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Abstract 

The Hudson Bay Lowlands (HBL) contains 26 Gt of carbon sequestered in a 2 meter thick 
layer of peat which blankets a quarter of Ontario, Canada. The hydrological and chemical 
influence of the HBL peatlands to surface waters is recognized, but information on peatland 
runoff processes and the evolution of groundwater through this vast, carbon-rich landscape 
remains scant. This study focused on elucidating the groundwater flow patterns of a bog-fen-
tributary complex in the central region of the HBL, and estimating exports of groundwater, 
dissolved organic carbon (DOC), total (THg), and methyl (MeHg) mercury during the 2011 
ice-free season. Hydrometric data, combined with ions and stable water isotopes, reveal 
lateral flows in the uppermost meter of peat dominate the bulk transfer of groundwater and 
solutes in the bog (73-137 mm) and fen (55-131 mm). The direction and magnitude of the 
measured vertical gradients in the bog (-0.2 to 0.1) and fen (-0.1 to 0.2) are spatiotemporally 
variable, and are dictated by position within the landscape, water table elevation relative to 
the peat surface, and micro-to-mesoscale topography. The seasonal exports of DOC from the 
bog and fen are small, and comprise 5.4% (2.0±0.3 g C m-2 yr-1) and 1.4% (0.5±0.1 g C m-2 
yr-1) of the net ecosystem carbon balance, respectively. Exports of THg and MeHg from the 
bog (132.9±45.4 and 3.4±2.8 ng m-2 yr-1) and fen (50.0±8.4 and 1.9±1.2 ng m-2 yr-1) are 
lower than reported in other boreal wetlands. The swamp and thicket riparian zone between 
the ribbed fen and tributary appears to influence the quality of water and augment solute 
concentrations of the water in small surface flows that flow directly into the nearby second-
order stream.  
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Chapter 1  

1 Introduction 

1.1 Wetlands: Global Distribution and Significance  

Wetlands are areas of land that are saturated with water for all or the majority of the year, 

and that that are able to support unique, flood-tolerant vegetation and microbial 

communities because of their reducing biogeochemical soil conditions (Mitsch and 

Gosselink, 2007). Wetland ecosystems currently cover an estimated 5-8% of the Earth’s 

total land surface (Ibid.), and store nearly a quarter (350-535 Gt) of global belowground 

terrestrial soil carbon (Gorham, 1991a). Over 14% of the Canada’s land mass is 

blanketed by wetlands, which represent nearly a quarter of all wetlands in the world 

(Kennedy and Mayer, 2002). Wetlands provide many benefits to society, including 

improvements to water quality, climate moderation, drainage regulation and flood 

attenuation, serving as sources of energy and raw building materials, and offering areas 

for recreation and tourism (Mitra et al., 2005; Mitsch and Gosselink, 2007). Despite such 

clear ecological, social, and environmental importance, global wetland area has declined 

by 50% since the 1880s primarily as a result of drainage for development and agricultural 

land-use conversion (Mitsch and Gosselink, 2007).  

Wetland ecosystems vary greatly in location, landscape position, areal extent, hydrology, 

chemistry, abundance of organic matter, and vegetation communities. The classification 

of wetlands into discrete classes provides a common framework for the scientific 

community to refer to specific ecosystem functions. Many classification systems exist, 

utilizing a combination of abiotic and biotic properties to define a specific type of 

wetland. For example, the Canadian Wetland Classification System (NWWG, 1997) 

classifies all Canadian wetlands into two major forms (mineral and organic soil-

dominated wetlands) and five classes (bog, fen, marsh, swamp, and shallow water) based 

on hydrology, water chemistry, and soil and vegetation types. Organic wetlands that have 

accumulated thick deposits of organic material greater than 0.40 m thick (dead and 

decaying plant material) are classified as peatlands. 
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1.2 Peatland Ecosystems and Landforms 
Peatlands are the most dominant wetland type on Earth, representing half of the world’s 

wetlands and covering 3% (4,000,000 km2) of the world’s surface (Gorham, 1991a). 

These can exist as smaller, isolated units in the landscape (e.g., depression peatlands or 

spring fens), or as expansive patterned peatland complexes spanning many thousands of 

square kilometres. The largest areas of peatlands are located in the northern latitudes of 

North America (e.g., Canada and Alaska), Northern Europe, Western Siberia, and parts of 

the Amazon Basin (Gorham, 1991a; Belyea and Lancaster, 2002; Mitra et al., 2005). 

These ecosystems are characterized by a thick layer of peat, a highly organic soil 

(NWWG, 1997). This sequestration of atmospheric carbon into belowground organic 

matter is due to the annual net primary productivity (NPP) of peatland vegetation 

exceeding the annual decomposition of dead organic matter (OM). In boreal and 

subarctic peatlands, this slow decomposition is a consequence of persistent anoxic, water-

saturated conditions (where precipitation > evapotranspiration), a cold climate, and low 

nutrient availability (Mitsch and Gosselink, 2007). As a result, these northern 

hemisphere, high-latitude peatlands contain a mass of carbon (C) equal to half of that 

currently held in the atmosphere (Limpens et al., 2008).  

Bogs and fens dominate the majority of larger patterned peatland landforms (Figure 

1.1A) (NWWG, 1997). A bog is a raised, frequently dome-shaped landform, and is often 

sparsely forested with stunted black spruce (Picea Mariana) (Clymo, 1984). Understory 

vegetation in these domes landforms typically consists of mosses (Sphagnum spp.), 

lichens (Cladonia spp.), and low-lying ericaceous shrubs (e.g. Chamaedaphne calyculata, 

Rhododendron spp.), which contribute to the development of the peat profile, as well as 

microtopography in the form of hummocks, hollows, and lawns (NWWG, 1997). As peat 

accumulates over thousands of years, the uppermost portion of the peat profile becomes 

increasingly disconnected from any mineral-rich groundwater inputs (Ingram, 1982, 

1983). Bogs by definition are ombrotrophic (“cloud-fed”), as meteoric precipitation is the 

sole source of hydrologic and nutrient inputs. As a result, shallow pore-waters in bogs are 

generally acidic (pH < 4.2) and concentrations of dissolved minerals are very low (e.g., 

[Ca2+] < 2 mg L-1) (Shotyk, 1988). 



 

 

3 

Fen peatlands differ from bogs in that they have multiple hydrologic inputs in addition to 

precipitation, such as surface streams and/or deeper, solute-laden groundwater (Siegel, 

1992). Fens are typically wetter at the surface than bogs because peat depth is generally 

shallower, and a higher water table is maintained by numerous hydrologic inputs. The 

minerotrophic nature of fens ensures that pore-waters within the uppermost peat surface 

have higher concentrations of dissolved mineral solutes than bogs (e.g., [Ca2+] > 2 mg L-

1), and a higher buffering capacity results in a circumneutral pH between 5 and 8, 

depending on the fen’s degree of groundwater connection (also termed fen richness) 

(Reddy and DeLaune, 2008). Fens are able to support a different and much more varied 

mix of vegetation than bogs, and are largely dominated by sedges (Cyperaceae spp.), 

brown mosses (Amblystegiaceae spp.), horsetails (Equisetum spp.), and stunted tamarack 

(Larix laricina). These differences in vegetation often contribute to the different physical 

properties of peat, with fen peat having relatively higher bulk densities, and lower 

porosities and hydraulic conductivities than bogs (Vitt et al., 2009). Larger fen systems 

are often characterized by patterns of ridges (strings) and linear pools (flarks or troughs) 

that are perpendicular to the flow of groundwater and oriented parallel to the slope of the 

landform. This distinct wave-like pattern of alternating strings and flarks is easily 

identified from aerial photographs and remote imagery (Figure 1.1B). 
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Figure 1.1. (A) Large peatland complexes comprise a mosaic of bogs, fens, shallow open 
water (ponds), marshes, and swamps, and are cross-cut by creeks and rivers, and (B) 
Parallel strings and flarks characteristic of ribbed fen systems. Photos by the author. 
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1.3 Hydrological Processes in Patterned Peatlands 
Peatland development, groundwater chemistry, and ecology are all closely linked to 

surface and groundwater hydrology. The maintenance and function (e.g., retention or 

conveyance of water, transformation of nutrients, and a habitat for wetland plants and 

animals) of a particular peatland type is closely linked to its hydrologic signature, which 

is governed by geomorphology, geology, and the balance of inflows and outflows of 

water (Mitsch and Gosselink, 2007). A common approach to understanding hydrological 

processes is to estimate the water balance (Equation 1.1) for a given area (e.g., 

watershed) and period of time (e.g., a study period, season, or year), which defines all 

hydrologic inputs and outputs to a landscape unit: 

𝜟𝑺 =  (𝑷 +  𝑮𝒊  +  𝑺𝒊)  −  (𝑬𝑻 +  𝑮𝒐  +  𝑺𝒐)  +  𝝃     Equation 1.1 

where ΔS is the change in storage, P is precipitation, Gi is groundwater inflow, Si is 

surface water inflow, ET is evapotranspiration, Go is groundwater outputs, So is surface 

water outflow, and ξ is the residual term.  

For larger patterned peatlands lacking channelized inputs and outputs of water, assuming 

steady state conditions, and combining surface and groundwater losses as a single runoff 

term (R), a more specific water balance equation (Equation 1.2) can be defined: 

𝜟𝑺 =  𝑷 −  𝑬𝑻 − 𝑹 ±  𝝃    Equation 1.2 

Precipitation is typically the easiest component of the water budget to quantify, especially 

in peatland environments with minimal aboveground vegetation to intercept incoming 

rain or snow. Evapotranspiration, the loss of water to the atmosphere from peatland 

surface and vegetation, is often the dominant water loss process in peatlands. Rates of 

evapotranspiration can be estimated by a variety of methods, using simple evaporation 

pans or lysimeters, complex models based on an energy balance (e.g., Penman-Monteith 

or Priestley–Taylor), or real-time flux measurements (Drexler et al., 2004). 

Surface and groundwater runoff processes are responsible for the delivery of water and 

associated solutes between peatland landforms and to nearby surface waters, and are 

often the most difficult to measure directly. The rate of groundwater flow through a 
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saturated porous medium is based on Darcy’s Law (Equation 1.3), which states that the 

rate of one-dimensional groundwater flow (Q) is proportional to hydraulic conductivity 

(K), a unitless hydraulic gradient (I), and cross-sectional area (A) (Freeze and Cherry, 

1979; Siegel and Glaser, 2006). 

𝑸 = −𝑲𝑰𝑨    Equation 1.3  

In large peatland complexes with gently sloping surface topography, groundwater flow 

tends to follow the slope of the ground surface, as does the water table, and vertical 

hydraulic gradients are often very small and invariant over long distances. Therefore, the 

rate of groundwater discharge through the peat profile is primarily governed by the 

hydraulic conductivity of the peat and to a lesser extent topography of the landscape. 

Based on observations of the physical properties of well-developed peat profiles, 

influential peatland (hydro)ecologists have suggested a division of the peatland soil 

profile into two main layers, with the boundary typically defined by the minimum depth 

of the water table during a drought year (or lowest annual water table position, depending 

on the source of the definition) (Ingram, 1982, 1983; Clymo, 1984; Belyea and Baird, 

2006). In this widely accepted diplotelmic (two-layer) model, the uppermost portion of 

the peat profile (typically 0-50 cm below the peat surface) is called the active-layer, or 

acrotelm, and is relatively undecomposed with a high hydraulic conductivity (10-3 to 10-5 

m s-1) and porosity (>85%), permitting water to flow fairly unimpeded (Chason and 

Siegel, 1986). The acrotelm is also subject to a fluctuating water table, which has a strong 

influence on biogeochemical processes because of the short (daily to monthly) oscillation 

between oxygenated (aerobic) and water-logged (anaerobic) states. Preliminary efforts at 

elucidating peatland runoff mechanisms proposed that water losses occurred primarily at 

or near the surface, only through (and above) the acrotelm, dominating peatland runoff. 

This mechanism constrained runoff to periods of high water table, such as snowmelt or 

high magnitude precipitation events. However, this was later supplemented by a more 

comprehensive runoff hypothesis that included slow groundwater flow through the 

deeper peat layer, the catotelm. (von Post and Granlund, 1926; Ivanov, 1981; Ingram, 

1982). The catotelm is frequently considered a hydrologically inactive layer (i.e., 

groundwater flow is relatively slow), where the degree of peat decomposition and bulk 
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density is much greater than in the acrotelm, and hydraulic conductivities (10-5 to 10-8 m 

s-1) and porosities (<85%) of the peat are lower, generally decreasing with depth (Chason 

and Siegel, 1986).  

The acrotelm-catotelm peatland model serves as a simple and effective tool for 

conceptualizing peatland hydrological and biogeochemical processes, but has been 

recently criticized for not being physically-based, or demonstrated compellingly in the 

field, and unable to accurately explain complex peatland phenomena, such as spatial 

heterogeneity of peat properties, formation of localized flow systems, and 

microtopographical self-organization (Belyea and Baird, 2006; Morris et al., 2011). The 

model also does not account for the presence of macropores and soil pipes within deeper 

layers of the peat, which can significantly increase hydraulic conductivity (Baird, 1997). 

Such features are often randomly distributed and difficult to quantify by conventional 

hydraulic conductivity field and lab tests (Holden et al., 2002). 

1.4 Hydrological Connectivity in Patterned Peatlands 

Hydrological connectivity describes the passage of water from one part of the landscape 

to another, often in terms of discrete areas in space and times of enhanced runoff 

(Bracken and Croke, 2007). Quantifying the connectivity of bogs to larger patterned fen 

systems, and fens to adjacent surface waters, is essential in identifying key areas and 

times of water and solute fluxes that remain poorly understood (e.g., Quinton et al. 

(2003)). The degree of connectivity within expansive peatlands is largely a function of 

surface morphology and antecedent moisture conditions.  

The movement of water through bogs and into adjacent fens can occur via three major 

pathways: (1) surface flow through the acrotelm during periods of high water table; (2) 

shallow groundwater flow through the higher-conductivity layers in the upper parts of the 

peat profile; and (3) deeper groundwater flow through the entire peat profile (Bleuten et 

al., 2006), as illustrated in Figure 1.2. For the majority of the year, runoff is limited to 

shallow, lateral groundwater flow in bogs, since the water table is typically below the 

peatland surface (NWWG, 1997; Quinton and Marsh, 1999). Deeper groundwater flow 

systems may develop in bogs, but often contribute relatively little water to the 
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surrounding fens because of low vertical gradients and low hydraulic conductivities at 

depth. In some cases, larger domed bogs can shed water horizontally through internal 

water track drainage features, where the convergence of hydrological flow paths into a 

narrow area can produce a characteristic series of ponds that run parallel to the contours 

of surface elevation (Glaser and Janssens, 1986; Belyea and Lancaster, 2002). Total 

water storage in bogs is increased when such irregularly spaced pools are present, which 

also act to moderate runoff during inputs of water from storms. However, the relatively 

high hydraulic gradients and high conductivity peat in these water tracks (as compared to 

the rest of the bog) likely serves to deliver water and associated dissolved chemistry 

downslope to fens (Glaser, 1992). The vertical exchange of groundwater between a bog 

and the underlying low-conductivity substrate is considered to be minimal and primarily 

controlled by mineral soil permeability (Reeve et al., 2000). 

Figure 1.2. Schematic illustrating the proposed models for runoff and hydrological 
connectivity between bogs and fens and the underlying mineral substrate, showing how 
deeper vertical and horizontal groundwater flow can increase solute concentrations in the 
surface peat of fen systems, including: surface runoff (orange arrows) and groundwater 
flow through the bog profile (black arrows), shallow flow and dispersive mixing (red 
arrows), and diffusion (blue arrows). Adapted from Reeve et al. (2000, 2001). 

In larger peatland complexes, fen peatlands can develop into patterned fen systems (i.e., 

ribbed fens), which act as conduits of groundwater flow, delivering water, energy, and 

solutes from the landscape to adjacent surface waters (Glaser et al., 1990; Glaser, 1992; 

Price and Maloney, 1994). In addition to precipitation, patterned fens primarily receive 
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hydrological inputs from surrounding bog areas, either as surface flows or diffuse lateral 

groundwater flow, depending on the height of the water table relative to the surface. 

Patterned fens tend to shed water quickly after snow melt in colder climates, due to the 

presence of a low-permeability, near-surface frost table that permits largely unrestricted 

overland flow (Woo, 1986).  In the absence of ground-ice, surface flows may also 

contribute to the majority of runoff from bogs and fens, and fens to streams during 

periods of extreme inundation (e.g., summer storms or fall freshet) (Price and Maloney, 

1994). One of the major differences between patterned and non-patterned fen systems is 

the abundance of alternating pool-peat ridges which can experience enhanced 

connectivity at periods of high water table. Surface flow between such pools can occur 

around the ridges through narrow surface channels that connect pools, or even above 

ridges themselves (Woo and Heron, 1987).  

A drop in the water table can significantly increase storage availability in patterned fens, 

due to the abundance of string and trough microtopography (Quinton and Roulet, 1998). 

When this occurs, the system is better able to accommodate for large rain events and 

there is a decrease in runoff response (Ibid.). When the water table drops below the peat 

surface, lateral groundwater flows in the direction of the hydraulic gradient tend to 

dominate water flux, with the majority of flow occurring through the higher conductivity 

acrotelm. In general, ribbed fens exhibit lower rates of flow than the surrounding bogs 

because of lower hydraulic gradients than those present in domed bog systems and the 

lower hydraulic conductivities than in either bogs or non-patterned fens (Siegel & Glaser, 

1987). Outflow rates are especially lower during the dry season when water tables are 

lower, forcing water to have to travel through the low conductivity catotelm (Price & 

Maloney, 1994). Vertical flows in patterned fens are generally small, and the increased 

concentrations of dissolved solutes found near the surface of the peat in larger peatland 

complexes are likely due to the diffusion and dispersion of solutes that originate from the 

rich, mineral substratum (Reeve et al., 2001). 

1.5 Biogeochemical Processes in Patterned Peatland 
Peatland biogeochemical processes involve the transformations of elements and exchange 

of materials between biotic and abiotic components of the environment, and are driven by 
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a complex relationship between physical, chemical, and biological processes (Gorham, 

1991b; Reddy and DeLaune, 2008). The waterlogged and carbon-rich soils characteristic 

of peatlands provide a unique environment for the cycling of nutrients, which can serve 

as sinks, sources, and transformers of carbon, nitrogen, and sulphur, as well as pollutants 

and other chemical constituents (Mitsch and Gosselink, 2007). The rates of these 

biogeochemical transformations can exhibit multi-scale spatiotemporal variability due to 

changes in the position of the water table relative to the peat surface, air and soil 

temperature, pH, vegetation communities, and availability of terminal electron acceptors 

(TEAs). The convergence of hydrological flow paths of nutrient-rich waters causing 

enhanced biogeochemical reactions (i.e., hot spots and hot moments) (McClain et al., 

2003; Mitchell et al., 2008) and microtopographic variations within a landform 

(Branfireun, 2004; Ulanowski and Branfireun, 2013) can complicate the already complex 

cycling of nutrients in these environments. 

Bogs and other Sphagnum dominated peatlands tend to be acidic (pH ≈ 4) due to high 

concentrations of carbonic and organic acids (e.g., phenolic acid) released from growing 

vegetation and decaying organic matter (Clymo, 1964). Sphagnum also has a very high 

Cation-Exchange Capacity (CEC), which allows for the sorption of base cations (e.g., 

Ca2+, Mg2+) onto the surface of the peat and subsequent release of acidic protons (H+) 

(Ho and McKay, 2000). Fen peatlands are typically circumneutral (pH ≈ 5 to 8) since 

Sphagnum species are less abundant and their higher concentrations of base cations 

allows for greater neutralization of organic acids.  

Reduction-oxidation (redox) potential (Eh) is the tendency of a chemical species to be 

reduced by the gain of electrons, and is important as it influences the types of microbial 

communities that live in the profile and the rates of dissolution and degradation of 

inorganic and organic substances (Reddy and DeLaune, 2008). When free oxygen is 

present, Eh ranges from +300 to +700 mV, and aerobic microbial metabolic processes 

dominate (Mitsch and Gosselink, 2007). Peatland pore-waters tend to be low in oxygen, 

because the consumption of oxygen by microbes and plants is greater than the diffusion 

of oxygen through the water-saturated soil column (Ibid.) As dissolved oxygen (DO) 

becomes increasingly scarce (Eh = +300 to 0 mV), facultative anaerobes begin to govern 
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biogeochemical processes. The energy yields of anaerobic respiration processes are lower 

when compared with aerobic respiration, which greatly decreases the rates of turnover of 

organic matter (Ibid.). Obligate anaerobes begin to function below 0 mV, adapting to 

these anoxic environments by utilizing other TEAs (as opposed to O2) for cellular 

respiration, namely NO3
-, Mn2+, Fe3+, and SO4

2- in decreasing order of preference. 

