right-hand use.

Experiment trials data were partitioned by <pose> x <feedback> combi-

nations and the mean of the instantaneous drift vector magnitudes was calculated

for for all subjects within each <duration>. One-way ANOVA was performed us-

ing Matlab’s Statistical Toolbox. The results are provided in Table 5.3, and show

that there is no statistical difference between the mean magnitude of instantaneous

drift across subjects maintaining a statically loaded pointing task (target registration)

within each of the six pose x feedback factor combinations. This indicates that

there is no significant effect on target registration stability due to exertion up to 60

second intervals of static loading.

The cumulative drift vector data, partitioned by <feedback> condition, is

shown Figure 5.5. Examination of the angular histogram plots in Figures 5.5(b)

and 5.5(d) shows a similar lateral drift bias towards the body mid-line and similar

vertical drift distribution. This indicates that the inclusion of an end-point close-loop

visual reference of has no significant effect on cumulative drift direction under static

load. However, the change in <feedback> condition exhibits a significant effect
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Table 5.3: One-way ANOVA results of mean instantaneous drift magnitude during
static loading, partitioned in pose x feedback combinations.

Partition 15sec 30sec 45sec 60sec

<Bt>x<Eo>
1.3344 1.3967 1.3214 1.2886
F(3,28)=0.28, p=0.8373, se=0.0851

<St>x<Eo>
1.6609 1.6548 1.39 1.5228

F(3,28)=0.91, p=0.447, se=0.1343

<Wg>x<Eo>
1.6015 1.3063 1.4491 1.3254

F(3,28)=0.7, p=0.5582, se=0.1624

<Bt>x<Ec>
1.4932 1.3351 1.1992 1.2414
F(3,28)=2.3795, p=0.0909, se=0.0845

<St>x<Ec>
1.3201 1.4819 1.4703 1.4548
F(3,28)=0.51, p=0.6768, se=0.1051

<Wg>x<Ec>
1.2596 1.2179 1.1352 1.1045
F(3,28)=0.61, p=0.6122, se=0.0918

on cumulative drift magnitude as seen across Figures 5.5(a) and 5.5(c) with mean

magnitudes of 45 and 27 pixels, respectively. This indicates a weaker ground truth

reference accuracy with proprioceptive feedback only.
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(a) (b)

(c) (d)

Figure 5.4: Graphical depiction of the experimental trial performed by subject-A01
under the conditions of <St>x<Ec>x<15sec>: (a) compass plot of

instantaneous drift vectors mi, (b) histogram of instantaneous drift vector
magnitudes, (c) angular histogram of instantaneous drift vector directions θi, and
(d) showing the individual drift vectors end to end and the cumulative drift p̂i.
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(a) (b)

(c) (d)

Figure 5.5: Graphical depiction of the experimental trials performed by subjects
A01 through A08 partitioned by <feedback> condition: (a) compass plot of

cumulative drift vectors for all proprioceptive only conditions, (b) angular
histogram of cumulative drift vector directions for all proprioceptive only

conditions, (c) compass plot of cumulative drift vectors for all proprioceptive+vision
conditions, and (d) angular histogram of cumulative drift vector directions for all

proprioceptive+vision conditions.
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5.3 Experiment 3: DES-Controller with tactile

frequency variation

A revised prototype was constructed to expand upon the experimental capabilities

of the system. The revisions were based on qualitative feedback and gathered from

the results of testing the initial version described in Section 5.1. Revisions to the

both the hardware and software implementations were made. The custom written

computer vision application was replaced with a commercial package, RoboRealm5.

The package has an extensive library of filters which can be layered in sequence within

an imaging processing pipeline to perform a variety of comparable filtering, feature

extraction, and object detection tasks at higher frames than the initial prototype.

This update was necessary to minimize the frame processing time, resulting in a

minimal lag when issuing motion cues to the user. A custom control application

implementing the both the l1- and l2-models of the DES-Control scheme proposed in

Chapter 3 was written using Microsoft Visual Studio 2008 (C++).

The RoboRealm application executes a series of filter objects as an image pro-

cessing pipeline to perform image acquisition, colour segmentation, noise removal,

object identification, and feature extraction for each frame captured. The pipeline is

executed upon request from the control application via a TCP/IP socket connection.

The extracted features correspond to feature vector, fi =
[
px py fz

]T
, as described

in Section 2.4.

The initial prototype was only capable of implementing bang-bang control due

to a limitation of the SBC. The revised prototype uses a Freescale HCS12 based

microcontroller board in the wearable portion of the system. The DP256 model

of the HSC12 microcontroller includes a PWM peripheral with a sufficient number

of channels to support implementing a proportional control input signal for each

vibrotactor.

The images in Figures 5.6(a) and 5.6(b) show the wearable portion and the

MS-Windows based control software portion of the second iteration of the aiReach

system prototype, respectively. The screen capture image in Figure 5.6(b) shows

the two software applications that make up the computer vision pipeline and DES-

5. available at www.roborealm.com
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Controller. This prototype version was used for the remainder of the control scheme

experiments presented in this chapter.

(a) (b)

Figure 5.6: Images depicting the hardware and software components of the second
iteration of the aiReach prototype: (a) the wearable component including the

HC12S based microcontroller board, glove, camera, and vibrotactors; (b) screen
capture of the MS-Windows based software including RoboRealm vision platform

(background) and custom controller application (front-right).

Since the feasibility of the aiReach system, as a wearable guidance aid for reach-

ing tasks, was proven in the initial prototype testing, the purpose of the testing of

the revised prototype is to determine the difference, if any, in the learned response of

the user to the bang-bang versus proportional control feedback scheme. The experi-

ment investigates whether the semantic representation of distance through the use of

varying the frequency of vibration in proportion to the targeting tracking error and

movement time is a more responsive control scheme.

5.3.1 Experimental Apparatus

The apparatus used in this experiment is depicted in Figure 5.7. The rig is a two

level shelving unit 38 x 46 x 17cm, with 21cm separation between the shelves. The

possible mounting positions for the target are 10cm apart along each shelf to allow for

differing angles of approach. The rig allows for six possible target positions (TG1 -

TG6) as numbered in Figure 5.7 for placing the spherical targets. The rig is mounted

on a tripod stand to allow height adjust so that the midpoint of the back wall can

be vertically aligned with the subject’s shoulder height. Figure 5.7 also shows labels
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for projections of the four vertically and horizontally aligned start positions (A - F)

corresponding to a target at TG1.

Figure 5.7: The experimental apparatus consisting of a two level shelf with an six
possible positions for target placement.

5.3.2 Experimental Procedure

The experiment employs a 2x3x4 factorial design. The factors are signal condition,

target position, and start position. The levels for each of those are bang-bang

(BB) and proportional (PR) vibrotactile signalling; three of six, randomly selected tar-

get positions on the rig; and four start positions corresponding to the selected target

position. The colour segmentation based tracking technique described in Section 3.4

was used to achieve a sufficiently high frame rate.

Prior to the onset of the reaching task the subject’s vision is blocked and the

target (blue) object is placed at one of the randomly selected TG positions on the

test rig. At least two other spheres of different colours are also randomly placed at

another available TG position(s). The subject’s hand is placed at an initial position
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within the task space that vertically and horizontally aligns with one of the adja-

cent ST positions. For each of the k = {1 . . . 24}, ||pk|| = L, away from the target.

The cartesian distance L remains constant within the set of trials. By randomizing

pk = [x y z] such that ||pk|| = L, the axial component distances are randomized;

avoiding a biasing of performance results through the subject’s kinaesthetic memory

acquired from performing the same pattern of movements, repeatedly. As an exam-

ple, the set of starting position alignments for TG2 are shown in Figure 5.7. This

spacial relationship between start and target position requires that three axial

displacements (horizontal, vertical, and depth) be resolved to complete the reaching

task trial.

The DES-control application shown in Figure 5.6(b) can be configured for oper-

ation under either a l1- or l2-model, with either bang-bang or proportional CT-plant

input signalling. For the purpose of this experiment, the configuration is fixed to

operate under the l1-model with (l1 = 0.1, l2 = 0).

At the onset of a trial, tracking data for each video frame is logged by the

control-tracking software. Tracking data includes frame time-stamps, the feature

space vector, hypersurface locations, and CT-plant control input. The data is recorded

until the reaching task is completed. The reaching task is considered complete under

two possible circumstances: either the subject’s hand comes into contact with the

target or the STOP motion cue is issued. All trials recorded were of completed reach-

ing tasks. If the subject did not adequately complete the reaching task the trial was

repeated.

Subjects are given three practice trials before starting the set of 24 recorded

trials. The first practice trial is performed sighted so the subject can correlated

spacial awareness of their hand movements to their perception of the motion cues.

The remaining two practice trials are performed unsighted. Subjects are given a

minimum of 30 second rest between trials. Subjects are given a longer rest period

between trials if desired.

5.3.3 Results and Discussion

Data was collected from 9 subjects: 6 males and 3 females (23 - 39 years old). No

subjects requested additional rest time. Each subject performed the set of 24 trials,

12 under bang-bang and 12 under proportional signalling condition. Five subjects
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(B03,B06,B07,B08, and B09) began with the block of 12 trials under the bang-bang

signalling and the other four (B01,B02,B04, and B05) began with proportional block

of trials. In all cases, subjects were informed which signalling method was being used

prior to commencement of each block of 12 trials. Of the total 216 trials recorded

across all subjects, only 12 were repeated attempts.

A significant limitation with the initial prototype regarding tracking perfor-

mance was the frame rate for the entire control loop. With the implementation of the

second prototype, the average frame rate for feature extraction within RoboRealm

achieved 30 fps. Incorporating the the additional execution of the DES-Controller

application and communication with the microcontroller unit, the average frame rate

for the entire control loop was 22 fps.

5.3.3.1 Qualitative Observations

A number of qualitative observations regarding the subjects’ response to the inter-

face and performance made during the experimental sessions are important to note.

These observations aid in the interpretations of the graphical results provided in the

following sections. Amongst the nine subjects: six used a straight-arm posture dur-

ing the trials, while two used a slightly bent posture, and one used a wing posture at

commencement of each trial. Reaching posture variation was entirely up to the choice

of the subject. In all cases, the reaching task distance of 60cm required the subjects

to take at least one step forward to complete the task, with the norm being two or

more steps. Almost all subjects exhibited moderate to significant timidity in mov-

ing forward during the depth tracking phase(s) of the reaching. It was demonstrated

through the behaviour of attempting to lean forward by bending at the waist with the

stance fixed in place. This could be seen to degrade steady arm movement capability

as the subject became moderately unbalanced due to a shift in center of gravity. The

subsequent forward step from the leaning position would result in a bounce in hand

(camera) motion. This type of behaviour can be see in the trajectory tracking plot

shown in figure 5.8(a). An alternate forward movement behaviour of one large step

from the initial stance also manifested a similar bounce in the camera motion.

Another, more interesting anomaly found in the trajectory tracking plots is

shown in figure 5.8(b). The behaviour is a strong lateral ulnar deviation angle in

the wrist posture shown in figure 5.8(c). This strongly manifests itself in the latter
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(a) (b)

(c)

Figure 5.8: Samples of typical anomalous depth tracking behaviours in trajectory
plots: (a) abrupt bounce due to forward step; (b) false backward movement due to

ulnar deviation; (c) anatomical wrist postures

portion of the depth tracking phase by directing the optical axis, and thus the field

of view of the camera, away from the normal of the egocentric frontal plane.

As such, a greater and greater portion of the segmented target within the image

is occluded off-screen. Since the feature extraction technique calculates fz, the depth

tracking feature, as the diameter of the segmented pixel mass, the value of x3=−fz
will actually increase6 even as the camera proceeds towards the target. This can be

seen in the trajectory tracking sample plot provided in figure 5.8(b). The plotted tra-

6. Decreasing values of x3 indicate motion toward the target to maintain a right-handed
coordinate frame into the image
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jectory seems to indicate that the forward motion actually reversed and the terminal

point of the reaching task is farther away from the target than the starting position

of the task. However this is known to not be the case as all trials performed during

the experiment terminated at the target. Of the 216 trials, 39.8% exhibited this type

of false-backward behaviour in the trajectory plots.

Some vertical flexion and extension deviations were observed as well, but in

those instances the subjects were observed to more readily perceive and correct the

inclination angle. The qualitative observations of wrist posture deviations indicates

that the wrist posture instability is a very compelling issue in the control of an eye-

in-hand configuration. However, the distributed contribution of vertical and lateral

deviations in wrist posture stability may not be readily controllable by the subject

with training and/or augmentation of the wearable components of the system. Fur-

ther study must be undertaken to develop and test mechanisms for stabilizing wrist

posture during the reaching task.

5.3.3.2 Trajectory and Performance Analysis

Figure 5.9: Scatter plot of movement time (MT) versus index of difficulty (ID) for
the initial horizontally or vertically resolved tracking movements from each trial.
The plot includes the Fitts’ Law linear approximation and 95% confidence bound
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For each trial, the ID was calculated for the initial DES-controller state change

resulting in the resolution of a 1-dimensional reaching task. Figure 5.9 shows a plot

of the ID for those 1-dimensional reaching task versus their corresponding movement

time, MT . The plot also includes a regression line with 95% confidence bounds which

approximates the 1-D Fitts’ law performance model. The linear regression shows

a very poor fit to the data with a R2 = 0.3881. This is well below the typical fit

(R2 ≈ 0.9) level common in most other Fitts’ law performance studies [110, 118, 112].

