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Abstract 

In the following work, I address the problem of coherence loss in standard Differential 

Interferometric SAR (DInSAR) processing, which can result in incomplete or poor quality 

deformation measurements in some areas. I incorporate polarimetric information with 

DInSAR in a technique called Polarimetric SAR Interferometry (PolInSAR) in order to 

acquire more accurate and detailed maps of surface deformation.  

In Chapter 2, I present a standard DInSAR study of the Ahar double earthquakes (Mw=6.4 

and 6.2) which occurred in northwest Iran, August 11, 2012. The DInSAR coseismic 

deformation map was affected by decorrelation noise. Despite this, I employed an advanced 

inversion technique, in combination with a Coulomb stress analysis, to find the geometry and 

the slip distribution on the ruptured fault plane. The analysis shows that the two earthquakes 

most likely occurred on a single fault, not on conjugate fault planes. This further implies that 

the minor strike-slip faults play more significant role in accommodating convergence stress 

accumulation in the northwest part of Iran. 

Chapter 3 presents results from the application of PolInSAR coherence optimization on 

quad-pol RADARSAT-2 images. The optimized solution results in the identification of a 

larger number of reliable measurement points, which otherwise are not recognized by the 

standard DInSAR technique. I further assess the quality of the optimized interferometric 

phase, which demonstrates an increased phase quality with respect to those phases recovered 

by applying standard DInSAR alone. 

Chapter 4 discusses results from the application of PolInSAR coherence optimization from 

different geometries to the study of creep on the Hayward fault and landslide motions near 

Berkeley, CA. The results show that the deformation rates resolved by PolInSAR are in 

agreement with those of standard DInSAR. I also infer that there is potential motion on a 

secondary fault, northeast and parallel to the Hayward fault, which may be creeping with a 

lower velocity.  
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Finally, discussions on the application of the PolInSAR technique and the geophysical 

implications of the standard DInSAR study are presented, with suggestions for future work, 

in the conclusions. 

 

Keywords 

Differential Interferometric Synthetic Aperture Radar (DInSAR), Polarimetric SAR 

Interferometry (PolInSAR), polarimetry, coherence optimization, surface deformation, 

Hayward fault, Berkeley landslides, Ahar earthquake 
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Chapter 1  

1 General Introduction 

 

1.1. Introduction 

Differential Interferometric Synthetic Aperture Radar (DInSAR) is a remote sensing 

tool for measuring ground surface deformation induced by natural or man-made 

processes. The interferometric approach is based on the phase comparison of synthetic 

aperture radar (SAR) images gathered, via satellite, at different times with slightly 

different looking angles (Massonnet & Feigl 1998; Bamler & Hartl 1998).  DInSAR has 

the advantage of mapping an area of hundreds of square kilometers with high spatial and 

temporal resolution.  This technique has additional advantage of mapping in all-weather 

conditions. The deformation at the ground surface may reflect the distribution of stress in 

the subsurface and provide more detail on both the past and future behavior of the surface 

deformation and its associated causes.  In this regard, inverse modeling is required to 

obtain knowledge about subsurface processes from these surface measurements.  

DInSAR has been used for monitoring volcano dynamics (Massonnet et al. 1995; 

Manconi et al. 2010), coseismic displacements (Massonnet et al. 1993; González et al. 

2013), subsidence due to exploitation of ground-water and oil/gas (Amelung et al. 1999; 

Tiampo et al. 2012) and mining subsidence (Carnec & Delacourt 2000). Recently this 

technique also has been used for the monitoring of deformation associated with carbon 

sequestration and the melting of permafrost (Vasco et al. 2008; Short et al. 2012). Multi-

baseline DInSAR techniques have also been developed which are able to measure surface 

deformation with milometer accuracy by using a larger number of SAR images (Sandwell 

& Price 1998; Bernardino et al. 2002; Feretti et al. 2001; Hooper et al. 2007; Samsonov 

& d’Oreye 2012).  

The Ahar double earthquakes (Mw=6.4 and 6.2) struck northwest Iran on August 11, 

2012. The earthquakes are located 50 km north from the largest and the most hazardous 

strike-slip fault structure in this region. I implemented a standard DInSAR technique in 
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order to map the co-seismic deformation using RADARSAT-2 SAR images. Moreover, I 

applied inversion schemes to find the ruptured fault geometry and solve for its distributed 

slip. Modeling of the surface deformation not only shows that the two events occurred on 

one fault plane, it also provided important insights into the pattern of stress accumulation 

and release in this region. 

One of the drawbacks of DInSAR is that the radar signal decorrelates in the presence 

of volume scattering such as vegetation cover and causes degradation of the 

interferometric phase. This was a limitation on the study in Ahar, above.  New radar 

satellites have the capability of performing measurement in multi-polarizations, providing 

more observations of the ground surface. In this work I implement Polarimetric SAR 

Interferometry (PolInSAR), a technique for integrating polarimetry and interferometry in 

order to increase the precision of DInSAR measurements. In addition, I apply this 

technique to measure creep rate on Hayward fault, CA. This analysis demonstrates the 

efficiency of this technique for providing a more precise interferometric phase 

measurement.  

In the following sections I will describe fully the basics of SAR, DInSAR and 

Advanced DInSAR and PolInSAR techniques. 

 

1.2. Synthetic Aperture Radar (SAR) 

Synthetic Aperture Radar (SAR) is an imaging radar system onboard a moving 

platform. In this system, electromagnetic waves are transmitted and the backscattered 

echoes are collected. Due to the platform movement, each reception corresponds to 

different positions in a SAR scene and each single pixel is assigned an azimuth and range 

coordinate. The azimuth is the direction of platform movement and the range direction is 

the Line-of-Sight (LOS) direction, the distance from the moving platform to the ground. 

Figure 1.1 demonstrates that the 3-dimensional objects are projected to a 2-dimensional 

space in radar geometry (range and azimuth). Radar geometry is represented by circles 
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and hyperbola. The circles are the lines of equal-distance (range) and the hyperbola are 

the lines of equal-doppler (azimuth).  

 

Figure 1.1. SAR image geometry and the location of pixels in range and azimuth 

direction (Massonnet & Feigl 1998). 

 

A SAR image is a complex valued matrix, including amplitude and phase. Figure 1.2 

is an example of a SAR amplitude image. The areas with higher reflectivity are brighter 

in this image. However, a SAR phase image looks like a random noise image with values 

ranging between 0-360 degrees.  Each SAR image pixel represents the coherent sum of 

all scattering elements within a resolution cell.  
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Figure 1.2. An example of SAR amplitude image of an area in Mojave Desert, CA 

(Bamler & Hartl 1998) 

 

Space-borne SAR systems operate with different radar wavelengths. The advantages 

and disadvantages of choosing different wavelengths for interferometric applications will 

be discussed in section 1.7. Table 1.1 lists space-borne SAR systems with the 

corresponding imaging characteristics. SAR systems also operate in a variety of imaging 

modes. This is done by altering the SAR antenna radiation pattern. These imaging modes 

are: Stripmap, ScanSAR and Spotlight (Figure 1.3). For the Stripmap mode, the antenna 

illuminates one swath and creates one single strip of radar data (Moreira et al. 2013). For 

the ScanSAR mode the antenna illuminates different swaths with a shorter illumination 

time which degrades the azimuth resolution (Ahmed et al. 1990; Bamler & Eineder 

1996). The Spotlight mode is designed so that the antenna is steered illuminating a 

certain location on ground, increasing the spatial resolution (Carrara et al. 1995). 
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Figure 1.3. Different imaging modes: (a) Stripmap, (b) ScanSAR and (c) Spotlight 

(Moreira et al. 2013). 

 

1.3. SAR Geometry 

In radar system, the slant-range resolution (dr) is dependent on the system bandwidth 

and is derived by (1.1) 

�� � ����          (1.1) 

 where c0 is the speed of light and B is the system bandwidth (Elachi 1987).  

Older radar systems had the drawback of lower resolution in the azimuth direction. 

This limitation has been overcome by the use of coherent radar and image processing 

techniques (Wiley 1985), leading to an improvement of the azimuth resolution. The 

resulting azimuth resolution (�	) is independent of the range distance and is equal to half 

the azimuth antenna length (�
) (Elachi 1987), 

�	 � ��
�            (1.2) 

Raw radar images require initial processing in order to transform them into a single-

look (SLC) image, as shown in Figure 1.1. This includes filtering at both the range and 

azimuth directions named as range compression and azimuth compression (Cumming & 

Wong 2005). As the radar travels along the flight track, the transmitted pulses are linear 

frequency modulated chirp signals. Range compression is applied with a filter on the raw 
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data in order to compress all the energy distributed over the chirp duration into as narrow 

as a possible time window (Moreira et al. 2013). In this process each range line is 

multiplied in the frequency domain by the complex conjugate of the spectrum of the 

transmitted chirp. Figure 1.4 demonstrates the range and azimuth compression applied to 

a raw radar data.   

Because of the platform motion, the signal in the azimuth direction is modulated by 

the doppler frequency. The azimuth focusing can be achieved by correlating the azimuth 

line with a reference function in the frequency domain (Moreira et al. 2013). This will 

give a focused SAR image in both the range and azimuth directions.  

 

 

Figure 1.4. Summary of SAR processing steps where the range and azimuth 

compressed data result from a convolution of the raw data with the reference 

function (Moreira et al. 2013). 
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1.4. SAR Radiometric Correction 

The magnitude of the SAR image is not uniform over the entire image and is affected 

by different factors, such as the pattern of the antenna diagram, the longer traveling path 

of a wave in the far range compared to near range, etc. (Elachi 1987). In order to 

compensate for these effects a radiometric calibration is needed to derive the radar cross 

section normalized to the area. A calibrated SAR can be either in the 0 or in the γ0 form. 

In the � case the SAR image intensity corresponds to the backscattering coefficient 

normalized to the horizontal ground surface. In the case of  �� the SAR image intensity 

corresponds to the normalized backscattering coefficient in the range direction (Freeman 

1992). 

 

1.5.  SAR Image Statistics 

One characteristic of SAR images is the speckle, which is caused by the presence of 

many independent scatterers within one resolution cell (Goodman 1976). The coherent 

sum of their amplitudes and phases results in strong fluctuations of the backscattering 

from one pixel to the other. The intensity and the phase of SAR image pixels are not 

deterministic, because of the presence of speckle noise, and follow an exponential and 

uniform distribution, respectively (Oliver & Quegan 2004). The total complex reflectivity 

(��) for each resolution cell is given by 

�′ � ∑ � ′�exp ���������� �. !"� �#� $%
&′ ���,      (1.3) 

where �, � and r is the radar cross section, phase and range distance for each 

individual scatterer. j is the number of the scatterer and ( ′ is the wave number. 

In order to decrease the effect of speckle, a common technique such as multilooking is 

applied. This technique is an averaging of the intensity image (Curlander & McDonough 

1991; Oliver & Quegan 2004). One drawback of multilooking is that it decreases the 
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SAR image resolution. However, by using this technique a better understanding of target 

characteristics is achieved.  

Table 1.1. Space-borne SAR system characteristics 

Abbreviation 

 

Launch 

Date 

Band Repetitio

n Cycle 

Maximum Resolution 

(meters) 

SEASAT 1978 L 3 25 

ERS-1 1991 C 3, 35, 168 30 

ERS-2 1995 C 35 30 

JERS-1 1992 L 44 18 

Radarsat-1 1995 C 24 10 

SIR-C 1994 X, C, L Variable 18 

ENVISAT 2002 C 35 30 

SRTM 2000 C, X 35 12 

ALOS 2006 L 46 10 

TerraSAR-X 2007 X 11 1 

TanDEM-X 2010 X 11 1 

Radarsat-2 2007 C 24 1 

COSMO –SkyMed-1/4 2007 X 16 1 

RISAT-1 2012 C 25 3 

HJ-1C 2012 S 4 5 

 

1.6.  Differential Interferometric Synthetic Aperture Radar (DInSAR) 

An interferogram is formed by pixel-wise multiplication of the complex backscattering 

signals, V, of two SAR images (Bamler & Hartl 1998), 

)�*, "� � )+�*, "�)�,�*, "� � |)+�*, "�||)��*, "�| !"�./0�*, "�1   (1.4) 

where * denotes the complex conjugate, 0 � 0� # 0+ is the interferometric phase, and 

)�*, "� is the complex number corresponding to a SAR image. R and x are the range and 
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azimuth coordinates. Figure 1.5 displays an example of an interferogram from Bam 

earthquake, where each cycle represents 28 mm of displacement in LOS direction. 

 

 

Figure 1.5. Satellite interferogram of Bam earthquake (Mw= 6.5, 26 December 

2003). Each fringe represents 28 mm of displacement in the LOS satellite direction 

for C-band which 56 mm (Motagh et al. 2006). 

 

The interferometric phase results from the following contributions determining 

differences in the propagation path length between the two images: 

0 � 02��� 3 0��4� 3 0�5� 3 0��6 3  78�9!     (1.5) 

where 02��� and 0��4� are the phase differences associated with the flat earth and 

topography (Massonnet & Feigl 1998). Flat earth component is the effect of a distance 

between two satellite positions causing long-wavelength fringes. The topographic phase 
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is the effect of elevation, which depending on the perpendicular baseline (:;) produces 

additional phase component. The perpendicular baseline is the distance between two 

antenna positions, perpendicular to the LOS direction. 

0��6 is the phase difference due to changes in atmospheric propagation. The 

atmospheric phase variation is dominated by water vapour (Hanssen 2001).  It is not 

possible to correct for atmospheric effects in a single interferogram without information 

on the state of the atmosphere from other data sources. The atmospheric delay gradient 

can be in the order of up to 1cm/km or more (Hanssen 2001). 0�5� is the phase difference 

due to displacement of the observed surface element in LOS.   

We can expand equation (1.5) to (1.6): 

0 � $%
<′ :; 3 $%

λ′=�5;>′:;?@ 3 $%
<′ � 3 0��6 3 78�9!    (1.6) 

?@ is the surface elevation and A′ is the radar look angle, � is the surface 

displacement, and λ′ and � are the radar wavelength and satellite-ground distance, 

respectively.  

Elimination of all the phase components (flat earth, topographic phase), will give the 

phase difference due to displacement.  The topographic phase is eliminated using an 

external digital elevation model (DEM). Any inaccuracy in the external DEM translates 

into a phase error in the final interferograms. The displacement and its phase are related 

using the following formula: 

0 � 0� # 0+ � $π
λ′

��� # �+�       (1.7) 

Subscripts 1 and 2 refer to two SAR images acquired at two different times. 

Accordingly, one complete phase cycle (2π) corresponds to half a wavelength (λ′� of 

displacement; e.g. if the radar system has a wavelength of 6 cm, one fringe is equivalent 

to 3 cm of deformation in LOS direction. Before conversion of phase to displacement, it 

should be noted that the resolved phase difference is a wrapped value and a phase 

unwrapping approach is implemented. In other words, the interferometric phase is a 
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number between [0,2C]. The phase unwrapping algorithm starts from a random point in 

the image and integrates the phase values along a path to retrieve the absolute phase 

corresponding to each image pixel. Theoretically, phase unwrapping is not affected by 

the choice of its path. But this condition does not hold everywhere due to decorrelation 

noise or steep topography (Bamler & Hartl 1998).  

The processing of DInSAR data starts by the selection of two images which have a 

reasonable spatial and temporal baseline. The maximum spatial baseline is on the order of 

several hundred meters. The correlation between the two complex SAR images decreases 

with increasing spatial baseline until it completely vanishes. This baseline is known as 

the critical baseline for flat surfaces (Rodriguez & Martin 1992). However, the maximum 

temporal baseline is a factor of any change in the ground cell, e.g. land cover change, soil 

moisture change. The temporal baseline varies from several days to few years. Figure 1.6 

demonstrates the different steps of interferometric processing.  

The first step of processing is the coregistration of the second image (slave) with 

respect to the first image (master). After the coregistration, the interferogram is made by 

subtracting the phase value of the two images using equation (1.5) (Figure 1.6 (a)). Later, 

different interferometric contributions are subtracted including the flat earth and 

topographic effects. The resulting image is the interferogram which shows the phase 

difference due to displacement, assuming that the atmospheric noise is negligible (Figure 

1.6 (b)).  The next step is the phase unwrapping and conversion of the phase to 

displacement using equation (1.7) (Figure 1.6 (c)).  

DInSAR is sensitive to only the component of the velocity vector in the LOS (in slant 

range) and not to the component of motion along track.  The LOS projection of 

deformation can be obtained as the scalar product of displacement (d) and the DInSAR 

sensitivity vector (u): 

�DEF � �. G � H �I����;�=�J�KI;5�J
L H GI���G;�=�JGKI;5�J

L � Hsin A . P89�sin A . 9�7�P89A L                                               (1.8) 
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where A is the look angle and � is the satellite heading angle. It is possible to retrieve 

more information about the ground movement by analyzing images from different 

ascending and descending geometries. In that case there will be more observations (LOS) 

available in order to invert for the three-dimensional components of surface 

displacement. When the incidenet angle is higher, the sensitivity to the vertical motion is 

decreased. 

 

Figure 1.6 (a) Initial interferograms of Bam earthquake  (Mw= 6.5, 26 December 

2003) (b) the final interferogram after removal of orbital and topographic 

contribution and (c) the final displacement map showing the amount of deformation 

(Motagh et al. 2006). 

 

1.7.  Coherency 

The interferometric coherence γ can be computed as (Bamler & Hartl 1998), 

Q � RSTUTV,W
XRS|TU|VWRS|TV|VW          0 Z |Q| Z 1      (1.9) 

where E{ . } represents the expectation value.  The module of the interferometric 

coherence |γ|, called the coherence (Figure 1.7), is a measure of the phase noise of the 

interferogram, while arg(γ) is the resulting interferometric phase.   
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The relationship between the coherence and the phase variance was explored by many 

authors (Zebker & Villasenor 1992; Joughin et al. 1994; Rodriguez & Martin 1992). This 

relationship was expressed by Zebker & Villasenor (1992) as 

\� � +
]^

+_`V
`V               (1.10) 

where N and M are the number of looks in range and azimuth direction. In a practical 

sense, one can form a coherence map from the data and use equation (1.10) to quantify 

the phase and deformation errors.  

Each pixel in a SAR image is composed of several scatterers with different reflectivity 

and the differential sensor-target path. If these values do not change in the time span 

between successive radar acquisitions, they are cancelled out from the interferometric 

phase.  This is the basic assumption for carrying out interferometric measurements and 

corresponds to full coherence.  The interferometric coherence can be formulated as a 

composition of the following contributions (Rodriguez & Martin 1992) 

Q����� � Q4=��I���= . Q�JI=6�� . Q�I64�=��. Q�4��5��      (1.11) 

where Q4=��I���= refers to the phase errors introduced by SAR processing; these errors 

are usually small and Q4=��I���= is close to one.  Q�JI=6�� is dependent on the signal-to-

noise ratio of the SAR system.  Q�4��5�� expresses the decorrelation due to changes 

caused by different reflectivity at the two ends of the baseline (Zebker & Villasenor 

1992).  In the case of pure surface scattering, the decorrelation can be eliminated by 

filtering of the range spectra (Gatelli et al. 1994).  In this regard, optimum slope-adaptive 

spectral shift filtering can improve further interferogram quality (Bamler & Davidson 

1997). Spectral shift increases with terrain slope to the point where it equals the range 

system bandwidth. Beyond the look angle spectral shift is negative due to layover (Gatelli 

et al. 1994).  Q�I64�=�� represents temporal decorrelation caused by changes in the 

distribution of scatterers within the resolution cell occurring during the time interval 

between the two acquisitions. 
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The main limitations for the application of DInSAR over long time intervals result 

from temporal decorrelation.  In densely vegetated areas, such as forests and agricultural 

lands, the signal usually decorrelates within days.  On the other hand, over areas with low 

vegetation or bare surfaces the signal may remain coherent over several years.  The loss 

of coherence due to vegetation is most significant for short wavelengths (X and C band). 

Conversely, the longer wavelengths (L band) can penetrate deep into vegetation and 

result in less volume decorrelation.   

 

 

 

Figure 1.7.  Coherence image of a RADARSAT-2 interferogram from the Ahar 2012 

earthquakes. 

 

1.8.  Advanced DInSAR Techniques  

There exist a number of advanced DInSAR methods which are widely used to measure 

deformations of Earth’s surface with higher accuracy than conventional DInSAR 

(Sandwell & Price 1998; Bernardino et al. 2002; Feretti et al. 2001; Hooper at al. 2007).  

One of the examples of these techniques is stacking (Sandwell & Price 1998), in which 

averaging over several interferograms reduces the effect of the unwanted signal.    
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Another widely used technique is the Small Baseline (SBAS) method (Bernardino at 

al. 2002; Samsonov et al. 2011).  This methodology selects interferograms with small 

spatial and temporal baselines, assuming a minimum effect of decorrelation noise for 

these interferograms and a constant displacement velocity between subsequent 

acquisition times. Using Singular Value Decomposition (SVD), this technique solves for 

the deformation rate between subsequent radar images. Additionally, the residual 

topographic phase also is formulated as a function of perpendicular baseline and resolved 

in this technique. Later, the atmospheric phase is removed by applying a high pass 

filtering in time and low pass filtering in space. 

Permanent Scatterer (PS) and Coherent Pixel method (CPM) (Feretti et al. 2001; 

Hooper at al. 2007, 2008; Blanco-Sánchez et al. 2008) are also techniques to improve the 

quality of the interferograms. The idea is to select radar phase stable points within a radar 

scene, assuming that the effect of decorrelation noise is minimum for these objects.  

