
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-8-2013 12:00 AM

Application of Computer Algebra in List Decoding Application of Computer Algebra in List Decoding

Muhammad Foizul Islam Chowdhury, The University of Western Ontario

Supervisor: Eric Schost, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Muhammad Foizul Islam Chowdhury 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Digital Communications and Networking Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
Chowdhury, Muhammad Foizul Islam, "Application of Computer Algebra in List Decoding" (2013).
Electronic Thesis and Dissertation Repository. 1851.
https://ir.lib.uwo.ca/etd/1851

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1851?utm_source=ir.lib.uwo.ca%2Fetd%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Application of Computer Algebra in List Decoding

(Thesis format: Paper)

by

Muhammad Foizul Islam Chowdhury

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

Western University

London, Ontario, Canada

August 22, 2013

Abstract

The amount of data that we use in everyday life (social media, stock analysis, satellite

communication, etc.) is increasing day by day. As a result, the amount of data that

needs to traverse through electronic media as well as to store are rapidly growing

and there exist several environmental effects that can damage these important data

during travelling or while in storage devices. To recover correct information from

noisy data, we use error correcting codes. The most challenging work in this area

is to have a decoding algorithm that can decode the code quite fast and that can

tolerate highest amount of noise, so that we can use it in practice.

List decoding has been an active research area for last two decades. This re-

search popularise in coding theory after the breakthrough work by Madhu Sudan

where he used list decoding technique to correct errors that exceed half the minimum

distance of Reed Solomon codes. Towards the direction of code development that

can reach theoretical limits of error correction, Guruswami-Rudra introduced folded

Reed Solomon codes that reached at 1−R− ǫ for ǫ > 0. To decode these codes, one

has to first interpolate a multivariate polynomial and then to factor out all possible

roots. The difficulties that lie here are efficient interpolation, dealing with multiplic-

ities smartly, and efficient factoring. This thesis deals with all these cases in order to

have practical folded Reed Solomon codes.

Keywords. List Decoding, Structured matrix multiplication, Newton-Pueisux ex-

pansion, Newton-iteration.

ii

Acknowledgments

I would first like to thank my thesis supervisor Associate Professor Éric Schost in

the Department of Computer Science at Western University, Canada. The door to

Prof. Éric Schost office was always open whenever I ran into a trouble spot or had a

question about my research or writing. He consistently helped me on the way of this

thesis and steered me in the right direction whenever he thought I needed it. I am

grateful to him for his excellent support to me in all arenas.

Sincere thanks and appreciation are extended to all the members from our Ontario

Research Centre for Computer Algebra (ORCCA) lab and the Computer Science

Department for their invaluable teaching and assistance.

My deep gratitude goes to my parents along with all my brothers, sisters, sister-

in-laws, brother-in-laws, nieces and nephews. Special thanks goes to my brother Dr.

Badrul Islam Choudhury and Sister-in-law Sabiha Choudhury Moona. My heartfull

thanks goes to my two cutest nieces Manha and Rahmah who provided me lots of

recreation during heavy workload.

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 Error correcting codes . 2

1.2 Reed-Solomon codes . 3

1.3 Problem statement and overview of our results 6

Bibliography . 8

2 Mathematical preliminaries 10

2.1 Introduction . 10

2.1.1 Group . 10

2.1.2 Ring . 11

2.1.3 Field . 11

2.1.4 Notion of Finite field . 12

2.1.5 Polynomial multiplication . 14

2.1.6 Matrix structure . 14

Bibliography . 16

3 Complexity of MultivariateInterpolation with Multiplicities 17

3.1 Introduction . 18

3.2 Preliminaries: assumption H1 . 25

3.3 Solving structured linear systems . 26

3.4 Reducing Problem 1 to Problem 2 . 29

3.5 Solving Problem 2 through a mosaic-Hankel linear system 32

3.6 A direct solution to Problem 2 . 37

Bibliography . 41

iv

4 Efficient Solution of Structured Linear Systems 45

4.1 Introduction . 45

4.2 Basics on structured linear systems 46

4.3 Structured matrix inversion . 49

4.3.1 Matrix inversion using block Gaussian elimination 50

4.3.2 Structured matrix inversion 51

4.4 Structured matrix multiplication . 54

Bibliography . 58

5 Power Series Solutions of Singular (q)-Differential Equations 61

5.1 Introduction . 61

5.2 Divide-and-Conquer . 67

5.3 Newton Iteration . 72

5.3.1 Gauge Transformation . 72

5.3.2 Polynomial Coefficients . 73

5.3.3 Computing the Associated Equation 74

5.3.4 Solving the Associated Equation 75

5.4 Implementation . 79

Bibliography . 81

6 Polynomial Root-Finding for Nonlinear Equations 84

6.1 Introduction . 84

6.2 The classical case (s = 1) . 85

6.2.1 Root-finding when m = 1 . 86

6.2.2 Root-finding when m > 1 . 87

6.3 The folded case (s > 1) . 93

6.3.1 The linear case . 94

6.3.2 The regular case . 96

6.3.3 The general case . 98

6.4 A heuristic . 102

Bibliography . 104

7 Conclusions and future work 108

7.1 Future work . 110

Curriculum Vitae 111

List of Algorithms

1 MBA algorithm invert Toeplitz-like matrices 53

2 Mul Rec(U,V,W, n, ν, ᾱ, µ) . 56

3 Mul(U,V,W, n, α) . 56

4 Recursive Divide-and-Conquer . 68

5 Divide-and-Conquer . 70

6 PolCoeffsDE . 74

7 Solving Eq. (5.10) when k = 1 or q 6= 1 76

8 Solving Eq. (5.10) when k > 1 and q = 1 77

9 Newton iteration for Eq. (5.8) . 78

10 Roth & Ruckenstein(M, k, ψ, i) . 88

11 Newton-Puiseux expansion(Q, k, ψ, i) 90

12 RDAC(A0, . . . , As, γ, i, ℓ) . 95

13 Root Computation(Q, s, k, γ) . 97

14 Filter(Q, f, k, γ) . 98

15 Newton-Puiseux expansion(Q, i, k, ψ) 101

16 Lift root from fRS Q(Q, s, k, γ) 102

vi

List of Figures

1.1 A simple communication system. 1

1.2 Folded Reed-Solomon code for s = 4. 4

4.1 Algorithm Mul Rec vs naive reduction 59

4.2 α fixed . 59

4.3 Degree fixed . 60

5.1 Timings with n = 1, k = 1, q 6= 1 . 80

5.2 Timings with k = 1, q 6= 1 . 80

6.1 Execution of Roth and Ruckenstein’s algorithm 89

6.2 The Newton polygon of polynomial Q 89

6.3 Execution of the Newton-Puiseux algorithm 91

6.4 Newton polygon . 99

6.5 Timing between our algorithm and Beelen and Brander’s algorithm . 104

vii

List of Tables

2.1 Addition modulo 1 + x+ x3 . 13

2.2 Multiplication modulo 1 + x+ x3 . 14

3.1 Overview of previous results, s = 1. 22

5.1 Timings with k = 3, q 6= 1 . 81

6.1 Number of times a new polynomial Q was needed 103

6.2 Timing of Interpolation and Root-Computation 104

viii

1

Chapter 1

Introduction

In everyday life, large amounts of data travel through various electronic comminica-

tion channels. The amount of data is increasing and no communication channel or

storage device is error prone: errors can be introduced to these data while they are

traversing wired or wireless media and corrupt them; these data can also be damaged

while we store them in electronic media like hard disks or CDs / DVDs due to the

presence of bad sectors or scratches. The solution to this problem is to apply a coding

scheme, so that we can recover correct information even in the presence of errors in

the data. Coding theory deals with this question.

A simple communication system is depicted in Figure 1.1; the main source of error

is the noisy channel. To recover the correct information that passed through the noisy

channel, coding schemes add some redundancy to the original data: if we want to

transfer k symbols through the noisy channel, our codding scheme will encode these

symbols into n (for n > k) symbols, by adding n − k redundant symbols. These n

symbols will then traverse the noisy channel, and we expect that the receiver will be

able to recover the original symbols correctly, as long as the number of errors falls

within some error limits. Both the decoder and encoder use error correcting codes to

perform these operations.

Source
message encoder

channel
modulator noisy channel demodulator

channel
decoder

received
message

Figure 1.1: A simple communication system.

2

1.1 Error correcting codes

Error correcting codes tell us about how to add redundant symbols to the original data

so that the receiver can recover the original message even if they received corrupted

symbols. The following definitions taken from [4] are essentials for error correcting

codes.

• Encoding: An injective function E : δk → δn having parameters k, n ∈ N that

maps a message m consisting of k symbols over some alphabet δ (for example

the binary alphabet δ = {0, 1}) into a string E(m) of length n over δ, where

n > k, is known as an encoding. The word that is encoded by this function, i.e.

E(m), is referred as a codeword. If |δ| is finite then the alphabet size is often

written q = |δ|.

• Decoding: The sender sends the encoded codeword E(m) through the noisy

channel. The receiver may receive a distorted copy of the transmitted codeword,

so she needs to figure out the original message. This role is done by a decoding

function, D : δn → δk
⋃{1}, which maps the codeword of length n, which is

possibly corrupted, to a string of length k.

• Error-Correcting code: It is the set of all codewords C ⊂ δn that are obtained

by encoding messages, i.e. the image of the encoding function E. Each codeword

in C has the same length n, so we say that C is a block code of length n. If

C ⊆ δn is a block code of length n with q = |δ| finite, we say that C is a q-ary

(error-correcting) code and the dimension of this code C is k = logq |C|.

• Rate: The ratio R = k
n
of the number of symbols in a message to the length of

the encoding map in the above definitions is called the rate of the code. This

measures the amount of redundancy that is added by the encoding.

• Distance: Given two vectors x and y of length n, with entries in δ, the distance

between these two vectors is the number of coordinates that differ from each

other, i.e. {i|xi 6= yi}. The minimum distance (or simply, distance) of a code is

defined to be the smallest distance between two distinct codewords; according

to the Singleton bound, the minimum distance d of a code C cannot be greater

than n− k+1 and maximum distance separable (or MDS) codes are codes that

remain within this bound.

The alphabets of our codes are usually taken to be finite fields F having q elements

where q is a prime power, and we often make the assumption that C ⊆ Fn is a linear

3

subspace of an n-dimensional vector space over F; such codes are known as a linear

q-array codes. Here the dimension of the code k = logq |C| matches the vector space

dimension as an F-subspace of Fn. A linear code having length n dimension k and

minimum distance d is also known as an [n, k, d]q code.

Depending on the number of errors, decoding strategies are available: typically,

one can consider unique decoding or list decoding. In the former, the decoder outputs

a single candidate for the message; this may be feasible only when few errors occured.

List decoding is an alternative approach, due to Elias [3], which returns a list of

candidates, one of which is the correct message. In this thesis, we will focus on list

decoding algorithms for a particular family of codes, Reed-Solomon codes, which we

introduce now.

1.2 Reed-Solomon codes

There exist many linear codes; Reed-Solomon codes are one of the most famous ones

in coding theory, and will be the main focus of this thesis.

Definition 1. (Reed-Solomon Codes) Let F be a field with at least n elements,

and consider n pairwise distinct values α = (α1, . . . , αn) ∈ Fn. Given a polynomial

f(x) =
∑i=k−1

i=0 δix
i in F[x], where δi ∈ F are the message symbols, the Reed-Solomon

codeword (y1, . . . , yn) associated to f is obtained by evaluating f(x) at α, so that

yi = f(αi). This code is denoted

RSq(n, k, α) = {(f(α1), . . . , f(αn)) | f ∈ F[x]k},

where F[x]k is the set of polynomials having coefficients in the base field F and degree

less than k.

Although not strictly necessary, it will be convenient to take α of the form

1, γ, . . . , γn−1, for some γ in F \ {0} of multiplicative order at least n (often, by a

slight abuse of expression, we may refer to γ as a primitive element, although strictly

speaking this would be the case only if |F| = n+ 1).

Since a nonzero polynomial of degree less than k can have at most k−1 zeros, every
nonzero codeword will have at least n − k + 1 nonzero components. The minimum

distance of RSq(n, k, α) is equal to n− k + 1, which is the singleton bound, so Reed-

Solomon codes are maximum distance separable.

One of main design goals of error correcting codes is to make them highly tolerant

to errors: the decoder should be able to correct as many errors as possible. In theory,

4

the number of errors that can be corrected by a decoder should be as close to n−k as

possible; that is, error correction should be possible as long as k symbols are correct.

The fraction of errors ρ is defined as the ratio of the number of errors to the length; the

information theoretic limit states that this number is at most (n− k)/n = 1−R [5].

Standard unique decoding techniques, using for instance the Berlekamp-Massey

algorithm, recover the correct message from the codeword and can decode the correct

message as long as the number of erros is less than (n− k)/2. Folded Reed-Solomon

codes, invented by Guruswami and Rudra [5] following previous work by Parvaresh

and Vardy [9], are derived from Reed-Solomon codes and can tolerate an error ratio

of 1− R− ε for any ε > 0 (using list decoding techniques).

These codes rely on a folding process, characterized by a folding parameter s > 1.

For the folded case, we will make from the outset the assumption that the evaluation

points (α1, . . . , αn) are of the form (1, γ, . . . , γn−1).

Definition 2. (Folded Reed-Solomon codes) Let s, n be integers such that s

divides n; let F be a field with at least n elements, and consider n pairwise distinct

values α = (1, γ, . . . , γn−1) ∈ Fn. Given a polynomial f(x) =
∑i=k−1

i=0 δix
i in F[x],

where δi ∈ F are the message symbols, the folded Reed-Solomon codeword associated

to f consists in the n/s elements Y1, . . . , Yn/s, with yi ∈ Fs given by

Yi = (y(i−1)s+1, . . . , y(i−1)s+s), yi = f(αi).

In other words, the symbols in the codeword are now s-uples of values in F,

obtained by juxtaposing s consecutive “elementary symbols” f(γi). When s = 1, we

recover Reed-Solomon codes; Figure 1.2 gives an example of folded Reed-Solomon

code taken from [5], where the folded parameter s is equal to 4.

f(α1) f(α2) f(α3) f(α4) f(α5) f(αn−3)f(αn−2)f(αn−1) f(αn).

f(α1)

f(α2)

f(α3)

f(α4)

f(α5)

f(α6)

f(α7)

f(α8)

f(αn−3)

f(αn−2)

f(αn−1)

f(αn)

for s = 4

Figure 1.2: Folded Reed-Solomon code for s = 4.

The importance of these codes comes from the result (due to Guruswami and

5

Rudra) that for any ε > 0 and rate R < 1, there exists a family of folded Reed-

Solomon codes that have rate at least R and which can be list decoded up to a fraction

1 − R − ε of errors in an efficient manner. We recall below some of the landmark

results in this direction.

Recall first that unique decoding for Reed-Solomon codes can accommodate up

to (n− k)/2 errors, or equivalently a ratio of (1−R)/2 = 1− (R + 1)/2.

The first crucial step toward incorporating a larger error ratio was solved by

Madhu Sudan [10], using list decoding techniques. In a nutshell, Sudan’s algorithm

recovers a (small) list of polynomials that contains the message, provided the error

ratio is at most 1−
√
2R. The following shows the main step in Sudan’s list decoding

algorithm; they form the blueprint of all algorithms that follow.

• Interpolate a bivariate polynomial Q(x, y) such that Q(αi, yi) = 0 (under suit-

able degree bounds [10]).

• Find all polynomials f(x) such that y − f(x) is a factor of Q.

• Keep those where f(αi) = yi for at least n − e values of i, where e is a bound

on the number of errors and the degree of f is less than k.

Correctness of this algorithm follows from imposing suitable degree bounds on Q; we

will not need to state these bounds below.

This work was further developed by Guruswami and Sudan in [6] by introducing

multiplicities: Q must vanish at high enough order at the points (αi, yi). For suitable

choices of the degree bounds on Q and the multiplicity parameter, Guruswami and

Sudan’s algorithm allows error ratios up to 1−
√
R [6].

Following the work of Guruswami and Sudan, Parvaresh and Vardy developed

codes that can tolerate errors, and can be seen as precursors of the folded codes we

defined above. Again, the algorithm proceeds through two main steps, evaluation

and root-finding.

Finally, in 2008, Guruswami and Rudra introduced in [5] the folded Reed-Solmon

codes defined above, by formulating a relation between Reed Solomon codes and

Parvaresh and Vadry codes; their list-decoding algorithm works as follows:

• Compute a multivariate polynomial Q(x, z1, . . . , zs) such that, for i = 0, . . . , n−
1,

Q(αsi+1, ysi+1, . . . , ysi+s) = 0 (1.1)

6

at order m (that is, all derivatives of Q of order up to m vanish as well at this

point). Here, α1, . . . , αn are the evaluation points and y1, . . . , yn are the values

as in Definition 2.

• Find all polynomials f(x) such that Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0.

• Keep all polynomials f such that f(αi) = yi for at least (n − e) consecutive

values of i ∈ n.

As for Sudan’s algorithm, Q is subject to some degree constraints: upper bounds are

given for its total degree, as well as for is weighted degree, for a weight where every

variable zi has degree k− 1. It will not be necessary for us to make these constraints

explicit; Guruswami and Rudra’s article gives all details. To conclude, remark that

when s = 1, no folding occurs and we recover Sudan’s algorithm.

1.3 Problem statement and overview of our results

In this work, we consider the two main steps highlighted in the above description of

the Sudan / Guruswami-Sudan / Guruswami-Rudra list decoding algorithms: inter-

polation and root-finding. Although we saw that they are rooted in coding theory,

these problems can be stated independently of the framework of error correction; this

is the point of view we adopt, considering these questions as interesting by themselves.

Interpolation. The first question is to recover a polynomial Q that satisfies con-

straints (1.1), under additional requirements on its total degree and its weighted

degree, for a well-chosen weight.

This is a linear algebra problem; as such, most early references on the subject

(such as Sudan’s and Guruswami-Sudan’s papers) point out that this problem can

be solved using essentially Gaussian elimination. Much work has been devoted to

improve on naive linear algebra techniques: standard techniques now employ either

fast linear algorithms, or polynomial lattice reduction techniques.

Chapter 3 gives a review of the existing literature and presents a new algorithm,

inspired by previous work by Zeh, Gentner and Augot [11], which is the fastest to

date (to the best of our knowledge).

The algorithm of Chapter 4 uses as a black box an algorithm for solving structured

linear systems based in particular on recent techniques presented in [2]. In Chapter 4,

we present these techniques in detail, and give the first report on the experimental

behavior of this algorithm.

7

Root-finding. The second main question is to find all polynomials f that satisfy

an equation of the type

Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0, (1.2)

for some Q in F[x, z1, . . . , zs]. When s = 1, this means that f satisfies Q(x, f(x)) = 0,

so we are left with a bivariate factorization problem, for which standard solutions ex-

ist. For higher values of s, the solution proposed by Guruswami and Rudra (following

previous work by Parvaresh-Vardy) is the following.

Assume that γ has multiplicative order precisely q − 1, with q = |F|, let P be the

irreducible polynomial P (x) = xq−1 − 1, and let F′ = F[x]/P . Then, Guruswami and

Rudra prove that f can be recovered as a root of

T = Q(x, z, zq, . . . , zq(s−1)),

seen as a univariate polynomial in F
′[z]. However, the large degree of this polynomial

in z makes this approach very expensive in practice.

Following previous work by Pecquet and Augot for the Guruswami-Sudan case [1],

we investigate how lifting techniques can be used to compute power series (and thus

polynomial) solutions of (1.2).

Equations such as (1.2) are often called q-difference equations, although in our

context we should call them γ-difference equations (traditionally, the scaling factor is

written as q rather than as γ; this goes back to at least [8]). It turns out that such

equations are very similar to differential equations; the analogy can be seen by noting

that, if we were in a context were we could let γ approach 1,

lim
γ→1

f(γx)− f(x)
(γ − 1)x

= f ′(x)

for any polynomial f . As

f(γx)− f(x)
(γ − 1)x

=

∑
i fi(γ

i − 1)xi

(γ − 1)x

that becomes f ′(x) when γ → 1.

In Chapter 5, we give algorithms that handle simultaneously differential and q-

difference cases, using either Newton iteration or divide-and-conquer techniques, in

the simplest case where Q is linear in z1, . . . , zs. Previous algorithms existed to handle

the differential case, under some regularity assumptions; our algorithms extends these

8

results to (some) singular cases and to the q-difference case (which is needed in our

applications to list-decoding).

In Chapter 6, we describe the case of arbitrary Q. When s = 1, well-known

techniques involve a combination of Newton iteration (when the solutions have no

multiplicity) and of a desingularization process called the Newton-Puiseux algorithm

in general. We show how these techniques extend to the folded case, and using recent

work by Cano and Fortuny Ayuso [7] we propose a heuristic that drastically simplifies

the resolution process.

Bibliography

[1] D. Augot and L. Pecquet. A Hensel lifting to replace factorization in list-decoding

of algebraic-geometric and Reed-Solomon codes. IEEE Transactions on Infor-

mation Theory, 46(7):2605–2614, 2000.

[2] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and É. Schost. Fast simultaneous

multiplication of a structured matrix by vectors. PrePrint, 2012.

[3] P. Elias. List decoding for noisy channels. Technical Report 335, pages 94–104,

September-1957.

[4] V. Guruswami. List decoding of error-correcting codes, volume 3282 of Lecture

Notes in Computer Science. Springer-Verlag, 2005.

[5] V. Guruswami and A. Rudra. Error correction up to the information-theoritic

limit. Communications of the ACM, 52(3):87–95, 2009.

[6] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and

algebraic-geometric codes. IEEE Transactions on Information Theory,

45(6):1757 – 1767, Sep–1999.

[7] P. Fortuny Ayuso J. Cano. Power series solutions of non-linear q-difference equa-

tions and the Newton-Puiseux algorithm, 2012. arXiv:1209.0295.

[8] F. H. Jackson. q-difference equations. American Journal of Mathematics,

32(4):pp. 305–314, 1910.

[9] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan

radius in polynomial time. In FOCS’05, pages 285 – 294. IEEE Computer Society,

2005.

9

[10] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.

Journal Of Complexity, 13:180–193, 1997.

[11] A. Zeh, C. Gentner, and D. Augot. An interpolation procedure for list decoding

ReedSolomon codes based on generalized key equations. IEEE Transaction on

Information Theory, 57(9):5946–5959, 2011.

10

Chapter 2

Mathematical preliminaries

This chapter discusses about various mathematical basics that was used through out

the thesis.

2.1 Introduction

This chapter begins with the description of field, ring, group. Then we describe

about several structured matrix that act as basic for solving our linear system. The

presentation of this part follows [1].

2.1.1 Group

A group is a set of elements with a binary operation ⋄ that have following properties.

Usually the group is denoted by {G, ⋄}.

1. Closer: a ⋄ b ∈ G ⇐⇒ a, b ∈ G.

2. Associativity: a ⋄ (b ⋄ c) = (a ⋄ b) ⋄ c ∀a, b, c ∈ G.

3. Commutativity: a ⋄ b = b ⋄ a ∀a, b ∈ G.

4. Identity element: The group G has an element e for which we have a ⋄ e =

e ⋄ a = a ∀a ∈ G. The element e is known as identity element of that group.

5. Inverse element: there exist an element a
′ ∈ G for each a ∈ G such that

a ⋄ a′ = a
′ ⋄ a = e i.e. identity element.

A group G is called finite when it has finite number of elements which is also

known as the order of that group G. When the number of elements are not finite, its

known as infinite group.

11

A group G is said to be cyclic when each element of that group can be represented

as a power of an element of that group. Let a be an element of a group G, then
by means of powering of an element of that group, we refer that number of group

operations, e.g. a
3 = a ⋄ a ⋄ a. The element of a group G which can be used to

represent all element of G by this powering operation is known as a primitive element

of that group G. It is also called generator of the group G.

2.1.2 Ring

A ring is a set of elements with two binary operations addition and multiplication

that have following properties. We represent a ring by {R,+,×},

1. A ring R have all the properties of a group. If R is an additive group then 0 is

it’s identity element and −a is the inverse of an element a ∈ R.

2. Closure under multiplication: a, b ∈ R ⇒ a× b ∈ R.

3. Commutativity under multiplication: a× b = b× a ∀a, b ∈ R.

4. Associativity under multiplication: ∀a, b, c ∈ R; we have a × (b × c) = (a ×
b)× c.

5. Distributivity: ∀a, b, c ∈ R; we have

(a) a× (b+ c) = (a× b) + (a× c)

(b) (a+ b)× c = (a× c) + (b× c)

An integral domain is a commutative ring that have following properties in addi-

tion to the properties of a ring R.

• Multiplicative identity: ∀a ∈ R, we have 1 ∈ R such that a× 1 = 1× a = a.

• No zero divisor: a× b = 0 ∀a, b ∈ R ⇒ either a = 0 or b = 0.

2.1.3 Field

A field F is a set of elements with two operations addition and multiplication that

have following properties.

• Integral domain: F have all the properties defined above.

12

• Multiplicative inverse: For each element a ∈ F \ 0, we have a
−1 ∈ F such that

aa
−1 = a

−1
a = 1.

We can do all arithmetic operation, i.e. addition, subtraction, multiplication and

division, on a a field F and the result of the operation will be in that field F . Here
the division operations is performed as follows

a

b
= ab

−1 ∀a, b ∈ F .

Polynomial Ring

A polynomial ring over a field F , represented by F [x], is a set of polynomials P of

the form

P = p0 + p1X + p2X
2 + · · ·+ Pm−1X

m−1 + PmX
m.

where the coefficients of P, p0, . . . , pm, are elements of underlying field F and X is

indeterminate. The degree of P is the highest power in X that has nonzero coefficient.

2.1.4 Notion of Finite field

Let p be a prime and n is a positive integer, then the number of elements of (also

known as order of finite field) a finite field is pn. Here p is said to be the characteristic

of the field. Generally we use GF (pn) or Fpn to denote a finite field having order pn.

GF stands for Galois Field. The structure of the finite field when n > 1 is different

than the structure of the finite field when n = 1.

For a prime p and n = 1, the finite field Fp (GF (P)) is the set Zp of integers with

arithmetic operation modulo prime p. Here

Zp = {0, 1, . . . , p− 1}.

Let F be a field, then a polynomial f ∈ F[x], that have coefficients over the field

F, is said to be irreducible over the field F if and only if f(x) is irreducible as an

element over the polynomial ring F[x].

