





confirmed in thin sections revealing the absence of antigen reactivity

from the wrapped, extracellular form of the virion. This result
demonstrates that antibodies to Ag35 are unable to penei.r-ate the bilayer
of the wrapping membrane. Furthermore, the absence of reactivity from
virions released by exocytosis after becoming wrapped in a membrane
derived from the Golgi membranes (Dales, 1973), shows that Ag35 is not
integrated into the membrane of cellular origin.

As a consequence of the specific immunogold tagging of Ag35S the
involvement of this polypepticde with the developing viral envelope could
be examined. Ag35 has been identified as an early protein (Fig. 5-1)3,
and therefore one synthesized even in the absence of viral DNA synthesis
which can be blocked with HU. Thus Ag35 is in a different class of
vaccinia envelope polypeptides than the 14K fusogenic protein described
by Rodriguez and Esteban (1987) and Rodriguez et al. (1987), the cell
surface-binding 32K polypeptide of Niles and Seto, (1988) and Maa et al.
(1990) and the 58K STE component described by Stern and Dales (1974b,
1976) all of which are late proteins. This temporal distinction in
regulation of Ag35 expression is wholly compatible with the mechanism of
assembly of the vaccinia envelupe which proceeds through a complex series
of steps, comm:ncing prior to the onset of viral DNA synthesis with the
formation of segments of membrane bilayers with a backing of spicules.
Ag35 was identified in the immature, spherical vaccinia which can be
formed in the presence of HU (Pogo and Dales, 1971). Association with
the initial forms of the envelope, observed in this study, illustrates
that Ag35 participates during the earliest phases of envelope assembly.

In the normal assembly process, the nucleoprotein material

accumulated in viroplasmic foci undergoes complex differentiation into




mature virions within the envelope. An additional late step in the
assembly of the vaccinia virion is the replacement of the spicule layer
by STE, characteristic of the mature envelcope. (Dales and Pogo, 1981).
Apparently, the late surface polypeptides are incorporated at the time
of virus maturation while Ag3S is part of the envelope throughout virus
development.

During morphogenesis, in several vaccinia ts8 mutants, the
attachment of the external spicule layer onto the envelope fails to occur
(Dales et al., 1978). As a consequence, accumulations of flexible
pleomorphic membranes surround viroplasmic foci. Demonstration of an
association of Ag35 with such membrane domains and in immature virions
reveals that in normal development Ag35 is, indeed, associated with the
envelope bilayer and not with the spicules.

The mechanism(s) for integrating vaccinia polypeptides into the
envelope bilayer appears to be distinct from those which occur with
conventional enveloped viruses. To date none of the recognized vaccinia
envelope polypeptides for which DNA sequence data are available, among
them the 14K fusion protein (Rodriguez and Esteban, 1987), the 32K
component (Niles and Seto, 1988; Maa et al., 1990) and Ag35 (Chapter §5)
possess an amino-terminal hydrophobic signal sequence irvolved in
insertion into or through a bilayer membrane. Although vaccinia virions
contain two or more glycoproteins, none are present in the envelope
(Holowczak, 1970; Garon and Moss, 1971). The absence of envelope
glycoproteins in vaccinia, in contrast with othe : enveloped viruses, is
the consequence of synthesis of envelope proteins in the cytosol rather
than on the endoplasmic reticulum. Hence the integration of nascent

polypeptides must occur subseguunt to their synthesis and not as a co-
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translational event.