(a) (b)

(c) (d)

Figure 5.10: DES-Controller state transition accuracy metric and completion time
progression across the sequence of trials: (a) Accuracy for bang-bang to

proportional progression; (b) Completion time for bang-bang to proportional
progression; (c)) Accuracy for proportional to bang-bang progression; (d)

Completion time for proportional to bang-bang progression

The plots in figure 5.10 partition the reaching task trajectory data by subject
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groupings of those that started the session with the bang-bang (BB-PR) signalling

condition from those that started with the proportional (PR-BB) signalling condition.

The purpose is to determine if there is any discernable effect on performance due to

signalling condition. The implication being, whether perceptual coding of tracking

distance through vibration frequency significantly affects reaching task performance.

Figures 5.10(a) and 5.10(b) give the calculated state transition metric, D, (see

equation 3.56) and the task completion time for the BB-PR grouping by trial num-

ber. Similarly, figures 5.10(c) and 5.10(d) display the equivalent data for the PR-BB

grouping of subjects. In both groupings we see a general decreasing trend in task

completion time as subjects perform a greater number of trials, but a generalized

constant trend in state transition metric over the same span of trials. This seems to

indicate that the type of haptic signalling did not have a significant effect on aver-

age subject performance. Qualitative comments provided by the subjects during the

experiment indicate that in many instances subjects were not consciously aware of

differences in vibration frequency. For a majority of subjects, their primary concen-

tration was focused on discerning which directional cue was issued, and little or no

attention was paid to the frequency of vibration of the cue. However, inspection of

the averaged line of both figures 5.10(a) and 5.10(c) near the twelfth trial shows an

interesting result. It is the point at which the signalling type changed for each group-

ing of subjects. In both graphs there is drop in the averaged state transition metric

(accuracy) score after the signalling type change and then a gradual increase over

the remaining trials. This could be attributed to an unconscious perception of the

signalling type and resulting necessity to adapt to the new coding scheme for tracking

distance. This implies that subjects’ tracking accuracy performance decreased with

the introduction of a different signalling type, but increase again as the subjects be-

came familiar with it. This indicates that while subjects were not always conscious

of the difference between the two displacement magnitude encoding schemes, it was

perceived on some subconscious level. The tracking performance as measured by av-

erage task completion time does see improvement due to cumulative practice (across

24 trials). The result is to be expected as performance should increase with successive

practice of a motor task.

The plot in figure 5.11(a) shows the task completion time versus the state tran-

sition metric for each of the 216 trials. The plot demonstrates a speed versus accuracy

relationship analogous to Fitts’ law with inclusion of a regression line that shows a
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(a) (b)

(c) (d)

Figure 5.11: Completion time graphs: (a) State transition metric vs Measured task
completion time; (b) Tracking time statistics by axis; (c) Scaled completion time by

subject; and (d) Scaled completion time by trial.

generalized relationship trend of increased completion time as the accuracy measure

of tracking increases. However, the speed-accuracy relationship demonstrated here

shows that it characterizes a task that is different from a classical ballistic reach to a

target. With a Fitts’ Law reaching task the terminal point location is known and at

the target object. With the reaching task performed here, neither the target object

location nor the terminal point of the full task or any subtask is known. Essen-

tially the task goal is to track a variable length sequence of directional cues. Each

non-ideal tracking of a motion cue lengthens the sequence by at least one additional

DES-controller state transition and a variable length of time. As a consequence, tra-

jectories with the identical state transition metric scores can have vastly different
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completion times which is somewhat contradictory to monotonic relationship embod-

ied in Fitts’ law. Given that completion time for a reaching task is highly variable due

to many factors, not the least of which is cumulative learned response, we present the

scaled completion time in figures 5.11(c) ordered by subject, and 5.11(d) ordered by

trial number. The accuracy-scaled completion time for each trial is calculated by di-

viding the measured completion time by it’s corresponding state transition score. The

ordering by subject in figure 5.11(c) shows significant performance differences that

can occur within difference plants (users) while preforming the same set of guided

reaching tasks, but by comparison to figure 5.11(d) we see the a strong convergence

in this task accuracy measure due learned response.

The plot in figure 5.11(b) shows the mean and standard deviation of percent-

age tracking-time per movement axis across all 24 trials for each of the subjects.

The Root-Mean-Squared (RMS) values for mean (dashed-line) and standard devia-

tion (solid-line) are included in the plot. The large difference in RMS mean values

in conjunction with the very similar RMS standard deviation values indicates a bias

in the percent tracking-time across the three axes. This is to be expected given that

the hybrid-control scheme is prioritized to correct tracking error in x1, then x2, then

x3. However, taking into the account the stronger mid-line (x1) bias in the static

loading experimental results presented in Section 5.2, it is likely that the bias in lat-

eral correction is a combination of the prioritized hybrid-control scheme and natural

proprioceptive factors. It is not possible to determine what contribution each factor

makes towards this bias from the data available in this experiment. Doing so would

require implementing an alternate experiment configuration that would generate re-

sults indicating whether or not an inherent natural stability bias exists, and to what

extent, between the three axial motion cue groupings; which we discussed further in

chapter ??.

The results provided above demonstrate the measure of accuracy with which

the plant (user) can respond to DES-state transitions between the various one di-

mensional tracking controllers, but not the precision of the tracking response within

a particular state, i.e. how precisely the camera motion follows a lateral path while

in s̃2. To describe this plant behaviour we must examine the directional error frac-

tion (DEF), given by equation 3.58, of all trajectory segments for the corresponding

DES-Controller output symbol as an input to the actuator function, γ(r̃) (see equa-

tion 3.19). Figure 5.12 gives a sample of the set of 5 DEF plots for the single tracking
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trial B02BBTG2A as an example. There are a number of important aspects of the

DEF plots to consider for interpretation:

• the length of the horizontal axis of each plot corresponds to the number of

trajectory segments for which the system was operating under a particular DES-

controller output symbol;

• the scalar quantity is plotted for each of the motion cue axis per trajectory

segment;

• the sum of the 5 plot lengths is equal to the total number of trajectory segments

for that trial; and

• one or more of the plots can be empty, indicating that that particular DES-

controller output symbol was never (or infrequently) generated.

For ideal behaviour, the magnitude of ρxi [n] should be one with the sign depen-

dent on the intended direction of motion given by the DES-controller output symbol,

but for all other ρxj [n] = 0, j 6= i. Thus all movement during the n-th trajectory seg-

ment was directed precisely in alignment with the motion cue issued by the controller.

The descriptions given in Table 5.4 provides the basic interpretation from the

egocentric reference frame for the value of each DEF per DES-controller output sym-

bol. To maintain a right-hand coordinate frame, procession towards the target is given

by a decreasing negative value along the x3 axis. Therefore, for the output symbol r̃1

which gives the Move-Forward motion cue, the tuple of {ρx1 , ρx2 , ρx3} = {0, 0,−1}
represents ideally-behaved tracking of the intended trajectory.

By applying the appropriate sign change to the ρ-tuple for trajectory segments

associated with r̃1, r̃3, and r̃5 output symbols in the trajectory we can consistently

attribute well/ideal behaviour to a positive ρx[n] value along the intended motion cue

axis. This allows us to generate the average precision metric across all the trajectory

segments within a task trial, and thus compare it to other task trials regardless of

their length. To do so we plot the mean DEF (−1 ≤ θe ≤ 1) for each trial.

Figures 5.13(a) and 5.13(b) give the mean DEF plotted by subject and by trial

progression, respectively. Each point within the plot gives the averaged degree of

precision of motion of the end-effector as driven by the CT-plant (internal joint-space
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DES Output symbol Dir. Err. Frac. target offset from image center
r̃1 ρx1 > 0 right

ρx1 < 0 left
ρx2 > 0 above
ρx2 < 0 below
ρx3 > 0 ill-behaved
ρx3 < 0 well-behaved

r̃2 ρx1 > 0 well-behaved
ρx1 < 0 ill-behaved
ρx2 > 0 above
ρx2 < 0 below
ρx3 > 0 away
ρx3 < 0 closer

r̃3 ρx1 > 0 ill-behaved
ρx1 < 0 well-behaved
ρx2 > 0 above
ρx2 < 0 below
ρx3 > 0 away
ρx3 < 0 closer

r̃4 ρx1 > 0 right
ρx1 < 0 left
ρx2 > 0 well-behaved
ρx2 < 0 ill-behaved
ρx3 > 0 away
ρx3 < 0 closer

r̃5 ρx1 > 0 right
ρx1 < 0 left
ρx2 > 0 ill-behaved
ρx2 < 0 well-behaved
ρx3 > 0 away
ρx3 < 0 closer

Table 5.4: Egocentric reference for directional error fraction plots per
DES-controller output symbols
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controller). If the end-effector were to perfectly follow the motion cues issues through

DES-controller outputs the mean DEF would be θe = 1. Conversely, if the exact

inverse motion for every motion cue were performed the mean DEF for that particular

trial would be θe = −1. However, the latter example is not practically feasible in that

the trial would unsuccessfully terminate with loss of the target from the field of view.

A value of θe = 0 indicates that the CT-plant’s directional precision is neutral, which

means that on average within that reaching task, the user moved along the intended

trajectory with positive correspondence equally as much as they did with negative

correspondence to the motion cues. The measure of precision is purely directional

(relative position) as CT-plant is not capable of accepting control inputs for absolute

position, velocity, or acceleration set-points. The low range of values plotted seem to

indicate a very poor, error prone system, but that is only in the context of comparison

between a human and an actual robotic manipulator performing the same task. There

are a number of contributing factors to the low mean value of the precision metric.

The first, but only marginal factor is the natural kinesthetic limitation of the user to

perceive how well they are tracking intended motion cues exactly. This factor is shown

by the points that fall in the range of 0 < ρx[n] < 1 in the full tracking sequence plots

in figure 5.12. A strong contribution comes from the points that fall in the range of

−1 ≤ ρx[n] < 0. This factor is manifest of the false-backwards behaviour described

previously in Section 5.3.3.1. The strongest contributing factor is from points in the

sequence where ρx[n] = 0, which are manifest of the CT-plant performing no directed

motion when cued to do so. These instances are manifest of pauses in arm motion as

the user attempts to perceive and decipher the motion cue issued. This inaction in the

presence of motion cue is consequently a directional error and accordingly diminishes

the measured precision during tracking.

Combining the state transition metric of accuracy and the DEF metric of preci-

sion, we can generate a per segment tracking response metric (−1 ≤ δ[n] · ρx[n] ≤ 1)

that provides a measure of how well the plant (user) has followed the control (motion

cues) per trajectory segment. There are three atypical extremes in tracking perfor-

mance present that can be described from the plots that follow. The nominal task

trial tracking response metric is similarly the mean value of across the particular trial,

(−1 ≤ ψ ≤ 1). Figures 5.13(c) and 5.13(d) give plots of the mean tracking response

metric by subject and by trial progression, respectively. Figure 5.13(e) gives the mean

tracking response vs task completion time for all trials.
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(a) (b)

(c) (d)

(e)

Figure 5.12: Sample trajectory data plots from one trial with subject B02: DEF
plots for each of (a) DES-controller output symbol r̃1; (b) DES-controller output

symbol r̃2; (c) DES-controller output symbol r̃3; (d) DES-controller output symbol
r̃4; and (e) DES-controller output symbol r̃5
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(a) (b)

(c) (d)

(e)

Figure 5.13: Mean Directional Error Fraction (θe): (a) by subject, and (b). The
mean tracking response (ψ): (c) by subject, (d) by trial, and (e) versus task

completion time.
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5.4 Experiment 4: DES-controller with l1 and l2

parameter variation

In this experiment trajectories from a set of reaching task trials with the spherical

targets and shelf rig are analyzed with the proposed discrete event measures proposed

in section 3.7 to determine the effect of varying the hypersurface boundary locations

within the image state-space. An approximate target hysteresis region is created

using non-zero values for the l2-model parameter. We compare the results from this

set of trials to those collected in the previous experiment to verify our hypothesis

that the introduction of the hysteresis region allows the user to achieve better guided

tracking response levels by mitigating the errant or oscillatory targeting corrections

that occur a the target region boundary in the l1-model configuration.

5.4.1 Experimental Apparatus

The physical apparatus used in this experiment is the same as described in sec-

tion 5.3.1. However, in this experiment the l1 and l2 DES-Controller parameters are

varied across 4 sets of non-zero values. The guided reaching task trajectory logs from

each trial were captured and their analysis is presented in following sections.

5.4.2 Experimental Procedure

The experimental procedure is very similar to that described in section 5.3.2, but

with changes to the set of DES-Controller parameters.

The experiment employs a 2x4 block design. Target and start position pairings

are randomly selected for each trial, maintaining a ||pk|| = 60cm as the initial straight

line magnitude of the reaching task. The same sequence of start and target positions

specified in the previous experiment were used here. The factors of signal condition,

and DES-controller parameters: l1, and l2 were randomly assigned to each trial.

The signal condition varied between bang-bang and proportional so that 12 trials

under each were performed by each subject during their session. The DES-Controller

parameters of l1 and l2 were varied amongst 4 sets: (0.075, 0.75), (0.1, 0.25), (0.1, 0.5),

and (0.125, 0.2), so that 6 trials under each were performed by each subject. The

hypersurface locations corresponding to the parameter values are given in Table 5.5.
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Table 5.5: Values for l1 and l2 parameters and corresponding hypersurface locations
used in Experiment 4

Target Window h2(x) h1(x) h3(x) h4(x) h6(x) h5(x) h7(x) h8(x)
(l1, l2)

(0.1, 0.25) 140 144 176 180 105 108 132 135
(0.1, 0.5) 136 144 176 184 102 108 132 138

(0.075, 0.75) 139 148 172 180 104 111 129 135
(0.125, 0.2) 136 140 180 184 102 105 135 138

Consistent with the previous experiment, subjects were given 3 practice trials

before formal trials began. The first practice trial under a sighted condition, and

the other two unsighted. Assignment of the DES-Controller parameter set, signalling

condition, as well as start and target position pairs were randomized during the three

practice trials to avoid biasing the subject towards a particular configuration.