For a prime p and n > 1, the finite field Fpn (GF (P n)) is defined by using an

irreducible polynomial f over finite field Fp having degree n. In this field, we perform

all arithmetic operations modulo the irreducible polynomial f(x).

13

Example of finite field of the form Fpn

Let ξ be the set of all polynomials having degree less than n over a field Fp. Each

polynomial in this set can be represented by

f(x) = p0 + p1X + · · ·+ pn−1x
n−1

where pi ∈ Fp, for 0 6 i 6 n−1. It is easily verifiable that the set ξ has pn number of

polynomials. The set having this property is a finite field with following arithmetic

operations.

• All basic arithmetic operations is executed modulo p for coefficients.

• When the degree of product of two elements from ξ is greater than n, it gets

reduced modulo an irreducible polynomial f(x) having degree n;

We gave a simple example of a finite field Fpn which is taken from [1]. Here we choose

p = 2 and n = 3.

Example of operations on a finite field F23

An irreducible polynomial having degree 3 over F2 is x3 + x+ 1 and let the set ξ has

polynomials of degree less than 3 over F2. Here

ξ = {0, 1, x, 1 + x, x2, 1 + x2, x+ x2, 1 + x+ x2}.

The arithmetic operation on this elements modulo x3 + x+ 1 are shown in following

tables 2.1 and table 2.2.

+ 0 1 x 1 + x x2 1 + x2 x+ x2 1+x+x2

0 0 1 x 1 + x x2 1 + x2 x+ x2 1+x+x2

1 1 0 1 + x x 1 + x2 x2 1+x+x2 x+ x2

x x 1 + x 0 1 x+ x2 1+x+x2 x2 1 + x2

1 + x 1 + x x 1 0 1+x+x2 x+ x2 1 + x2 x2

x2 x2 1 + x2 x+ x2 1+x+x2 0 1 x 1 + x
1 + x2 1 + x2 x2 1+x+x2 x+ x2 1 0 1 + x x
x+ x2 x+ x2 1+x+x2 x2 1 + x2 x 1 + x 0 1

1 + x+ x2 1+x+x2 x+ x2 1 + x2 x2 1 + x x 1 0

Table 2.1: Addition modulo 1 + x+ x3

14

× 0 1 x 1 + x x2 1 + x2 x+ x2 1+x+x2

0 0 0 0 0 0 0 0 0
1 0 1 x 1 + x x2 1 + x2 x+ x2 1+x+x2

x 0 x x2 x+ x2 1 + x 1 1+x+x2 1 + x2

1 + x 0 1 + x x+ x2 1 + x2 1+x+x2 x2 1 x
x2 0 x2 1 + x 1+x+x2 x+ x2 x 1 + x2 1

1 + x2 0 1 + x2 1 x2 x 1+x+x2 1 + x x+ x2

x+ x2 0 x+ x2 1+x+x2 1 1 + x2 1 + x x x2

1 + x+ x2 0 1+x+x2 1 + x2 x 1 x+ x2 x2 1 + x

Table 2.2: Multiplication modulo 1 + x+ x3

2.1.5 Polynomial multiplication

Polynomial consists of variable and coefficients. A polynomial is known as univariate

when it has only one variable. When a polynomial has multiple variable, we called it

as multivariate polynomial. We write univariate polynomial as

P = a0 + a1x
1 + · · ·+ anx

n

where all coefficients ai’s are in a ring R or in a field F and x is a variable. The degree

of a univariate polynomial is the highest power in x that has nonzero coefficient. A

monomial is a polynomial that has only one term.

Let a ∈ F[x] and b ∈ F[x] are two polynomials having degree less than n. Then

by M(n), we denote the number of operations required to multiply the polynomials a

and b.

The total degree of a monomial xj11 x
j2
2 . . . x

jn
n is i1 + i2 + · · · + in, where xi’s are

variables and ji’s are integers for 1 6 i 6 n. The degree of a multivariate polynomial

is the highest total degree among all its monomials that has nonzero coefficient. The

(µ1, . . . , µn) weighted degree of the previous monomial is equal to
∑n

k=1 µkjk where

all µi’s are integers for 1 6 i 6 n. The weighted degree of a multivariate polynomial

is the highest weighted degree among all its monomials that have nonzero coefficient.

2.1.6 Matrix structure

In chapter 3 we explored structured property of our linear problem. In this section

we gave example of two structured matrices.

15

A matrix whose form is




l1,1 0

l2,1 l2,2

t3,1 l3,2
. . .

...
...

. . .
. . .

ln,1 ln,2 . . . ln,n−1 ln,n




∈ F
n×n

is known as lower triangular whereas a matrix having the form




u1,1 u1,2 u1,3 . . . u1,n

u2,2 u2,3 . . . u2,n
. . .

. . .
...

. . . un−1,n

0 un,n




∈ F
n×n

is known as upper triangular matrix.

A matrix is known as Toeplitz matrix when the elements on diagonals of a matrix

are same. It looks like following




t0 t−1 t−2 t−n+1

t1 t0 t−1
. . .

...

t2 t1
. . .

. . .
. . .

...
...

. . .
. . .

. . . t−1 t−2

...
. . . t1 t0 t−1

tn−1 t2 t1 t0




∈ F
n×n.

A matrix is known as Hankel matrix when the elements on antidiagonals of a

matrix are same and looks like following




h0 h1 h2 hn−1

h1 h2 h3
. . .

...

h2 h3
. . .

. . .
. . .

...
...

. . .
. . .

. . . h−(n−2) h−(n−1)

...
. . . h−(n−2) h−(n−1) h−n

hn−1 h−(n−1) h−n h−n+1




∈ F
n×n.

16

These matrices can be represented in a compact form. Let A is a Toeplitz matrix,

and Z is a matrix of the form

Z =




0

1

1
. . .

0 1




∈ F
n×n,

then we have

A = L[G1]U [H
t
1] + L[G2]U [H

t
2]

where

• L[Gj] is a lower triangular Toeplitz matrix;

• U [H t
j] is a upper triangular Toeplitz matrix;

and

G1 =




t0

t1
...

tn−1




G2 =




1

0
...

0




H1 =




1

0
...

...

0




H2 =




0

t−1

...

t−n+1



.

So we have

A− ZAZt = GH t

where Z − ZAZt is known as stain operator. Here the matrices G and H are known

as generator matrices of A and the rank of G and H are 2. A matrix is known as

structured when the rank of its generator matrix is lower than the rank of that matrix.

The rank of A− ZAZt is known as displacement rank of A.

Bibliography

[1] William Stalling. Cryptography and Network Security. Prentice Hall, 2005.

17

Chapter 3

On the Complexity of Multivariate

Interpolation with Multiplicities

and of Simultaneous Polynomial

Approximations

This chapter is published in the homonym paper with Claude-Pierre Jeannerod, Vin-

cent Neiger, Éric Schost and Gilles Villard in the proceedings of ASCM12.

The interpolation step in the Guruswami-Sudan algorithm has attracted a lot of

interest and it is now solved by many algorithms in the literature. This problem

of interpolation with multiplicities has been generalized to multivariate polynomials,

with links to the list-decoding of folded Reed-Solomon codes. Here, we present two

approaches to address this multivariate interpolation which both boil down to solving

a structured homogeneous linear system. The first approach has similarities with

the derivation of Extended Key Equations presented in [39] while the second one

corresponds to solving simultaneous polynomial approximations. In the special case

of Reed-Solomon list-decoding, both our approaches have complexity O (̃ℓω−1m2n),

where ℓ,m, n are the list size and O˜ hide the logarithmic factor from traditional O
notation, the multiplicity and the number of sample points and ω is the exponent of

matrix multiplication.

18

3.1 Introduction

In this paper, we consider a multivariate interpolation problem which originates from

coding theory. In what follows, K is our base field and, in the coding theory context,

s, ℓ,m, n, k, b are respectively known as the number of variables, list size, multiplicity,

code length, message length and as an agreement parameter (which is such that n−b/m
is an upper bound on the number of errors that are allowed on a received word).

We stress here that we do not address the problem of choosing the parameters

s, ℓ,m with respect to n, k, b, as is often done: in our context, these are all input

parameters. Similarly, although we will mention them, we do not make some usual

assumptions on these parameters; in particular, we do not make any assumption that

ensures that our problem admits a solution: the algorithm will detect whether no

solution exists.

Here and hereafter, bold face letters are used for vector objects; degY denotes

the total degree (summation of exponents of all variables) with respect to variables

Y = Y1, . . . , Ys and degX denotes the degree in a single variable X .

Problem 1. MultivariateInterpolation

Input: positive integers s, ℓ,m, n, k, b; points {(xi, yi,1, . . . , yi,s)}16i6n in Ks+1 with

the xi’s pairwise distinct.

Output: a polynomial Q in K[X, Y1, . . . , Ys] satisfying the following conditions:

(i) Q is nonzero

(ii) degY (Q) 6 ℓ

(iii) degX(Q(X,X
kY1, . . . , X

kYs)) < b

(iv) for 1 6 i 6 n, Q(xi, yi,1, . . . , yi,s) = 0 with order at least m.

We call conditions (ii), (iii) and (iv) the list-size condition, the weighted-degree

condition and the vanishing condition, respectively. Here, we say that a point

(xi, yi,1, . . . , yi,s) is a zero of Q of order at least m if the shifted polynomial

Q(X + xi, Y1 + yi,1, . . . , Ys + yi,s) has no monomial of total degree less than m. In

characteristic zero, or larger than m, this means that all derivatives of Q of order up

to m− 1 vanish at (xi, yi,1, . . . , yi,s).

For j in N
s, with j = (j1, . . . , js), write |j| = j1 + · · ·+ js. Let further Γ ⊂ N

s be

the set of all j in Ns such that |j| 6 ℓ and k|j| < b. Then, defining

Nj = b− k|j| > 0,

19

we see that conditions (ii) and (iii) are equivalent to Q being written as

Q(X,Y) =
∑

j∈Γ

Qj(X)Y j , with deg(Qj) < Nj for all j, (3.1)

where we write Y j to denote the s-variate monomial Y j = Y j1
1 · · ·Y js

s . For i in Ns

such that |i| < m, let further

Mi = n(m− |i|)

and define finally

M =
∑

|i|<m

Mi =

(
s+m

s+ 1

)
n and N =

∑

|j|∈Γ

Nj . (3.2)

Then, under conditions (ii) and (iii), finding Q amounts to finding a non-trivial so-

lution to a homogeneous linear system with N unknowns and M equations. It is

customary to assume that N > M , in order to guarantee the existence of a non-

trivial solution; however, as said above, we do not make this assumption, since our

algorithms do not require it.

This problem is a generalization to s variables Y1, . . . , Ys of the interpolation step

of list-decoding algorithms based on Sudan’s idea and its generalization by Guruswami

and Sudan [36, 18]: Sudan’s algorithm corresponds to m = s = 1 and Guruswami-

Sudan’s algorithm to s = 1. Multivariate interpolation problems, with s > 1, corre-

spond for instance to Parvaresh-Vardy codes [29] or folded Reed-Solomon codes [17].

Our solution to Problem 1 relies on a reduction to a simultaneous approximation

problem defined below, which generalizes Padé and Hermite-Padé approximation.

Problem 2. SimultaneousPolynomialApproximations

Input: positive integers µ, ν, (M ′
0, . . . ,M

′
µ−1) and (N ′

0, . . . , N
′
ν−1) and polynomials

(Pi,Fi)06i<µ in K[X], such that for all i, Fi = (Fi,0, . . . , Fi,ν−1), Pi is monic of degree

M ′
i and deg(Fi,j) < M ′

i .

Output: polynomials Q = (Q0, . . . , Qν−1) in K[X] satisfying the following conditions:

(a) the Qj ’s are not all zero

(b) for 0 6 j < ν, deg(Qj) < N ′
j ,

(c) for 0 6 i < µ,
∑

06j<ν QjFi,j = 0 mod Pi.

20

We present two algorithms to solve the latter problem. Both involve a linearization

of the univariate equations (c) into a homogeneous linear system over K; if we define

M ′ =
∑

06i<µ

M ′
i and N ′ =

∑

06j<ν

N ′
j ;

then this system has M ′ equations in N ′ unknowns (remark that as above, we do not

assume that N ′ > M ′).

Our two algorithms amount to reformulating this set of equations as structured

linear systems, which we solve using the algorithm given by Bostan, Jeannerod and

Schost in [7]. The first approach, given in Section 3.5, follows the derivation of

Extended Key Equations presented in the case s = 1, m = 1 by Roth and Rucken-

stein [32] and generalized to s = 1, m > 1 by Zeh, Gentner and Augot [39]; the matrix

of the system is mosaic-Hankel. In our second approach, presented in Section 3.6, the

structured linear system is directly obtained from condition (c), without using key

equations described in [39].

Both points of view lead to the same result, which says that Problem 2 can be

solved in time quasi-linear inM ′, multiplied by a subquadratic term in ρ = max(µ, ν).

In the following theorems, and the rest of this paper, the soft-O notation O (̃) indi-

cates that we omit polylogarithmic terms. The exponent ω is so that we can multiply

n× n matrices using O(nω) ring operations on any ring; the best known bound on ω

is ω 6 2.3727 [12, 35, 38]. Finally, the function M is a multiplication time function for

K[X]: M is such that polynomials of degree at most d in K[X] can be multiplied in

M(d) operations in K, and such that M satisfies the super-linearity properties of [14,

Ch. 8]. It is known that M(d) can be taken in O(d log(d) log log(d)) [10].

Theorem 3. There exists a probabilistic algorithm that either computes a solu-

tion to Problem 2, or determines that none exists, using O(ρω−1M(M ′) log(M ′)2) ⊂
O (̃ρω−1M ′) operations in K, where ρ = max(µ, ν).

The algorithm chooses O(M ′) elements in K; if these elements are chosen uni-

formly at random in a set S ⊂ K of cardinality at least 6(M ′ + 1)2, the probability of

success is at least 1/2.

The probability analysis is a standard consequence of the Zippel-Schwartz lemma;

as usual, the probability of success can be made arbitrarily close to one by increasing

the size of S (this remark holds for all probabilistic algorithms mentioned below).

We will use Theorem 3 to solve Problem 1, which leads to the following result.

21

Theorem 4. There exists a probabilistic algorithm that either computes a solu-

tion to Problem 1, or determines that none exists, using O(rω−1M(M) log(M)2) ⊂
O (̃rω−1M) operations in K, where r = max(|Γ|,

(
s+m−1

s

)
).

The algorithm chooses O(M) elements in K; if these elements are chosen uni-

formly at random in a set S ⊂ K of cardinality at least 6(M + 1)2, the probability of

success is at least 1/2.

In order to understand this cost estimate, let us briefly discuss it under some usual

assumptions on the input parameters:

H1 : m 6 ℓ,

H2 : ℓk < b.

With regards to the first assumption, we mention that the case m > ℓ can easily be

reduced to the case m = ℓ (see Lemma 6). The second assumption means that we do

not take ℓ uselessly large: if ℓk > b, then the weighted-degree constraint implies that

some of the coefficients Qj are identically zero.

Under these assumptions, |Γ| =
(
s+ℓ
s

)
, so r =

(
s+ℓ
s

)
, whereasM =

(
s+m
s+1

)
n. Assume

for simplicity that s is constant; then, r and M grow respectively like ℓs and ms+1n.

As a particular case, we obtain the following result, which discusses the Guruswami-

Sudan algorithm with s = 1.

Corollary 5. Taking s = 1, if the parameters ℓ,m, n, k, b satisfy H1 and H2,

there exists a probabilistic algorithm that computes a solution to Problem 1 using

O(ℓω−1M(m2n) log(mn)2) operations in K, which is O (̃ℓω−1m2n).

The algorithm chooses O(m2n) elements in K; if these elements are chosen uni-

formly at random in a set S ⊂ K of cardinality at least 24m4n2, the probability of

success is at least 1/2.

Notation. Regarding Problem 1, several univariate polynomials will be used re-

peatedly. The polynomial

G(X) =

n∏

i=1

(X − xi),

is called the master polynomial associated to the xi’s; we will also use the s-tuple

R = (R1, . . . , Rs) of Lagrange interpolation polynomials, defined by the conditions

deg(Rj) < n and Rj(xi) = yi,j

for 1 6 i 6 n and 1 6 j 6 s.

22

Previous work. We are not aware of previous results specific to Problem 2, but

several particular cases of it are well known. When all Pi’s are of the form XMi , this

problem becomes known as a simultaneous Hermite-Padé approximation problem or

vector Hermite-Padé approximation problem [3, 34]. The case µ = 1, with P1 being

given through its roots (and their multiplicities) is known as the M-Padé problem [2].

Regarding Problem 1, previous results focus on the Guruswami-Sudan case s = 1;

we summarize them in Table 3.1, in which we make assumptions H1 and H2. In some

cases [30, 1, 5, 11], the complexity was not stated quite exactly in our terms but the

translation is straightforward.

For this case, the most significant factor in the running time is its dependency with

respect to n, with results either being cubic, quadratic, or quasi-linear. Then, under

the assumption H1 : m 6 ℓ, the second most important parameter is ℓ, followed by

m. In particular, our result in Corollary 5 compares favorably to the cost O (̃ℓωmn)

from [11], which was, to our knowledge, the best previous bound for this problem.

In the general case s > 1, the result in Theorem 4 improves as well on the best

previously known bounds; we discuss those below.

Sudan case (m = 1)

Sudan [36] O(n3)
Roth-Ruckenstein [32] O(ℓn2)
Olshevsky-Shokrollahi [27] O(ℓn2)
This paper (probabilistic) O(ℓω−1M(n) log(n)2)

Guruswami-Sudan case (m > 1)

Guruswami-Sudan [18] O(m6n3)
Olshevsky-Shokrollahi [27] O(ℓm4n2)
Augot-Gentner-Zeh [39] O(ℓm4n2)
Kötter / McEliece [21, 23] O(ℓm4n2)
Reinhard [30] O(ℓ3m4n2)
Lee-O’Sullivan [22] O(ℓ4mn2)
Trifonov [37] (heuristic) O(m3n2)
Alekhnovich [1] O(ℓ4m4M(n) log(n))
Beelen-Brander [4] O(ℓ3M(ℓmn) log(ℓmn))
Bernstein [5] O(ℓωM(ℓn) log(ℓn))
Cohn-Heninger [11] O(ℓωM(mn) log(ℓn))
This paper (probabilistic) O(ℓω−1M(m2n) log(mn)2)

Table 3.1: Overview of previous results, s = 1.

Most previous algorithms rely on linear algebra, either over K or over K[X].

Working over K, a natural idea is to rely on cubic-time general linear system solvers,

as in Sudan’s and Guruswami-Sudan’s original papers. Several papers also cast the

23

problem in terms of Gröbner basis computation in K[X, Y], implicitly or explicitly:

the incremental algorithms of [21, 26, 23] are particular cases of the Buchberger-Möller

algorithm [24], while Alekhnovich’s algorithm [1] is a divide-and-conquer change-of-

order for bivariate ideals.

Yet another line of work [32, 39] uses Feng-Tzeng’s linear system solver [13],

combined with a reformulation in terms of syndromes and key equations. We will use

(and generalize to the case s > 1) some of these results in Section 3.5, but we will

rely on the structured linear system solver of [7] in order to prove our main results.

Prior to our work, Olshevsky and Shokrollahi also used structured linear algebra

techniques [27], but it is unclear to us whether their encoding of the problem could

lead to similar results as ours.

As said above, another approach rephrases the problem of computing Q in terms

of polynomial matrix computations, that is, as linear algebra over K[X]; this was in

particular the basis of the extensions to the multivariate cases s > 1 in [9, 8]. Starting

from generators of an ad-hoc K[X]-module (or polynomial lattice) that is known to

contain a non-trivial Q, the algorithms in [22, 9, 4, 8, 5, 11] compute a Gröbner

basis of that lattice, or simply a short vector therein. To achieve quasi-linear time

in n (almost linear up to logarithmic factor), the algorithms in [4, 8] use a short

vector subroutine due to Alekhnovich [1], while those in [5, 11] rely on a (faster, but

probabilistic) algorithm due to Giorgi, Jeannerod and Villard [15]. For a lattice of

dimension L, with generators of degree at most d, that algorithm in [4, 8] runs in time

O(LωM(d) log(Ld)). Note that a recent deterministic algorithm from [16] achieves the

same cost; this is the best result known to date.

Two main lattice constructions exist in the literature (Bernstein [5] gives more

refined constructions, better adapted to some choices of the parameters). Follow-

ing [9], we present them directly in the case s > 1; we give the cost bounds that

can be obtained using the (fast) algorithms of [15, 16] for lattice reduction. The first

construction may be called banded (due to the shape of the generators it involves

when s = 1); its generators derive from the polynomials G and R introduced before:

{
Gi

s∏

r=1

(Yr −Rr)
jr

∣∣∣∣∣ i > 0, j1, . . . , js > 0, i+ |j| = m

}

⋃
{

s∏

r=1

(Yr − Rr)
jrY Jr

r

∣∣∣∣∣ j1, . . . , js > 0, J1, . . . , Js > 0, |j| = m, |J | 6 ℓ−m
}
,

The second construction may be called triangular ; its generators derive from the

24

polynomials

{
Gi

s∏

r=1

(Yr − Rr)
jr

∣∣∣∣∣ i > 0, j1, . . . , js > 0, i+ |j| = m

}

⋃
{

s∏

r=1

(Yr − Rr)
jr

∣∣∣∣∣ j1, . . . , js > 0, m 6 |j| 6 ℓ

}
.

When s = 1, the first construction is used in [4, Remark 16] and [22, 11] and

the second is used in [4, 5]; the latter also appears in [8] for s > 1. In both

cases, the actual lattice bases are the coefficient vectors (in Y) of the polynomials

h(X,XkY1, . . . , X
kYs), for h in either of the sets above.

For the banded basis, we have the following dimension and degree bounds, from [9]:

Lb =

(
s+m− 1

s

)
+

(
s +m− 1

s− 1

)(
s+ ℓ−m

s

)
and db = O(mn);

in the triangular case, we have

Lt =

(
s+ ℓ

s

)
and dt = O(ℓn).

Under our assumption m 6 ℓ, we always have Lb > Lt and db 6 dt; when s = 1, we

get Lb = Lt = ℓ+1. In both cases, we readily deduce the cost of finding a polynomial

Q from [15, 16], respectively to O(LωbM(db) log(Lbdb)) and O(Lωt M(dt) log(Ltdt)).

For s = 1, these are the costs reported in [5, 11]. For s > 1, the costs reported

in [9, 8] are worse, because the short vector algorithms used in thoses references are

inferior to the ones we refer to. UnderH1 andH2, and possibly neglecting logarithmic

factors from O notation, the result in Theorem 4 is an improvement over those of

both [9] and [8]. To see this, remark that the cost in our theorem is quasi-linear in(
s+ℓ
s

)ω−1(s+m
s+1

)
n, whereas the costs in [9, 8] are at least

(
s+ℓ
s

)ω
mn; a quick simplification

proves our claim.

It is interesting to notice that the two main approaches discussed here — solving a

linear system over K or finding a short vector in a polynomial lattice L — ultimately

rely on the same assumptions to ensure success. We have already mentioned that

under the linear algebra point of view, the assumptionM < N ensures that Problem 1

admits a solution. For lattice-based methods, the list-size and vanishing conditions

are consequences of belonging to the lattice; in order to guarantee that the shortest

vector in the lattice L will correspond to a polynomial Q ∈ K[X,Y] that satisfies the

25

weighted-degree condition, the following condition must hold:

deg(det(L))
dimL < b.

For both lattices described above, assuming as before m 6 ℓ, one can verify that this

inequality can be rewritten

1(
s+ℓ
s

)


 ∑

06|i|<m

n(m− |i|) +
∑

06|j|6ℓ

|j|k


 < b.

This is precisely the assumption M < N seen before.

Outline of the paper. The next section briefly discusses the relevance of assump-

tion H1. Then, after a reminder on algorithms for structured linear systems, we show

how to reduce Problem 1 to Problem 2 in Section 3.4, then give two algorithms that

both prove Theorem 3, in Sections 3.5 and 3.6.

3.2 Preliminaries: assumption H1

In this very brief section, we discuss assumption H1 that was introduced previously

for Problem 1. In Theorem 4, we do not make any assumption on m and ℓ, but we

mentioned that assumption H1, that is, m 6 ℓ is mostly harmless. The following

lemma substantiates this claim, by showing that the case m > ℓ can be reduced

to the case m = ℓ. As mentioned in the introduction, we denote by G the master

polynomial
∏

16i6n(X − xi).

Lemma 6. Suppose that m > ℓ. Then, if b < n(m − ℓ), Problem 1 with parameters

(s, ℓ,m, n, k, b) has no solution. Else, the solutions to that problem are exactly the

polynomials of the form Q = Q⋆ Gm−ℓ, where Q⋆ is a solution to Problem 1 with

parameters (s, ℓ, ℓ, n, k, b− n(m− ℓ)).

Proof. Let Q be a solution to Problem 1 with parameters (s, ℓ,m, n, k, b). We claim

that b > n(m − ℓ), that Gm−ℓ divides Q, and that Q⋆ = Q/Gm−ℓ is a solution to

Problem 1 with parameters (s, ℓ, ℓ, n, k, b− (m− ℓ)).
Let i be in {1, . . . , n}. By condition (iv), Qi = Q(X + xi, Y1 + yi,1, . . . , Ys + yi,s)

has no monomial of total degree less than m. By condition (ii), every monomial in

Qi has degree at most ℓ in Y , so each such monomial is a multiple of Xm−ℓ. Shifting

back the coordinates, and considering all i’s in {1, . . . , n} proves the first claim.

26

Let then Q⋆ = Q/Gm−ℓ. This polynomial is nonzero, has degree at most ℓ in Y ,

and

Q⋆(X,XkY1, . . . , X
kYs) = Q(X,XkY1, . . . , X

kYs)/G
m−ℓ.

Since the numerator on the right-hand side has degree less than b, and Q⋆ is nonzero

we must in particular have b > n(m − ℓ), as claimed. Besides, for 1 6 i 6 n, the

remarks above show that Q⋆(xi, yi,1, . . . , yi,s) = 0 with multiplicity ℓ. Thus, Q⋆ is a

solution to Problem 1 with parameters (s, ℓ, ℓ, n, k, b− n(m− ℓ)).
Conversely, let Q′ be any solution to Problem 1 with parameters (s, ℓ, ℓ, n, k, b−

n(m− ℓ)). Proceeding as in the previous paragraphs, one easily verifies that Q′ Gm−ℓ

is a solution to the problem with parameters (s, ℓ,m, n, k, b), so the proof is complete.