Anaerobic microbes are responsible for the cycling and transformation of important 

elements, such as nitrogen mineralization, the oxidation and reduction of nitrogen 

containing compounds (e.g., NH4
+, NH3, NO3

-, N2), production of methane (CH4), and 

reduction of sulfate (SO4
2-) to hydrogen sulfide (H2S) by sulfate reducing bacteria (SRB) 

(Ibid.). SRB are also known to play a role in the anaerobic oxidation of methane (Smemo 

and Yavitt, 2011), and the methylation of mercury (Hg) (Ullrich et al., 2001). 

1.5.1 Carbon Cycling and Dissolved Organic Carbon Export from 
Peatlands 

Peatland ecosystems play an important role in the global carbon cycle, exchanging 

carbon dioxide (CO2) and methane with the atmosphere, and delivering dissolved organic 

carbon (DOC) into nearby aquatic ecosystems (Blodau, 2002). Carbon dioxide and 

methane are greenhouse gases, molecules that absorb and emit infrared radiation, and that 

have been well established as drivers of global climate change (IPCC, 2013). Northern 

peatlands have acted as a sink of CO2 for thousands of years, but even small changes to 

hydrology could shift these sensitive ecosystems to sources of CO2 (Gorham, 1991a). 

Because of the complexity of the carbon cycle, there is still much uncertainty on the 

magnitude and direction of long-term changes to carbon dynamics in these systems 

(Limpens et al., 2008), especially since the transformation of organic carbon into CO2, 

CH4 and DOC end products is largely mediated by aerobic and anaerobic microbial 

processes, which are sensitive to aforementioned local environmental conditions. 

The uptake and release of CO2 (also referred to as net ecosystem exchange, NEE) and 

CH4 to and from a peatland are typically quantified in the lab or field via chamber 

(Pumpanen et al., 2004) or micrometeorological (i.e., eddy flux covariance) (Baldocchi et 

al., 2000) methods. These direct and often high-resolution and time-resolved 

measurements can be used to estimate the atmospheric flux component of a peatland 
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carbon budget. However, this approach does not provide information on any non-gaseous 

loses of carbon from the peatland, namely the transport of organic carbon via surface 

runoff and groundwater processes. Neglecting to quantify hydraulic fluxes of organic 

carbon can contribute to very large errors when determining the carbon budget of a 

peatland system (Waddington and Roulet, 1997; Limpens et al., 2008).  

Organic carbon can be exported from a peatland in both particulate (POC) and dissolved  

(<0.45 μm) forms, but groundwater flow through porous media only permits the transport 

of smaller, dissolved fractions. Dissolved organic carbon is a mixture of organic 

compounds that range from simple molecules to larger, more complex aromatic 

substances derived from the breakdown of organic matter through microbial processes. 

The degradation of larger organic substrates derived from animal and plant matter into 

DOC is governed by redox conditions, temperature, the presence of organisms, nutrient 

and TEA availability, and carbon source (Reddy and DeLaune, 2008). Pore-water DOC 

concentrations in peatlands range between 10 and 80 mg L-1 (Blodau, 2002) depending 

on peatland type, depth below the peatland surface, and time of the year. Bogs tend to 

have higher overall levels of DOC than fens (Reeve et al., 1996; Ulanowski and 

Branfireun, 2013). The loading of DOC into aquatic systems has been known to affect 

pH, decrease the penetration of light through the water column, and has been associated 

with the complexation and transport of metals, which can have an impact on primary 

production and ecosystem health (Thurman, 1985; Blodau, 2002; Porcal et al., 2009). 

Peatlands are established as sources of DOC to nearby surface waters (Mulholland and 

Kuenzler, 1979; Waddington and Roulet, 1997; Carey, 2003). Annual exports of DOC 

from peatland catchments can be between 1 and 50 g DOC m-2 yr-1 (Dillon and Molot, 

1997), which account for 10-50% of the annual net ecosystem carbon balance (NECB) 

(Fraser et al., 2001; Worrall et al., 2003; Yu, 2012). 

1.5.2 Cycling and Export of Mercury from Peatlands 

Anthropogenic activities have at least doubled the amount of mercury (Hg) in the global 

atmosphere since the beginning of the industrialized period (Hylander and Meili, 2003). 

Mercury is considered a global pollutant because it is readily distributed in the 

environment by atmospheric processes when it is reduced to it’s gaseous form (Hg0) 
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(Schroeder and Munthe, 1998). Mercury undergoes a series of complex transformations 

in the environment, some of which produce chemical species that are more toxic than the 

elemental and inorganic forms. The organic species, methylmercury (MeHg), 

bioaccumulates and biomagnifies in the aquatic food chain, and is known to be very toxic 

to both humans and wildlife (Morel et al., 1998). Humans and animals exposed to fish 

high in MeHg may suffer from reduced brain, kidney, heart, and lung function, a weaker 

immune system, and may lead to deterioration of the nervous system, slower growth, and 

reduction in reproduction (Clarkson et al., 2003; Tchounwou et al., 2003). 

The methylation of Hg to MeHg is biologically mediated primarily by SRB that thrive in 

anaerobic environments, such as wetlands (Ullrich et al., 2001). Peatlands have been 

recognized as having a high methylation potential relative to other wetland and upland 

ecosystems (Branfireun et al., 1999; Mitchell et al., 2008), and identified as significant 

contributors of MeHg to aquatic ecosystems (St. Louis et al., 1994; Rudd, 1995). Organic 

matter is known to interact strongly with inorganic and organic forms of Hg and enhance 

solubility, mobility and transport (Ravichandran, 2004). This suggests that landscapes 

dominated by peatland runoff may contribute large mass fluxes of MeHg in tributaries, 

even in environments where deposition of inorganic Hg is low. 

1.6 Thesis Objectives 

Approximately 90% of all wetlands in Canada are classified as peatlands, with the vast 

majority of them located in the cold arctic and sub-arctic regions of the country 

(Tarnocai, 1998). The Hudson Bay Lowlands (HBL) in northern Ontario and Manitoba is 

the world’s second largest contiguous peatland complex, blanketing more than 320,000 

km2 of Ontario’s land mass with a 1.5-3 m thick layer of peat (known as “muskeg” by the 

First Nation’s people of the region) (Riley, 2011). Peat began to accumulate in the HBL 

approximately 6,000 years ago when land began to emerge from the sea due to high rates 

of isostatic rebound after the melting of the Laurentide ice sheet (Mcdonald, 1969). The 

flat regional gradients (~1% towards Hudson Bay) and low-conductivity glaciomarine 

deposits of calcite and dolomite beneath the peat strata have maintained permanent 

inundation of the land (Ibid.). This has led to the sequestration of organic carbon as peat, 

estimated at 26 Gt C (FNSAP, 2010). The HBL ecozone is considered to be an 



 

 

14 

ecologically important ecosystem, serving as habitat for large mammals such as 

woodland caribou, fox, bear, moose, and a breeding ground for over 200 species of 

migrating birds (Riley, 2011). The region also contributes large quantities of fresh water 

and solutes to James Bay, and subsequently the Arctic Ocean, via drainage by a dozen 

major rivers and thousands of minor streams and tributaries that crosscut the interior 

(Rouse et al., 1992). Orlova and Branfireun (2014) found that runoff contributions from 

peatlands were consistently responsible for more than half of total streamflow discharge 

in large tributaries of the Nayshkootayaow River. Similarly, Richardson et al. (2012) 

noted a strong relationship between discharge in surface waters and gross drainage area 

under low flow conditions, suggesting the groundwater contributions from peatlands in 

the HBL play an important role in supporting baseflow conditions.  

Scientific research in the HBL has recently intensified amidst concerns regarding changes 

to environmental processes resulting from climate change and resource extraction. Severe 

shifts to global temperature and precipitation patterns (IPCC, 2013) are expected to affect 

the hydrology and biogeochemical cycling of such large peatland systems (Holden, 

2005). In particular, increases in the export of DOC from peatlands to aquatic ecosystems 

are expected (Pastor et al., 2003; Freeman et al., 2004; Frey and Smith, 2005). Patterned 

fens have been shown to dominate runoff generation and lateral transfers of waters and 

solutes to nearby surface waters in other northern peatland catchments (Quinton et al., 

2003). Potential increases in DOC concentrations within fens will likely contribute to 

increased loading of DOC to aquatic ecosystems, assuming seasonal runoff from 

peatlands remains consistent.  Moreover, the extraction of large mineral deposits (e.g., 

diamonds and metals such as chromium and nickel) discovered in the HBL in the last two 

decades may impact hydrological processes, carbon dynamics, and mobilization of 

solutes such as Hg on a more localized but intensified scale (Whittington and Price, 

2012). The First Nation’s inhabitants of the HBL have expressed concerns that such 

large-scale mining operations could increase Hg loading into surface waters, given the 

well-known interactions between DOC and Hg (Ravichandran, 2004). Although the 

surface waters of some of the larger tributaries in the HBL have low levels of THg (<5 ng 

L-1) and MeHg (<1 ng L-1) (Kirk and Louis, 2009), levels of Hg in fish are relatively high 
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(0.1 to 1 mg kg-1) (B. Branfireun, personal communication) and consumption advisories 

have been issued for fish for in these rivers for the past few decades (MOE, 2013).  

Despite the significance of the HBL peatlands to global biogeochemical cycles, the 

majority of information we have on peatland hydrology and the export of DOC and Hg 

comes from smaller, isolated peatlands. With ever increasing concerns over changes to 

peatland hydrology from land use and climate change, it is becoming increasingly 

obvious that it is necessary to improve our current understanding of the quantity and 

quality of water flowing through large peatland complexes in the HBL, given their close 

connection to surface waters.  

In Chapter 2, I investigate the groundwater flow and hydrologic connectivity during the 

ice-free season between peatland landforms and underlying geologic strata using 

hydrometric data from groundwater wells and piezometers, as well as geochemical 

tracers, including major ions and stable water isotopes. I compare the observed 

groundwater flow patterns in the bog and fen to conceptual and computer-based models 

that have been developed for peatland complexes in the HBL, specifically the models 

presented by Reeve et al. (2000, 2001).  

In Chapter 3, I use the information on the behavior of groundwater flow to provide 

quantitative estimates of groundwater, DOC, THg, and MeHg fluxes through a bog and 

fen for the study period using a simple four-layered flux model, based on empirical 

hydrogeological site data and seasonal pore-water solute concentrations. The ultimate 

goal is to provide a baseline of groundwater hydrology and carbon and mercury dynamics 

to compliment research efforts at the study site, primarily the long-term monitoring of 

CO2, CH4, and H2O fluxes between the peatland and atmosphere, run by the Ontario 

Ministry of Environment.  
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Chapter 2  

2 Groundwater Flow and Hydrological Connectivity of a 
Bog-Fen-Tributary Complex in the Hudson Bay 
Lowlands 

2.1 Introduction 
The second largest peatland complex in the world, the Hudson Bay Lowlands (HBL), 

blankets almost a quarter of Ontario’s landmass with a highly-organic, two-meter thick 

layer of water-logged peat (Riley, 2011). This organic-rich ecosystem has sequestered 

nearly 30 Gt of carbon over the last 6,000 years and continues to exert a large influence 

on the global carbon cycle (Gorham, 1991; Glaser et al., 2004; FNSAP, 2010). The 

tributaries of the HBL also contribute large quantities of freshwater and dissolved solutes 

such as dissolved organic carbon (DOC) to the saline James Bay and the Arctic Ocean 

(Rouse et al., 1992; Kirk and Louis, 2009). The HBL ecozone is predicted to experience 

significant changes to climate (i.e., temperature and precipitation patterns) during the 

next century (Colombo et al., 2007; IPCC, 2013; Keller et al., 2014), which are likely to 

modify the current hydrological regimes of these peatlands (Holden, 2005; Whittington 

and Price, 2006; McLaughlin and Webster, 2014). In addition, current and future mining 

operations in the HBL threaten to disturb natural peatland hydrological processes on a 

more localized but intense scale (Whittington and Price, 2012). Peatland hydrology and 

the accompanying transport of solutes is the most important factor influencing peatland 

initiation, development, and maintenance, and governs key aspects of peatland function 

including the accumulation of carbon, redox conditions, and nutrient availability (Mitsch 

and Gosselink, 2007). However, information on the movement of water through large 

contiguous northern peatland complexes, such as those found in the HBL, is scant, as 

most studies examining the groundwater hydrology of bogs and fens have been 

undertaken at scales, or in hydrogeological contexts, that are likely not transferrable to 

the peatlands of the HBL. 

The majority of peatlands in the HBL are classified as either a bog or a fen, comprising 

36% and 24% of the total area, respectively (Sjörs, 1959, 1963; Riley, 2011). Bogs are 
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domed and often teardrop-shaped peatland landforms, typically >1 km2 in size and with a 

crest rising at least 1 m above the neighboring landscape. The pore-water in bogs is acidic 

(pH < 4.2) due to their ombrotrophic nature (meaning that their only hydrological and 

nutrient inputs come from rain and snow) and vegetation cover is dominated by 

Sphagnum mosses and a sparse cover of stunted Picea mariana (black spruce) (Ibid.). 

They are considered to be largely disconnected from groundwater sources rich in base 

cations (e.g., K+, Ca2+, Mg2+), and thus are unable to neutralize the organic acids 

produced by Sphagnum species (van Breemen, 1995).  

Fens are minerotrophic because of their lower geomorphic position in the landscape, 

receiving additional inputs of water and solutes from adjacent bogs and sometimes 

underlying unconsolidated and consolidated aquifers (NWWG, 1997). Because of these 

additional hydrological inputs, the water table in fen peatlands is less variable than in 

bogs, usually remaining at or near the ground surface throughout the growing season. 

Higher nutrient concentrations in the upper portion of the fen peat profile promote a 

greater diversity of vegetation, including Carex spp. (sedges), Equisitem spp. (horsetails), 

and stunted Larix laricina (tamarack) (Ibid.). Larger fens may develop into ribbed fens 

(also called patterned fens or water tracks) (Sjörs, 1948; Glaser, 1992). Ribbed fen 

systems exhibit characteristic parallel, alternating strings (ridges) and pools (troughs or 

flarks) situated perpendicular to the prevailing hydraulic gradient flow (Glaser, 1992), 

and tend to terminate at surface waters, delivering water, solutes, and energy to streams 

and tributaries which drain the peatlands. The arrangement of patterned ribbed fens 

draining into adjacent surface waters, interspersed with tear-drop shaped bog islands, is 

characteristic in the central regions of the HBL (Glaser, 1989). 

The movement of groundwater in large, contiguous peatland complexes is generally 

governed by topography, the position of the water table relative to the surface, and the 

physical properties of the peat soils themselves, such as hydraulic conductivity (K) 

(Siegel and Glaser, 2006). In the Ivanov (1981) peatland runoff model (Figure 1.2), the 

flow of water is assumed to occur laterally only through the upper portion of the peat 

(often referred to as the acrotelm), a highly porous and hydrologically conductive layer 

that is relatively undecomposed, and which contains low concentrations of dissolved 
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solutes (Bleuten et al., 2006). During periods of high water table, or in the presence of an 

impermeable frost layer during snowmelt, water losses in peatlands can also occur as 

lateral surface flows, around ridges and through narrow surface channels (Holden et al., 

2008). According to Ingram (1982, 1983) and (Siegel and Glaser, 1987) (Figure 1.2), 

water may also flow laterally through the deeper, lower K peat or as vertically 

recharging/radially discharging groundwater through the entire peat profile including the 

permanently saturated catotelm.  

Recently, peatland-derived runoff has been shown to consistently contribute about half of 

the total stream discharge of higher-order major tributaries of the Attawapiskat River, one 

of the largest rivers in the HBL (Orlova and Branfireun, 2014). Similarly, large-scale 

geomorphic analyses of high-resolution imagery of the Attawapiskat River watershed by 

Richardson et al. (2012) showed that relationships between stream discharge and gross 

drainage area were strong at low flows, but weakened during periods of high flows. 

Combined, the findings from these studies indicate that peatlands provide a consistent 

and crucial baseflow component to surface waters of the HBL, however the nature of 

hydrologic connectivity between peatland landforms and the delivery of water from the 

peatlands and into adjacent surface waters in this vast ecosystem is not well understood, 

particularly during wet (extremely saturated) conditions. 

Despite their ecological significance, importance to global biogeochemical cycles (Riley, 

2011), and concerns regarding the impact of climatic and landscape change to natural 

peatland processes and exports of DOC (Pastor et al., 2003; Porcal et al., 2009), the 

hydrology of bogs and fens in the HBL remains relatively understudied, with the 

exception of earlier studies by Sjörs (1959, 1963); Glaser (1989); Reeve et al. (1996, 

2000, 2001) and more contemporary work by Richardson et al. (2012); Whittington et al. 

(2012); and White et al. (2014). Much work has been done on smaller peatlands, 

generally only a few square kilometres in size [e.g., the Mer Bleue bog in southeastern 

Ontario (Fraser et al., 2001b; 2001a)], and often underlain by impermeable bedrock or 

higher conductivity glacial till in close proximity to uplands (Branfireun et al., 1996; 

Waddington and Roulet, 1997). Hydrological processes in larger peatlands, such as the 

Glacial Agassiz peatlands of Minnesota (USA), have been studied in some detail as well 
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(see Wright et al., 1992), but the underlying geology, topography, and scale of these 

systems are different from the peatlands of the HBL. Indeed, the very flat regional 

gradients (0.57 m km-1 towards Hudson Bay), nearly continuous wetland cover, absence 

of any significant upland contributing areas, and a low-conductivity (K < 10-7 m s-1) 

mineral substratum present a unique hydrogeological setting. 

The most recent, and to our knowledge the most comprehensive, efforts at elucidating the 

meso-scale flow of water and transport of solutes between peatland landscape features in 

the HBL are the two-dimensional numerical simulations of groundwater flow in bogs and 

fens by Reeve et al. (2000, 2001) (Figure 1.2). These conceptual computer models have 

shown that lateral flows in the uppermost peat layer dominate the transport of water and 

dissolved solutes between bogs and fens in large peatland complexes with a gently 

sloping topography, and which are underlain by a thick layer of low permeability 

sediments. The vertical redistribution of solutes in the peatland is a result of dispersive 

mixing (and to a lesser extent diffusion) processes rather than advection, since vertical 

movement of water between bogs and the low permeability mineral substratum was 

found to be negligible, given the small vertical gradients and large hydraulic conductivity 

contrast between layers. These computer simulations were found to conform to field 

observations obtained from the Albany River drainage basin in HBL, but the limited 

spatiotemporal dataset, as well as oversimplification of the physical structure of the 

peatland landscape units in the model itself, demands further detailed, empirical 

investigations of groundwater flow in this environment. More specifically, the presence 

of heterogeneities in the physical properties of the peat (i.e., anisotropy and soil pipes) 

(Beckwith et al., 2003b, 2003a; Morris et al., 2011), subtle fluctuations (i.e., 

microtopography) (Van der Ploeg et al., 2012) and breaks in topography (Freeze and 

Witherspoon, 1967), and the occurrence of other landforms such as ponds and open 

bodies of water (White et al., 2014) not incorporated in these elementary two-

dimensional models have the potential to significantly influence the flow of water, 

hydrologic connectivity, and the translocation and export of dissolved solutes in shallow 

groundwater systems of the HBL. 
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The objectives of this study are to improve our understanding of peatland groundwater 

hydrology in the HBL, with a particular focus on the distinctive bog-fen-tributary 

systems. Here we test the lateral surface flow versus vertical groundwater bog flow 

conceptual models discussed above using hydrometric measurements and geochemical 

tracers, and compare the resulting flow patterns of groundwater flow between an 

ombrotrophic bog and patterned fen to the theoretical numerical simulations presented by 

Reeve et al. (2000, 2001). Further, the groundwater hydrology of an adjoining patterned 

fen was explored in order to determine the degree of hydrological connectivity between 

peatland landscape units and the fen peatland to an adjacent, low-order tributary of the 

Attawapiskat River. 

2.2 Study Site 
A layer of 1.8-2.5 m deep peat covers the majority of the HBL, underlain by varying 

depths (0-65 m) of clay and silt-sized calcite and dolomite rock flour, layers of coarser 

sand deposits, and interspersed with pebble-sized clasts of igneous and metamorphic rock 

(Mcdonald, 1969; Glaser et al., 2004). Large-scale topography is virtually non-existent, 

and discrete zones of discontinuous permafrost (palsas) and outcrops of karst limestone 

bedrock (bioherms) are the only upland features (< 6 m high above adjacent peatland 

surface) in the landscape (Kuhry, 2008; Whittington and Price, 2012). The cool and moist 

low-subarctic climate of the region is strongly influenced by Hudson Bay and the Arctic 

Ocean (Riley, 2011). Historical meteorological data (1971-2000) from the nearest long-

term meteorological station in Lansdowne House, Ontario (52.23 °N,  -87.88 °W) shows 

an average annual precipitation of 699 mm for the region with ~30% falling as snow 

(Environment Canada, 2011). The region experiences on average 153 days with a 

minimum temperature above 0 °C and average daily temperatures for January and July 

are -22 and 17 °C, respectively (Ibid.). 