These points, called Pixel Candidates (PC), usually correspond to buildings, metallic 

objects, exposed rocks and other stable, reflective surfaces that exhibit a constant radar 

signature over time. After interferogram generation, the phase of the PCs can be 

decomposed into several contributions including displacement phase, atmospheric phase 

and residual topographic phase. The least squares method is applied in order to retrieve 

the absolute phase value corresponding to each radar scene and in the meantime solves 

for other phase components.  

Multibaseline DInSAR techniqueas need a large number of coherent pixels to work 

properly (Feretti et al. 2001).  The quality criteria for selecting these coherent targets 

(Pixel Candidate (PC)) are the average coherence for the full set of interferograms. In this 

technique, the interferograms are formed and a thresholding is applied over the mean 

coherence to separate the pixels with the higher coherence value (Blanco-Sánchez et al. 

2008). The second criterion is based on the amplitude dispersion index (Feretti et al. 

2001).  The amplitude dispersion index is computed for the whole stack of single-look 

complex images from the following formula: 

ab�
�cG�! d�9�!�9�87 e7�!" � f
g      (1.12) 
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where  h is the mean and  is the standard deviation of a pixel in different radar 

scenes.  This value provides an indication about the phase stability of the corresponding 

pixel.  

In the next sections, I will explain how the use of polarimetric information will 

increase the number of PCs for Advanced DInSAR. An example of this technique is the 

Polarization Phase Difference (PPD) method (Samsonov & Tiampo 2011) which selects 

pixels that demonstrate either even or odd bounce scattering properties, using a number 

of polarimetric images. 

 

1.9. SAR Polarimetry 

A radar polarimetric system measures the polarization state of a wave backscattered by 

the media.  The measured polarimetric signal depends on the type of scattering 

mechanisms (SM), which is a representation for polarization states in the transmitted or 

backscattered wave.  

SAR polarimetry is a technique used for acquiring physical information from different 

land covers. Previous studies have used polarimetric scattering models to provide 

information about physical ground parameters such as soil moisture and surface 

roughness (Hajnsek et al. 2003; Hajnsek et al. 2007).  Moreover, the temporal evolution 

of these observables provides information on the temporal changes of these parameters 

(Mattia et al. 2003). Unsupervised classification methods of polarimetric data identify 

different scatterer characteristics and target types (McNairn & Brisco 2004).  

 

1.10. Principles of SAR polarimetry 

In satellite radar polarimetry we analyze the shape of the transmitted and received 

polarization ellipse, as shown in Figure 1.8.  This figure shows the spatial helix resulting 

from a combination of horizontal (H, in green) and vertical (V, in blue) transmitted 

components. When a radar wave is transmitted in a horizontal polarization and received 

by horizontal or vertical polarizations, it is called HH or HV channels, respectively. If a 
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radar wave is transmitted with a vertical polarization and received with horizontal or 

vertical polarizations, it is called VH or VV channels. 

 

 

Figure 1.8.  The polarization ellipse decomposed into orthogonal components x 

(horizontal H) and y (vertical V) (http://www.nrcan.gc.ca/earth-sciences/geography-

boundary/remote-sensing/radar/1968). 

 

A radar wave is described using a pair of complex numbers, !i and !j as shown in the 

following equation, in any polarimetric basis, corresponding to the horizontal and vertical 

component of the wave.   

!i 3 !j  k   l � m!i!jn                        (1.13) 

Fully polarimetric SAR (Pol-SAR) sensors acquire images in various polarimetric 

channels and ultimately can measure the 2×2 scattering matrix, S, corresponding to the 

media, as 

l� � Iop′q
= rs5tt s5tT

s5Tt s5TT u l�,                      (1.14) 
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l� is the scattered wave and l� is the transmitted wave. Here r is the distance from the 

satellite to the ground point and (′ is the wave number. The scattering matrix is 

independent of the transmitted polarimetric basis; it is a function of shape, orientation and 

dielectric properties of the scatterers. Under the reciprocity theorem, the off-diagonal 

elements are equal and stT � sTt. The scattering matrix is expressed as a scattering 

vector (k) using the Pauli basis as (Cloude & Papathanassiou 1987) 

(5 � +
√� ws5tt 3 s5TT , s5tt # s5TT , 2s5tTxy      (1.15) 

SAR polarimetry has the capability of discriminating different types of scattering 

mechanisms within a resolution cell. The radar targets are categorized as deterministic 

and distributed targets. Deterministic targets are the point-wise scatterers and distributed 

scatterers are those composed of a large number of randomly distributed deterministic 

scatterers.  The scattering matrix is able to completely describe deterministic scatterers. 

However, for the distributed targets, a second-order statistics is required, such as 

coherency [T] matrix (equation 1.16).  

z � {((,y|          (1.16)   

where *
T
 represents conjugate transpose operator and ⟨⟩ is the multilooking factor. 

Using a multilooking approach the effect of the single scatterers is decreased and the 

mean value is achieved for a group of pixels.  

 

1.11. Polarimetric SAR Interferometry (PolInSAR) 

In Polarimetric SAR Interferometry (PolInSAR), Interferometric SAR (InSAR) and 

polarimetric techniques are coherently combined to provide improved sensitivity to the 

vertical distribution of scattering mechanisms (Cloude & Papathanassiou 1998).  Using 

the PolInSAR technique, it is possible to extract scatterers at different heights for a given 

resolution cell.  
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Coherence is the main observable of PolInSAR. Coherence optimization is a technique 

which attempts to find the best polarization base transformation corresponding to the 

scatterer with the maximum coherence (Neumann at al. 2008). When this transformation 

is applied to fully polarized satellite data, it will result in isolating the most dominant 

scattering mechanism of the corresponding pixel (Papathanassiou & Cloude 1998; Colin 

et al. 2006). Dominant scattering mechanisms provide each resolution cell with the 

highest coherence value.  

The advantage of this technique is to increase the component corresponding to the 

most stable target, which is done by eigenvalue decomposition of the coherency matrices 

in an optimization solution. The correspondence between the backscattered power and 

stable radar targets is explained better in Section 1.8, where the amplitude dispersion 

index is used as a measure to separate the stable radar targets. These points have less 

spatial and temporal decorrelation noise.  

In the previous studies, PolInSAR coherence optimization was employed to increase 

the number of interferometric coherent pixels for DInSAR studies. This is achieved by 

finding the optimum scattering mechanisms in a resolution cell through analysis of 

average target’s coherency matrix (Navarro-Sanchez et al. 2010). As we use a number of 

SAR images for advanced DInSAR analysis, a multibaseline approach must be 

implemented. A multibaseline approach will guarantee that the scattering mechanism of a 

SAR image will remain the same between all the interferograms. Otherwise, each SAR 

image will have a different scattering center corresponding to each interferograms and a 

noise component will be added to the differential phase. The noise corresponds to the 

height difference between different phase centers. 

There are two approaches to solve the multibaseline coherence optimization problem; 

Multi-Baseline Equal Scattering Mechanism (MB-ESM) and Multi-Baseline Multiple 

Scattering Mechanism (MB-MSM). In the case of MB-ESM as proposed by (Neumann et 

al. 2008), the scattering mechanisms of the images remain the same among all the 

baselines (ω� � ω��. However, this condition is not met using MB-MSM technique 

(ω� � ω��, and for every acquisition an individual optimal polarization is found which 
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correlates best to all others. MB-MSM technique can introduce an additional 

interferometric phase of the DInSAR method. While in reality some physical effects (e.g. 

change in soil moisture content, incident angle and atmospheric conditions) will modify 

the scattering mechanisms between acquisitions, leading to temporal decorrelation, the 

change of scattering mechanism between acquisitions might compensate for the temporal 

decorrelation in areas of less noise. If there is no meaningful change of the scattering 

mechanism, the MB-MSM technique may add a component to the interferometric phase. 

This additional phase component (noise) corresponds to the difference of the phase 

centers from assumption of the two different scattering mechanisms at two ends of the 

baseline.  

Accordingly, in previous research, the MB-ESM has been applied instead of the MB-

MSM technique (Navarro-Sanchez et al. 2010), even though in some cases, the choice of 

MB-MSM may provide better resolution of the interferometric phase.  The technique to 

solve the coherence optimization problem will be presented in the next section 1.12. 

 

1.12. Methodology 

Coherence optimization of polarimetric images is applied to reduce the interferometric 

phase noise. As mentioned in section 1.7, different components of decorrelation degrade 

the interferometric phase. PolInSAR coherence optimization is able to reduce the 

component of volume scattering by selection of an optimum polarimetric channel. In this 

technique the scattering mechanism corresponding to the highest coherence is retrieved, 

which insures less interferometric noise. In multibaseline interferometry, as explained 

before, mean coherence is an estimation of phase noise. Using the coherence optimization 

approach, the mean coherence over a stack of interferograms will increase. Accordingly, 

it will result in a higher number of coherent targets.  

Here, I will explain in detail the processing steps employed in the multibaseline 

DInSAR analysis on the polarimetric images. 
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1.12.1. Co-registration  

The co-registration procedure aligns SAR images into the master image geometry. In 

the first step, the satellite orbits are used for initial image co-registration. A more accurate 

co-registration is performed by cross-correlation of the intensity images. The peak of the 

correlation function will resolve the range and azimuth offsets. A number of windows are 

distributed over the image and offset values for each patch are generated. A least squares 

polynomial fit is used in order to find the model of the pixel offsets for the entire slave 

image. Later, resampling of the slave image is performed using a complex sinc 

interpolator. 

The processing starts with the collection of SAR images at different dates (i=1 to 

N+1). Each SAR image has three different polarimetric channels, assuming that the 

reciprocity theorem holds. The co-registration is performed in two steps.  The first step is 

to co-register three different channels of the master image. In the next step, the remainder 

of the SAR images are co-registered with the master image of the corresponding 

polarimetric channel (HH,VV,VH).  

 

1.12.2. Baseline Estimation 

The next step of the analysis is to form all the possible pairs between the SAR images. 

The condition to form an interferogram between two SAR images is dependent on the 

spatial and temporal baseline. Where these baselines exceed the critical limit, the 

displacement will be contaminated by decorrelation noise and the interferometric phase 

will not be reliable. The maximum temporal baseline is dependent on the atmospheric 

condition, land-cover change, soil moisture change, vegetation groth, etc.  and can vary 

between a few months to several years. The maximum spatial baseline is a function of the 

look angle and the wavelength and distance from the satellite to the ground. 

 

1.12.3. Coherence Optimization 

After the above steps are complete, I perform coherence optimization of the fully 

polarimetric images (Neumann et al., 2008). Here an Equal Scattering Mechanism (ESM) 
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optimization is applied in order to constrain the scattering mechanisms to be equal at both 

ends of the baseline. The optimization solves for the highest mean coherence among all 

the interferograms, as: 

b	" ∑ ∑ |Q5����5� |                         (1.17) 

where        �+ � �� � � � �; 

Q5���� is the interferometric coherence between images i and j corresponding to the 

scattering mechanism �. In the following equation, equality is achieved when the phase 

shift (A5�) is equal to the optimum coherence phase values. 

b	" ∑ ∑ Q5����!_5>�o  Z b	";��+  ∑ ∑ |;��+;5�+;5�+ Q5����|     (1.18) 

Accordingly, an iterative numerical approach as presented below is applied in order to 

introduce an optimal phase shift: 

�� � ��                              � � ∑ ∑ �5�;�;5 !_5>�o     (1.19) 

�5� � zI_+/��5�zI_+/�
                     (1.20) 

zI � +
; ∑ z55;5�+          (1.21) 

� � Xy��
��Xy��                                                                                                            (1.22) 

A5� � arg ����5���         (1.23) 

In these equations, by iteratively changingA5�, we get a better estimation of the optimal 

phase value. In accordance with Neumann et al., 2008, the optimization is performed as 

follows: 

1) Initialization; A5� � arg.c�	P!�5�1 ;  � � 0. 
2) Derive H and w, and solve for the eigenvalue and the corresponding phase shift. 

3) Improve the estimation of A5�.  

4) The process stops if the phase shift is below a certain threshold. 

5) Use w in order to solve for the �. 

The process is performed on a pixel-by-pixel basis. A processing window of 5×10 
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pixels is selected in order to calculate the coherency matrices and the corresponding 

scattering mechanisms. When these mechanisms are found, they are converted from the 

linear basis (H,V) to the optimal basis. As a result, for each SAR image, instead of having 

three channels of (HH,VV,VH) data, one optimized channel is resolved. 

 

1.12.4. Interferogram Generation 

Before interferograms generation, common-band range and azimuth filtering is 

performed on the SAR images. The two SAR images are acquired from slightly different 

look angles and the slant range spectra of two images may not overlap completely. 

Moreover, if the squint angle of the two SAR images is different, there is a difference in 

the azimuth spectra. These effects will cause decorrelation and the filtering is applied 

before interferograms generation to remove the decorrelation effect at the price of 

reduced resolution.  

Differential interferogram generation is formed by calculating the phase difference of 

two SAR images (1.4). The processing window size is consistent with the window size 

used for the coherence optimization. The choice of a 5×10 pixel processing window is 

made to ensure that enough independent scatterers occur in a given resolution cell and 

produce an unbiased estimation of coherence (Touzi et al., 1999). For a smaller window 

size the scatterers might not be independent from each other. Moreover, there is a trade-

off between the size of the processing window and spatial resolution. Selecting a small 

averaging window ensures higher spatial resolution, but biases the coherence estimation 

towards higher values. 

Equations (1.5) and (1.6) are used to remove the topographic component and the flat 

earth component. Later, I will explain the procedure to remove the residual orbital 

components and the residual topographic components. 

 

1.12.5. Phase Unwrapping 

The next step in DInSAR analysis is to filter the interferograms to reduce the 

interferometric phase noise. After the interferometric generation and filtering, the 

interferograms were unwrapped, using the phase unwrapping technique known as 
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Minimum Cost Flow (MCF) (Costantini & Rosen, 1999). The steps of the phase 

unwrapping are as follows: 

1) A set of coherent points above a certain threshold are selected and connected by a 

delaunay triangle network.  

2) The minimum cost flow algorithm is employed in order to connect the residues. A 

residue is a point in the interferogram where the sum of the phase differences 

between pixels around a closed path is not 0.  

3) Unwrapped phases are computed by integration.  

The application of PolInSAR coherence optimization will result in different scattering 

mechanism for the neighboring pixels. However, the effect of polarimetric change from 

one pixel to another will not significantly change the performance of the phase 

unwrapping. Assuming that the relative position of the scatterers in a resolution cell does 

not change significantly, phase unwrapping can be applied to the neighboring pixels from 

different scattering mechanisms. Accordingly, the coherence optimization solves for the 

optimized scattering type, which is more stable in time, in order to give better 

deformation estimation. In the remainder of this research, the mean quality criterion is 

used for separation of the most stable targets. A coherence threshold of 0.3 is employed to 

separate the group of coherent and non-coherent pixels as explained in Section 1.8. 

 

1.12.6. Residual Orbital Error Correction 

In cases where there is an inaccuracy in the position of the satellite, there is a 

systematic error which remains after removal of the flat earth component. The systematic 

error is a long wavelength fringe pattern across a single interferograms. Removal of 

residual orbits is performed by fitting a plane to the phase measurements. The 

coefficients of a bilinear plane are derived using a regression technique, and the synthetic 

model of orbits is generated and removed from every single interferograms. 
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1.12.7. Multibaseline Analysis  

The multibaseline DInSAR approach used in this thesis is the Small BASeline (SBAS) 

technique developed by Berardino (2002). In this technique only interferograms of small 

temporal baseline are selected in order to reduce the decorrelation noise. However, by 

choosing these interferograms, there is a possibility that no common image exists 

between some interferograms.  In this problem, in order to avoid inversion singularity, the 

Singular Value Decomposition (SVD) technique is employed, as explained below. The 

technique solves for the residual topographic contribution and employs a Fast Fourier 

Transform approach to reduce atmospheric artifacts. Since atmospheric errors are long-

wavelength features in the interferograms, we employ a low-pass filtering technique to 

remove these signals. The SBAS technique first performs phase unwrapping to solve for 

the absolute phase value. Then the unwrapped interferograms undergo a system of 

equations to retrieve deformation time series using the following procedure. 

We assume that there are N+1 images acquired at different times. The number of 

possible interferograms with small spatial and temporal baseline can be calculated based 

on the following: 

]�+
� Z � Z ��]�+

� �        (1.24) 

Accordingly, any phase difference between two SAR images, can be written as: 

∆0 � 0�p�U # 0�p � $%
< .��p�U # ��p1        (1.25) 

Where d is the deformation regarding the time t or t +1. Assuming that the deformation 

at the first SAR image acquisition time is zero, the absolute phase at different SAR image 

acquisition times is a vector of N components. We can formulate the above equations in 

terms of surface velocity as: 

∆0 � $%
< �c&�+ # c&�. )�p�U,�p       (1.26) 

The vector of unknown values is the velocity between two SAR image acquisitions, 

assuming the deformation for the first SAR image acquisition is zero, as: 

� � w)�U , )�V , … , )��x                                                                                              (1.27) 

The differential phase observations are as following: 
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∆0 � w∆0�U , ∆0�V , … , ∆0��x       (1.28) 

The matrix form of these set of equations is formulated as: 

a� � ∆0           (1.29) 

A is the matrix of coefficients, composed of differences in time between SAR images. 

The solution to this system of equations depends on the number of interferograms and the 

rank of matrix A. If the interferograms are such that there is a link between each SAR 

image, then matrix A is not rank deficient and the problem can be solved by a least square 

technique. Otherwise, A is decomposed as following 

a � �s)y           (1.30) 

U is an M×M orthogonal matrix, S is M×M diagonal matrix and V is orthogonal N×M 

matrix. The solution is identified by minimum norm of the velocity (unknown) values. 

 Additional to the velocity vectors (v), it is possible adding additional terms in order to 

remove the residual topographic errors���. 

wa  xw� �x� � ∆0                                                                                                 (1.31) 

  � w $%
<¡ ¢U£¤¥�¦�§�¨ … $%

<¡ ¢�£¤¥�¦�§�¨x  
In order to simplify the inversion, we can reduce the deformation rates only to a linear 

term. Accordingly, the problem is a linear regression to the observations, where we can 

simultaneously solve for the residual topographic errors. For this regression problem we 

derive the standard deviation of the observations from the model. In chapter 4, I will use 

this standard deviation as a measure to compare the performance of PolInSAR technique 

versus standard interferometry. 

 

1.13. Purpose of study 

The primary objective of my thesis is to develop tools aimed at increasing the 

usefulness of DInSAR measurements in modeling and understanding of earth processes 

by improving its accuracy and precision.  This is achieved by incorporating fully 

polarimetric RADARSAT-2 data into the analysis and integrating this polarimetric 
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information with the DInSAR technique in Polarimetric SAR Interferometry (PolInSAR). 

A secondary objective was achieved through the application of a standard DInSAR 

analysis to the Ahar double earthquakes (August 11, 2012), in order to understand the 

patterns of stress accumulation and release associated with the ruptured fault. 

Unfortunately, fully polarimetric data was unavailable for this region, but this study has 

important implications for future seismic hazard assessments because the event occurred 

in the proximity North Tabriz Fault (NTF), the largest and the most hazardous strike-slip 

structure in NW Iran. Understanding the Ahar fault structure and its pattern of stress 

accumulation provides insights into its impact on the seismic activity of the regional 

faults. The limitations of this study inherent in the higher decorrelation arising from the 

standard InSAR method provide an important example of the necessity for employing 

polarimetric data. 

I pursued these goals through the following studies: 

• Measuring co-seismic deformation of Ahar earthquake using standard 

mode RADARSAT-2 interferograms. Advanced inversion methodologies were 

implemented in order to model the ruptured fault plane. 

• Developing a general framework to exploit newly available polarimetric 

information of RADARSAT-2 in order to increase the number of coherent pixels 

for DInSAR analysis and assessing the accuracy of their interferometric phases. 

• Application of the PolInSAR coherence optimization technique to the 

Hayward fault (San Francisco) in order to better assess the creep rate along this 

fault; measuring the velocity of the landslides on Berkeley hills and comparison 

of the deformation maps with the conventional DInSAR deformation. 

 

1.14. Organization of work 

This integrated thesis is presented in six chapters. The introductory chapter (Chapter 1) 

outlines the problem addressed and specific objectives of this work. Chapter 2 presents 
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the analysis of the Ahar double earthquakes derived from the standard DInSAR analysis. 

Chapter 3 presents the results of the PolInSAR coherence optimization and shows the 

improvements in terms of Pixel Candidates (PCs) and higher interferometric phase 

precision. Chapter 4 presents a detailed application of the PolInSAR technique for the 

Hayward fault and investigates the landslide motion in the Berkeley Hills. Finally, 

Chapter 5 presents the concluding remarks and suggestions for future research. 
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Chapter 2  

2 Source model for the 2012 Ahar double 
earthquakes, Iran, from DInSAR analysis of 

RADARSAT-2 imagery
1
   

 

 

In this chapter, we present the results of a DInSAR application on the Ahar double 

earthquakes (Mw=6.4 and 6.2) in northwest Iran. This is the first time that these 

earthquakes have been studied using geodetic data. Here, we used a pair of RADARSAT-

2 images in order to produce the coseismic surface deformation map. We applied 

advanced inversion techniques to find the geometry of the ruptured fault plane. We tested 

the hypothesis that two earthquakes ruptured the same fault plane against the hypothesis 

that they ruptured different fault planes. Our analysis shows that the two earthquakes 

occurred on a single fault structure. The results of this study provide us with a better 

understanding of stress accumulation and release in northwest Iran. 
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2.1. Introduction 

The tectonics of NW Iran is dominated mainly by the convergence of Arabia and 

Eurasia plates at a rate of ~17mm/year (Jackson & McKenzie 1984). The North Tabriz 

Fault (NTF) is the main strike-slip fault in this region.  It transfers tectonic stress from the 

Alborz range in the south Caspian Sea to the North Anatolian range in the west (Figure 

2.1). Based on the geodetic observations, the NTF accommodates right-lateral 

interseismic slip rate of 8 mm/year (Masson et al. 2007). In addition to the strike-slip 

mechanism, velocity vectors show extension further north from NTF and in the Talesh 

block. This extensional kinematics is not explained by the convergence of Arabia and 

Eurasia plates. Subduction of the South Caspian Sea beneath central Caspian is most 

probably the driving force behind this motion (Reilinger et al. 2006; Jackson et al. 2002). 