3.3 Solving structured linear systems

Our main algorithms rely on solving linear systems over K. In this section, we briefly

review useful concepts and results related to displacement rank techniques. While

these techniques can handle systems with several kinds of structure, we will only

need (and discuss) those related to Toeplitz-like and Hankel-like systems (explained

in chapter 2); for a more comprehensive treatment, the reader may consult [28].

Let M be a positive integer and let ZM ∈ KM×M be the square matrix with ones

on the subdiagonal and zeros elsewhere:

ZM =




0 0 · · · 0 0

1 0 · · · 0 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0




∈ K
M×M .

Given two integers M,N , consider the following operators:

∆M,N : KM×N → KM×N

A 7→ A−ZM AZTN

and
∆′
M,N : KM×N → KM×N

A 7→ A− ZM AZN ,

27

which subtract from A its translate one place along the diagonal, resp. along the

anti-diagonal.

Let us discuss ∆M,N first. If A is a Toeplitz matrix, that is, invariant along

diagonals, ∆M,N(A) has rank at most two. As it turns out, Toeplitz systems can

be solved much faster than general linear systems, in quasi-linear time in M . The

main idea behind algorithms for structured matrices is to extend these algorithmic

properties to those matrices A for which the rank of ∆M,N(A) is small, in which case

we call A Toeplitz-like. Below, this rank will be called the displacement rank of A

(with respect to ∆M,N).

Two matrices (V, W) in KM×α×Kα×N will be called a generator of length α for A

with respect to ∆M,N if ∆M,N(A) = V W . For the structure we are considering, one

can recover A from its generators; in particular, one can use a generator of length α

as a way to represent A using α(M +N) field elements. One of the main aspects of

structured linear algebra algorithms is to use generators as a compact data structure

throughout the whole process.

Up to now, we only discussed the Toeplitz structure. Hankel-likematrices are those

which have a small displacement rank with respect to ∆′
M,N , that is, those matrices

A for which the rank of ∆′
M,N(A) is small. As far as solving the system Au = 0 is

concerned, this case can be easily reduced to the Toeplitz-like case. Define B = AJN ,

where JN is the reversal matrix of size N , all entries of which are zero, except the

anti-diagonal which is set to one. Then, one easily checks that the displacement rank

of A with respect to ∆′
M,N is the same as the displacement rank of B with respect to

∆M,N , and that if (V,W) is a generator for A with respect to ∆′
M,N , (V,WJN) is a

generator for B with respect to ∆M,N . Using the algorithm for Toeplitz-like matrices

gives us a solution v to Bv = 0, from which we deduce that u = JNv is a solution to

Au = 0.

In this paper, we will not enter the details of algorithms for solving such structured

systems. The main result we will rely on is the following proposition, a minor exten-

sion of a result by Bostan, Jeannerod and Schost [7], which features the best known

complexity for this kind of task, to the best of our knowledge. This algorithm is based

on previous work of Bitmead-Anderson [6], Morf [25], Kaltofen [20] and Pan [28], and

is probabilistic (it depends on the choice of some parameters in the base field, and suc-

cess is ensured provided these parameters avoid a strict hypersurface of the parameter

space).

The proof of the following proposition occupies the rest of this section. Remark

that some aspects of this statement could be improved (for instance, we could re-

28

duce the cost so that it only depends on M , not max(M,N)), but that would be

inconsequential for the applications we make of it.

Proposition 7. Given a generator (V,W) of length α for a matrix A ∈ KM×N ,

with respect to either ∆M,N or ∆′
M,N , one can find a non-zero element in the

nullspace of A, or determine that none exists, by a probabilistic algorithm that uses

O(αω−1M(P) log(P)2) operations in K, with P = max(M,N).

The algorithm chooses O(P) elements in K; if these elements are chosen uniformly

at random from a set S ⊂ K of cardinality at least 6P 2, the probability of success is

at least 1/2.

Square matrices. In all that follows, we consider only the operator ∆M,N , since

we already pointed out that the case of ∆′
M,N can be reduced to it at no extra cost.

When M = N , we use directly [7, Theorem 1], which gives the running time

reported above. That result does not explicitly state which solution we obtain, as

it is written for general non-homogeneous systems. Here, we want to make sure we

obtain a nonzero nullspace element (if one exists), so slightly more details are needed.

The algorithm in that theorem chooses 3M − 2 elements in K, the first 2M − 2

of which are used to precondition A by giving it generic rank profile; this is the case

when these parameters avoid a hypersurface of K2M−2 of degree at most M2 +M .

Assume this is the case. Then, the output vector u is obtained in a parametric

form as u = ℓ(u′), where u′ consists of another set of M parameters chosen in K and

ℓ is a surjective linear mapping with image the nullspace ker(A) of A. If ker(A) is

trivial, the algorithm returns the zero vector in any case, which is correct. Otherwise,

the set of vectors u′ such that ℓ(u′) = 0 is contained in a hyperplane of KM , so it is

enough to choose u′ outside of that hyperplane to ensure success.

Using the Zippel-Schwartz lemma and the obvious upper bound M2 +M + 1 6

3M2, we conclude that if we choose all parameters uniformly at random in a subset

S of K of cardinality at least 6M2, the algorithm succeeds with probability at least

1/2.

Wide matrices. Suppose now thatM < N , so that the system is underdetermined.

We add N −M zero rows on top of A, obtaining an N ×N matrix A′. Applying the

algorithm for the square case to A′, we will obtain a nullspace element u for A′ and

thus A, since these nullspaces are the same. In order to do so, we need to construct a

generator for A′ from the generator (V,W) we have for A: one simply takes (V ′,W),

where V ′ is the matrix in KN×α obtained by adding N −M zero rows on top of V .

29

Tall matrices. Suppose finally that M > N . This time, we build the matrix

A′ ∈ KM×M by adjoining M − N zero columns to A on the left. The generator

(V,W) of A can be turned into a generator of A′ by simply adjoining M − N zero

columns to W on the left. We then solve the system A′s = 0, and return the vector

u obtained by discarding the first M −N entries of s.

The cost of this algorithm fits into the requested bound; all that remains to

see is that we obtain a nonzero vector in the nullspace ker(A) of A with nonzero

probability. Indeed, the nullspaces of A and A′ are now related by the equality

ker(A′) = KM−N ×ker(A). We mentioned earlier that in the algorithm for the square

case, the solution s to A′s = 0 is obtained in parametric form, as s = ℓ(s′) for

s′ ∈ K
M , with ℓ a surjective mapping K

M → ker(A′). Composing with the projection

π : ker(A′) → ker(A), we obtain a parametrization of ker(A) as u = (π ◦ ℓ)(s′). The

error probability analysis is then the same as in the square case.

3.4 Reducing Problem 1 to Problem 2

In this section, we show how instances of Problem 1 can be reduced to instances of

Problem 2. The main technical ingredient, stated in Lemma 8 below, generalizes to

any s > 1 the one given for s = 1 by Zeh, Gentner, and Augot in [39, Proposition

3]. To prove it, we use the same steps as in [39]; we rely on the notion of Hasse

derivatives, which allow us to write Taylor expansions in positive characteristic (see

for instance Hasse [19] or Roth [31, pp. 87, 276]).

In what follows, comparison and addition of s-tuples of integers are defined com-

ponentwise. For example, writing i 6 j is equivalent to ik 6 jk for k = 1, . . . , s,

and i− j denotes (i1 − j1, . . . , is − js). Similarly, if y = (y1, . . . , ys) is in K[X]s then

Y − y = Y1 − y1, . . . , Ys − ys. Finally, for products of binomial coefficients, we shall

write (
j

i

)
=

(
j1
i1

)
· · ·
(
js
is

)
.

Note that this coefficient is zero when i 66 j; note also that the monomial Y i has

total degree degY (Y i) = |i| = i1 + · · ·+ is.

If A is any commutative ring with unity and A[Y] denotes the ring of polynomials

in Y1, . . . , Ys over A, then for a polynomial P (Y) =
∑

j PjY
j in A[Y] and a multi-

index i in Ns, the order-i Hasse derivative of P is the polynomial P [i] in A[Y] defined

30

by

P [i] =
∑

j>i

(
j

i

)
PjY

j−i.

The Hasse derivative satisfies the following property (Taylor expansion): for all a in

A
s,

P (Y) =
∑

i

P [i](a)(Y − a)i.

The following lemma shows how Hasse derivatives can help rephrase the vanishing

condition (iv) of Problem 1. Below, the polynomials G and R are as defined in the

introduction.

Lemma 8. For any polynomial Q in K[X,Y], Q satisfies the vanishing condition

(iv) of Problem 1 if and only if for all i in Ns such that |i| < m,

Q[i](X,R) = 0 mod Gm−|i|.

Proof. Since the xr’s defining G =
∏n

r=1(X − xr) are pairwise distinct, it suffices to

prove, for 1 6 r 6 n, the following equivalence for the point (xr,yr): Q(xr,yr) = 0

with order at least m if and only if for all i in Ns such that |i| < m, Q[i](X,R) =

0 mod (X − xr)m−|i|. Now, up to a shift one can assume that this point is 0 ∈ Ks+1;

in other words, it suffices to show that for R(0) = 0 ∈ Ks, we have Q(0, 0) = 0

with order at least m if and only if, for all i in N
s such that |i| < m, Xm−|i| divides

Q[i](X,R).

Assume first that 0 ∈ Ks+1 is a root of Q of order at least m. Then, Q(X,Y) =
∑

j QjY
j has only monomials of total degree at least m, so that for j > i, each

nonzero QjY
j−i has only monomials of total degree at least m − |i|. Now, R(0) =

0 ∈ Ks implies that X divides each component of R. Consequently, Xm−|i| divides

QjR
j−i for each j > i, and thus Q[i](X,R) as well.

Conversely, let us assume that for all i in Ns such that |i| < m, Xm−|i| divides

Q[i](X,R), and show that Q has no monomial of total degree less than m. Writing

the Taylor expansion of Q with A = K[X] and a = R, we obtain

Q(X,Y) =
∑

i

Q[i](X,R)(Y −R)i.

Each component of R being a multiple of X , we deduce that for the multi-indices i

such that |i| > m every nonzero monomial in Q[i](X,R)(Y −R)i has total degree

31

at least m. Using our assumption, the same conclusion follows for the multi-indices

such that |i| < m.

For i in Ns, with |i| < m, define the polynomials

Pi = Gm−|i|

as well as Fi = (Fi,j)j∈Γ, with

Fi,j =

(
j

i

)
Rj−i mod Pi =

(
j1
i1

)
Rj1−i1

1 · · ·
(
js
is

)
Rjs−is
s mod Pi.

Then, the previous lemma implies that Q satisfies properties (ii)-(iv) if and only if it

can be written as Q =
∑

j∈ΓQjY
j , with deg(Qj) < Nj for all j and, for all i in Ns

such that |i| < m, ∑

j∈Γ

QjFi,j = 0 mod Pi.

The latter conditions express the problem of finding such a Q as an instance of

Problem 2. In order to make the reduction completely explicit, define further

µ =

(
s+m− 1

s

)
, ν = |Γ|,

and choose arbitrary orders on the set of indices {i ∈ Ns | |i| < m} and Γ, that is,

bijections

φ : {0, . . . , µ− 1} → {i ∈ N
s | |i| < m} and ψ : {0, . . . , ν − 1} → Γ.

To i in {0, . . . , µ − 1}, we can then associate M ′
i = Mφ(i), and similarly to j in

{0, . . . , ν − 1} we associate N ′
j = Nψ(j); we also set P ′

i = Pφ(i) and F
′
i,j = Fφ(i),ψ(j).

Proposition 9. Let (s, ℓ,m, n, k, b) be parameters for Problem 1, and let the param-

eters µ, ν,M ′ = (M ′
0, . . . ,M

′
µ−1),N

′ = (N ′
0, . . . , N

′
ν−1) be as above.

Then, one can reduce an instance of Problem 1 with parameters (s, ℓ,m, n, k, b)

to an instance of Problem 2 with parameters (µ, ν,M ′,N ′) and input polyno-

mials (P ′
i ,F

′
i) using O(rM(M) log(M)) operations in K, where we write r =

max(
(
s+m−1

s

)
, |Γ|) = max(µ, ν).

Proof. The only thing left to do is the complexity analysis. First, we need to compute

Pi = Gm−|i| for every i such that |i| < m. This involves only m different polynomials,

32

namely G, . . . , Gm, so it can be done using O(mM(mn)) operations; this will be

dominated by the cost of the third step below.

Then, we have to compute the interpolation polynomials R = (R1, . . . , Rs)(using

Lagrange Interpolation). Each of them can be computed inO(M(n) log(n)) operations

in K, for a total of O(sM(n) log(n)), which is O(sM(M) log(M)). We have |Γ| > s, so

that this cost is O(rM(M) log(M)), except in the extreme case when Γ = {(0, . . . , 0)},
so that |Γ| = 1; in that case, however, we need not compute R and we can omit the

cost of interpolation.

Finally, we compute Fi,j mod Pi for every i, j. This is done by fixing i and

computing all products Fi,j mod Pi incrementally, starting from R1, . . . , Rs. Each

product takes O(M(Mi)) operations in K. Summing over all j leads to a cost of

O(|Γ|M(Mi)) per index i. Summing over all i and using the super-linearity of M

leads to a total cost of O(|Γ|M(M)), which is O(rM(M)).

Thus, in order to prove Theorem 4, it is enough to prove Theorem 3: in view of

the cost reported in Theorem 3 for solving the linear system, the cost of reduction

given above will always be negligible.

3.5 Solving Problem 2 through a mosaic-Hankel

linear system

In this section, we give our first solution to Problem 2, thereby proving Theorem 3.

This approach extends to arbitrary s the derivation of Extended Key Equations

presented in [32, 39] for s = 1; contrary to those references, however, we apply the

algorithm of Section 3.3 to solve the resulting mosaic-Hankel linear system, since it

features the best cost we are aware of for this task.

We consider input polynomials (Pi,Fi)06i<µ with, for all i, Pi monic of degree M ′
i

and Fi a vector of ν polynomials (Fi,0, . . . , Fi,ν−1), all of degree less than M ′
i . Given

degree bounds N ′
0, . . . , N

′
ν−1, we look for polynomials Q = (Q0, . . . , Qν−1) in K[X]

such that the following holds:

(a) the Qj ’s are not all zero

(b) for 0 6 j < ν, deg(Qj) < N ′
j ,

(c) for 0 6 i < µ,
∑

06j<ν QjFi,j = 0 mod Pi.

33

Our goal here is to linearize the problem into a linear system involving M ′ linear

equations with N ′ unknowns. Let us start by making a few simplifying assumptions.

• We can assume without loss of generality that for all i in {0, . . . , µ − 1}, the
vector of polynomials Fi is not identically zero: if that were the case, the

corresponding equation would become 0 = 0, and could be discarded.

• Without loss of generality, we may as well assume that N ′ 6M ′ +1. Indeed, if

N ′ > M ′ +1, the instance of Problem 2 we are considering has more unknowns

than equations. We may set the last N ′ − (M ′ + 1) unknowns to zero, while

keeping the system underdetermined. This simply amounts to replacing the

degree bounds N ′
0, . . . , N

′
ν−1 by N ′

0, . . . , N
′
ν′−2, N

′′
ν′−1, for ν

′ 6 ν and N ′′
ν′−1 6

N ′
ν′−1 such that N ′

0 + · · ·+N ′
ν′−2 +N ′′

ν′−1 = M ′ + 1. In particular, ν may only

decrease through this process.

In what follows, we will work with the reversals of the polynomials Pi and Fi, defined

by

Pi = XM ′

iPi(X
−1) and F = (Fi,j)i,j , with Fi,j = XM ′

i−1Fi,j(X
−1).

Similarly, for j in {0, . . . , ν − 1}, we associate to the unknown polynomial Qj its

reversal Qj = XN ′

j−1Qj(X
−1). For i and j as above, we define further

δi =M ′
i+max{N ′

j | j ∈ {0, . . . , ν−1}, Fi,j 6= 0}−1 and γi,j = δi−(M ′
i+N

′
j−1) > 0.

Since all N ′
j ’s are positive, and since by assumption we take the maximum of a non-

empty set, the inequality δi > M ′
i holds for all i. Finally, for all i, j, we define Si,j

as

Si,j =
Xγi,jFi,j

Pi
mod Xδi ;

we see Si,j as an element of K[X], which is valid since γi,j > 0 and Pi is a unit modulo

Xδi .

Lemma 10. Suppose that Q = (Q0, . . . , Qν−1) satisfies (b). Then, Q satisfies condi-

tion (c) if and only if for all i in {0, . . . , µ− 1}, there exists a polynomial Ti in K[X]

such that

∑

06j<ν

QjSi,j = Ti mod Xδi and deg(Ti) < δi −M ′
i . (3.3)

34

Proof. Condition (c) holds if and only if for all i in {0, . . . , µ − 1}, there exists a

polynomial Bi in K[X] such that

∑

06j<ν

QjFi,j = BiPi. (3.4)

For all i, j, the summand QjFi,j has degree less than N
′
j+M

′
i−1, so the left-hand term

above has degree less than δi. Since Pi has degree M
′
i , this implies that whenever a

polynomial Bi as above exists, we must have deg(Bi) < δi−M ′
i . Now, by substituting

1/X for X and multiplying by Xδi−1 we can rewrite the identity in (3.4) as

∑

06j<ν

Qj Fi,jX
γi,j = TiPi, (3.5)

where Ti is the polynomial of degree less than δi−M ′
i given by Ti = Xδi−M ′

i−1Bi(X
−1).

Since the degrees of both sides of (3.5) are less than δi, one can consider the above

identity modulo Xδi without loss of generality, and since Pi(0) = 1 one can further

divide by Pi modulo Xδi. This shows that (3.5) is equivalent to the identity in (3.3)

and the proof is complete.

Following [32, 39], we are going to rewrite the latter conditions as a linear sys-

tem in the coefficients of the polynomials Q, eliminating the unknowns Ti from the

outset. Let us first define the coefficient vector of a vector Q = (Q0, . . . , Qν−1) that

satisfies (b). For any such polynomials, and for any j in {0, . . . , ν − 1}, we denote by

xj =
[
Q

(0)
j , Q

(1)
j , . . . , Q

(N ′

j−1)

j

]T
∈ K

N ′

j

the vector of coefficients of Qj and we define the coefficient vector of Q as the column

vector in KN ′

obtained by concatenating x0, . . . , xν−1.

For i in {0, . . . , µ−1} and j in {0, . . . , ν−1}, let also S(0)
i,j , S

(1)
i,j , . . . be the coefficients

of Si,j. Using these coefficients, we define the Hankel matrix

Ai,j = [Au,vi,j]06u<M ′

i ,06v<N
′

j
= [S

(u+v+γi,j)
i,j]06u<M ′

i ,06v<N
′

j
∈ K

M ′

i×N
′

j ,

and the mosaic-Hankel matrix A = [Ai,j]06i<µ,06j<ν ∈ KM ′×N ′

.

Lemma 11. A nonzero vector of KN ′

is in the nullspace of A if and only if it is the

coefficient vector of a solution Q to Problem 2.

Proof. It is sufficient to consider a polynomial vector Q that satisfies (b). Then,

35

looking at the high-degree terms in equations (3.3), we see that condition (c) is

equivalent to the following system of so-called Extended Key Equations: for all i in

{0, . . . , µ− 1} and all δ in {δi −M ′
i , . . . , δi − 1},

∑

06j<ν

∑

06r<N ′

j

Q
(N ′

j−1−r)

j S
(δ−r)
i,j = 0.

The matrix obtained by considering all these equations is precisely A.

We will use the algorithm of Section 3.3 to find a nullspace element for A, with

respect to the displacement operator ∆′
M ′,N ′. Not only do we need to prove that

the displacement rank of A with respect to ∆′
M ′,N ′ is not too large, we also have to

compute generators for A, that is, matrices V and W such that A − ZM ′AZN ′ =

VW . We will see that here, computing these generators boils down to computing the

coefficients of the polynomials Si,j.

The cost incurred by computing these generators is summarized in the following

lemma; combined with Lemma 11 and Proposition 7, this proves Theorem 3.

Lemma 12. The displacement rank of A with respect to ∆′
M ′,N ′ is at most µ + ν.

Furthermore, one can compute generators for A using O ((µ+ ν)M(M ′)) operations

in K.

Proof. We are going to exhibit two matrices V ∈ KM ′×(µ+ν) and W ∈ K(µ+ν)×N ′

such

that A − ZM ′AZN ′ = VW . Because of the structure of A, at most µ rows and ν

columns of the matrix A−ZM ′AZN ′ = A−(A shifted left and down by one unit) are

nonzero. More precisely, only the first row and the last column of each (M ′
i×N ′

j) block

of this matrix can be nonzero. Indexing the rows, resp. columns, of A − ZM ′AZN ′

from 0 to M ′ − 1, resp. from 0 to N ′ − 1, only the µ rows with indices of the form

ri =
∑

i′<iM
′
i′ , for i = 0, . . . , µ − 1, can be nonzero, and only the ν columns with

indices of the form cj = −1 +
∑

j′6j N
′
j′, for j = 0, . . . , ν − 1, can be nonzero.

For any integers 0 6 i < K, define Oi,K = [0 · · · 0 1 0 · · · 0]T ∈ KK with 1 at

position i, and

O(V) = [Ori,M ′]06i<µ ∈ K
M ′×µ, O(W) =

[
Ocj ,N ′

]T
06j<ν

∈ K
ν×N ′

.

For given i in {0, . . . , µ − 1} and j in {0, . . . , ν − 1}, we will consider vi,j ∈ KM ′

i×1

and wi,j ∈ K
1×N ′

j which are respectively the last column and the first row of the block

(i, j) in A−ZM ′AZN ′ , up to a minor point: the first entry of vi,j is set to zero. Their

36

coefficients

vi,j = [v
(r)
i,j]06r<M ′

i
and wi,j = [w

(r)
i,j]

T
06r<N ′

j

are as follows:

v
(r)
i,j =

{
0 if r = 0

A
r,N ′

j−1

i,j − Ar−1,0
i,j+1 otherwise,

w
(r)
i,j =

{
A0,r
i,j − A

M ′

i−1
−1,r+1

i−1,j if r < M ′
i − 1

A
0,M ′

i−1
i,j − AM

′

i−1
−1,0

i−1,j+1 if r =M ′
i − 1.

Note that here, we use the convention that an indexed object is zero when the index

is out of the allowed bounds for this object.

Then, we define Vj and Wi as

Vj =




v0,j
...

vµ−1,j


 ∈ K

M ′×1 and Wi = [wi,0 · · · wi,ν−1]06j<ν ∈ K
1×N ′

,

and

V ′ = [· · · Vj · · ·]06j<ν ∈ K
M ′×ν and W ′ =




...

Wi

...




06i<µ

∈ K
µ×N ′

.

Now, one can easily verify that the matrices

V =
[
V ′ O(V)

]
∈ K

M ′×(µ+ν) and W =

[
O(W)

W ′

]
∈ K

(µ+ν)×N ′

are generators for A, that is, A− ZMAZN = VW .

We notice that all we need to compute the generators V and W are the highest

M ′
i +N ′

j − 1 coefficients of Si,j for every i in {0, . . . , µ − 1} and j in {0, . . . , ν − 1}.
Now, recall that

Si,j =
Xγi,jFi,j

Pi
mod Xδi =

Xδi−(M ′

i+N
′

j−1)Fi,j

Pi
mod Xδi .

Thus, the first δi− (M ′
i +N

′
j−1) coefficients of Si,j are zero, and the last M ′

i +N
′
j−1

37

coefficients of Si,j are the coefficients of

S⋆i,j =
Fi,j

Pi
mod XM ′

i+N
′

j−1,

which can be computed in O(M(M ′
i + N ′

j)) operations in K by fast power series

division. By expanding products, we see that M(M ′
i + N ′

j) = O(M(M ′
i) + M(N ′

j)).

Summing the costs, we obtain an upper bound of the form

O
(
∑

06i<µ

∑

06j<ν

M(M ′
i) +M(N ′

j)

)
.

Using the super-linearity of M, this is in O(νM(M ′) + µM(N ′)). Since we assumed

that N ′ 6M ′ + 1, this is O((µ+ ν)M(M ′)).

3.6 A direct solution to Problem 2

In this section, we propose an alternative solution to Problem 2 with the same asymp-

totic running time as in the previous section. As above, our input is the polynomi-

als (Pi,Fi)06i<µ and we look for polynomials (Q0, . . . , Qν−1) in K[X] such that for

0 6 i < µ,
∑

06j<ν QjFi,j = 0 mod Pi, with the same degree constraints as previously.

In addition, we denote by F
(r)
i,j and P

(r)
i the coefficients of Fi,j and Pi, respectively,

and we define Ci as the M ′
i ×M ′

i companion matrix of Pi; if B is a polynomial of

degree less than M ′
i with coefficient vector α ∈ KM ′

i , then the product Ciα ∈ KM ′

i is

the coefficient vector of the polynomial XB mod Pi. Explicitly, we have

Ci =




0 0 · · · 0 −P (0)
i

1 0 · · · 0 −P (1)
i

0 1 · · · 0 −P (2)
i

...
...

. . .
...

...

0 0 · · · 1 −P (M ′

i−1)
i




.

We are going to see that solving Problem 2 is equivalent to finding a nonzero

solution to a homogeneous linear system whose matrix is A′ = (A′
i,j) ∈ K

M ′×N ′

,

where for every i < µ and j < ν, A′
i,j ∈ K

M ′

i×N
′

j is a matrix which depends on the

coefficients of Fi,j and Pi. Without loss of generality, we make the same assumptions

as in the previous section: for all i in {0, . . . , µ− 1}, the vector of polynomials Fi is

not identically zero, and N ′ 6M ′ + 1 holds.

38

For i, j as above and for r ∈ N, let α
(r)
i,j ∈ KM ′

i be the coefficient vector of the

polynomial XrFi,j mod Pi, so that these vectors are given by

α
(0)
i,j =




F
(0)
i,j
...

F
(M ′

i−1)
i,j


 and α

(r+1)
i,j = Ciα(r)

i,j .