The study site location is a 4.9 km2
 subwatershed of the Trib 5 drainage basin [204 km2, 

Richardson et al. (2012)], approximately 100 km west of Attawapiskat, Ontario, and 15 

km south of the De Beers Victor Mine (Figure 2.1, 52.70 °N, -83.60 °W). The study 

location is the site of the Government of Ontario’s Ministry of Environment (MOE) long-

term carbon monitoring program, with two carbon dioxide, methane, and water vapour 
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monitoring towers situated in the bog and fen (Figure 2.2B). The site comprises a ca. 6 

km long patterned ribbed fen with an average topographic slope of 0.0013 that drains 

northwards towards a large, second-order tributary (Trib 5) of the Nayshkootayaow River 

(Figure 2.2A). Two raised, domed bogs bound the fen on the east and west margins (0.51 

and 0.12 km2, respectively) which taper off approximately 500 m away from the 

tributary.  

Figure 2.1. The study site (indicated by the black star) is located in the Hudson Bay 
Lowlands (HBL, dark grey), 100 km west of Attawapiskat, in northern Ontario, Canada. 

This study focuses on the hydrological connectivity between the larger eastern bog and 

the ribbed fen. The eastern bog is classified as a domed bog (NWWG, 1997) because of 

its large, convex shape raised ~1 m above the surrounding fens. Multiple drainage 

features (internal water tracks) are present within the bog, consisting of large, circular 

ponds (up to 750 m2) separated by ridges (5-10 m wide) at the bog crest, with ponds 

decreasing in size to <75 m2 as they cascade downwards on either side of the bog divide 

toward the ribbed fen. Peat depth in the bog ranges between 2.0 and 2.3 m, and slightly 

less in the ponded areas. Average topographical slope along the bog water track feature is 
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-0.0018; nearly double that of the neighboring fen. Vegetation in the bog is dominated by 

an understory of mosses (Sphagnum fuscum, rubellum, magellanicum, and capillifolium) 

and lichen (Cladonia rangiferina, mitis, and stellaris). A sparse cover of stunted (<4 m) 

black spruce (Picea mariana) and tamarack (Larix laricina), as well as ericacheous 

shrubs including labrador tea (Ledum groenlandicum) and leatherleaf (Chamaedaphne 

calyculata), make up the majority of aboveground flora in the bog ridges and hummocks. 

Figure 2.2. Satellite imagery showing (A) the location of the study site (black star) 
relative to the De Beers Victor Mine (black diamond) in the Hudson Bay Lowlands, and 
(B) the study site including the subwatershed (red line), locations and names of 
groundwater monitoring nests (yellow circle and labels), and position of the 
meteorological and eddy flux towers (green circles). IKONOS and RapidEye satellite 
imagery kindly provided by De Beers Canada and the Ontario Ministry of Natural 
Resources, respectively. 

Bog edges are rather sharply demarcated by the large ribbed fen (Kuhry, 2008), where 

long, alternating ridges (strings) and hollows (troughs) extend throughout the width of the 

system perpendicular to the flow of groundwater. Troughs are 3-10 m wide and are 

dominated by sedges (Carex lasiocarpa) and horsetails (Equisetum fluviatile), while 

ridges are typically 1-2 m wide and comprise mosses (Sphagnum rubellum and Dicranum 
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fuscescens) and stunted tamarack. This fen system is fed by groundwater from a loosely 

defined, large peat plateau contributing area to the south of the study site, in addition to 

the two domed bogs. Large circular ponds and open bodies of water (13-24,000 m2) occur 

most frequently at the narrowest point in the fen (400 m width), diminishing in size and 

frequency to smaller, elongated shallow pools (<1,000 m2) as the ribbed fen approaches 

the tributary, gradually doubling in width to more than 800 m at the tributary. The 

vegetation communities begin to transition slowly with increasing proximity to Trib 5, 

from sedge and tamarack dominated, to a dense thicket and swamp riparian zone of 

ericaceous shrubs such as bog birch (Betula pumila) and leatherleaf, and larger varieties 

of trees (>6 m in height) including tamarack, white spruce (Picea glauca), balsam poplar 

(Populus balsamifera), and paper birch (Betula papyrifera). Peat cover slowly decreases 

from 2.0-2.3 m in the fen to less than 1 m in the dense thicket, and effectively disappears 

approximately 100 m away from the tributary, where only a thin (<0.5 m) layer of tree 

roots and organic matter is in direct contact with the mineral substratum. This riparian 

environment has little resemblance to the fen, and contains small streams and surface 

waters incised into the marine sediment that deliver water directly into Trib 5. 

2.3 Methods 
The site is situated in a remote area of the HBL, so site access was limited to daylong 

visits by helicopter from the De Beers Victor Mine at ca. weekly intervals during the 

2010 and 2011 snow- and ice-free seasons. A 1250 m raised wooden boardwalk 

connecting two eddy covariance flux towers was constructed in June 2010 to maintain 

long-term site integrity and minimize potential disturbance to the peatland. Two transects 

were established: a 630 m Bog-to-Fen (BF) transect running alongside the boardwalk 

within the large drainage feature in the bog, and an 1800 m Fen-to-Tributary (FT) 

transect traversing the ribbed fen and ending near the adjacent tributary (Figure 2.2B). 

2.3.1 Hydrological Measurements  

Snow surveys and frost table measurements were taken between April 13 and May 14 

2013. Snow depth was surveyed at 10-20 m intervals along the boardwalk using a metal 

ruler. Depth to frost table was measured along the BF and FT transects by driving a 1 cm 
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diameter steel rod into the ground until contact with ice was made. Frost table thickness 

was determined by driving the steel rod into the ice until breakthrough at depth.  

Groundwater monitoring wells and piezometer nests were installed along the two 

transects beginning in November 2010, and continuing from May to June 2011 when the 

majority of seasonal ice had thawed (Figure 2.2B). Wells and piezometers were 

constructed from 0.125 m I.D. Schedule 40 PVC pipe; wells were slotted throughout the 

length of the pipe, while a 0.1 m slotted intake was placed at the bottom of each 

piezometer. All wells and piezometers were screened in 250 μm Nitex® nylon mesh to 

prevent coarse particulate matter from clogging the pipe or slot intake. Piezometers were 

installed into the peat by boring a hole with an auger slightly smaller in diameter than the 

PVC pipe to minimize smearing of the slotted intake during installation. All piezometers 

were sealed with vented caps to prevent any contamination from debris entering the top 

of the pipe throughout the season, while allowing for pressure equalization with the 

atmosphere. All piezometers and wells were developed (purged) after installation by 

repeated pumping with a peristaltic pump, removing any loose material present due to 

installation. 

Six piezometer nests were installed in the BF transect, placed at approximately 100 m 

intervals within the series of ponds and ridges in the internal water track feature. Eight 

piezometer nests were installed in the ribbed fen along the longitudinal axis (presumed 

direction of groundwater flow). Each of the fourteen monitoring nests comprise one 

fully-penetrating well installed to a depth of 1 m below the peat surface, and piezometers 

at 0.5, 1.0, 1.5, and 2.0 m below the peat surface. When peat depth was less than 2 m, 

piezometers were installed just above the contact of the marine sediment. Piezometers 

were also installed into the first metre of marine sediment within 200 m of Trib 5, where 

peat cover was typically less than 0.5 m. A monitoring well was also installed at the 

tributary to measure water level over the season. Monitoring nests in the bog and fen 

were named according to approximate distance in metres (and relative direction) from the 

bog crest (e.g., Bog+100) and fen flux tower (e.g., Fen+500 N), respectively. 
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Continuous water table measurements were obtained at hourly intervals from eight of the 

fourteen monitoring nests for the majority of the snow and ice-free season (May 15 to 

October 19, 2011) using pressure transducers (Schlumberger Micro-Divers®, accuracy = 

± 0.01 m) placed inside the wells, and later corrected for barometric pressure using a 

continuously logging Schlumberger Baro-Diver ®. Manual measurements of hydraulic 

head at each well and piezometer were taken at ca. weekly intervals (exact measurement 

interval was dependent on accessibility to piezometer nests) by measuring distance from 

the pipe top to water level using a blow stick, a 1.5 m long, 0.013 m O.D. PVC conduit 

with a tape measure encasing 2.5 m of Tygon® tubing (measurement error = ± 0.004 m). 

Each of the piezometers and wells were adjusted to the original installation depth 

throughout the season, if needed. Bail tests (Hvorslev, 1951) were conducted on all 

piezometers to determine the in situ saturated hydraulic conductivity of the peat at 

various depths and locations (Freeze and Cherry, 1979). Results from multiple bail tests 

at each piezometer taken throughout the year were averaged to provide a mean value of K 

at the specific location and depth of peat. 

Continuous stage data for Trib 5 was collected by placing a pressure transducer into the 

well installed within the tributary, and missing data was filled by regressing stage data for 

Trib 5 from a regularly gauged station 3 km downstream, kindly provided by De Beers 

Canada, who monitor the major streams and tributaries in this area as part of their 

environmental monitoring program.  

All monitoring wells, piezometers, and land elevations were surveyed at least once with a 

Topcon (Tokyo, Japan) HiPER GL RTK differential global positioning system (DGPS) 

(horizontal and vertical accuracy is +/- 0.01 and 0.003 m, respectively), relative to the 

UTM Zone 17N NAD83 datum (henceforth referred to as meters above sea level or 

m.a.s.l.). Peat depth was surveyed along each transect by driving an auger through the 

peat until contact with the underlying sediment was made.  

Precipitation and evapotranspiration data were collected by the Ontario Ministry of the 

Environment (MOE) and kindly provided for this study. Total precipitation was measured 

from the two flux towers at the site, compared and gap-filled with data from a nearby 
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station 15 km away. Evapotranspiration (ET) in the bog and fen was measured at two 4 m 

tall eddy flux towers (fetch = 400 m radius). Actual ET was modeled using the following 

approach, presented here for transparency as per Humphreys (2013): Latent heat fluxes 

were measured via eddy covariance methods which utilized an LI7200 IRGA and Gill 

HS-50 sonic anemometer to measure water vapour mixing ratio and vertical velocity, 

respectively.  Data was collected at 10 Hz and calculated as 30 min flux intervals after 3-

axis coordinate rotation. Missing data was gap-filled using an interpolation method for 

periods with gaps of 1 or 2 samples. Otherwise, a linear relationship was developed using 

a 200 sample moving window (in steps of 40 samples) with net radiation. When no net 

radiation data was available, the potential global radiation was used to estimate net 

radiation.  

Watershed delineation was courtesy of Jean Bouffard and Murray Richardson at Carleton 

University, done using Digital Elevation Model (DEM) data from a partial Light 

Detection and Ranging (LiDAR, 5 m resolution) dataset acquired for a previously funded 

research project, and combined with Shuttle Radar Topography Mission data (SRTM, 30 

m resolution), IKONOS satellite imagery, and aerial interpretation of aerial photographs.  

2.3.2 Water Sampling and Analysis 

Sample collection of major ions and stable water isotopes was campaign-based, where 

the majority of surficial pore-waters (integrated 0-5 cm relative to the water table) and 

piezometers were sampled on May 17, June 25, August 20, and October 19, 2011. Water 

sample collection was accomplished using a low-flow peristaltic pump and pre-cleaned 

PTFE sample tubing, and collected into clean 125-250 mL PETG bottles. Piezometers 

were regularly (ca. biweekly) purged to dryness, and 1-3 days before samples were taken. 

Samples were also taken by hand from the snow, ponds, rivulets, and the tributary 

throughout the season. Rain samples for stable water isotope analysis were collected at 

the De Beers Victor Mine using a funnel that drained into a sealed container that was 

emptied and replaced after the majority of precipitation events. Deep groundwater 

samples from the limestone bedrock aquifer were obtained from monitoring wells 

installed by De Beers located <20 km away from the study site. Although these bedrock 

wells are not in close proximity to the site, they were utilized since they are the only way 
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to estimate the isotopic composition of the karst limestone aquifer. A local meteoric 

water line (LMWL) of stable water isotopes was generated using samples of rain and 

snow collected within 15 km of the site between 2008-2011. 

Multiple sample duplicates and field and sample line blanks were taken during each 

sampling campaign as part of a Quality Assurance and Quality Control sampling program 

(QA/QC). Samples were stored in the dark at 4 °C and filtered under vacuum using 0.45 

μm nitrocellulose membrane filters within 48 hours of sample collection. Measurements 

of sample pH were done on the unfiltered sample fraction during sample filtration using a 

bench top pH meter, calibrated daily and checked before use. Sample filtrate was then 

split into appropriately sized HDPE bottles and preserved, depending on analytical 

requirements: samples for ion analysis were poured into 30 mL HDPE bottles and frozen 

for the duration of the study period, whereas samples for stable water isotope analysis 

were stored at 4 °C without headspace in sealed 20 mL HDPE scintillation vials and 

PTFE-lined displacement caps.  

Samples were analyzed at the end of the field season at University of Western Ontario 

analytical laboratories (Ecohydrology Lab and the Biotron Institute for Experimental 

Climate Change) in London, Ontario under strict QA/QC guidelines. Water samples were 

analyzed for stable oxygen (δ18O) and hydrogen (δD) water isotopes using Cavity Ring 

Down Spectroscopy (Picarro L2120-i), with values reported relative to Vienna-Standard 

Mean Ocean Water (VSMOW, precision: δ18O ± 0.1 ‰, δD ± 0.5 ‰). Cations (Na+, 

Mg2+, Ca2+) and anions (Cl-, SO4
2-) were analyzed in the Biotron (CALA ISO 17025 

certified) using Dionex ICS-3000 and Dionex ICS-1600 ion chromatography systems, 

respectively. Limits of detection for major ions were typically between 0.1-0.5 mg L-1. 

All sample, filter, field, and travel blanks contained unquantifiable concentrations of 

solutes (where applicable) and the relative percent difference of sample duplicates was 

consistently less than 20%, thus the resulting analytical data was deemed acceptable. 

ArcGIS 10.0 (Esri) was used in the creation of study site maps and water table 

contouring. Surfer (Golden Software) was used for contouring of cross sections and pore-
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water chemistry. Statistical analyses and data presentation was done using Prism® 

(Graphpad Software). 

2.4 Results 

2.4.1 Hydrology 

The site received 657 mm of total precipitation in 2011, slightly below the mean annual 

precipitation for this region, with 443 mm falling during the study period (May 15 to 

October 19; 157 days) (Figure 2.3A). Five major storm events, particularly in the latter 

half of the year, contributed to more than half of the total precipitation for the study 

period. Total annual (and duration of study period) evapotranspiration in the bog and fen 

was 333 (280) and 354 (293) mm, respectively (data not shown). 

A snow and frost-depth survey conducted on April 13, 2011 (before any observed 

significant snowmelt) revealed considerable heterogeneity in snow depth along the two 

transects. Forested areas (i.e., patches of black spruce in the bog, and the thicket/swamp 

riparian zone at the distal end of the fen) had slightly greater snow cover, consistent with 

recent work by Whittington et al. (2012). Mean (±standard deviation) snow depth in the 

bog was 33.3±18.3 cm, with some treed areas containing 80 cm of snow cover while 

other smaller patches some open areas were completely barren. Snow cover in the fen 

was less variable and averaged 34.0±7.7 cm, with the majority of the land surface 

covered in >18.0 cm of snow before any significant melt had occurred. The frost table in 

the bog was generally closer to the surface, thicker, and persisted longer than in the fen. 

Average surface-to-frost table depths in bog hummocks and hollows were 8.8±1.8 cm 

and 8.1±3.4 cm on April 30, 2011, respectively. The ground-ice layer in the bog was 

11.4±5.9 cm thick, on average. Depth to the frost table in fen ridges was 14.0±3.4 cm, 

and was much more variable in the troughs (14.0±29.5 cm). The frost layer in the fen was 

much thinner, as compared with the bog, only 2.8±6.4 cm thick. 
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Figure 2.3. (A) Continuous stage measurements in Trib 5 (dark grey, m.a.s.l.) and total 
precipitation (black bars, mm), and (B) continuous water table position in groundwater 
monitoring wells relative to the average peat surface (r.t.s.) at each monitoring nest for 
the duration of the study period. Solid and dashed lines represent wells in the BF and FT 
transect, respectively. 
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Although mean daily air temperatures remained below 0 °C until May 25, 2011, above-

freezing daytime temperatures in early May caused virtually all snow and frost at the site 

to melt by May 14, 2011; however, sporadic patches of snow in the riparian zone near 

Trib 5 persisted until early June. The rapid melting of snow, and small inputs in the 

spring resulted in high water tables across the peatland landscape, as well as high stream 

level in Trib 5. The rate of the stage recession in Trib 5 was faster than the water table 

recession in all of the monitored peatland wells. Stream levels fell more then ~0.4 m 

during the month of May, yet high water tables (at or above the average peat surface) did 

not start to recede until early June.  

The pattern and magnitude of water table fluctuation in response to precipitation events 

was distributed similarly across all locations along both transects throughout the study 

period (Figure 2.3B). The major differences between sites are related to microtopography 

as well as the position of the water table relative to the peat surface (r.t.s.), where fen 

wells tended to have water tables at or above the peat surface (0 to 10 cm r.t.s) during the 

wetter periods in spring and fall. Rapid snowmelt in early May sustained a high mean 

water table in both the bog water track (~2.5 cm) and ribbed fen (8.2 cm), peaking in 

early June. Immediately after the snowmelt period, the water tables in the bog tended to 

remain below the peat surface in ridges and lawns, and 5-10 cm above the peat surface 

around lower-lying ponds and in hollows. The fen water table generally peaked at 5-10 

cm above the peat surface in troughs (and in areas adjacent to ponds), but it did not 

appear to consistently rise above any of the numerous ridges within the fen. Significant 

and prolonged overland flow was not observed at the site after the melting of the frost 

table, because of the prevalence of hummock and hollow microtopography, pools, and 

ridges, which act as barriers to extended flow and limit the amount of surface runoff that 

can occur over long distances. 

Little precipitation over the month of June resulted in a steady decline in water table 

position. Wells placed at the bog crest (Bog + 0) and in the middle of the bog water track 

(Bog + 230) exhibited slightly higher rates of water table recession (-0.67 to -0.61 cm d-1) 

than at the bog margins (Bog +630) and wells placed throughout the ribbed fen (-0.59 to -

0.35 cm d-1). Larger (>20 mm) precipitation events in the later part of summer resulted in 
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rapid rises to the water table (8 to 12 cm), followed by comparable rates of decline in all 

wells. Water tables remained below the average peat surface for the majority of the 

summer at nearly all monitored wells at the site, and climbed steadily in the beginning of 

September due to large, frequent precipitation events, returning to snowmelt levels in 

October. 

2.4.2 Hydraulic Conductivity 

Saturated hydraulic conductivity was highly heterogeneous in the upper portion of the 

peat profile (Table 2.1). In general, the bog (0.079-10.337 m d-1) had on average higher K 

than the fen (0.003-9.861 m d-1), and both landforms showed significant decreases in K 

with depth. The K in the bog and fen at a depth of 2 m (0.003-0.0193 m d-1) was typically 

2-3 orders of magnitude lower than in the shallowest measured layers (3.887-10.337 m d-

1), and was similar to the K of marine sediment (0.004±0.001 m d-1). Areas near bog 

ponds exhibited the highest K measured, particularly at the shallowest (0.5 m) 

piezometers (10.337 m d-1), whereas measured K values of lawns and ridges were slightly 

slower and comparable to each other. A similar trend was observed between piezometers 

installed near ponds in the patterned fen, where near-pond K measurements were 

approximately twice as high in the upper 1 m of peat (1.029-9.861 m d-1) when compared 

to other portions of the fen at the same depths (0.592-5.868 m d-1). Interestingly, 

piezometers installed at 1.5 m in bog ponds and ridges exhibited higher K values 

(6.892±3.516 and 1.635±2.506, respectively) than shallower or deeper piezometers at the 

same nests. 
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Table 2.1. Saturated hydraulic conductivities (m d-1) for each landform and depth below 
peat surface, as determined by in situ bail tests. Multiple tests per standpipe piezometer 
throughout the study period are reported as the arithmetic mean±standard deviation, with 
the number of bail tests for each landform and depth given in brackets. 