Numerical models in this region express that additional forces such as slab pull are 

required to explain the extension between NTF and Talesh blocks (Vernet & Cherry 

2006). The occurrence of earthquakes at depth of 30-75 km in this region confirms a 

northward dipping subduction (Jackson et al. 2002). 

On August 11, 2012, northwest Iran was struck by two consecutive earthquakes at 

12:23 and 12:34 UTC with moment magnitudes estimated 6.4 Mw and 6.2 Mw, 

respectively, by the US Geological Survey (USGS). The epicenters were located at 

38.358°N, 46.812°E and 38.390°N, 46.741°E, respectively, approximately 20 km 

southwest of Ahar city and 50 km northwest of Tabriz city, the most populated 

metropolitan area in northwest Iran. The earthquakes resulted in widespread property 

damage, more than 300 casualties, and the total destruction of twenty villages. Figure 2.1 

shows the location of the two events and the associated aftershock distribution. Vectors 

illustrate the interseismic velocities of local GPS stations with respect to central Iran from 

2002-2004 (Masson et al. 2007). According to the focal mechanism solutions by the 

Global Centroid-Moment-Tensor (GCMT), the first event ruptured a strike slip fault with 

a small dip slip component and the second event ruptured an oblique-slip fault with 

mainly thrust component. A field survey conducted by the Iran Geological Survey (IGS) 
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found evidence of horizontal and vertical surface displacements of 65 cm and 25 cm, 

respectively (http://supersites.earthobservations.org/ahar.php). The resolved fault plane 

solution for the first event strikes roughly east-west and dips 80 degrees. One of the nodal 

fault planes for the second event strikes 256 degrees and dips 65 degrees. The aftershock 

distribution and the geomorphology of the region support a north dipping, east-west 

striking fault geometry.    

Here we use Differential Interferometric SAR (DInSAR) analysis to invert for the 

ruptured fault planes and derive associated slip distribution models in order to better 

understand the interrelationship between the two events and gain a better understanding 

of the local and regional stress release. In the next section we will describe about the data 

and details of DInSAR processing. In section 2.3, we will present the results for fault 

modeling. Section 2.4 and 2.5 will present Coulomb stress results and further discussions, 

respectively.    
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Figure 2.1. The location of August 11, 2012 Ahar earthquakes and the 

corresponding focal mechanisms from Global CMT solutions. The aftershocks are 

recorded by IIEES (http://www.iiees.ac.ir/English/). The vectors are the GPS 

velocities with respect to the Central Iran block (Masson et al. 2007). NTF 

represents the North Tabriz Fault. The inset shows the location of our study area 

within the northwest Iran. 
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2.2. DInSAR data 

Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique for 

measuring ground deformation induced by natural or man-made processes (Massonnet & 

Feigl 1998; Bamler & Hartl 1998).  DInSAR has the advantage of mapping an area of 

hundreds of square kilometers with high spatial and temporal resolution. The technique 

has been proved to be a powerful tool to measure deformation with centimeter accuracy 

over periods of days or years.  DInSAR has been used for monitoring volcano dynamics 

(Massonnet et al. 1995; Manconi et al. 2010), coseismic displacements (Massonnet et al. 

1993), subsidence due to exploitation of ground-water and oil/gas (Amelung et al. 1999) 

and mining subsidence (Carnec & Delacourt 2000). Recently this technique is used for 

monitoring of deformation associated with carbon sequestration and the melting of 

permafrost (Vasco et al. 2008; Short et al. 2012). Multi-baseline DInSAR technique have 

also been developed which are able to measure with milometer accuracy by using a larger 

number of SAR images (Sandwell & Price 1998; Feretti et al. 2001; Hooper et al. 2007; 

Berardino et al. 2002). 

We apply DInSAR technique in order to measure the surface deformation from Ahar 

earthquakes. We used a pair of RADARSAT-2 images of fine-quad mode acquired on 13 

April 2012 and 4 September 2012, to measure the deformation of August 2012 

earthquakes. These scenes were processed using GAMMA (Wegmuller & Werner 1997) 

to form an interferogram with spatial normal baseline of 95 meters. Topographic phase 

was removed with the 90m Shuttle Radar Topography Mission (SRTM) DEM (Farr et al. 

2007), then the interferogram was filtered (Goldstein & Werner 1998) and unwrapped 

using Minimum Cost Flow (MCF) (Costantini & Rosen  1999). A quadratic (bilinear) 

function (ramp) is removed to account for satellite orbit uncertainty. Figure 2.1 displays 

the produced interferogram featuring the coseismic signal. We removed the phase offset 

of the interferograms by assigning zero deformation to a low elevation region in the east 

where is not affected by the coseismic signal. Figure 2.2 shows the deformation map 

from the interferograms which has both the orbital and deformation component.  
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Figure 2.2. Observed DInSAR deformation without orbital errors removed. 

 

The interferogram in Figure 2.1 is affected by decorrelation noise in area of the highest 

deformation, mainly caused by high fringe rates. Due to the lack of measurements in this 

region, we performed azimuth offset analysis. Azimuth offset analysis solves for the 

deformation by cross-correlating the amplitude images in the azimuth direction (Strozzi 

et al. 2002). However, the accuracy of azimuth offset products is only a fraction of the 

pixel spacing, much less than DInSAR product. Accordingly, the deformation signal 

should be large enough to be captured by this technique. Here our analysis to measure 

azimuth offset products was inconclusive due to the lower fringe density which makes 

the deformation rate below the sensitivity limit for this technique. The necessary 

condition for Interferometry implies maximum detectable deformation gradient is one 

frnge per pixel (Massonnet & Feigl, 1998) .The Azimuth offset products have been found 

more informative when a shallow earthquake leaves a higher deformation on the ground 
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surface example of which is the 2003, 6.6 Mw Bam earthquake (Funning et al. 2005; 

González et al. 2009).  

 

2.3. Slip model from DInSAR technique 

The DInSAR deformation was used to derive the source models for the double 

earthquakes. Here, we started modeling the two earthquakes using a single elastic 

dislocation formulation in a half-space (Okada 1985; 1992) for modeling the ruptured 

fault. For the inversion scheme, we first applied a nonlinear approach which solves for a 

single uniform slip fault plane. This gives basic information about the location, geometry 

and the amount of slip on the fault. Later, we use this geometry and apply a distributed 

slip model to find the details of the slip pattern on the modeled plane. Furthermore, we 

will investigate the possibility that the two events occurred on two separate fault planes.  

The best fitting single fault uniform slip model was derived using a genetic algorithm 

(GA) technique. A GA is a nonlinear optimization technique which is inspired by the 

process of natural evolution (Holland 1975; 1992; Tiampo et al. 2000; Sen & Stoffa 

1992; Winchester et al. 1993). GA optimization starts by randomly forming a population 

of candidate solutions corresponding to the unknown parameter and evolves to a best 

solution through an iterative approach where the best candidates are altered or combined 

to form the population of solutions for the next iteration. The criterion for solution 

goodness is the misfit between the observations and the synthetic model. This process 

ends when the best solution in terms of model fitness to the observations is achieved.  

We impose prior knowledge of Ahar earthquake on this inversion in order to narrow 

down the model parameter search space. Based on IGS reports 

(http://supersites.earthobservations.org/ahar.php), surface ruptures were observed on the 

ground, implying that the fault was not buried. As a result, we constrain the inversion to 

solve for a fault that reaches the surface and slip propagates to shallow depths. Another 

constraint on this inversion was to impose the sense of slip to be right-lateral and thrust 

based on the focal mechanisms solutions. We ran the GA inversion thirty times, to get a 
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distribution of the resolved parameters. The resolved fault plane parameters with the 

associated errors are listed in Table 2.1.    

 

 

Figure 2.3. (a) Modeled displacement and (b) residual displacement from the GA 

solution for a single fault with a uniform-slip model. The surface expression of the 

modeled dislocations is shown by a black rectangle. 
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Figure 2.4. (a) Moment magnitude versus smoothing factor and (b) model roughness 

versus model residuals. The black square mark the location of the optimum 

smoothing factor and the red squares mark two examples of extreme smoothing 

factors considered for comparison. 

Table 2.1. Source parameters and the associated errors for a single fault derived 

from the GA inversion 

 Strike  Dip Length 

(km) 

Width 

(km) 

Depth  

(km) 

Strike Slip 

(cm) 

Dip Slip 

(cm) 

Parameter 263° 85° 15.5 10.5 12 128 25 

Parameter 

Errors 

±3° ±2° ±0.4 ±0.5 ±0.5 ±5 ±3 
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As seen in Table 2.1, the amplitude of the dip-slip component is very small in 

comparison with the strike-slip component. This is consistent with the GCMT focal 

mechanisms solution of the first event, which was the larger event and primarily a right-

lateral strike-slip earthquake. Based on the earthquake magnitude relationship for fault 

area and slip (Wells & Coppersmith 1994), the geodetic moment of this model is 

estimated at 6.6e+25 dyne/cm which is equivalent to 6.5 Mw event. Note that the 

magnitude of the cumulative moment for the double earthquakes is 6.48 Mw. This model 

overestimates the cumulative seismic moment magnitude from the twin earthquakes by 

10%. Assuming that the DInSAR error is 1 cm, the χ
2
 test value for this model is 2.6.   

Figure 2.3 (a-b) shows the modeled deformation and the corresponding residuals for 

this uniform slip plane. The rectangle outlines the surface projection of the fault. This 

model is a rough approximation of the deformation field of the ruptured fault, with 

localized residuals on the order of 15 cm in the most near-field region. Not unexpectedly, 

the deformation field is not completely represented by a single uniform-slip fault, 

prompting us to investigate a distributed-slip model on order to more accurately describe 

the observed surface displacements.  

To obtain a detailed model for the ruptured plane, we performed a distributed slip 

inversion which solves for the slip on the geometry described above (Table 2.1). We 

assume that the uniform slip fault is only an initial approximation of the solution. 

Accordingly, the geometry derived from GA solution was discretized into patches of 3 

km size in length and width, where each patch has a strike and dip slip component to be 

found in a process of linear inversion as described below. The observed surface 

displacements d are related to slip components m as a function G: 

� � ªb 3 «         (2.1) 

where G is the Green’s function and  « is the observational error. As mentioned earlier, 

this is a linear inversion and our aim is to find the slip model (m) that minimizes the L2-

norm of the misfit function, 0�: 
0� � ||� # ªb||�         (2.2) 
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To derive a realistic slip distribution pattern, we apply the Laplacian smoothing 

criteria (Tikhonov & Arsenin 1977; Beavan et al. 2011; González et al. 2012) and 

boundary conditions on the modeled slip by constraining the displacement at the borders 

of the fault to be zero, except for the surface. The smoothing criterion is applied by 

minimizing the two-dimensional second derivative of the slip pattern. We include 

smoothing by solving for the following set of equations: 

m�0n � m ª(�dn b,         (2.3) 

where D is a second-order finite difference operator. (� is the weight of smoothing. 

The smoothing parameter (� depends on data weighting and on the number of data points 

(Jónsson et al. 2002). We also use surface roughness as another indicator of smoothness 

for the slip model in order to better determine the smoothing value. The solution 

roughness (¬� is calculated as: 

¬ � ∑ |4�|��]           (2.4) 

where p = Dm and N is the number of fault patches.  

The smoothing value ((�) must be set appropriately to give a realistic slip model. In 

finding the best smoothing value, there is a tradeoff between a detailed model (lower 

residuals) and released moment (Bürgmann et al. 2002). By choosing a lower smoothing 

value, a more detailed slip model is derived with lower residuals, but the released 

moment is higher. A higher smoothing value results in a smoother model with higher 

residuals and smaller moment. For this purpose, we run the inversion with different 

smoothing factors ranging between [0.05 0.6]. For each run, we invert for the fault slip 

and the orbital trend parameters which are defined by three coefficients. Figure 2.4 shows 

(a) moment magnitude versus smoothing factor and (b) model roughness versus model 

residuals. The corner point in these plots which correspond to the smoothing factor of 

0.38 (roughness of 4), is chosen as an optimum value. As mentioned earlier, different 

smoothing values cause the details of the model to vary. To better investigate the 
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variation in the slip model, we chose two extreme smoothing values of 0.1 and 0.6, as 

noted in Figure 2.4.  Results are detailed later in this section.  

 

Figure 2.5. (a) Modeled displacement and (b) residual displacement on a single fault 

using a distributed-slip model (smoothing factor of 0.38). The surface expression of 

the modeled dislocations is shown by the black rectangle. 
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Figure 2.6. (a) Oblique slip, (b) strike slip and (c) dip slip on a single fault using a 

distributed slip model and smoothing factor of 0.38. The surface expression of the 

fault is shown in Figure 2.5. 
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Figure 2.7. (a) Modeled displacement and (b) residual displacement on a single fault 

using a distributed-slip model and a smoothing factor of 0.1. The surface expression 

of the modeled dislocations is shown by a black rectangle. 
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Figure 2.8. (a) Oblique slip, (b) strike slip and (c) dip slip on a single fault using a 

distributed slip model and a smoothing factor of 0.1. The surface expression of the 

fault is shown in Figure 2.7. 
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Figure 2.9. (a) Modeled displacement and the (b) residual displacement on a single 

fault using a distributed-slip model and a smoothing factor of 0.6. The surface 

expression of the modeled dislocations is shown by a black rectangle. 
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Figure 2.10. (a) Oblique slip, (b) strike slip and (c) dip slip on a single fault using a 

distributed slip model and a smoothing factor of 0.6. The surface expression of the 

fault is shown in Figure 2.9. 
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Figure 2.5 (a-b) shows the modeled displacement fields and the residuals for a 

distributed slip model with roughness of 4 (smoothing of 0.38), respectively. The 

residuals are decreased significantly with respect to the uniform-slip model.  Figure 2.6 

shows (a) the oblique slip, (b) the strike slip and (c) the dip slip on a single fault using the 

same model. The strike-slip component is much higher than the dip-slip component, 

where most of the strike-slip motion is located at a shallow depth of 15 km. Moreover, 

we observe that the two patches representing the dip-slip and strike-slip maxima do not 

coincide at a single location.  

The moment magnitude of this model is 6.30e+25 dyne/cm, 5% higher than the 

cumulative released moment recorded from the USGS (http://comcat.cr.usgs.gov/) and 

the mean χ
2
 test result is 1.7 (Table 2.2). With this model, we successfully reduce the 

residuals and retrieve a better solution than a uniform-slip model.      

 

Table 2.2. Fault slip inversion results for the single fault solution with different 

smoothing values as Figures 2.5-2.10. 

Smoothing 

Factor 

χ
2 

test Moment 

(Dyne/cm) 

Magnitude 

0.38 1.7 6.3e+25 6.49 

0.1 1.6 7.7e+25 6.56 

0.6 1.8 5.8e+25 6.47 

 

            

In an attempt to separately distinguish the patches on the fault, we run the inversion 

with one rougher and one smoother model, by assigning smoothing criteria of 0.1 and 

0.6, as indicated in Figure 2.4. Figure 2.7 (a) shows the modeled displacement and (b) the 
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residual displacement on a single fault by using a smoothing factor of 0.1. Figure 2.8 

demonstrates (a) the oblique slip, (b) the strike slip and (c) the dip slip on a single fault 

using the smoothing factor of 0.1. For this model the moment magnitude is 7.7e+25 

dyne/cm, equivalent to a magnitude 6.56 Mw earthquake (Table 2.2) (~30% higher than 

the cumulative moment). Figure 2.9 (a) shows the modeled displacement and (b) the 

residual displacement on a single fault using a smoothing factor of 0.6. Figure 2.10 

demonstrates (a) the oblique slip, (b) the strike slip and (c) the dip slip on a single fault 

using the smoothing factor of 0.6. For this model the moment magnitude is 5.8e+25 

dyne/cm, equivalent to a magnitude 6.47 Mw earthquake (Table 2.2) (~3% lower than the 

cumulative moment). For both cases, the same patches reside at the same location. 

Decreasing the smoothing also does not result in more patches. We conclude that for a 

single fault, two patches are identified as the most probable sources of failure: one 

primarily strike-slip and dominating most of the fault length and a second dip-slip patch 

that only resides on the western half of the fault. We associate each of these patches to 

each of the Ahar double earthquakes.  

In the next step, we explored the possibility that the two earthquakes ruptured two 

separate fault planes. Inversion for two faults resulted in the convergence to a single fault 

solution. However, this might be due to the decorrelation of the interferogram in the near 

field. Consequently, we chose the location and the geometry of the second fault 

subjectively, based on morphological features, focal mechanism solutions and the 

associated residuals from the single dislocation modeling. We set the dip angle of the 

second fault to 65
o
, as derived from the focal mechanism solutions. The location of the 

fault is chosen in the region of higher residuals, southwest of the first fault. For the strike 

angle, we investigated the possibility of two faults: one striking southwest in alignment 

with the topographic and morphological features (Figure 2.11) and one almost parallel to 

the first fault according to the focal mechanism solutions (Figure 2.12).  
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Figure 2.11. (a) Modeled displacement and (b) residual displacement on two faults 

and using a distributed-slip model and a smoothing factor of 0.38. The surface 

expression of the modeled dislocations is shown by a black rectangle. The second 

fault is striking southwest. 
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Figure 2.12. (a) Modeled displacement and the (b) residual displacement on two 

faults and using a distributed-slip model and a smoothing factor of 0.38. The surface 

expression of the modeled dislocations is shown by a black rectangle. The second 

fault is parallel to the first fault. 

 



54 

 

 

Figure 2.13. Slip distribution on two faults using a distributed slip model and a 

smoothing factor of 0.38, on the (a) primary fault and (b) secondary fault. The 

surface expression of the fault is shown in Figure 2.11. 
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Figure 2.14. Slip distribution on two faults using a distributed slip model and a 

smoothing factor of 0.38, on the (a) primary fault and (b) secondary fault. The 

surface expression of the fault is shown in Figure 2.12. 

 

Table 2.3. Fault slip inversion results for the two fault solution with different 

geometries as in Figures 2.11-2.14. 

 χ
2 

test Moment 

(Dyne/cm) 

Magnitude 

1 2 7.9e+25 6.56 

2 1.9 7.6e+25 6.55 
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Figure 2.11 and Figure 2.12 show the models and the residuals for these faults. Figure 

2.13 and Figure 2.14 demonstrate the slip on both faults for the geometries presented in 

Figure 2.11 and Figure 2.12, respectively. In both cases, the slip on the first fault is 

primarily strike-slip and on the second fault is primarily dip-slip. In either case, the 

residuals decrease locally but the change is not significant (Table 2.3). The mean 

residuals for these models are higher than those from a single fault solution (Table 2.2). 

The cumulative moments in both cases are 7.9e+25 dyne/cm and 7.6e+25 dyne/cm, 27-

32% higher than the cumulative moment from the USGS for the two earthquakes. In 

addition, the moment release for the second Ahar earthquake is 1.9+25 dyne/cm (6.2 

Mw), while in the two-fault model, only 1.0+25 dyne/cm of the moment which is 45% 

lower, is associated with the second fault. 
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Figure 2.15. Coulomb stress at (a) zero depth, (b) 5 km depth, (c) 10 km depth and 

(d) 15 km depth. At the middle of the fault and toward the east there is a decrease in 

the Coulomb stress. 

 

2.4. Earthquake Triggering 

We also investigated the possibility that the Ahar earthquakes were two distinct 

ruptures and that the first triggered the second by analyzing the contribution of the static 

stress changes from the main fault plane on the surrounding region (Scholz 1990; Stein 

1999). Accordingly, we investigate the Coulomb stress change using Coulomb 3.0 

(http://www.coulombstress.org) (Lin & Stein 2004) in order to better understand the 

static stress change from the occurrence of the first earthquake. The Coulomb failure 
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criterion is a measure which explains the induced stresses are encouraging or 

discouraging for failure on an assumed fault plane (King et al. 1994; Stein 1999). The 

static stress change is calculated as below, 

?\� � ? # h�?\; # ?��        (2.5) 

where ? is shear stress changes parallel to the slip direction, ?\; is normal stress 

changes, ?� is pore fluid pressure change, and h is the coefficient of friction. A higher 

pore fluid pressure reduces the normal stress, leading to a higher coulomb stress change. 

A simplified form of the above equation is expressed as (King et al. 1994; Reasenberg 

& Simpson 1992). 

?\� � ? # h®?\;                    h® � h�1 # :�.     (2.6) 

Here : is Skempton coefficient and h® is the modified coefficient of friction. The areas 

of positive Coulomb stress change encouraged failure and areas of negative Coulomb 

stress change discourage failure on optimally oriented fault planes.  