5.4.3 Results and Discussion

Data was collected from the same 9 subjects (23 - 39 years old) that participated

in the previous experiment, but with subjects labeled as C01 through C09 in this

experiment. None of the subjects requested any additional rest time between tri-

als. Each subject performed a set of 24 trials, 12 under bang-bang and 12 under

proportional signalling condition. The two different signalling conditions were ran-

domly distributed within the sequence of trials and subjects were not informed which

signalling condition was in use during each trial. The four different target window

configurations listed in table 5.5 were randomly and equally distributed within the

sequence of 24 trials per subject. Of the total 216 trials recorded across all subjects,

only 9 trials were repeated attempts. As with the previous experiment, the average

frame rate for the entire control loop was 22 fps.

5.4.3.1 Qualitative Observations

A number of qualitative observations regarding the subjects’ response to the interface

and task performance made during the experimental sessions are important to note.

These observations aid in the interpretations of the graphical results provided in the

following sections. Amongst the nine subjects: seven used a straight-arm posture
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during the trials, while the remaining two used a slightly bent posture at the com-

mencement of the trials. Reaching posture variation was entirely up to the choice of

the subject. This trend towards subjects selecting the simplest configuration of arm

posture is expected. In the previous experiment those subjects that used a moder-

ately bent or wing posture tended to have a higher task completion time on those

trials. The experiment operator was able to observe confounding of allocentric and

egocentric frames of reference when the subject tried to resolve motion cues if the

medial line axis of the forearm was not approximately perpendicular to the frontal

plane of the subject.

As with the previous experiment, the reaching task distance of 60cm required

the subjects to take at least one step forward to complete the task, with the norm be-

ing two or more steps. Several subjects exhibited some moderate timidity in moving

forward during the depth tracking phase(s) of the reaching task, but overall subjects

seemed to have establish a reasonable level of comfort with unsighted forward move-

ment, which was greater than comfort level observed in the previous experiment.

Within the trajectory plots captured during this set of trials, there was substantially

less evidence of bounce deviations, caused by jarring steps forward, than in the previ-

ous experiment. This seems to indicate the stable kinesthetic position control of the

end-effector is a readily learned motor skill developed from proper coordination with

lower body movement.

However, the false-backward behaviour manifest of a strong ulnar deviation in

wrist posture persisted within this set of trials. Of the 216 trials, 41.7% exhibited this

type of false-backward behaviour in the trajectory plots. This is in comparison to

the the 39.8% of trials exhibiting the same trajectory plot behaviour in the previous

experiment.

These qualitative observations of wrist posture deviations indicate that the wrist

posture instability continues to be a compelling issue in the control of an eye-in-hand

configuration, even after additional practice with the system through a successive set

of trials, or variation of the DES-Controller parameters. Given the available data, it

is not feasible to determine why subjects seem to be able to increase their proficiency

in stabilized horizontal and vertical position control during forward motion, but there

is no increase in proficiency of postural control at the wrist under the same number

of cumulative trials.
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5.4.3.2 Trajectory and Performance Analysis

(a) (b)

(c) (d)

Figure 5.14: DES-Controller state transition accuracy metric and completion time
progression across the sequence of trials: (a) Task completion time versus state

transition metric for each trial; (b) Task completion time versus trial progression for
all subjects; (c) Tracking time statistics by axial movement; (d) nominal aggregate

DES metric for each subject

Figure 5.14(a) provides a scatter plot of the recorded task completion time ver-

sus the calculated state transition accuracy metric, D. The figure shows a trend of an

increase in nominal, aggregate accuracy as expected, with a greater mean accuracy

(µ(D) = 0.9644) and lesser standard deviation (σ(D) = 0.0172), due to the imple-

mentation of the hysteresis region. The increase cannot necessarily be fully attributed

to the hysteresis region between the inner and outer hypersurfaces. It is reasonable

that some portion of the performance increase is due to learning or practice effects.
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It is important to note that the data point cluster is much more tightly packed that

the similar plot in the previous experiment with a range of 0.91 ≤ D ≤ 1 and all

reaching task trials completed in under 30 seconds. This is in comparison to an accu-

racy metric range of 0.82 ≤ D ≤ 0.98 with 8.8% of task times exceeding 30 seconds.

(see figure 5.11(a))

Figure 5.14(b) plots the task completion times for all trials by trial progression.

In contrast to the previous experiment, the averaged subject performance remains

relatively constant throughout the progression. This would tend to indicate the most

of the subjects have already attained their maximum bound on tracking speed. This

should be considered a positive result because it indicates that users readily become

comfortable with using the system efficiently.

The plot in figure 5.14(c) shows the mean and standard deviation of percentage

tracking-time per movement axis across all trials. The Root-Mean-Squared (RMS)

values for mean tracking-time (dashed-line) and standard deviation of tracking-time

(solid-line) are included in the plot. The large difference in RMS of means in conjunc-

tion with the very similar RMS of standard deviations indicates a bias in the percent

tracking-time across the axial sets of motion cues. This is to be expected given that

the hybrid-control scheme is prioritized to correct tracking error in x1 (horizontal),

then x2 (vertical), then x3 (depth). These statistics in comparison to the similar set

in the previous experiment (see figure 5.11(b)) shows the same relative proportions

to total tracking-time and hence a consistent behaviour in the CT-plant (human)

response to the DES-Controller even under the differing DES-Controller parameter

values.

The plot in figure 5.14(d) shows the nominal state transition accuracy metric

for each subject. The aggregate behaviour is calculated as the center of mass of the 24

trial cluster of D scores for each subject. We can see that the various users have very

similar behaviour in terms of accuracy, but quite a broad range of capability in terms

of movement speed. The plot shows a reasonable dispersion of nominal accuracy scores

for randomly selected subjects after undergoing some learning effect from the previous

experiment. After more than 50 cumulative trials across two experimental sessions,

sufficient practice should have occurred that we would expect to see nominal accuracy

scores that exhibit a narrow range as the users become accustom to perceiving and

interpreting inputs from the vibrotactile interface. However, a larger spread in the

nominal speed per subject is expected as that is more limited by their individual
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motor capabilities. The individual subjects exhibited nominal behaviours that vary

from high-speed / high-accuracy to slow-speed / medium-accuracy to medium-speed

/ medium-accuracy.

(a) (b)

Figure 5.15: Task completion time graphs: (c) scaled task completion time grouped
by subject; and (d) scaled task completion time plotted by trial progression.

Given that completion time for a reaching task can be highly variable due

to many factors, not the least of which is cumulative learning effect, we present

the accuracy-scaled completion time in figure 5.15(a) ordered by subject, and fig-

ure 5.15(b) ordered by trial number. The accuracy-scaled completion time for each

trial is calculated by dividing the measured completion time by it’s corresponding

state transition accuracy score, D. The ordering by subject in figure 5.15(a) shows

that while substantial performance differences can occur between different plants

(users) while preforming the same set of guided reaching tasks, a comparison to the

similar plot from the previous experiment (see figure 5.11(c)) demonstrates a much

tighter bound on completion time values for almost all subjects. Only subjects C08

and C09 seem to have started at, and maintained their individual maximal task com-

pletion speeds across both experimental sessions. Thus those two subjects in par-

ticular demonstrate a higher motor acuity than the average behaviour of the entire

group.

Upon examining figure 5.15(b) in comparison to its similar plot from the previ-

ous experiment (see figure 5.11(d)) we see a much tighter bounds for accuracy-scaled

completion time through the progression of trials, as well. This indicates that nomi-
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nal performance in both speed and accuracy is converging to the each user’s maximal

ability limiting the expectation of further performance gains due to a learning effect

in subsequent trials of the same task.

As with the previous experiment, we generate the average precision metric

across all the trajectory segments within a task trial. To do so we plot the mean

DEF (−1 ≤ θe ≤ 1) for each trial. Figures 5.16(a) and 5.16(b) give the mean DEF

plotted by subject and by trial progression, respectively. Each point within the plot

gives the averaged degree of precision of end-effector motion driven by the CT-plant

(internal joint-space controller). When comparing to the corresponding plots from

the pervious experiment we can see a general trend for a moderate increase in average

precision for the subjects, combined with a moderate decrease in variability of mean

DEF scores within each subject. This is an expected result due to cumulative learning

effect after many trials. With successive practice in attempting smooth, consistent

movement in response to motion cues, subject should tend to maximize the mean

DEF per trial. With the data available, it is unclear if and at what range of values a

bounded maximum mean DEF would exist for normal human motor response. This

is discussed further in the future works presented in Chapter ??.

(a) (b)

Figure 5.16: Plots of mean directional error fraction (θe): (a) mean DEF by subject,
and (b) mean DEF by trial progression.

Comparing to similar plots from the previous experiment we see no significant

difference in the precision of generalized behaviour of all the subjects. Unlike the ap-

preciable improvement in performance seen in the movement accuracy, the movement
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precision is relatively constant. This result is consistent with the results presented

within Experiment 2 (section 5.2). In that experiment the results show consistent

movement precision with and without the visual reference input signal. So the con-

sistent degree of movement precision between the trials from Experiment 3 and this

experiment is reasonable.

(a) (b)

(c)

Figure 5.17: Plots of guided reaching task tracking response ψ: (a) by subject, (b)
tracking response by trial, and (c) task completion time versus tracking response.

Combining the state transition metric of accuracy and the DEF metric of preci-

sion, we can generate a per segment tracking response metric (−1 ≤ δ[n] · ρx[n] ≤ 1)

that provides a measure of how well the plant (user) has followed the control (motion

cues) per trajectory segment. Then the guided reaching task tracking response is

the mean value of segment based metric across the entire trajectory with a range,
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(−1 ≤ ψ ≤ 1). Figures 5.17(a) and 5.17(b) give the guided reaching task tracking

response metric by subject and by trial progression, respectively. Figure 5.17(c) gives

the mean tracking response vs task completion time for all trials.

(a) (b)

Figure 5.18: The nominal, aggregate metrics for trials under five different
DES-model parameter sets: (a) task completion time versus state transition

metric;(b) task completion time versus tracking response metric.

To assess the overall effect of DES-Controller parameter variations on the overall

system behaviour we plot the task completion time against both nominal, aggregate

accuracy metric and the nominal, aggregate tracking task performance metric for the

five (l1, l2) parameter pairs used in this and the previous experiment. The aggregation

of either performance metric describing the nominal behaviour of the generalized user

is calculated by finding the center of mass of each cluster of points grouped by model

parameter variations shown in figures 5.11(a) and 5.10(a), as well as figures 5.13(e)

and 5.17(b).

Figure 5.18(a) provides task completion time versus nominal, aggregate D. The

plot shows a significant difference in nominal completion time and state transition

accuracy between the l1-model parameter set and the parameter sets implementing

the l2 model. The l1-model has a hard boundary for the approximate target region

which allows for accidental, incorrect state transitions due to perturbation and minor

position drift. In contrast, the points representing the l2-model parameter sets show

discernably greater accuracy and quicker completion time. This result is expected as

the l2-model’s hysteresis region was designed to act as a soft boundary, compensating
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for the errant state changes occurring from oscillatory crossings due to drift and cor-

rection (Off-Target to On-Target) across one of the single inner hypersurfaces

employed in the l1-model. The constellation of points plotting nominal, aggregate

behaviour of the different sets of l2-model parameters lie in the predicted pattern:

from the narrowest approximate target region (or greatest targeting difficulty), to the

widest approximate target region (easiest targeting difficulty). This is the expected

result.

Figure 5.18(b) provides task completion time versus nominal, aggregate ψ. The

plot show that the various sets of DES-Controller parameters used in the current and

previous experimental trials maintain their relative position even when examining

the tracking performance. This provides confirmation of the consistent development

of movement precision demonstrated by the group of subjects over the same set of

multiple trials under the various controller configurations. From the plot we see

that the constellation of points representing the nominal, aggregate tracking response

under the various controller configurations used in this and the previous experiment

lie in the predicted pattern, with the narrowest approximate target region (or greatest

targeting difficulty) showing the worst performance and an increase in performance

through the widening (less difficult) regions.
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5.5 Experiment 5: Using Feature Scale to

Estimate Depth

This section describes an experiment which demonstrates the effectiveness of using

the SIFT scale-space parameter as a camera-to-target depth estimator in a monoc-

ular vision based servoing application. The calibration of cartesian distance to the

target object in task-space is determined by its relationship in size to a standardized

isometric reference object (sphere) of various sizes. The reference object chosen is of

a reasonable size for objects that would be grasped by the average user.

Depth estimation is one of the central problems addressed in 3-D reconstruction

from multiple images. There is, consequently, substantial literature including texts

such as Hartley and Zisserman [100]; Ma et al. [129]; and Faugeras and Long [130]

that review the subject. Multiple view geometry discussed in these texts shows that

several mature solutions exist for the 3-D reconstruction problem. However, when the

camera is moving forward along the optical axis, as opposed to a pan or sweep, there

are additional complications [131]. Since the planned reach trajectory only requires

depth estimation while in a forward motion, these type of solutions do not provide

sufficient benefit for the computational complexity and cost. Below we discuss the

applicability of some of the other available techniques for depth estimation so that

our proposed technique is described within context of the requirements of the guided

reaching task.