Let then A′ = (A′
i,j) ∈ KM ′×N ′

, where for every i < µ and j < ν, the block A′
i,j ∈

K
M ′

i×N
′

j is defined by

A′
i,j =

[
α
(0)
i,j · · · α

(N ′

j−1)

i,j

]
;

in particular, A′
i,j is the matrix of the mapping Q 7→ QFi,j mod Pi, for Q of degree

less than N ′
j.

Consider now a vector of polynomials Q = (Q0, . . . , Qν−1) that satisfies the degree

constraint (b). By construction, applying A′ to the coefficient vector of Q outputs

the coefficients of the remainders
∑

06j<ν QjFi,j mod Pi, for i = 0, . . . , µ − 1. This

proves in particular that a nonzero vector of KN ′

is in the nullspace of A′ if and only

if it is the coefficient vector of a solution Q to Problem 2.

The following lemma shows that A′ possesses a Toeplitz-like structure, with dis-

placement rank at most µ + ν. Together with Proposition 7, this gives our second

proof of Theorem 3.

Lemma 13. The displacement rank of A′ with respect to ∆M ′,N ′ is at most µ + ν.

Furthermore, one can compute generators for A′ using O((µ+ ν)M(M ′)) operations.

Proof. We are going to exhibit matrices Y ∈ KM ′×(µ+ν) and Z ∈ K(µ+ν)×N ′

such that

A′ −ZM ′A′ZTN ′ = Y Z. Define first the matrix

C =




C0 0 · · · 0

0 C1 · · · 0
...

...
. . .

...

0 0 · · · Cµ−1



∈ K

M ′×M ′

.

Up to µ columns, C coincides with ZM ′; we make this explicit as follows. For i in

39

{0, . . . , µ− 1}, define

vi =




P
(0)
i
...

P
(M ′

i−1)
i


 ∈ K

M ′

i , Vi =




0
...

0

vi

1

0
...

0




∈ K
M ′

and Wi =




0
...

0

1

0
...

0




∈ K
M ′

,

with the coefficient 1 in Vi and Wi at respective indices
∑

i′6iM
′
i′ and −1+

∑
i′6iM

′
i′ .

Then, if we define V = [V0 · · · Vµ−1] ∈ KM ′×µ and W = [W0 · · · Wµ−1] ∈ KM ′×µ, we

obtain

C = ZM ′ − V0W T
0 − · · · − Vµ−1W

T
µ−1 = ZM ′ − VW T .

As before, we use the convention that an indexed object is zero when the index is

out of the allowed bounds for this object. For j in {0, . . . , ν−1}, let us further define

V ′
j =




α
(0)
0,j
...

α
(0)
µ−1,j


 −




α
(N ′

j−1
)

0,j−1
...

α
(N ′

j−1
)

µ−1,j−1


 ∈ K

M ′

and W ′
j =




0
...

0

1

0
...

0




∈ K
N ′

,

with the coefficient 1 in W ′
j at index

∑
j′<j N

′
j′, and the compound matrices

V ′ = [V ′
0 · · · V ′

ν−1] ∈ K
M ′×ν and W ′ = [W ′

0 · · · W ′
ν−1] ∈ K

N ′×ν .

Then, we claim that matrices

Y = [−V V ′] ∈ K
M ′×(µ+ν) and Z =

[
W TA′ZTN ′

W ′T

]
∈ K

(µ+ν)×N ′

40

are generators for A′ for the Toeplitz-like displacement structure, i.e., that

A′ − ZM ′ A′ZTN ′ = Y Z.

By construction, we have C A′ = (Bi,j)i<µ,j<ν ∈ KM ′×N ′

, with Bi,j given by

Bi,j = CiA′
i,j =

[
α
(1)
i,j · · · α

N ′

j−1

i,j α
(N ′

j)

i,j

]
∈ K

M ′

i×N
′

j .

As a consequence, A′ − C A′ZTN ′ = V ′W ′T , so finally we get, as claimed,

A′ −ZM ′ A′ZTN ′ = A′ − (C + VW T)A′ZTN ′

= A′ − C A′ZTN ′ − VW TA′ZTN ′

= V ′W ′T − VW TAZTN ′

= Y Z.

To compute Y and Z, the only non-trivial steps are those giving V ′ and W TA′.

For the former, we have to compute the coefficients of XN ′

jFi,j mod Pi for all every

i < µ and j < ν. For fixed i and j, this can be done using fast Euclidean division

in O(M(M ′
i +N ′

j)) operations in K, which is O(M(M ′
i) +M(N ′

j)). Summing over the

indices i < µ and j < ν, this gives a total cost of O(νM(M ′) + µM(N ′)) operations.

Since N ′ 6M ′ + 1, this is O((µ+ ν)M(M ′)).

Finally, we show that W TA′ can be computed using O((µ+ ν)M(M ′)) operations

as well. Computing this matrix amounts to computing the rows of A′ of indices

−1 +
∑

i′6iM
′
i′ , for i < µ. By construction of A′, this means that we want to

compute the coefficients of degree M ′
i − 1 of XrFi,j mod Pi for r = 0, . . . , N ′

j − 1 and

for all i, j. Unfortunately, the naive approach leads to a cost proportional to M ′N ′

operations, which is not acceptable. However, for i and j fixed, Lemma 14 below

shows how to do this computation using only O(M(M ′
i) +M(N ′

j)) operations, which

leads to the announced cost by summing over i and j.

Lemma 14. Let P ∈ K[X] be monic of degree m, let F ∈ K[X] be of degree less than

m, and for i > 0 let ci denote the coefficient of degree m − 1 of X iF mod P . For

n > 1 we can compute c0, . . . , cn−1 using O(M(m) +M(n)) operations in K.

Proof. Writing F =
∑

06j<m fjX
j we have X iF mod P =

∑
06j<m fj(X

i+j mod P).

Hence ci =
∑

06j<m fjbi+j , with bi denoting the degree m − 1 coefficient of X i mod

P . Since b0 = · · · = bm−2 = 0 and bm−1 = 1, we can deduce c0, . . . , cn−1 from

41

bm−1, . . . , bm+n−2 in time O(M(n)) by multiplication by the lower triangular Toeplitz

matrix [fm+j−i]i,j of order n− 1.

Thus, we are left with the question of computing bm−1, . . . , bm+n−2. Writing P

as P =
∑

06j<m pjX
j + Xm and using the fact that X iP mod P = 0 for all i > 0,

we see that the bi’s are generated by a linear recurrence of order m with constant

coefficients: ∑
06j<m pjbi+j + bi+m = 0 for all i > 0.

Consequently, bm, . . . , bm+n−2 can be deduced from b0, . . . , bm−1 in time O(n
m
M(m)),

which is O(M(m)+M(n)), by ⌈n−1
m
⌉ calls to Shoup’s algorithm for extending a linearly

recurrent sequence [33, Theorem 3.1].

Acknowledgments. M.F.I.C. and É.S. were supported by NSERC and by the

Canada Research Chairs program. We thank the three reviewers for their helpful

comments, and especially the second one for suggesting a shorter proof of Lemma 14.

Bibliography

[1] M. Alekhnovich. Linear diophantine equations over polynomials and soft de-

coding of Reed-Solomon codes. IEEE Transactions on Information Theory,

51(7):2257–2265, July 2005.

[2] B. Beckermann. A reliable method for computing M-Padé approximants on

arbitrary staircases. J. Comput. Appl. Math., 40(1):19–42, 1992.

[3] Bernhard Beckermann and George Labahn. A uniform approach for the fast

computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl.,

15(3):804–823, July 1994.

[4] P. Beelen and K. Brander. Key equations for list decoding of Reed-Solomon

codes and how to solve them. Journal of Symbolic Computation, 45(7):773–786,

2010.

[5] D. J. Bernstein. Simplified high-speed high-distance list decoding for alternant

codes. In PQCrypto’11, pages 200–216, Berlin, Heidelberg, 2011. Springer-

Verlag.

[6] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz

and related systems of linear equations. Linear Algebra Appl., 34:103–116, 1980.

42

[7] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems

with large displacement rank. Theor. Comput. Sci., 407(1-3):155–181, November

2008.

[8] K. Brander. Interpolation and List Decoding of Algebraic Codes. PhD thesis,

Technical University of Denmark, 2010.

[9] P. Busse. Multivariate List Decoding of Evaluation Codes with a Gröbner Basis

Perspective. PhD thesis, University of Kentucky, 2008.

[10] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi-

trary algebras. Acta Inform., 28(7):693–701, 1991.

[11] H. Cohn and N. Heninger. Ideal forms of Coppersmith’s theorem and Guruswami-

Sudan list decoding. In Bernard Chazelle, editor, ICS, pages 298–308. Tsinghua

University Press, 2011.

[12] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. J. Symb. Comp., 9(3):251–280, 1990.

[13] G. L. Feng and K. K. Tzeng. A generalization of the Berlekamp-Massey algorithm

for multisequence shift-register synthesis with applications to decoding cyclic

codes. IEEE Transactions on Information Theory, 37(5):1274–1287, 1991.

[14] J. von zur Gathen and J. Gerhard. Modern Computer Algebra (second ed.).

Cambridge University Press, 2003.

[15] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial

matrix computations. In Proceedings of the 2003 international symposium on

Symbolic and algebraic computation, ISSAC ’03, pages 135–142, New York, NY,

USA, 2003. ACM.

[16] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decom-

positions and derandomization of linear algebra algorithms over K[x]. J. Symb.

Comput., 47(4):422–453, April 2012.

[17] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity:

Error-correction with optimal redundancy. IEEE Transactions on Information

Theory, 54(1):135–150, 2008.

43

[18] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon

and algebraic-geometry codes. IEEE Transactions on Information Theory,

45(6):1757–1767, 1999.

[19] H. Hasse. Theorie der höheren Differentiale in einem algebraischen Funktio-

nenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik.

Journal für die reine und angewandte Mathematik, 175:50–54, 1936.

[20] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems.

In ISSAC’94, pages 297–304. ACM, 1994.

[21] R. Kötter. Fast generalized minimum-distance decoding of algebraic-geometry

and Reed-Solomon codes. IEEE Transactions on Information Theory, 42(3):721

–737, may 1996.

[22] K. Lee and M. E. O’Sullivan. List decoding of Reed-Solomon codes from a

Gröbner basis perspective. Journal of Symbolic Computation, 43(9):645 – 658,

2008.

[23] R. J. McEliece. The Guruswami-Sudan decoding algorithm for Reed-Solomon

codes, 2003. IPN Progress Report 42-153.

[24] H. M. Möller and Buchberger B. The construction of multivariate polynomi-

als with preassigned zeros. In EUROCAM’82, volume 144 of Lecture Notes in

Computer Science, pages 24–31. Springer, 1982.

[25] M. Morf. Doubling algorithms for Toeplitz and related equations. IEEE Con-

ference on Acoustics, Speech, and Signal Processing, pages 954–959, 1980.

[26] R. R. Nielsen and T. Høholdt. Decoding Reed-Solomon codes beyond half the

minimum distance. In Coding Theory, Cryptography and Related Areas, pages

221–236. Springer-Verlag, 2000.

[27] V. Olshevsky and M. A. Shokrollahi. A displacement approach to efficient decod-

ing of algebraic-geometric codes. In Proceedings of the thirty-first annual ACM

symposium on Theory of computing, STOC ’99, pages 235–244, New York, NY,

USA, 1999. ACM.

[28] V. Y. Pan. Structured Matrices and Polynomials. Birkhäuser Boston Inc., 2001.

[29] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan

radius in polynomial time. In FOCS, pages 285–294, 2005.

44

[30] J.-R. Reinhard. Algorithme LLL polynomial et applications. Master’s thesis,

École Polytechnique, Paris, France, 2003.

[31] R. M. Roth. Introduction to Coding Theory. Cambridge University Press, 2007.

[32] R. M. Roth and G. Ruckenstein. Efficient decoding of Reed-Solomon codes

beyond half the minimum distance. IEEE Transactions on Information Theory,

46(1):246 –257, January 2000.

[33] V. Shoup. A fast deterministic algorithm for factoring polynomials over finite

fields of small characteristic. In ISSAC’91, pages 14–21. ACM, 1991.

[34] Arne Storjohann. Notes on computing minimal approximant bases. In Wolfram

Decker, Mike Dewar, Erich Kaltofen, and Stephen Watt, editors, Challenges in

Symbolic Computation Software, number 06271 in Dagstuhl Seminar Proceed-

ings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszen-

trum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[35] A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University

of Edinburgh, 2010.

[36] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.

J. Complexity, 13(1):180–193, March 1997.

[37] P. V. Trifonov. Efficient interpolation in the Guruswami-Sudan algorithm. IEEE

Transactions on Information Theory, 56(9):4341 –4349, September 2010.

[38] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-

Winograd. In Proceedings of the 44th symposium on Theory of Computing, STOC

’12, pages 887–898. ACM, 2012.

[39] A. Zeh, C. Gentner, and D. Augot. An interpolation procedure for list decoding

Reed-Solomon codes based on generalized key equations. IEEE Transactions on

Information Theory, 57(9):5946–5959, September 2011.

45

Chapter 4

Efficient Solution of Structured

Linear Systems

4.1 Introduction

The interpolation step of list decoding for (folded) Reed Solomon codes essentially

needs to solve a linear system to obtain a multivariate polynomial; in the previous

chapter, we saw how such systems can be solved efficiently by structured linear system

solvers. In this chapter, we give more details on such algorithms, and present the first

implementation of a central subroutine, structured matrix multiplication.

In [1], Bitmap and Anderson gave an algorithm to solve “Toeplitz-like”linear sys-

tems (see the definition below) efficiently using the notion of displacement operators

and displacement rank; Morf gave essentially the same algorithm in [7], so this algo-

rithm is known as the MBA algorithm.

In 1994, Kaltofen gave a variant of the MBA algorithm [6] where he intro-

duced randomization to remove some previously needed genericity assumptions on

the input matrix. The complexity of Kaltofen’s version of the MBA algorithm is

O(α2M(n) logn) where α is the displacement rank of the system we want to solve,

n is its size and M denotes a function such that univariate polynomials of degree at

most n can be multiplied inM(n) operations in the base field. Later on, Bostan, Jean-

nerod and Schost gave another variant of the MBA algorithm in [3] with a complexity

O(αω−1M(n) log2 n), where ω 6 3 is the exponent of matrix multiplication, that is, is

such that matrices of size α can be multiplied in O(αω) base field operations. Using

for instance Strassen’s matrix multiplication algorithm, or many subsequent better

46

algorithms yielding ω < 3, this latter result is thus better when α is large compared

to n.

All these variants are required to “compress” structured matrices, that is, to min-

imize the size of the internal representation of some intermediate matrices. Though

this step does not effect the asymptotic complexity, timings can be greately improved

if compression can be avoided. Jeannerod and Mouilleron showed in [5] how to modify

the algorithm so that no compression is required.

Finally, in a most recent preprint [2], Bostan, Jeannerod, Mouilleron and Schost

gave an algorithm having complexity O(αω−1M(n) logn) for solving Toeplitz-like

structuted systems of size n with displacement rank α; this is unconditionally better

than Kaltofen’s, at least asymptotically.

In this chapter, we present in detail the algorithm of [2] for solving structured

linear systems, and we report on the first implementation we are aware of a critical

step, structured matrix multiplication. For all standard results used but not proved

below, one may consult [9].

4.2 Basics on structured linear systems

Let F be our base field. In what follow, we introduce the basic concepts related to

structured linear systems (displacement rank, displacement operators, generators),

for the Toeplitz structure, which is one of the most important in practice.

An n×n Toeplitz matrix, with coefficients in F, is a matrix of the following shape:

T =




t0 t−1 t−2 t−n+1

t1 t0 t−1
. . .

...

t2 t1
. . .

. . .
. . .

...
...

. . .
. . .

. . . t−1 t−2

...
. . . t1 t0 t−1

tn−1 t2 t1 t0




∈ F
n×n.

It has been known for long that one can solve the linear system Tu = v in quasi-

linear time in n. The idea behind algorithms for structured linear systems amounts

to obtain similar quasi-linear results for matrices A that are “close” to being Toeplitz

matrices. Although our example above was square, this is actually not necessary, so

we may consider matrices of size m× n below.

47

We measure how close, or far, a matrix A ∈ F
m×n is to being Toeplitz using its

displacement rank, that is, the rank of its image under a displacement operator.

There exist two broad classes of displacement operators that can be used to define

the displacement rank: Sylvester operators, of the form

∇M,N : A ∈ F
m×n 7→MA −AN ∈ F

m×n,

for some fixed square matrices M and N , of respective sizes m and n, and Stein

operators of the form

∆M,N : A ∈ F
m×n 7→ A−MAN ∈ F

m×n,

with the same constraints on M and N . For such an operator, say L, the rank α

of L(A) is known as the L-displacement rank of A and A is called structured if its

L-displacement rank of A, α is small compared to m and n.

Two matrices G,H ∈ F
m×α′

are called a L-generator of A if L(A) = GH t where

H t is the transpose of H (remark that α 6 α′, but α < α′ is possible). Provided

L is invertible, so that we can recover A from L(A), such generator matrices form a

compact representation of matrix A. Remark that for all notation introduced above,

when the operator L is clear from the context, we will omit it.

Let us consider the particular case of the Stein operator with m = n, M an n× n
matrix of the form

M =




0

1 0
. . .

. . .

1 0



∈ F

n×n

and N = M t. Then for the Toeplitz matrix T ∈ Fn×n seen above, and for the Stein

operator ∆M,N , we have

∆M,N(T) = T −MTN = GH t, (4.1)

where G,H ∈ Fn×α are as follows:

G =




t0 1

t1 0
...

...

tn−1 0




H =




1 0

0 t−1

...
...

0 t−n+1



;

48

in particular, the displacement rank of a Toeplitz matrix for this operator is at most

2 (and exactly 2 in general). Besides, this operator is invertible: letting (Gj) and

(Hj) be the columns of respectively G and H , the quation

∆M,N(A) = GH t

admits the unique solution for matrix A given by

A =

α∑

j=1

L[Gj] U [H
t
j], (4.2)

where L[Gj] is a lower triangular Toeplitz matrix that have Gj as its first column and

U [H t
j] is a upper triangular Toeplitz matrix having H t

j as its first row. This shows in

particular how we can compute products of the form Au, for a vector u, or AB, for

a matrix B, from the knowledge of the generators of A only, and u or B.

To analyze the complexity of this operation, it will be convenient to rewrite the

above equality, introducing the antidiagonal matrix Z of size n, such that AZ coin-

cides with A with columns in the reverse order, and ZA coincides with A with rows

in the reverse order. Remark that for all j, we have

Z L[Gj] Z = U [Gt
j] and Z U [H t

j] Z = L[Hj];

since Z2 is the identity matrix, we obtain

A = Z

α∑

j=1

U [Gt
j] L[Hj] Z. (4.3)

Multiplying by Z is free (it is just a reversal), so we can focus on the computation of

a product of the form

u 7→ v =

α∑

j=1

U [Gt
j] L[Hj] u,

where u is a vector of length n. For j = 1, . . . , α, let γj be the polynomial whose

coefficients are the entries of Gj in the reverse order; let as well ηj be the polynomial

whose coefficients are the entries of Hj . Finally, let f be the polynomial whose

coefficients are the entries of u. Then, the entries of v are seen to be the coefficients

of the polynomial
α∑

j=1

γj(ηjf mod xn) div xn.

49

In terms of complexity, if we let M be such that polynomials of degree n can be

multiplied in M(n) operations, we deduce from this formula that the product Au, for

u a vector of length n, can be done in O(αM(n)) operations. If we multiply by a

matrix B of size n × β, the cost thus becomes O(αβM(n)). The same approach, up

to minor differences, shows that we can compute products of the form Atu or AtB in

the same amount of time.

This result allows us in particular to multiply matrices given by their generators.

The following is taken from [6, Prop. 2]; it applies to the operator ∆M,N , although

extensions exist to further structures. Suppose that A,A′ are matrices of size n, that

A is given by means of generators (G,H) and that A′ is given by means of generators

(G′, H ′). Then, B = AA′ admits the generators (P,Q), with

P = [G | MAM tG′ | − g] Q = [A′tH | H ′ | h],

where g is the last column of MA and h is the last column of MA′t. In particular,

if A and A′ have displacement ranks at most α, then AA′ has displacement rank at

most 2α + 1. Besides, using Equation (4.3), we can compute generators for it by

multiplying A or A′ by suitable matrices of size n × α on the left or on the right.

Using the remark in the previous paragraph on the cost of multiplication of A by a

vector, we see that we can obtain P and Q in O(α2M(n)) operations in F. Section 4.4

will give a better algorithm for this task.

4.3 Structured matrix inversion

If A is structured with respect to either a Sylvester operator or a Stein operator, say

L, and A is invertible then its inverse is structured with respect to the operator L′

defined by

L = ∇M,N ⇒ L′ = ∇N,M , L = ∆M,N ⇒ L′ = ∆N,M ;

in other words, the roles of M and N are exchanged. This claims says that the ranks

of L(A) and L′(A−1) are the same [9, Th. 1.5.1].

In what follows, we will restrict our presentation of the MBA algorithm to in-

vertible matrices A; the extension to arbitrary matrices can be found in [6]. Then,

all variants of the MBA algorithm compute L′-generator matrices for A−1 from L-
generators matrices for A. We consider the Toeplitz structure in the following section,

taking L = ∆M,N for M,N as in the previous section.

For dense matrices, it is known that matrix inversion can be reduced to matrix

50

multiplication, by means of block Gaussian elimination; we review this algorithm in

the first subsection. In the second subsection, we give an overview of the MBA algo-

rithm, which can be seen as a structured version of block Gaussian elimination, where

all matrices are represented by means of their generators. In particular, this will show

that structured matrix inversion can be reduced to structured matrix multiplication

(which will be the focus of the next section).

4.3.1 Matrix inversion using block Gaussian elimination

Let A ∈ Fn×n be an invertible matrix. Assume further that n1 and n2 are positive

integers such that n = n1 + n2. Then, we can partition the matrix A as follows:

A =

[
A11 A12

A21 A22

]
∈ F

n×n where Aij ∈ F
ni×nj for i, j ∈ {1, 2}.

Suppose that A11 itself is invertible. Then, we define the Schur complement of A11 in

A as

S = A22 −A21A
−1
11 A12.

Then, the inverse of A is

A−1 =

[
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
∈ F

n×n.

Define further two block matrices E and F as

E =

[
In1

0

−A21A
−1
11 In2

]
and F =

[
In1

−A−1
11 A12

0 In2

]
,

where Is is the identity matrix of size s. Note that E and F are nonsingular and that

EAF =

[
A11

S

]
,

so S is nonsingular if A11 and A are nonsingular. Hence we can write a factorization

of the inverse of A as follows [9, p. 157]

A−1 = F

[
A−1

11

S−1

]
E.

51

This leads naturally to an algorithm that computes the inverse of A recursively,

provided the upper left corners of A11 and S are invertible as well (and so on). One

can prove that this is the case if and only if A is strongly regular, that is, all square

upper-left matrices extracted from A are invertible.

When this is the case, the algorithm deduced from the formula above involves two

recursive calls and a constant number of matrix multiplications in size at most n. Let

ω be such that one can multiply matrices of size n in O(nω) operations in F. Then,

taking n1 = ⌊n/2⌋, the cost C(n) of computing A−1 satisfies

C(n) = 2C(
n

2
) +O(nω),

which leads to C(n) = O(nω). In other words, the cost of matrix inversion is asymp-

totically the same as that of matrix multiplication, up to a constant factor.

4.3.2 Structured matrix inversion

Next, we describe the analogue of the previous algorithm for structured matrices; our

matrices will thus be represented by means of their generators, as per our convention.

Let A be an n× n matrix with entries in F; suppose furthermore that (G,H) are

generators of A for the operator ∆M,N given above. For simplicity, we are going to

assume that n is even (making this assumption hold for further recursive calls will

lead us to assume that n is actually a power of 2; all cases can be reduced to this case

by padding dummy rows and columns); in the subdivision below, we directly take

n1 = n2 = n/2. Divide A, operator matrices M and N , and the generator matrices

G and H of A as follows:

A =

[
A11 A12

A21 A22

]
, G =

[
G1

G2

]
, H =

[
H1

H2

]
,

M =

[
M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]
,

where Aij , Mij and Nij are matrices in Fn/2×n/2 for i, j ∈ {1, 2} and Gi and Hi are

matrices in Fn/2×α for i ∈ {1, 2}; in particular, M12 and N21 are the zero matrices of

52

size n/2× n/2, whereas M21 and N12 are the rank-one matrices

M21 =




1

0
...

0




[
0 · · · 0 1

]
= U2V

t
1 , N12 =




0
...

0

1




[
1 0 · · · 0

]
= U1V

t
2 .

Finally, M11 = M22 are similar matrices to M , but in size n/2, and similarly for

N11 = N22. Then we have the following property from [9, Proposition 4.4] or[8,

Property 1.7]:

Property 15. From ∇M,N(A) = GH t and the partitioning above, we have the fol-

lowing for i, j ∈ {1, 2}
∇Mij ,Nij

(Aij) = GijH
t
ij

where

G11 = G1 ∈ F
n/2×α,

H11 = H1 ∈ F
n/2×α,

G12 = [G1|A11U1] ∈ F
n/2×(α+1),

H12 = [H2|V2] ∈ F
n/2×(α+1),

G21 = [G2| − U2] ∈ F
n/2×(α+1),

H21 = [H1|At11V1] ∈ F
n/2×(α+1),

G22 = [G2| − U2|A21U1] ∈ F
n/2×(α+2)

H22 = [H2|At12V1|V2] ∈ F
n/2×(α+2).

This property tells us that the submatrices of a structured matrix are also al-

most as structured as the initial matrix. Besides, one can compute the generators of

all these submatrices by padding the initial generators with some “simple” vectors,

typically obtained from particular rows or columns of A (which themselves can be

obtained using Equation 4.3).

We can then present the MBA algorithm, which is a “structured” version of the

53

block Gaussian elimination algorithm, using the above formulas to extract generators

of submatrices of A. Some steps involve multiplications of matrices: for all such steps,

we know generators for the matrices involved, so we can apply the multiplication

algorithm described at the end of Section 4.2.

Algorithm 1: MBA algorithm invert Toeplitz-like matrices

Require: G,H ∈ F
n×α such that ∆Zn,0,Zt

n,o
(A) = GH t

Assumption: A is strongly regular
Ensure: Y and Z such that ∆Zt

n,0,Zn,o
(A−1) = Y Zt.