We assumed purely strike-slip motion on the primary fault and investigated the 

Coulomb failure changes and whether they could trigger a thrust event for the receiver 

fault geometries demonstrated in Figure 2.11. Figure 2.15 shows the Coulomb stress at 

(a) zero depth, (b) 5 km depth, (c) 10 km depth and (d) 15 km depth. At shallow depths, 

the Coulomb stress discourages the occurrence of a thrust event at both the northern or 

southern portions of the fault. Deeper and towards the east there is an increase in the 

Coulomb stress. This implies that Coulomb stresses produce an encouraging condition for 

thrusting at the eastern part of the fault. However, to the west there is no encouraging 

Coulomb stress change. This again provides support for the rejection of the two-fault 

scenario, in which each ruptures initiates and propagated along a separate fault plane 

from the first event. 
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2.5. Discussion 

We inverted for the slip distribution of the consecutive Ahar earthquakes of August 

11, 2012, 6.4 Mw and 6.2 Mw, using DInSAR data. Our analysis show that although there 

were two separate events, 11 minutes apart, the two ruptures originated most likely on the 

same fault plane. Initially, the ruptured plane geometry was constrained by the 

parameters of the nonlinear inversion for a uniform slip distribution. A more detailed 

distributed slip inversion was performed and the resulting model has two asperities.  One 

patch dominates the fault plane at shallow depth, propagating to the surface, and a second 

is located slightly deeper at the eastern half of the fault (Figure 2.6(b-c)). The shallower 

asperity is mainly strike-slip, with a minor dip-slip component. The deeper asperity is 

primarily thrust in nature.  Applying different smoothing criteria to the resolved model 

shows that these two asperities are stable and consistent and each corresponds to one of 

the two distinct Ahar earthquakes.  

The cumulative seismic moment for both events is equivalent to 6.3e+25 dyne/cm. 

This is slightly larger than the estimated seismic moment, but this is not unexpected.  

Geodetic moment is generally higher than seismic moment because some part of the 

released moment occurs aseismically (Calais et al. 2008). Geodetic measurements from 

DInSAR also could capture some part of the post-seismic deformation due to the 

relaxation of the lower crust or afterslip, in addition to the occurrence of aftershock 

sequences. The moment release from the single dip-slip event at depth is equivalent to an 

earthquake of magnitude of 6.2 Mw, which agrees well with the USGS solutions. 

Moreover, as reported by USGS, the depth of the magnitude 6.4 Mw event is shallower 

than the magnitude 6.2 Mw event. The moment release from the first event is equivalent 

to an earthquake of magnitude of 6.38 Mw.  

We did explore the possibility that the two earthquakes rupture two separate fault 

planes. This hypothesis prompted us to test various geometries. However, we were not 

able to find a specific geometry which also agrees with the seismic information and 

produces smaller residuals. Moreover, the seismic moment released by the second fault 

for the two fault solution is very small (a difference of almost 1+25 dyne/cm), which 
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corresponds to an event of magnitude 5.9 Mw, not 6.2 Mw. Additionally, Coulomb failure 

analysis demonstrates that the first event did not encourage rupture initiation at the most 

likely locations for the second event. 

Modeling of the Ahar earthquake is important for the estimation of local and regional 

seismic hazard. Locating the active faults which are accumulating interseismic stress is a 

key factor in the earthquake studies. To do so, it is necessary to accurately map those 

geological structures that are more favorable for rupture under the current stress field in 

NW Iran. Moreover, the partial stress released by earthquakes such as the Ahar event can 

affect the magnitude and rupture extent of the next large earthquake in NW Iran. Figure 

2.1 shows the interseismic velocity vectors from GPS measurements for the 2002-2004 

time periods with respect to the Central Iran block (Masson et al. 2007). We observe that 

north of NTF and close to Ahar, most of these stations have an E-W velocity component. 

This is in agreement with the geometry of the ruptured fault from our solution and its 

right-lateral coseismic slip.  

Previous studies (Masson et al. 2007) suggest that almost all of the shear stress is 

relieved by the NTF in NW Iran. Our results indicate that there are secondary strike-slip 

faults other than the NTF and that they account for a significant portion of the remnant 

tectonic stress. We infer that structures such as the one ruptured by the Ahar earthquakes 

are playing a role in the interseismic stress accumulation in NW Iran. Studies by (Moradi 

et al. 2011) show that north of the NTF, the clusters of seismicity are more distributed 

further from the NTF. Scattered seismicity is related to the presence of small fault 

structures, which diffuse the concentration of seismic energy away from the NTF fault. 

Fault block models derived from GPS measurements (Djamour et al. 2011) in which 

contributions from secondary faults are assumed to be minimal and most of the strike-slip 

is attributed to the NTF result in residuals at the Ahar GPS station on the order of 3-4 

mm. Our results suggest that in order to reduce the residual, other faulting mechanisms 

should be added in this region and that detailed models should take into account 

independent slip on minor faults in NW Iran.  
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2.6. Conclusion 

We have investigated the source models of the double Ahar earthquakes (6.4 Mw and 

6.2 Mw), Iran, which occurred on August 11, 2012. First, we used a nonlinear GA 

inversion technique to derive the geometry of a single uniform slip model corresponding 

to these earthquakes. Furthermore, we used this geometry and inverted for the distributed 

slip model to resolve a detailed slip pattern which accounts for both earthquakes. In 

addition, we investigated the possibility of the second Ahar earthquake occurring on a 

separate fault plane. The results of our analysis show that there was only one ruptured 

fault plane for both ruptures. This single fault plane is an E-W oriented structure with one 

major strike-slip component dominating the fault and a second, minor dip-slip component 

localized at its western portion. Moreover, the Coulomb stress analyses do not show any 

encouraging stress change to support rupture on a secondary fault, as described by the 

focal mechanism solutions.  

Identification of this an E-W tending fault structure shows that tectonic stresses do not 

accumulate only along the NW-SE trending NTF, demonstrating that there are secondary 

structures that should be taken into consideration to assess the seismic hazard in this 

region. 
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Chapter 3  

 

3 Multibaseline PolInSAR using RADARSAT-2 
Quad-pol data: improvements in interferometric phase 

analysis
2
 

 

In this chapter, a method of multibaseline coherence optimization is applied for the 

first time to quad-pol RADARSAT-2 data. The three channels of SAR images, HH, VV 

and VH, were integrated to select the optimized scattering mechanism and convert 

the SAR images from a linear polarimetric basis to the optimized basis. In order to 

analyze our results, we first generated interferograms for both HH and for the 

optimized channels. Moreover, we assessed the performance of PolInSAR both in 

terms of the number of coherent pixels and phase quality. The RADARSAT-2 images 

were contaminated by residual orbital errors. As a result, the orbital ramp was used 

to visually assess the quality of interferometric and the performance of coherence 

optimization technique. The result of this study showed that not only the number of 

coherent pixels increases significantly by using quad-pol optimization but that the 

quality of the interferometric phase improves considerably as well.    

 

 

                                                 

2
 © [2013], IEEE. Reprinted, from Geosciences and Remote Sensing Letters 
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3.1.Introduction 

Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique for 

measuring ground surface deformation. However, standard DInSAR is subject to 

decorrelation effects. Decorrelation of the signal can obscure the deformation phase and 

degrade the precision of DInSAR results. In recent years, the acquisition of large 

quantities of SAR data has led to the development of multibaseline DInSAR techniques 

(Berardino et al. 2002; Hooper et al. 2007; Ferretti et al. 2001). These methods perform 

DInSAR analysis on a subset of pixels, as in the case of the Persistent Scatterers (PS) 

technique (Hooper et al. 2007). Ideally, the PS pixels return a stable backscatter signal 

through time. As a result, the phase signature of PS pixels is less affected by spatial and 

temporal decorrelation, resulting in a more reliable estimate of ground deformation. 

However, in order to identify PS pixels, a group of Pixel Candidates (PCs) with a higher 

S/N ratio must be selected, normally based on an amplitude dispersion index (Ferretti et 

al. 2001) or coherence criterion (Adam et al. 2005). Accordingly, PS pixels are the PCs 

for which the phase stability criterion holds e.g. with respect to nearby candidates 

(Hooper et al. 2007). This higher density of PCs and associated PS pixels provides a 

better estimate of the deformation over the relevant time periods. 

Full polarimetric SAR data provides additional information that can be used to 

increase the number of reliable points in an interferogram (Navarro-Sanchez et al. 2010). 

The choice of the best polarimetric channel reduces decorrelation noise and increases the 

number of pixels with increased coherence, one potential measure of the phase noise of 

an interferogram. Coherence optimization of polarimetric SAR data is a technique which 

can be used to resolve dominant scatterers in a vertically structured media 

(Papathanassiou & Cloude 2001). The first coherence optimization technique was 

presented by Cloude and Papathanassiou (1998) and later expanded by others (Colin et al. 

2006; Qong et al. 2005). Subsequently this technique was extended to optimize the 

coherence of multibaseline interferograms simultaneously (Neumann et al. 2008).  

In this paper, for the first time, a multibaseline coherence optimization approach 

proposed by (Neumann et al. 2008) is applied to fully polarimetric space-borne satellite 
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data. Here we use fifteen images of RADARSAT-2 satellite. These images which are 

acquired in quad-pol mode are used to investigate the performance of multibaseline 

Polarimetric SAR Interferometry (PolInSAR) coherence optimization. The study region 

is San Francisco Bay area, adjacent to both the San Andreas and the Hayward faults, the 

region with the highest seismic hazard in northern California. Previous studies employed 

DInSAR and advanced DInSAR techniques on single channel data in order to study 

deformation along this fault (Bürgmann et al. 1998; Lanari et al. 2007). However, our 

objective is to use fully polarimetric data and integrate polarimetric and interferometric 

techniques in order to improve the quality of the resulting interferograms. In addition, we 

will investigate how the application of this technique enhances the number of PCs for 

multibaseline InSAR processing. The effects of variations in the spatial and temporal 

baselines interferograms also will be investigated.   

 

3.2. Polarimetric SAR Interferometry (PolInSAR) 

Fully polarimetric SAR (Pol-SAR) sensors measure the 2×2 scattering matrix, S, 

corresponding to each pixel. Under the reciprocity theorem, the off-diagonal elements are 

equal and stT � sTt. The scattering matrix is expressed as a vector using the Pauli basis 

as (Cloude & Papathanassiou 1998) 

(5 � +
√� ws5tt 3 s5TT , s5tt # s5TT , 2s5tTxy                                                       (3.1) 

where the s5tt and s5TT  are co-polar terms and s5tT is the cross-polar term. i is the 

number of each set of quad-pol images and 
T
  is the transpose operator.  

PolInSAR forms an interferogram by projecting each SAR image pixel, k, on a 

corresponding scattering mechanism, �, resulting in a new pixel value, �. Performing this 

operation on a pixel by pixel basis will result in a new SAR image. By changing the 

polarization basis for both SAR images following (3.2), the corresponding interferogram 

is given by (3.3) 

 �5 � �5,y(5                                                                                                     (3.2) 
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 �5�.ω¯,ω°1 � arg.�5��,y1 � arg.�5,y�5�ω� 1,                                                   (3.3) 

   �5� � {(5(�,y|,   z55 � {(5(5,y|   

where * represents conjugate operator and ⟨⟩ is the multilooking factor. z55 is the 

coherency matrix for SAR image i and �5� is the coherency matrix between two images i 

and j. Accordingly �5��ω¯,ω°� is the interferometric phase in the new polarimetric basis. 

Interferometric coherence, Q5��ω¯,ω°�, is calculated for two sets of SAR images in any 

arbitrary polarimetric basis defined by ω� and ω� as (3.4) 

Q5��ω¯,ω°� � ��,±²�oω°
���,±y��ω¯�o,±yooω°

                                                                            (3.4) 

Coherence optimization consists of selecting those scattering mechanisms which 

provide the maximum coherence value. In the case of Equal Scattering Mechanism 

Multibaseline (ESM-MB) as proposed by (Neumann et al. 2008), the scattering 

mechanisms of the images remain the same among all the baselines (ω� � ω��. However, 

this condition is not met using a Multiple Scattering Mechanism Multibaseline technique 

(MSM-MB), (ω� � ω�� and for every acquisition an individual optimal polarization is 

found which correlates best to all others. 

In previous research on DInSAR applications, the ESM has been applied in lieu of the 

MSM technique (Navarro-Sanchez et al. 2010), for the primary reason that the MSM 

technique chooses various scattering mechanism for each SAR acquisition.  This can 

introduce an additional interferometric phase of the DInSAR method. While in reality 

some physical effects (e.g. change in soil moisture content, incident angle and 

atmospheric conditions) will modify the scattering mechanisms between acquisitions, 

leading to temporal decorrelation, the change of scattering mechanism between 

acquisitions might compensate for the temporal decorrelation in areas of less noise. 

Therefore, in some cases, the choice of MSM may provide better resolution of the 

interferometric phase. However, this is not guaranteed and the choice of MSM can lead to 

amplification of interferometric phase noise.  As a result, for this study, ESM-MB was 



 

applied in order to provide a

time.  

 

Figure 3.1. RGB amplitude image of San Francisco city acquired from 

RADARSAT-2 satellite (R: HH channel, G: VV channel, B: VH channel). The black 

line delineates the approximate trace of the Hayward fault. The red square shows 

the close up region used for interferome

shows the two subregions used for further analysis in Figures 3.3

gray colors represents urban the rural areas, respectively.
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RGB amplitude image of San Francisco city acquired from 

2 satellite (R: HH channel, G: VV channel, B: VH channel). The black 

line delineates the approximate trace of the Hayward fault. The red square shows 

the close up region used for interferometric analysis. The black and white figure 

shows the two subregions used for further analysis in Figures 3.3-3.4. White and 

gray colors represents urban the rural areas, respectively.

3.3. Application of Coherence Optimization Technique 

MB coherence optimization algorithm proposed by (

al. 2008) for the first time to space-borne SAR images acquired by the RADARSAT

satellite. The nominal height of the satellite is 798 km with swath width of approximately 

25 km. Polarimetric acquisition halves the swath width of the imaging SAR. The region 
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satellite. The nominal height of the satellite is 798 km with swath width of approximately 

isition halves the swath width of the imaging SAR. The region 
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is imaged from incident angle of 28 degrees with spatial resolution of ~5 meters. The 

performance of coherence optimization greatly depends on the configuration of 

acquisition system, e.g. baseline lengths, acquisition times and frequency (Neumann et al. 

2008). Here, quad-pol optimization will be assessed on C-band imagery with a large 

number of baselines and wider range of spatial and temporal separations. The study area 

is shown in Figure 3.1. The black line approximately delineates the trace of the Hayward 

fault. The RGB image in this figure is representative of the amplitude images from three 

polarimetric channels (HH, VV and VH), respectively. This area is covered by dense 

vegetation and rough topography in the middle of the image. The lower parts of this 

image are mainly composed of man-made structures.  

As a proof of the concept, we chose fifteen images, a subset of which was employed 

previously in a Polarization Phase Difference analysis (Samsonov & Tiampo 2011). The 

SAR images were acquired at the following dates: 2008/04/26, 2008/06/13, 2008/07/07, 

2008/07/31, 2008/12/22, 2009/01/15, 2010/09/07, 2010/10/01, 2010/10/25, 2010/11/18, 

2010/12/12, 2011/01/05, 2011/01/29, 2011/02/22, and 2011/03/18. First, the polarimetric 

SAR images were co-registered to sub-pixel accuracy. Later, all possible SAR pairs for 

interferogram formation were selected corresponding to three polarimetric channels (HH, 

VV, and VH). The number of possible interferograms corresponding to each polarimetric 

channel is 105 (see Table S1, Supplemental Material). The spatial perpendicular 

baselines vary between 1 and 384 meters, while the temporal baselines vary from 24 days 

to 3 years. Interferograms are formed with a multilooking factor of five in range and ten 

in azimuth (5×10), resulting in final ground resolution of 24×47 meters. Coherences are 

calculated by using a correlation window of 5×10 pixels.  

Multibaseline coherence optimization was applied to the polarimetric SAR images. 

The code is written in C++ language using the Lapack library
3
 for efficient complex 

matrix operations. First, optimum scattering mechanisms (�) were estimated, and then 

applied using (3.2) to transform the pixels from linear to the optimized polarimetric basis. 

                                                 

3
 http://www.netlib.org/lapack/ 



 

Once this processing step was complete, the optimized SAR images were used to produce 

the coherences and interferog

images in (H,V) polarization basis, using (3.3) and (3.4). Then, the estimated optimized 

interferograms and coherences were compared with interferograms produced from single 

polarimetric channels. 

Figure 3.2.  Mean coherence maps, (a) HH, (b) VV, (c) VH and (d) optimized 

images. Improvement of PolInSAR coherence (d) is clearly demonstrated with 

 

3.4. Performance of the Coherence Optimization Algorithm 

Figure 3.2 (a-d) displays the mean coherence images retrieved from interferometric 

stack of HH, VV, VH and the optimized channel, respectively. Visual inspection of these 

figures confirms that coherence is enhanced significantly with respect to the single 

polarization estimates.  

Once this processing step was complete, the optimized SAR images were used to produce 

the coherences and interferograms between the same pairs, as detailed above for SAR 

images in (H,V) polarization basis, using (3.3) and (3.4). Then, the estimated optimized 

interferograms and coherences were compared with interferograms produced from single 
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73 

Once this processing step was complete, the optimized SAR images were used to produce 

rams between the same pairs, as detailed above for SAR 

images in (H,V) polarization basis, using (3.3) and (3.4). Then, the estimated optimized 

interferograms and coherences were compared with interferograms produced from single 

 

igure 3.2.  Mean coherence maps, (a) HH, (b) VV, (c) VH and (d) optimized 

images. Improvement of PolInSAR coherence (d) is clearly demonstrated with 

d) displays the mean coherence images retrieved from interferometric 

stack of HH, VV, VH and the optimized channel, respectively. Visual inspection of these 

figures confirms that coherence is enhanced significantly with respect to the single 



74 

 

We divided the images in two subregions; rural and urban, identified in Figure 3.1 by 

white and gray colors, respectively. Figure 3.3 (a-c) compares the mean coherences of the 

optimized and the HH channel associated with the entire image and the rural and urban 

subregions. Note that in Figure 3.3, the histogram of the urban region after optimization 

changes significantly, with most of the pixels tending to form a second peak at a much 

higher coherence than their initial HH coherences. This is the result of the abundance of 

man-made structures. The scarcity of these features for rural regions results in a modest 

coherence increment (Figure 3.3 (b)).  

Figure 3.3 (d-f) investigates the coherence improvement in terms of the number of 

PCs. The quality criterion used here for selection of PCs is the mean coherence value 

computed over the interferometric stack. Here, the horizontal axis represents the 

coherence threshold and the vertical axis represents the increment from HH to the 

optimized channel in the percentage of PCs with respect to the total number of pixels in 

the entire image. Again, the percentage increase in PCs is calculated with respect to the 

entire image pixels, not with respect to those identified by the HH channel. For the urban 

area, the maximum increment in the percentage of PCs is ~18%. For the rural area with 

higher topography and increased volume scattering from vegetation, the maximum 

increase in PCs reaches 10%. Note that many of these PCs are not detected in any single 

polarimetric channel, including HH, VV or VH; e.g. by using a coherence threshold of 

0.3 for the entire image, this percentage increase is 7%. If we make the same comparison 

between the optimized channel with the average of three single polarimetric channels 

(HH, VH, VV), we get 10% increase in the number of newly selected PCs by applying 

the optimization procedure. 

Figure 3.3 (g-i) displays the histogram of � angle for the newly detected PCs in the 

optimized compared to the HH channel, using a coherence threshold of 0.3. The � angle 

represents types of the optimum scattering mechanisms derived from parameterization of 

the optimized scattering vectors (Cloude & Pottier 1997). According to (3.5), the 

scattering vector is described by scattering mechanism (�), orientation angle (�), ε ′ and 

µ ′ as target phase angles. Here, we specifically consider the � which ranges between [0 
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90] degrees. Roughly speaking, � angles close to 0, 45 and 90 degrees correspond to 

surface scattering, volume scattering and double bounce scattering, respectively.  

� � wcos � , sin �  cos �  !5µ®, sin �  sin �  !5g®x                                              (3.5) 

The results are shown for (g) the entire image pixels, (h) rural and (i) the urban 

subregions. Analysis of the results shows that histograms are mostly skewed toward 

higher � angles, representing pixels of double or even bounce scattering mechanisms. 

These scattering types are present in both the rural and urban subregions as e.g. man-

made structures. Moreover, the histogram of rural subregion owns a secondary peak at 

lower � angles. This corresponds to scattering mechanisms from e.g. rough surfaces 

where the optimization could differentiate some pixels as possible PC targets.       
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Figure 3.3 (a-c) Histograms of the mean coherences for the HH and the optimized 

polarimetric channels associated with (a) the entire image, (b) rural and (c) urban 

subregions. (d-f) PCs increment after application of PolInSAR for an arbitrary 

coherence threshold. Here, the horizontal axis represents the coherence threshold 

and the vertical axis is the increase in the number of PCs from HH channel to the 

optimized channel, associated with (d) the entire image, (e) the rural subregion and 

(f) the urban subregion. Note that the percentage is with respect to the entire image 

pixels. (g-i) histogram of ���� angle for the newly selected PCs in the optimized 

compared to HH channel (with coherence threshold of 0.3) for the (g) entire image 

pixels, (h) rural and (i) urban subregions, respectively. 

 



 

Figure 3.4 (a-c) Relative mean coherence improvement (with 

coherence) for individual interferograms of different spatial and temporal baseline, 

for (a) the entire image, (b) rural subregion and (c) urban subregion.

Figure 3.4 shows the relationship between relative coherence increment with r

HH channel for each individual spatial and temporal baseline corresponding to (a) entire 

image, (b) rural subregion, and (c) urban subregion. In these figures, there is clear 

relationship with the temporal and spatial separation of interferograms

very short temporal and spatial baseline interferograms, we observe a smaller coherence 

increment. That the relative coherence improvement is stronger over larger baselines is 

related to lower initial coherence level. 

 

c) Relative mean coherence improvement (with respect to initial HH 

coherence) for individual interferograms of different spatial and temporal baseline, 

for (a) the entire image, (b) rural subregion and (c) urban subregion.