Depth estimation techniques can be broken down in terms of complexity and

accuracy of the system. Some sensing elements such as laser ranger finders and ul-

trasonic devices can be quite accurate. However, some of the system integration

complexities and costs can make them undesirable when a highly accurate estimate

is not necessary. As an example, one of the complex difficulties presented from inte-

grating a laser range finder to provide depth is the alignment of the beam. Rigidly

mounting the laser range sensor to a fixed point on the hand is not feasible. The

mounting point on the glove can easily shift its location on the dorsal side through

natural movement of the hand during the reaching task. In addition, the result from

Experiments 3 and 4 showed a substantial problem with directional alignment due to

the tendency toward ulnar deviation at the wrist. Thus alignment of a depth sensor

reference frame at the mount point to any egocentric reference frame on the hand is

not assured. This allows for a reasonable likelihood that the ranging data sampled
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would be reflected from a surface other than the target, and at a significantly different

depth position in the task-space.

A purely image-based solution can come from a stereo vision method using a

dual-camera calibrated rig and calculations of correspondence. Complex scene and

task-space geometries can be derived from using stereoscopy and Structure from Mo-

tion (SfM). That is the technique used in a system such as that proposed by Leibe

et al. [132]. Their work demonstrates automatic scene geometry estimation from the

motion of a stereo camera rig mounted on a vehicle. While this type of technique

can produce accurate depth estimation of the target, there are some disadvantages in

the context of assistive devices. The main disadvantages are the need for relatively

complex multiple view geometry algorithms for 3-D reconstruction, and the need for

two cameras instead of one. Monocular vision, in contrast, uses a single camera.

However, it needs even more complex multiple view geometry algorithms [133].

As described early on in this work, the accuracy of the depth estimation is not

crucial in this class of application. So alternate criteria gains significance. The first

being weight. A stereo rig will likely be at least twice as heavy as a monocular vision

solution. A stereo rig greatly increases the hardware complexity of the system. Not

only is the initial material cost greater, but maintenance is a further issue. A reason-

able amount of bumping and/or collisions between the glove and external objects can

easily be expected from natural, daily human activity. If the rig loses it’s calibrated

alignment between the cameras, accurate depth estimation is no longer achievable.

A work advocating the use of scale-space feature detection (SIFT implemen-

tation) for eye-in-hand visual servoing applications was reported by Hoffman et al.

in [134]. Their work reported results of experiments testing the ability of a 5-DOF

KATANA manipulator to visually servo to a goal pose using visual control features

calculated from the moments of SIFT features (keypoint location, scale, and keypoint

orientation). One of the visual control features they propose is fzσ = 1
n

∑n
i=1 σi,

which drives the translational motion, Tz, along the optical axis. They also state

(pg.4265) that the actual distance, z, can be recovered from the scale parameters, σi,

under the assumption that the initial distance, ẑ, at the reference frame is known.

This is accomplished using the average of the relative scale ratios: z = ẑ
n

∑n
i=1

σi
σ̂i

.

Basing the distance calculation on the average of the scales for the extracted features

poses a significant problem. As the camera moves in Tz additional SIFT features can

be incorporated in the extracted set as high frequency image components suddenly
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become visible. These emerging features will be of smaller scale and tend to drive the

value of the average scale down.

To counter this we propose an alteration to scheme by Hoffman etal by defining

the a primary feature, Fp, within the set of extracted SIFT features, where σp =

max(σi). The remainder of the features, are referred to as the secondary features.

The primary feature represent the physical object as a blob entity in the image; at

the largest scale for which the complete object is still discernable after significant

Gaussian blurring. The keypoint of Fp will be located at (up, vp); approximately the

centroid of the object within the image. Then we can redefine fzσ as the weighted

average of scales.

fzσ = aσp + b
∑

i∈{1..n−1},
i 6=p

σi (5.1)

If a = 1
n and b = n−1

n then the definition of fzσ in [134] is reproduced. Since the

primary feature has the greatest significance in determining the size of the object and

by extension the distance from the camera, we set a = 1 and b = 0 to obtain fzσp
sufficient for depth estimation in the guided reaching task. While all extracted fea-

tures are necessary for the object recognition, not many are representative of the size

of physical structures of object. Numerous features can represent textural elements

of the object surface. Thus having the secondary features contribute to the average

scale can introduce a significant error into the distance estimate.

From equations (3.16) and (5.1) we can define an estimate of the diameter for

a boundary circumscribing the projection of the object in the image as a function of

primary feature’s scale such that

d(fzσp) = 2σ0fzσp (5.2)

The constant values of 2 is incorporated because fzσp is representative of the radius,

and not the diameter, of the object blob entity; and σ0 is necessary because Lowe

performs an initial Gaussian smoothing of σ0 = 1.6 before constructing the scale-space

in the implementation of his SIFT algorithm [91].



Chapter 5: Description of Experiments 131

Figure 5.19: Illustration of an isometric object projected onto the image plane

Table 5.6: Intrinsic camera parameters

Focal Length: f [948.96830, 951.49261]
Principal point: [308.78603, 197.34592][
px, py

]
Skew: αc 0
Distortion: kc [ 0.42513, 0.24572,

-0.02011, 0.00549,
0.0000 ]

5.5.1 Experimental Apparatus

Prior to capturing the reference images of the objects, a camera calibration was

performed using an 11-inch by 11-inch planar checkerboard. The procedure for per-

forming the camera calibration, and the Matlab toolbox used can be found at [135].

The intrinsic camera parameters extracted from the calibration process: focal length

(fc), principal point (P ), skew (αc), and distortion coefficients (kc); are provided in

Table 5.6.

Figure 5.19 provides and illustration of the experimental rig that was used to

simulate the depth tracking and capture of the images for this experiment.

5.5.2 Experimental Procedure

A series of images of a reference object were captured to extract the max(σ) from the

keypoint located at the centroid of the object in the image with a feature descriptor

representing the entire object as a blob feature. The reference objects selected were

items that have a standardized sizes and an isometric shape: a squash ball (40mm
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diameter), and a Racquetball (57mm diameter). When the spherical objects are

viewed with their significant markings occluded from the camera, they are immune

to distortion due to perspective projection. The uniform texture also provides the

benefit of minimizing the number of feature descriptors extracted at the smaller scales.

The following procedure was used for each object imaged.

For each set of images the camera was placed at a distance of the 103.5 cm from

the object on slotted rail. At each depth iteration an image was captured and a set

of SIFT feature descriptors are extracted. Then the camera was moved incrementally

closer to object along the rail. The incremental camera movements were consistent

translations of 25.4mm (1-inch) as the slots were at precisely machined locations on

the rail, allowing for accurate recording of distance to target measurements.

5.5.3 Results and Conclusions

The experimental results presented below were obtained using Matlab 7.1 with Image

Acquisition Toolbox version 1.9. The camera used is a Logitech QuickCam Messenger,

and images were captured at a resolution of 640x480.

(a) (b)

Figure 5.20: Example images of with the scales plotted at the extracted keypoints:
(a) racquetball (logo occluded) at Z = 121 mm without a primary keypoint; (b)

racquetball (logo occluded) at Z = 146 mm with a primary keypoint.

Example images are given in Figures 5.20–5.22 illustrating the scale parameter

magnitude for SIFT features extracted from the image sets of racquetball and squash-

ball objects. The image in Figure 5.20((a)) shows the point in the depth motion of
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(a) (b)

Figure 5.21: Example images of with the scales plotted at the extracted keypoints:
(a) racquetball (logo visible) at Z = 121 mm without a primary keypoint; (b)

racquetball (logo visible) at Z = 146 mm with a primary keypoint.

(a) (b)

Figure 5.22: Example images of with the scales plotted at the extracted keypoints:
(a) squashball at Z = 69.85 mm without a primary keypoint; (b) squashball at

Z = 95.25 mm with a primary keypoint.

images where the primary keypoint is lost due the proximity of the object boundary

to image frame boundary. The primary keypoint does not survive the extrema detec-

tion and keypoint localization in SIFT after the down sampling is performed to move

up an octave in the scale-space. Figure 5.20((b)) shows the SIFT features extracted

for the image frame where the primary keypoint was last detected. Figures 5.21((a))

and ((b)) show a similar example for the racquetball with the logo visible.
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The primary keypoint for the two orientations of the raquetball object are

clearly visible in Figures 5.20((b)) and 5.21((b)). The images also shows the key-

point locations of the secondary features of smaller scale detected at the edges of the

raquetball. It is the averaged contribution of these secondary feature keypoint scales

that will erroneously alter the distance estimate from the camera to object.

(a) (b)

(c)

Figure 5.23: Comparison of the accuracy for distance estimation using feature scale
between the a conventional moment method and our proposed method: (a)
racquetball (logo occluded); (b) racquetball (logo visible); (c) squashball.

Plots comparing the accuracy of the our proposed method described by equation

(5.1) and the method proposed in [134] are given in Figure 5.23 relating the distance

to target to the magnitude of scale parameter moment. Figure 5.23(a) provides the

magnitude estimate for the series of images captured with the logo occluded, and
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Figure 5.23(b) provides the magnitude estimates for the series with the logo visible.

In each graph the green plot, d, provides the ideal estimate of the object diameter

within the image versus the known Z distances from the target object to the calibrated

camera (see equation (3.16)). The graphs also provided the estimated pixel diameter

of the object image using the method proposed (red plot) by Hoffmann et al. [134] and

our proposed method (blue plot) with a = 1 and b = 0. Both graphs show significantly

better agreement between our method and the ideal. A similar level of agreement is

shown for the squashball object as well. Our method does show a large deviation when

the camera is sufficiently close to the object that the image frame boundary interferes

with the object boundary, preventing the target object from being recognized as a

single blob entity. That is point in depth motion that the original primary feature

is lost. As a consequence the estimate of object size is calculated based on the next

largest scale feature available, which is only representative of the physical size of that

particular feature.

A notable result with our method of heavy weighting towards the primary fea-

ture is that the size estimate has a much smoother monotonic behaviour. This is

particularly evident in Figure 5.23(b) as it plots the result for target with the logo

visible, which produces a substantial number of higher frequency features as the depth

motion progresses towards the object. The monotonically increasing function is ex-

tremely beneficial for a human plant, as opposed to a conventional robot, since it

prevents confusion during perception of the vibrotactile motion cues. If a user is

intermittently given feedback that indicates the target object is further away, even

though they are aware that they are moving forward, it could cause significant con-

fusion and frustration which could degrade the overall performance of the reaching

task.

With this results it can be seen that, given a reference SIFT feature set for a

particular target object, a subset of those features can be used to estimate a suffi-

ciently accurate camera to target distance for the generation of forward motion cues.

Unlike in purely robotic applications, where the entire reference SIFT feature set

would be use to calculate required end-effector pose, it is impractical and unneces-

sary in this case. As discussed in Chapter 1, the goal of the control is to achieve

a close proximity to the target object and allow the user to probe the new tightly

constrained task-space to determine how best to contact and grasp the object.
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5.6 Experiment 6: Vibrotactile Interface Speed

vs Accuracy Characterization

In the previous tracking experiments, sections 5.3 and 5.4, subjects were instructed to

follow motion cue given at a quick but comfortable pace. This was necessary as there

were seven types of distinct types of vibrotactor output signals to interpret and act

upon. In this experiment we constrain the task to that of a 1D virtual tapping test

to examine the speed vs accuracy trade-off behaviour is the presence of substitution

of somatosensory input in substitution of natural human vision.

5.6.1 Experimental Apparatus

The apparatus used consists of the aiReach system using the l1-model described

previously, but with some necessary functional alterations:

• actuation of vibrotactors is limited to only the Move-Left and Move-Right

units;

• signalling variation is expanded to include Low-to-High proportional signalling

as well;

• and a hand held task termination switch for indicating confirmation of an

On-Target state is used by the subject.

The camera to target distance was approximately 1.4m which was sufficient

to achieve a sweeping ipsilateral, horizontal movement from mid-line to past neutral

position of the shoulder. All trials were conducted with ipsilateral movements from

the initial position to the target for consistency.

5.6.2 Experimental Procedure

The experiment employs a 3x4x4 factorial design. The factors are signal con-

dition, amplitude, and width. The levels for each of the those are BangBang,

Proportional High-to-Low, Proportional Low-to-High {BB, HL, LH}; and the sets of

movement amplitude {A1, A2, A3, A4} and target width {W1,W2,W3,W4} in pixels.

Initial camera to target plane distance was 1.4m to keep pixel pitch consistent. The
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Table 5.7: Index of Difficulty by movement amplitude and target width pairings

ID W1 = 32 W2 = 24 W3 = 16 W4 = 8
A1 = 150 2.5 2.9 3.4 4.3
A2 = 125 2.3 2.6 3.1 4.1
A3 = 100 2 2.4 2.9 3.4
A4 = 75 1.7 2 2.5 3.4

values of the various movement amplitudes, target widths, and corresponding index

of difficulty are given in Table 5.7

Subjects were given 10 minutes of practice to become accustom to the system

before recorded trials began. Subject were given rest periods to prevent bias due to

over exertion. Rest periods were given at a minimum interval of every 6 trials, or

upon request.