Depth Below 
Surface (m) 

Bog –  
Lawns 

Bog –  
Pools 

Bog - 
Ridges 

Fen - 
Troughs 

Fen –  
Pools 

0.5 
3.887±0.699 

(3) 
10.337±4.66

1 (3) 
7.224±3.986 

(5) 
5.868±5.981 

(12) 
9.861±5.393 

(5) 

1.0 
0.615±0.319 

(2) 
0.979 

(1) 
0.051±0.048 

(4) 
0.592±0.375 

(8) 
1.029±1.094 

(2) 

1.5 
0.280±0.028 

(2) 
6.892±3.516 

(3) 
1.635±2.506 

(7) 
0.176±0.041 

(8) 
0.900 

(1) 

2.0 
0.100 

(1) 
0.079 

(1) 
0.193±0.143 

(4) 
0.005±0.007 

(4) 
0.003 

(1) 

2.4.3 Hydraulic Gradients 

A plan view of the water table topography for dry (July 19, 2011) and wet (October 17, 

2011) conditions is shown in Figures 2.4A and 2.4B, respectively. Lateral hydraulic 

gradients follow the general topographic relief of the landscape. Under both wet and dry 

conditions, the higher water table elevations in the bog direct groundwater down through 

the water track in the bog, and into the fen. The overall water table gradient of the 

subwatershed is northwards towards the Trib 5, and coincides with the string and trough 

vegetation patterns in the ribbed fen (Figure 2). Equipotential lines show a slight 

outwards movement of water along the FT transect, matching the increasing width of the 

ribbed fen with decreasing distance to Trib 5. Differences in lateral hydraulic gradients 

throughout the peatland are very small between low and high water tables. Bog water 

table gradients are slightly higher (-0.0018 to -0.0016) than in the majority of the fen (-

0.0016 to -0.0012) because of the greater topographic relief. The highest lateral gradients 

(-0.007 to -0.005) occur in the ribbed fen in close proximity (100-200 m) to Trib 5 where 

peat depth significantly decreases and marine sediments begin to outcrop. Groundwater 



 

 

40 

flow is shown to concentrate around the nest at Fen+900 N that is adjacent to a rivulet, 

which is likely a major source of fen drainage during periods of high water table. 

Two-dimensional cross sections displaying groundwater flow through the peat profile, 

generated from hydraulic head measurements in piezometers for the BF and FT transects 

at low (June 25) and high (October 17) water table positions, are shown in Figures 2.5 

and 2.6, respectively. In all instances, equipotentials are principally vertical, signifying 

that groundwater flow in both peatland types is dominantly lateral, as indicated by the 

generalized flow lines (black arrows). The hydraulic gradient in the bog is quite uniform 

throughout the length of the BF transect (~ -0.002), with a slight steepening approaching 

the break in slope in the underlying substrate between 400-600 m along the transect. 

Equipotentials are very evenly spaced along the majority of the FT transect (-0.0014), but 

the hydraulic gradient steepens considerably (0.004) at 1600 m (Fen+500 N), associated 

with increased proximity to the surface water tributary and the thinning of the surface 

peat layer (Figure 2.6).  
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Figure 2.4. Map view of lateral hydraulic gradients at the study site during at two periods 
of water table extreme: (A) dry (low water table) on July 19, and (B) wet (high water 
table) on October 17, 2011. Dashed lines indicate equipotentials generated using the 
hydraulic head data from groundwater wells, relative to surveyed datum. A solid red line, 
and yellow and green circles denote the study site subwatershed, groundwater monitoring 
nests, and eddy flux towers, respectively.  
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Figure 2.5. Vertically exaggerated (75x) peat cross section of the BF transect overlying 
marine sediment (speckled dark grey) during (A) low water table on June 25, and (B) 
high water table on October 17, 2011. The uppermost dashed and solid lines show water 
table and peat surface, respectively. Generalized flow lines are shown as black arrows. 
Black dots represent piezometer measurement points and vertical dashed lines represent 
equipotential at 0.1 m intervals, relative to the surveyed datum.  
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Figure 2.6. Vertically exaggerated (80x) peat cross section of the FT transect overlying 
marine sediment (speckled dark grey) during (A) high water table on June 25, and (B) 
low water table on October 17, 2011. The uppermost dashed and solid lines show water 
table and peat surface, respectively. Generalized flow lines are shown as black arrows. 
Black dots represent piezometer measurement points and vertical dashed lines represent 
equipotential at 0.2 m intervals, relative to the surveyed datum. 

Water levels in the piezometers in the BF and FT transects varied depending on season, 

height of water table, proximity to open bodies of water, and distance from tributary 

(Figures 2.7 and 2.8). The majority of piezometers in the bog had water levels below the 

water table, signifying downward vertical flow through the peat column (indicated by the 

negative sign). Vertical gradients were small (<-0.01) and often negligible between the 

surface and 0.50 m piezometers at all nests. Larger downward vertical gradients (-0.01 to 

-0.1) typically occurred in the middle portion of the peat profile. The largest vertical 

gradients were measured between the 0.5 and 1.0 m piezometers, at Bog+0 on May 26 (-

0.13) and October 18 (-0.11), as well as at Bog+100 on May 15 (-0.09) and May 26 (-

0.12). The magnitude and variability in vertical gradients in the BF transect decreased 

downslope approaching the ribbed fen. Vertical gradients were largely absent at the bog 

margin (Bog+630) throughout the study period. Groundwater flow reversals (a change 

from negative to positive vertical gradients) were identified at many of the bog nests 

during extended periods of low water table and low incident precipitation (June 22-July 
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17. The most significant reversal in vertical hydraulic gradients occurred at Bog+100 on 

July 17 (0.07, between 0.5 and 1.0 m) and Bog+230 on May 26 (0.06, between 1.0 and 

1.5 m).  

Vertical gradients in the FT transect were typically much more subtle and temporally 

consistent than in the BF transect. Small upward gradients (<0.06) were measured in 

most of the shallower piezometers (0.5 and 1.0 m) in nests between Fen+650S and 

Fen+0. Below a depth of 1.5 m, water levels in the piezometers were at or below the 

water table in all deep majority of the season, indicating consistent downward gradients 

at depth. The largest of these deep downward gradients (-0.24 to -0.02) occurred at 

Fen+160S. One significant groundwater reversal was also detected at this nest on May 15 

at the shallowest piezometer (0.04). The nest at Fen+500N did exhibit the largest overall 

variation in vertical gradients (-0.01 to 0.28), with the highest gradients observed during 

higher water table conditions. The monitoring nest at Fen+1100S showed consistent 

downward gradients for the duration of the study period (-0.04 to -0.07) between the 

surface and 0.5 m piezometers, and positive gradients (0.10 to 0.13) between 0.5 and 1.0 

m for the duration of the study. A very large positive gradient was also detected at this 

nest on July 26 (0.26); however, this is likely a measurement error as there is no physical 

basis for such a high calculated gradient nor was it observed at any other time.  
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Figure 2.7. Water level measurements relative to the water table (cm) at each 
groundwater monitoring nest in the BF transect, Hudson Bay Lowlands, Canada. Positive 
and negative values of water level indicate areas of discharge and recharge, respectively, 
at a given point, and slope of the line between two points signifies the magnitude of the 
vertical hydraulic gradients. 
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Figure 2.8. Water level measurements relative to the water table (cm) at each 
groundwater monitoring nest in the FT transect, Hudson Bay Lowlands, Canada. Positive 
and negative values of water level indicate areas of discharge and recharge, respectively, 
at a given point, and slope of the line between two points signifies the magnitude of the 
vertical hydraulic gradients. 

2.4.4 Pore-Water Chemistry 

2.4.4.1 Major Ions  

Surface and pore-waters along the BF and FT transects were generally dilute in dissolved 

major ions, and only chloride (Cl-), sodium (Na+), calcium (Ca2+), and magnesium (Mg2+) 

were consistently quantifiable in all samples (Cl-, Na+, and Mg2+ data not shown). 

Concentrations of Cl- were very low in the BF transect throughout the study period, <1 

mg L-1 near the peat surface and increasing very slightly to <2 mg L-1 in the deepest 

piezometers. FT transect pore-water Cl- concentrations were similar to those in the BF 

transect, but slightly more variable in space throughout the season. Concentrations of Na+ 

were also very low in the bog (<2 mg L-1), with no significant change with depth. Fen 

Na+ concentrations were slightly higher (2-15 mg L-1), exhibiting a gradual linear change 
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increasing with depth. Changes in Na+ concentrations due to seasonality were small, and 

imperceptible due to large spatial variability within each transect. 

Interpolated and contoured cross sections of calcium (Ca2+) groundwater concentrations 

in the bog and fen are presented in Figures 2.9-2.10. Concentrations of calcium was fairly 

stratified along the length of the BF transect, particularly in late spring, showing a 

gradual, linear increase in concentrations from <5 mg L-1 at the surface to nearly 100 mg 

L-1 near the peat contact with the mineral soil. However, some undulating patterns of 

Ca2+ are visible in the interpolated bog cross sections, where areas adjacent to ponds 

show slightly lower concentrations at depths of 1 m. Increases to Ca2+ in the near surface 

peat pore-waters seem to occur in late August (data not shown), suggesting greater 

influence from deeper calcium-laden groundwater or evaporative enrichment. These 

higher concentrations seem to occur in close proximity to ridges in the bog’s internal 

water track feature as well as the transition zone between the bog and fen. Increases in 

bog pore-water alkalinity also correspond to changes to pH (data not shown), increasing 

from very acidic (pH 4.0-5.0) at the surface to circumneutral (pH 6.5 to 7.2) near the 

marine sediment. Changes to pore-water pH over the course of the study period were 

observed at most of the sites, but were often small (<0.5 pH units) and inconsistent. 

Fen pore-water Ca2+ concentrations also increased with depth and proximity to the marine 

sediment, but spatial heterogeneity was more significant along the length of the FT 

transect than the BF transect. Near-surface Ca2+ concentrations were typically 10-40 mg 

L-1, more than 2-5x higher as compared with the bog. Increases in Ca2+ concentrations 

over the season were significant throughout the fen (data not shown), especially at 

Fen+500N. Discrete zones of higher Ca2+ concentrations (80-100 mg L-1) at 1 m below 

the peat at 700 m and 1300 m along the FT transect suggest an enhanced localized 

influence from the underlying mineral substratum. Higher pH values in the fen reflect 

increased alkalinity, where even shallow pore-waters range from pH 6.5 to 7.0. Like the 

bog, peat profiles in the fen showed increasing pH with depth to a maximum of 7.1-7.5. 

However, seasonal changes to pH were small and less pronounced than in the bog. 
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Figure 2.9. Vertically exaggerated cross sections of the BF transect showing interpolated 
Ca2+ concentrations (mg L-1) overlying marine sediment (speckled dark grey) on June 25, 
2011. Contours are shown every 10 mg L-1. The uppermost dashed and solid lines show 
the water table and peat surface, respectively.  

Figure 2.10. Vertically exaggerated cross sections of the FT transect showing 
interpolated Ca2+ concentrations (mg L-1) overlying marine sediment (speckled dark grey) 
on June 25, 2011. Contours are shown every 20 mg L-1. The uppermost dashed and solid 
lines show the water table and peat surface, respectively.  

2.4.4.2 Stable Water Isotopes 

Stable oxygen and hydrogen isotope compositions of waters obtained from various 

sources, including precipitation (rain and snow), peat pore-waters, marine sediment and 

bedrock-derived groundwater, and Trib 5 are reported in Figure 2.11. The Local Meteoric 

Water Line (LMWL, δD = 7.72δ18O + 6.63 ‰) for the region is comparable to the Global 
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Meteoric Water Line (GMWL, δD = 8δ18O + 10 ‰). Rain and snow samples exhibit a 

large seasonal range in isotopic compositions (δ18O -24 to -8 ‰; δD -170 to -50 ‰). 

Precipitation tends to become more depleted in the heavier isotopes throughout the year, 

and is especially lighter in the winter months (δ18O = -24 to -16 ‰, δD = -117 to 115 ‰). 

Although the spread of water isotope values is large within the different source of water 

in the study site, the isotopic composition of peatland pore-water samples is heavily 

influenced by fall and winter precipitation. With the exception of the bedrock 

groundwaters, all water samples plot on or below the LMWL, suggesting evaporative 

enrichment in the heavier oxygen and deuterium isotopes. Many bog waters at the peat 

surface and in the shallower (<1 m) piezometers plotted directly on the LMWL, whereas 

nearly all of the fen pore waters displayed isotopic compositions characteristic of 

evaporation. The heaviest evaporative signatures were found in larger ponds located in 

the fen. Pore-waters from marine sediments generally exhibited spatiotemporal coherence 

at each site, and revealed nominal evaporative enrichment. The isotopic composition of 

Trib 5 surface waters resembled fen pore-waters at 2.5 and 50 cm (δ18O = -12.6 to -13 ‰, 

δD = -92 to -98 ‰), as well as marine sediments at lower flow conditions (δ18O = -14.6 

‰, δD = -108 ‰). Most of the samples obtained from limestone bedrock plot above the 

LMWL, which indicate exchange between water and oxygen containing minerals such as 

carbonates, and have a lighter isotopic composition that is similar to winter precipitation.  
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Figure 2.11. Plot of stable water isotopes (δ18O versus δD, ‰ VSMOW) of rain 
(crosses), snow (stars), Trib 5 Surface waters (blue triangle), bog pore-waters (green 
circles), fen pore-waters (orange squares), marine sediment (red triangles) and bedrock 
(brown diamonds) for the entire study period. Solid and dashed lines define the Global 
(GMWL) and Local (LWML) meteoric water lines, respectively. 

Contoured δD values in the BF and FT transect cross sections (Figures 2.12 and 2.13) 

show the distribution of δD over the summer months within the peat. Contours of δ18O 

values exhibit identical patterns of layering (data not shown). The BF transect exhibits 

undulating stratification of δD values, similar to contoured Ca2+ concentrations, but 

reveals a more complex “hot spot” patterning of lighter isotopes (δD = -100 to 104 ‰) at 

250 and 550 m along the transect. These patterns do not appear to change significantly 

over the season. The uppermost portion of the peat shows a slight enrichment in heavier 

δD and δ18O isotopes over the summer, due to excessive evaporation and inputs of 

relatively heavier precipitation.  

The FT transect exhibits more complex distributions of δD that are comparable to 

patterns of contoured Ca2+ concentrations. A strong band of isotopically-depleted water 

(δD = -110 to -100 ‰) is evident between 0-500 nm from the start of the FT transect 

earlier in the season, which gradually slopes upwards at 700 m. Beyond this portion of 
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the transect, much of the water shows a smaller range in isotope values centered around -

100 ‰ δD, particularly at >1 m depth. Slightly more depleted water (ca. -104 ‰ δD) is 

present in deeper peat near the end of the transect. The distribution of isotope values in 

the FT transect in August is largely comparable to that of June, however slight 

propagation of water down slope towards the tributary is evident throughout. Most 

noticeable is the heavily depleted slug of water that has progressed slightly down gradient 

(<50 m), and slightly closer to the surface. Likewise, the depleted portion of water at the 

northernmost portion of the transect has moved downgradient, being mixed and/or 

replaced by slightly isotopically heavier water. 

Depth profiles of δ18O values at each piezometer nest along the BF and FT transect are 

shown in Figures 2.14 and 2.15, respectively (depth profiles of δD are comparable, but 

not shown). Overall, δ18O values show significant fluctuations in the uppermost 1 m of 

the peat profile throughout the study period, and more conservative changes at greater 

depths. In the BF transect (Figure 2.14), δ18O values typically range between -15 to -11 

‰ at the water table and 0.5 m piezometers and exhibit changes between May and 

October. At depths greater than 1 m, the spread in δ18O values narrows (-14 to -12.5 ‰), 

and values remain unchanged throughout the season. Near the surface of the bog, δ18O 

values tend to reflect the isotopic composition of seasonal precipitation, with relatively 

negative values during snowmelt, gradually increasing throughout the season until cooler 

rains and snow in October. Values of δ18O in deeper piezometers at nests Bog+0, 

Bog+490 and Bog+630 were focused around -14 to -13.5 ‰, while deep piezometers 

located in the middle of the transect showed slightly more isotopically enriched values 

between -13.5 and -12.5 ‰. Whereas most of the nests in the BF transect showed a 

gradually more depleted isotopic composition with depth, Bog+630 (within the bog-fen 

transition zone) generally exhibited very little differentiation with depth, centered around 

-13.5 ‰ (with the exception of the 0.5 m piezometer in May at -15.4 ‰). 
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Figure 2.12. Vertically exaggerated cross sections of the BF transect showing 
interpolated δD (‰ VSMOW) values on (A) June 25 and (B) August 20, 2011. Contours 
are shown every 2 ‰. The uppermost dashed and solid lines show the water table and 
peat surface, respectively.  
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Figure 2.13. Vertically exaggerated cross sections of the FT transect showing 
interpolated δD (‰ VSMOW) values on (A) June 25 and (B) August 20, 2011. Contours 
are shown every 2 ‰. The uppermost dashed and solid lines show the water table and 
peat surface, respectively. 

Profiles of δ18O (Figure 2.15) and δD (data not shown) in the FT transect generally 

exhibit a smaller spread with depth, and only tend to exhibit seasonal variability at 0 and 

50 cm depths. Alike the bog, in the near surface section of the peat, δ18O values mirror 

the highly depleted values of winter precipitation and snow melt mixed with existing peat 

groundwater. At the southern end of the transect (Fen+1100S and Fen+650S), there is 

strong enrichment in δ18O over the season (June to August), and with increasing 

proximity to the peat surface. Beyond Fen+650S, δ18O values tend to stabilize throughout 

the transect at ca. -13.2 to -12.5 ‰ 50 cm below the peat surface, and show minimal 

changes over the study period. Piezometers at Fen+800N (where peat depth starts to 

noticeably decrease) gradually increase from -13.7 ‰ in the marine sediment (0.75 m 

below the peat/sediment interface) to -12.5 ‰ δ18O; however, values in the peat itself are 

quite consistent. 
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Figure 2.14. Values of δ18O (‰ VSMOW) with depth at each nest in the BF transect, 
Hudson Bay Lowlands, Canada. 
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Figure 2.15. Values of δ18O (‰ VSMOW) with depth at each nest in the FT transect, 
Hudson Bay Lowlands, Canada. 

2.5 Discussion 

2.5.1 Hydrologic Connectivity in the Landscape 

It appears that there is a need to satisfy a threshold moisture deficit (or water table 

position), regardless of the amount of incoming precipitation the peatland receives during 

a storm event (Quinton and Roulet, 1998).  Unless this threshold is satisfied, hydrological 

connectivity between landscape units occurs only via diffuse groundwater flow, and 

remains relatively low throughout the majority of the snow and ice-free season or during 

extended periods of drought. The bog, fen, and tributary all exhibit the highest degree of 

hydrological connectivity during spring freshet and the occurrence of high frequency rain 

events in the fall, when water tables exceeded the average peat surface in the bog and fen, 

respectively. This rapid connection to the surface waters can only occur when the ribbed 

fen (the portion of the peatland that is directly coupled to the fen) drains as a single 
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source area and is able to deliver water as overland surface flows or through the shallow, 

very high K acrotelm. It is unlikely that a similar physical linkage of channels causes 

transmission of water from the bog to the fen, as channelized flow due to the large 

surface storage created by the pool-ridge sequence in the bog water track feature (Price 

and Maloney 1994).  

The presence of an impermeable frost table appears to amplify runoff from the peatland 

in the spring (Woo, 1986), where even small hydrologic inputs to the landscape are 

related to rapid and substantial increases in Trib 5 stage (Figure 2.3B). As soon as the 

frost table begins to melt, the water table is lowered enough that the occurrence of ridges 

and troughs in the ribbed fen impedes rapid overland flow for significant (>10 m) 

distances, requiring that runoff occurs as groundwater flow through the peat. The absence 

of any significant meteorological inputs and increasing evapotranspiration rates 

throughout the summer, as well as groundwater losses to the adjacent surface waters, 

lower water tables throughout the site, and the hydrological connectivity of the entire 

landscape decreases in direct response to a reduction in water table elevation relative to 

the peat surface. The higher rates of water table decline in the bog are the result of higher 

hydraulic table gradients and hydraulic conductivities.  

2.5.2 Patterns of Groundwater Flow 

Large scale vertical flows have been reported to occur in larger patterned peatland 

systems (Siegel, 1983; Siegel and Glaser, 1987), but the seasonal hydraulic head 

measurements at the study site indicate that groundwater flow in this bog-fen-tributary 

sequence is principally horizontal with the majority of mass transport occurring in the 

shallowest peat layers (Figure 2.5). Figures 2.5 and 2.6 show the consistent generalized 

flow of groundwater in the bog and fen from equipotentials constructed from hydraulic 

head which is conceptually similar to simulations by Tóth (1962) and Freeze and 

Witherspoon (1967) in which lateral groundwater flow dominates in a thin homogenous 

aquifer under a constant gentle water table slope.  

Hydraulic head measurements in piezometers along the BF and FT transects indicate that 

most of the study site experiences no vertical hydraulic gradients in the top 0.5 m of the 
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peat column, and slight-to-moderate vertical gradients below this depth. At certain times 

and locations, the measured vertical gradients are larger than those reported in Glacial 

Lake Agassiz peatlands (Siegel and Glaser, 1987; Romanowicz et al., 1993). Downwards 

(negative) vertical gradients were measured in some nests, particularly at the crest of the 

bog, indicating that water table mounds can drive local ground-water flow cells, 

particularly at very dry or wet conditions. However, the low K at depth means that the 

volume of water flowing downwards through the peat column is relatively small, even in 

the presence of strong vertical hydraulic gradients. Additionally, numerical simulations of 

groundwater flow in bogs in the Albany River drainage basin by Reeve et al. (2000) 

showed that vertical flows through the peat profile (and into the underlying geologic 

layers) are small when the peat itself is underlain by low permeability deposits (<0.008 m 

d-1). The low K (<0.004 m d-1) fine-grained calcite sediment at the study site likely results 

in a very small vertical exchange of water between the bog and low K mineral substratum 

even if strong vertical gradients were present.  

