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ABSTRACT 

Current provisions in CSA S6-06 “Canadian Highway Bridge Design Code” for 

computing second-order effects in slender concrete beam-columns were derived for 

columns in buildings, where these effects can often be neglected, so their applicability to 

extremely slender cable-stayed bridge decks warrants investigation. The research 

reported in this thesis first reviews the provisions in CSA S6-06, as well as eight 

equations proposed by others, for computing the flexural rigidity, EI, of slender concrete 

beam-columns. Methods for quantifying the rotational restraint provided at deck slab 

supports by steel or concrete floorbeams are presented and validated: steel floorbeams 

provide negligible restraint but concrete floorbeams can provide sufficient restraint to 

reduce markedly the effective length factor. A rational method is presented and validated 

for analyzing continuous beam-columns subjected to transverse loads applied between 

their supports. A sensitivity analysis demonstrates that the variables that influence the 

moment magnification of cable-stayed bridge decks are: the applied axial load, the 

slenderness ratio, the concrete compressive strength, and the rotational restraint provided 

at the deck slab supports. Lastly, the deficiency of the provisions in CSA S6-06 for 

designing a simplified three-span cable-stayed bridge deck is demonstrated and 

recommendations are given to facilitate design office practice. 

Keywords:  Instability; cable-stayed bridge decks; slender beam-columns; second-order 

effects; flexural rigidity; reinforced concrete.  
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

Cable-stayed bridges are elegant structures that are economical for spans less than 

1200m. The configuration has only recently been chosen for spans over 1000m that 

historically were the domain of the suspension bridge (Hauge & Anderson, 2011). As the 

pushing of the span envelope continues, the use of slender girder systems is no longer just 

an aesthetic preference but a necessity due to self-weight considerations.  

Steel girder systems provide lightweight superstructures and therefore are used for very 

long spans. They are also relatively costly, however, and so should only be used when the 

reduction in weight can significantly reduce the cross sections of the cables, pylons, and 

piers (Gimsing & Georgakis, 2012). Composite systems, shown by the cross section in 

Figure 1.1 a), comprising steel girders and floorbeams with precast concrete deck slabs 

have become popular because a desirable self-weight is maintained, and the pre-

fabricated components allow for efficient cantilever construction. Composite action is 

achieved by connecting the precast slabs to the steel girders using cast-in-place infill 

joints. This connection allows the deck slabs to contribute to both the compressive and 

bending resistance of the composite girder system. For shorter spans, when self-weight 

restrictions are not as severe, concrete girder systems, shown by the cross section in 

Figure 1.1 b), are also used, where the deck slab is cast monolithically with the 

floorbeams and the girders and so also contributes to the compression and bending 

resistance of the cross section. 
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Figure 1.1: Cable-stayed bridge girder cross sections: a) composite girder system; b) 

concrete girder system. 

In both girder systems shown in Figure 1.1, the deck slab must resist local bending 

moments from traffic loads applied between floorbeams, compression forces due to 

global bending of the girder system, and additional compression forces from the 

horizontal component of the stay cable tensions, as shown in Figure 1.2. The global axial 

force diagram of a typical cable-stayed bridge, shown in Figure 1.2 a), generally has a 

parabolic shape with the maximum compression at the towers. The typical global bending 

moment diagram, shown in Figure 1.2 b), is characterized by positive moments larger 

than the negative moments in regions with significant compression and positive and 

negative moments of similar magnitude near midspan where the compression is the least 

(Gimsing & Georgakis, 2012). The deck slab will act as a compression flange for the 

girder system, resisting global axial loads and positive moments, as shown in Figure 1.2 

c), but will only resist negative bending moments if there is sufficient axial force to 

prevent tensile stresses in the deck. The stress blocks in Figure 1.2 c) are shown at the 

steel 
girder 

a) 

concrete deck slab cast-in-place infill joint 

stay 

b) 

concrete deck slab 

concrete floorbeam 

concrete 
girder 

stay 

steel floorbeam 
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ultimate limit state. The deck slabs spanning between the floorbeams also resist local 

moments resulting from traffic loads, shown in Figure 1.2 d), which will generally be 

positive beneath the applied load and negative above the supports. 