Subjects were instructed that upon commencement of the motion cue to move

as quickly as possible towards the target and then stop movement once vibrotac-

tor output ceases. At that point they were to press the thumb switch to indicate

that the On-Target condition was achieved. Subjects were further instructed that

if they overshoot the target, the opposing vibrotactor would actuate indicating the

back tracking was necessary to achieve On-Target and that tracking must con-

tinue until the no vibrotactor signal is present. Three trials for each <signal> x

<amplitude> x <width> combination were recorded, producing 144 trials per

subject.

Subjects were aligned with the appropriate nominal amplitude index point prior

to the start of each trial all while the subject’s vision of the target field was occluded.

5.6.3 Results and Discussion

Results were collected from 3 subjects designated D01 through D03 (2 male and

1 female), ranging in age from 25 to 31 years of age. Due to the inherent, natural

position registration instability discussed in experiment 2, the actual initial amplitude

of movement for each trial varies slightly. The actual recorded movement amplitude

as opposed to the nominal initial amplitude was used in the analysis below. Each

subject performed 144 trials which provides a total of 432 trials for analysis.

The actual initial amplitude of each trial is used in the calculation of Index

of Difficulty (ID). The total Movement Time (MT) was taken from the initiation of
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vibrotactor output until the actuation of the task termination signal from the thumb

switch occurs. The most widely accepted 1D Fitts’ law formulation of MT = a+b·ID,

where ID = log2( AW + 1), was used in the analysis below.

5.6.3.1 Qualitative Observations

The subjects made the following qualitative observations regarding their preferences

and/or perception of the quality of signalling variations. All three subjects rated

the LH frequency variation as “irritating” or “frustrating”. Subjects D01 and D03

specified a preference for HL signalling and subject D01 stated no preference between

HL and BB signalling.

5.6.3.2 Performance Analysis

The data collect was used as a whole and partitioned in several ways in an attempt

to examine the speed-accuracy trade-off exhibited in a Fitts’ law performance model.

The graphical and numerical results are presented below.

Figure 5.24 presents a set of scatter plots showing the movement time (MT)

versus the index of difficulty (ID) from the recorded trials. Each plot also includes a

line of best fit with 95% confidence bounds for the linear fit. Figure 5.24(a) provides

the plot and fit line for all recorded trials. Figures 5.24(b)–(d) provide the plots and

fit lines for the trials related to the BB, HL, and LH signalling conditions, respectively.

The corresponding linear regression coefficients, coefficient of determination (R2),

and RMSE statistics for each are given below:

b a R2 RMSE

All 0.7888 0.9213 0.327 0.9643

BB 0.8237 0.7333 0.2059 1.013

HL 0.5172 1.729 0.1262 0.8225

LH 1.115 0.0475 0.4499 1.029

While the R2 statistic for the linear regression fit to each of the four sets does not

show a high quality fit, an interpretation that supports the qualitative observations

from the subjects can be demonstrated by the linear regression coefficients. The

slopes of the fit lines used as a general trend in the data shows the steepest slope for

the LH data set and shallowest slope for the HL data set. This indicates a positive
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correspondence with the impressions of subjects in that LH signalling presented the

greatest difficulty in target acquisition and HL presented the greatest ease in target

acquisition.

(a) (b)

(c) (d)

Figure 5.24: Analysis of a 1D Fitts’ law performance model of all trials by signalling
condition: (a) all trials, (b) all BangBang trials, (c) all High-to-Low trials, and (d)

all Low-to-High trials.

Even thought the system makes an attempt at conveying a sense of movement

amplitude by proportionally scaling the vibrotactor frequency in comparison, a sense

of the target width cannot be readily conveyed to the user. The knowledge of target

width is a fundamental component of assessing task difficulty and that lack of a

priori knowledge of target width will likely play a strong factor in task performance.

The subject does have some perception of target width but through an a posteriori

knowledge of the target width if/when they overshoot the far boundary. In that case,
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the subject’s perception of target width is direct knowledge, but likely imprecise

as it will come from kinesthetic perception of their arm position at termination of

the ipsilateral vibrotactor signal and actuation of the contralateral vibrotactor. If

overshoot does not occur, then there is no direct knowledge of target width. This

fundamental difference of input to the task planning mechanism within the human

neuromotor control likely creates a significant performance difference from traditional

1D reaching/pointing tasks.

Table 5.8 give the percentage of trials by subject and signalling condition com-

bination that contain one or more overshoot-correction movements before task com-

pletion. An examination of the table shows that almost all cases have a considerably

high percentage of overshoot-correction movements (above 70%) which indicates that

the subjects were having significant difficulty in stopping within initial entry into the

target region.

An overshoot-correction movement is defined as passing through the target

across the far boundary, then reversing direction in accordance with the contralateral

motion cue and returning towards the target. Multiple overshoot-correction move-

ments can occur if the camera passes over the target multiple times before the task

termination signal is issued by the subject.

Table 5.8: Percentage of trials exhibiting overshoot-correction movements per
subject and signalling condition

BB HL LH
D01 70.83% 54.17% 70.83%
D02 79.17% 89.58% 79.17%
D03 81.25% 81.25% 87.5%

Figure 5.25 provides the scatter plots of the same data sets as in Figure 5.24

but with the points partitioned into subsets of those trials which contain one or more

overshoot-correction movements (green) and those which have none (blue). The plot

also includes a linear regression line and 95% confidence prediction bounds to only

the points with no overshoot-correction movements. Figure 5.25(a) provides the plot

and fit line for all trials without overshoot-correction. Figures 5.25(b)–(d) provide

the plots and fit lines for the trials with no overshoot-correction related to the BB,

HL, and LH signalling conditions, respectively. The corresponding linear regression
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coefficients, coefficient of determination (R2), and RMSE statistics for each are given

below:

b a R2 RMSE

All 1.05 0.3297 0.1978 1.118

BB 0.463 1.934 0.0432 0.9107

HL 1.159 0.0817 0.176 1.06

LH 1.402 -0.6313 0.1607 1.453

The regression statistics show a very low quality of fit to a linear model, likely

due to the fact that majority of points without overshoot-correction movements are

clustered towards the lower values of ID. These result from trials with the largest

target width, W1, or in some cases the pairings of smaller movement amplitudes with

medium-sized target widths. This is likely due to the target width being sufficiently

large so that the subject has sufficient time to react (stop) to their perception of an

absence of motion cue indicating that they are within the target. However, overall

fitting a regression line to these subsets of data does not seem to be an adequate

choice of model considering typical Fitts’ law tasks do not have such a significant

rate of overshoot-correction movements in the task trajectories.

Figure 5.26 provides the scatter plots of the full data set partitioned into subsets

by subject. The subject data sets are further partitioned by those trials which con-

tain one or more overshoot-correction movements (green) and those which have none

(blue). The plots also includes a linear regression line and 95% confidence prediction

bounds to only the points with no overshoot-correction movements. Figures 5.26(a)–

(c) provide the plots and fit lines for the trials with no overshoot-correction related

to all signalling conditions for subjects D01, D02, and D03, respectively. The corre-

sponding linear regression coefficients, coefficient of determination (R2), and RMSE

statistics for each are given below:

b a R2 RMSE

D01 1.002 1.261 0.2466 1.042

D02 0.7067 0.4926 0.4868 0.4055

D03 0.7185 0.759 0.3549 0.4214

The regression statics show much better agreement with a 1D Fitts’ law perfor-

mance model on a per subject basis than in the previous sets of figures. This is to be
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(a) (b)

(c) (d)

Figure 5.25: Analysis of a 1D Fitts’ law performance model of single movement
trials by signalling condition: (a) all single movement trials, (b) all BangBang single

movement trials, (c) all High-to-Low signal movement trials, and (d) all
Low-to-High single movement trials.

expect as the same motor skills capability is applied in each trial. In particular, sub-

jects D02 and D03 show fairly consistent task performance behaviour across the range

of task difficulties, demonstrating a greater capability to consistently react to the mo-

tion cues at full speed. While the regression statistics do not exhibit the same quality

of fit to the linear regression as traditional 1D Fitts’ law task experimental results,

R2 ≈ 0.9 [110, 118, 112], this is also expected. Given the subject is operating in an

unsighted condition and has no direct a priori knowledge of the movement amplitude

or target width, the feedforward portion of the neuromotor path planning control

loop attributed vision is absent. However, the reasonably low dispersion of the data

points seems to indicate that some kinesthetic and cognitive (anticipatory reaction to
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a change in vibrotactor output) feedforward input does still persist. Examination of

the plots shows a strongly linear lower bound for the data points. This would seem

to indicate that an expected speed vs accuracy trade-off still persists. The greater

variability in the data could be explained by the lesser contribution of feedforward

input and the accompanying difference in feedback mechanism. The substitution of

somatosensory input in place of vision for the corrective phase of the movement is a

discrete input in the BB case a very low resolution continuous signal in the HL and LH

cases. This is opposition to normal vision being an very high resolution continuous

signal representing the relative position of the hand to the target and the size of the

target.

(a) (b)

(c)

Figure 5.26: Analysis of a 1D Fitts’ law performance model of single movement trials
by subject: (a) subject D01 trials, (b) subject D02 trials, and (c) subject D03 trials.
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Chapter 6 Discussion and Conclusions

In this work a prototype wearable assistive device implementing a hybrid control

scheme for object tracking and visual servoing to assist a visually impaired user

through a guided reaching task was presented. It was shown that the single camera

and vibrotactile interface could provide a viable, indirect surrogate sight to stably

guide the user’s hand toward the target object. However, a significant result of the

preliminary investigation was the difficulty in measuring the level of performance of

the reaching task. Only the broadest measure of completion with results of either

success or failure could be reliably determined. Even attempting to quantify perfor-

mance using task completion time was problematic as tracking tasks can very greatly

in distance and difficulty. In addition, with the unstructured usability testing of the

initial prototype with a generalized subject group, it was found that user intent and

conscious action created plant dynamics that made the system seem extremely locally

unstable. This was evidenced by user’s choosing to perform random movements or

ignoring motion cues for a variety of reasons. Yet the system appears to be globally

stable as once a deviating plant decided to resume compliance with the motion cues,

task completion was inevitable.

6.1 A Novel Model

One of the difficult issues addressed in this work is determining an adequate system

model for the guided reaching task movement. The neuromotor movement research

community still has competing control models for upper limb movement, which were

discussed in the literature review presented in Chapter 2. Thus, even though upper

limb movement modeling is a mature area of research the correct system model for a

guided reaching is not readily or definitively known. Often the upper limb movement

experiments conducted to gather empirical data to support the proposal of either

model was done in constrained, two dimensional planar movements scenarios such

as along a table top. As such, the results are not entirely applicable to the 3D

environment of the free space guided reaching task we investigate within this work.
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Instead of pursuing the identification of an adequate continuous-time transfer function

for the reaching behaviour, a goal which has been largely illusive to most researchers

in the field, we chose an alternate approach that relied on leveraging the intelligence

of the user from a task completion perspective. For a guided reaching task the natural

high-level model is an IBLM visual servoing model with the user as the joint-space

controller. The user’s intelligence and tactile sensory capability was leveraged by

defining the terminal position as a region adjacent to the target object and not a

point on the target object; enabling them to progress to a grasping task using their

innate ability to probe and sense the immediate physical environment and the object.

Following from that, the controller requirements could be simplified to employ only

a single camera in an eye-in-hand configuration and a feature-space controller driven

by a three element feature vector of the image space coordinates of the center of

mass and a depth approximation feature. This allows for easy interchange of feature

extraction and matching techniques of varying complexity.

Since the plant dynamics for the spectrum of users can only be loosely defined,

we proposed a feature-space controller that was based on discrete event system. The

defined events are consistent across all users (plants) unlike an attempt to achieve

control through a conventional kinetic state-space model. Those common events are

the achievement of horizontal, vertical, and depth target region alignment of the glove

mounted camera. This allows our proposed system to control the process of tracking

based on event occurrence and keep the continuous-time plant behaviour separate.

The alignment events are defined within image-space so that the system is easily

deployed in any reasonable task-space in which the user would venture. In this way,

ground truth becomes almost completely unnecessary and the frame of reference is

egocentric, which is very natural for the user to interpret.

In this particular implementation, the motion cues that drive the camera mo-

tion through the defined tracking events are aligned to the horizontal, vertical, and

depth movements, because they are fundamental actions that are discernable through

proprioceptive feedback without specific training for the user. However, the hyper-

surface boundary locations in the image-space that are the trigger for the tracking

events can easily be redefined in alternate configurations if desired.
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6.2 Necessity for New Performance Measures

It is very difficult to use conventional control system metrics for performance and

stability for a system that incorporates a human in the loop because of the high

variability from a nominal dynamic that each individual can introduce in experimental

results. Aside from the problematic issue of the neuromotor movement community

still maintaining competing proposed control models for upper limb movement, the

human factors of perception and intention do not integrate well with conventional

control system metrics, simply because conventional plant dynamics do not include

“intention” or “choice”.

These issues were mostly addressed in the HCI research field by the discovery

and extensive application of Fitts’ Law. However, it was important to determine

if Fitts’ law prediction of movement time in relation to index of difficulty was an

appropriate metric for this case because of the removal of the direct visual reference

signal in targeting process. The literature establishes that movements tasks that

can be accurately quantified by a Fitts law performance line have the fundamental

dynamic characteristic of a dual subtask composition: a ballistic phase and corrective

phase.

Our analysis, which was confirmed with experimental results presented in Ex-

periment 3, showed that a Fitts’ law performance line was a very poor fit and thus not

applicable, A performance metric which still maintained the underlying aspect of a

distinction between accuracy and precision in targeting task movements was proposed

to allow for the measure of task performance so that we can determine if alterations

to the control parameters or interface truly have a positive of negative effect on the

system performance.