1: Compute length-α generators G11, H11 for A11

2: (Y11, Z11)← MBA(G11, H11) (those are generators for A−1
11)

3: Compute generators (G̃s, H̃s) for S = A22 − A21A
−1
11 A12

4: Deduce from (G̃s, H̃s) generators (Gs, Hs) for S of minimal length by
compression

5: (Ys, Zs)← MBA(Gs, Hs)
6: Compute generators for −A−1

11 A12S
−1, −S−1A21A

−1
11 and

A11−1 + A−1
11 A12S

−1A21A
−1
11

7: Deduce generators (Ỹ , Z̃) for A−1 =
[
A

−1

11
+ A

−1

11
A12S

−1A21A
−1

11
−A

−1

11
A12S

−1

−S−1A21A
−1

11
S−1

]

8: Deduce from (Ỹ , Z̃) generators (Y, Z) for A−1 of minimal length by compression
9: return Y and Z

Throughout this algorithm, the length of the generators may increase (due to the

multiplication algorithm mentioned above). It is possible however to reduce the size

of these generators for some particular matrices: we know that A−1 admits generators

of the same length α as A, and Kaltofen proved that it is also the case for the Schur

complement S. Thus, the algorithm performs “compression steps” (which are done

by linear algebra, see [6]) in order to maintain generators of length α for the recursive

calls.

Thus, this algorithm performs two recursive calls in size n/2, with generators of

the same length; all other operations are products or additions of structured matrices.

We see in Section 4.2 that the latter operations can be done in O(α2M(n)) operations

in F; this leads to the following recursion on the running time C ′(n) of this algorithm:

C ′(n) = 2C ′(
n

2
) +O(α2M(n)),

so that C ′(n) = O(α2M(n) log(n)), as mentioned before.

As seen above, one technical issue of this algorithm is that the length of generators

computed in the intermediate steps grows as a result of successive additions and

multiplications of structured matrices. This issue was explicitely studied in [8, 5];

54

the authors proposed an algorithm that systemetically avoids the two compression

steps of algorithm 1. They also show how to get directly the generator matrices

of intermediate submatrices required to do the multiplication [5, Lemmas 3, 4, 5].

These simplifications reduce the overall running time by a constant factor; we will

not address them further in this thesis.

4.4 Structured matrix multiplication

In this section, we revisit the multiplication algorithm described in Section 4.2, pre-

senting an improvement due to Bostan, Jeannerod, Mouilleron and Schost [2] and

describe a first implementation of it.

Suppose we have to compute a product of the form AB, where A is a matrix of

size n given by means of generators (G,H) of length α and B is a matrix of size n×β.
One main application is the multiplication of two structured matrices A and A′ both

of displacement rank at most α; as explained in Section 4.2, this mainly boils down

to operations such as computing AB, where B is derived from the generators of A′.

In particular, one should have in mind the case where β ≃ α.

For j = 1, . . . , α, let Gj and Hj be the columns of respectively G and H ; let

further γj be the polynomial whose coefficients are the entries of Gj in the reverse

order; let as well ηj be the polynomial whose coefficients are the entries ofHj . Finally,

let B1, . . . , Bβ be the columns of B and for all i let fi be the polynomial whose

coefficients are the entries of Bi. Then, we have mentioned that the entries of ABi

are the coefficients of the polynomial

ci =

α∑

k=1

γk(ηkfi mod xn) div xn.

To compute ci, we can sum it up first and then apply the division by xn, so the core

problem is to compute

ri =

α∑

k=1

γk(ηkfi mod xn)

for all i. The naive approach computes all sums independently and thus has with cost

O(α2M(n)) assuming α = β. The algorithm given below, taken from [2], reduces the

complexity to O(αω−1M(n)), where ω is the exponent of matrix multiplication.

The problem can be rephrased in terms of computations with matrices with poly-

55

nomial entries. Let

U ∈ F[x]α×1 V ∈ F[x]α×1 W ∈ F[x]β×1

be the polynomial vectors whose entries are γi, ηi and fi respectively. Then our

problem is to compute the row vector R ∈ F[x]1×β such that R = Ut(VWt mod xn).

Let us assume α = β for simplicity. Then, the following lemma is the basis of the

algorithm.

Lemma 16. Let α, µ, ν ∈ N>0 with ν even and ν ′ = ν
2
. Let V,W ∈ F[x]α×µ, of degree

less than ν, define

V0 = V mod xν
′

, V1 = V div xν
′

and

W0 = W mod xν
′

, W1 = W div xν
′

.

Then the matrices [V0 V1] and [W1 W0] are in F[x]α×2µ, of degree less than ν ′, and

we have

VWt mod xν = V0W
t
0 + xν

′

([V0 V1][W1 W0]
t mod xν

′

).

The proof of this lemma is given in [2].

This lemma will be applied recursively starting from ν = n and µ = 1. Thus, we

will assume for convenience that both n and α are powers of 2.

• If n is not a power of two, then define n̄ = 2⌈logn⌉ and n′ = n̄ − n and it can

be easily checked that a mod b = x−n
′

((xn
′

a) mod (xn
′

b)) for a and nonzero

b ∈ F[x]. Application of this technique to R gives us

R = x−n
′

Ut(V(xn
′

W)t mod xn̄),

where V and xn
′

W have degree less than n̄.

• If α is not a power of two, we define ᾱ = 2⌈logα⌉ and α′ = ᾱ − α. Then we can

introduce α′ dummy polynomials (Ui), (Vi) and (Wi) all equals to zero without

affecting the value of r1, . . . , rα.

Algorithms 2 and 3 together depict the whole process, where Algorithm 3 handles

the case when n and α are not powers of two by introducing n̄, ᾱ as defined above

and then call Algorithm 2. Algorithm 2 initially set ν = n̄ and µ = 1. The width of

matrices V and W are increased in twofold in each recursive call whereas the degree

of the entries decreases by half; thus, we maintain the invariant µν = n̄.

56

Algorithm 2: Mul Rec(U,V,W, n, ν, ᾱ, µ)

Require: U ∈ F[x]ᾱ×1 of degree less than n, V,W ∈ F[x]ᾱ×µ of degree less than ν
Assumption: ᾱ, µ, ν are powers of 2 and µ 6 ᾱ

Ensure: R ∈ F[x]1×ᾱ of degree less than n+ ν − 1 such that R = Ut(VWt mod xν).
1: if µ = ᾱ then
2: R′ = VWt mod xν

3: R = UtR′

4: else
5: ν ′ = ν

2
;µ′ = 2µ

6: V0 = V mod xν
′

,V1 = V div xν
′

,V′ = [V0V1]
7: W0 = W mod xν

′

,W1 = W div xν
′

,W′ = [W1W0]
8: R′ = Mul Rec(U,V′,W′, n, ν ′, ᾱ, µ′)
9: R = UtV0W0 + xν

′

R′

10: end if
11: return R

Algorithm 3: Mul(U,V,W, n, α)

Require: U,V,W ∈ F[x]α×1 of degree less than n
Assumption: α 6 n

Ensure: R ∈ F[x]1×α of degree less than 2n− 1 such that R = Ut(VWt mod xn).
1: n̄ = 2⌈logn⌉;n′ = n̄− n
2: ᾱ = 2⌈logα⌉;α′ = ᾱ− α
3: Ū = U augmented with α′ zero rows
4: V̄ = V augmented with α′ zero rows
5: W̄ = xn

′

W augmented with α′ zero rows
6: R̄ = Mul Rec(Ū, V̄, W̄, n̄, ᾱ, 1)
7: R = x−n

′

R̄

8: return first α entries of R

The complexity analysis is taken from [2]. For the base case of algorithm 2, i.e.

when µ = ᾱ, we have V,W ∈ F[x]ᾱ×ᾱ of degree less than ν, and the algorithm first

computes R′ = VWt mod xν in time O(ᾱωM(ν)), simply by multiplying polynomial

matrices. Then, the computation of R = UtR′, where U in F[x]ᾱ×1 of degree less

than n and R′ ∈ F[x]ᾱ×ᾱ of degree less than ν is done in two steps. We rewrite

Ut = [1 xc x2c . . . x(ᾱ−1)c]U′t where c = ⌈n
ᾱ
⌉ and U′ ∈ F[x]ᾱ×ᾱ with entries of degree

less than c. Thus, we can compute Q = U′tR′ at first step in time O(ᾱωM(max{c, ν}))
and then can deduce R from Q in time O(ᾱ(n + ν)). In summary the total time

57

required at base case of algorithm 2 is

O(ᾱωM(ν)) +O(ᾱωM(max{c, ν})) +O(ᾱ(n + ν))

= O(ᾱωM(max{c, ν})).

We always have ν = n̄
µ
6

2n
µ
, so at the base case of Algorithm 2, we have ν 6

2n
ᾱ
.

Similarly, we have by definition c 6 n
ᾱ
+ 1 which is at most 3n

ᾱ
since ᾱ 6 2α 6 2n.

Thus the cost of base case of Algorithm 2 is O(ᾱωM(n
ᾱ
)) = O(ᾱω−1M(n)), using the

superlinearity assumption on M from [4]. This in turn is O(αω−1M(n)).

Let C(k) denotes the cost of algorithm 2 called upon parameters ᾱ and µ such

that ᾱ = 2kµ. Then the cost of algorithm 3 will be C(k) where k = ⌈logα⌉. When

k = 0, we have the cost of base case. Now, let us investigate the case k > 1.

In algorithm 2, given V,W in F[x]ᾱ×µ, we can compute Vi and Wi for free. Then

algorithm 2 computes R′ in time C(k− 1) recursively and we are left with estimating

the cost of computing R = Q + xν
′

R′ with Q = UtV0W0.

Let D(k) denotes the time to compute Q. Then, given R′ ∈ F[x]1×α and Q ∈
F[x]1×α, both of degrees less than n + ν − 1, the addition can be done with ᾱ(n+ ν)

operations. Since ν = n̄
µ
6 2n, we have

C(k) 6 C(k − 1) +D(k) +O(ᾱn)

for k > 1.

In order to estimate D(k), let us rewrite Ut = [1 xc x2c . . . x(ᾱ−1)c]U′t as before,

where c = ⌈n
µ
⌉ and U′ ∈ F[x]ᾱ×µ, with entries of degree less than c. Then, we can

compute Q as Q = [1 xc x2c . . . x(ᾱ−1)c](U′tV0W
t
0). The computation of the matrix

product U′tV0W
t
0 involves three matrices of dimensions µ × ᾱ, ᾱ × µ and µ × ᾱ

respectively having polynomial entries of degree less than max(c, ν). As before, we

can prove that max(c, ν) 6 3n
µ
, so, the computation of U′tV0W

t
0 can be done in time

O
(ᾱ
µ
µωM(

n

µ
)
)

using [3, Lemma 7]. Since ᾱ = 2kµ, we can rewrite the above complexity as

O
(
2k (

ᾱ

2k
)ωM(

2kn

ᾱ
)
)
.

The time required to reconstruct Q once U′tV0W
t
0 is known is the same as before,

58

O(ᾱn). Taking all k = 0, . . . , k into account we have

O
(k∑

k=0

2k (
ᾱ

2k
)ωM(

2kn

ᾱ
)
)

= O(ᾱωM(
n

ᾱ
)) neglecting negative exponent

= O(ᾱω−1M(n))

Since ᾱ 6 2α, we deduce that the complexity for any α is

O(αω−1M(n)).

This is to be compared to the cost O(α2M(n)) resulting from the naive algorithm:

the new algorithm is better, at least in theory, as soon as α < 3, that is, as soon as

we use a matrix multiplication algorithm better than the naive algorithm.

In case when α 6= β this algorithm will be called c times where c will be either ⌈β
α
⌉

or ⌈α
β
⌉. Figure 4.1 shows the performance improvement between naive reduction and

algorithm 2. We implemented these algorithms in C++ using NTL [10] and run them

on a 2.1 GHz AMD Athlon 64 processor. Our base field is FFT prime [4] and we used

FFT approach as a subroutine to multiply matrices of algorithm 2. We used naive

matrix multiplication algorithm instead of Strassen matrix multiplication algorithm.

Figures 4.1, 4.2 and 4.3 summarize the results where we see that algorithm 2 outper-

forms the naive reduction when we increase the degree for fixed α. Here the degrees

are represented in logarithmic scale and alpha was reduced by dividing the original

value by 10. In Figure 4.3, the degree was fixed at 40 whereas alpha was fixed at 40

in Figure 4.2. Observe that the algorithm 2 performs better than the naive reduction

when we increase the degree keeping α fixed which is shown in Figure 4.2. On the

other hand, Figure 4.3 shows that we will not get any improvement if we increase α

keeping the degree fixed.

Bibliography

[1] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz

and related systems of linear equations. Linear Algebra and its Applications,

34:103–116, 1980.

[2] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and É. Schost. Fast simultaneous

59

 2 3 4 5 6 7 8 4 5 6 7 8 9 10

 5

 20

 35

 50

Time

Naive
Mul-rec

Alpha
Degree

Time

Figure 4.1: Algorithm Mul Rec vs naive reduction

 0

 2

 4

 6

 8

 10

 12

 14

 4 5 6 7 8 9 10

T
im

e

Degree

Naive Multiplication
Mul-Rec

Figure 4.2: α fixed

multiplication of a structured matrix by vectors. PrePrint, 2012.

[3] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems

with large displacement rank. Theorerical Compututer Science, 407(1-3):155–

181, 2008.

60

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16 18

T
im

e

alpha

Naive Multiplication
Mul-Rec

Figure 4.3: Degree fixed

[4] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 1999.

[5] C.-P. Jeannerod and C. Mouilleron. Computing specified generators of structured

matrix inverses. In ISSAC ’10, pages 281–288. ACM, 2010.

[6] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems.

In ISSAC’94, pages 297–304. ACM, 1994.

[7] M. Morf. Doubling algorithms for Toeplitz and related equations. In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 954–

959, 1980.

[8] C. Mouilleron. Efficient computation with structured matrices and arithmetic

expressions. PhD thesis, 2011.

[9] V. Y Pan. Structured Matrices and Polynomials. Birkhäuser Boston Inc, 2001.

[10] V. Shoup. NTL: A library for doing number theory. http://www.shoup.net.

61

Chapter 5

Power Series Solutions of Singular

(q)-Differential Equations

This chapter is published in the homonym paper with A. Bostan, R. Lebreton, B.

Salvy and É. Schost in the proceedings of ISSAC12.

We provide algorithms computing power series solutions of a large class of differ-

ential or q-differential equations or systems. Their number of arithmetic operations

grows linearly with the precision, up to logarithmic terms.

5.1 Introduction

Truncated power series are a fundamental class of objects of computer algebra. Fast

algorithms are known for a large number of operations starting from addition, deriva-

tive, integral and product and extending to quotient, powering and several more. The

main open problem is composition: given two power series f and g, with g(0) = 0,

known mod xN , the best known algorithm computing f(g) mod xN has a cost which

is roughly that of
√
N products in precision N ; it is not known whether quasi-linear

(i.e., linear up to logarithmic factors) complexity is possible in general. Better results

are known over finite fields [4, 25] or when more information on f or g is available.

Quasi-linear complexity has been reached when g is a polynomial [11], an algebraic se-

ries [19], or belongs to a large class containing for instance the expansions of exp(x)−1
and log(1 + x) [8].

One motivation for this work is to deal with the case when f is the solution of a

given differential equation. Using the chain rule, a differential equation for f(g) can

be derived, with coefficients that are power series. We focus on the case when this

equation is linear, since in many cases linearization is possible [5]. When the order n

62

of the equation is larger than 1, we use the classical technique of converting it into a

first-order equation over vectors, so we consider equations of the form

xkδ(F) = AF + C, (5.1)

where A is an n × n matrix over the power series ring K[[x]] (K being the field of

coefficients), C and the unknown F are size n vectors over K[[x]] and for the moment δ

denotes the differential operator d/dx. The exponent k in (5.1) is a non-negative

integer that plays a key role for this equation.

By solving such equations, we mean computing a vector F of power series such

that (5.1) holds modulo xN . For this, we need only compute F polynomial of degree

less than N + 1 (when k = 0) or N (otherwise). Conversely, when (5.1) has a power

series solution, its first N coefficients can be computed by solving (5.1) modulo xN

(when k 6= 0) or xN−1 (otherwise).

If k = 0 and the field K has characteristic 0, then a formal Cauchy theorem holds

and (5.1) has a unique vector of power series solution for any given initial condition.

In this situation, algorithms are known that compute the first N coefficients of the

solution in quasi-linear complexity [5]. In this article, we extend the results of [5] in

three directions:

Singularities. We deal with the case when k is positive. A typical example is the

computation of the composition F = f(g) when f is Gauss’ 2F1 hypergeometric series.

Although f is a very nice power series

f = 1 +
ab

c
x+

a(a + 1)b(b+ 1)

c(c+ 1)

x2

2!
+ · · · ,

we exploit this structure indirectly only. We start from the differential equation

x(x− 1)f ′′ + (x(a + b+ 1)− c)f ′ + abf = 0 (5.2)

and build up and solve the more complicated

g(g − 1)

g′2
F ′′ +

g′2(g(a+ b+ 1)− c) + (g − g2)g′′
g′3

F ′ + abF = 0

in the unknown F , g being given, with g(0) = 0. Equation (5.2) has a leading term

that is divisible by x so that Cauchy’s theorem does not apply and indeed there does

not exist a basis of two power series solutions. This behavior is inherited by the

equation for F , so that the techniques of [5] do not apply — this example is actually

63

already mentioned in [11], but the issue with the singularity at 0 was not addressed

there. We show in this article how to overcome this singular behavior and obtain a

quasi-linear complexity.

Positive characteristic. Even when k = 0, Cauchy’s theorem does not hold in

positive characteristic and Eq. (5.1) may fail to have a power series solution (a simple

example is F ′ = F). However, such an equation may have a solution modulo xN .

Efficient algorithms finding such a solution are useful in conjunction with the Chi-

nese remainder theorem. Other motivations for considering algorithms that work in

positive characteristic come from applications in number-theory based cryptology or

in combinatorics [7, 8, 10].

Our objectives in this respect are to overcome the lack of a Cauchy theorem, or of

a formal theory of singular equations, by giving conditions that ensure the existence

of solutions at the required precisions. More could probably be said regarding the

p-adic properties of solutions of such equations (as in [6, 27]), but this is not the

purpose of this paper.

Functional Equations. The similarity between algorithms for linear differential

equations and for linear difference equations is nowadays familiar to computer alge-

braists. We thus use the standard technique of introducing σ : K[[x]] → K[[x]] a

unitary ring morphism and letting δ : K[[x]] → K[[x]] denote a σ-derivation, in the

sense that δ is K-linear and that for all f, g in K[[x]], we have

δ(fg) = fδ(g) + δ(f)σ(g).

These definitions, and the above equality, carry over to matrices over K[[x]]. Thus,

our goal is to solve the following generalization of (5.1):

xkδ(F) = Aσ(F) + C. (5.3)

As above, we are interested in computing a vector F of power series such that (5.3)

holds mod xN .

One motivation for this generalization comes from coding theory. The

list-decoding of the folded Reed-Solomon codes [18] leads to an equation

Q(x, f(x), f(qx)) = 0 where Q is a known polynomial. A linearized version of this is

of the form (5.3), with σ : φ(x) 7→ φ(qx). In cases of interest we have k = 1, and we

work over a finite field.

64

In view of these applications, we restrict ourselves to the following setting:

δ(x) = 1, σ : x 7→ qx,

for some q ∈ K \ {0}. Then, there are only two possibilities:

• q = 1 and δ : f 7→ f ′ (differential case);

• q 6= 1 and δ : f 7→ f(qx)−f(x)
x(q−1)

(q-differential case).

As a consequence, δ(1) = 0 and for all i > 0, we have

δ(xi) = γix
i−1 with γ0 = 0 and γi = 1 + q + · · ·+ qi−1 (i > 0).

By linearity, given f =
∑

i>0 fix
i ∈ K[[x]],

δ(f) =
∑

i>1

γifix
i−1

can be computed mod xN in O(N) operations, as can σ(f). Conversely, assuming

that γ1, . . . , γn are all non-zero in K, given f of degree at most n − 1 in K[x], there

exists a unique g of degree at most n such that δ(g) = f and g0 = 0; it is given by

g =
∑

06i6n−1 fi/γi+1x
i+1 and can be computed in O(N) operations. We denote it

by g = If . In particular, our condition excludes cases where q is a root of unity of

low order.

Notation and complexity model. We adopt the convention that uppercase letters

denote matrices or vectors while lowercase letters denote scalars. The set of n × m
matrices over a ring R is denoted Mn,m(R); when n = m, we write Mn(R). If f

is in K[[x]], its degree i coefficient is written fi; this carries over to matrices. The

identity matrix is written Id (the size will be obvious from the context). To avoid any

confusion, the entry (i, j) of a matrix M is denoted M (i,j).

Our algorithms are sometimes stated with input in K[[x]], but it is to be under-

stood that we are given only truncations of A and C and only their first N coefficients

will be used.

The costs of our algorithms are measured by the number of arithmetic operations

in K they use. We let M : N→ N be such that for any ring R, polynomials of degree

less than n in R[x] can be multiplied in M(n) arithmetic operations in R. We assume

that M(n) satisfies the usual assumptions of [17, S8.3]; using Fast Fourier Transform,

M(n) can be taken in O(n log(n) log log(n)) [13, 28]. We note ω ∈ (2, 3] a constant

65

such that two matrices in Mn(R) can be multiplied in O(nω) arithmetic operations

in R. The current best bound is ω < 2.3727 ([31] following [14, 30]).

Our algorithms rely on linear algebra techniques; in particular, we have to solve

several systems of non-homogeneous linear equations. For U in Mn(K) and V in

Mn,1(K), we denote by LinSolve(UX = V) a procedure that returns ⊥ if there is

no solution, or a pair F,K, where F is in Mn,1(K) and satisfies UF = V , and

K ∈Mn,t(K), for some t 6 n, generates the nullspace of U . This can be done in time

O(nω). In the pseudo-code, we adopt the convention that if a subroutine returns ⊥,
the caller returns ⊥ too (so we do not explicitly handle this as a special case).

Main results. Equation (5.3) is linear, non-homogeneous in the coefficients of F , so

our output follows the convention mentioned above. We call generators of the solution

space of Eq. (5.3) at precision N either ⊥ (if no solution exists) or a pair F,K where

F ∈ Mn,1(K[x]) and K ∈ Mn,t(K[x]) with t 6 nN , such that for G ∈ Mn,1(K[x]),

with deg(G) < N , xkδ(G) = Aσ(G) + C mod xN if and only if G can be written

G = F +KB for some B ∈Mt,1(K).

Seeing Eq. (5.3) as a linear system, one can obtain such an output using linear

algebra in dimension nN . While this solution always works, we give algorithms of

much better complexity, under some assumptions related to the spectrum SpecA0

of the constant coefficient A0 of A. First, we simplify our problem: we consider

the case k = 0 as a special case of the case k = 1. Indeed, the equation δ(F) =

Aσ(F) + C mod xN is equivalent to xδ(F) = Pσ(F) + Q mod xN+1, with P = xA

and Q = xC. Thus, in our results, we only distinguish the cases k = 1 and k > 1.

Definition 1. The matrix A0 has good spectrum at precision N when one of the

following holds:

• k = 1 and SpecA0 ∩ (qi SpecA0 − γi) = ∅ for 1 6 i < N

• k > 1, A0 is invertible and

– q = 1, γ1, . . . , γN−k are non-zero, | SpecA0| = n and SpecA0 ⊂ K;

– q 6= 1 and SpecA0 ∩ qi SpecA0 = ∅ for 1 6 i < N .

In the classical case when K has characteristic 0 and q = 1, if k = 1, A0 has

good spectrum when no two eigenvalues of A0 differ by a non-zero integer (this is

e.g. the case when A0 = 0, which is essentially the situation of Cauchy’s theorem;

this is also the case in our 2F1 example whenever c val(g) is not an integer, since

SpecA0 = {0, val(g)(1− c)− 1}).

66

These conditions could be slightly relaxed, using gauge transformations (see [1,

Ch. 2] and [2, 3]). Also, for k > 1 and q = 1, we could drop the assumption that

the eigenvalues are in K, by replacing K by a suitable finite extension, but then

our complexity estimates would only hold in terms of number of operations in this

extension.

As in the non-singular case [5], we develop two approaches. The first one is a

divide-and-conquer method. The problem is first solved at precision N/2 and then

the computation at precision N is completed by solving another problem of the same

type at precision N/2. This leads us to the following result, proved in Section 5.2

(see also that section for comparison to previous work). In all our cost estimates, we

consider k constant, so it is absorbed in the big-Os.

Theorem 1. Algorithm 5 computes generators of the solution space of Eq. (5.3) at

precision N by a divide-and-conquer approach. Assuming A0 has good spectrum at

precision N , it performs in time O(nωM(N) log(N)). When either k > 1 or k = 1

and qiA0 − γiId is invertible for 0 6 i < N , this drops to O(n2M(N) log(N) + nωN).

Our second algorithm behaves better with respect to N , with cost in O(M(N))

only, but it always involves polynomial matrix multiplications. Since in many cases

the divide-and-conquer approach avoids these multiplications, the second algorithm

becomes preferable for rather large precisions.

In the differential case, when k = 0 and the characteristic is 0, the algorithms

in [5, 11] compute an invertible matrix of power series solution of the homogeneous

equation by a Newton iteration and then recover the solution using variation of the

constant. In the more general context we are considering here, such a matrix does not

exist. However, it turns out that an associated equation that can be derived from (5.3)

admits such a solution. Section 5.3 describes a variant of Newton’s iteration to solve

it and obtains the following.

Theorem 2. Assuming A0 has good spectrum at precision N , one can compute gen-

erators of the solution space of Eq. (5.3) at precision N by a Newton-like iteration in

time O(nωM(N) + nω log(n)N).

To the best of our knowledge, this is the first time such a low complexity is reached

for this problem. Without the good spectrum assumption, however, we cannot guar-

antee that this algorithm succeeds, let alone control its complexity.

67

5.2 Divide-and-Conquer

The classical approach to solving (5.3) is to proceed term-by-term by coefficient ex-

traction. Indeed, we can rewrite the coefficient of degree i in this equation as

RiFi = ∆i, (5.4)

where ∆i is a vector that can be computed from A, C and all previous Fj (and whose

actual expression depends on k), and Ri is as follows:




Ri = (qiA0 − γiId) if k = 1

Ri = qiA0 if k > 1.