In the fen, vertical hydraulic gradients were generally small, but when present, positive 

(upward), consistent with other studies of peatland groundwater hydrology (Siegel and 

Glaser, 1987; Price and Maloney, 1994). The only consistently strong upwards hydraulic 

gradients were at Fen +500N, and were greatest during high water tables in the spring and 

end of summer. This nest is located in a break in peatland topography, where peat depth 

starts to decrease toward the transition to the tributary. This small break in slope and 

underlying mineral topography is sufficient to promote groundwater discharge within this 

area (Freeze and Witherspoon, 1967). We measured some consistently negative hydraulic 

gradients at 1.5-2.0 m below the peat surface at nearly all nests along the FT transect. As 

there is no physical basis for such strong negative gradients (given the low hydraulic 

conductivity of the underlying mineral layer), we believe that these are most likely an 

artifact of the slow response of the water level in the piezometers to changes due to very 

low K peat in the fen, and not a true measure of downwards gradients at depth. 

The groundwater flow reversals (oscillation between groundwater upwards and 

downwards vertical hydraulic gradients) observed at the study site during periods of low 

water table have also have been reported in large peatlands (Siegel and Glaser, 1987; 
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Romanowicz et al., 1993), and have been shown to enhance vertical mixing of solutes in 

the peat column (Reeve et al., 2006). In our study, the flow reversals did not persist for 

more than 1-2 weeks (the determination of the exact duration is limited by our 

measurement interval) and no significant changes to pore-water chemistry were detected 

throughout this time. The differential influence of local versus regional flow systems 

during periods of low water table (Devito et al., 1997), and episodic overpressurization of 

the peat column by biogenic methane gas during droughts (Kellner et al., 2004) have 

been cited as reasons for such apparent reversals in measured hydraulic heads. 

It is clear that accurate values of K are required for the interpretation of groundwater flow 

patterns, to aid in interpretation of hydraulic gradients, and for the quantitative evaluation 

of fluxes of groundwater within the peat profile (Freeze and Witherspoon, 1967). We 

utilized in situ bail tests (Hvorslev, 1951) for the determination of K in the field because 

of their simplicity, and ability to incorporate field-scale heterogeneities in the peat (Siegel 

and Glaser, 2006). The values of K from our study site are similar to what Chason and 

Siegel (1986) reported for peats in the Lost River Peatlands of northern Minnesota, 

however they did not observe such large changes of K vertically along the peat profile.  A 

consequence of this significant decrease in K with increasing peat depth is that the 

uppermost portion of the peat surface (<1 m depth) is effectively the main conduit for 

flow between peatland landscape units in the HBL.   

While our estimates of K appear to coincide with the other published studies of in HBL 

peats (Whittington and Price, 2013), we are aware of the limitations the Hvorslev bail test 

method for the determination of K in highly compressible media such as peat (Chirlin, 

1989; Surridge et al., 2005), and the additional benefits of laboratory-based methods of K 

testing [e.g., Nagare et al. (2013)]. One major disadvantage with bail tests (and the design 

of our piezometers) is that it is not possible to obtain independent measures of anisotropy 

[the ratio of the horizontal (Kh) and vertical (Kv) hydraulic conductivity of the medium]; 

rather the resultant K represents some “average” of Kh and Kv, usually biased towards Kh. 

Anisotropy can lead to complex patterns of groundwater by influencing the proportions 

of vertical and horizontal flow in the soil profile. Whittington and Price (2013) measured 

anisotropy in HBL peats within 20 km of our study site and found that Kh>Kv in 90% of 
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samples, but the magnitude of anisotropy was fairly small (Kh = 1.8Kv). It is likely that 

the spatial heterogeneities and variability in measured K within the peat profile trumps 

the effect of such relatively minor anisotropy (Beckwith et al., 2003a).  

2.5.3 Pore-Water Chemistry 

Differing hydrology, geomorphology, and vegetation assemblages influence the pore-

water chemistry in the bog and fen systems of the HBL (Reeve et al., 1996). Peatland 

features and landforms (i.e., ponds and ridges), and horizontal and vertical gradients can 

explain the distribution of calcium and stable water isotopes along the BF and FT 

transect. Overall, changes in peatland groundwater chemistry at the site were small over 

the course of the study period, and the redistribution of groundwater chemistry is most 

significant within the top 1 m of the peat, where the majority of groundwater flow occurs. 

Flow reversals did not seem to affect pore-water chemistry, but our monthly sampling 

interval and moderate spatial resolution may be too infrequent to capture finer-scale 

temporal changes to peatland geochemistry due to oscillations in flow direction. 

Shallow pore-waters in the bog were predictably acidic (pH < 4.5) due to ubiquitous 

Sphagnum cover, but were circumneutral at depths below 1 m. Large-scale patterns of 

Ca2+ concentrations can be explained by diffusional and dispersive processes that 

transport the highly concentrated ([Ca2+] >100 mg L-1) pore-waters from the underlying 

marine sediments (Reeve et al., 2001), but are made more variable by very localized flow 

cells flushing dilute waters from the surface down through the peat (Siegel, 1983). The 

lower concentrations of Ca2+ in deeper peat at 0-100 and 300-400 m along the BF 

transect corresponded to areas with more persistent downward gradients. Such downward 

flows must exceed the upward diffusional gradient in order to have a measureable effect 

on Ca2+ concentrations. 

Calcium concentrations in the shallow fen pore-waters were at least double than in the 

bog, and exhibited much more complex distributions throughout the peat profile. These 

distributions are also the result of an interplay between diffusion, dispersive mixing, and 

the vertical gradients along the FT transect. The effects of dispersive mixing in the fen 

are enhanced by greater heterogeneity in K, and longer horizontal flow paths (Reeve et 
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al., 2001). Negative vertical gradients at the start of the FT transect (0-200 m) and the 

consistent strong upward gradients at the distal end (>1000 m) result in lower and higher 

concentrations of Ca2+ in shallower peats, respectively. 

Stable water isotopes are useful tools as geochemical tracers because they are chemically 

conservative, meaning physical processes such as evaporation and condensation, or 

exchange reactions with geological materials, only affect their isotopic signature. Stable 

water isotopes are also a complementary tracing technique to Ca2+ since they are 

consistently replenished by meteorological precipitation at the surface (rather than 

derived from the basal sediments) and have a large seasonal range in values, which can 

be useful in distinguishing between different mixing end members.  

The majority of pore-water samples from the bog and fen exhibit a departure from the 

LMWL and have gentler slopes (4-6) on the δ18O versus δD plot, signifying high rates of 

evaporative enrichment in heavy stable water isotopes (δ18O and δD). Shallow fen pore-

waters have higher slopes than in bogs due to enhanced evapotranspiration because of 

large areas of standing water and presence of vascular vegetation. Patterns of stable water 

isotopes along the BF and FT transects resemble the patterns of Ca2+ concentrations, 

indicating that similar hydrological processes are responsible for both the top-down 

(downward hydraulic gradients) and bottom-up (dominantly diffusional and dispersive) 

redistribution of water chemistry within the bog and fen. Fen pore-waters are much more 

isotopically lighter at the southern portion of the FT transect, where downwards vertical 

gradients and large extent of open pools results in recharge of more isotopically depleted 

water from snowmelt (White et al., 2014). 

Changes to stable water isotopes throughout the season are substantial only at the surface 

and 0.5 m piezometers, similar to what is reported in the Glacial Lake Agassiz peatlands 

(Levy et al., 2013). This provides further evidence that connectivity of the peatland 

landscape on an annual scale primarily occurs within the high conductivity acrotelm. A 

large spread in water isotope values exists in all samples, but most are centered around 

the isotopically heavy precipitation, indicating that peatland groundwaters are recharged 

primarily during periods of high magnitude and frequency storm events during late 
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summer and fall. Snowmelt does result in a rapid addition of water to the peatland 

systems, but most of it does not infiltrate the deeper peats due to the near surface 

impermeable frost table.  

2.6 Conclusions 

Seasonal-scale hydrometric data and geochemical tracers used in this study provide the 

first high-resolution, empirical confirmation of the numerical simulations of peatland 

groundwater flows in the HBL by Reeve et al. (2000, 2001). Consistent hydraulic 

gradients throughout the site ensure groundwater flow in a bog-fen arrangement is largely 

horizontal, and occurs primarily through the high K (>10-4 m s-1) surface peat layers. The 

translocation of solutes from basal sediments occurs through diffusion and dispersion 

transport processes, governed by the physical characteristics (i.e., height, length, 

topography, and hydraulic conductivity) of the peatland landforms and underlying strata. 

The distribution of solutes within the peat profile along the longitudinal axis of flow can 

be influenced by fine-scale local upward and downward flow cells that can develop near 

peatland features such as ridges and ponds, especially during extreme high and low water 

table elevations. Small breaks in topography within ribbed fen systems can result in 

consistent upward vertical flows, amplifying the flux of solutes from deep to shallow 

peats. 

The degree of hydrologic connectivity within the landscape, and with the surface waters, 

is primarily governed by the position of the water table relative to the average peat 

surface. The system appears to behave differently between it’s completely connected 

(wet) and partially connected (dry) states, demarcated by a threshold water table position 

near or exceeding the average peat surface in the fen. During periods of enhanced 

connectivity (snowmelt in spring and fall freshet), surface waters responded rapidly to 

inputs of water to the system, and redistribution of solutes occurs in shallow (< 1 m) peat. 

Even small reductions in the water table correspond to reduced hydraulic connectivity 

between landscape units. Predicted lowering of water levels in the future from increased 

evapotranspirative water losses due to increased air temperatures could reduce the export 

of water and solutes from the peatlands to the surface waters of the HBL. 
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Chapter 3 

3 Water, Carbon, and Mercury Fluxes in a Bog-Fen-
Tributary Complex, Hudson Bay Lowlands, Canada 

3.1 Introduction 
Northern peatland complexes play an important role in the global carbon cycle, where 

cool temperatures and waterlogged soils have contributed to the sequestration of more 

than 400 Gt carbon (C) worldwide since the beginning of the Holocene (Gorham, 1991). 

Peatlands are long-term (millennial) sinks of carbon dioxide (CO2), but are also sources 

of methane (CH4, a potent greenhouse gas) to the atmosphere, and thus function as 

important regulators of the global climate (Smith et al., 2004; Frolking et al., 2006). 

Because of their reducing biogeochemical soil conditions, and their low-lying, ecotonic 

position in the landscape (which links the terrestrial and aquatic ecosystems), peatlands 

are often considered significant sources of dissolved organic carbon (DOC)-laden 

groundwater to surface waters (Dillon and Molot, 1997; Moore, 2009). DOC is a varied 

mixture of simple low-molecular to complex high-molecular weight organic molecules 

(operationally defined as <0.45 μm in size), which originate from the decomposition of 

organic matter and senescent vegetation (Porcal et al., 2009). The production and 

transformation of DOC, and the associated reactions with other chemical constituents, are 

governed by a multitude of biogeochemical factors, including pH, temperature, redox 

potential, availability of terminal electron acceptors (TEAs), and the activity and 

structure of microbial communities (Blodau, 2002; Reddy and DeLaune, 2008).  

Concentrations of DOC in peatland pore-water can vary depending on peatland landform 

type (i.e., bog or fen) (Ulanowski and Branfireun, 2013), and depth from the surface, but 

typically range between 5 and 80 mg L-1 (Moore, 2009). Exports of DOC from northern 

peatlands can account for 10% to 50% (1 to 50 g C m-2 y-1) of the annual net ecosystem 

carbon balance (NECB) (Roulet et al., 2007; Nilsson et al., 2008; Olefeldt et al., 2012; 

Yu, 2012). The NECB is the overall sum of fluxes of carbon to and from a peatland, 

including CO2 uptake and release (or net ecosystem exchange, NEE), CH4, and DOC 

(Bridgham et al., 2006). 
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Dissolved organic carbon is also an important carbon and energy source for 

microorganisms, and is recognized as a significant modifier of aquatic ecosystems, where 

high concentrations of organic acids can affect pH, and it’s chromophoric properties can 

attenuate light transmission through the water column by imparting a yellow-brown 

colour to the water (Ibid.). Metals can form strong complexes with DOC, which can 

affect transport, bioavailability, speciation, and toxicity (Buffle et al., 1988). For 

example, DOC can bind to various inorganic and organic species of mercury (Hg) 

(Ravichandran, 2004). Mercury is a global pollutant, since it is readily introduced into the 

atmosphere from natural (i.e., geologic) and anthropogenic (e.g., mining and combustion 

of fossil fuels) sources, where it is efficiently transported over long distances, and 

subsequently deposited globally even in the most pristine landscapes (Fitzgerald et al., 

1998; Morel et al., 1998; Clarkson et al., 2003).  

Concentrations of total mercury (THg) are below levels of direct toxicological concern in 

peatland pore-waters (<20 ng L-1) (Mitchell et al., 2008a), however it is the in situ 

production, and export, of the potent neurotoxin methylmercury (MeHg) that can have 

harmful effects on ecosystems (Boening, 2000; Mozaffarian and Rimm, 2006). Peatlands 

are recognized as important sources of MeHg to surface waters (St. Louis et al., 1994; 

Branfireun et al., 1996; Branfireun et al., 1999), since the anaerobic conditions within 

peatlands facilitate the microbially mediated methylation of inorganic Hg to MeHg. 

Although concentrations of MeHg in peatland pore-waters are also generally very low (< 

5 ng L-1) (Heyes et al., 2000), bioaccumulation and biomagnification within the aquatic 

food chain can increase concentrations of MeHg in fish by more than six orders of 

magnitude (Morel et al., 1998). Over 90% of the THg in fish occurs as MeHg (Bloom, 

1992), and so the consumption of fish with a high MeHg body burden is major pathway 

of mercury exposure to humans and wildlife, which can lead to impaired neurological 

function and decreases in reproductive success, respectively (Wolfe et al., 1998; 

Tchounwou et al., 2003). 

Hydrology governs biogeochemistry and the export of solutes from peatlands (Shotyk, 

1988; Siegel and Glaser, 2006), but forecasted perturbations to moisture regimes due to 

climate and land-use change (Turetsky et al., 2002; Whittington and Price, 2013) demand 
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a better understanding of such processes in larger peatlands if the effects of these changes 

are to be reasonably predicted. There is still incomplete knowledge and a scarcity of 

comprehensive field-based studies investigating groundwater and carbon exchange in 

large contiguous peatland complexes, such as Canada’s Hudson Bay Lowlands (HBL) 

where these changes may be most dramatically manifested. 

The HBL is an ecologically important region with an area of more than 300,000 km2 

extending across northern Quebec, Ontario, and Manitoba (Riley, 2011), and is almost 

entirely covered by a ~2 m layer of peat which began to accumulate 6-7000 years ago, 

following the melting of the Laurentide Ice Sheet and regression of land from the Tyrell 

Sea (Lee, 1960; Glaser et al., 2004). The peatlands of the HBL currently contain 26 Gt C 

(FNSAP, 2010) and contribute approximately half of the total water discharge in the 

rivers and tributaries that drain the HBL, supplying large amounts of freshwater and DOC 

to the saline James Bay and the Arctic Ocean (Kirk and Louis, 2009; Orlova and 

Branfireun, 2014). Changes to hydrology from climate change (Colombo et al., 2007) 

and the exploitation of recently discovered mineral deposits (e.g., Hattori and Hamilton 

(2008) have the potential to increase exports of peatland-derived DOC and solutes (Siegel 

et al., 1995; Pastor et al., 2003; Frey and Smith, 2005; Colombo et al., 2007; Cortizas et 

al., 2007). Despite the importance of these HBL peatlands to the global carbon cycle 

(Riley, 2011), and existing fish consumption advisories due to elevated levels of mercury 

in fish in HBL rivers and tributaries (MOE, 2013), we still lack the information to 

quantify and assess the effects of disturbance to these ecosystems on water quality. Most 

of our policy-making and long-term predictions of change are based on peatlands 

significantly smaller in size, within a much different climatic, geographic, and geologic 

setting (Strack et al., 2008; Waddington et al., 2009).  

Given the demand for high quality field-based information on the current state of HBL 

peatlands and their connection with the surface waters, we have collaborated with De 

Beers Canada and the Ontario Ministry of the Environment (MOE) to establish a long-

term study of water and carbon cycling in a bog-fen-stream complex typical of the central 

regions of the HBL. Here we present the first assessment of the annual fluxes of water, 

DOC, and Hg that flow through, and out of, such a system. The objectives of this 
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research are to 1) assess the spatial and temporal patterns of DOC, THg and MeHg in a 

typical bog-fen-tributary sequence in the HBL, and 2) estimate groundwater, DOC, THg, 

and MeHg export from the bog to fen, and fen to an adjacent surface water channel 

during the snow and ice-free season. 

3.2 Study Site and Methods 

3.2.1 Site Description and Hydrological Measurements 

The study site was established in late 2010 and early 2011 in a 4.9 km2 subwatershed of 

the 204 km2 Tributary 5 (Shreve Stream Order 5) drainage basin, located within the 

Attawapiskat River Basin of the Hudson Bay Lowlands, Ontario, Canada (52.70°N, -

83.60°W, Figure 3.1). The site is situated at the boundary between two distinct climatic 

regions (Köppen-Geiger system), Humid Continental (DFb) and Subarctic (Dfc) (Peel et 

al., 2007), and experiences long, cold winters and mild-to-hot summers. Long-term 

(1971-2000) mean annual air temperature, mean annual precipitation, and days above 0 

°C (recorded at the nearest meteorological station in Lansdowne House, Ontario) are -1.3 

°C, 700 mm (70% falling as rain), and 153 days, respectively (Canada, 2011). A detailed 

description of the site, including vegetation, topography, watershed area and delineation, 

and landforms is provided in Section 2.3.  

Two study transects run partially along a 1250 m raised wooden boardwalk, which 

connects two 4 m tall eddy flux covariance/meteorological towers that are operated by 

the MOE as part of a long-term carbon flux monitoring program (Figure 3.1B). The Bog-

to-Fen (BF) transect is 630 m long and runs from the crest of a 0.51 km2 raised bog, 

through an internal water track drainage feature, and into an adjacent ribbed fen system. 

Six piezometer nests spanning the length of the BF transect were placed at 100-130 m 

intervals, with each nest containing a fully penetrating well to a depth of 1 m, and four 

piezometers (0.1 m slotted intake) placed at 0.50, 1.00, 1.50, and 2.00 m below the peat 

surface. The Fen-to-Tributary (FT) transect extends 1900 m along the ribbed fen system 

to the west of the bog, which runs in a north-south direction towards the Trib 5 tributary, 

intersecting the BF transect 1100 m north of the most southerly piezometer (Fen+1100S). 

A total of eight piezometer nests (one groundwater well and four piezometers) were 
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installed along the FT transect at 100-500 m intervals. Additional piezometers were 

installed at 0.25, 0.50, and 0.90 m in the marine sediment at Fen+800N. Piezometer nests 

were labeled with an approximate distance in meters along the transect from the crest of 

the Bog in the BF transect (e.g., Bog+230), and approximate distance in metres and 

bearing (North or South) relative to the O-MOE Flux tower in the ribbed fen system (e.g., 

Fen+500N). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. (TOP) Location of study site in the Hudson Bay Lowlands, Ontario, Canada 
(denoted as black star), and (BOTTOM) IKONOS satellite imagery showing the study 
watershed (red line), boardwalk (black line), locations and names of piezometer nests 
(yellow circles), eddy flux and meteorological towers (green circles), and Trib 5 (blue 
line). 
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Wells and piezometers were fabricated from Schedule 40 0.125 m I.D. PVC pipe, and 

installed according to methods described in Section 2.3.1. Wells and piezometers were 

fully purged (developed) at least three times before any hydraulic head measurements or 

samples were taken. Piezometers were continuously developed throughout the study 

period, and especially before sampling. Bail tests (Hvorslev, 1951) were done on all 

piezometers to provide estimates of saturated hydraulic conductivity (K) of the peat at 

various depths along the peat profile (Freeze and Cherry, 1979). Bail tests were also 

conducted on the 1 m fully penetrating wells during various water table positions to 

provide an estimate of the bulk effective hydraulic conductivity in the uppermost metre 

of peat with changes to the water table. 

Pressure transducers (Schlumberger Micro-Divers®) logged hourly measurements of 

hydraulic head at eight monitoring wells (three and five loggers in the BF and FT 

transects, respectively) during the snow and ice-free season (May 15 to October 19, 

2011). Manual measurements of hydraulic head in the wells and piezometers were taken 

on a ca. weekly basis and used to check and calibrate the continuous transducer 

measurements. Peat depth was surveyed at each piezometer nest and throughout the 

transect by augering through the peat profile until contact was made with the marine 

sediment. All measurements of hydraulic head, and peatland and marine sediment 

elevations were adjusted to the NAD83 datum by surveying with a Topcon (Tokyo, 

Japan) HiPER GL RTK differential global positioning system (DGPS) (horizontal and 

vertical accuracy +/- 0.01 and 0.003 m, respectively). 