 

Figure 3.4 shows the relationship between relative coherence increment with r

HH channel for each individual spatial and temporal baseline corresponding to (a) entire 

image, (b) rural subregion, and (c) urban subregion. In these figures, there is clear 

relationship with the temporal and spatial separation of interferograms. Generally, for a 

very short temporal and spatial baseline interferograms, we observe a smaller coherence 

That the relative coherence improvement is stronger over larger baselines is 

related to lower initial coherence level.  
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Figure 3.5. Example of an 

2011/03/18 for the close up region in Figure 3.1. (a

interferograms for pixels marked as PCs in each channel. (c

optimized interferograms for pi

Comparison of the interferograms shows that the main features of interferograms 

are preserved after application of PolInSAR technique. Comparing 

shows that the quality of phase improves after ap

Figure 3.5 shows an interferogram

enclosed region displayed in Figure 3.1. This 

of 227 meters and a temporal baseline of 1008 days. Aft

flat earth phase components, the 

component. To test the influence of the technique on the phase stability, we analyze the 

phase pattern, e.g. the residual orbital ramps.

Figure 3.5 (a-b) depicts the phase map for a segment of urban region with HH average 

coherence above 0.3, retrieved from the HH and optimized channels, respectively. These 

ple of an interferogram formed between dates 2008/06/13

2011/03/18 for the close up region in Figure 3.1. (a-b) refer to the HH and optimized 

interferograms for pixels marked as PCs in each channel. (c-d) refer to the HH and 

optimized interferograms for pixels only marked as PCs in the optimized channel. 

Comparison of the interferograms shows that the main features of interferograms 

are preserved after application of PolInSAR technique. Comparing 

shows that the quality of phase improves after application of PolInSAR technique.

 

interferogram between dates 2008/06/13-2011/03/18 for the 

enclosed region displayed in Figure 3.1. This interferogram has a perpendicular baseline 

of 227 meters and a temporal baseline of 1008 days. After removal of topographic and 

flat earth phase components, the interferogram is dominated by a residual orbital 

component. To test the influence of the technique on the phase stability, we analyze the 

phase pattern, e.g. the residual orbital ramps. 

b) depicts the phase map for a segment of urban region with HH average 

coherence above 0.3, retrieved from the HH and optimized channels, respectively. These 
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formed between dates 2008/06/13-

b) refer to the HH and optimized 

d) refer to the HH and 

xels only marked as PCs in the optimized channel. 

Comparison of the interferograms shows that the main features of interferograms 

are preserved after application of PolInSAR technique. Comparing (c) and (d) 

plication of PolInSAR technique. 

2011/03/18 for the 

has a perpendicular baseline 

er removal of topographic and 

is dominated by a residual orbital 

component. To test the influence of the technique on the phase stability, we analyze the 

b) depicts the phase map for a segment of urban region with HH average 

coherence above 0.3, retrieved from the HH and optimized channels, respectively. These 
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results show that the main interferogram features are well-preserved after coherence 

optimization. In addition, the optimized phase patterns are slightly improved. To better 

show the phase quality improvement, we display the HH and optimized phases for pixels 

with average optimized coherence above 0.3 that were not selected with the previous HH 

coherence mask (Figure 3.5 (c-d)). Here we clearly observe that the optimized 

interferograms increase the quality of the phase patterns with respect to HH phases. As a 

result, the apparent increase in phase stability of the PolInSAR phase enhances the 

performance of multibaseline DInSAR, e.g. for better phase unwrapping 

 

3.5. Conclusion 

Here, for the first time, we have applied the ESM-MB coherence optimization 

technique to satellite quad-pol images in order to increase the quality of the 

interferograms and retrieve a higher number of coherent pixel candidates. The optimized 

interferograms provide a higher number of PCs which are not detected in any single-pol 

channels. In addition, we separately investigated the performance of the technique for 

urban and rural subregions. This improvement of coherence is shown to be dependant on 

the interferometric spatial and temporal baselines, and this varies with subregion. 

Generally, for a very short temporal or spatial baseline interferograms, we observe a 

smaller coherence increment. Moreover, analysis of the optimized scattering mechanisms 

shows that most of the newly detected PCs in both rural and urban subregions correspond 

to the even bounce scattering types. These features are from man-made structures, which 

are more abundant in urban than rural subregions. Coherence optimization further 

improves scattering types in rural subregion which are associated with rough surfaces.  

The presented technique provides a promising method to recover more stable phase 

patterns (e.g., ground deformation) through the exploitation of fully polarized SAR 

images. In the future, we will compare the PolInSAR – ESM-MB and classical DInSAR 

techniques using single pol-SAR data in order to fully illustrate the benefits of the 

proposed technique for ground deformation applications.  
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Table S1. Spatial and temporal separation of Interferograms 
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Table S1 (Continued) 
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Table S1 (Continued) 
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Chapter 4  

4 Short-term surface deformation on the northern 
Hayward fault, CA, and nearby landslides using 

Polarimetric SAR Interferometry (PolInSAR)
4
 

  

In this chapter we use a polarimetric coherence optimization technique on 

RADARSAT-2 images in order to generate deformation maps which measure the 

creep on the Hayward fault and landslide motions near Berkeley, CA. This is the first 

application of multibaseline coherence optimization that compares the deformation 

map from quad-pol optimization with those of single-channel interferograms.   

In this study, we apply the technique on SAR images from both ascending and 

descending geometries and use a Small Baseline (SBAS) technique to generate linear 

deformation maps for the region. Our results are in agreement with both earlier 

creep estimates and also the analysis of single-channel interferograms. With this 

technique, we resolve a greater quantity of reliable DInSAR measurement points. We 

further assess the quality of these newly selected coherent points. Our results 

demonstrate that PolInSAR is an effective method to increase the interferometric 

coherence and provide improved resolution of deformation features associated with 

natural hazards. 

 

                                                 

4
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4.1. Introduction 

The Hayward fault is a right-lateral strike-slip fault, part of the transform boundary in 

California, which is accommodating approximately twenty percent of the tectonic motion 

occurring between the Pacific and North American plates (Figure 4.1). According to 

paleoseismic studies performed along this fault, the northern section of Hayward fault has 

been inactive for more than three centuries. However, the southern section last ruptured 

in an Mw 6.8 earthquake in 1886. Because the Hayward fault has been accumulating 

interseismic stress for such a long period of time, it is considered one of the greatest 

seismic hazards in the San Francisco region (Bürgmann et al. 1998).   

One well-studied feature of Hayward fault is the creep phenomenon observed by the 

offset of man-made structures across the fault using alignment arrays (Lienkaemper et al. 

1991). Those ground-based geodetic observations estimated the creep rates of 3-6 

mm/year along most of the parts of the fault except for a segment near its south end that 

creeps at about 9 mm/year (Lienkaemper & Galehouse 1997). Geological observations 

based on the paleoseismic data indicate a larger long-term interseismic rate of 9 mm/year 

(Lienkaemper et al. 1991). Aseismic creep contributes to the release of tectonic stress 

which otherwise might be released during a big coseismic rupture. In order to better 

quantify the amount of stress released by fault creep, knowledge of a detailed fault 

friction structure (velocity-strengthening patches) at depth and their creeping rates are 

required. Subtraction of these rates from the long-term geological creep rates could 

provide the estimate of the slip deficit along the fault. This might be an upper bound for 

the next coseismic rupture on Hayward fault.  

Various modeling techniques have been applied in order to link the depth and rate of 

creep events to those observations on the surface (Schmidt et al. 2005; Simpson et al. 

2001; Malservisi et al. 2003; Evans et al. 2012; Tiampo et al. 2013; Shirzaei & Bürgmann 

2013). By using only the small number of conventional geodetic techniques very general 

picture of fault slip is determined at depth. Additional constraints from the near- and far-

field deformation is required in order to map in detail the subsurface fault behavior along 

the full seismogenic zone. 



87 

 

Another feature of the Hayward fault which is of importance in terms of hazard 

assessment arises from landslides along the Berkeley hills. The landslides may be 

exacerbated by slope changes due to tectonic movement of the Hayward fault in this 

region (Hilley et al. 2004). Hilley et al. (2004) used Coulomb Failure Function (CFF) and 

incorporated groundwater modifications due to the tectonic uplift in order to find the 

detachment zone. The simulated detachment zone correlates well with the location of the 

observed landslides mapped by interferometric technique.  

Slope instabilities pose a significant threat to the urban infrastructure. As a results 

locating their exact position and monitoring their ongoing movement is of great 

importance. Furthermore, categorizing the type of landslide will have implications for the 

purpose of mitigation or prevention. A better strategy for the management of these 

hazards will be made if the kinematics of the slides is understood well.    
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Figure 4.1. SRTM Topography for the San Francisco region with RADARSAT-2 

trajectories. The blue and green boxes mark the footprint of ascending and 

descending tracks, respectively. The red lines represent the faults in this region. 

 

Differential SAR Interferometry (DInSAR) was first applied by (Bürgman et al. 1998) 

to the Hayward fault in order to map the creep rate on a larger region of this fault. The 

technique has proven to be very powerful in providing the data for modeling the 

subsurface extent of Hayward fault in more detail (Schmidt et al. 2005). However, one 

limitation of DInSAR for deformation mapping in this region is the vegetation cover to 

the east of the fault. Temporal decorrelation which is caused by the unstability of the 

scatteres in a resolution cell, from vegetated land cover limits our ability to obtain 
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reliable measurements. In the past decade, more sophisticated DInSAR algorithms also 

were applied for mapping of the Hayward fault regional deformation, including 

Permanent Scatterer Interferometric SAR (PS-InSAR) (Bürgmann et al. 2006). The 

technique solves for the temporal deformation rates on single scatterers which preserve a 

high backscattering properties over time. For example, the Berkeley landslides were first 

mapped by satellite imagery using PS-InSAR technique (Hilley et al. 2004). 

In this paper, we present the results of Polarimetric SAR Interferometry (PolInSAR) 

for the first time on Hayward fault. PolInSAR is an advanced Interferometric SAR 

(InSAR) technique which can be used to maximize the interferometric coherence by 

combining the polarimetric and interferometric information of SAR imagery (Cloude & 

Papathanassiou 1998). The objective is to enhance the quality of DInSAR interferograms 

in the locations of higher decorrelation from vegetation. PolInSAR contributes to the 

increase of coherence, because the effect of the volume scattering can be minimized by 

selecting the optimum scattering mechanism while maximizing the backscattered power 

of the most coherent scatterers in a resolution cell. This is the first application of the 

technique for deformation studies using satellite quad polarization (quad-pol) imagery, 

which is only possible at present time by RADARSAT-2 satellite. We apply this 

technique in order to retrieve more measurement points for the regions which are mixed 

with vegetation. PolInSAR optimization is able to find the dominant and most coherent 

pixels in such mixed environments, resulting in less interferometric noise. In this 

approach we use twenty-five RADARSAT-2 images from 2008-2011 acquired in fine 

quad-pol mode and from ascending and descending geometries. Tiampo et al. (2013) 

employed a subset of these in separate, Polarization Phase Difference (PPD) 

incorporating phase information of the co-pol channels. Here we use both the amplitude 

and phase information by applying PolInSAR technique and compare our results with 

conventional interferometry using the same dataset of single-channel polarimetry. The 

results will be presented both for fault creep rates and landslide movement. 
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4.2. Region of Study 

The Hayward fault is assigned the highest seismic hazard zone in the San Francisco 

Bay area. The fault is 100 km long and is connected in the north to Rodgers Creek fault 

and toward the south to the Calaveras fault (Lienkaemper et al. 1991). The fault 

accommodates 20% of the tectonic stress in San Francisco fault system. Seismic 

observations imply that Hayward dips to east and connect with Calaveras fault at depth 

(Williams et al. 2005). The observed creep rate is not uniform on the surface, being on 

the order of 3-5 mm/year in the north and 8mm/year to the south. The higher rates 

observed in the south might be linked to the connection of Hayward fault to the Calaveras 

fault and the slip transfer from the adjacent faults (Williams et al. 2005). 

Several studies have inverted geodetic data and simulated dynamic models in order to 

better understand the pattern of locked and creeping patches on the fault at depth 

(Schmidt et al. 2005; Simpson et al. 2001; Malservisi et al. 2003; Evans et al. 2012; 

Tiampo et al. 2013; Shirzaei & Bürgmann 2013). Most of these studies commonly point 

at a locked patch starting from San Leandro in the north to Fremont in the south, which is 

assigned a minimal creep rate compared to its surrounding. They further imply that this 

locked patch coincides with the location of Mw 6.8, 1868 earthquake (Evans et al. 2012).  

Important questions remain regarding the potential hazard along the Hayward fault.  

Savage & Lisowski (1993) estimated that Hayward fault is capable of generating one Mw 

6.8 event per century. However, Lienkaemper & Galehouse (1998) estimated a larger Mw 

7 for the next possible seismic event on the Hayward fault. Furthermore, it is unclear 

whether the rupture in such an event also will propagate into the creeping sections or only 

will be limited to the locking patches of the fault (Simpson et al. 2001). Time-dependant 

inversion of InSAR data show that the magnitude of the next seismic event varies 

between 6.3 Mw to 6.8 Mw, depending on the extent of the rupture propagation (Shirzaei 

& Bürgmann 2013). 

Aside from the seismic hazard of the Hayward fault, landslides pose an additional 

threat to the infrastructure in the urban region of Berkeley. Berkeley landslides are 



91 

 

located along the Hayward fault to the west and show a NE-SW direction. These 

landslides have been documented already by field investigations (USGS Earthquake 

Hazard Program 1999) and have been categorized as highly active and moderately active 

based on their previous movement. PS-InSAR (Hilley et al. 2004) was applied to these 

landslides to map their movement over a 9 year period from 1999-2001. According to 

that study, the landslide movements may be exacerbated by slope changes due to tectonic 

movement of the Hayward fault in this region (Hilley et al. 2004). They further suggest 

that there is a nonlinear relationship between the rate of landslide movement and the 

seasonal precipitation.  

Here we investigate the creep rate along the northern 35 km of the Hayward fault from 

Point Pinole to San Leandro. We use a PolInSAR coherence optimization technique and 

compare our results with the conventional DInSAR in order to measure the fault creep 

rate and the rate of movement of the Berkeley landslides. 

4.3. Polarimetric SAR Interferometry (PolInSAR) 

Coherence optimization of Polarimetric SAR Interferometry (PolInSAR) was 

introduced by Cloude & Papathanassiou (1998) and expanded by others (Colin et al. 

2006; Qong 2005). In recent years, PolInSAR has been applied to the field of DInSAR 

for measuring ground deformation (Navarro-Sanchez et al. 2010; Navarro-Sanchez & 

Lopez-Sanchez 2012). In these studies, the goal was to increase the number of coherent 

pixels by finding the optimum scattering mechanisms in a resolution cell through analysis 

of an average target’s coherency matrix. Recent PolInSAR studies have shown that 

selecting optimum polarimetric channels reduces interferometric decorrelation noise and 

gives a more precise estimation of surface deformation (Alipour et al. 2013).  

In polarimetric SAR, the scattering matrix (k) is expressed as a vector using the Pauli 

basis (Cloude & Papathanassiou 1998), 

(5 � +
√� ws5tt 3 s5TT , s5tt # s5TT , 2s5tTxy       (4.1) 
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where the s5tt and s5TT  are co-polar terms and s5tT is the cross-polar term of the 2×2 

scattering matrix, measured by fully polarimetric sensors. i is the number corresponding 

to each quad-pol set and 
T
  is the transpose operator.  

Coherence optimization is a technique applied to polarimetric SAR data, where the 

optimum scattering mechanisms (�) are resolved from average target’s coherency 

matrices. By changing the polarization basis for the SAR images following (4.2), the new 

SAR image is given by (�) 

 �5 � �5,y(5                  (4.2) 

In these equations * is the complex conjugate operator. Interferometric 

coherence, Q5��¶¯,¶°�, is calculated for two sets of SAR images in any arbitrary 

polarimetric basis defined by ω� and ω� as (4.3) (Neumann et al., 2008) 

Q5��¶¯,¶°� � ��,±²�o¶°
���,±y��¶¯�o,±yoo¶°

       (4.3) 

z55 is the coherency matrix for a polarimetric SAR image i and �5� is the coherency 

matrix between two SAR images of i and j. In a coherence optimization problem, we find 

�5 and �� such that the corresponding coherence is maximized.  

Coherence optimization in the field of Multi-Baseline DInSAR (MB-DInSAR) can 

only be implemented by an optimization procedure which insures the consistency of the 

optimum scattering mechanisms of a target for a single SAR scene among different 

interferograms. Otherwise, a residual phase will be added which will bias the 

interferometric phase due to ground deformation. The approach presented in Neumann et 

al. (2008) solves this problem and is known as Multi-Baseline PolInSAR (MB-

PolInSAR) coherence optimization. This methodology optimizes scattering mechanisms 

by a simultaneous inversion among multiple interferograms and accordingly can be 

applied to multibaseline DInSAR applications. The maximization of coherence is done by 

selecting those scatterers in the resolution cell which maintain the highest mean 

coherence over a number of interferograms. 
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According to (Neumann et al. 2008), there are two approaches to solve a MB-

PolInSAR coherence optimization problem; Equal Scattering Mechanism (ESM) and 

Multiple Scattering Mechanism (MSM) solution. The former case constrains the two 

scattering mechanisms to be equal, at both ends of baseline (�+ � ��), while the later is 

a generalized form of coherence optimization problem where no constraint on the 

equality of two scattering mechanisms is imposed (Neumann et al. 2008). 

We applied the ESM technique for the first time on a quad-pol dataset of 

RADARSAT-2 and showed that the technique increases the number of coherent points in 

an interferogram and enhances the accuracy of the interferometric phase (Alipour et al. 

2013). The ESM technique is preferred to the MSM technique for DInSAR applications 

because the selection of different scattering mechanisms for the latter can lead to 

amplification of noise, generating a bias for the interferometric phase. Here we continue 

the previous study and present our new results on the implementation of the MB-ESM 

technique to obtain the deformation rates in the northern Hayward fault region.  

4.4. Application of PolInSAR 

Here we apply the multibaseline ESM technique on 25 quad-pol images of 

RADARSAT-2. Details of the processing are the same as those found in Alipour et al. 

(2013), where we only used the descending subset of these images for analysis. These 

images cover only the northern 35 km of the Hayward fault from Point Pinole in the north 

to San Leonardo in the south (Figure 4.1). The images are acquired from two tracks with 

ascending and descending geometries between 2008 and 2011. The ascending and 

descending geometries are acquired with incident angles of 36° and 28°, respectively. 

Fifteen SAR images in descending trajectory were acquired at the following dates: 

2008/04/26, 2008/06/13, 2008/07/07, 2008/07/31, 2008/12/22, 2009/01/15, 2010/09/07, 

2010/10/01, 2010/10/25, 2010/11/18, 2010/12/12, 2011/01/05, 2011/01/29, 2011/02/22, 

and 2011/03/18. Ten ascending SAR images were acquired on: 2008/06/13, 2008/07/07, 

2008/07/31, 2008/12/22, 2009/01/15, 2010/08/14, 2010/09/07, 2010/10/01, 2010/11/18 

and 2010/12/12. PPD, a Polarimetric Phase Difference technique, was applied to the 

descending subset of these images in order to study the creep rate from 2008-2011 
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(Tiampo et al. 2013). Here we use the SAR images corrected for precise orbits and apply 

the PolInSAR coherence optimization in order to map the current fault creep and 

landslide motions in this region.  

Because of the orientation of the Hayward fault and the sense of motion along that 

(strike-slip fault), deformation signals are mapped onto the Line-of-Sight (LOS) of 

descending interferograms. The ascending interferograms are less sensitive to the fault 

motion because the ground surface moves mainly perpendicular to the LOS of polar orbit 

satellite. However, we used ascending data for mapping the rate of landslide motion. 

Multiple view angles would allow understanding better the landslide kinematics.  

In the first step, we used HH and VV images in order to form the interferograms in 

both sets of ascending and descending geometries. The total numbers of interferograms 

for each channel in the descending and ascending geometries are 105 and 45, 

respectively. The precise orbits for the images are provided by Canadian Space Agency 

(CSA). The interferograms were formed by using a window of 5×10 pixels in range and 

azimuth direction, resulting in final ground resolution of 24×47 meters. We used an 

SRTM Digital Elevation Model (DEM) with 30 meters of spatial resolution to correct for 

the topographic phase. In order to separate the coherent pixels with good phase quality, 

we use the mean coherence criterion among all the interferograms (Adam et al. 2005). A 

coherence threshold of 0.3 was assigned for separation of the coherent and incoherent 

pixels. Later, we applied a Small Baseline (SBAS) technique, as developed by (Berardino 

et al. 2002) and modified by (Samsonov et al. 2011), to the generated interferograms in 

order to produce the linear velocity maps from the time series results and solve for the 

topographic errors. As we have three years of SAR data, the assumption of a linear 

velocity is justified for the short-term creep rates on the Hayward fault (Tiampo et al., 

2013).   

The deformation velocities have an additional long-term component of interseismic 

stress accumulation from the Hayward fault and other neighboring faults. The separation 

of this long-wavelength interseismic signal is difficult from the interferometric residual 

orbital ramps. Accordingly, to estimate the orbital ramp, we first modeled and removed 
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the interseismic deformation using a deep dislocation model in half-space on the 

Hayward fault (Okada 1992). The rate for the deep dislocation stress accumulation is 10 

mm/year (Smith et al. 2005). We assumed that the effect of the neighboring faults are 

very small and below the DInSAR detection limit. We projected the modeled rates to 

LOS direction and removed them from the surface velocity maps. The results were 

further refined for the residual orbits resulting from inaccuracies in the position of the 

SAR satellite. After the orbital correction, the interseismic rates were added back to the 

linear velocity maps. Figure 4.2 represent the deformation due to tectonic origin, both the 

deep interseismic stress accumulation rates and the shallow creep rates. 