Ideally, we wish that each such system determines Fi uniquely that is, that Ri be

a unit. For k = 1, this is the case when i is not a root of the indicial equation

det(qiA0−γiId) = 0. For k > 1, either this is the case for all i (when A0 is invertible)

or for no i. In any case, we let R be the set of indices i ∈ {0, . . . , N − 1} such that

det(Ri) = 0; we write R = {j1 < · · · < jr}, so that r = |R|.
Even when R is empty, so the solution is unique, this approach takes quadratic

time in N , as computing each individual ∆i takes linear time in i. To achieve quasi-

linear time, we split the resolution of Eq. (5.3) mod xN into two half-sized instances

of the problem; at the leaves of the recursion tree, we end up having to solve the same

Eq. (5.4).

WhenR is empty, the algorithm is simple to state (and the cost analysis simplifies;

see the comments at the end of this section). Otherwise, technicalities arise. We treat

the cases i ∈ R separately, by adding placeholder parameters for all corresponding

coefficients of F (this idea is already in [2, 3]; the algorithms in these references use

a finer classification when k > 1, by means of a suitable extension of the notion of

indicial polynomial, but take quadratic time in N).

Let f1,1, . . . , fn,r be nr new indeterminates over K (below, all boldface letters de-

note expressions involving these formal parameters). For ρ = 1, . . . , r, we define the

vector Fjρ with entries f1,ρ, . . . , fn,ρ and we denote by L the set of all vectors

F = ϕ0 + ϕ1Fj1 + · · ·+ ϕrFjr ,

with ϕ0 in Mn,1(K[x]) and each ϕℓ in Mn(K[x]) for 1 6 ℓ 6 r. We also define Li the

68

Algorithm 4: Recursive Divide-and-Conquer

RDAC(A,C, i, N, k)
input : A ∈Mn(K[[x]]),C ∈ Li, i ∈ N, N ∈ N \ {0}, k ∈ N \ {0}
output: F ∈ Li+N

if N = 1 then
if k = 1 then Ri := qiA0 − γiId else Ri := qiA0

if det(Ri) = 0 then return Fi
else return −R−1

i C0

else
m := ⌈N/2⌉
H := RDAC(A,C, i,m, k)
D := (C− xkδ(H) + (qiA− γixk−1Id)σ(H)) div xm

K := RDAC(A,D, i+m,N −m, k)
return H+ xmK

end

subspace of vectors of the form

F = ϕ0 + ϕ1Fj1 + · · ·+ ϕµ(i)Fµ(i),

where µ(i) is defined as the index of the largest element jℓ ∈ R such that jℓ < i; if

no such element exist (for instance when i = 0), we let µ(i) = 0. A specialization

S : L →Mn,1(K[x]) is simply an evaluation map defined by fi,ℓ 7→ fi,ℓ for all i, ℓ, for

some choice of (fi,ℓ) in Knr.

We extend δ and σ to such vectors, by letting δ(fi,ℓ) = 0 and σ(fi,ℓ) = fi,ℓ for all

i, ℓ, so that we have, for F in L

δ(F) = δ(ϕ0) + δ(ϕ1)Fj1 + · · ·+ δ(ϕr)Fjr ,

and similarly for σ(F).

The main divide-and-conquer algorithm first computes F in L , by simply skipping

all equations corresponding to indices i ∈ R; it is presented in Algorithm 5. In a

second step, we resolve the indeterminacies by plain linear algebra. For i > 0, and

F,C in L , we write

E(F,C, i) = xkδ(F)−
(
(qiA− γixk−1Id)σ(F) +C

)
.

In particular, E(F,C, 0) is a parameterized form of Eq. (5.3). The key to the divide-

and-conquer approach is to write H = F mod xm, K = F div xm and D = (C −

69

E(H,C, i)) div xm. Using the equalities

xkδ(F) = xkδ(H) + xm+kδ(K) + γmx
m+k−1σ(K)

and γi+m = γm + qmγi, a quick computation shows that

E(F,C, i) = (E(H,C, i) mod xm) + xmE(K,D, i+m). (5.5)

Lemma 1. Let A be in Mn(K[x]) and C in Li, and let F = RDAC(A,C, i,M, k)

with i+M 6 N . Then:

1. F is in Li+M ;

2. for j ∈ {0, . . . ,M−1} such that i+ j 6∈ R, the equality coeff(E(F,C, i), xj) = 0

holds;

3. if C and F in Mn,1(K[x]) with degF < M are such that E(F,C, i) = 0 mod xM

and there exists a specialization S : Li →Mn,1(K[x]) such that C = S(C), there

exists a specialization S ′ : Li+M →Mn,1(K[x]) which extends S and such that

F = S(F).

F is computed in time O((n2 + rnω)M(M) log(M) + nωM).

Proof. The proof is by induction on M .

Proof of 1. For M = 1, we distinguish two cases. If i ∈ R, say i = jℓ, we return

Fi = Fjℓ . In this case, µ(i+ 1) = ℓ, so our claim holds. If i 6∈ R, because C0 ∈ Li,

the output is in Li as well. This proves the case M = 1.

For M > 1, we assume the claim to hold for all (i,M ′), with M ′ < M . By

induction, H ∈ Li+m and K ∈ Li+M . Thus, D ∈ Li+m and the conclusion follows.

Proof of 2. For M = 1, if i ∈ R, the claim is trivially satisfied. Otherwise, we

have to verify that the constant term of E(F,C, i) is zero. In this case, the output

F is reduced to its constant term F0, and the constant term of E(F,C, i) is (up to

sign) RiF0 +C0 = 0, so we are done.

For M > 1, we assume that the claim holds for all (i,M ′), with M ′ < M . Take

j in {0, . . . ,M − 1}. If j < m, we have coeff(E(F,C, i), xj) = coeff(E(H,C, i), xj);

since i + j /∈ R, this coefficient is zero by assumption. If m 6 j, we have

coeff(E(F,C, i), xj) = coeff(E(K,D, i), xj−m). Now, j + i /∈ R implies that

(j − m) + (i + m) /∈ R, and j − m < M − m, so by induction this coefficient is

zero as well.

70

Algorithm 5: Divide-and-Conquer

DAC(A,C,N, k)
input : A ∈Mn(K[[x]]), C ∈Mn,1(K[[x]]), N ∈ N \ {0}, k ∈ N \ {0}
output: Generators of the solution space of xkδ(F) = Aσ(F) + C at precision

N .
F := RDAC(A,C, 0, N, k)
(F has the form ϕ0 + ϕ1Fj1 + · · ·+ ϕrFjr) T := xkδ(F)− Aσ(F)− C mod xN

Γ := (T
(j)
i , i ∈ R, j = 1, . . . , n)

Φ,∆ := LinSolve(Γ = 0)
M := [ϕ1, . . . , ϕr]
return ϕ0 +MΦ,M∆

Proof of 3. For M = 1, if i ∈ R, say i = jℓ, we have F = Fjℓ , whereas F has

entries in K; this allows us to define S ′. When i 6∈ R, we have F = S(F), so the

claim holds as well. Thus, we are done for M = 1.

For M > 1, we assume our claim for all (i,M ′) with M ′ < M . Write H =

F mod xm, K = F div xm and D = (C − xkδ(H) + (qiA − γixk−1Id)σ(H)) div xm.

Then, (5.5) implies that E(H,C, i) = 0 mod xm and E(K,D, i+m) = 0 mod xM−m.

The induction assumption shows that H is a specialization of H, say H = S ′(H)

for some S ′ : Li+m → Mn,1(K[x]) which extends S. In particular, D = S ′(D).

The induction assumption also implies that there exist an extension S ′′ : Li+m →
Mn,1(K[x]) of S ′, and thus of S, such that K = S ′′(K). Then F = S ′′(F), so we are

done.

For the complexity analysis, the most expensive part of the algorithm is the com-

putation of D. At the inner recursion steps, the bottleneck is the computation of

Aσ(H), where H has degree less than M and A can be truncated mod xM (the

higher degree terms have no influence in the subsequent recursive calls). Computing

σ(H) takes time O(N(n+ rn2)) and the product is done in time O((n2+ rnω)M(M));

recursion leads to a factor log(M). The base cases use O(M) matrix inversions of

cost O(nω) and O(M) multiplications, each of which takes time O(rnω).

The second step of the algorithm is plain linear algebra: we know that the output

of the previous algorithm satisfies our main equation for all indices i /∈ R, so we

conclude by forcing the remaining ones to zero.

Proposition 1. On input A,C,N, k as specified in Algorithm 5, this algorithm

returns generators of the solution space of (5.3) mod xN in time O((n2 +

rnω)M(N) log(N) + r2nωN + rωnω).

71

Proof. The first claim is a direct consequence of the construction above, combined

with Lemma 1. For the cost estimate, we need to take into account the computation

of T, the linear system solving, and the final matrix products. The computation of

T fits in the same cost as that of D in Algorithm 4, so no new contribution comes

from here. Solving the system Γ = 0 takes time O((rn)ω). Finally, the product

[ϕ1 · · ·ϕr]∆ involves an n × (rn) matrix with entries of degree N and an (rn) × t

constant matrix, with t 6 rn; proceeding coefficient by coefficient, and using block

matrix multiplication in size n, the cost is O(r2nωN).

When all matrices Ri are invertible, the situation becomes considerably simpler:

r = 0, the solution space has dimension 0, there is no need to introduce formal pa-

rameters, the cost drops to O(n2M(N) log(N)+nωN) for Lemma 1, and Proposition 1

becomes irrelevant.

When A0 has good spectrum at precision N , we may not be able to ensure that

r = 0, but we always have r 6 1. Indeed, when k = 1, the good spectrum condition

implies that for all 0 6 i < N and for j ∈ N, the matrices Ri and Rj have disjoint

spectra so that at most one of them can be singular. For k > 1, the good spectrum

condition implies that all Ri are invertible, whence r = 0. This proves Thm. 1.

Previous work. As said above, Barkatou and Pflügel [3], then Barkatou, Broughton

and Pflügel [2], already gave algorithms that solve such equations term-by-term, in-

troducing formal parameters to deal with cases where the matrix Ri is singular. These

algorithms handle some situations more finely than we do (e.g., the cases k > 2), but

take quadratic time; our algorithm can be seen as a divide-and-conquer version of

these results.

In the particular case q 6= 1, n = 1 and r = 0, another forerunner to our approach

is Brent and Traub’s divide-and-conquer algorithm [12]. That algorithm is analyzed

for a more general σ, of the form σ(x) = xq(x), as such, they are more costly than

ours; when q is constant, we essentially end up with the approach presented here.

Let us finally mention van der Hoeven’s paradigm of relaxed algorithms [19, 22, 23],

which allows one to solve systems such as (5.3) in a term-by-term fashion, but in quasi-

linear time. The cornerstone of this approach is fast relaxed multiplication, otherwise

known as online multiplication, of power series.

In [19, 20], van der Hoeven offers two relaxed multiplication algorithms (the first

one being similar to that of [16]); both take time O(M(n) log(n)). When r = 0, this

yields a complexity similar to Prop. 1 to solve Eq. (5.3), but it is unknown to us how

this carries over to arbitrary r.

72

When r = 0, both our divide-and-conquer approach and the relaxed one can

be seen as “fast” versions of quadratic time term-by-term extraction algorithms. It

should appear as no surprise that they are related: as it turns out, at least in simple

cases (with k = 1 and n = 1), using the relaxed multiplication algorithm of [20]

to solve Eq. (5.3) leads to doing exactly the same operations as our divide-and-

conquer method, without any recursive call. We leave the detailed analysis of these

observations to future work.

For suitable “nice” base fields (e.g., for fields that support Fast Fourier Transform),

the relaxed multiplication algorithm in [19] was improved in [21, 24], by means of

a reduction of the log(n) overhead. This raises the question of whether such an

improvement is available for divide-and conquer techniques.

5.3 Newton Iteration

5.3.1 Gauge Transformation

Let F be a solution of Eq. (5.3). To any invertible matrix W ∈ Mn(K[x]), we can

associate the matrix Y = W−1F ∈Mn(K[[x]]). We are going to choose W in such a

way that Y satisfies an equation simpler than (5.3). The heart of our contribution is

the efficient computation of such a W .

Lemma 2. Let W ∈Mn(K[x]) be invertible in Mn(K[[x]]) and let B ∈Mn(K[x]) be

such that

B =W−1(xkδ(W)−Aσ(W)) mod xN . (5.6)

Then F in Mn,1(K[x]) satisfies

xkδ(F) = Aσ(F) + C mod xN (5.3)

if and only if Y = W−1F satisfies

xkδ(Y) = Bσ(Y) +W−1C mod xN . (5.7)

Proof. Differentiating the equality F = WY gives

xkδ(F) = xkδ(W)σ(Y) + xkWδ(Y).

73

Since xkδ(W) = Aσ(W)−WB mod xN , we deduce

xkδ(F)− Aσ(F)− C =W (xkδ(Y)− Bσ(Y)−W−1C) mod xN .

Since W is invertible, the conclusion follows.

The systems (5.3) and (5.7) are called equivalent under the gauge transforma-

tion Y = WF . Solving (5.3) is thus reduced to finding a simple B such that (5.7)

can be solved efficiently and such that the equation

xkδ(W) = Aσ(W)−WB mod xN (5.8)

that we call associated to (5.3) has an invertible matrix W solution that can be

computed efficiently too.

As a simple example, consider the differential case, with k = 1. Under the good

spectrum assumption, it is customary to choose B = A0, the constant coefficient of

A. In this case, the matrix W of the gauge transformation must satisfy

xW ′ = AW −WA0 mod xN .

It is straightforward to compute the coefficients of W one after the other, as they

satisfy W0 = Id and, for i > 0,

(A0 − iId)Wi −WiA0 = −
∑

j<i

Ai−jWj.

However, using this formula leads to a quadratic running time in N . The Newton

iteration presented in this section computes W in quasi-linear time.

5.3.2 Polynomial Coefficients

Our approach consists in reducing efficiently the resolution of (5.3) to that of an

equivalent equation where the matrix A of power series is replaced by a matrix B

of polynomials of low degree. This is interesting because the latter can be solved in

linear complexity by extracting coefficients. This subsection describes the resolution

of the equation

xkδ(Y) = Pσ(Y) +Q, (5.9)

where P is a polynomial matrix of degree less than k.

74

Algorithm 6: PolCoeffsDE

PolCoeffsDE(P,Q, k,N)

input : P ∈Mn(K[x]) of degree less than k, Q ∈Mn,1(K[[x]]), N ∈ N \ {0},
k ∈ N \ {0}

output: Generators of the solution space of xkδ(Y) = Pσ(Y) +Q at precision
N .

for i = 0, . . . , N − 1 do
C := Qi + (P1q

i−1Yi−1 + · · ·+ Pk−1q
i−k+1Yi−k+1)

if k = 1 then
Yi,Mi := LinSolve((γiId− qiP0)X = C)

else
Yi,Mi := LinSolve(−qiP0X = C − γi−k+1Yi−k+1)

end

end
return Y0 + · · ·+ YN−1x

N−1, [M0 M1x · · ·MN−1x
N−1]

Lemma 3. Suppose that P0 has good spectrum at precision N . Then Algorithm 6

computes generators of the solution space of Eq. (5.9) at precision N in time O(nωN),

with M ∈Mn,t(K) for some t 6 n.

Proof. Extracting the coefficient of xi in Eq. (5.9) gives

γi−k+1Yi−k+1 = qiP0Yi + · · ·+ qi−k+1Pk−1Yi−k+1 +Qi.

In any case, the equation to be solved is as indicated in the algorithm. For k = 1, we

actually have C = Qi for all i, so all these systems are independent. For k > 1, the

good spectrum condition ensures that the linear system has full rank for all values

of i, so all Mi are empty. For each i, computing C and solving for Yi is performed

in O(nω) operations, whence the announced complexity.

5.3.3 Computing the Associated Equation

Given A ∈ Mn(K[[x]]), we are looking for a matrix B with polynomial entries of

degree less than k such that the associated equation (5.8), which does not depend on

the non-homogeneous term C, has an invertible matrix solution.

In this article, we content ourselves with a simple version of the associated equation

where we choose B in such a way that (5.8) has an invertible solution V mod xk; thus,

V and B must satisfy Aσ(V) = V B mod xk. The invertible matrix V is then lifted

at higher precision by Newton iteration (Algorithm 9) under regularity conditions

that depend on the spectrum of A0. Other cases can be reduced to this setting by

75

the polynomial gauge transformations that are used in the computation of formal

solutions [2, 33].

When k = 1 or q 6= 1, the choice

B = A mod xk, V = Id

solves our constraints and is sufficient to solve the associated equation. When q =

1, k > 1 (in particular when the point 0 is an irregular singular point of the equation),

this is not the case anymore. In that case, we use a known technique called the splitting

lemma to prepare our equation. See for instance [1, Ch. 3.2] and [2] for details and

generalizations.

Lemma 4 (Splitting Lemma). Suppose that k > 1, that | SpecA0| = n and that

SpecA0 ⊂ K. Then one can compute in time O(nω) matrices V and B of degree less

than k in Mn(K[x]) such that the following holds: V0 is invertible; B is diagonal;

AV = V B mod xk.

Proof. We can assume that A0 is diagonal: if not, we let P be in Mn(K) such that

D = P−1AP has a diagonal constant term; we find V using D instead of A, and

replace V by PV . Computing P and PV takes time O(nω), since as per convention,

k is considered constant in the cost analyses.

Then, we take B0 = A0 and V0 = Id. For i > 0, we have to solve A0Vi−ViA0−Bi =

∆i, where ∆i can be computed from A1, . . . , Ai and B1, . . . , Bi−1 in time O(nω). We

set the diagonal of Vi to 0. Since A0 is diagonal, the diagonal Bi is then equal

to the diagonal of ∆i, up to sign. Then the entry (ℓ,m) in our equation reads

(rℓ − rm)V (ℓ,m)
i = ∆

(ℓ,m)
i , with r1, . . . , rn the (distinct) eigenvalues of A0. This can

always be solved, in a unique way. The total time is O(nω).

5.3.4 Solving the Associated Equation

Once B and V are determined as in S5.3.3, we compute a matrix W that satisfies

the associated equation (5.8); this eventually allows us to reduce (5.3) to an equation

with polynomial coefficients. This computation of W is performed efficiently using a

suitable version of Newton iteration for Eq. (5.8); it computes a sequence of matrices

whose precision is roughly doubled at each stage. This is described in Algorithm 9;

our main result in this section is the following.

Proposition 2. Suppose that A0 has good spectrum at precision N . Then, given

a solution of the associated equation mod xk, invertible in Mn(K[[x]]), Algorithm 9

76

Algorithm 7: Solving Eq. (5.10) when k = 1 or q 6= 1

DiffSylvester(Γ, m,N)

input : Γ ∈ xmMn(K[[x]]), m ∈ N \ {0}, N ∈ N \ {0}
output: U ∈ xm−kMn(K[x]) solution of (5.10).
for i = m, . . . , N − 1 do

C := (B1q
i−1Ui−1 + · · ·+Bk−1q

i−k+1Ui−k+1)
−(Ui−1B1 + · · ·+ Ui−k+1Bk−1) + Γi

if k = 1 then
Ui := Sylvester(XB0 + (γiId− qiB0)X = C)

else
Ui := Sylvester(XB0 − qiB0X =

C − γi−k+1Ui−k+1)
end

end
return Umx

m + · · ·+ UN−1x
N−1

computes a solution of that equation modxN , also invertible in Mn(K[[x]]), in time

O(nωM(N) + nω log(n)N).

Before proving this result, we show how to solve yet another type of equations

that appear in an intermediate step:

xkδ(U) = Bσ(U)− UB + Γ mod xN , (5.10)

where all matrices involved have size n × n, with Γ = 0 mod xm. This is dealt with

by Algorithm 7 when k = 1 or q 6= 1 and Algorithm 8 otherwise.

For Algorithm 7, remember that B = A mod xk. The algorithm uses a rou-

tine Sylvester solving Sylvester equations. Given matrices Y, V, Z in Mn(K), we are

looking for X in Mn(K) such that Y X−XV = Z.When (Y, V) have disjoint spectra,

this system admits a unique solution, which can be computed O(nω log(n)) operations

in K [26].

Lemma 5. Suppose that k = 1 or q 6= 1 and that A0 has good spectrum at precision

N . If Γ = 0 mod xm, with k 6 m < N , then Algorithm 7 computes a solution U to

Eq. (5.10) that satisfies U = 0 mod xm−k+1 in time O(nω log(n)N).

Proof. Extracting the coefficient of xi in (5.10) gives

γi−k+1Ui−k+1 = qiB0Ui − UiB0 + C,

with C as defined in Algorithm 7. In both cases k = 1 and k > 1, this gives a Sylvester

77

Algorithm 8: Solving Eq. (5.10) when k > 1 and q = 1

DiffSylvesterDifferential(Γ, m,N)

input : Γ ∈ xmMn(K[[x]]), m ∈ N \ {0}, N ∈ N \ {0}
output: U ∈ xm−kMn(K[x]) solution of (5.10).
for i = 1, . . . , n do

for j = 1, . . . , n do
if i = j then U (i,i) := xk

∫
(x−kΓ(i,i)) mod xN

else
U (i,j):= PolCoeffsDE(B(i,i)−B(j,j),Γ(i,j), k, N)

end

end

end
return U

equation for each Ui, of the form given in the algorithm. Since B0 = A0, the spectrum

assumption on A0 implies that these equations all have a unique solution. Since Γ is

0 mod xm, so is U (so we can start the loop at index m). The total running time is

O(nω log(n)N) operations in K.

This approach fails in the differential case (q = 1) when k > 1, since then the

Sylvester systems are all singular. Algorithm 8 deals with this issue, using the fact

that in this case, B is diagonal, and satisfies the conditions of Lemma 4.

Lemma 6. Suppose that k > 1, q = 1 and that A0 has good spectrum at precision

N . If Γ = 0 mod xm, with k 6 m < N , then Algorithm 8 computes a solution U to

Eq. (5.10) that satisfies U = 0 mod xm−k+1 in time O(n2N).

Proof. Since B is diagonal, the (i, j)th entry of (5.10) is

xkδ(U (i,j)) = (B(i,i) −B(j,j))U (i,j) + Γ(i,j) mod xN .

When i = j, B(i,i)−B(j,j) vanishes. After dividing by xk, we simply have to compute

an integral, which is feasible under the good spectrum assumption (we have to divide

by the non-zero γ1 = 1, . . . , γN−k = N − k). When i 6= j, the conditions ensure

that Lemma 3 applies (and since k > 1, the solution is unique, as pointed out in its

proof).

We now prove the correctness of Algorithm 9 for Newton iteration. Instead of

doubling the precision at each step, there is a slight loss of k − 1.

78

Algorithm 9: Newton iteration for Eq. (5.8)

NewtonAE(V,N)

input : V ∈Mn(K[x]) solution of (5.8) modxk invertible in Mn(K[[x]]),
N ∈ N \ {0}

output: W ∈Mn(K[x]) solution of (5.8) modxN invertible in Mn(K[[x]]),
with W = V mod xk

if N 6 k then return V
else

m := ⌈N+k−1
2
⌉

H := NewtonAE(V,m)
R := xkδ(H)− Aσ(H) +HB
if k = 1 or q 6= 1 then

U := DiffSylvester(−H−1R,m,N)
else

U := DiffSylvesterDifferential(−H−1R,m,N)
end
return H +HU

end

Lemma 7. Let m > k and let H ∈ Mn(K[x]) be invertible in Mn(K[[x]]) and sat-

isfy (5.8) modxm. Let N be such that m 6 N 6 2m− k + 1. Let R and U be as in

Algorithm 9 and suppose that A0 has good spectrum at precision N .

Then H + HU is invertible in Mn(K[[x]]) and satisfies the associated equation

modxN . Given H, U can be computed in time O(nωM(N) + nω log(n)N).

Proof. By hypothesis, R = 0 mod xm. Then

xkδ(H +HU)− Aσ(H +HU) + (H +HU)B

= (xkδ(H)− Aσ(H) +HB)(Id+ σ(U))

+H(xkδ(U) + UB − Bσ(U))
= R(Id+ σ(U))− R mod xN = Rσ(U) mod xN .

Using either Lemma 5 or Lemma 6, U = 0 mod xm−k+1, so σ(U) = 0 mod xm−k+1.

Thus, the latter expression is 0, since 2m − k + 1 > N . Finally, since HU = 0 mod

xm−k+1, and m > k, H +HU remains invertible in Mn(K[[x]]). The various matrix

products and inversions take a total number of O(nωM(N)) operations in K (using

Newton iteration to invert H). Adding the cost of Lemma 5, resp. Lemma 6, we get

the announced complexity.

We can now prove Proposition 2. Correctness is obvious by repeated applications

79

of the previous lemma. The cost C(N) of the computation up to precision N satisfies

C(N) = C(m) +O(nωM(N) + nω lognN), N > k.

Using the super-additivity properties of the function M as in [17, Ch. 9], we obtain

the claimed complexity.

We can now conclude the proof of Thm. 2. In order to solve Equation (5.3), we first

determine B and V as in S5.3.3; the cost will be negligible. Then, we use Proposition 2

to compute a matrixW that satisfies (5.8) mod xN . Given C in Mn,1(K[[x]]), we next

compute Γ = W−1C mod xN . By the previous lemma, we conclude by solving

xkδ(Y) = Bσ(Y) + Γ mod xN .

Lemma 3 gives us generators of the solution space of this equation modxN . If it is

inconsistent, we infer that Eq. (5.3) is. Else, from the generators (Y,M) obtained in

Lemma 3, we deduce that (WY,WM) mod xN is a generator of the solution space of

Eq. (5.3) modxN . Since the matrix M has few columns (at most n), the cost of all

these computations is dominated by that of Proposition 2, as reported in Thm. 2.

5.4 Implementation

We implemented the divide-and-conquer and Newton iteration algorithms, as well as

a quadratic time algorithm, on top of NTL 5.5.2 [29]. In our experiments, the base

field is K = Z/pZ, with p a 28 bit prime; the systems were drawn at random. Timings

are in seconds, averaged over 50 runs; they are obtained on a single core of a 2 GHz

Intel Core 2.

Our implementation uses NTL’s built-in zz pX polynomial arithmetic, that is,

works with “small” prime fields (of size about 230 over 32 bit machines, and 250

over 64 bits machines). For this data type, NTL’s polynomial arithmetic uses a

combination of naive, Karatsuba and FFT arithmetic.