Estimates of total daily precipitation (P) and evapotranspiration (ET) were kindly 

provided to us by the Ontario Ministry of the Environment (see Section 2.3.1 for detailed 

description of meteorological data collection methods).  

3.2.2 Water Sampling and Chemical Analysis 

Site access is periodic and only by helicopter. Sampling of piezometers for DOC, THg 

and MeHg was done on four campaigns during the study period: May 17, June 25, 

August 20, and October 19, 2011. Water sample collection from piezometers was 

accomplished using a low-flow peristaltic pump and pre-cleaned and acid-washed PTFE 
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sample tubing, and collected into clean 125-250 mL PETG bottles. Surface pore-water 

samples (0-5 cm relative to the water table) were obtained by inserting a 0.0125 cm I.D. 

PTFE pore-water sipper (0.05 m slotted opening) to the water table in an undisturbed 

portion of peat near each of the piezometer nests. Approximately 100 mL of water was 

pumped from three separate locations within a meter of each other to provide a 300 mL 

field-composited sample of solutes near the surface, in recognition of the potential local 

variability of dissolved solutes in the peatlands of the HBL (Ulanowski and Branfireun, 

2013). Sample tubing was kept clean and rinsed with DI water between samples.  

Additional precautionary measures were taken when samples were being collected for 

ultratrace level mercury analysis, and included extra rinsing of all sampling lines, 

components, and collection vessels with DI between samples and additional 

environmentalization with the sample water. In particular, the “clean hands, dirty hands” 

(EPA Method 1669) method was utilized to ensure sample integrity was maintained 

throughout the entire sampling process. The method dictates that two people are to collect 

the sample, wearing clean nitrile gloves and utilizing two sealable plastic bags for sample 

storage: the “clean hands” person is only permitted to handle the sample bottle and inner 

plastic bag, while the “dirty hands” person handles the outer bag and any sampling 

equipment. Field, travel, and sample line blanks were included for each sampling session, 

and duplicate samples were collected every 10-15 samples. Double-bagged samples were 

stored in clean, large plastic bags to reduce the potential for cross contamination in the 

field, held on ice in coolers for the duration of the field-sampling day, and then returned 

to the laboratory and transferred to a dark refrigerator (4 °C) for a maximum 24-48 hours 

before further processing and preservation. 

Samples were vacuum filtered using an acid-washed PTFE filter apparatus using 0.45 μm 

nitrocellulose membrane filters. The sample filtrate was then split into appropriately sized 

bottles, preserved, and stored depending on analytical requirements. Samples for DOC 

analysis were poured into 30 mL HDPE bottles and frozen with headspace, whereas 

samples for total and methylmercury analysis were collected in 250 mL PETG bottles, 

acidified to 1% v/v with OmniTrace Ultra™ concentrated hydrochloric acid, rebagged 

and sealed inside two clean plastic bags, and frozen until analysis. Filter and acidification 
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blanks were collected periodically during sample processing to monitor potential 

contamination of samples during sample processing. 

Samples were analyzed after the 2011 field season at the University of Western Ontario 

(London, Ontario). Dissolved Organic Carbon was analyzed using an OI Analytical 

Aurora 1030W TOC analyzer using heated persulfate oxidation (limit of detection, LOD 

= 0.2 mg L-1). Ultratrace mercury analysis was done in the metals lab at the Biotron 

Institute for Experimental Climate Change Research (CALA ISO 17025 Certified). Total 

mercury was analyzed on a Tekran 2600 mercury analyzer according to EPA Method 

1631 (LOD = 0.05 ng L-1). Methylmercury analysis was performed on a Tekran 2700 

analyzer according to EPA Method 1630 (LOD = 0.0054 mg L-1). All of our analytical 

data was deemed acceptable as it passed our strict field and laboratory Quality Assurance 

and Quality Control (QA/QC) standards, where levels of DOC, THg or MeHg where 

below the limit of quantitation in all blank samples, and the relative standard deviation of 

all sample duplicates was below 20%. 

Prism® (Graphpad Software) was used for the generation of all graphs and Surfer 

(Golden Software) was used for contouring of DOC concentrations in the BF and FT 

transect cross sections. 

3.2.3 Water and Solute Flux Calculations 

A four-layered peat model (Figure 3.2) was employed to calculate the water and solute 

fluxes through the BF and FT transects for the snow and ice-free study period between 

May 15 and October 19, 2011. Runoff and solute flux calculations are based on the 

average peat depth and hydraulic gradients between the terminal monitoring nests for the 

BF and FT transects, Bog+230 and Bog+630 (l = 400 m) and Fen+0 and Fen+500N (l = 

500 m), respectively. Hydraulic gradients were calculated directly from continuously 

logged water level data (1 hour resolution). Groundwater flow is assumed to be lateral, 

given the very low average seasonal vertical gradients in both the BF and FT transects 

(Chapter 2), as well as the high horizontal (versus vertical) hydraulic conductivity of the 

peat reported in HBL peatlands (Kh = 1.8Kv) by Whittington and Price (2013).  
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For the bog and fen models, each layer within the peat profile was assigned an average 

bulk hydraulic conductivity determined by taking the arithmetic mean (and standard 

deviation) of multiple bail tests done throughout the season to piezometers installed at 

equivalent depths within each transect (Table 3.1). For the uppermost layer (layer 1), it 

was necessary to account for changes in effective hydraulic conductivity related to 

fluctuations in the water table position, since hydraulic conductivity of near-surface peat 

changes significantly with depth from the surface (Boelter, 1965; Baird and Gaffney, 

1996). The water table in the bog fluctuated 30 cm over the course of the summer, so the 

dependence of K on water table in layer 1 was resolved by relating water table depth to 

measured hydraulic conductivity of the 1 m long fully-penetrating groundwater wells at 

each piezometer nest (Figure 3.3). A strong exponential relationship was found to exist 

between depth of water table and K in the bog. No such relationship was found for the 

much smaller water table changes in the fen, so a bulk K was calculated from the 

arithmetic mean of all fully penetrating groundwater well bail tests conducted in the fen 

throughout the season. 

Figure 3.2. Simplified schematic diagram showing the four-layered peatland runoff 
model used to calculate per unit width water and solute fluxes along the BF and FT 
transects. Each layer (1 through 4, denoted by the subscript) is assigned a thickness (b) 
and corresponding hydraulic conductivity (K). Thickness in layer 1 in the bog and fen, 
and K in the bog, is related to the position of the water table relative to the peat surface 
based on continuous water level data.
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Table 3.1. Values of layer thickness (b), spatially averaged (± standard deviation) 
hydraulic conductivity (K), mean (and range) of the hydraulic gradient (dh/dl), and 
seasonal mean concentrations of dissolved organic carbon (DOC), total mercury (THg), 
and methylmercury (MeHg) assigned to each layer for the bog and fen. Thickness and K 
values for layer 1 are dependent on the position of the water table relative to the peat 
surface (WT). *These values represent the mean (and range) hydraulic gradients for the 
study period. Actual hydraulic gradients are calculated from continuous logger data at 
hourly intervals. 

Layer 
(i) 

Thickness 
(b, m) 

K 
(m s-1) dh/dl* DOC 

(mg L-1) 
THg 

(ng L-1) 
MeHg 

(ng L-1) 

Bog 

1 1 – WT 0.0044e0.053(WT) 

-0.0021 
 

(-0.0019 
to 

-0.0022) 

31.0 
± 3.6 

2.02 
± 0.58 

0.073 
± 0.021 

2 0.25 
6.4 × 10-6 

± 5.4 × 10-6 

 

33.8 
± 1.8 

1.16 
± 0.53 

0.056 
± 0.034 

3 0.50 
3.4 × 10-5 

± 4.0 × 10-5 
 

31.3 
± 2.1 

0.78 
± 0.40 

0.012 
± 0.012 

4 0.60 
1.4× 10-6 

± 7.0 × 10-7 
 

23.2 
± 0.9 

0.41 
± 0.39 

0.023 
 

Fen 

1 1 – WT 3.6 × 10-3 

± 9.5 × 10-6 

-0.0015 
 

(-0.0010 
to 

-0.0017) 

9.2 
± 1.1 

0.90 
± 0.15 

0.033 
± 0.022 

2 0.25 
9.4 × 10-6 

± 3.6 × 10-6 
 

9.3 
± 0.8 

0.26 
± 0.35 

0.025 
 

3 0.50 
6.2 × 10-6 

± 5.9 × 10-6 
 

8.7 
± 0.5 

0.29 
± 0.35 

0.013 
± 0.005 

4 0.70 
4.6 × 10-8 

± 1.6 × 10-8 
 

8.1 
± 0.8 

0.49 
 

0.051 
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Figure 3.3. Measured effective hydraulic conductivity (K) values in uppermost 1 m layer 
of peat from bail tests done on fully-penetrating groundwater wells in the bog (black 
circles) and fen (grey squares) at varying positions of the water table relative to the peat 
surface (r.t.s.) for the 2011 field season. 

The unit width (w = 1 m) groundwater discharge rate for the snow and ice free season 

(May 15 to October 19, 2011; 157 days) was calculated for each layer (i) of thickness (b) 

within the peat profile using Darcy’s Law, Equation 3.1:  

 𝑸𝒊 = − 𝑲𝒊𝒃𝒊
𝒅𝒉
𝒅𝒍

    Equation 3.1 

where Q is discharge per unit width (m3 s-1), K is the saturated hydraulic conductivity of 

the peat layer (m s-1), and dh/dl is the unitless hydraulic gradient determined from the 

elevation of the water table between wells. Hydraulic gradients were calculated on an 

hourly basis from continuous logger data. 

The total discharge of water (Qt, m3 s-1) through all four layers in the peat profile is 

calculated by summing the discharge from each individual layer, i (i = 1 – 4), using 

Equation 3.2: 
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𝑸𝒕 = ∑ 𝑸𝒊
𝟒
𝒊=𝟏                                         Equation 3.2 

The total volume of water (Vt, m3) conducted through the peat profile for the study period 

(t, s) is calculated using Equation 3.3: 

𝑽𝒕 =  𝑸𝒕  ×  𝒕       Equation 3.3 

The unit area (1 m2) change in the water balance for the duration of the study period for 

both the bog and fen was estimated using Equation 3.4:  

𝜟𝑺 =  𝑷 –  𝑬𝑻 –  𝑹 ±  𝝃                                 Equation 3.4 

where ΔS is change in storage, P is precipitation, ET is evapotranspiration, R is runoff, 

and 𝜉 is the residual tern (all in mm). Change in peatland storage was estimated as the 

mean difference in water table position at wells in the BF and FT transects between the 

start and end of the study period.  

Solute fluxes (J) over the study period (Equation 3.5), were calculated by multiplying the 

total volume of water moving through each peat layer by the average seasonal 

concentrations (C) of DOC, THg or MeHg for each peatland type and layer as outlined 

Table 3.1. Advection is assumed to be the dominant solute transport process in 

groundwater, and diffusional and dispersion processes are assumed to be negligible. 

Conservative transport behavior was assumed for all solutes. Potential errors to solute 

fluxes were estimated by calculating the minimum and maximum solute fluxes by 

incorporating the uncertainties of K and C assigned to each layer.  

𝑱 = 𝑽𝒕  ×  𝑪        Equation 3.5 

The net ecosystem carbon balance (NECB, g C m2 y-1, Equation 3.6) was calculated for 

the bog and fen using estimates of annual CO2 and CH4 fluxes, based on eddy flux 

measurements at the site: 

𝑵𝑬𝑪𝑩 =  𝑵𝑬𝑬 – 𝑪𝑯𝟒 –  𝑫𝑶𝑪                           Equation 3.6 

where NEE represents net ecosystem exchange (i.e., net CO2 flux, g C-CO2 m2 y-1), CH4
 

represents carbon lost as methane gas (g C-CH4 m2 y-1) and DOC represents export of 

dissolved organic carbon via groundwater (g C m2 y-1). Estimates of NEE and CH4 fluxes 

for the study period were provided by Elyn Humphreys (Carleton University) and the 
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MOE. The calculated seasonal fluxes of water, solutes, NEE, and CH4 for the study 

period are assumed to be equal to annual fluxes, since appreciable snow cover, a thick 

frost layer, and low wintertime temperatures (<20 °C) likely hinder significant exports of 

water and solutes, as well as minimize atmospheric exchange of H2O, CO2 and CH4. 

The propagation of uncertainties for the water and carbon balances was accomplished 

using Equation 3.7: 

𝜹𝑿 = �(𝜹𝒂)𝟐 + (𝜹𝒃)𝟐 + (𝜹𝒄)𝟐 + ⋯ (𝜹𝒛)𝟐   Equation 3.7 

where δX is the uncertainty of some quantity X (e.g., NECB) , associated with the 

combination of sums and differences of quantities (a, b, c, etc.), and their respective 

uncertainties (δa, δb, δc, etc.). 

3.3 Results 

3.3.1 Hydrology 

The unit area (per 1 m2) water balance calculated for the bog and fen for the duration of 

the study period is presented in Table 3.2. Total annual precipitation for 2011 (657 mm) 

was slightly less than the long-term average for the region (~700 m). During the study 

period, the site received 443±44 mm (72% of annual total) of rain (Figure 3.4), with more 

than half (282 mm) of that falling during five major storm events throughout the season. 

Given that interception from above-ground vegetation is likely minimal and spatial 

variability in rain and snow inputs over the small ~5 km2 subwatershed is negligible, we 

assigned a conservative uncertainty of 10% to the precipitation estimate for the study 

period (Winter, 1981). Evapotranspiration was the dominant water loss pathway at the 

site, accounting for losses of 276±28 and 289±29 mm for the bog and fen, respectively, 

during the study period. ET over the study period accounted for >99% of the total annual 

measured ET at both sites. Mean seasonal (± standard deviation) rates of ET during the 

study period were comparable at both sites (Figure 3.4), but slightly higher in the fen 

(1.85 ± 0.96 mm d-1) than in the bog (1.77 ± 0.87 mm d-1). Rates of ET peaked in June at 

nearly ~3.8 mm d-1 at both sites, coinciding with increases to daily air temperatures (data 
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not shown). During extended periods of high rainfall, rates of ET decreased significantly, 

sometimes approaching zero. 

Table 3.2. Estimates (± uncertainty) in mm for individual components of the bog and fen 
water balances for the study period (May 15 – October 19, 2011), including change in 
storage (ΔS), precipitation (P), evapotranspiration (ET), runoff (R). 

Site ΔS 
(mm) 

P 
(mm) 

ET 
(mm) 

R 
(mm) 

𝜉 
(mm) 

Bog 29±14 443±44 276±28 73±13.7 -64.3±55.7 

Fen 23±11 443±44 289±29 55.7±0.3 -75.3±54.0 

 

Figure 3.4. Total daily precipitation (P) and evapotranspiration (ET) for the bog and fen 
(in mm d-1) for the duration of the study period. Data courtesy of C. Charron, Ontario 
Ministry of the Environment. 
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A positive change in storage was measured over the study period in both the bog (29±14 

mm) and fen (23±11 mm), due to a net increase in water table position in October as 

compared with May (Figure 2.3B). The uncertainty in the change in storage is 

represented as the standard deviation of the water table elevations in wells. 

Runoff was estimated by calculating the flux of water through the peat profile at the BF 

and FT transects using the 4-layer peat model (Figure 3.2). Total modeled runoff for the 

study period was 73±13.7 and 55.7±0.3 mm for the BF and FT transects, respectively. 

The relatively higher K (10-3 m s-1) in layer 1 accounts for more than 99% of total runoff 

at both the bog and fen. This is not a realistic representation of the physical processes at 

the site, since it is likely that only the topmost (highest K) portion of layer 1 is actively 

transmitting water through the peat column. Our method of K testing in the shallow peat 

did not allow us to discretize runoff into thinner sections within the 1 m portion of the 

profile. The error in runoff was estimated by calculating groundwater discharge using the 

lowest and highest values of hydraulic conductivity at each layer based on the 

mean±standard deviation of K for the bog and fen.  

The residual water balance term reflects the unaccounted hydrological inputs and outputs, 

as well as the discrepancy (or error) in the estimates. The calculated residuals (± 

propagated errors) for the bog and fen are -64.3±50.4 and -75.3±47.9 mm, respectively. 

The negative values indicate that there is still a small portion of hydrological outputs that 

have not been accounted for, but the relative magnitude of the residual (relative to 

hydrologic inputs) is moderate (14.5% and 17.0% for the bog and fen, respectively).  

3.3.2 Dissolved Organic Carbon and Mercury Chemistry 

Contoured monthly concentrations of pore-water DOC for the BF and FT transects are 

shown in Figures 3.5 and 3.6, respectively. Overall, concentrations of DOC are generally 

higher and more variable throughout the study period along the BF transect (7.4-67.2 mg 

L-1) than in the FT transect  (5.8-18.4 mg L-1). Patterns of DOC in the BF transect are 

complex and show zones of elevated concentrations (>50 mg L-1) at 50-100 and 325-400 

m along the transect, which correspond to ridges, and hummock-dominated surface 

features. Pore-water samples taken near pools and hollows (200-300 m along the 
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transect) correspond to lower DOC concentrations (<25 mg L-1). Generally, levels of 

DOC gradually decrease from ~30 to 10 mg L-1 at the distal end of the BF transect as the 

bog transitions into the fen. Changes to mean DOC concentrations in the bog between 

May and August 2011 are only significant (>2 mg L-1) in the first meter below the peat 

surface, with an increase from 21.8±6.1 to 37.7±8.2 mg L-1 at the water table, 27.6±5.9 to 

35.1±5.5 mg L-1 at 0.5 m, and 33.1±17.3 to 35.2±18.1 mg L-1 at 1.0 m. Large inputs of 

precipitation to the site in September and October resulted in the dilution and flushing of 

pore-waters, leading to lower DOC concentrations in October samples which were 

27.2±5.1, 30.7±3.2, and 31.7±24.2 mg L-1 at the water table, 0.5 m, and 1.0 m below the 

peat surface, respectively. A larger pool of water located within the bog water track that 

was sampled in October contained 25.2 mg L-1 DOC. 

Along the length of the FT transect, DOC concentrations are generally much lower (<15 

mg L-1) and show no discernable spatiotemporal patterns or stratification through the peat 

profile. Samples taken over the study period from large ponds at Fen+650S and 

Fen+450S exhibited similar concentrations of DOC (8-10 mg L-1) to those found in peat 

pore-waters (data not shown). Variability in DOC concentrations within the fen is also 

less pronounced (standard deviations are typically 1-3 mg L-1), as compared to the bog. 

However, mean DOC concentrations at the surface in the fen did increase significantly 

over the growing season, from 7.6±0.3 mg L-1 in May to 12.3±2.4 mg L-1 in August, and 

then decreasing to 8.2±1.9 mg L-1 in October. Water samples taken from a rivulet in the 

Trib 5 riparian zone (at the terminal end of the ribbed fen) ranged between 7.2 to 11.0 mg 

L-1 throughout the study period.  

Dissolved organic carbon in samples from piezometers installed at depths between 0.5 

and 1.4 m into the marine sediment (at Fen+800N) ranged between 7.6 and 14.1 mg L-1 

(data not shown). Concentrations of DOC in Trib 5 increased steadily from 12.5 mg L-1 in 

the spring to 20.0 mg L-1 in October (data not shown). A seepage face delivering water 

directly to Trib 5 from between the organic and marine layers was sampled periodically 

throughout the study period, and was found to contain levels of DOC between 8.9 and 

17.7 mg L-1, which were elevated as compared to pore-water samples from the ribbed 

fen. 
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Figure 3.5. Vertically exaggerated (75x) cross sections of the BF transect showing 
interpolated DOC concentrations (mg L-1) on May 17, June 25, August 20, and October 
19, 2011. Contours are shown every 5 mg L-1. The uppermost dashed and solid lines 
show the water table and peat surface, respectively. The dark speckled layer under the 
peat represents the low K marine sediment. 
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Figure 3.6. Vertically exaggerated cross sections (80x) of the FT transect showing 
interpolated DOC concentrations (mg L-1) on May 17, June 25, August 20, and October 
19, 2011. Contours are shown every 2 mg L-1. The uppermost dashed and solid lines 
show the water table and peat surface, respectively. The dark speckled layer under the 
peat represents the low K marine sediment. 
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Overall, mean seasonal concentrations of THg in pore-waters throughout the peat profile 

were relatively low at both the BF (1.55±0.99 ng L-1) and FT (0.71±0.76 ng L-1) 

transects, with some samples containing trace (<LOD) levels, while some as high as 3.70 

and 4.30 ng L-1, respectively. Concentrations of MeHg were typically <10% THg, and 

often not more than 5% THg. In the BF transect, mean seasonal concentrations of MeHg 

were 0.052±0.051 ng L-1 with one sample as high as 0.201 ng L-1. Mean seasonal MeHg 

concentrations in the FT transect were similar to those in the BF transect (0.037±0.052 ng 

L-1), and one sample exceeded 0.25 ng L-1.  