We use optimization of equation (4.2) on both sets of SAR images on a pixel-by-pixel 

basis. The ESM technique was applied to derive the optimum scattering mechanisms (�) 

with multilooking factor of 5 and 10 pixels in range and azimuth directions, respectively. 

The optimum scattering mechanism were applied to the scattering vectors (k) 

corresponding to each SAR image in order to transform the images in (H,V) basis to the 

optimized basis. Later, these new optimized images were used to form the same number 

of interferograms as mentioned above. The SBAS processing was performed on the 

PolInSAR interferograms to derive the linear velocity rates and solve for the residual 

topographic errors. Residual orbital ramps were removed from the linear velocity maps as 

explained above for single-channel HH and VV dataset.  
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Figure 4.2. Linear deformation map derived from SBAS technique by using 

single-channel HH dataset for the (a) descending (d) ascending tracks. Linear 

deformation map derived from SBAS technique by using single-channel VV dataset 

for the (b) descending (e) ascending tracks. Linear deformation map derived from 

SBAS technique by using the optimized channel for the (c) descending (f) ascending 

tracks. Note that here the LOS shortening is represented by positive and LOS 

lengthening is represented by negative values. The black lines represent the faults in 

this region, as in Figure 4.1. The black squares in (c) and (f) mark the reference 

region for calibration of DInSAR images in the descending and ascending 

geometries, respectively. 

 

4.5. Results 

4.5.1. Creep along North Hayward Fault 

Here we present the results which compare the PolInSAR analysis with single 

polarimetric channel analysis. Figure 4.2 (a) and (d) shows the linear deformation map 

derived from SBAS technique by using single-channel HH dataset for the (a) descending 

(d) ascending tracks. Figure 4.2 (b) and (e) shows the linear deformation map derived 

from SBAS technique by using single-channel VV dataset for the (b) descending (e) 

ascending tracks. Figure 4.2 (c) and (f) shows the linear deformation map derived from 

SBAS technique by using the optimized channel for the (c) descending (f) ascending 

tracks. Note that here the LOS shortening is represented by positive and LOS lengthening 

is represented by negative values. The black squares in (c) and (f) mark the reference 

region for DInSAR images in the descending and ascending geometries, respectively. In 

these maps we observe that there is a phase discontinuity across the Hayward fault, 

expressing the right-lateral creep along the Hayward fault. The deformation rate 

differences in the top left part (NW corner) of the interferograms is due to the 

discountinuties in the phase unwrapping. 
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In order to analyze the fault creep we plot profiles across the fault, as shown in Figure 

4.4, locations marked as red lines in Figure 4.3. The deformation along all of these 

profiles has a discontinuity at 0 km, on the Hayward fault. This discontinuity is sharper in 

the north (profiles 1-5) than to the south of the fault. Profiles 1-5 show ~2-2.5 mm/year of 

LOS displacement, while the southern profiles show an LOS displacement of ~1.5-2 

mm/year. Projecting this onto the horizontal component yields ~4-5 mm/year of surface 

creep in the northern part of the fault and ~3-4 mm/year in the south, assuming that the 

vertical motion is negligible.  

 

Figure 4.3. Location of profiles in the PolInSAR deformation map from the 

optimized channel marked by red lines and the numbers associated with each. The 

deformation rate along these profiles is presented in Figures 4.4-4.5. The black lines 

represent the faults in this region, as in Figure 4.1. The black line parallel to the 

Hayward fault in the north (identified by the black arrow) represents the location of 

a secondary fault that may experience creep events. 
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Figure 4.4. Linear rate of deformation along profiles in Figure 4.3, derived from 

descending images. The horizontal axis represents distance from Hayward fault. 

The red line marks the location of Hayward fault. The black line in profiles (1-4) 

might be another fault parallel to the Hayward fault in the north (the location is 

shown in Figure 4.3). 
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Figure 4.5. Linear rate of deformation along profiles in Figure 4.3, derived from 

ascending images. The horizontal axis represents distance from Hayward fault. The 

red line marks the location of Hayward fault. The black line in profiles (1-4) might 

be another fault parallel to the Hayward fault in the north (the location is shown in 

Figure 4.3). 
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Looking at the linear deformation map produced by the ascending geometry, we do 

not observe a sharp discontinuity for most of the sections of the fault (Figure 4.2). This is 

due to the insensitivity of the ascending geometry to the motion along strike. We further 

plot the linear rate of displacement from ascending geometry for the same profiles in 

Figure 4.3 (Figure 4.5). There is only 1 mm/year of displacement visible at the Hayward 

fault. Without prior knowledge of the fault location, it is very difficult to distinguish this 

fault-induced creep from the DInSAR noise, in the ascending interferograms. Analogous 

to the profiles from descending trajectory (Figure 4.4), the ascending profiles (Figure 4.5) 

show higher rates for the profiles associated with the northern part of the fault than the 

southern profiles. 

Comparison of HH and PolInSAR derived deformation maps (Figure 4.2) shows that 

PolInSAR technique results in higher number of reliable points. As explained before, the 

eastern portion of the Hayward fault is dominated by vegetation, while the western area is 

the residential and urban region. The newly selected points are scattered in the vegetated 

as well as the urban part of the image. This contributes to a higher number of 

measurement points in the regions of higher decorrelation.  This additional information is 

quantified in more detail in Alipour et al. (2013).  
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Figure 4.6. Residual errors of linear deformation map derived from SBAS technique 

by using single-channel HH dataset for the (a) descending (d) ascending tracks. 

Residual errors of linear deformation map derived from SBAS technique by using 

single-channel VV dataset for the (b) descending (e) ascending tracks. Residual 

errors of linear deformation map derived from SBAS technique by using the 

optimized channel for the (c) descending (f) ascending tracks. Note that here the 

LOS shortening is represented by positive and LOS lengthening is represented by 

negative values. The black lines represent the faults in this region, as in Figure 4.1. 

The black squares in (c) and (f) mark the reference region for calibration of 

DInSAR images in the descending and ascending geometries, respectively. 

 

In order to assess the quality of the newly selected points, we investigate the residual 

errors from the linear trend of SBAS technique. Figure 4.6 shows these errors by (a) and 

(d) using single-channel HH dataset for the (a) descending (d) ascending tracks. Figure 

4.6 (b) and (e) are errors by using single-channel VV dataset for the (b) descending (e) 

ascending tracks. Figure 4.6 (c) and (f) are errors by using the optimized channel for the 

(c) descending (f) ascending tracks. Note that here the LOS shortening is represented by 

positive and LOS lengthening is represented by negative values. It is clear that the error 

profile of the points selected after optimization are of the same orders as the points at 

their vicinity which are previously selected by HH channel. This means that adding the 

new points does not change or bias the linear rates for fault creep. More results on this 

will be presented in section 4.6.  

 

4.5.2. Landslide Motion 

Here we present the results associated with the Berkeley landslides along the Hayward 

fault. In this section, we only focus on a small region of these slides. We produced linear 

deformation maps from both the ascending and descending geometries in order to gain a 
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better understanding of the type of landslide motion by separating the vertical and 

horizontal components of the displacement.  

 

Figure 4.7. LOS linear displacement maps for the Berkeley landslides: Figures (a), 

(c) and (e) are the maps from ascending images derived from (a) the HH, (c) the VV 

and (e) the PolInSAR optimized channel. Figures (b), (d) and (f) show the 

corresponding maps from descending images derived from (b) the HH, (d) the VV 

and (f) the PolInSAR optimized channel. Note that positive displacement represents 

motion toward the satellite. The black and red polygons outline the location of 

moderately active and highly active slope instabilities (USGS Earthquake Hazard 

Program 1999). The black dashed lines represent the faults in this region, as in 

Figure 4.1. 
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Figure 4.7 shows the LOS displacement maps for these landslides. In these figures (a), 

(c) and (e) are the maps from ascending images derived from (a) the HH, (c) the VV and 

(e) the PolInSAR optimized channel. Figures (b), (d) and (f) show the corresponding 

maps from descending images derived from (b) the HH, (d) the VV and (f) the PolInSAR 

optimized channel. We observe that the ascending and descending trajectories show the 

same pattern for movement of the slides. However, due to the different imaging 

geometry, most of the landslides are marked by range shortening (positive) in ascending 

and range lengthening (negative) in descending geometries. The patterns that we have 

found for landslide locations match the ones earlier published by Hilley et al. (2004). Our 

mapped landslides coincide with the location of those from USGS Earthquake Hazard 

Program (1999), as well. Four different landslides are mapped by USGS Earthquake 

Hazard Program (1999) as in Figure 4.7. In this figure the red and black polygons outline 

the highly active and moderately active slope instabilities.  

Inspection of Figure 4.7 demonstrates that the landslide maps produced from single-

channel (HH or VV) data lack a significant number of points associated with the location 

of the highest displacement rates. In Figure 4.7 (e) and (f) PolInSAR is shown to be an 

effective technique in resolving the motion on most of these points. Moreover, the more 

detailed patterns identified in the landslides using the PolInSAR technique are more 

similar to those mapped by field investigations. For example, the northern most active 

landslide has an elongated shape which matches the PolInSAR pattern than the one from 

single-pol HH or technique. There is a 7-10% of increase in the number of coherent 

pixels for this area, which are not selected by any single-channel (HH,VV,VH) images. 

This results from the better phase accuracy of PolInSAR after integration of three 

different polarimetric channels and the identification of new reliable pixels.  
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Figure 4.8. Optimized linear deformation maps for (a) ascending (b) descending 

tracks, overlaid on an aerial photography. The orange and red polygons outline the 

location of moderately active and highly active slope instabilities (USGS Earthquake 

Hazard Program 1999). The black lines represent the faults in this region, as in 

Figure 4.1. 
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Figure 4.8 is the LOS deformation from PolInSAR optimized channels for the (a) 

ascending (b) descending images, overlaid on an aerial photo. By comparing the 

ascending and descending maps in Figure 4.7-4.8, we observe that the northernmost 

landslide is subject to range lengthening in both the ascending and descending datasets in 

the middle of the landslide. However, the foot of the slide is subject to range lengthening 

and range shortening in both the descending and ascending datasets, respectively. We 

conclude that for this landslide, the middle part is displaced primarily in the vertical 

direction and the foot of the slide is displaced horizontally. This pattern is similar to 

rotational type landslides; however, here the slide is very long and the pattern along most 

of its length is translational. Inspection of the other landslides along the fault shows a 

constant range lengthening in the descending datasets and range shortening in the 

ascending datasets. This implies that the rest of these slope instabilities are translational 

types of landslide, where all the material moves along a plane with a constant slope. 

The maximum rate of motion of 35 mm/year along the hill slope was previously 

documented by (Hilley et al. 2004). Here, our estimated landslide motion along the hill 

slope, assuming a fixed slope of 4 degrees, is 23 mm/year. In general, due to lower 

accuracy of single-channel (HH or VV) dataset, and a small number of points, it is 

difficult to distinguish the exact location and motion of the landslide. By applying 

PolInSAR technique a clear pattern of deformation is recognized using DInSAR 

techniques.  

 

4.6. Discussion 

Our estimates show a creep rate of 3-5 mm/year along the surface of the Hayward fault 

for the northern 35 km. These rates are more pronounced in the northern 5 km of the fault 

and the observed phase discontinuity is much sharper in this region. We speculate that 

this sharp phase gradient in the north is due to the fact that creep extends deeper in this 

region. Previous studies have inverted for geodetic data and estimated that Hayward fault 

is creeping deeper in the north (Shirzaei & Bürgmann 2013; Bürgmann et al. 2000). Our 
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rates agree well with the previous study of Tiampo et al. (2013), which compared fault 

slip obtained from the PPD technique with those of the alignment array along the 

Hayward fault trace (Lienkaemper et al. 2012). Here, we should note that our observation 

period is limited to three years of data from 2008-2011, while most of the ground-based 

measurements estimate a long-term creep rates. In fact, the fault might undergo periods 

of short-term rate change and we could be observing these short-term fluctuations from a 

long-term trend (Tiampo et al. 2013).  

We assume that there is a potential for fault creep on secondary faults close to the 

Hayward fault.  The northern profiles (1-4) of Figures 4.4 and 4.5 show a discontinuity at 

5-6 km (shown by black line in Figures 4.3-4.5) that is evident more on the descending 

dataset. We can trace this pattern on the ascending data too, but the phase jump is very 

small. They persist at one location along these four profiles. This discontinuity could be 

attributed to a secondary fault which is creeping parallel to Hayward in the north. This 

feature shows ~1 mm/year of displacement in the LOS direction, which translates to ~1.5 

mm/year of horizontal displacement. However, a larger dataset of DInSAR data is 

necessary to investigate whether this discontinuity is observed through different and 

longer time periods or it is only an artificial fluctuation in the analyzed data. 

In order to quantitatively analyze the additional accuracy that PolInSAR provides in 

comparison to the single-channel DInSAR, comparison with ground-truth data is 

required. However, here we show some promising results comparing PolInSAR to 

DInSAR for the well-studied Hayward fault. Analysis of the errors associated with the 

linear creep velocity show that the PolInSAR technique provides a greater number of 

points, while their errors are in the same order as those measurements from single-

channel (HH or VV) dataset.  
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Figure 4.9. Residual errors of linear deformation rate after application of the SBAS 

technique: (a), (c) and (e) are the maps from ascending images derived from (a) the 

HH, (c) the VV and (e) the PolInSAR optimized channel. Figure 4.9 (b), (d) and (f) 

show the corresponding maps from descending images derived from (b) the HH, (d) 

the VV and (f) the PolInSAR optimized channel. The black and red polygons outline 

the location of moderately active and highly active slope instabilities (USGS 

Earthquake Hazard Program 1999). The black dashed lines represent the faults in 

this region, as in Figure 4.1. 
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Figure 4.9 presents the close up of Figure 4.6 corresponding to the region of 

landslides, where we have more clear deformation from the slope instabilities.  The figure 

shows the residual errors of linear deformation rate after application of the SBAS 

technique: (a), (c) and (e) are the maps from ascending images derived from (a) the HH, 

(c) the VV and (e) the PolInSAR optimized channel. Figure 4.9 (b), (d) and (f) show the 

corresponding maps from descending images derived from (b) the HH, (d) the VV and (f) 

the PolInSAR optimized channel. We clearly observe that the errors of the points selected 

after optimization are of the same orders as the points at their vicinity which are 

previously selected by HH or VV channels, in both ascending and descending dataset. 

We conclude that by adding new points our estimation of the linear rates for landslide 

motion remains the same.  

As we note in Figure 4.7-4.8, the landslides resolved by PolInSAR displays a 

displacement patterns that closely resembles landslides mapped from field investigations. 

The location of the mapped slides coincides with those identified by Hilley et al. (2004). 

Moreover, the rates for the newly selected points in landslide region are consistent with 

the rates from the HH or VV channel. Three of the four slides labeled as highly active 

and one is marked as moderately active by the prior field investigations. Previous studies 

(Hilley et al. 2004) estimate a maximum displacement of 35 mm/year along the hill slope 

for these landslides. Analogous to that analysis, we derived the along-slope rate of 

surface displacement associated with the time period of 2008-2011 for a constant slope of 

4 degrees. We got a maximum rate of 23 mm/year for the movement of the active slides.  

The integration of ascending and descending proves to be helpful in distinguishing the 

different types of landslides by separation of the vertical and horizontal components of 

the displacement vector. Here we visually assess the sense of motion visually for these 

slides by using both sets of data. We speculate that most of the landslides in this region 

have translational behavior, since the slide scarp and the slide foot both are primarily 

subject to more horizontal than vertical motion. Only the northern slide is recognized as 

having mainly vertical motion in the middle of the landslide. As noted earlier, our dataset 

spans a relatively short time period of three years. More in-depth studies of the creep 



111 

 

velocity using a greater number of SAR images are required to investigate the velocity 

and its potential correlation with meteorological and hydrological factors. 

4.7. Conclusion 

In this study we analyzed ten RADARSAT-2 SAR images with ascending geometry 

and fifteen RADARSAT-2 SAR images with descending geometry from the Hayward 

fault area using a PolInSAR technique. Our purpose was to increase the number of 

measurement points for the region, which is mainly dominated by topography and dense 

vegetation in the hills east of the fault. We showed that the newly added points have the 

same error as the points previously measured by single-channel HH or VV images. We 

further observed that there are possible sources of secondary fault creep ~ 5 km northeast 

of Hayward fault. However, more in depth studies with additional images are required to 

confirm this feature. 

We further analyzed the landslide motion and identified four landslides near Berkeley, 

with rates of 23 mm/yr. Based on our analysis, one of the slides shows mainly a vertical 

motion in the middle part, as opposed to others which have translational slide 

characteristics (mainly horizontal). Furthermore, by using the PolInSAR technique, we 

get a better pattern for the landslides which correlate well with the landslide map from 

prior field investigations. This work illustrates the capability of PolInSAR coherence 

optimization to provide better DInSAR results and more accurate deformation 

measurements. 
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5 Conclusions 

 

5.1. Summary and conclusions 

The aim of this research was to exploit the latest advancements in radar satellite 

technology in order to acquire better images of surface deformation caused by 

geophysical phenomena. More precise surface measurements will provide better and 

more complete details of the associated causes in the subsurface. Subsequently, this 

enables us to acquire a better understanding of the future behavior of these sources and 

estimate the extent of any possible hazard.         

In this work, I applied standard DInSAR technique to study faulting mechanisms for 

the Ahar double earthquakes in northwest Iran (Mw =6.2 and 6.4) on August 11, 2012. 

Fault modeling of coseismic interferograms from a pair of RADARSAT-2 images shows 

that the two ruptures occurred on a single fault structure, one with east-west orientation. 

Understanding fault structure is of great importance in this region since the largest strike-

slip structure (North Tabriz Fault) lies 50 km away, also with NW-SE geometry. This 

structure has the highest seismic hazard in the region and previous studies have suggested 

that most of shear stress in NW Iran primarily is accommodated parallel to this fault 

(Masson et al. 2007). The results of my study show that some part of the interseismic 

stress is accommodated on minor faults in NW Iran, such as the east-west oriented Ahar 

fault. This has important implications for the stress history of the North Tabriz Fault and 

for future hazard assessment in the region.  

The primary focus of this research was in the application and improvement of 

multibaseline Polarimetric SAR Interferometry (PolInSAR) (Neumann et al. 2008).  

PolInSAR techniques were developed and assessed in order to better understand the 

potential improvement associated with the incorporation of fully polarimetric data for 

increased interferometric coherence. The results demonstrate a considerable increase in 

the number of Pixel Candidates (PCs), one indicator of interferometric phase reliability 

and coherence (Ferretti et al. 2001). Moreover, inspection of interferometric phase 
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(residual RADARSAT-2 orbits) demonstrated an increased phase quality, which can lead 

to more accurate and unbiased phase unwrapping solution. This improvement of 

coherence is shown to be dependent on the interferometric spatial and temporal baselines. 

Generally, for a large temporal or spatial baseline interferograms, we observe a higher 

coherence increment, due to the lower single-channel coherence.   

More measurements are acquired by using this technique in vegetated regions at the 

eastern part of the fault, which are comparable in terms of error analysis with the standard 

DInSAR analysis. A study of landslides in the Berkely hills demonstrates that the 

analysis can provide detailed deformation maps, but also that landslide patterns mapped 

by PolInSAR better resemble those from field surveys (USGS Open File Report, 1999). 

This is attributed to the more accurate interferometric phase measurement acquired with 

the PolInSAR technique.  

The choice of the best polarimetric channel derives the most stable scattering in a 

resolution cell. My analysis shows that there is a correspondence between the increased 

interferometric coherence and the scattering mechanism of the ground target. The use of 

PolInSAR resolves mostly double-bounce scattering types in the urban area and surface-

type and double-bounce scattering types in the rural regions.  

It should be noted that the most stable target does not necessarily correspond to the 

ground.  Rather, it might be associated with other mechanisms such as man-made 

structures, ground-truck interaction, or some more coherent surface in the vegetation 

cover. For example in a densely vegetated area, the scattering from tree trunks might be 

more stable because the vegetation cover limits the wave penetration through to the 

ground, causing decorrelation. In addition, where there is a high interferometric 

decorrelation, the optimized solution might not correspond to any particularly stable 

mechanism. However, the PC selection quality criterion eliminates these pixels from the 

subset of the pixels for interferometric analysis. Future investigations with the application 

of PolInSAR coherence optimization using simulated SAR data should be implemented 

in order to have a better understanding of the optimized scattering types.  
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Based on the study, we conclude that PolInSAR is a promising technique to increase 

the reliability of standard DInSAR in order to understand the geophysical phenomena in 

regions of lower coherence, e.g. when the ground pixels are partly contaminated with 

volume scattering of vegetation.   

 5.2. Future work  

Potential avenues for future work are outlined as follows: 

• Analysis of the scattering mechanisms for the improved coherences, in 

more detail. 

• Apply PolInSAR coherence optimization using ground-based SAR 

sensors, in which the patterns of deformation are known a priori. This will enable 

us to quantify the precision of deformation measurements for PolInSAR as 

compared to single-channel DInSAR analysis. 

• Comparison of Multiple Scattering Mechanism (MSM) and Equal 

Scattering Mechanism (ESM) techniques in terms the scattering mechanism.   

• Detailed studies of the scattering mechanism using both ground-truthed 

natural and synthetic data sets.  

• Application of PolInSAR technique in regions of lower coherence in order 

to measure deformation with increased coherence. Examples of this include the 

slow-slip events in western Canada.   

• Perform a refined analysis of kinematics of northwest Iran, using geodetic 

data such as GPS, taking into account the Ahar fault geometry. 