The association of the 35K polypeptide with the envelor» of
immature virions during the initial stages of viral envelope agsembly
suggests that this polypeptide may be involved in the assembly of the
lipid bilayer of the envelope. Proof of a role for this polypeptide in
envelope assembly requires the analysis of the morphogenetic sequence
with a mutant of vaccinia with a defect in the gene encoding the 35K
poiypeptide. No temperature-sensitive mutants of vaccinia virus with a
defect in the gene 35K mutant har been identified. Recently, a system
for construction of conditional lethal mutants of vaccinia has been
developed (Rodriguez and Smith, 1990a); in this system, the lac operator
is inserted between the promoter and the gene of interest. Expression
of the gene is made dependant on the lac inducer IPTG. Infection of
cells in the absence of the inducer i1esults in the lack of expression of
the gene of interest. This system was first used to analyze the role of
the 14K fusion polypeptide; it was shown that this polypeptide was not
necessary for synthesis of infectious intracellular virus but was
essential for wrapping of virions in the golgi (Rodriguez and Smith,
1990b). Such a system would be very valuable for analysis ~I the role
of specific gene products in vaccinia morphogenesis. If the 35K
polypeptide was indeed necessary for envelope assembly, lack of
expression would likely result in the absence of even early immature

envelopes in infected cells.
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CHAPTER 7
CONCLUSIONS
The goal of studies described in this thesis was to characterize

envelope components of vaccinia virus. Following a series of experiments
aimed at identifying polypeptides associated with the envelope, the most
prevalent among them wao chosen for more detailed analyses which included
the mapping, DNA sequencing of the gene and physical-chemical as well as
immunological characterization.

Three approaches were adopted in the identification of
envelope polypeptides. SDS-PAGE analysis of polypeptides extracted from
virions by the neutral detergent NP-40 subdivided envelope polypeptides
into two groups. The first group, consisting of pclypeptides migrating
at 30K, 35K, 41K, 47K, and 48K, were extracted from the virion by the
detergent alone. The second group, consisting of polypeptides migrating
at 25K, 32K, 58K, and 70K, were released by the detergent in the presence
of 2-mercaptoethanol. This result suggested that envelope polypeptides
of vaccinia are integrated in the envelope by two distinct mechanisms:
some polypeptides, including the major component which migrated at a
position in gels corresponding to 35K, interact solely with the lipid
bilayer of the envelope and as such can be released by extraction with
the detergent alone while others are released ornly after additional
treatment using reducing agents acting on disulphide bonds. The
identification of envelope polypeptides was aided by the avaiability of
a rabbit serum reactive with the fraction of envelope polypeptides
extracted with NP-40 alone. The primary polypeptide observed when this
serum was used to probe Western blots of vaccinia virions migrated at 35K

corresponding to the major polypeptide component seen by staining of
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detergent extracts of virions separated by SDS-PAGE gels.

Envelope polypeptides were also identified by surface-labelling of
intact virions since a subset of envelope polypeptides would be exposed
on the surface of the virion. The reagent used, sulfo-NHS-biotin, reacts
with primary amines of polypeptides exposed on the outside of membranes.
Surface-labelled polypeptides migrated at 22K, 23K, 24K, 31K, 35K, 39K,
and S8K.

Since the 35K polypeptide was the most prominent protein component
identified by all three methods of analysis described above, it was
chosen for in depth analyses. Initial studies were designed to cbtain
information about the structure of the polypeptide within the virion.
The 35X polypeptide was not extracted from the virion by chemical
treatments that interfere with protein-protein interactions.
Additionally, this polypeptide interacted directly with the detergent
phase following extraction with Triton X-114 which is characteristic of
integral membrane proteins. In terms of higher order protein structure,
the 35K polypeptide was not covalently linked to itself or “er virion
polypeptides by disulphide bonds. Cross-linking experiments with DMSu
did not provide evidence that the 35K polypeptide was closely associated
with other polypeptides in complex proteins.

The presence of polypeptides on the surface of intracellular
virions implies that they have an essential role in initiating immune
surveillance response. The recognition of vaccinia polypeptides as
antigens following infection in mice was analyzed by reacting serum from
vaccinia immunized mice with vaccinia polypeptides separated by SDS-PAGE.
The most prominent antigen detected with serum from mice immunized with

either live or UV-inactivated virus migrated at 35K and behaved in the
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same manner as the 35K envelope component when extracted with NP-40. It
is not surprising that this polypeptide was the most prominent viral
antigen as it has been shown to be the predominant polypeptide seen on
the surface of the virion. Several polypeptides found in the virion core
were recognized as antigens by the mouse serum. When serum from mice
immunized with U.V.-inactivated virus was used to probe similar Western
blots, these core-associated antigens were not detected, indicating that
the recognition of core polypeptide by the host was dependent on viral

replication.