6.3 Summary of experimental results and their

impact

The proof of concept experiment demonstrated the basic validity of an eye-in-hand,

single camera IBLM model for a wearable assistive device. However, some resultant

observations were also able to illicite the two fundamental questions that defined the

subsequent direction of this work:
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• how does one incorporate the significant variability between each individual

user’s perceptual and motor capability in our system model?

• how does one measure task performance so that we can determine if alterations

to the system design, proposed as improvements, actually result in true perfor-

mance gains?

Experiment 2 showed that the precision of position/movement stability (propri-

oceptive motor limitation) is the same with or without visual feedback, and that the

visual feedback is primarily required for the accuracy of position/movement stability.

The results also showed evidence that fatigue had no effect in trials under 60 seconds,

so the assumption of time-invariant system for the plant was a reasonable within that

duration bound.

Experiment 3 showed that the serial application of Fitts’ law and Steering law

were not appropriate performance models for this type of task. The perceptual limi-

tation of an unknown terminal point for the reaching task seems to be a fundamental

difference in affecting the task dynamics. Without a known terminal point, a con-

tinuous ballistic movement phase could not be achieved. The analysis of the initial

frontal plane movement data showed that the task is not a ballistic reach to a known

target, as verified by comparing performance to that predicted by Fitts’ model using

classical ballistic reach to formulate the index of difficulty. The pervasive ulnar de-

viation postural issue which resulted in a depth estimate instability preclude the use

of Steering law as a performance model because of a high failure rate (approximately

40% of trials) for forward motion. However the analysis of the trajectory data from

the trials showed that the proposed state transition accuracy metric and the direc-

tional error fraction precision metric could easily be applied to examine the two types

of performance separately and in combination. The performance metrics were also

able to indicate trends in performance changes such as learning/practice effects.

Experiment 4 showed that the use of the DES-Controller metrics were able

to indicate predicted nominal aggregate performance changes as the DES-Controller

parameters were altered. It was shown that the inclusion of the hysteresis region

allowed the subjects to complete the guided reaching task with greater accuracy and

in less total time. By plotting the nominal, aggregate behaviour of all the subjects

to show the performance of a generalized CT-plant, it was demonstrated that guided

reaching task tracking response increased as DES-Controller parameters (l1 and l2)
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were altered from the narrowest approximate target region to the widest in the testing

set.

Experiment 5 demonstrated that more rigorous and capable feature extraction

and matching scale-space techniques such as SIFT could be employed. Results in

the literature had shown that other researchers were able to produce an eye-in-hand

visual servoing solution using SIFT with robotic manipulator, but with moderately

unstable depth estimation due to scale space traversal.

Experiment 6 investigated the speed vs accuracy phenomena in performance of

human motor targeting tasks, a theoretical underpinning of Fitts’ law, in presence

of the vibrotactile interface employed by the system. The initial results from this

pilot study showed that even in the absence of human visual perception of the task

difficulty the phenomena still persists as a lower bound in the Movement Time vs

Index of Difficulty plots.



149

Chapter 7 Future Work

We intend the development of this system to be an ongoing process. The major de-

velopment directions we have identified fall broadly into three categories:performance

improvements, control system accuracy and user communication.

7.1 Performance Improvements

A likely beneficial addition to the object recognition portion of the software would

be to incorporate windowing (focus of attention) scheme into the vision system. The

purpose of the windowing would be to limit feature extraction and matching to only a

portion of the image. Once the initial tracking has begun, the trajectory is reasonably

predictable and a significant portion of the image can be ignored which would be a

moderate performance improvement. The resultant increase in the processed frame

rate, would be seen at larger distances from the target object. At closer distances,

little to no processing speed benefit would be achieved as the target would encompass

most of the frame, so the entire frame would need to processed.

7.2 Control System Accuracy

In addition, it would be beneficial to add functionality could back step through the

DES-Controller state history. Introducing state memory would allow the system to

more readily reacquire a target object that has been identified but is no longer in the

field of view due to unstable user movement.

Currently, one of the most important issues related to accuracy is the wrist

posture deviations. It would be beneficial to incorporate some mechanism to elimi-

nate or control the deviations, particularly the lateral ulnar deviation which was the

most common and severe occurrence. The most straight forward method to prevent

postural deviation of the wrist is to augment the glove so that it is extends through

a moderately firm sleeve constraining wrist movement. However, that may not be
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beneficial in light of reduced comfort and preventing natural wrist movement that

may be necessary during the subsequent grasping task.

The percentage-time tracking results in experiments 3 and 4 alluded to the need

to test an alternate configuration of tracking priority. The current tracking priority of

x1 then x2 then x3 showed a clear artificially induced bias. One question that arose

is whether there exists a natural bias in axial tracking effort. As such a extension to

the experiment 3 could be performed in which an alternate state transition function,

δ, so that max(||x1||, ||x2||) is given priority for axial alignment. Once horizontal and

vertical alignment is achieved, then the system would transition to the depth tracking

state. Similar analysis of those trials would then be able to establish if a natural bias

in tracking effort exists.

The initial approximate target region dimensions were arbitrarily selected as

20% of the image dimensions. The sets of {l1, l2} parameter variations expanded the

approximate target region out to an inner boundary of 25% and outer boundary of

30% of the image dimensions. An extended set of trials encompassing a greater range

of approximate target region sizes to determine if, and at what point task performance

begins to degrade significantly.

Lastly, the {l1, l2} parameters were held constant within each set of trials. The

effect within task-space is to create a hyperbolically decreasing approximate target

region as depth tracking proceeds towards the target. This allows for loose horizontal

and vertical alignment initially, but with an increasing degree of precision as the hand

approaches the target object. It would be worthwhile to examine effect of variable

{l1, l2} during depth tracking. This would be employed as the parameters being a

function of depth offset, li = fi(x3). Ideally, this would allow the aiReach system

to maintain a minimum approximate target region size in task space, related to the

nominal instantaneous drift found in Experiment 2, even beyond the corresponding

depth scale.

7.3 User Communication

A practical issue with the construction of the prototype was the placement of vibro-

tactors. Subjects with smaller hands experienced moderate difficulty with accurate

perception of motion cues at two of the transducer sites. Without a properly fitting

glove, the motion cue signal from vibrotactor on the palm (Move-Down) appears
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attenuated to the user. This attenuated vibratory amplitude at the transducer site

combined with sympathetic vibration carried in the vibrotactor lead wires strung up

and around the distal portion of the foreman lead to some perceptual confusion.

Similar issues at the Move-Left (anatomical snuff box) vibrotactor were ob-

served as well. In cases of medium and larger hands fitting tightly within the glove,

the placement of that transducer would maintain a stable position closer to the prox-

imal side of the first metacarpal, allowing greater signal perception through bone

conduction. With smaller hands the loose fit would allow the glove to shift forward,

aligning the transducer contact point with the loose skin between the thumb and

index finger; attenuating the perceived signal amplitude. The obvious and simple

solution in future iterations is to provide various glove sizes to achieve an properly

sized fit for each user. However, this observation has also illuded to further exper-

imentation and analysis of ideal placement site for the vibrotactors. While certain

positions may take advantage of the higher perceptual SNR through bone conduction,

they may also present detrimental ergonomic affects. Chronic injury due to sustained

or long term successive usage may become a factor.



152

References

[1] M. Jordan and D. Rumelhart, “Forward models - supervised learning with a

distal teacher,” Cognitive Science, vol. 16, pp. 410–416, 1992.

[2] S. Ram and J. Sharf, “The people sensor: a mobility aid for the visually im-

paired,” Digest of Papers. Second International Symposium on Wearable Com-

puters (Cat. No.98EX215), pp. 166 – 7, 1998.

[3] S. Meers and K. Ward, “A vision system for providing the blind with 3D colour

perception of the environment,” in Proceedings of the Asia-Pacific Workshop

on Visual Information Processing, (Hong Kong), December 2005.

[4] L. Parker, “Current state of the art in distributed autonomous mobile robotics,”

in International Symposium on Distributed Autonomous Robotic Systems,

(Knoxville, TN), pp. 3–12, October 2000.

[5] D. J. Jacques, R. Rodrigo, K. A. McIsaac, and J. Samarabandu, “An object

tracking and visual servoing system for the visually impaired,” in Proceedings

of the IEEE International Conference on Robotics and Automation, (Barcelona,

Spain), pp. 3510–3515, April 2005.

[6] D. Jacques, R. Rodrigo, K. McIsaac, and J. Samarabandu, “An application

framework for measuring the performance of a visual servo control of a reaching

task for the visually impaired,” in Systems, Man and Cybernetics, 2007. ISIC.

IEEE International Conference on, pp. 894 –901, oct. 2007.

[7] M. Mattar, A. Hanson, and E. Learned-Miller, “Sign classification using local

and meta-features,” in Computer Vision and Pattern Recognition - Workshops,

2005. CVPR Workshops. IEEE Computer Society Conference on, p. 26, june

2005.

[8] P. Silapachote, J. Weinman, A. Hanson, M. Mattar, and R. Weiss, “Auto-

matic sign detection and recognition in natural scenes,” in Computer Vision



Chapter 7: Future Work 153

and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Com-

puter Society Conference on, p. 27, june 2005.

[9] J. Sudol, O. Dialameh, C. Blanchard, and T. Dorcey, “Looktel - a comprehensive

platform for computer-aided visual assistance,” in Computer Vision and Pattern

Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference

on, pp. 73 –80, june 2010.

[10] X. Chen and A. Yuille, “Detecting and reading text in natural scenes,” in

Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of

the 2004 IEEE Computer Society Conference on, vol. 2, pp. II–366 – II–373

Vol.2, june-2 2004.

[11] I. Ulrich and J. Borenstein, “The guidecane, applying mobile robot technolo-

gies to assist the visually impaired,” IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, vol. 31, no. 2, pp. 131–136, 2001.

[12] S. Shoval, I. Ulrich, and J. Borenstein, Computerized Obstacle Avoidance Sys-

tems for the Blind and Visually Impaired. Intelligent Systems and Technologies

in Rehabilitation Engineering, CRC Press, 2000.

[13] R. Audette, J. Balthazaar, C. Dunk, and J. Zelek, “A stereo-vision system for

the visually impaired,” Tech. Rep. 2000-41x-1, School of Engineering,University

of Guelph, Guelph, ON, Canada, December 2000.

[14] J. Coughlan and R. Manduchi, “Functional assessment of a camera phone based

wayfinding system operated by blind and visually impaired users,” International

Journal of Artificial Intelligence Tools, Special Issue on Artificial Intelligence

Based Assistive Technologies: Methods and Systems for People with Disabilities,

vol. 18, pp. 379–397, Jun. 1 2009.

[15] H. Hile, R. Grzeszczuk, A. Liu, R. Vedantham, J. Koecka, and G. Borriello,

“Landmark-based pedestrian navigation with enhanced spatial reasoning,” in

Pervasive Computing (H. Tokuda, M. Beigl, A. Friday, A. Brush, and Y. Tobe,

eds.), vol. 5538 of Lecture Notes in Computer Science, pp. 59–76, Springer

Berlin / Heidelberg, 2009.



Chapter 7: Future Work 154

[16] K. Zawrotny, A. Craig, D. Weiser, R. Klatzky, and G. Stetten, “Fingertip vi-

bratory transducer for detecting optical edges using regenerative feedback,” in

Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th

Symposium on, pp. 373–374, march 2006.

[17] G. Stetten, R. Klatzky, B. Nichol, J. Galeotti, K. Rockot, K. Zawrotny,

D. Weiser, N. Sendgikoski, and S. Horvath, “Fingersight: Fingertip visual hap-

tic sensing and control,” in Haptic Audio Visual Environments and their Ap-

plications, (Ottawa, Canada), pp. 80–83, IEEE International Workshop, 12-14

October 2007.

[18] H. Watanabe, S. Kotani, N. Kiyohiro, and S. Hashiguchi, “Research and devel-

opment of wearable walking mate system,” in Systems, Man and Cybernetics,

2007. ISIC. IEEE International Conference on, pp. 621 –625, oct. 2007.

[19] D. Yuan and R. Manduchi, “Dynamic environment exploration using a virtual

white cane,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, vol. 1, pp. 243–249,, june 2005.

[20] Y. Kaneko, T. Harada, Y. Hirahara, Y. Kikuchi, S. Yamada, K. Yanashima, and

K. Magatani, “Development of the navigation system for the visually impaired,”

IEEE EMBS Asian-Pacific Conference on Biomedical Engineering 2003 (IEEE

Cat. No.03EX711), pp. 238–239, 2003.

[21] J. Bigham, C. Jayant, A. Miller, B. White, and T. Yeh, “Vizwiz::locateit -

enabling blind people to locate objects in their environment,” in Computer

Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer

Society Conference on, pp. 65 –72, june 2010.

[22] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R. Miller,

A. Tatarowicz, B. White, S. White, and T. Yeh, “Vizwiz: nearly real-time

answers to visual questions,” in Proceedings of the 23nd annual ACM symposium

on User interface software and technology, UIST ’10, (New York, NY, USA),

pp. 333–342, ACM, 2010.

[23] E. L. Brady, “Analyzing visual questions from visually impaired users,” in The

proceedings of the 13th international ACM SIGACCESS conference on Comput-



Chapter 7: Future Work 155

ers and accessibility, ASSETS ’11, (New York, NY, USA), pp. 309–310, ACM,

2011.