 
Figure 1.2: Simple cable-stayed bridge including typical a) global axial force diagram, b) 

global bending moment envelope (from Gimsing & Georgakis, 2012), c) global force 

effects on sections of the girder, and d) local force effects on the deck slab. 

The maximum compression force at the towers due to the horizontal component of the 

stay cable tensions increases significantly as the main span length increases. For a fan 

compression compression a) 

b) 

c) 

Global axial force 

Global positive 

moment 

Global negative moment 

- 

+ 

 

+ 
- - 

Local bending moment diagram 

d) 
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configuration, with all cables connected at the top of the tower, and uniform dead and live 

loads placed along the length of the main span, the maximum compression force, C, in 

the deck system is (Gimsing & Georgakis, 2012): 

[1.1]  
  2

8

D L mL
C

H




 
  

where ωD and ωL are uniformly distributed dead and live loads per unit length of deck, Lm 

is the main span length, and H is the height of the tower above the centroid of the deck 

system. For a constant uniformly distributed load, ωD+ωL, the compression force, C, 

should increase proportional to Lm, since the tower height, H, usually also increases 

proportionally to Lm (Gimsing & Georgakis, 2012). However, the increase in C requires a 

larger deck cross section, increasing the dead load per unit length, leading to a further 

increase in deck compression.  

Figure 1.3 shows the approximate relationship between the compressive stress in the 

girder and main span length, proposed by Gimsing and Georgakis (2012) for a cable-

stayed bridge with a constant deck width. The compressive stress is computed accounting 

for both the axial force from the horizontal component of the stay cable tensions and the 

additional stresses due to lateral bending of the girder system. The black-dashed line is a 

linear extrapolation of the original relationship and suggests that the span current limit for 

girder systems with concrete decks ( cf ' ≤60MPa) is in the order of 500m. For high-

strength steel decks the theoretical limit is approximately 1500m (Gimsing & Georgakis, 

2012). Clearly, if the current span envelope is to be extended, the self-weight of the 
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girder system must be reduced. For composite girder systems, lightweight concrete is not 

a viable option since undesirable creep properties and reduced elastic moduli result from 

using lightweight aggregates (e.g., Lopez, 2005). Therefore, minimizing the deck slab 

thickness seems to be the most viable option, although innovative panel cross sections, 

such as fluted panels, could also be considered (Bergman, 2011).  

 
Figure 1.3: The maximum compressive stress in the girder system due to axial 

compression and lateral bending (after Gimsing & Georgakis, 2012). 

Given that the panels are subjected to combined bending and axial compression loads, 

they must be designed as slender beam-columns since slenderness ratios larger than 70 

can occur in practice. The longest cable-stayed bridge in Canada, the Alex Fraser Bridge 

in Vancouver, has a main span of 465m and its 215mm thick precast panels have 

slenderness ratios of 73 (CBA-Buckland & Taylor Ltd, 1983). Currently the longest 

cable-stayed bridge in North America, the John James Audubon Bridge near New Roads, 

Louisiana, has a main span 482m and consists of 240mm precast panels with slenderness 

Compressive Stress in the 

Girder System (MPa) 

  

Main Span 

Length (m) f ’c=60 

~500m 
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ratios of 66 (Schemmann et al., 2011). These members are extremely slender compared to 

typical building columns, where slenderness effects can usually be ignored (MacGregor, 

Breen, & Pfrang, 1970) and hence may require a more sophisticated analysis than is 

currently provided by Canadian standards. 

1.2 SLENDER CONCRETE BEAM-COLUMNS 

The essential response of a slender beam-column can be understood by considering a 

simple column bent in single curvature due to equal end moments, as shown in Figure 

1.4. The factored axial load, Cf, applied at an initial eccentricity, e, creates a first-order 

end moment, M2, equal to Cf ∙e. The mid-height deflection of the column, Δ, results in a 

second-order moment, Cf ∙Δ, at mid-height of the member that further increases Δ. The 

total moment at the mid-height of the column is therefore the combination of the first- 

and second-order moments. If the second-order moment is less than 5% of the axial 

capacity of the column, the second-order behaviour is typically ignored (MacGregor, 

Breen, & Pfrang, 1970).  



7 

 

 
Figure 1.4: Forces on a simple slender column (after MacGregor & Bartlett, 2000). 