Figures 3.7 and 3.8 show depth profiles of mean peat pore-water THg and MeHg 

concentrations, respectively, for both transects throughout the study period. There is a 

clear decrease in concentrations of THg with depth at all sites (Figure 3.7), with a 2-4x 

difference in concentrations between the surface and deepest piezometers. Shallow pore-

water THg concentrations in the bog are >2 ng L-1, but <1 ng L-1 at the contact between 

peat and the marine sediment. In the fen, surficial concentrations of THg are slightly 

lower (1-2 ng L-1), and there is little differentiation with depth past 1.0 m. THg variability 

is much more pronounced in the bog, particularly in 0.5 and 1.0 m piezometers and in 

samples taken in October, whereas the fen shows very little variability with depth and 

throughout the season. Temporal changes to THg are apparent, with a slight increase in 

mean concentrations at each depth in the peat profile at both the BF and FT transects 

throughout the season. However, variability between individual samples is high which 

makes it difficult to assess whether seasonal changes to pore-waters are significant or 

simply an artifact of variability and low sample numbers (n=1 to 4 at each depth).  

Depth profiles of MeHg in pore-waters at both sites (Figure 3.8) show similar decreasing 

concentrations with depth, with the exception that that some samples from the 0.5 m 

piezometers show higher levels of MeHg than those found at the water table. Mean 

monthly MeHg concentrations in the BF transect are between 0.1-0.2 ng L-1 at the surface 

and 0.5 m, and decrease below 0.1 ng L-1 at greater depths. Similar levels of MeHg are 

found in the FT transect, but with slight increases in concentrations at depths greater than 

1.0 m below the peat. Variability in MeHg is high at the surface, 0.5, and 1.0 m 
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piezometers. As with THg, temporal trends in MeHg are masked by large inter-nest 

variability, but in general, MeHg concentrations at the surface and 0.5 m increase by a 

factor of 1-2 over the growing season. 

Mercury concentrations at other locations in the study site (data not shown), namely open 

pools of water, and surface waters near the fen-tributary transition zone, are similar to 

those found in peat pore-waters along the BF and FT transects. THg concentrations in 

larger ponds in the study site ranged between 3.43-4.46 ng L-1 in the bog and 0.60-1.64 

ng L-1in the fen. MeHg was also very low in bog (<LOD to 0.0081 ng L-1) and fen ponds 

(<LOD to 0.0037 ng L-1). Concentrations of THg and MeHg in the marine sediment were 

slightly lower and more temporally consistent then in the peat, 0.29-1.51 ng L-1 and 

0.044-0.166 ng L-1, respectively. Samples taken from a rivulet flowing from the riparian 

zone portion of the fen into Trib 5 (n=4 for duration of study period) were also low in 

THg (0.54 to 1.05 ng L-1) but elevated in MeHg (0.010 to 0.163  ng L-1). These high 

levels of MeHg were not reflected in Trib 5 surface waters, which were found to contain 

approximately half the concentrations as compared with the rivulet (0.024 to 0.075 ng L-

1). THg concentrations in Trib 5 were between 0.84 and 1.25 ng L-1, slightly higher than 

concentrations in the rivulet. 
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Figure 3.7. Depth profiles of mean total mercury (THg) pore-water concentrations in the 
BF and FT transects for the study period. Samples from the peat surface were obtained 
from 0-5 cm below a seasonally fluctuating water table, but are all shown as 2.5 cm 
below the peat surface for consistency. Error bars indicate standard deviations of 
arithmetic means. 
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Figure 3.8. Monthly depth profiles of mean methyl mercury (MeHg) pore-water 
concentrations along the BF and FT transects. Samples from the peat surface were 
obtained from 0-5 cm below a seasonally fluctuating water table, but are all shown as 2.5 
cm below the peat surface for consistency. Error bars indicate standard deviations of 
arithmetic means. 

No strong relationships between THg and DOC were observed in either the BF or FT 

transect (Figure 3.9). DOC in the fen generally did not vary by more 2-4 mg L-1 with 

depth and over the study period, yet THg concentrations did exhibit a relatively large 

range of concentrations (<LOD and ~ 2 ng L-1). In the bog, DOC varies greatly with 

depth and over the study period, but even higher DOC concentrations (>40 mg L-1) can 

have low associated levels of THg. 
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Figure 3.9. Plot of total mercury (THg) versus dissolved organic carbon (DOC) for the 
bog and fen for all depths. 

3.3.3 Exports of DOC and Mercury 

The calculated annual exports (and associated errors) of DOC from the bog to the fen, 

and through the fen towards the tributary, as well as annual estimates of the NECB, NEE, 

and annual methane fluxes are reported in Table 3.3. NEE (CO2) was the biggest overall 

flux of carbon, and only significant input of carbon, into both systems, at 46.0±13.0 g C 

m-2 yr-1. The bog and fen were net sources of CH4 to the atmosphere, losing 7.0 ± 0.4 and 

10.0 ± 0.5 g C m-2 yr-1, respectively. Total exports of DOC for the snow and ice-free 

portion of the year were small, 2.0±0.3 g C m-2 yr-1 for the bog, and 0.5±0.1 g C m-2 yr-1 

for the fen. Mean exports of DOC from the bog and fen are low when compared to other 

peatland systems, and only account for 5.4% and 1.4% of the NECB for each site, 

respectively.  
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Table 3.3. Estimates of the net ecosystem carbon balance (NECB), net ecosystem 
exchange (NEE), fluxes of methane (CH4), and dissolved organic carbon (DOC) for the 
BF and FT transects, as compared to values reported for other peatlands. 

Site 
NECB 
(g C  

m-2 yr-1) 

NEE 

(g C-CO2  
m-2 yr-1) 

CH4 
(g C-CH4  
m-2 yr-1) 

DOC 
(g C  

m-2 yr-1) 

BF Transect, this study 
(Ombrotrophic Bog) 37.0±13.0 46.0±13.0A 7.0±0.4A 2.0±0.3 

FT Transect,  
this study 
(Ribbed Fen) 

35.5±13.0 46.0±13.0A 10.0±0.5A 0.5±0.1 

Mer Bleue, Canada 
(Ombrotrophic Bog) 
Roulet et al. (2007) 

21.5±39.0 40.2±40.5 3.5±0.5 14.9+3.1 

Degerö Stormyr, 
Sweden (Minerotrophic 
Fen)  
Nilsson et al. (2008) 

24.0±4.9 51.5±4.9 11.5±3.5 17.7±3.7 

Storladen, Sweden 
(Permafrost Palsa Mire) 
Olefeldt et al. (2012) 

44.5±16.3 50.0±17.0 2.0 3.2±0.6 

AThese values are generalized estimates provided by Elyn Humphreys (Carleton 
University) on behalf of the Ontario Ministry of the Environment, and not final modeled 
NEE and CH4 fluxes. 
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Table 3.4 shows the calculated groundwater fluxes of THg and MeHg at both sites for the 

study period. Because of the higher runoff and overall pore-water Hg concentrations, the 

bog is exporting almost triple the amount of THg (132.9±45.4 ng m-2 yr-1), as compared 

with the fen (50.0±8.4 ng m-2 yr-1) per unit area. Similarly, exports of MeHg from the bog 

are almost twice as high as the fen per unit area, 3.4±2.8 and 1.9±1.2 ng m-2 yr-1, 

respectively. The enhanced variability in runoff, and concentrations of THg and MeHg 

gives rise to larger uncertainty in fluxes from the bog. 

Table 3.4. Mean annual groundwater fluxes of total mercury (THg) and methylmercury 
(MeHg) in ng m-2 yr-1 along the BF and FT transects, compared with published exports 
from surface waters draining wetland and upland areas. Uncertainty in mercury exports is 
calculated using minimum and maximum values of solute concentrations (from standard 
deviations of means) and runoff for each layer. Modified after Driscoll et al. (1998). 

 

 

 

 

 

Site THg 
(ng m-2 yr-1) 

MeHg 
(ng m-2 yr-1) 

BF Transect, this study 
(Ombrotrophic Bog) 132.9±45.4 3.4±2.8 

FT Transect, this study 
(Ribbed Fen) 50.0±8.4 1.9±1.2 

Northern Sweden 
 (Lee et al., 1995) 1200-1800 80-160 

Ontario Wetland  
(St. Louis et al., 1994) 600-2700 180-550 

Ontario Swamp 
(Galloway and Branfireun, 2004) 2000-2200 180-200 
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3.4 Discussion 

3.4.1 Calculating Runoff and Closing the Peatland Water Balance 

The evaluation of the peatland water balance can provide insight into dominant 

hydrological processes within a catchment, and reveal whether all components of the 

water balance are accounted for, as well as where the largest measurement and 

estimations errors may exist (Winter, 1981). The final computed water balances for the 

bog and fen indicate a small positive change in storage for the bog (+29 mm) and fen 

(+23 mm) between the beginning and end of the study period. Rapid snow melt and high-

frequency precipitation events in early spring and fall, respectively, resulted in high water 

tables rising above the average peat surface at all monitored wells. The site received 94% 

(657 mm) of the 30-year precipitation normal for the region, and 67% (443 mm) of the 

total rainfall fell during the study year, so we consider the results from this study 

representative of a typical water year. However, we caution that these results may not 

transferrable to future climate, since global climate change has already begun to influence 

precipitation patterns in Canada’s north (Zhang et al., 2000; FNSAP, 2010), and is 

expected to continue to increase annual precipitation (Rouse et al., 1997; Moore et al., 

1998), especially during the winter months.  

Out of all of the water budget components, precipitation was easiest to accurately 

quantify using a total precipitation gauge fitted with an Alter-type wind shield. Some 

errors in incoming precipitation may have been incurred from supplementing missing 

data from the Victor Mine weather station (15 km north of the study site), but an overall 

comparison of datasets from precipitation gauges located at or near the study site shows 

that daily precipitation totals are typically within 15-30% variance of each other. 

Snowmelt was not explicitly included in the water balance, since spatially extensive 

estimates of pre-melt peatland water storage and snow cover were not acquired. 

However, 78% (6.50×107 m3) of the total annual discharge in Trib 5 occurred during the 

157 day study period between May and October, which gives us confidence that we have 

at least captured the majority of the peatland runoff for the year, including a large portion 

of the remnant melt water during spring freshet. 
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Evapotranspirative processes are by far the largest water loss in both the bog and fen 

(Table 3.2), similar in magnitude to what is reported in natural and disturbed peatlands 

(Price and Maloney, 1994; Rouse, 1998; Waddington and Price, 2000; Lafleur et al., 

2005). In both bog and fen, ET water loss accounted for more than 90% of modeled 

annual ET for 2011, and 60% of the total incident precipitation received at the site during 

the study period. Evapotranspirative losses were 32-35% lower than the long-term mean 

annual evapotranspiration (431 mm) reported for Lansdowne House by Singer and Cheng 

(2002). Daily total ET rates ranged between 0.5 and 4.0 mm d-1, depending on the time of 

year, antecedent moisture conditions, and precipitation events. The fen showed 

marginally higher daily rates of ET (Figure 3.4) and total ET losses, as compared to the 

bog, which is probably due to shallower depth to water table, lower microtopography, 

and higher proportion of open water pools and vascular plant cover (Oke, 1987). 

Uncertainty in ET measurements via eddy flux covariance techniques is assumed to be 

10%, since no additional information regarding model error was provided to us at this 

time by the collaborators who supplied this data to us. 

Total calculated groundwater runoff for the study period from the bog and fen was 73 and 

56 mm, respectively (Table 3.2). This amounts to 17% of the total precipitation inputs 

being exported as groundwater from the bog during the study period, and 13% in fen. 

Because of the direction of groundwater flow paths, and neighboring position of the bog 

relative to the fen, the bog does contribute a small portion of groundwater to the total R in 

the fen. However, given the relatively small size of the bog internal water track (width = 

~100 m) versus that of the ribbed fen (width = 800 m), the contribution from the bog is 

minimal. Runoff per unit area from the bog was consistently 20-30% higher than from 

the fen, but uncertainty in bog R is also greater because of increased variability in K in all 

layers, especially layer 1. 

Our calculated water fluxes are lower than what has been reported for most northern 

peatlands, and only comparable to the 154 mm of runoff from the 204 km2 Trib 5 

watershed (Trib 5 discharge divided by the watershed area), reported by Richardson et al. 

(2012) for a dry year in 2010. In comparison, total runoff from the entire Trib 5 

watershed was 249 mm for the study period in 2011 (56% of incident annual 
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precipitation). However, those estimates include contributions from other sources, 

namely sediment and bedrock groundwater, seepage faces, and direct inputs of 

precipitation. From a nested tributary study of the Nayshkootayaow River by Orlova and 

Branfireun (2014), we do know that peatland runoff contributes to approximately 50% of 

total streamflow in Trib 5. Given this, we can assume that peatland runoff accounted for 

approximately 125 mm for the study period, and that our estimates of runoff are off by 

nearly half. If we consider the residual terms and associated uncertainty in the water 

balance, -64.3±55.7 mm for the bog and 75.3±54.0 mm for the fen, we can account for 

the potential underestimated runoff. 

We speculate that a portion of the error in our estimates of runoff could be due to rapidly 

generated runoff that occurred as surface overland flow during high enough water tables 

when the peat was saturated, causing pools to become connected by networks of lower 

lying channels. This type of runoff generation has reported for other peatlands (Woo and 

Heron, 1987; Holden and Burt, 2003), and would not be accounted for in our 

groundwater discharge model. However, microtopography in the form of hummocks, 

hollows and ridges in the bog and fen was observed to quickly impede any such 

prolonged overland flow for meaningful distances (>20 m) during the study period. Still, 

it is likely that we have underestimated runoff by not accounting for minor surface flows. 

Networks of soil pipes within the peat profile may also be responsible for rapid delivery 

of water from the landscape to adjacent surface waters (Holden et al., 2009), however 

these features are often hard to find and define using conventional approaches (Holden et 

al., 2002). We did not observe any soil pipes within the bog and fen systems. 

The most important factors in the determination of groundwater runoff for these large, 

low-relief peatland, particularly in the uppermost portion of the peat profile, appears to be 

K and the position of the water table, as well as the relationship between the two. We 

utilized the Hvorslev bail test method for determination of K (Hvorslev, 1951), as it is a 

commonly accepted approach for estimating field values of K (Boelter, 1965; Chason and 

Siegel, 1986; Surridge et al., 2005), and is simply and easily performed in situ, without 

the need to extract peat samples for more involved laboratory-based testing (Freeze and 

Cherry, 1979; Beckwith et al., 2003; Nagare et al., 2013). Given the logistical constraints 
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imposed by working in such a remote location and the limited amount of time spent on 

site, it would be challenging to obtain undisturbed samples of peat for laboratory 

permeameter tests, especially from the fen (where surficial peat is highly compressible). 

Field tests of K have the added benefit of providing a much more representative estimate 

of K, given the larger volume of peat that is subject to the test, that may incorporate 

heterogeneities into the final result. 

Nevertheless, reliable values of K from bail tests depend largely on the quality of the 

well/piezometer installation, and smearing and/or partial blockage of the well screen can 

introduce bias into the results in poorly developed wells (Surridge et al., 2005). Wells at 

the site were frequently developed, and we did not observe significant variability in 

replicate K tests, which gives us confidence in the integrity of our wells and results. 

However, the build up of biogenic gas (CH4) bubbles in the pores of peat and wells can 

also limit water seepage through peat (Baird and Gaffney, 1995; Beckwith and Baird, 

2001). Further, the underlying mathematical models ignore the compressibility of the 

medium (whereas peat is a highly compressible medium) and not provide information on 

anisotropy (Chirlin, 1989). However, the shallower peat profiles are known to have 

higher values of Kh as compared with Kv (Surridge et al., 2005), and in larger, 

undisturbed peatland complexes where vertical hydraulic gradients are small, the values 

of K obtained from standpipe bail tests are likely more than adequate as estimates of Kh. 

Regardless, a lowered measured K (compared to the “actual” K), particularly in the 

shallow peats, is likely responsible for our low runoff estimates. 

In our model, the relatively high K peat in layer 1 was responsible for the movement of 

>99% of water through the peat profile, highlighting the importance of high K layers as 

conduits for groundwater flow. The K values obtained from the bail tests performed on 

the 1 m fully penetrating wells (~10-3 m s-1) were at least an order of magnitude higher 

than K measured in bog and fen piezometers between 0.5 and 2.0 m below the surface, 

similar to K values reported for the peatlands of northern Minnesota (Chason and Siegel, 

1986; Siegel and Glaser, 1987; Wright et al., 1992). The larger range in unit area runoff 

estimates for the bog are the result of large spatial variability in K at the bog surface due 

to a highly fluctuating water table throughout the season. In layer 1, the effective K did 
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show a dependence on water table position in the bog, increasing by more than a factor of 

2 between the lowest (~30 cm) and highest (~5 cm) measured water tables. Such a strong 

relationship was not found in the fen, because the water table did not change much over 

the season, and the K in top ~10 cm of the fen peat was high enough that it likely 

obscured any small decrease of K with decreasing water table. 

3.4.2 Dissolved Organic Carbon 

Concentrations of DOC in peatland pore-waters at the site are within the range of those 

reported for bogs and fens in the Hudson Bay Lowlands (Reeve et al., 1996; Glaser et al., 

2004; Ulanowski and Branfireun, 2013) and other boreal peatlands (Waddington and 

Roulet, 1997; Moore, 2003; Siegel et al., 2006). Dissolved organic carbon concentrations 

in the bog are at least twice as high as in the fen, and exhibit much higher variability over 

the length of the BF transect, as well as much greater seasonal changes, particularly 

between spring freshet and late-summer drought. Additionally, the distribution of DOC 

within the peat profile along the BF transect is stratified with distinct “bulls-eye” 

patterning, similar to the interpolated stable water isotope cross sections in Figure 2.12. 

Such clear, stratified patterns of DOC are not apparent along the FT transect. These 

differences in the concentrations and relative distributions of DOC between the two 

transects, as well as the temporal changes in the shallow peat within each transect over 

the growing season, can be explained by an interplay between biotic and abiotic 

processes. Specifically, it is the different sources of organic matter, differing 

biogeochemical conditions (e.g., pH and temperature), and dominant hydrological 

regimes and flow paths that influence the microbial processes and residence times at each 

peatland type, respectively (Chapter 2). 

Along the BF transect, DOC concentrations are consistently >20 mg L-1 near the surface, 

likely due high inputs of more easily decomposable litter from ericaceous shrubs, since 

sphagnum litter is quite resistant to decomposition (van Breemen, 1995).  However, root 

exudates (Fenner et al., 2004) and Sphagnum spp. derived organic acids (Siegel et al., 

2006) are also likely significant sources of DOC to bog pore-waters. The microbially 

mediated decomposition of organic matter into smaller DOC-size fractions can occur via 

aerobic or anaerobic pathways, which in peatlands is largely influenced by depth to water 
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table (Porcal et al., 2009). Aerobic processes are much more efficient at net DOC 

production as compared with production rates in reduced, waterlogged soils (Fenner et 

al., 2009), and a fluctuating water table is known to augment the release and mobilize 

DOC from the soil-matrix into peat pore-waters (Freeman et al., 2001). The variability in 

DOC concentration in shallow peat pore-waters along the BF transect (20-60 mg L-1) is 

likely caused by event and season-scale water table variability (~ -25 to 5 cm relative to 

the peat surface), as well as differential water table positions along the transect due to 

hummock-hollow microtopography and the larger pool-ridge sequences. DOC 

concentrations along the BF transect did exceed 50 mg L-1 at depths >1 m in some areas 

(darker zones at Bog+100 and Bog+360 in Figure 3.5), possibly due to transport of DOC 

downwards through the peat profile due to consistently minor negative hydraulic 

gradients. Lower concentrations of DOC (<25 mg L-1) are found in close proximity to 

lower-lying areas in the bog, such as ponds, where Sphagnum mosses dominate, 

aboveground vascular vegetation is absent, the water table persists near or above the 

surface throughout the year, and the peat has higher hydraulic conductivities. 

Concentrations of DOC in the bog did not change at depths greater than 1 m over the 

study period, suggesting a decoupling of carbon pore-water chemistry at depths greater 

than 1 m, at least on a seasonal time scale.  