[24] M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, G. Prisco,

F. Salsedo, and Sartini, “Arm exoskeleton system for teleoperation and virtual

environments applications,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation, (San Diego, CA), pp. 1449–1454, May 1994.

[25] A. Gupta and M. K. O’Malley, “Design of a haptic arm exoskeleton for train-

ing and rehabilitation,” Mechatronics, IEEE/ASME Transactions on, vol. 11,

pp. 280 – 289, june 2006.

[26] J. C. Perry and J. Rosen, “Design of a 7 degree-of-freedom upper-limb powered

exoskeleton,” in Biomedical Robotics and Biomechatronics, 2006. BioRob 2006.

The First IEEE/RAS-EMBS International Conference on, pp. 805 –810, feb.

2006.

[27] J. G. Linvill and J. Bliss, “A direct translation reading aid for the blind,” Pro-

ceedings of the Institute of Electrical and Electronic Engineers, vol. 54, pp. 40–

51, 1966.

[28] H. Z. Tan and A. Pentland, “Tactual displays for wearable computing,” in Pro-

ceedings of the International Symposium on Wearable Computers, (Cambridge,

Massachusetts, USA), October 1997.

[29] H. Z. Tan and A. Pentland, “Tactual displays for sensory substitution and

wearable computers,” in ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05,

(New York, NY, USA), ACM, 2005.

[30] P. I. Corke, Visual Contrl of Robots: High-performance Visual Servoing.

Taunton, Somerset, England: Reserch Studies Press Ltd., 1997.

[31] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,”

IEEE Transactions Robotics and Automation, vol. 12, no. 5, pp. 651–670, 1996.

[32] P. Fitts, “The information capacity of the human motor system in controlling

the amplitude of movement,” Journal of Experimentatl Psychology, vol. 47,

pp. 381–391, 1954.



Chapter 7: Future Work 156

[33] N. Ferrier, “Achieving a fitts law relationship for visual guided reaching,” Sixth

International Conference on Computer Vision (IEEE Cat. No.98CH36271),

pp. 903 – 910, 1998.

[34] A. Murata and H. Iwase, “Proposal of two-dimensional effective target width

in fitts’ law,” IEEE SMC’99 Conference Proceedings. 1999 IEEE International

Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), vol. vol.2,

pp. 265 – 270, 1999.

[35] A. Murata, “Extending effective target width in fitts’ law to a two-dimensional

point task,” International Journal of HCI, vol. 11, no. 2, pp. 137–152, 1999.

[36] N. Yang, D. Jin, M. Zhang, C. Huang, and R. Wang, “An extending fitts’ law

for human upper limb performance evaluation,” 2001 Conference Proceedings of

the 23rd Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (Cat. No.01CH37272), vol. 2, pp. 1240 – 3, 2001.

[37] T. Grossman and R. Balakrishnan, “Pointing at trivariate targets in 3d envi-

ronments,” Conference on Human Factors in Computing Systems - Proceedings,

pp. 447 – 454, 2004.

[38] D. A. Rosenbaum, Human Motor Control. Elsevier Academic Press, second ed.,

2010.

[39] R. Cohen and D. Rosenbaum, “Where objects are grasped reveals how grasps

are planned - generation and recall of motor plans,” Experimental Brain Re-

search, vol. 157, pp. 486–495, 2004.

[40] D. Elliot, W. Helsen, and R. Chua, “A century later: Woodworth’s (1899) two-

component model of goal-directed aiming,” Psychological Bulletin, vol. 127,

pp. 342–357, 2001.

[41] K. Ericsson, R. Krampe, and C. Tesch-Romer, “The role of deliberate practice in

the acquisition of expert performance,” Psychological Review, vol. 100, pp. 363–

406, 1993.

[42] K. Keetch, R. Schmidt, T. Lee, and D. Young, “Especial skills: Their emer-

gence with massive amounts of practice,” Journal of Experimental Psychology:

Human Perception and Performance, vol. 31, pp. 970–978, 2005.



Chapter 7: Future Work 157

[43] M. Merzenich, R. Nelson, M. Stryker, M. Cynder, A. Shoppmann, and J. Zook,

“Somatosensory cortical map changes following digit amputation in adult mon-

keys,” Journal of Comparative Neurology, vol. 224, pp. 591–605, 1984.

[44] L. Snyder, A. Batista, and R. Andersen, “Coding of intention in the posterior

parietal cortex,” Nature, vol. 386, pp. 167–170, 1997.

[45] G. Rizzolatti, L. Fogassi, and V. Gallese, “Parietal cortex: from sight to action,”

Current Opinon in Neurbiology, vol. 7, pp. 562–567, 1997.

[46] A. Batista, C. Buneo, L. Snyder, and R. Andersen, “Reach plans in eye-centered

coordinates,” Science, vol. 285, pp. 257–260, 1999.

[47] M. DESMURGET, C. Epstein, R. Turner, G. Prablanc, C. Alexander, and

S. Grafton, “Role of the posterior parietal cortex in updating reaching move-

ments to a visual target,” Nature: Neuroscience, vol. 2, pp. 563–567, 1999.

[48] V. Stuphorn, K. Hoffmann, and L. Miller, “Correlation of primate superior

colliculus and reticular formation discharge with proximal limb muscle activity,”

Journal of Neurophysiology, vol. 81, pp. 1978–1982, 1999.

[49] V. Stuphorn, E. Bauswein, and K. Hoffman, “Neurons in the primate superior

colliculus coding of arm movements in gaze-related coordinates,” Journal of

Neurophysiology, vol. 83, pp. 1283–1299, 00.

[50] J. Gordon and C. Ghez, “Accuracy of planar reaching movements: I. inde-

pendance of direction and extent of variability,” Experimental Brain Research,

vol. 99, pp. 97–111, 1994.

[51] M. Vince and A. Welford, “Time taken to change the speed of a response,”

Nature, vol. 213, pp. 532–533, 1967.

[52] D. Rosenbaum, “Human movement initiation: Specification of arm, direction,

and extent,” Journal of Experimental Psychology: General, vol. 109, pp. 444–

474, 1980.

[53] R. Woodworth, “The accuracy of voluntary movement,” Pyschological Review,

vol. 3, pp. 1–119, 1899.



Chapter 7: Future Work 158

[54] S. Keele and M. Posner, “Processing visual feedback in rapid movement,” Jour-

nal of Experimental Psychology, vol. 77, pp. 155–158, 1968.

[55] L. G. Carlton, “Processing visual feedback information for movement control,”

Journal of Experimental Psychology: Human Perception and Performance,

vol. 7, no. 5, pp. 1019 – 1030, 1981.

[56] H. Zelaznik, B. Hawkins, and L. Kisselburgh, “Rapid visual feedback processing

in single-aiming movements,” Journal of Motor Behaviour, vol. 15, pp. 217–236,

83.

[57] M. Kawato, “Internal models for motor control and trajectory planning,” Cur-

rent Opinion in Neurobiology, vol. 9, pp. 718–727, 1999.

[58] D. Wolpert, Z. Ghahramani, and M. Jordan, “An internal model for sensorimo-

tor integration,” Science, vol. 269, pp. 1880–1882, 1995.

[59] D. Wolpert and M. Kawato, “Multiple paired forward and inverse models for

motor control,” Neural Networks, vol. 11, pp. 1317–1329, 1998.

[60] P. Morasso, “Spatial control of arm movements,” Experimental Brain Research,

vol. 42, pp. 223–227, 1981.

[61] W. Abend, E. Bizzi, and P. Morasso, “Human arm trajectory formation,” Brain,

vol. 105, pp. 331–348, 1982.

[62] J. Soechting and F. Lacquaniti, “Invariant characteristics of a pointing move-

ment in man,” Journal of Neuroscience, vol. 1, pp. 710–720, Jul. 1981.

[63] S. Antipolis, “Telecommunications keypads and keyboards; tactile identifier,”

ES 201 381, European Telecommunications Standardisation Institute (ETSI),

France.

[64] J. B. F. van Erp, “Guidelines for the use of vibro-tactile displays,” in Proceedings

of EuroHaptics, pp. 18–22, 2002.

[65] L. A. Jones and N. B. Sarter, “Tactile displays: Guidance for their design

and application,” Human Factors: The Journal of the Human Factors and

Ergonomics Society, vol. 50, pp. 90–111, Feb. 2008.



Chapter 7: Future Work 159

[66] R. T. Verrillo, “Investigation of some parameters of the cutaneous threshold for

vibration,” Journal of Acoustical Society of America, vol. 34, no. 11, pp. 1768–

1773, 1962.

[67] R. T. Verrillo, “Temporal summation in vibrotactile sensitivity,” Journal of

Acoustical Society of America, vol. 37, no. 5, pp. 843–846, 1962.

[68] R. T. Verrillo, “Vibrotactile thresholds for hairy skin,” Journal of Experimental

Psychology, vol. 72, no. 1, pp. 47–50, 1966.

[69] C. Sherrick and R. Cholewiak, “Cutaneous sensitivity,” in Handbook of Percep-

tion and Human Performance (K. Boff, L. Kauffman, and J. Thomas, eds.),

ch. 12, pp. 1–57, New York, NY: John Wiley and Sons, 1986.

[70] G. Gescheider, “Temporal relations in cutaneous stimulation,” in Cutaneous

Communications Systems and Devices (F. Geldard, ed.), Austin, TX: The

Pyschonomic Society, 1974.

[71] L. Petrosino and D. Fucci, “Temporal resolution of the aging tactile sensory

system,” Perceptual and Motor Skills, vol. 68, pp. 288–290, 1989.

[72] J. Craig, “Difference threshold for intensity of tactile stimuli,” Perception and

Psychophysics, vol. 11, no. 2, pp. 150–152, 1972.

[73] G. Goff, “Differential discrimmination of frequency of cutaneous mechanical

vibration,” Journal of Experimental Pyschology, vol. 74, no. 2, pp. 294–299, 67.

[74] K. Johnson and J. Philips, “Tactile spatial resolution. i. two point discrimi-

nation, gap detection, grating resolution, and letter recognition,” Journal of

Neurophysiology, vol. 46, pp. 1177–1191, Dec. 1981.

[75] R. Cholewiak and A. Collins, “Vibrotactile localization on the arm: Effects of

place, space, and age,” Perception and Psychophysics, vol. 65, pp. 1058–1077,

2003.

[76] C. Sherrick, R. Cholewiak, and A. Collins, “The localization of low- and high-

frequency vibrotactile stimuli,” Journal of the Acoustical Society of America,

vol. 88, no. 1, pp. 169–178, 1990.



Chapter 7: Future Work 160

[77] R. Verrillo and G. Gescheider, “Vibrotactile masking: Effects of one- and two-

site stimulation,” Perception and Pyschophyics, vol. 33, no. 4, pp. 379–387,

1983.

[78] G. Wulf, Attention and motor skills learning. Human Kinetics, first ed., 2007.

[79] H. Phong Pham and R. Chellali, “Frequency modulation based vibrotactile

device for teleoperation,” in Space Mission Challenges for Information Tech-

nology, 2009. SMC-IT 2009. Third IEEE International Conference on, pp. 98

–105, 2009.

[80] A. Sanderson and L. Weiss, “Image-based visual servo control using relational

graph error signals,” Proceedings of the International Conference on Cybernetics

and Society, pp. 1074 – 7, 1980.

[81] O. Tahri and F. Chaumette, “Point-based and region-based image moments for

visual servoing of planar objects,” IEEE Transactions on Robotics and Automa-

tion, vol. 21, no. 6, 2005.

[82] J. Canny, “A computational approach to edge detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[83] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detec-

tors,” International Journal of Computer Vision, vol. 60, pp. 63–86, October

2004.

[84] T. Linderberg, “Scale-space theory: A basic tool for analysing structures at

different scales,” Journal of Applied Statistics, vol. 21, no. 2, pp. 225–270, 1994.

[85] T. Linderberg, “Principles for automtic scale selection,” tech. rep., Department

of Numerical Analysis and Computing Science KTH (Royal Institute of Tech-

nology), S-100 44 Stockholm, Sweden., 1998.

[86] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detec-

tors,” International Journal of Computer Vision, vol. 37, pp. 151–172, June

2000.

[87] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descrip-

tors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

pp. 1615–1630, October 2005.



Chapter 7: Future Work 161

[88] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-

falitzky, T. Kadir, and L. V. Gool, “A comparison of affine region detectors,”

International Journal of Computer Vision, vol. 65, pp. 43–72, November 2005.

[89] P. Moreels and P. Perona, “Evaluation of features detectors and descriptors

based on 3-D objects,” in Proceedings of the Tenth IEEE International Con-

ference on Computer Vision, vol. 1, (Washington, DC), pp. 800–807, October

2005.

[90] D. G. Lowe, “Object recognition from local scale-invariant features,” in Pro-

ceedings of the Seventh IEEE International Conference on Computer Vision,

vol. 2, (Kerkyra, Corfu, Greece), pp. 1150 – 1157, September 1999.

[91] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national Journal of Computer Vision, vol. 60, pp. 31–110, November 2004.

[92] R. Rodrigo, Z. Chen, and J. Samarabandu, “Feature motion for monocular

robot navigation,” in Proceedings of IEEE International Conference on Infor-

mation and Automation, (Colombo, Sri Lanka), p. 5, December 2006.

[93] J. Bigun, Vision with Direction: A Systematical Introduction to Image Process-

ing and Computer Vision. Springer-Verlag Berlin Heidelberg, 2006.

[94] T. Lindeberg, “Feature detection with automatic scale selection,” International

Journal of Computer Vision, vol. 30, pp. 79–116, November 1998.