• Study of the post-seismic deformation of Ahar earthquake using 

interferometric techniques. 
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A Glossary 

DInSAR    Differential Interferometric Synthetic Aperture Radar  

Dual-pol  Dual-Polarization 

HH   Horizontal transmission, Horizontal receive 

HV   Horizontal transmission, Vertical receive 

LOS   Line-of-Sight 

MB-ESM  Multi-Baseline Equal Scattering Mechanism 

MB-MSM  Multi-Baseline Multiple Scattering Mechanism 

PC   Pixel Candidate 

PCT   Polarization Coherence Tomography 

PolInSAR  Polarimetric SAR Interferometry 

Pol-SAR  Polarimetric SAR 

PPD   Polarization Phase Difference (PPD) 

PS   Permanent Scatterer 

Quad-pol  Quad-Polarization 

SAR   Synthetic Aperture Radar 

SBAS   Small BASeline  

SM   Scattering Mechanism 

SVD   Singular Value Decomposition 

TD   Target Decomposition 

VH   Vertical transmission, Horizontal receive 

VV   Vertical transmission, Vertical receive 
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B Computer Code 

B. 1. Run_ESM.cpp 

#include <math.h> 

#include <fstream> 

#include <iostream> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <complex> 

#include <algorithm> 

#include <cstdlib> 

#include <algorithm> 

#include <sstream> 

#include <string> 

#include <math.h> 

#include <cmath> 

#include <gsl/gsl_math.h> 

#include <gsl/gsl_eigen.h> 

 

using namespace std; 

typedef struct{ double re; double im; } complex16;  

extern "C" void zgetri_(int *N, complex16 *a, int *lda, int *ipiv, complex16 *work, int *lwork, int *info); 

extern "C" void zgetrf_(int* m,int *n,complex16 *a,int *lda,int *ipiv,int *info); 

extern "C" void zgees_(char *jobvs, char *sort, bool *select, int *N, complex16 *a, int *lda, int *sdim, 
complex16 *W,complex16 *vs, int *ldvs, complex16 *work, int *lwork, double *rwork, bool *bwork, int 
*info); 

extern "C" void zgeev_(char *jobvl,char *jobvr,int *N, complex16 *a, int *lda, complex16 *W, complex16 
*vl, int *ldvl, complex16 *vr, int *ldvr, complex16 *work, int *lwork, double *rwork, int *info); 

extern "C" void zgesvd_(char *jobu,char *jobvt,int *m,int *n,complex16 *A,int *lda,double *S,complex16 
*U,int *ldu,complex16 *vt,int *ldvt,complex16 *work, int *lwork, double *rwork, int *info); 
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#define float_mem_alloc(data,length) data = (float*) calloc (length,sizeof(float)); if (!data) { printf ("error: 
can not allocate memory\n"); return 1;} memset (data, 0, sizeof(float)*length); 

int write_float_data (const char *name, int fwidth, int flength, int cstart, int cstop, int lstart, int lstop, float 
*dataR, float *dataI, int be_se) 

{ 

    ofstream out; 

    out.clear(); 

    out.open (name, ofstream::out|ofstream::binary); 

    if(out.fail()) 

    { 

        printf ("error: can not cretae file %s \n", name); 

        return 1; 

    } 

 

    char tmpstr[4];  memset (tmpstr, 0, 4); 

 

    int i=0, j=0, myindex=0; 

    float a=0, *fdata; 

    char* pstr; 

    while(j<flength) 

    { 

        for (i=0; i<fwidth; i++) 

        { 

            if ((i>=cstart)&&(i<=cstop)&&(j>=lstart)&&(j<=lstop)) 

            { 

                myindex=(i-cstart)+(j-lstart)*(cstop-cstart+1); 

                a=dataR[myindex]; 

            } 

            else 

            { 

                a=0; 

            } 
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            fdata=&a; 

            pstr = reinterpret_cast <char*> (fdata); 

            if (be_se == 1) 

            { 

                tmpstr[3]=*(pstr+0); 

                tmpstr[2]=*(pstr+1); 

                tmpstr[1]=*(pstr+2); 

                tmpstr[0]=*(pstr+3); 

            } 

            else if (be_se == 0) 

            { 

                tmpstr[0]=*(pstr+0); 

                tmpstr[1]=*(pstr+1); 

                tmpstr[2]=*(pstr+2); 

                tmpstr[3]=*(pstr+3); 

            } 

            else 

            { 

                printf ("error: input data format is unspecified: %i\n", be_se); 

                return 1; 

            } 

            out.write(tmpstr,4); 

            // write imaginary part 

           if ((i>=cstart)&&(i<=cstop)&&(j>=lstart)&&(j<=lstop)) 

            { 

                myindex=(i-cstart)+(j-lstart)*(cstop-cstart+1); 

                a=dataI[myindex]; 

            } 

            else 

            { 

                a=0; 
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            } 

            fdata=&a; 

            pstr = reinterpret_cast <char*> (fdata); 

            if (be_se == 1) 

            { 

                tmpstr[3]=*(pstr+0); 

                tmpstr[2]=*(pstr+1); 

                tmpstr[1]=*(pstr+2); 

                tmpstr[0]=*(pstr+3); 

            } 

            else if (be_se == 0) 

            { 

                tmpstr[0]=*(pstr+0); 

                tmpstr[1]=*(pstr+1); 

                tmpstr[2]=*(pstr+2); 

                tmpstr[3]=*(pstr+3); 

            } 

            else 

            { 

                printf ("error: input data format is unspecified: %i\n", be_se); 

                return 1; 

            } 

            out.write(tmpstr,4); 

        } 

        j++; 

    } 

    out.close(); 

    return 0; 

} 

int read_complex_data (char *name, int fwidth, int flength, int cstart, int cstop, int lstart, int lstop, float 
*dataR, float *dataI, int be_se) 
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{ 

    char tmpstr[4]; memset (tmpstr, 0, 4); 

    int i=0, j=0, num=0, myindex=0; 

    float *fdata; 

    void *v; 

    int floatwidth=8*fwidth; 

    char* readdata = (char*) calloc (floatwidth,sizeof(char)); 

    if (!readdata) 

    { 

        printf ("error: can not allocate memory for readdata array\n"); 

        return 1; 

    } 

    memset (readdata, 0, floatwidth); 

    ifstream in; 

    in.clear(); 

    in.open (name, ifstream::in|ifstream::binary); 

    if(in.fail()) 

    { 

        printf ("error: can not open file %s \n", name); 

        return 1; 

    } 

    j=0; 

    while(!in.eof()) 

    { 

        in.read(readdata,floatwidth); 

        num = in.gcount(); 

        if (num == floatwidth) 

        { 

            for (i=0; i<fwidth; i++) 

            { 

        //read real part 
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                if (be_se == 1) 

                { 

                    tmpstr[3]=readdata[8*i+0]; 

                    tmpstr[2]=readdata[8*i+1]; 

                    tmpstr[1]=readdata[8*i+2]; 

                    tmpstr[0]=readdata[8*i+3]; 

                } 

                else if (be_se == 0) 

                { 

                    tmpstr[0]=readdata[8*i+0]; 

                    tmpstr[1]=readdata[8*i+1]; 

                    tmpstr[2]=readdata[8*i+2]; 

                    tmpstr[3]=readdata[8*i+3]; 

                } 

                else 

                { 

                    printf ("error: input data format is unspecified: %i\n", be_se); 

                    return 1; 

                } 

                v=(void*)tmpstr; 

                fdata = reinterpret_cast <float*> (v); 

                if ((i>=cstart)&&(i<=cstop)&&(j>=lstart)&&(j<=lstop)) 

                { 

                    myindex=(i-cstart)+(j-lstart)*(cstop-cstart+1); 

                    //cout<<i<<" "<<cstart<<" "<<j<<" "<<lstart<<" "<<myindex<<endl;; 

                    dataR[myindex]=*fdata; 

                } 

        // read img part 

        if (be_se == 1) 

                { 

                    tmpstr[3]=readdata[8*i+4]; 
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                    tmpstr[2]=readdata[8*i+5]; 

                    tmpstr[1]=readdata[8*i+6]; 

                    tmpstr[0]=readdata[8*i+7]; 

                } 

                else if (be_se == 0) 

                { 

                    tmpstr[0]=readdata[8*i+4]; 

                    tmpstr[1]=readdata[8*i+5]; 

                    tmpstr[2]=readdata[8*i+6]; 

                    tmpstr[3]=readdata[8*i+7]; 

                } 

                else 

                { 

                    printf ("error: input data format is unspecified: %i\n", be_se); 

                    return 1; 

                } 

                v=(void*)tmpstr; 

                fdata = reinterpret_cast <float*> (v); 

                if ((i>=cstart)&&(i<=cstop)&&(j>=lstart)&&(j<=lstop)) 

                { 

                    myindex=(i-cstart)+(j-lstart)*(cstop-cstart+1); 

                    //cout<<i<<" "<<cstart<<" "<<j<<" "<<lstart<<" "<<myindex<<endl;; 

                    dataI[myindex]=*fdata; 

                } 

            } 

        } 

        else 

        { 

            if (num != 0) 

            { 

                printf ("error: error occurred reading file %s \n", name); 
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                return 1; 

            } 

        } 

        j++; 

    } 

    in.close(); 

    free(readdata); 

    return 0; 

} 

////////////////////////////////////////////////// 

int Sca_Vec_Generation (char *name1, char *name2, char *name3, int fwidth, int flength, float *K1, float 
*K2, float *K3, float *K4, float *K5, float *K6,int wmin,int wmax,int lmin,int lmax) 

{ 

float *dataRhh, *dataIhh; 

float *dataRvv, *dataIvv; 

float *dataRvh, *dataIvh; 

float_mem_alloc(dataRhh,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIhh,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read HH data" << endl; 

read_complex_data (name1, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRhh, dataIhh, 1); 

float_mem_alloc(dataRvv,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIvv,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read VV data" << endl; 

read_complex_data (name3, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRvv, dataIvv, 1); 

cout << "Generating Scattering Vector (part 1)" << endl; 

for ( int i = 0; i < (wmax-wmin+1)*(lmax-lmin+1); i++ ) { 

K1[i]=(dataRhh[i]+dataRvv[i])/1.4142; 

K4[i]=(dataIhh[i]+dataIvv[i])/1.4142; 

K2[i]=(dataRvv[i]-dataRhh[i])/1.4142; 

K5[i]=(dataIvv[i]-dataIhh[i])/1.4142; 

} 
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free(dataRhh); 

free(dataIhh); 

free(dataRvv); 

free(dataIvv); 

float_mem_alloc(dataRvh,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIvh,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read VH data" << endl; 

read_complex_data (name2, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRvh, dataIvh, 1); 

cout << "Generating Scattering Vector (part 2)" << endl; 

for ( int i = 0; i < (wmax-wmin+1)*(lmax-lmin+1); i++ ) { 

K3[i]=(2*dataRvh[i])/1.4142; 

K6[i]=(2*dataIvh[i])/1.4142; 

} 

free(dataRvh); 

free(dataIvh); 

} 

////////////////////////////////////////////////////////////////// 

int Cova_Mat_Cons(float *K1R,float *K2R,float *K3R,float *K1I,float *K2I,float *K3I,float *GRo,float 
*GIo,int itab,int itab1, int jj, int jj1, int fwidth, int flength, int slc_num, int wmin, int lmin) 

{ 

float GR[3][3],GI[3][3]; 

for (int kk=0; kk<=2; kk++){ 

for (int pp=0; pp<=2; pp++){ 

GR[kk][pp]=0 ;GI[kk][pp]=0; 

} 

} 

int j; 

int j1; 

 

for (int  i=0;  i<=9; i++){ 

for (int ii=0; ii<=4; ii++){ 
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j=itab*flength*fwidth+(jj+5-i)*fwidth+jj1+2-ii; 

j1=itab1*flength*fwidth+(jj+5-i)*fwidth+jj1+2-ii; 

GR[0][0]=GR[0][0]+(K1R[j]*K1R[j1]+K1I[j]*K1I[j1])/50; 

GR[0][1]=GR[0][1]+(K1R[j]*K2R[j1]+K1I[j]*K2I[j1])/50; 

GR[0][2]=GR[0][2]+(K1R[j]*K3R[j1]+K1I[j]*K3I[j1])/50; 

GR[1][0]=GR[1][0]+(K2R[j]*K1R[j1]+K2I[j]*K1I[j1])/50; 

GR[1][1]=GR[1][1]+(K2R[j]*K2R[j1]+K2I[j]*K2I[j1])/50; 

GR[1][2]=GR[1][2]+(K2R[j]*K3R[j1]+K2I[j]*K3I[j1])/50; 

GR[2][0]=GR[2][0]+(K3R[j]*K1R[j1]+K3I[j]*K1I[j1])/50; 

GR[2][1]=GR[2][1]+(K3R[j]*K2R[j1]+K3I[j]*K2I[j1])/50; 

GR[2][2]=GR[2][2]+(K3R[j]*K3R[j1]+K3I[j]*K3I[j1])/50; 

GI[0][0]=GI[0][0]+(K1I[j]*K1R[j1]-K1R[j]*K1I[j1])/50; 

GI[0][1]=GI[0][1]+(K1I[j]*K2R[j1]-K1R[j]*K2I[j1])/50; 

GI[0][2]=GI[0][2]+(K1I[j]*K3R[j1]-K1R[j]*K3I[j1])/50; 

GI[1][0]=GI[1][0]+(K2I[j]*K1R[j1]-K2R[j]*K1I[j1])/50; 

GI[1][1]=GI[1][1]+(K2I[j]*K2R[j1]-K2R[j]*K2I[j1])/50; 

GI[1][2]=GI[1][2]+(K2I[j]*K3R[j1]-K2R[j]*K3I[j1])/50; 

GI[2][0]=GI[2][0]+(K3I[j]*K1R[j1]-K3R[j]*K1I[j1])/50; 

GI[2][1]=GI[2][1]+(K3I[j]*K2R[j1]-K3R[j]*K2I[j1])/50; 

GI[2][2]=GI[2][2]+(K3I[j]*K3R[j1]-K3R[j]*K3I[j1])/50; 

} 

} 

//cout << jj << " " <<jj1<< endl; 

GRo[0] = GR[0][0]; 

GRo[1] = GR[0][1]; 

GRo[2] = GR[0][2]; 

GRo[3] = GR[1][0]; 

GRo[4] = GR[1][1]; 

GRo[5] = GR[1][2]; 

GRo[6] = GR[2][0]; 

GRo[7] = GR[2][1]; 
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GRo[8] = GR[2][2]; 

 

GIo[0] = GI[0][0]; 

GIo[1] = GI[0][1]; 

GIo[2] = GI[0][2]; 

GIo[3] = GI[1][0]; 

GIo[4] = GI[1][1]; 

GIo[5] = GI[1][2]; 

GIo[6] = GI[2][0]; 

GIo[7] = GI[2][1]; 

GIo[8] = GI[2][2]; 

} 

////////////////////////////////////////////////////////////////// 

int MMultipy(float *M1,float *M2,float *M3,float *M4,float *M5,float *M6, int slc_num) 

{ 

complex <double> G[slc_num][slc_num]; 

complex <double> T[slc_num][slc_num]; 

complex <double> Mu[slc_num][slc_num]; 

int k=0; 

for (int i=0; i< slc_num; i++){ 

for (int j=0; j< slc_num; j++){ 

//cout << "**********multiply***************************"<<endl; 

T[j][i] = complex<double>(M1[k],M2[k]); 

G[j][i] = complex<double>(M3[k],M4[k]); 

Mu[j][i] = complex<double>(0,0); 

k=k+1; 

} 

} 

for (int i=0; i< slc_num; i++){ 

for (int j=0; j< slc_num; j++){ 

for (int i1=0; i1< slc_num; i1++){ 
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Mu[i][j] = Mu[i][j] + T[i][i1]*G[i1][j]; 

} 

} 

} 

k=0; 

for (int i=0; i< slc_num; i++){ 

for (int j=0; j< slc_num; j++){ 

M5[k]=real(Mu[j][i]); 

M6[k]=imag(Mu[j][i]); 

k=k+1; 

} 

} 

} 

///////////////////////////////////////////////////////////////// 

int Root_Square(int m,int n,int N,float *M1, float *M2){ 

int lda=m; 

int lda2=m; 

bool SELECT[3]; 

bool BWORK[m]; 

char *jobvl="N"; 

char *jobvr="V"; 

int ldvr=3; 

int ldvl=3; 

complex16 vl[m*m]; 

complex16 vr[m*m]; 

int info; 

int info2; 

int lwork =500; 

complex16 work[500]; 

int lwork2 =500; 

complex16* work2; 
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work2=(complex16*)malloc(lwork2*sizeof(complex16) ); 

double rwork[2*m]; 

complex16 W[m]; 

int ipiv[m]; 

complex16 F1[m*m]; 

int SDIM=3; 

double S[3]; 

complex16 u[9]; 

complex16 v[9]; 

float *M3,*M4,*M5,*M6,*M7,*M8; 

float_mem_alloc(M3,m*m); 

float_mem_alloc(M4,m*m); 

float_mem_alloc(M5,m*m); 

float_mem_alloc(M6,m*m); 

float_mem_alloc(M7,m*m); 

float_mem_alloc(M8,m*m); 

for (int i=0; i<m*m; i++){ 

F1[i].re=double(M1[i]); 

F1[i].im=double(M2[i]); 

} 

//zgees_("N","S",SELECT,&N,F1,&lda2,&SDIM,W,vr,&ldvr,work2, &lwork2,rwork, BWORK,&info2); 

//zgeev_("N","V",&N, F1,  &lda2, W,  vl,&ldvl,  vr, &ldvr,work2,  &lwork2, rwork, &info2); 

zgesvd_("A","A",&m,&N,F1,&lda2,S,u,&lda2,v,&lda2,work2,&lwork2,rwork,&info2); 

//cout<< " THIS IS  U "<<endl; 

for (int i=0; i<m*m; i++){ 

M1[i]=float(u[i].re); 

M2[i]=float(u[i].im); 

//cout<< u[i].re <<" +" <<u[i].im<<"i"<<endl; 

} 

//cout<< " THIS IS  S "<<endl; 

for (int i=0; i<m; i++){ 
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M3[i*m+i]=sqrt(S[i]); 

M4[i*m+i]=0; 

//cout<< S[i] <<endl; 

} 

//cout<< " THIS IS  V "<<endl; 

for (int i=0; i<m; i++){ 

for (int j=0; j<m; j++){ 

M5[i*m+j]=float(v[i*m+j].re); 

M6[i*m+j]=float(v[i*m+j].im); 

//cout<< v[j*m+i].re <<" +" <<v[j*m+i].im<<"i"<<endl; 

} 

} 

//cout<< " THIS IS A TEST "<<endl; 

for (int i=0; i<m*m; i++){ 

//cout<< M5[i] <<" +" <<M6[i]<<"i"<<endl; 

} 

 MMultipy(M1,M2,M3,M4,M7,M8,m); 

 MMultipy(M7,M8,M5,M6,M1,M2,m); 

for (int i=0; i<m*m; i++){ 

F1[i].re=M1[i]; 

F1[i].im=M2[i]; 

} 

zgetrf_(&m,&n,F1,&lda,ipiv,&info); 

zgetri_(&N,F1,&lda,ipiv,work,&lwork,&info); 

//cout<< " THIS IS A TEST "<<endl; 

for (int i=0; i<m*m; i++){ 

M1[i]=F1[i].re; 

M2[i]=F1[i].im; 

//cout<< M1[i] <<" +" <<M2[i]<<"i"<<endl; 

} 

free(M3);free(M4);free(M5);free(M6);free(M7);free(M8); 
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} 

int ESM(float *T1,float *T2,float *initial, int int_num,float *WESM1,float *WESM2,float *WESM3,float 
*WESM4){ 

float *M1, *M2; 

complex<double>temp; 

complex<double>temp1; 

float *M3,*M4,*M5,*M6,*M7,*M8,*M9,*M10; 

complex16 F1[9]; 

int N=3; 

int lda=3; 

char *jobvl="N"; 

char *jobvr="V"; 

int ldvr=3; 

int ldvl=3; 

complex16 vl[9]; 

complex16 vr[9]; 

int info2; 

int lwork2 =500; 

complex16 work2[500]; 

double rwork[6]; 

complex16 W[3]; 

int ipiv[3]; 

float mmm,maxx;int sh; 

for(int itt=0;itt<5;itt++){ 

//cout<< initial[0]<< "   " << initial[1] << "   " << initial[2] << endl; 

float_mem_alloc(M1,9); 

float_mem_alloc(M2,9); 

float_mem_alloc(M3,9); 

float_mem_alloc(M4,9); 

float_mem_alloc(M5,9); 

float_mem_alloc(M6,9); 



136 

 

float_mem_alloc(M7,9); 

float_mem_alloc(M8,9); 

float_mem_alloc(M9,9); 

float_mem_alloc(M10,9); 

for (int j=0;j<int_num;j++){ 

temp1=complex<double>(cos(initial[j]),-sin(initial[j])); 

for (int i=0;i<9;i++){ 

temp=complex<double>(T1[9*j+i],T2[9*j+i]); 

M1[i]=M1[i]+real((temp*temp1)); 

M2[i]=M2[i]+imag((temp*temp1)); 

} 

} 

for (int i=0;i<9;i++){ 

F1[i].re=M1[i]; 

F1[i].im=M2[i]; 