There is no built-in NTL type for polynomial matrices, but a simple mechanism to

write one. Our polynomial matrix product is naive, of cubic cost. For small sizes such

as n = 2 or n = 3, this is sufficient; for larger n, one should employ improved schemes

(such as Waksman’s [32], see also [15]) or evaluation-interpolation techniques [9].

Our implementation follows the descriptions given above, up to a few optimiza-

tions for algorithm NewtonAE (which are all classical in the context of Newton iter-

ation). For instance, the inverse of H should not be recomputed at every step, but

80

 0

 0.005

 0.01

 0.015

 0.02

 0 100 200 300 400 500 600 700 800 900 1000

ti
m

e
N

Newton

DAC

Naive

Figure 5.1: Timings with n = 1, k = 1, q 6= 1

 1

 2

 3

 4 0 200 400 600 800 1000

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

time
Newton

DAC

n
N

time

Figure 5.2: Timings with k = 1, q 6= 1

simply updated; some products can be computed at a lower precision than it appears

(such as H−1R, where R is known to have a high valuation).

In Fig. 5.1, we give timings for the scalar case, with k = 1 and q 6= 1. Clearly, the

quadratic algorithm is outperformed for almost all values of N ; Newton iteration per-

forms better than the divide-and-conquer approach, and both display a subquadratic

behavior. Fig. 5.2 gives timings when n varies, taking k = 1 and q 6= 1 as before.

For larger values of n, the divide-and-conquer approach become much better for this

range of values of N , since it avoids costly polynomial matrix multiplication (see

Thm. 1).

Finally, Table 5.1 gives timings obtained for k = 3, for larger values of n (in

this case, a plot of the results would be less readable, due to the large gap between

the divide-and-conquer approach and Newton iteration, in favor of the former); DAC

stands for “divide-and-conquer”. In all cases, the experimental results confirm to a

very good extent the theoretical cost analyses.

81

Newton n
5 9 13 17

N

50 0.01 0.11 0.32 0.72
250 0.22 1.2 3.7 8.1
450 0.50 2.8 8.3 18
650 0.93 5.1 16 34

DAC n
5 9 13 17

N

50 0.01 0.01 0.02 0.04
250 0.03 0.07 0.15 0.25
450 0.06 0.16 0.32 0.52
650 0.10 0.27 0.53 0.88

Table 5.1: Timings with k = 3, q 6= 1

Bibliography

[1] W. Balser. Formal power series and linear systems of meromorphic ordinary

differential equations. Universitext. Springer-Verlag, New York, 2000.

[2] M. Barkatou, G. Broughton, and E. Pflügel. A monomial-by-monomial method

for computing regular solutions of systems of pseudo-linear equations. Math.

Comput. Sci., 4(2-3):267–288, 2010.

[3] M. Barkatou and E. Pflügel. An algorithm computing the regular formal solutions

of a system of linear differential equations. J. Symb. Comput., 28(4-5):569–587,

1999.

[4] D. J. Bernstein. Composing power series over a finite ring in essentially linear

time. J. Symb. Comput., 26(3):339–341, 1998.

[5] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, S. Sedoglavic, and É. Schost. Fast

computation of power series solutions of systems of differential equations. In

Symposium on Discrete Algorithms, SODA’07, pages 1012–1021. ACM-SIAM,

2007.

[6] A. Bostan, L. González-Vega, H. Perdry, and É. Schost. From Newton sums to

coefficients: complexity issues in characteristic p. In MEGA’05, 2005.

[7] A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing

isogenies between elliptic curves. Math. of Comp., 77(263):1755–1778, 2008.

82

[8] A. Bostan, B. Salvy, and É. Schost. Power series composition and change of

basis. In ISSAC’08, pages 269–276. ACM, 2008.

[9] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special

sets of points. J. Complexity, 21(4):420–446, 2005.

[10] A. Bostan and É. Schost. Fast algorithms for differential equations in positive

characteristic. In ISSAC’09, pages 47–54. ACM, 2009.

[11] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power

series. J. ACM, 25(4):581–595, 1978.

[12] R. P. Brent and J. F. Traub. On the complexity of composition and generalized

composition of power series. SIAM J. Comput., 9:54–66, 1980.

[13] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbi-

trary algebras. Acta Inform., 28(7):693–701, 1991.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. J. Symb. Comput., 9(3):251–280, 1990.

[15] C.-É. Drevet, M. Islam, and É. Schost. Optimization techniques for small matrix

multiplication. Theoretical Computer Science, 412:2219–2236, 2011.

[16] Fischer and Stockmeyer. Fast on-line integer multiplication. J. of Computer and

System Sciences, 9, 1974.

[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 1999.

[18] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity:

Error-correction with optimal redundancy. IEEE Trans. on Information Theory,

54(1):135–150, 2008.

[19] J. van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput., 34(6):479–

542, 2002.

[20] J. van der Hoeven. Relaxed multiplication using the middle product. In IS-

SAC’03, pages 143–147. ACM, 2003.

[21] J. van der Hoeven. New algorithms for relaxed multiplication. J. Symb. Comput.,

42(8):792–802, 2007.

83

[22] J. van der Hoeven. Relaxed resolution of implicit equations. Technical report,

HAL, 2009. http://hal.archives-ouvertes.fr/hal-00441977.

[23] J. van der Hoeven. From implicit to recursive equations. Technical report, HAL,

2011. http://hal.archives-ouvertes.fr/hal-00583125.

[24] J. van der Hoeven. Faster relaxed multiplication. Technical report, HAL, 2012.

http://hal.archives-ouvertes.fr/hal-00687479.

[25] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular com-

position. SIAM J. Comput., 40(6):1767–1802, 2011.

[26] P. Kirrinnis. Fast algorithms for the Sylvester equation AX −XBt = C. Theo-

retical Computer Science, 259(1–2):623–638, 2001.

[27] R. Lercier and T. Sirvent. On Elkies subgroups of ℓ-torsion points in elliptic

curves defined over a finite field. Journal de Théorie des Nombres de Bordeaux,

20(3):783–797, 2008.

[28] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Comput-

ing, 7:281–292, 1971.

[29] V. Shoup. NTL 5.5.2: A library for doing number theory, 2009.

www.shoup.net/ntl.

[30] A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University

of Edinburgh, 2010.

[31] V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. Technical

report, 2011.

[32] A. Waksman. On Winograd’s algorithm for inner products. IEEE Trans. On

Computers, C-19:360–361, 1970.

[33] W. Wasow. Asymptotic expansions for ordinary differential equations. John

Wiley & Sons, 1965.

84

Chapter 6

Polynomial Root-Finding for

Nonlinear Equations

List decoding, for the Sudan / Guruswami-Sudan as well as for the Rudra-Guruswami

algorithms, requires to perform bivariate, resp. multivariate polynomial root-finding

for nonlinear polynomials, whose roots may additionally have multiplicities. There are

several barriers to incorporate directly fast root-finding techniques based on Newton

iteration; in this chapter, we analyze these questions using Newton polygons and

introduce in particular a heuristic to deal with the folded case. Experimental results

show the soundness of this approach.

6.1 Introduction

In this chapter, we consider the problem of root-finding for Reed-Solomon codes and

folded Reed-Solomon codes. As input, we are given a polynomial Q in F[x, z1, . . . , zs],

for some field F, and a field element γ; this polynomial was obtained by interpolation

at a set of points of the form (αi, ys(i−1)+1, . . . , ysi) that lies in Fs+1. The output is a

polynomial f such that

Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0; (6.1)

the case s = 1 corresponds to the Sudan and Guruswami-Sudan algorithms, and s > 1

holds for the Guruswami-Rudra folded codes.

Following the ideas of Chapter 5, we will compute f using lifting techniques. In

that chapter, we were dealing with linear equations, and under suitable assumptions,

we were able to give fast algorithms (quasi-linear time in the degree of f). In this

85

chapter, we deal with more general situations, dropping in particular the linearity

assumption. Our main results are the following:

• For non-linear equations, we prove using Newton iteration techniques that pro-

vided certain smoothness assumptions hold, we can compute a root of Eq. (6.1)

in time quasi-linear in the degree of f . This is well-known for the “algebraic”

case s = 1, where the equation we solve becomes simply Q(x, f(x)) = 0.

• Without the smoothness assumption, we show how Newton polygon construc-

tions can be applied; for this, we rely on previous results due to Kung-Traub [16]

and Cano-Fortuny Ayuso [9]. We relate this approach to previous algorithms

due to Roth and Ruckenstein [23] (for s = 1) and Beelen and Brander [2] for

the folded case.

• Finally, we present a heuristic dedicated to the folded case, that greatly simpli-

fies the computations based on Newton polygon techniques, and works remark-

ably well in practice.

For convenience, we describe first in Section 6.2 the non-folded case, with s = 1;

in that case, almost all results we give were known, and our main contribution is

to highlight the connection between a previous algorithm due to Roth and Rucken-

stein [23] and classical Newton polygon construction. In Section 6.3 we show how

these techniques extend to the folded case; finally, in the last section, we introduce

our heuristic for the folded case.

In this chapter, we let M : N → N be such that for any ring R, polynomials of

degree less than n in R[x] can be multiplied in M(n) arithmetic operations in R. We

assume that M(n) satisfies the usual assumptions of [28, S8.3]; using Fast Fourier

Transform, M(n) can be taken to be O(n log(n) log log(n)) [29, 30].

6.2 The classical case (s = 1)

This section describes root finding techniques in the non-folded case, that is, when

s = 1. Most of the contents is well-known, but we make a few remarks about the

relations between some existing algorithms that seem to be new.

We are given here a polynomial Q in K[x, z], and we look for polyomials f of

degree less than k in K[x] such that Q(x, f(x)) = 0. A direct approach consists in

factoring Q, since in this bivariate case, z−f(x) must be a factor of Q in K[x, z]; this

is how the polynomial time complexity results are achieved in [24] and [13]. Now,

86

bivariate factorization algorithms boil down to univariate factorization, lifting and

recombination; it is thus natural to remark that in order to find roots of the form

z = f(x), one may directly lift power series solutions from the known values (αi, yi),

and identify those that are polynomials of degree less than k. We discuss this idea

here, first in the case of Sudan’s algorithm, then for the Guruswami-Sudan algorithm.

6.2.1 Root-finding when m = 1

We start by briefly describing the case m = 1. This case was investigated in [1] by

Augot and Pecquet, who showed how to use fast root-finding techniques. That paper

discusses more than Reed-Solomon codes (the authors consider algebraic geometric

codes); for the particular case of Reed-Solomon codes, the lifting process boils down

to a standard form of Newton iteration.

Fix an index i in {1, . . . , n}, so that Q(xi, αi) = 0. After replacing Q by Qi =

Q(x+xi, z+αi), the algorithm computes a sequence of polynomials f(j) in K[x] such

that deg(f(j)) < 2j and Qi(x, f(j)) = 0 mod x2
j

holds for j = 0, . . . This is done as

follows:

• For j = 0, take f(0) = 0.

• To deduce f(j+1) from f(j), write f(j+1) = f(j) + h(j), with h(j) = 0 mod x2
j

.

Writing the Taylor expansion of Qi at (x, f(j)), and using the fact that h2(j) =

0 mod x2
j+1

, we deduce

Qi(x, f(j+1)) = Qi(x, f(j)) + h(j)
∂Qi

∂z
(x, f(j)) mod x2

j+1

.

Assuming that ∂Qi/∂z(0, 0) is nonzero, we deduce

h(j) = −
Qi(x, f(j))
∂Qi

∂z
(x, f(j))

mod x2
j+1

.

The above process is none other than Newton iteration applied to Qi; in order for

the iteration to be well-defined, the partial derivative ∂Qi/∂z(0, 0) = ∂Q/∂z(xi, αi)

must be nonzero. While we expect this condition to hold “in general” for all i, the

assumption Q(x, f(x)) = 0 is not enough to guarantee it. Theorem 5 in [1] proves

that if Q is chosen with minimal z-degree, there exists at least one index i for which

∂Q/∂z(xi, αi) is nonzero.

Let ℓ = deg(Q, z). When the required condition ∂Q/∂z(xi, αi) 6= 0 holds, then

the jth step of this Newton iteration takes O(ℓ) operations (additions, subtractions,

87

divisions) on power series of precision 2j. Each such power series operation takes

O(M(2j)) operations in K, for a total of O(ℓM(2j)). If we stop the iteration as soon

as 2ℓ > k, the total is thus O(ℓM(k)) operations in K.

6.2.2 Root-finding when m > 1

By construction, in Guruswami-Sudan’s algorithm, the partial derivatives

∂Q/∂z(xi, αi) all vanish, so we cannot apply Newton iteration directly in that case.

In this subsection, we present workarounds to this problem, first by means of the

Roth-Ruckenstein algorithm, then using an older algorithm due to Kung and Traub;

we then point out that these two algorithms are essentially the same, with a slight

advantage for the latter.

As in the previous subsection, we fix an index i once and for all and we translate

the origin to (xi, αi). In order to avoid keeping track of the index i, we still write

Q for the bivariate polynomial obtained after translation, so that our problem boils

down to finding a polynomial f(x) such that f(0) = 0 and Q(x, f(x)) = 0. Remark

that already for such simple polynomials as Q(x, z) = z2 − x2, there is no way to

uniquely compute a root z = f(x) such that f(0) = 0 (here, both z = x and z = −x
are solutions).

Roth and Ruckenstein’s algorithm. We start with Roth and Ruckenstein’s al-

gorithm [23], which computes the coefficients of the message polynomial f one after

another. Following the original presentation, the algorithm uses an array ψ of size k

to store its results, and outputs candidates for f one after the other (formally, they

may be appended to an output list). The top-level call starts at index i = 0, and

subsequent calls involve higher values of i. Finally, in order to distinguish its behavior

from the one of the upcoming Newton-Puiseux algorithm, the input is called here M .

88

Algorithm 10: Roth & Ruckenstein(M, k, ψ, i)

1: find the largest integer r such that xr divides M

2: M = M
xr

3: ℘ = all roots of the univariate polynomial M(0, z) in K

4: for each ς ∈ ℘ do

5: ψ[i] = ς

6: if i = k − 1 then

7: output ψ

8: else

9: M̃(x, z) =M(x, xz + ς)

10: Roth & Ruckenstein(M̃, k, ψ, i+ 1)

11: end if

12: end for

The following example illustrates this algorithm. Let

M(x, z) = z4 + (−3x3 − 2x2 − 3x)z3 + (2x6 + 3x5 + 10x4 + 6x3 + 2x2)z2

+(−6x7 − 9x6 − 9x5 − 4x4)z + 4x8 + 6x7 + 2x6

= (z − x)(z − 2x)(z − x2 − x3)(z − x2 − 2x3),

and consider finding roots z = f(x) with f(0) = 0. Of course, the input of the

algorithm is the expanded form given first; on the factored form, we see that there

are four such roots. Figure 6.1 shows the recursion tree of Algorithm 10 on this

input, with the value at each node corresponding to the root ς chosen to enter the

corresponding recursive call, and with the recursion depth i given vertically. Nodes

with several children correspond to recursive steps where several roots ς exist; the

children correspond to roots that are “separated” at the given recursive call.

In what follows, we will refer to the label of a node to describe which root was

used to enter the corresponding recursive call (here, the labels of the children of the

root are 1, 2, 0); to each node N is also associated the polynomial MN that was used

as input to said node.

The Newton-Puiseux algorithm. Next, following Kung and Traub’s presenta-

tion [16], we present a simplified version of the so-called Newton-Puiseux algorithm,

that achieves the same purpose, and which follows the classical constructive proof

that the field of Puiseux series is algebraically closed (this approach was already

89

1
2 0

1

1 2

0

1

2

3

0

0

0

0

Figure 6.1: Execution of Roth and Ruckenstein’s algorithm

mentioned in Pecquet’s thesis [19]). For all facts not proved below, and in particular

for the correctness of the algorithm, please see [16].

The algorithm relies on a construction called the Newton polygon of Q: this is

a polygon in the plane, obtained as the convex hull of all sets (i, j) + N2, for (i, j)

such that xizj appears as a monomial in Q with a nonzero coefficient. The Newton

polygon for the polynomial Q in the previous example is given in Figure 6.2, where

the vertices are (0, 4), (2, 2) and (6, 0), corresponding to monomials z4, x2z2 and x6.

Figure 6.2: The Newton polygon of polynomial Q

The final notion we need is the slopes of the Newton polygon. For us, those will

be positive rational numbers η, such that the Newton polygon of Q admits an edge

of slope η; the only slopes that we will consider are those of the form η = −1/λ, for
λ either a non-negative integer (in our example, there are two such slopes, −1 and

−1/2). We also will consider vertical edges, which correspond to η = −∞ and λ = 0.

The key property of these slopes is that if f = fix
i+· · · is a solution of Q(x, f(x)) = 0,

with fi 6= 0, then −1/i is a slope of the Newton polygon, and conversely.

90

After these preliminaries, we can present the Newton-Puiseux algorithm: it finds

all slopes η as before, and for any such slope finds the corresponding coefficient

fi; the process is then continued recursively. Each call to the algorithm adds one

new coefficient to the current solution f ; the initial call is made with f = 0. For

correctness, see for instance [16] or [27]; remark that the original algorithms compute

more than we do (they output Puiseux series, that is, series with fractional exponents;

we do not need them here).

As before, the algorithm enters with a current solution, stored in an array ψ.

Algorithm 11: Newton-Puiseux expansion(Q, k, ψ, i)

1: if Q is of the form czn for some c in K and n > 1 then

2: output ψ

3: end if

4: P = NewtonPolygon(Q)

5: Λ = {−1/η | η ∈ Slopes(P) such that −1/η is in N}
6: for each integer slope λ ∈ Λ do

7: if i+ λ > k then

8: output ψ

9: else

10: let Qe = Q(x, xλw), where w is a new variable

11: find the largest integer r such that xr divides Qe

12: let ℘′ be the roots in K of the coefficient of xr in Qe

13: for each root ς 6= 0 ∈ ℘′ do

14: ψ[i+ λ] = ς

15: Q̃ = Q(x, xλ(ς + z))/xr

16: Newton-Puiseux expansion(Q̃, k, ψ, i+ λ)

17: end for

18: end if

19: end for

As an example, consider again the polynomial

Q(x, z) = (z − x)(z − 2x)(z − x2 − x3)(z − x2 − 2x3)

given before, while keeping in mind that if this polynomial was given as input to the

algorithm, it would be given in its expanded form. Figure 6.3 shows the recursion

tree for Algorithm 11, where each child corresponds to an output, the left-hand side

91

labels represent powers of x and the value at a node is the coefficient we obtained

prior to entering that node.

1 2

1

1 2

0

1

2

3

Figure 6.3: Execution of the Newton-Puiseux algorithm

A comparison. The following precise relation between these two algorithms seems

to have been unnoticed before: we claim that Algorithms 10 and 11 compute essen-

tially the same polynomials. In order to prove this claim, we will need the following

lemma on the Newton-Puiseux algorithm.

Lemma 1. Suppose that A,B are in K[x, z], and that A(x, z) = xeB(x, xz), for some

e in Z. Then, the executions of Algorithm 11 with input A and B are the same, except

that the outputs are shifted by one power of x, and that the branch of the recursion

tree corresponding to the slope −∞ for B (if it exists) does not appear for A.

Proof. That the outputs are shifted by one power of x follows directly from the fact

that the roots of A in z are exactly the roots of B divided by x. The second claim

follows from drawing both Newton polygons, and observing that slopes of the form

1/u for B become slopes of the form 1/(u− 1) for A.

We can now justify our claim, and we thus suppose that a polynomial Q is given

as input to both algorithm. Our claim is the following: there exist a one-to-one

correspondance between the nodes N of Roth and Ruckenstein’s execution tree that

are not labelled by 0 and the nodes N ′ of the Newton-Puiseux algorithm, such that the

polynomials MN and QN ′ at corresponding nodes are related as in Lemma 1.

We do a proof by induction on the depth of the execution trees. On input Q,

Roth and Ruckenstein’s algorithm will compute a set of roots ℘, which may contain

zero. We discuss the nonzero and zero roots separately.

92

• The nonzero roots correspond to those with λ = 0 in the Newton-Puiseux

algorithm. For such a root ςi, Roth and Ruckenstein’s algorithm will do a

recursive call on M̃i = Q(x, xz + ςi), whereas the Newton-Puiseux algorithm

will call itself with the polynomial Q̃i = Q(x, z + ςi)/x
ri, for some integer ri

We have M̃i = xriQ̃i(x, xz) and by construction, the polynomial Q̃i does not

have any infinite slope, so by Lemma 1, the execution of Newton-Puiseux’s al-

gorithm on input Q̃i is the same as the one on input M̃i. We are thus comparing

the Roth-Ruckenstein and Newton-Puiseux’s algorithms on the same input M̃i,

so by induction we have correspondence between the execution trees anchored

at the polynomials M̃i, as claimed.

• Consider now the zero root (if it belongs to ℘), for which Roth and Ruckenstein’s

algorithm will do a recursive call on M̃0 = Q(x, xz); remark that the Newton-

Puiseux algorithm does not make a recursive call on this polynomial.

The induction assumption implies that if we run both algorithms with input

M̃0, there is a one-to-one correspondance between the execution trees of both

algorithms, where for the Roth-Ruckenstein algorithm only nodes with nonzero

labels should be considered.

By Lemma 1, we deduce that executing the Newton-Puiseux algorithm on M̃0 =

Q(x, xz) is the same as calling it on Q and considering only non-infinite slopes.

This allows us to conclude the proof, noting the top-level of the Newton-Puiseux

algorithm will be connected to the top-level ot the Roth-Ruckenstein algorithm,

and that the node corresponding to M̃0 will not appear in our correspondance

(as it is attached to the zero root).

In particular, both algorithms involve essentially the same polynomials Q at the

internal nodes, except for the fact that the Roth-Ruckenstein algorithm computes

some unnecessary polynomials at nodes corresponding to zero roots; the relation

between Figures 6.1 and 6.3 is thus of a general nature.

A refinment. An issue with these algorithms is that it only computes one new

coefficient at a time, whereas we saw that the number of correct terms obtained

through Newton iteration doubles at each step. As it turns out, it is possible to

obtain the same convergence rate as for Newton iteration even for situations with

multiplicities.

The key idea is that, even though the coefficients of f may not be uniquely deter-

mined for the first few indices, thus preventing the application of Newton iteration,

93

it becomes possible to run this iteration after a suitable number of coefficients have

been computed, so that all roots have been “separated”.

This was noticed by both Roth-Ruckenstein and Kung-Traub. For instance, in

the Roth-Ruckenstein algorithm, onceM(0, z) has only one simple root at step i, this

will remain the case for all further indices; the same holds for the Newton-Puiseax

algorithm: at this stage, as pointed out by Kung and Traub, it becomes possible to

apply Newton iteration. It is even possible to bound the first index i at which this

happens, see [16].

6.3 The folded case (s > 1)

We now consider folded Reed Solomon codes, so that s > 1. Let thus γ be in K;

usually, we take γ of high order, typically a primitive element of K. In the folded

case, we specifically take αi = γi−1 for 1 6 i 6 n, and we assume (for simplicity)

that s divides n. In order to list-decode folded Reed-Solomon codes, we follow the

same two steps as before: first, compute a multivariate polynomial Q(x, z1, . . . , zs)

such that

Q(αi, ys(i−1)+1, . . . , ysi) = 0

holds with multiplicity at least m for all 1 6 i 6 n/s (for simplicity we assumed

that the folding parameter s and the number of variables z are the same; further

generalizations are possible). After interpolating such a polynomial, we have to find

a polynomial f(x) such that

Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0,

and keep it if f(αi) = yi for at least (n − e) number of i ∈ {1, . . . , n} [2] where e is

the number of tolerable errors.

The original approach to root-finding in this case uses a reduction to polynomial

factorization over the extension of K defined by K′(η) = K[x]/(xq−1 − γ), where q =
|K|; the polynomial to factor is Q(η, z, zq, . . . , zq

s−1

). While this allows for polynomial-

time factoring (provided we see q and s as constant), the degree expansion makes the

root-finding very challenging in practice.

In what follows, we propose methods which do not involve such large degree

polynomals, but whose complexity can unfortunately not be controlled as precisely.

Our methods are inspired by the case s = 1 seen above, but require adaptations,

since the equation we have to solve is not algebraic anymore. Such equations are

94

often called q-difference equations; as it turns out, an approach based on Newton

polygon techniques has recently been developed for this context by Cano and Fortuny

Ayuso [9] over K = C, inspired by similar techniques first introduced for differential

equations (compare for instance with [8, 10] and references therein). We will follow

these ideas, and point out however where they fail in our context where K is finite.

In all that follows, in order to facilite the root-finding, we assume that f(0) = 0,

that is, we assume that we know the first term of f ; this is a mild restriction, as we

could recover f0 by factoring the univariate polynomial Q(0, z, . . . , z) (provided this

polynomial is nonzero).

6.3.1 The linear case

As when s = 1, our algorithms will rely on linearization techniques; in the present

case, we will use the divide-and-conquer method presented in Chapter 5 to solve linear

q-difference equations: given polynomials A0, . . . , As and an integer ℓ, we want to find

solutions h to

Ash(γ
s−1x) + · · ·+ A1h(x) + A0 = 0 mod xℓ.

The algorithm first goes through a recursive divide-and-conquer process, and outputs

a solution that is parametrized by a vector of indeterminates hi. Then, we resolve the

possible relations between the hi as a post-processing by solving a linear system. In

order to highlight the potential difficulties, we recall here the first step (divide-and-

conquer) of this algorithm (see Algorithm 12).