Despite the prevalence of the antibodies reactive with the 35K
polypeptide in serum following immunization of mice, this polypeptide was
poorly represented in a panel of monoclonal antibodies derived from
splenocytes taken from virus-inoculated mice. The most commonly
recognized viral polypeptide, which migrated at 32K, was not present in
the IHD-W strain of virus used in the preparation of the polyclonal
immune serum.

The prominence of the 35K polypeptide in the NP-40 extracts of
viral envelope and its identif. .tion as a major virion surface component
suggested that it has a key role in vaccinia virus biology deserving
further structural and functional analyses. For this reason, the gene
encoding the 35K polypeptide (designated Ag35) was localized on the
physical map of the virus and its DNA sequence was determined.
Surprisingly, the open resding frame encoded a polypeptide of only 22,300
daltons, significantly smaller than the migration on SDS~-PAGE suggested.
This molecular weight discrepancy cannot be the result of post-
translational modification of the polypeptide since the jin witro

translatiorn product af the gene co-migrated with the authentic

177



polypeptide and a f-galactosidase-Ag35 fusion protein expressed in E.
coli shows the same anomalous migration when analyzed by SDS-PAGE. The
anomalous migration may result from a proline-rich stretch of the ai.ino
acid sequence altering the globular structure of the SDS-denatured
protein which could result in a arm-like extension which could slow the
migration of the polypeptide through a polyacrylamide gel.

The presence of Ag35 on the surface of the virion was confirmed by
immunogold 1labelling using mono-reactive antibodies and electron
microscopy. This procedure revealed that Ag35 was distributed uniformly
on the surface of the virion, not sequeste 2d at specific foci.
Additionally, th> 35K polypeptide was not detected on the surface of
virions that had become wrapped in Golgi-derived membranes. Using the
same monoreactive antibodies, it was revealed that antibodies reactive
with Ag35 were capable of neutralizing infectivity of vaccinia in cell
culture indicating that Ag35 may play a role in the interaction between
the virus and the cellular surface perhaps a: the level of receptor(s).

Ag35 was shown to be expressed as an early vaccinia protein due to
its presence in extracts prepared from cells treated with the DNA
synthesis inhibitor hydroxyurea. This distinguished it from the other
envelope polypeptides, which are expressed as late functions. This
temporal distinction is important because of the unique mechanism of
assembly of the vaccinia virus envelope which occurs in two stages that
are temporally divided by the onset of DNA synthesis. Immunogold
electron microscopy, using monoreactive antibodies, revealed that Ag35S
became associated with rigid spicule-backed early envelope structures
synthesized in the presence of HU. Additionally, Ag35 was shown to be

associated with envelope fragments seer at early times in VV-infected
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cells in the absence of HU. The association of Ag35 with the early stage
of envelope biogenesis suggests that it may play a role in in conjunction
with the assembly of the envelope; as such, it provides a useful model
system for the study of membrane biogenesis. Complete determination of
the role of Ag3S in virus-cell interaction and the assembly of the viral

envelope will require the construction of mutant viruses.
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APPENDIX I
construction of pHindIII-N
Purified vaccinia virus (strain IPD-W) DNA was digested with
HindIII then separated on a 1.4% agarose gel; the doublet corresponding
to HindIII fragments M and N was excised from the gel and the DNA was
eluted from the gel slice. The eluted DNA was ligated with pUC 19 DNA
which had also been digested with HindIII and the ligation mix was used

to transform competent E. coli JM 109 cells. Lac colonies were isolated

and small scale DNA preparations were screened for the presence of an

insert of the size appropriate for HindIIl fragment N (1.5 Kbp).
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Appendix II
Construction of pHEHO5, pHEH28
pHindIII-H DNA was digested with EcoRI and HindIlI, separated by
agarose gel electrophoresis, and the 0.5 and 2.8 Kbp were eluted from the
gel and ligated into pUC19 DNA digested with EcoRI and HindIII. Small

scale DNA preps from individual colonies were screened for the sized

inserts following digestion with EcoRI and HindIII.
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APPENDIX III