} 

zgeev_(jobvl,jobvr,&N, F1,  &lda, W,  vl,  &ldvl,  vr, &ldvr,work2,  &lwork2, rwork, &info2); 

maxx=abs(complex<double>(W[0].re,W[0].im));sh=0; 

for (int itab=0; itab < 3 ; itab++){ 

mmm=abs(complex<double>(W[itab].re,W[itab].im)); 

if (maxx<mmm) {maxx= mmm; sh=itab;} 

} 

M3[0]=vr[3*sh].re;M3[3]=vr[3*sh+1].re;M3[6]=vr[3*sh+2].re;M3[1]=0;M3[2]=0;M3[4]=0;M3[5]=0;M3[
7]=0;M3[8]=0; 

M4[0]=-vr[3*sh].im;M4[3]=-vr[3*sh+1].im;M4[6]=-
vr[3*sh+2].im;M4[1]=0;M4[2]=0;M4[4]=0;M4[5]=0;M4[7]=0;M4[8]=0; 

M7[0]=vr[3*sh].re;M7[1]=vr[3*sh+1].re;M7[2]=vr[3*sh+2].re;M7[3]=0;M7[4]=0;M7[5]=0;M7[6]=0;M7[
7]=0;M7[8]=0; 

M8[0]=vr[3*sh].im;M8[1]=vr[3*sh+1].im;M8[2]=vr[3*sh+2].im;M8[3]=0;M8[4]=0;M8[5]=0;M8[6]=0;M
8[7]=0;M8[8]=0; 

for (int i=0;i<int_num;i++){ 

for (int j=0;j<9;j++){ 

M5[j]=T1[i*9+j];M6[j]=T2[i*9+j]; 
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} 

MMultipy(M3,M4,M5,M6,M1,M2,3); 

MMultipy(M1,M2,M7,M8,M9,M10,3); 

initial[i]=arg(complex<double>(M9[0],M10[0])); 

} 

}//ITTERATION END 

for (int i=0;i<9;i++){ 

WESM1[i]=M3[i];WESM2[i]=M4[i]; 

WESM3[i]=M7[i];WESM4[i]=M8[i]; 

} 

free(M1);free(M2);free(M3);free(M4);free(M5);free(M6);free(M7);free(M8);free(M9);free(M10); 

} 

//inside main: 

main(int argc,  char *argv[]) 

{ 

int fwidth=atoi(argv[1]); 

int flength=atoi(argv[2]); 

int wmin=atoi(argv[3]); 

int wmax=atoi(argv[4]); 

int lmin=atoi(argv[5]); 

int lmax=atoi(argv[6]); 

int Y=atoi(argv[7]); 

int YY=atoi(argv[8]); 

//Read SLC_file (BEG) 

ifstream File("slc_file1"); 

 if (File == NULL) 

 { 

  printf ("error: can not open parameter file: itab \n"); 

  return 1; 

 } 

      long begin,end,size; 
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      File.seekg (0, ios::beg); 

      begin = File.tellg(); 

      File.seekg (0, ios::end); 

      end = File.tellg(); 

      size = end-begin; 

      cout << " slc_file size is: "<< size << endl; 

      File.seekg (0, ios::beg); 

      string x; 

      File >> x; 

      File.seekg (0, ios::beg); 

      int slc_num = size/(x.size()+1); 

      char SLC_data[slc_num+1][256]; 

      char x1[256]; 

      int o=0; 

      while (!File.eof()) 

    { 

        memset (x1, 0, 256); 

        File >> x1; 

        memset (SLC_data[o], 0, 256); 

        if (o<  slc_num){ 

        strcpy(SLC_data[o],x1) ; 

        cout << "SLC:  " << SLC_data[o] << "  SLC size:  " << sizeof(SLC_data[o]) << endl; 

        cout << " O is equal to:  " << o<< endl; 

        o=o+1;   

        } 

    } 

cout << " Number of SLC images are:" << slc_num << endl; 

//Read SLC_file (END) 

float *name1;float *name2;float *name3; 

float *name4;float *name5;float *name6; 

float_mem_alloc(name1,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 
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float_mem_alloc(name2,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 

float_mem_alloc(name3,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 

float_mem_alloc(name4,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 

float_mem_alloc(name5,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 

float_mem_alloc(name6,(wmax-wmin+1)*(lmax-lmin+1)*slc_num/3); 

for ( int j = 0; j < slc_num; j=j+3 ) { 

cout << "Reading SLC_image " << j/3 << endl; 

Sca_Vec_Generation (SLC_data[j], SLC_data[j+1], SLC_data[j+2], fwidth, flength, 
&(name1[(j/3)*(wmax-wmin+1)*(lmax-lmin+1)]), &(name2[(j/3)*(wmax-wmin+1)*(lmax-lmin+1)]), 
&(name3[(j/3)*(wmax-wmin+1)*(lmax-lmin+1)]), &(name4[(j/3)*(wmax-wmin+1)*(lmax-lmin+1)]), 
&(name5[(j/3)*(wmax-wmin+1)*(lmax-lmin+1)]), &(name6[(j/3)*(wmax-wmin+1)*(lmax-
lmin+1)]),wmin,wmax,lmin,lmax); 

} 

int j; 

float *GRo; 

float *GIo; 

float *GRo1; 

float *GIo1; 

int m=3; 

int n=3; 

int N=3; 

complex<double> WW1[3]; 

complex<double> kk1[3][1]; 

char name[256]; 

char name_n[256]; 

int ssa1, ssb1; 

cout <<" ***Generate Covariance Matrixes*** " << endl; 

float *M1, *M2, *M3, *M4, *M5, *M6, *M7, *M8, *M9, *M10,*initial; 

float *W1out;float *W2out;float *W3out; 

float *W4out;float *W5out;float *W6out; 

float *T1, *T2; 

 

float_mem_alloc(W1out,(wmax-wmin+1)*(lmax-lmin+1)); 
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float_mem_alloc(W2out,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(W3out,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(W4out,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(W5out,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(W6out,(wmax-wmin+1)*(lmax-lmin+1)); 

int int_num; 

complex<double>temp; 

for ( int jj  = 4;  jj < (lmax-lmin+1)-5;  jj=jj+10 ) { 

for ( int jj1 = 2; jj1 < (wmax-wmin+1)-2;  jj1=jj1+5 ) { 

int_num=0; 

float_mem_alloc(T1,9*(slc_num/3-1)*(slc_num/3)); 

float_mem_alloc(T2,9*(slc_num/3-1)*(slc_num/3)); 

float_mem_alloc(initial,(slc_num/3)*(slc_num/3-1)); 

float_mem_alloc(M3,9); 

float_mem_alloc(M4,9); 

for ( int itab=0; itab <slc_num/3; itab++){ 

float_mem_alloc(GIo1,9); 

float_mem_alloc(GRo1,9); 

Cova_Mat_Cons(name1,name2,name3,name4,name5,name6,GRo1,GIo1,itab,itab,jj,jj1,(wmax-
wmin+1),(lmax-lmin+1),slc_num, wmin, lmin); 

M3[0]=M3[0]+(double)GRo1[0]/(slc_num/3); 

M3[1]=M3[1]+(double)GRo1[3]/(slc_num/3); 

M3[2]=M3[2]+(double)GRo1[6]/(slc_num/3); 

M3[3]=M3[3]+(double)GRo1[1]/(slc_num/3); 

M3[4]=M3[4]+(double)GRo1[4]/(slc_num/3); 

M3[5]=M3[5]+(double)GRo1[7]/(slc_num/3); 

M3[6]=M3[6]+(double)GRo1[2]/(slc_num/3); 

M3[7]=M3[7]+(double)GRo1[5]/(slc_num/3); 

M3[8]=M3[8]+(double)GRo1[8]/(slc_num/3); 

M4[0]=M4[0]+(double)GIo1[0]/(slc_num/3); 

M4[1]=M4[1]+(double)GIo1[3]/(slc_num/3); 
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M4[2]=M4[2]+(double)GIo1[6]/(slc_num/3); 

M4[3]=M4[3]+(double)GIo1[1]/(slc_num/3); 

M4[4]=M4[4]+(double)GIo1[4]/(slc_num/3); 

M4[5]=M4[5]+(double)GIo1[7]/(slc_num/3); 

M4[6]=M4[6]+(double)GIo1[2]/(slc_num/3); 

M4[7]=M4[7]+(double)GIo1[5]/(slc_num/3); 

M4[8]=M4[8]+(double)GIo1[8]/(slc_num/3); 

} 

Root_Square(m,n,N,M3,M4); 

for ( int itab=0; itab <slc_num/3; itab++){ 

for ( int itab1=0; itab1 <slc_num/3; itab1++){ 

// //for ( int itab=0; itab <1; itab++){ 

// //for ( int itab1=itab+1; itab1 <3; itab1++){ 

if (itab!=itab1){ 

float_mem_alloc(GIo,9); 

float_mem_alloc(GRo,9); 

float_mem_alloc(M1,9); 

float_mem_alloc(M2,9); 

float_mem_alloc(M5,9); 

float_mem_alloc(M6,9); 

float_mem_alloc(M7,9); 

float_mem_alloc(M8,9); 

float_mem_alloc(M9,9); 

float_mem_alloc(M10,9); 

temp=complex<double>(0,0); 

Cova_Mat_Cons(name1,name2,name3,name4,name5,name6,GRo,GIo,itab,itab1,jj,jj1,(wmax-
wmin+1),(lmax-lmin+1),slc_num, wmin, lmin); 

M1[0]=(double)GRo[0]; 

M1[1]=(double)GRo[3]; 

M1[2]=(double)GRo[6]; 

M1[3]=(double)GRo[1]; 
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M1[4]=(double)GRo[4]; 

M1[5]=(double)GRo[7]; 

M1[6]=(double)GRo[2]; 

M1[7]=(double)GRo[5]; 

M1[8]=(double)GRo[8]; 

M2[0]=(double)GIo[0]; 

M2[1]=(double)GIo[3]; 

M2[2]=(double)GIo[6]; 

M2[3]=(double)GIo[1]; 

M2[4]=(double)GIo[4]; 

M2[5]=(double)GIo[7]; 

M2[6]=(double)GIo[2]; 

M2[7]=(double)GIo[5]; 

M2[8]=(double)GIo[8]; 

MMultipy(M3,M4,M1,M2,M5,M6,m); 

MMultipy(M5,M6,M3,M4,M7,M8,m); 

temp=complex<double>(M7[0],M8[0])+complex<double>(M7[4],M8[4])+complex<double>(M7[8],M8[8
]); 

initial[int_num]=float(arg(temp)); 

T1[9*int_num+0]=(double)M7[0]; 

T1[9*int_num+1]=(double)M7[1]; 

T1[9*int_num+2]=(double)M7[2]; 

T1[9*int_num+3]=(double)M7[3]; 

T1[9*int_num+4]=(double)M7[4]; 

T1[9*int_num+5]=(double)M7[5]; 

T1[9*int_num+6]=(double)M7[6]; 

T1[9*int_num+7]=(double)M7[7]; 

T1[9*int_num+8]=(double)M7[8]; 

 

T2[9*int_num+0]=(double)M8[0]; 

T2[9*int_num+1]=(double)M8[1]; 



143 

 

T2[9*int_num+2]=(double)M8[2]; 

T2[9*int_num+3]=(double)M8[3]; 

T2[9*int_num+4]=(double)M8[4]; 

T2[9*int_num+5]=(double)M8[5]; 

T2[9*int_num+6]=(double)M8[6]; 

T2[9*int_num+7]=(double)M8[7]; 

T2[9*int_num+8]=(double)M8[8]; 

int_num=int_num+1; 

} 

} 

} 

ESM(T1,T2,initial,int_num,M5,M6,M7,M8); 

MMultipy(M5,M6,M3,M4,M1,M2,m); 

MMultipy(M1,M2,M7,M8,M9,M10,m); 

float temp10=M9[0]; 

MMultipy(M3,M4,M7,M8,M1,M2,m); 

WW1[0] = complex<double>(M1[0]/temp10,M2[0]/temp10); 

WW1[1] = complex<double>(M1[1]/temp10,M2[1]/temp10); 

WW1[2] = complex<double>(M1[2]/temp10,M2[2]/temp10); 

for (int ssa=0;ssa<10;ssa++){ 

for (int ssb=0;ssb<5;ssb++){ 

ssa1=jj+5-ssa; 

ssb1=jj1+2-ssb; 

W1out[ssa1*(wmax-wmin+1)+ssb1]=real(WW1[0]); 

W4out[ssa1*(wmax-wmin+1)+ssb1]=imag(WW1[0]); 

 

W2out[ssa1*(wmax-wmin+1)+ssb1]=real(WW1[1]); 

W5out[ssa1*(wmax-wmin+1)+ssb1]=imag(WW1[1]); 

W3out[ssa1*(wmax-wmin+1)+ssb1]=real(WW1[2]); 

W6out[ssa1*(wmax-wmin+1)+ssb1]=imag(WW1[2]); 

} 
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} 

} //end of col 

cout << " Generate Covariance Matrixes for Line  " << jj << endl; 

} //end of row 

memset (name, 0, 256); 

strcat(name,"W0"); 

write_float_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, W1out, W4out, 1); 

memset (name, 0, 256); 

strcat(name,"W1"); 

write_float_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, W2out, W5out, 1); 

memset (name, 0, 256); 

strcat(name,"W2"); 

write_float_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, W3out, W6out, 1); 

} 
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B. 2. Complement.cpp 

 

#include <math.h> 

#include <fstream> 

#include <iostream> 

#include <string.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <complex> 

#include <algorithm> 

#include <cstdlib> 

#include <algorithm> 

#include <sstream> 

#include <string> 

#include <math.h> 

#include <cmath> 

using namespace std; 

typedef struct{ double re; double im; } complex16;  

extern "C" void zgetri_(int *N, complex16 *a, int *lda, int *ipiv, complex16 *work, int *lwork, int *info); 

extern "C" void zgetrf_(int* m,int *n,complex16 *a,int *lda,int *ipiv,int *info); 

extern "C" void zgees_(char *jobvs, char *sort, bool *select, int *N, complex16 *a, int *lda, int *sdim, 
complex16 *W,complex16 *vs, int *ldvs, complex16 *work, int *lwork, complex16 *rwork, bool *bwork, 
int *info); 

extern "C" void zgeev_(char *jobvl,char *jobvr,int *N, complex16 *a, int *lda, complex16 *W, complex16 
*vl, int *ldvl, complex16 *vr, int *ldvr, complex16 *work, int *lwork, complex16 *rwork, int *info); 

#define float_mem_alloc(data,length) data = (float*) calloc (length,sizeof(float)); if (!data) { printf ("error: 
can not allocate memory\n"); return 1;} memset (data, 0, sizeof(float)*length); 

int Sca_Vec_Generation (char *name1, char *name2, char *name3, int fwidth, int flength, float *K1, float 
*K2, float *K3, float *K4, float *K5, float *K6,int wmin,int wmax,int lmin,int lmax) 

{ 

float *dataRhh, *dataIhh; 

float *dataRvv, *dataIvv; 
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float *dataRvh, *dataIvh; 

float_mem_alloc(dataRhh,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIhh,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read HH data" << endl; 

read_complex_data (name1, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRhh, dataIhh, 1); 

float_mem_alloc(dataRvv,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIvv,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read VV data" << endl; 

read_complex_data (name3, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRvv, dataIvv, 1); 

cout << "Generating Scattering Vector (part 1)" << endl; 

for ( int i = 0; i < (wmax-wmin+1)*(lmax-lmin+1); i++ ) { 

K1[i]=(dataRhh[i]+dataRvv[i])/1.4142; 

K4[i]=(dataIhh[i]+dataIvv[i])/1.4142; 

K2[i]=(dataRvv[i]-dataRhh[i])/1.4142; 

K5[i]=(dataIvv[i]-dataIhh[i])/1.4142; 

} 

free(dataRhh); 

free(dataIhh); 

free(dataRvv); 

free(dataIvv); 

float_mem_alloc(dataRvh,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataIvh,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "read VH data" << endl; 

read_complex_data (name2, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataRvh, dataIvh, 1); 

cout << "Generating Scattering Vector (part 2)" << endl; 

for ( int i = 0; i < (wmax-wmin+1)*(lmax-lmin+1); i++ ) { 

K3[i]=(2*dataRvh[i])/1.4142; 

K6[i]=(2*dataIvh[i])/1.4142; 

} 

free(dataRvh); 

free(dataIvh); 
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} 

//inside main: 

main(int argc,  char *argv[]) 

{ 

int fwidth=atoi(argv[1]); 

int flength=atoi(argv[2]); 

int wmin=atoi(argv[3]); 

int wmax=atoi(argv[4]); 

int lmin=atoi(argv[5]); 

int lmax=atoi(argv[6]); 

int mm1=atoi(argv[7]); 

complex<double> WW1[6][1]; 

complex<double> kk1[6][1]; 

complex<double> eq5, eq6; 

//Read SLC_file (BEG) 

ifstream File("slc_file1"); 

 if (File == NULL) 

 { 

  printf ("error: can not open parameter file: itab \n"); 

  return 1; 

 } 

      long begin,end,size; 

      File.seekg (0, ios::beg); 

      begin = File.tellg(); 

      File.seekg (0, ios::end); 

      end = File.tellg(); 

      size = end-begin; 

      cout << " slc_file size is: "<< size << endl; 

      File.seekg (0, ios::beg); 

      string x; 

      File >> x; 
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      File.seekg (0, ios::beg); 

      int slc_num = size/(x.size()+1); 

      char SLC_data[slc_num+1][256]; 

      char x1[256]; 

      int o=0; 

      while (!File.eof()) 

    { 

        memset (x1, 0, 256); 

        File >> x1; 

        memset (SLC_data[o], 0, 256); 

        if (o<  slc_num){ 

        strcpy(SLC_data[o],x1) ; 

        cout << "SLC:  " << SLC_data[o] << "  SLC size:  " << sizeof(SLC_data[o]) << endl; 

        cout << " O is equal to:  " << o<< endl; 

        o=o+1;   

        } 

    } 

cout << " Number of SLC imagesc are:" << slc_num << endl; 

//Read SLC_file (END) 

float *name1;float *name2;float *name3; 

float *name4;float *name5;float *name6; 

float_mem_alloc(name1,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(name2,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(name3,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(name4,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(name5,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(name6,(wmax-wmin+1)*(lmax-lmin+1)); 

float *dataR1;float *dataR2;float *dataR3; 

float *dataI1;float *dataI2;float *dataI3; 

float_mem_alloc(dataR1,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataR2,(wmax-wmin+1)*(lmax-lmin+1)); 
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float_mem_alloc(dataR3,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataI1,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataI2,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(dataI3,(wmax-wmin+1)*(lmax-lmin+1)); 

 

float *outputR1, *outputI1; 

float_mem_alloc(outputR1,(wmax-wmin+1)*(lmax-lmin+1)); 

float_mem_alloc(outputI1,(wmax-wmin+1)*(lmax-lmin+1)); 

cout << "Reading SLC_image " << mm1 << endl; 

Sca_Vec_Generation (SLC_data[3*(mm1-1)], SLC_data[3*(mm1-1)+1], SLC_data[3*(mm1-1)+2], 
fwidth, flength,name1,name2,name3, name4,name5,name6,wmin,wmax,lmin,lmax); 

char name[256]; 

memset (name, 0, 256); 

strcat(name,"W0"); 

cout << "read file " << name <<  endl; 

read_complex_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataR1, dataI1, 1); 

memset (name, 0, 256); 

strcat(name,"W1"); 

cout << "read file " << name <<  endl; 

read_complex_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataR2, dataI2, 1); 

memset (name, 0, 256); 

strcat(name,"W2"); 

cout << "read file " << name <<  endl; 

read_complex_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, dataR3, dataI3, 1); 

for ( int jj  = 4;  jj < (lmax-lmin+1)-4;  jj=jj+1 ) { 

for ( int jj1 = 4; jj1 < (wmax-wmin+1)-4;  jj1=jj1+1 ) { 

//for ( int jj  = 3228;  jj < 3229;  jj=jj+1 ) { 

//for ( int jj1 = 2040; jj1 < 2041;  jj1=jj1+1 ) { 

WW1[0][0]=complex<double>(dataR1[jj*(wmax-wmin+1)+jj1],dataI1[jj*(wmax-wmin+1)+jj1]); 

WW1[1][0]=complex<double>(dataR2[jj*(wmax-wmin+1)+jj1],dataI2[jj*(wmax-wmin+1)+jj1]); 

WW1[2][0]=complex<double>(dataR3[jj*(wmax-wmin+1)+jj1],dataI3[jj*(wmax-wmin+1)+jj1]); 



150 

 

kk1[0][0]=complex<double>(name1[jj*(wmax-wmin+1)+jj1],name4[jj*(wmax-wmin+1)+jj1]); 

kk1[1][0]=complex<double>(name2[jj*(wmax-wmin+1)+jj1],name5[jj*(wmax-wmin+1)+jj1]); 

kk1[2][0]=complex<double>(name3[jj*(wmax-wmin+1)+jj1],name6[jj*(wmax-wmin+1)+jj1]); 

eq5=conj(WW1[0][0])*kk1[0][0]+conj(WW1[1][0])*kk1[1][0]+conj(WW1[2][0])*kk1[2][0]; 

if (isnan(abs(eq5))){ 

outputR1[jj*(wmax-wmin+1)+jj1]=0; 

outputI1[jj*(wmax-wmin+1)+jj1]=0; 

} 

else 

{ 

outputR1[jj*(wmax-wmin+1)+jj1]=real(eq5); 

outputI1[jj*(wmax-wmin+1)+jj1]=imag(eq5); 

} 

} 

} 

memset (name, 0, 256); 

strcat(name,SLC_data[3*(mm1-1)]) ; 

strcat(name,"_pol") ; 

cout << name << endl; 

write_float_data (name, fwidth, flength, wmin-1, wmax-1, lmin-1, lmax-1, outputR1, outputI1, 1); 

free(outputR1); 

free(outputI1); 

} 
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