[95] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the Conference

on Computer Vision and Pattern Recognition, (Los Alamitos, CA), pp. 593–600,

IEEE Computer Society Press, June 1994.

[96] M. Brown and D. Lowe, “Invariant features from interest point groups,” in

Proceedings of the British Machine Vision Conference, (Cardiff, UK), pp. 656–

665, September 2002.

[97] C. Harris and M. J. Stephens, “A combined corner and edge detector,” in In

Proceedings of the 4th Alvey Vision Conference, (Manchester, UK), pp. 147–152,

August 1988.



Chapter 7: Future Work 162

[98] J. Sivic and A. Zisserman, “Efficient visual content retrieval and mining

in videos,” in Advances in Multimedia Information Processing - PCM 2004,

vol. 3332, pp. 471–478, Springer Berlin Heidelberg, 2004.

[99] J. Sivic, B. C. Russel, A. A. Efros, A. Zisserman, and W. T. Freeman, “Discov-

ering objects and their location in images,” in Proceedings of the Eleventh IEEE

International Conference on Computer Vision, (Beijing, China), pp. 370–377,

October 2005.

[100] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge University Press, 2nd ed., 2003.

[101] J. Stiver and P. Antsaklis, “Modeling and analysis of hybrid control systems,”

in Decision and Control, 1992., Proceedings of the 31st IEEE Conference on,

vol. 4, pp. 3748–3751, 1992.

[102] J. Stiver and P. Antsaklis, “Extracting discrete event system models from hybrid

control systems,” in Intelligent Control, 1993., Proceedings of the 1993 IEEE

International Symposium on, pp. 298–301, Aug 1993.

[103] J. Stiver and P. Antsaklis, “On the controllability of hybrid control systems,”

in Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on,

vol. 1, pp. 294–299, Dec 1993.

[104] J. A. Stiver and P. J. Antsaklis, “State space partitioning for hybrid control

systems,” in American Control Conference, 1993, pp. 2303–2304, June 1993.

[105] J. Stiver, P. Antsaklis, and M. Lemmon, “Digital control from a hybrid perspec-

tive,” in Decision and Control, 1994., Proceedings of the 33rd IEEE Conference

on, vol. 4, pp. 4241–4246 vol.4, Dec 1994.

[106] J. Stiver, P. Antsaklis, and M. Lemmon, “Hybrid control system design based

on natural invariants,” in Decision and Control, 1995., Proceedings of the 34th

IEEE Conference on, vol. 2, pp. 1455–1460 vol.2, Dec 1995.

[107] X. Koutsoukos, P. Antsaklis, J. Stiver, and M. Lemmon, “Supervisory control

of hybrid systems,” Proceedings of the IEEE, vol. 88, pp. 1026 –1049, jul 2000.



Chapter 7: Future Work 163

[108] J. Kalaska, “Reaching movements to visual targets: neuronal representations of

sensori-motor transformations,” Seminars in Neuroscience, vol. 3, no. 1, pp. 67

– 80, 1991.

[109] P. Fitts and J. Peterson, “Information capacity of discrete motor responses,”

Journal of Experimentatl Psychology, vol. 67, pp. 103–112, 1964.

[110] I. MacKenzie, “A note on the information theoretic basis for fitts’ law,” Journal

of Motor Behavior, vol. 21, pp. 323–330, 1989.

[111] A. Welford, Fundamental of Skill. London: Metheun, 1968.

[112] I. MacKenzie, “Fitts’ law as a research and design tool in human-computer

interaction,” Human Computer Interaction, vol. 7, pp. 91–139, 1992.

[113] R. W. Soukoreff and I. S. MacKenzie, “Towards a standard for pointing de-

vice evaluation, perspectives on 27 years of fitts law research in hci,” Inter-

national Journal of Human-Computer Studies, vol. 61, no. 6, pp. 751 – 789,

2004. ¡ce:title¿Fitts’ law 50 years later: applications and contributions from

human-computer interaction¡/ce:title¿.

[114] R. J. Jagacinski and J. M. Flach, Control Theory for Humans: A Quantative

Approach to Modeling Performance. Mahwah, NJ, USA: Lawrence Erlbaum

Associates, 2003.

[115] G. Langolf, Human motor performance in precise microscopic work - Devel-

opment of standard data for microscopic assembly. PhD thesis, University of

Michigan, Ann Arbor, MI, 1973.

[116] G. Langolf, D. Chaffin, and J. Foulke, “An investigation of fitts’ law using

a wide range of movement amplitudes,” Journal of Motor Behaviour, vol. 8,

pp. 113–128, 1976.

[117] E. Crossman, The measurement of perceptual load in manual operations. Phd

thesis, University of Birmingham, 1956.

[118] S. MacKenzie and W. Buxton, “Extending fitts’ law to two-dimensional tasks,”

ACM CHI, pp. 219–226, 1992.



Chapter 7: Future Work 164

[119] E. Hoffmann and I. Sheikh, “Effect of varying target height in fitts’ movement

task,” Ergonomics, vol. 37, no. 6, pp. 1071–1088, 1994.

[120] C. Ware and R. Balakrishnan, “Reaching for objects in vr displays: Lag and

frame rate,” ACM TOCHI, vol. 1, no. 4, pp. 331–356, 1994.

[121] J. Accot and S. Zhai, “More than dotting the i’s — foundations for crossing-

based interfaces,” in Proceedings of the SIGCHI conference on Human factors

in computing systems: Changing our world, changing ourselves, CHI ’02, (New

York, NY, USA), pp. 73–80, ACM, 2002.

[122] J. Accot and S. Zhai, “Refining fitts’ law models for bivariate pointing,” in CHI

’03: Proceedings of the SIGCHI conference on Human factors in computing

systems, (New York, NY, USA), pp. 193–200, ACM, 2003.

[123] J. Accot and Z. Shumin, “Beyond fitts’ law: models for trajectory-based hci

tasks,” in CHI ’97: Proceedings of the SIGCHI conference on Human factors

in computing systems, (New York, NY, USA), pp. 295–302, ACM, 1997.

[124] N. Friedlander, K. Schlueter, and M. Mantei, “Bullseye when fitts’ law doesn’t

fit,” in Proceedings of the SIGCHI conference on Human factors in computing

systems, CHI ’98, (New York, NY, USA), pp. 257–264, 1998.

[125] J. J. Buchanan, J.-H. Park, and C. H. Shea, “Systematic scaling of target

width: dynamics, planning, and feedback,” Neuroscience Letters, vol. 367, no. 3,

pp. 317 – 322, 2004.

[126] J. Buchanan, J.-H. Park, and C. Shea, “Target width scaling in a repetitive aim-

ing task: switching between cyclical and discrete units of action,” Experimental

Brain Research, vol. 175, pp. 710–725, 2006.

[127] Y. Guiard, “On fitts’s and hooke’s laws: Simple harmonic movement in upper-

limb cyclical aiming,” Acta Psychologica, vol. 82, no. 1-3, pp. 139–159, 1993.

[128] F. Bonnetblanc, O. Martin, and N. Teasdale, “Pointing to a target from an

upright standing position: anticipatory postural adjustments are modulated by

the size of the target in humans,” Neuroscience Letters, vol. 358, no. 3, pp. 181

– 184, 2004.



Appendix : Future Work 165

[129] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision.

Springer-Verlag, New York Inc., 2004.

[130] O. Faugeras and Q.-T. Long, The Geometry of Multiple Images. The MIT Press,

2001.

[131] A. Vedaldi, G. Guidi, and S. Soatto, “Moving forward in structure from mo-

tion,” Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-

ference on, pp. 1–7, 17-22 June 2007.

[132] B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool, “Dynamic 3D scene analysis

from a moving vehicle,” in Proceedings of the IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, (Minneapolis, MN), pp. 1–8,

June 2007.

[133] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and

R. Koch, “Visual modeling with a hand-held camera,” International Journal of

Computer Vision, vol. 59, pp. 207–232, September–October 2004.

[134] F. Hoffmann, T. Nierobisch, T. Seyffarth, and G. Rudolph, “Visual servoing

with moments of sift features,” Systems, Man and Cybernetics, 2006. SMC ’06.

IEEE International Conference on, vol. 5, pp. 4262–4267, 8-11 Oct. 2006.

[135] K. Strobl, W. Sepp, S. Fuchs, C. Paredes, and K. Arbter, “Camera calibration

toolbox for matlab.” http://www.vision.caltech.edu/bouguetj/calib doc.



166

Appendix A Appendix: Additional system

model derivations

This appendix contains the derivations of various formulae and analytical expressions

given within the body of this work. This Appendix is provided for those interested

readers.

A.1 Fitts Law Relationship to Second-order

Spring-Mass-Damper Model

Below we provide the derivation of the application of Fitts’ law to a second-order

system model as proposed by Langolf et al. [115, 116] and further investigated by

Jagacinski etal [114]. The derivation below provides the intermediate steps between

equations (4.8) and (4.9).
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By letting a = 1
−ζωn ln(

√
1− ζ2) and b = ln 2

ζωn
, we get the traditional Fitts’

Law form

t = a+ b log2

(
2A

W

)

A.2 DES-plant Event Tables and DES-controller

State Tables

This section includes the remaining details of DES-plant event and DES-controller

symbol definintions. The DES-plant event symbols are given in Table A.1. The de-

scription of hypersurface and camera motion combination triggering the event are

partitioned by axial component. The first block of symbols describes horizontal mo-

tion events. The second block describes vertical motion events. The third block

describes depth motion events.

The DES-controller state symbol definitions for the 3-dimensional l2-model are

provided in Table A.2. There are eleven symbols: nine of which relate to some

required tracking motion; one for On-Target , and one indicating loss of the target

The DES-controller output symbol definitions for the 3-dimensional l2-model

are provided in Table A.3. The symbols are mapped from the DES-controller state

through the DES-controller output function, φ(s̃). Due to the horizontal axis priority

scheme, there r̃2 and r̃3 have multiple mappings through the output function.
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Table A.1: DES Plant Event (X̃) symbol table for the 3-dimensional l2-model

Symbol Description of Plant Event Symbols Hypersurface Camera
Move-
ment

x̃1 On-Target in horizontal (x1(t)) h1(x) > 0 left
x̃2 Off-Target in horizontal (x1(t)) h2(x) > 0 right
x̃3 On-Target in horizontal (x1(t)) h3(x) > 0 right
x̃4 Off-Target in horizontal (x1(t)) h4(x) > 0 left
x̃5 On-Target in horizontal (x1(t)) h1(x) > 0 left
x̃6 Off-Target in horizontal (x1(t)) h2(x) > 0 right
x̃7 On-Target in horizontal (x1(t)) h3(x) > 0 right
x̃8 Off-Target in horizontal (x1(t)) h4(x) > 0 left
x̃9 On-Target in horizontal (x1(t)) h1(x) > 0 left
x̃10 Off-Target in horizontal (x1(t)) h2(x) > 0 right
x̃11 On-Target in horizontal (x1(t)) h3(x) > 0 right
x̃12 Off-Target in horizontal (x1(t)) h4(x) > 0 left
εi silent events hi(x) < 0, i = 1 . . . 4
x̃13 On-Target in vertical (x2(t)) h5(x) > 0 down
x̃14 Off-Target in vertical (x2(t)) h6(x) > 0 up
x̃15 On-Target in vertical (x2(t)) h7(x) > 0 up
x̃16 Off-Target in vertical (x2(t)) h8(x) > 0 down
x̃17 On-Target in vertical (x2(t)) h5(x) > 0 down
x̃18 Off-Target in vertical (x2(t)) h6(x) > 0 up
x̃19 On-Target in vertical (x2(t)) h7(x) > 0 up
x̃20 Off-Target in vertical (x2(t)) h8(x) > 0 down
x̃21 On-Target in vertical (x2(t)) h5(x) > 0 down
x̃22 Off-Target in vertical (x2(t)) h6(x) > 0 up
x̃23 On-Target in vertical (x2(t)) h7(x) > 0 up
x̃24 Off-Target in vertical (x2(t)) h8(x) > 0 down
εi silent events hi(x) < 0, i = 5 . . . 8
x̃25 On-Target in depth (x3(t)) h9(x) > 0 forward
εi silent events h9(x) < 0
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Table A.2: DES-controller state (S̃) symbol table for the 3-dimensional l2-model

Symbol Description of Controller State Symbols
s̃1 Off-Target-Depth
s̃2 Off-Target-Left
s̃3 Off-Target-Right
s̃4 Off-Target-Below
s̃5 Off-Target-Above
s̃6 Off-Target-Left-Below (horizontal+vertical)
s̃7 Off-Target-Right-Below (horizontal+vertical)
s̃8 Off-Target-Left-Above (horizontal+vertical)
s̃9 Off-Target-Right-Above (horizontal+vertical)
s̃10 On-Target(horizontal+veritcal+depth)
s̃11 No-Target

Table A.3: DES-controller output (R̃) symbol table for the 3-dimensional l2-model

Symbol Description of Controller Output Symbols
φ(s̃1) = r̃1 Move-Forward
φ(s̃2) = r̃2 Move-Left
φ(s̃3) = r̃3 Move-Right
φ(s̃4) = r̃4 Move-Down
φ(s̃5) = r̃5 Move-Up
φ(s̃6) = r̃2
φ(s̃7) = r̃3
φ(s̃8) = r̃2
φ(s̃9) = r̃3
φ(s̃10) = r̃6 Stop: successful acquisition of target
φ(s̃11) = r̃7 Halt: no target present
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