The structure of Plasmid pHEE27:

To prepare plasmid pHindIII-H was digested with EcoRI and HindIII
and the DNA without gel purification was ligated with pBR325 DNA which
had been digested with EcoRI. Following transformation of E. coli HB101,
ampicillin-resistant, chloramphenicol-sensitive colonies were picked and
small-scale cultures were screened for the appropriate sized insgerts.

This plasmid was thought to ccnsist of the right-hand 2.7 Kbp EcoRI
fragment derived from HindIII fragment H cloned into pBR32S5. Recent
analysis, however, has shown that the structure of this plasmid is more
complex. When this plasmid was digested with EcoRI, two bands were seen
migrating at 6 Kbp and 2.7 Kbp (Fig. Al lane 4). When this plasmid was
digested with HindIII, EcoRI and Xbal, bands migrating at 2.7 Kbp, 2.0
Kbp, 1.8 Kbp, 1.5 Kbp 1.1 Kbp and 0.8 Kbp (Fig. Al, lane 2) were
regolved. With the exception of the 1.8 Kbp band, all bands comigrated
with bands seen when pHindH was digested with the same enzymes (Fig. Al,
lane 5). It thus appears that this clone contains the 2.8 Kbp fragment
derived from the left end of HindIII-H (composed of the 2.0 and 0.8 Kbp
fragments), the right hand 2.7 Kbp EcoRI fragment (composed of the 1.€
Kbp and 1.1 Xbp fragments) as well as an unidentified fragment migrating
at 1.8 Kbp. The origin of this last fragment is uncer.aian but it may
have arisen from an internal deletion within the 2.3 Kbp EcoRI, Xbal

fragment derived from the left~hand 2.7 Kbp EcoRI fragment (see Fig. 5-

3). The precise limits of this deletion were not determined.
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Figure A
Characterization of clone pHEE27. Agarose gel of pHEE27 digested with
HindIII, EcoRI and Xbal (lane 2); HindIII and EcoRI (lane 3); EcoRI (lane
4); pHindIII-H digested with HindIII, EcoRIl, and Xbal. As a molecular

weight marker, A DNA digested with HindI1I was also run (lane 1).



184

Appendix IV
Construction of pHEX11l, pHEX16 (pWHEX11l, pWHEX16)
pHindIII~-H DNA was digested with EcoRI and Xbal, separated by
agarose gel electrophoresis, and the 1.1 and 1.6 Kbp vere eluted from the
gel and ligated into pUC19 DNA digested with EccRI and XbalI. Small scale
DNA preps from individual colonies were screened for the sized inserts
following digestion with EcoRI and Xbal.

PWHEX11 and pWHEX16 were prepared in the same manner using

PWHindIII-H as the starting plasmid.
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Appendix V
Construction of pWHindIII-H
Genomic DNA was digested with HindIII, sparated by agarose gel
electrophoresis and the 8.7 Kbp band corresponding to HindIII fragment

H was =luted and ligated into pUC 19 DNA digested with HindIII.



Appendix VI

Construction of pWHEV1l, pHEV16

pWHind-H DNA was digested with EcoRV and ligated to HindIII linkers
(Boehringer Mannhaim). The DNA was then digested with EcoRI and HindITI,
separated by agarose gel electrophoresis and the 1.1 Kbp and 1.6 Kbp

fragmets were eluted from the gel and ligated to pUC19 DNA digested with

EcoRI and HindIII.
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