Dissolved organic carbon concentrations in the fen are low (8-12 mg L-1), and depth 

profiles of DOC are uniform along the FT transect, with little temporal seasonal changes 

observed even in the uppermost peat layers. Such comparatively low concentrations in 

the fen are somewhat counter intuitive, given that one would expect higher DOC in fen 

pore-waters due to the abundance of readily decomposable litter from abundant woody-

vegetation, a circumneutral environment, and longer residence times (implied by lower 

hydraulic conductivities and gradients) (Moore, 2009; Porcal et al., 2009). Rather, it 

seems that the consistently high water table (-10 to +10 cm relative to the peat surface) 

and relatively minor short and long-term water table oscillations leads to highly anaerobic 

conditions, which limits the production of DOC, as well as mobilization into groundwater 

(Ibid.). These much more subdued spatiotemporal distributions of DOC along the FT 

Transect are likely due to the uniform alternating ridge-trough microtopography and 

vegetation cover, and the small-to-negligible vertical hydraulic gradients in the ribbed 
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fen. Longer, more tortuous groundwater flow paths in the >5 km long fen system may 

also promote better mixing and translocation of DOC throughout the system due to 

diffusional and dispersive processes, whereas the length of the bog may not be sufficient 

to promote such redistributions of solutes (Reeve et al., 2001). 

Dissolved organic carbon concentrations from piezometers in the marine sediment near 

the tributary were unexpectedly similar to fen pore-waters (~10 mg L-1). We do have 

confidence that this is not an artifact of contamination from improper sampling 

procedures, since wells were developed regularly before samples were obtained and great 

care was taken during piezometer installation ensure well integrity was maintained. We 

speculate that there may be some movement of DOC from the overlying peat strata into 

the marine sediment, likely via diffusional processes since the low K (10-7 m s-1) calcite 

sediments should impede advective movement of solutes into the marine sediment itself 

(Reeve et al., 2000). Additionally, the organic carbon may be derived from an entirely 

different source than peat, perhaps relic organic matter from the Tyrell Sea, or derived 

from the gravel-sized pieces of charcoal that were recovered from the sediment during 

piezometer installation. DOC was not sampled from the marine sediment under the bog, 

but given the similar hydraulic conductivities of peat and presumed hydrogeological 

uniformity of the clay, DOC concentrations would likely be comparable (Reeve et al., 

2000). The use of spectroscopic methods (e.g., UV-vis, fluorescence, and FTIR) would 

allow for the qualitative assessment of the chemical composition of DOC from different 

sources (Cory and McKnight, 2005; Jaffé et al., 2008), however we did not perform such 

optical measurements on our samples. We did attempt to use stable carbon isotopes to 

discern between different sources of carbon throughout the site, but the precision of our 

method and instrument limited the utility of such information (data not shown). 

Surface water samples from rivulets and seepage faces in the riparian zone near Trib 5 

exhibited slightly higher (>12 mg L-1) concentrations of DOC than pore-waters along the 

FT Transect. We reason that such enriched DOC concentrations are the results of a much 

more aerobic and biogeochemically active environment and a higher abundance of litter 

from the larger trees and shrubs in this ~100 m transitional area between Fen+800N and 

the tributary (Vidon et al., 2010). This may explain why Trib 5 has higher DOC 
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concentrations than found in the ribbed fen, even after accounting for ca. 1:1 mixing with 

groundwater. Concentrations of DOC in precipitation were not measured, but values 

between 1 to >3 mg L-1 have been reported for boreal peatland ecosystems (Moore, 2003; 

Orlova and Branfireun, 2014). 

3.4.3 Dissolved Total and Methylmercury 

Generally, concentrations of dissolved THg and MeHg in peat pore-waters at the study 

site were lower (0.3-2.0 and 0.01-0.07 ng L-1, respectively) than more southern wetlands 

(2-15 ng and 0.2-10 ng L-1, respectively) (Branfireun et al., 1999; Heyes et al., 2000; 

Galloway and Branfireun, 2004; Mitchell et al., 2008b). Low THg concentrations are 

expected for the HBL, given the fairly low deposition rates expected in this remote 

environment, particularly prior to the industrial period (Brazeau et al., 2013). However, 

we anticipated MeHg concentrations to be much higher, given that wetlands, and 

peatlands in particular, are known to be efficient methylators of inorganic mercury 

(Branfireun et al., 2005). Sulfate (SO4
2-) concentrations in bog and fen pore-waters (data 

not shown) were consistently low (<1 mg L-1), and not detected in the vast majority of 

samples at all sites throughout the study season. 

Pore-water concentrations of THg in the bog are nearly double that of the fen at the 

surface and 0.5 m piezometers, which is peculiar given that both sites are adjacent to each 

other and should be receiving equal inputs of THg from dry and wet deposition. 

Additionally, concentrations of THg in HBL fen peats (~130 ng g-1 dry weight) tend to be 

1-4x higher than in bogs (~80 ng g-1 dry weight) (data not shown), where the enrichment 

of mercury in the solid phase is likely increased due to higher rates organic matter 

turnover in the fens (Martini et al., 2007). Given the relatively larger negative hydraulic 

gradients in the bog, which should translocate Hg to deeper peats, we would also expect 

lower concentrations at the water table as compared to the fen. However, depth profiles 

of THg and MeHg at the site (Figure 3.7 and 3.8, respectively) show decreasing pore-

water concentration with increasing distance from the peat surface, but this trend is much 

more subtle in the fen than in the bog. We speculate that the enrichment of THg in bog 

pore-waters is driven by pH, where acidic environments promote partitioning of Hg out 

of the peat and into the groundwater (Gambrell, 1994).  
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MeHg concentrations were highest at the surface in both the bog and fen, and decreased 

with depth, similar to depth profiles reported by Branfireun and Roulet (1999) in a 

Precambrian Shield headwater catchment at the Experimental Lakes Area (Ontario, 

Canada). Differences in MeHg with depth are not as significant between the two peatland 

types mainly due to the large variability in pore-waters within the peat profile across the 

site. High concentrations of MeHg in shallower peats are likely due to fluctuating water 

dynamics that influence redox conditions, which can stimulate the production of MeHg 

(Ibid.). Variability in MeHg concentrations between nests is too high, and the number of 

samples is too low (n = 1-4 for each depth per sampling campaign), to draw any 

significant conclusions regarding the controls of MeHg production at the study site.  

Peatland-fed surface waters often exhibit a strong positive relationship between THg and 

DOC (Galloway and Branfireun, 2004; Ravichandran, 2004), however correlations 

between these two solutes are small and insignificant for pore-waters sampled here 

(Figure 3.9), even when subdivided into different peat types and depths. It is very likely 

that an interplay of factors, such as transient hydrology, the quality of the peat substrate, 

DOC turnover in different types of peat, and non-steady state partitioning, distorts such a 

relationship. 

3.4.4 Exports of DOC and Mercury 

The export of DOC from catchments has been shown to be proportional to wetland area 

(Moore, 2009), so in areas with high wetland and peat cover, such as the HBL, we would 

expect the proportion of DOC export to also be high, relative to the overall carbon 

budget. However, such relationship between water chemistry and landscape elements can 

breakdown in northern environments were wetland cover >90%, and other variables (i.e., 

topography) can govern DOC export (Andersson and Nyberg, 2008). It is also much 

more difficult to quantify the flux of DOC from a catchment when it does not contain 

discrete, channelized hydrological outlets, and when it is necessary to model such fluxes 

based on groundwater flow. Groundwater transport processes are often very difficult to 

accurately model, given the irregular hydrogeological properties of porous media (i.e., 

heterogeneity and anisotropy in K, and presence of macropores), complex mass transport 

processes (i.e., advection, dispersion, and diffusion), and often spatiotemporally limited 
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datasets. Our generalized 4-layer runoff and transport model assumes conservative solute 

behavior and that advective transport processes dominate, and ignores diffusional and 

dispersive processes. We acknowledge the limitations of such a simple flux model, 

however this approach has been utilized successfully in the peatland literature to provide 

reasonable estimates of water and solute fluxes through the landscape (e.g., Waddington 

and Roulet, 1997).  

Despite the ubiquitous peatland cover in the region, and the high concentrations of DOC 

in peat pore-waters, the results from our model show that the fluxes of DOC make up a 

small component of the peatland NECB. Our estimates of DOC export from the internal 

water track feature of the bog (2.0 ± 0.3 g C m-2 yr-1), and from the ribbed fen (0.5 ± 0.1 g 

C m-2 yr-1) are 1.5-30x smaller than have been reported for northern peatlands (Roulet et 

al., 2007; Nilsson et al., 2008; Olefeldt et al., 2012). The DOC flux is the smallest of 

three components of the carbon budget, amounting to 5.4% and 1.4% of the NECB in the 

bog and fen, respectively. Although flux estimates of NEE and CH4 to and from the 

peatland, respectively, are still approximate, we do not expect them to change much even 

after the underlying models were to be refined. 

Similarly, exports of mercury are also much lower when compared to estimates reported 

elsewhere in the literature (Table 3.2). For example, the bog exports 132.9 ± 45.4 ng m-2 

yr-1 of THg into the fen, which is at least three times lower than the export from wetland 

catchments in the Experimental Lakes Area (600-2700 ng m-2 yr-1) (St. Louis et al., 

1994), even with comparable THg concentrations. Exports of MeHg from the ribbed fen 

(1.9 ± 1.2 ng m-2 yr-1) are 2-3 orders of magnitude lower than reported for wetland 

catchments in Ontario (180-200 ng m-2 yr-1) (Galloway and Branfireun, 2004). 

The high hydraulic conductivity of layer 1 in our model is responsible for the delivery of 

>99% of the solutes at both sites. The magnitude and variability of DOC, THg, and 

MeHg exports during the study period appears to be primarily controlled by groundwater 

runoff, which we estimated to be low (<75 mm) in these peatland systems, and to a lesser 

extent, the variability in solutes concentrations measured along the BF and FT transects. 

Even if we assume that the residual term in the water balance is entirely unaccounted 
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runoff, extrapolating solute fluxes by multiplying current exports by the adjusted runoff, 

137.3 mm from the bog and 131.0 mm from the fen, increases solute exports by a factor 

of 1.9 and 2.4, respectively. With such corrections applied, exports of DOC begin to 

approach values reported for subarctic wetlands (Moore, 1987; Koprivnjak and Moore, 

1992; Olefeldt et al., 2012). However, mercury fluxes remain low even after such an 

adjustment to runoff. An important caveat to consider is that although solute exports from 

bog and fens on a per unit area (m2) basis are low, the overall translocation of DOC and 

mercury can be substantial when one considers the >300,000 km2 areal extent of HBL 

peatlands. 

3.5 Conclusions 

Morphological and hydrogeological factors seem to govern the movement of water 

between the bog and fen, and the fen into the tributary. The lack of significant 

channelization and low lateral hydrologic gradients (<0.0025) in the peatlands of the 

HBL promote the export of water and dissolved solutes between peatland landscape units 

and to surface waters via diffuse groundwater flow. Groundwater runoff processes, and 

carbon and mercury dynamics in the HBL are complex, given the hydrogeological 

variability and micro-to-mesoscale topography in the landscape, extremely long residence 

times imposed by the low hydraulic conductivity organic soils (<10-3 m s-1), and 

constantly changing biogeochemical conditions due a highly variable climate and a 

constantly fluctuating water table.  

Evapotranspiration is the dominant water loss pathway at the study site (~280 mm). The 

major control on groundwater runoff is hydraulic conductivity of the peat, given that 

lateral hydraulic gradients in the bog and fen are governed by topographic relief and 

relatively consistent over the site and throughout the year. Our estimates of runoff (73 

and 55.7 mm for the bog and fen, respectively) are low compared to other northern 

wetlands. A negative large residual term (65-75 mm) in our water balance suggests that 

we have underestimated runoff by a factor of 1.4-2.5, likely caused by spatially limited 

peat K data. While the in situ bail tests did provide us with an acceptable bulk estimate of 

K, a lab-based approach for measuring K (e.g., the modified split-container method from 
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Nagare et al. (2013)) would be advantageous in discretizing peat into thinner (e.g., 5-20 

cm) layers. 

The concentrations and distributions of DOC in peat pore-waters are different between 

the BF and FT transects. In the BF transect, levels of DOC are high (15-60 mg L-1), and 

generally increase with depth. Seasonal increases to DOC in the bog are significant in the 

upper 1 m of the peat profile, where concentrations nearly doubled between May and 

August 2011. Patterns of DOC in the bog are influenced by intermittent downward 

hydraulic gradients and the presence of low-lying pools of water and ridges with differing 

hydraulic conductivities. Fen DOC concentrations are 2-4x lower than in the bog (8-15 

mg L-1), and show little stratification throughout the peat profile. Large inputs of rain in 

the fall resulted in a sharp and sustained increase in water tables at all sites, diluting and 

flushing solutes from the bog and fen. 

Mercury pore-water concentrations were low and exhibited high spatiotemporal 

variability. Concentrations of dissolved total mercury in shallow bog pore-waters were 

twice as high in the bog (2-4 ng L-1) as they were in the fen (1-2 ng L-1), the difference 

likely induced by differential partitioning between the peat and groundwater phases due 

to higher acidity in the bog. THg and DOC concentrations were poorly correlated with 

each other. Methylmercury in the bog (<0.2 ng L-1) and fen (0.1 ng L-1) pore-waters was 

significantly lower than values reported for other subarctic wetlands. Similar to DOC, 

MeHg concentrations decreased with depth, but seasonal changes were less apparent 

because of the large within-site variability. 

The bog was shown to have consistently higher annual groundwater exports of DOC per 

unit area (2.0 g C m-2 yr-1), THg (132.9 ng m-2 yr-1) and MeHg (3.4 ng m-2 yr-1), in 

comparison to the fen (0.5 g C m-2 yr-1, 50.0 ng m-2 yr-1, and 1.9 ng m-2 yr-1, respectively). 

A combination of higher dissolved solute concentrations, hydraulic gradients, and peat 

permeability in the bog was responsible for the differences. However, the bog does not 

appear to have a measurable influence on water quality in the fen, likely because of the 

small size (0.51 km2) relative to the subwatershed (4.9 km2). The elevated levels of DOC 

and MeHg (relative to the fen) measured within the small channels and seepage faces of 
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the Trib 5 riparian zone demand further investigations into the influence on water quality 

of these biogeochemically unique areas, which could amplify concentrations of solutes in 

peatland runoff solutes entering surface waters in the HBL. 
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Chapter 4 

4 Conclusions 

This research presented in this thesis set out to enhance our understanding of natural 

hydrological and biogeochemical processes in the peatland-dominated landscape of the 

Hudson Bay Lowlands (HBL) in northern Ontario, Canada. The objectives of this study 

were to provide estimates of water and solute fluxes in bog-fen-tributary sequence to 

complement the current research projects and long-term carbon monitoring efforts 

occurring at the study site. This was accomplished using conventional hydrometric 

measurements, including regular measurements of water table and hydraulic head along 

two major transects, as well as campaign-based sampling of peatland pore-waters for 

geochemical tracers (major ions and stable water isotopes), and dissolved organic carbon 

and mercury chemistry. 

The results in Chapter 2 showed that groundwater flow throughout the bog-fen system 

was dominantly horizontal and follows surface topography, confirming the conceptual 

models and numerical simulations of Reeve et al. (2000). Hydraulic conductivity was the 

determining factor in controlling rates of groundwater flow since hydraulic gradients 

remained essentially unchanged regardless of water table position. Dispersive mixing was 

responsible for the delivery of solutes from nutrient-rich marine sediments as suggested 

by Reeve et al. (2001), particularly in the ribbed fen system. Fine-scale patterns of 

vertical groundwater flow resulting from differences in surface features and periods of 

high and low water table were superimposed onto the predominantly lateral translocation 

of water and solutes through the peat. Such patterns were clearly visible in pore-water 

concentrations of calcium and the distribution of stable water isotopes within the peat 

profile, particularly in areas that exhibited consistent vertical gradients. In the ribbed fen, 

the strong upwards gradients and thinning of the peat strata within the distal portions of 

the fen transect clearly augment the redistribution of solutes from deeper layers of peat, 

which likely results in unique biogeochemical conditions in the riparian zone surrounding 

the adjacent tributary. 
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Water table position in the peatlands controls the amount of runoff from bogs and fens, 

and as well as the magnitude of hydrologic connectivity of adjacent landscape units. The 

tributary adjacent to the large ribbed fen exhibits threshold behavior, and responds 

differently to hydrological inputs to the system, based on the antecedent moisture 

conditions in the peatland. Large and rapid increases to streamflow are observed when 

the water table within the fen breaches the average surface of troughs (typically during 

periods of sustained water inputs such as rapid melting of snow or a sustained rain 

events), allowing the higher hydraulic conductivity portions of the acrotelm to conduct 

water rapidly through the landscape and into the stream (Quinton and Roulet, 1998). The 

occurrence of seasonal ground ice within the peatland can intensify runoff generation and 

export of water into adjacent streams, similar to the effects of permafrost on arctic 

wetlands (Woo, 1986). Conversely, a decrease in the elevation of the water table caused 

by extended periods of drought can limit runoff from the landscape as diffuse 

groundwater flow through lower hydraulic conductivity peats, which significantly 

reduces contribution to streamflow. The HBL is already experiencing unprecedented 

effects from climate change (Gagnon and Gough, 2010; McLaughlin and Webster, 2014), 

and lowering of water tables in peatlands [e.g., 10-20 cm lower as predicted by Roulet et 

al. (1992)], could further limit runoff and groundwaters exports to surface waters. 

The expected changes to hydrological connectivity between peatland landforms and the 

consequential export of solutes to adjacent ecosystems in future climate scenarios (Pastor 

et al., 2003; Freeman et al., 2004) motivated the carbon and mercury research presented 

in Chapter 3. Hydrology and biogeochemistry influenced the different spatiotemporal 

distributions of dissolve organic carbon (DOC), total mercury (THg), and methyl 

mercury (MeHg) in bog and fen pore-waters. Dissolved organic carbon concentrations in 

the bog were 2-3x higher in the bog than in the fen, and reflected the small-scale 

influences pools as well as vertical gradients demonstrated in Chapter 2. Total and methyl 

mercury concentrations were low and extremely variable in both the bog and fen, and 

THg did not exhibit strong relationships with DOC. A doubling in pore-water DOC, THg, 

and MeHg concentrations in the surface peats over the summer was followed by a 

significant decrease in the fall. This flushing of pore-waters during periods of high 

hydrologic connectivity has implications to water quality in aquatic ecosystems. Elevated 
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concentrations of DOC and MeHg in surface waters within the fen-tributary riparian zone 

suggest that this are may be a hotspot for biogeochemical transformation (Vidon et al., 

2010), but further study is needed to confirm this observation. 

A simplified 4-layered peatland groundwater model was utilized to estimate fluxes of 

water, dissolve organic carbon (DOC), total mercury (THg), and methyl mercury (MeHg) 

through the bog and fen systems for the duration ice-free season. Total groundwater 

runoff from the bog and fen accounted for 16% and 13% of the total hydrologic inputs 

respectively, with 99% occurring in the uppermost 1 m of peat. Consequently, solute 

fluxes were also low, as compared to other wetland-dominated systems. Exports of DOC 

accounted for less than 10% of the net ecosystem carbon balance, and were trumped by 

atmospheric fluxes of carbon dioxide and methane to and from the peatland, respectively. 

Similarly, exports of THg and MeHg were between 1 and 3 orders of magnitude lower 

than reported for other boreal peatlands. However, total annual peatland-derived solute 

exports for the entire HBL are still very large even when unit area exports of solutes are 

low, because of the vast areal extent (320,000 km2) of this ecosystem.  

The outcomes of this study are limited by the restricted spatial and temporal resolution of 

our hydrometric measurements, simplified groundwater models, and assumptions 

regarding solute transport processes. We also neglect groundwater flow during the 

winter, and the contribution of groundwater from the marine sediment. Future research at 

this site, and in the Hudson Bay Lowlands, should aim to provide better estimates of 

snowmelt, and quantify any overland flow occurring during wet conditions. Estimates of 

groundwater fluxes form the landscape could also be improved by obtaining more 

discrete, laboratory-based measurements of K (including measurements of anisotropy) 

and the utilization of more complex groundwater numerical models that incorporate the 

micro-to-meso-scale topography and peatland features (e.g. pools, ridges, and troughs) 

throughout the site.  
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Glossary of Acronyms and Abbreviations 

 
C Carbon 
C Concentration 
CEC Cation Exchange Capacity 
CH4 Methane 
CO2 Carbon dioxide 
S Storage 
DGPS Differential Global Positioning System 
DO Dissolved Oxygen 
DOC Dissolved Organic Carbon 
Eh Reduction-Oxidation Potential 
ET Evapotranspiration 
HBL Hudson Bay Lowlands 
Hg Mercury (element) 
J Solute flux 
K Hydraulic Conductivity 
LOD Limit of Detection 
m Metres 
m.a.s.l. Metres Above Sea Level 
MeHg Methylmercury 
NAD83 North American Datum (1983) 
NECB Net Ecosystem Carbon Balance 
NEE Net Ecosystem Exchange 
NPP 
OM 

Net Primary Production 
Organic Matter 

P Precipitation 
pH Measure of acidity 
QA/QC Quality Assurance and Quality Control 
R Runoff 
r.t.s. Relative to Surface 
s Seconds 
SRB Sulphate Reducing Bacteria 
TEA Terminal Electron Acceptor 
THg Total Mercury 
UTM Universal Transverse Mercator Projection 
WT Water Table 
𝜉 Residual Term 
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