For j = 1, . . . , s, let uj be the constant coefficient of Aj . Then, we can remark

that the divide-and-conquer algorithm attempts divisions by elements of the form

usγ
(s−1)i + · · ·+ u2γ

i + u1,

for i = 0, . . . , ℓ− 1 (just like a direct, iterative algorithm would). For further use, if

we introduce the polynomial

P = u1 + u2x+ · · ·+ usx
s−1, (6.2)

we observe that these values are of the form P (γi); P will be called the critical

equation. Let us illustrate this algorithm on the example

h(−x) + (1 + x2)h(x) + A(x) = 0 mod x4,

95

Algorithm 12: RDAC(A0, . . . , As, γ, i, ℓ)

Require: A0, . . . , As, R ∈ K[x], γ in K

Ensure: h(x) such that Ash(γ
s−1x) + · · ·+ A1h(x) + A0 = 0 mod xℓ

1: if ℓ = 1 then
2: if (As + · · ·+ A1)(0) 6= 0 then

3: return − A0(0)
(As+···+A1)(0)

4: else
5: return a new variable hi
6: end if
7: else
8: let n = ⌈ℓ/2⌉ and p = ℓ− n
9: h0 = RDAC(A0, . . . , As, i, n)

10: for i = 1, . . . , s do
11: A′

i = γn(i−1)Ai
12: end for
13: R(x) = (Ash0(γ

s−1x) + · · ·+ A1h0(x) + A0)/x
n

14: h1 = RDAC(−R,A′
1, . . . , A

′
s, i+ n, p)

15: return h = h0 + xnh1
16: end if

where we took s = 2 and γ = −1 (which is not a primitive element, but the algorithm

would not use this fact in any case); we write A =
∑

i aix
i. In this case, we have

u1 = u2 = 1, so that P = 1+x; the divide-and-conquer process attempts divisions by

the values P ((−1)i), which are 2, 0, 2, 0, The output of the recursive process is

h =
−a0
2

+ h1x+
a0 − 2a2

4
x2 + h3x

3,

where h1 and h3 are indeterminates introduced for i = 1 and i = 3. In the post-

processing step, we evaluate the given equation at such an h, which gives

a1x+ (h1 + a3)x
3 = 0.

Thus, if a1 6= 0, there is no solution. If a1 = 0, the solutions are

h =
−a0
2
− a3x+

a0 − 2a2
4

x2 + h3x
3,

for any h3.

We already discussed the complexity of this algorithm in Chapter 5; when no

value of the form P (γi) vanishes, the running time is quasi-linear, of the form

O(sM(k) log(k)).

96

In general, the running time will depend on the number of coefficients of the form

P (γi) that vanish, for i = 0, . . . , k − 1. We cannot give a sharp estimate, but we

remark that if γ has multiplicative order at least k, then there are less than s such

indices: indeed, P has degree less than s, so it has less than s roots in K, and for any

such root r, there is at most one value i in {0, . . . , k − 1} such that γi = r.

6.3.2 The regular case

We now discuss the case of non-linear equations, first under a regularity assumption.

Let as above Q be the given interpolating polynomial, and assume we look for f such

that

Q(x, f(x), f(γx), . . . , f(γs−1x)) = 0.

Our main regularity assumption, inspired by that given in the case s = 1, is the

following: the partial derivatives ∂Q/∂zi do not all vanish at (0, . . . , 0).

As before, we assume that f(0) = 0, so that f is known modulo x. More generally,

suppose that we know f̃ = f mod xℓ, for some precision ℓ ∈ N; we look for a solution

f with higher precision of the form f = f̃ + h, where h = 0 mod xℓ. Starting from

Q(x, f̃(x) + h, f̃(γx) + h(γx), . . . , f̃(γs−1x) + h(γs−1x)) = 0

a Taylor series expansion gives us

∂Q

∂z1
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x))h(x)

+
∂Q

∂z2
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x))h(γx)

+ . . .

+
∂Q

∂zs
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x))h(γs−1x)

+ Q(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) = 0 mod x2ℓ,

97

since any product of the form h(γix)h(γjx) is zero modulo x2ℓ. Let

A0(x) = Q(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

A1(x) =
∂Q

∂z1
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

A2(x) =
∂Q

∂z2
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

. . .

As(x) =
∂Q

∂zs
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ.

Thus, we are looking for h(x) such that

As(x)h(γ
s−1x) + · · ·+ A2(x)h(γx) + A1(x)h(x) + A0(x) = 0 mod x2ℓ,

which can be done using the algorithm for the linear case given previously. This

leads to Algorithm 13; in Algorithm 14, we present the post-processing: applied to

a polynomial f , some of whose coefficients are indeterminates, it outputs all possible

values of these indeterminates such that f is a root of Q. This algorithm uses a

black-box called Solve for solving non-linear equations over K; many solutions are

available to this effect, from Gröbner bases techniques to triangular decomposition

algorithms.

Algorithm 13: Root Computation(Q, s, k, γ)

1: t = 2
2: f̃ = 0
3: while t < k do
4: A0 = Q(x, f̃ (x), . . . , f̃(γs−1x))
5: for i = 1, . . . , s do
6: Ai = ∂Q/∂zi(x, f̃(x), . . . , f̃(γ

s−1x))
7: end for
8: ftmp = RDAC(As+1(x), As(x), . . . , A2(x), A1(x), 0, t)
9: f̃ = ftmp + f̃

10: t = 2t
11: end while
12: return f̃

Similarly the previous subsection, let u1, . . . , us be the values ∂Q/∂zi(0, . . . , 0), for

i = 1, . . . , s. Then, for every call to Algorithm RDAC, the critical equation P will

always be the same, namely P = u1 + u2x+ · · ·+ usx
s−1. Our regularity assumption

98

Algorithm 14: Filter(Q, f, k, γ)

1: let C = (c1, . . . , cs) be the coefficients in x of Q(x, f(x), f(γx), . . . , f(γs−1x))
2: let (wi)i∈I be the indeterminates in C
3: return Solve(C)

implies that P is nonzero, so it has finitely many roots in K, so as in the case of linear

equations, we can assert that overall, only O(k) divisions by zero will be attempted,

so O(k) indeterminates will appear in algorithm Filter. However, the cost of the

whole process remains difficult to pin down, due to the non-linear manner in which

the indeterminate coefficients are handled.

6.3.3 The general case

When the regularity assumption of the previous subsection does not hold, every

step will entail a division by zero, so that the algorithm does not do any sensible

computation and just return a series with indeterminate coefficients, and that the

post-processing phase will have to do all the work. In this subsection, we give an

algorithm inspired by the Newton-Puiseux algorithm presented before, that can han-

dle such situations better (although some steps will still require the introduction of

indeterminates).

In [2], Beelen and Brander gave a recursive algorithm of Hensel lifting that can

compute f , inspired by Roth and Ruckenstein’s algorithm; at steps where the value

of the coefficient fi cannot be determined, Beelen and Brander test all elements of

the underlying field (which is similar to our use of indeterminate coefficients for such

steps). Compared to that algorithm, the main difference in ours lies in the use of

a Newton polygon construction, making our algorithm an extension of the Newton-

Puiseux algorithm presented before for the case s = 1.

Let Q be a polynomial in K[x, z1, z2, . . . , zs], which we write as

Q =
∑

(α,ρ)∈SQ

aα,ρx
αzρ11 z

ρ2
2 . . . zρss ,

where SQ is the support of Q, each aα,ρ is in K − {0} and ρ = (ρ1, . . . , ρs). Let us

define the points of Q to be the set

P(Q) = {Pα,ρ | (α,ρ) ∈ SQ},

99

where we write

Pα,ρ = (α, ρ1 + ρ2 + · · ·+ ρs) ∈ N
2.

The Newton polygon N (Q) of Q is the convex hull of the set

⋃

P∈P(Q)

(P + N
2) N is integer ring;

the slopes of this polygon are defined as in the previous section. Figure 6.4 gives an

example of a Newton polygon of a equation having three variables.

x
4
− x

3
y
2
− x

3
y − x

3
z
2
− x

3
z + x

2
y
3 + x

2
y
2
z
2 + x

2
yz+

1 2 3 4 5 6 7

1

2

3

4

5

6

x

y

x
2
yz

2 + x
2
yz + x

2
z
3
− xy

3
z
2
− xy

3
z − xy

2
z
3
− xyz

3 + y
3
z
3

Newton polygon for the equation :

Figure 6.4: Newton polygon

Inspired by the Newton-Puiseux algorithm given before, Algorithm 15 below com-

putes the power series roots of Q using its Newton polygon. As before, the compu-

tation is based on the geometry of the Newton polygon; this time however, not only

the edges but also the vertices of the Newton polygon may contribute to the solutions

(this is because in this 2-dimensional representation, several monomials of Q may

correspond to a given vertex). Thus, for λ ∈ N, we define the following:

• L(Q, λ) is the straight line with slope − 1
λ
which intersects N (Q) at either a

vertex or an edge;

• ΦQ,λ(w) =
∑

(α,ρ) aα,ργ
(ρ2+2ρ3+···+(s−1)ρs)λwρ1+ρ2+···+ρs, for Pα,ρ ∈ L(Q, λ) ∩

100

N (Q); this is a polynomial in w, which (when nonzero) can be seen as the

coefficient of the lowest degree term in x of

Q(x, xλw, (γx)λw, . . . , (γs−1x)λw),

or equivalently of

Q(x, f(x), . . . , f(γs−1x))

for f of the form f = xλ(w + w′x+ w′′x2 + · · ·).

Remark that the nonzero roots of ΦQ,λ give the possible values w such that our

equation may admit a solution of the form f = xλ(w+w′x+w′′x2+ · · ·). As a small

example, consider the polynomial Q = z1 − z2, whose Newton polygon has only one

vertex (0, 1) and γ = −1. When λ = 1, we obtain ΦQ,1 = 2w, which has no nonzero

root; this indicates that there is no power series solution f of f(x) = f(−x) of the

form wx + · · · , for w nonzero. On the contrary, for λ = 2, we find ΦQ,2 = 0; this

shows that, as far as the lowest coefficient in concerned, any w may be suitable for a

solution f of f(x) = f(−x) of the form wx2 + · · ·
As this example shows, in this algorithm, as in the cases of the two previous

subsections, we may of course come up with outputs f that have indeterminates as

coefficients. When this is the case, we use the same post-processing step as in the

previous subection.

Correctness follows from the discussion preceding the algorithm; alternatively, one

may consult [9], where a more complex algorithm is given (to compute more general

solutions than power series).

To conclude, let us mention an analogue to the last remark of the previous section.

As we noted there, after sufficiently many initial steps, the solutions get “separated”,

and the coefficients fi become uniquely determined. A similar phenomenon happens

in the folded case, up to a minor modification; to describe it, we follow Cano and

Fortuny Ayuso [9].

Given a solution f(x) =
∑

i>0 fix
µi ∈ K[x] of (6.1), define the sequence of poly-

nomials Q0 = Q and, for i > 0,

Qi+1 = Qi(x, fix
µi + z1, . . . , fiγ

(s−1)ixµi + zs).

These polynomials are essentially the ones seen during the Newton-Puiseux algorithm

(up to change of variables of the form x 7→ xηx, for suitable values of η), but are better

suited for the discussion below.

101

Algorithm 15: Newton-Puiseux expansion(Q, i, k, ψ)

1: if Q is of the form czρ11 · · · zρss for some c in K then
2: output ψ
3: end if
4: if i > k then
5: output ψ
6: end if
7: replace Q by Q/xr, where r is the largest integer such that xr divides Q
8: for λ = i, . . . , k − 1 do
9: if ΦQ,λ(w) = 0 then

10: ψ[i+ λ] = wi (wi is a placeholder for the coefficient)

11: Q̃ = Q(x, xλ(wi + z1), γx
λ(wi + z2), . . . , γ

s−1xλ(wi + zs))

12: Newton-Puiseux expansion(Q̃, i+ λ, k, ψ)
13: else
14: let ℘ be the roots in K of ΦQ,λ
15: for each root ς 6= 0 ∈ ℘ do
16: ψ[i+ λ] = ς

17: Q̃ = Q(x, xλ(ς + z1), γ
λxλ(ς + z2), . . . , γ

(s−1)λxλ(ς + zs))

18: Newton-Puiseux expansion(Q̃, i+ λ, k, ψ)
19: end for
20: end if
21: end for

For any i > 0, let pi = (αi, βi) be the point with highest ordinate at the intersection

of the line L(Qi, i) and the Newton polygon of Qi. Cano and Fortuny Ayuso proved

the following:

• the sequence βi is non-decreasing;

• there exists i0 > 0 such that for i > i0, βi = βi0 ;

• xαizρ11 · · · zρss appears with a nonzero coefficient in Qi, with ρ1 + · · · +
ρs = βi and ρj > 1 for some index j, then f is also a root of R =

∂ρ1+···+ρs−1Q/∂zρ11 · · ·∂z
ρj−1
j · · ·∂zρss ;

• if in addition αi = 0, then R satisfies the assumptions of Subsection 6.3.2

In other words, up to replacing Q by a well-chosen derivative, we are reduced to the

regular case; recall however that even in the regular case, some coefficients fi of f

may still be undertermined for those indices i that cancel the critical equation.

The point pi0 is called the pivot point associated to Q and f .

102

6.4 A heuristic

Finally, we propose a heuristic for the folded case, based on the last remarks in

the previous section. Based on extensive experiments, our heuristic is the following.

Consider f ∈ K[x] a polynomial with degree less than k, such and f(0) = 0 and

f ′(0) 6= 0; that is, f = f1x+ · · · . Consider the following assumptions:

• the index i0 of the pivot point pi0 of Q is equal to zero, i.e. the pivot

point (α0, β0) associated to Q and f is the point with highest ordinate on

L(Q, 1)
⋂N (Q)

• this pivot point has abcissa 0, that is, α0 = 0.

• the critical equation for the polynomial R obtained by differentiating Q (as in

the above section) has no root of the form γi, for any 0 < i < k.

In view of the discussion in the previous section, in that case, it is enough to replace

Q by a polynomial R obtained as a suitable derivative of Q in order to be under

the assumptions of the “regular” case. Then, we actually do not need to apply the

Newton Puiseux algorithm, and we know furthermore that no “division by zero” will

occur; the process is summarized in Algorithm 13.

Algorithm 16: Lift root from fRS Q(Q, s, k, γ)

Require:
1: NP = N (Q)
2: let (α, ρ) be the point with highest ordinate on L(Q, 1)

⋂N (Q)
3: if ρ > 1 then
4: Find a term aj,ρx

azρ in Q such that aj,ρ 6= 0

5: Q = ∂ρ−1Q
∂zρ−1

6: end if
7: return Root Computation(Q, s, k, γ)

We implemented the algorithm in magma [3] and run it on a 2.1 GHz AMD Athlon

64 processor; the following tables summarize our results.

We observed that our assumptions above systematically held when Q is obtained

by solving a linear system and picking the solution with lowest degree in x. There

exist several ways to find such polynomials: a possible approach is to compute a basis

of the solution space and find an echelon form (the shape resulting of a Gaussian

elimination) that reveals the minimal degree in x; another approach is simply to put

103

WC multiplicity
3 4 5 %

k

8 938 909 934 92.7
16 966 843 843 88.4
32 965 844 715 91.6
”%” 95.6 86.5 90.5

C multiplicity
3 4 5 %

k

8 062 91 66 7.3
16 034 157 157 11.6
32 035 156 39 8.4
”%” 04.4 13.5 09.5

Table 6.1: Number of times a new polynomial Q was needed

an extra constraint that enforces a coefficient of a term xd to be nonzero and do a

binary search over possible values of d.

In our experiments, multiplicity was in the range of 2 6 m 6 5, the folding

parameter was s = 2 and the degree of f was in {3, 7, 15, 31}; the rate was chosen in

{1/2, 9/10}; n was chosen accordingly.

We took our base field F on next prime of n and run the experiment 1000 times for

each k,m and tested for random f(x) with f(x) mod x = 0. We introduced random

errors under the bound given in [14, 2], computed the interpolated polynomial by

solving system of linear equations, and then we recover f by applying our algorithm.

Additionally, we always performed the following test on interpolated polynomial

Q before calling our algorithm 16: compute the critical equation P for the derivative

R of Q and test whether any γi for 0 < i 6 k is a root of it. When we saw any γi, for

1 6 i < k, is a root of P we discarded that interpolated polynomial Q and replaced

it by a new polynomial Q: the coefficients of P depend linearly on those of Q, so we

could add a linear constraint to our system in order to ensure that P would change.

Table 6.1 shows for how many instances we needed to change a coefficient in P

and thus the interpolation polynomial Q. In this table, WC stands for without change

whereas C stands for change: in almost all cases, there was no need to change Q.

Table 6.2 shows the timing required to compute interpolation polynomial as well as

computation of root and figure 6.5 depicts the good timing of our algorithm compared

to Beelen and Brander’s algorithm [2].

104

Interpolation multiplicity
3 4 5

k

8 .353 1.352 4.365
16 1.331 5.823 20.295
32 5.276 28.486 91.414

Root computation multiplicity
3 4 5

k

8 0.001 0.003 0.003
16 .007 .007 .019
32 .019 .023 .066

Table 6.2: Timing of Interpolation and Root-Computation

 8 12 16 20 24 28 32 3
 4

 5

 0.1

 0.4

 0.7

 1

 1.3

Time

Devide and Conquer
Beelen-Brander

k
Multiplicity

Time

Figure 6.5: Timing between our algorithm and Beelen and Brander’s algorithm

Bibliography

[1] D. Augot and L. Pecquet. A Hensel lifting to replace factorization in list-decoding

of algebraic-geometric and Reed-Solomon codes. IEEE Transaction on Informa-

tion Theory, 46(7):2605–2614, November-2000.

[2] P. Beelen and K. Brander. Decoding folded Reed-Solomon codes using Hensel

lifting. M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography, pages

389–394, 2009.

[3] W. Bosma, J. Cannon, and C Playoust. The Magma algebra system. I. The user

language. J. Symb. Comp., 24(3-4):235–265, 1997.

105

[4] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in

bivariate polynomial factorization. In ISSAC’04, pages 42–49, ACM, 2004.

[5] A. Bostan, M. F. I. Chowdhury, R. Lebreton, B. Salvy and É. Schost. Power

Series Solutions of Singular (q)-Differential Equations. In ISSAC’12. pages 107–

113, ACM, 2012.

[6] M. F. I. Chowdhury, C.-P. Jeannerod, V. Neiger, É. Schost and G. Villard. On the

Complexity of Multivariate Interpolation with Multiplicities and of Simultaneous

Polynopmial Approximations.

[7] R. P. Brent and J.F. Traub. On the complexity of composition and generalized

composition of power series. Siam J. of Computing, 9(1):54–66, February-1980.

[8] José Cano. On the series defined by differential equations, with an extension

of the Puiseux polygon construction to these equations. Analysis, 13:103–119,

1993.

[9] José Cano, P. Fortuny Ayuso, Power Series Solutions of Non-Linear q-Difference

Equations and the Newton-Puiseux Algorithm. arXiv:1209.0295 [math.AG], Sep-

2012.

[10] José Cano. The Newton polygon method for differential equations.

3519/2005:93–114, 2005.

[11] Peter Elias. List decoding for noisy channels. Technical Report 335, pages 94–104,

September-1957.

[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, ISBN: 0521826462, 2003

[13] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and

algebraic-geometric codes. IEEE Trans. on Info. Theory,, 45(6):1757 – 1767,

Sep–1999.

[14] V. Guruswami and A. Rudra. Error correction up to the information-theoretic

limit. Commun. ACM, 52:87–95, March 2009.

[15] J. van der Hoeven. Transseries and real differential algebra, volume 1888 of

Lecture Notes in Mathematics. Springer-Verlag, 2006.

106

[16] H. T. Kung and J. F. Traub. All algebraic functions can be computed fast. J.

ACM, pages 245–260, 1978.

[17] K. Lee and M. E. O. Sullivan. List decoding of Reed-Solomon codes from a

Gröbner basis perspective. J. Symb. Comput., 43:645–658, September 2008.

[18] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan

radius in polynomial time. In Proceedings of 46th Annual IEEE Symposium on

Foundations of Computer Science FOCS’05, pages 285 – 294. IEEE Computer

Society, 2005.

[19] L. Pecquet List Decoding of Algebraic Geometric Codes. PhD Thesis, Université

Paris 6, 2001.

[20] A. Poteaux and M. Rybowicz. Good reduction of Puiseux series and complexity

of the Newton-Puiseux algorithm over finite fields. In ISSAC’08, pages 239–246.

ACM, 2008.

[21] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(2):300–304, Jun-1960.

[22] R. M. Roth. Introduction to Coding Theory. Cambridge University Press, 2006.

[23] R. M. Roth and G. Ruckenstein. Efficient decoding of Reed-Solomon codes

beyond half the minimum distance. IEEE Transaction on Information Theory,

46(1):246–257, January-2000.

[24] M. Sudan. Decoding of reed solomon codes beyond the error-correction bound.

JOURNAL OF COMPLEXITY, 13(CM970439):180193, 1997.

[25] P. V. Trifonov. Efficient interpolation in the Guruswami-Sudan algorithm. IEEE

Transactions on Information Theory,, 56:4341–4349, August 2010.

[26] N. J. Willis. Newton-Puiseux algorithm. MS Thesis, Texas Tech University, 2003.

[27] R. J. Walker. Algebraic Curves. Springer-Verlag, 1950.

[28] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 1999, 0-521-64176-4.

[29] Cantor, D. G. and Kaltofen, E. On fast multiplication of polynomials over

arbitrary algebras. Acta Informatica, 28(7): 693–701, 1991,0001-5903.

107

[30] Schoenage, A. and Strassen V. Schnelle Multiplikation grosser Zahlen. Comput-

ing, 7:281–292, 1971

108

Chapter 7

Conclusions and future work

In conclusion, we can apply our proposed algorithms for folded Reed Solomon code

decoding. Our heuristic in Chapter 6 showed that there exist an interpolated polyno-

mial where we can apply fast root lifting algorithm described in Chapter 5. In order

to interpolate such a multivariate polynomial efficiently, we can apply the algorithm

described in Chapter 4. The following example shows how to apply fast root lifting

algorithm described in Chapter 5. As for example, let our interpolated polynomial

is in F[x, z1, z2, z3] and f(x) be the message polynomial. Then by using the idea of

lemma 10 of Chapter 6 and Taylor series expansion, where the known part of f is

denoted by f̃ unknown part is denoted by h and ℓ is the precission, we can deduce

Ã(x)h(γ2x) + B̃(x)h(γx) + C̃(x)h(x) = D̃ (x) (7.1)

where

D̃(x) = Q(x, f̃(x), f̃(γx), f̃(γ2x)) mod x2ℓ

C̃(x) =
∂Q

∂z1
(x, f̃(x), f̃(γx), f̃(γ2x)) mod x2ℓ

B̃(x) =
∂Q

∂z2
(x, f̃(x), f̃(γx), f̃(γ2x)) mod x2ℓ

Ã(x) =
∂Q

∂z3
(x, f̃(x), f̃(γx), f̃(γ2x)) mod x2ℓ.

Let B(x) = B̃(x)

Ã(x)
, C(x) = C̃(x)

Ã(x)
, D(x) = D̃(x)

Ã(x)
, then we have

h(γ2x) +B(x)h(γx) + c(x)h(x) = d(x)

109

which is equivalent to

xδ(F) = AF + C

of Chapter 5 where

F =

[
h(x)

h(γx)

]
A =

[
− 1
γ−1

1
γ−1

−C(x) 1− B(x)

]
C =

[
0

D(x)

]
.

In general, for s number of variables, this can be constructed simillarly as follows

F =




h(x)

h(γx)
...

h(γs−1x)




A =




− 1
γ−1

1
γ−1

0 . . .

0 − 1
γ−1

1
γ−1

. . .
...

−A2(x) −A3(x) . . . 1−As(x)



∈ F[x]s−1×s−1

and

C =




0
...

A1(x)


 ∈ F[x]1×s−1.

where

Ã1(x) = Q(x, f̃ (x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

Ã2(x) =
∂Q

∂z1
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

Ã3(x) =
∂Q

∂z2
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ

...

Ãs+1(x) =
∂Q

∂zs
(x, f̃(x), f̃(γx), . . . , f̃(γs−1x)) mod x2ℓ.

and

110

A1(x) =
Ã1(x)

As+1(x)

A2(x) =
Ã2(x)

As+1(x)

A3(x) =
Ã3(x)

As+1(x)

...

As(x) =
Ãs(x)

As+1(x)
.

here γ can be read as q in chapter 5.

7.1 Future work

For future directions, we can think the following.

1. As parallel architectures are becoming available now a days, the interpolation

task as well as the root lifting task of folded Reed Solomon code decoding can be

implemented in a parallel architecture by following already developed parallel

algorithm for the interpolation problem.

2. A complete software implementation based on the algorithms described here.

3. The transformed interpolation problem described in Chapter 3 works for folded

Reed Solomon codes. This idea can be extended to the interpolation problem

of folded Algebraic Geometric codes.

111

Curriculum Vitae

Name: Muhammad Foizul Islam Chowdhury

Post-

Secondary

Education and

Degrees:

Western University, Canada

London, Ontario, Canada

Ph.D. Computer Science, November 2013

The University of Western Ontario

London, Ontario, Canada

M.Sc. Computer Science, Apr. 2009

Khulna University of Engineering & Technology

Khulna, Bangladesh

B.Sc. in Computer Science and Engineering Sept. 2004

Working

Experience:

Research Assistant, Teaching Assistant.

University of western Ontario, London, Canada.

Jan. 2008 - Aug. 2013

Software engineer.

Phoenix Interactive, London, Canada.

April. 2013 - November 2013

Full time faculty member

Dept. of computer science & Engineering.

Leading University, Sylhet, Bangladesh.

Jan. 2005 - Aug. 2007

	Application of Computer Algebra in List Decoding
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Error correcting codes
	Reed-Solomon codes
	Problem statement and overview of our results
	Bibliography

	Mathematical preliminaries
	Introduction
	Group
	Ring
	Field
	Notion of Finite field
	Polynomial multiplication
	Matrix structure

	Bibliography

	Complexity of MultivariateInterpolation with Multiplicities
	Introduction
	Preliminaries: assumption H1
	Solving structured linear systems
	Reducing Problem 1 to Problem 2
	Solving Problem 2 through a mosaic-Hankel linear system
	A direct solution to Problem 2
	Bibliography

	Efficient Solution of Structured Linear Systems
	Introduction
	Basics on structured linear systems
	Structured matrix inversion
	Matrix inversion using block Gaussian elimination
	Structured matrix inversion

	Structured matrix multiplication
	Bibliography

	Power Series Solutions of Singular (q)-Differential Equations
	Introduction
	Divide-and-Conquer
	Newton Iteration
	Gauge Transformation
	Polynomial Coefficients
	Computing the Associated Equation
	Solving the Associated Equation

	Implementation
	Bibliography

	Polynomial Root-Finding for Nonlinear Equations
	Introduction
	The classical case (s=1)
	Root-finding when m = 1
	Root-finding when m > 1

	The folded case (s > 1)
	The linear case
	The regular case
	The general case

	A heuristic
	Bibliography

	Conclusions and future work
	Future work

	Curriculum Vitae