Significant second-order effects can results in two failure modes, as demonstrated by the 

axial load versus bending moment diagram shown in Figure 1.5. The bold outer line is 

the capacity of the cross section. A short column, with no moment magnification, follows 

the linear load path shown until reaching the cross-section capacity at point A. An 

intermediate column will follow a nonlinear path, due to the Cf - Δ effect, until it fails 

when the cross-sectional strength is reached at point B. In both of these cases the cross-

section capacity is reached, so the resistance of the column is limited by material failure. 

Slender (or “long”) columns will not reach material failure but will fail at a maximum 

moment less than the cross-section capacity where the increase in moment for an increase 

in axial load, dMc/dC, approaches infinity, as shown by point C. The moment 

magnification, due to the Cf - Δ effect, is usually very significant for long columns, 

e Δ 

Cf 

Cf 

Cf 

  

Cf 

Mc = Cf (e+Δ) 
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causing an instability failure to occur before the cross-section capacity is achieved 

(MacGregor & Bartlett, 2000).  

 
Figure 1.5: Cross-section interaction diagram showing the responses of a short column, 

A, an intermediate column, B, and a very slender column, C. 

To further examine these failure modes, a distinction between secant and tangent member 

rigidities is necessary. Material failures are dependent on the moment magnification 

present and so on the secant rigidity at failure, EIsec, which is simply the moment, M, 

divided by the corresponding curvature, ψ: 

[1.2]  sec

M
EI 


 

A theoretical equation, first proposed by Anderson and Moustafa (1970), can be easily 

derived for the secant rigidity at material failure: 
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[1.3]  u u
sec

cu

M c
EI

ε


  

where the neutral axis depth at the ultimate limit states, cu, is determined for the ultimate 

cross-sectional moment capacity, Mu, and the strain in the extreme compression fibre, εcu, 

is assumed to be equal to 0.0035 in CSA S6-06.  

As the applied moment increases, the secant rigidity reduces as shown by the moment-

curvature curve in Figure 1.6. At instability failure, which depends on the tangent rigidity 

at the failure point A, the maximum moment is less than the cross-section capacity, Mu, 

and hence the secant stiffness is greater than at material failure. 

 
Figure 1.6: Relationship between the moment-curvature response and the secant and 

tangent rigidities. 
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Instability failure is dependent on the tangent rigidity of the member, dM/dψ, which is 

also shown on Figure 1.6. Bartlett (1991) and others have developed a rational expression 

for the mid-height tangent rigidity, dMc/dψc, at instability, using the Euler buckling 

formula: 

[1.4]  
 

2

2

fc
tan

c

C kLdM
EI

dψ π
   

This expression for the critical tangent rigidity, EItan, can be derived by equating the 

change in end moment, dM2, with respect to a change in mid-height curvature, dψc, to 

zero. According to Eq. [1.4], the tangent rigidity at failure must increase, and so the mid-

height moment at stability failure must decrease, Figure 1.6, when either the factored 

axial load, Cf, or the effective length of the member, kL, increases. Since the critical 

tangent rigidity is defined by the cross-section response and the susceptibility of the 

member to buckling, it can be quantified by drawing the member-stability-effect line, 

through the origin of the cross-section moment-curvature curve with a slope equal to that 

given by the right hand side of Eq. [1.4], as shown in Figure 1.7. The critical mid-height 

moment, Mc, and corresponding curvature, ψc, at failure can then be determined as the 

point on the moment-curvature curve where the tangent rigidity is parallel to the member-

stability-effect line. This effectively maximizes the first-order end moment, M2, at failure 

which is the difference between the moment-curvature curve and the “member-stability-

effect line,” as shown, yielding: 
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[1.5]   
 

2

2 2

f

c c

C kL
M M ψ

π

 
  
 
 

 

 
Figure 1.7: Moment-curvature response of a member susceptible to instability (after 

Bartlett, 1991). 

This method is a rational approach to determine the capacity of very slender members 

such as cable-stayed bridge decks, but it applies only to simply supported members with 

equal end eccentricities, causing single curvature. However, cable-stayed bridge decks 

are often subjected non-uniform local moments from traffic loading applied between the 

floorbeam supports, as was shown in Figure 1.2 d). These moments are typically positive 

at midspan and negative at the supports, since rotations of the ends of the deck slab are 

partially restrained by the adjacent deck slabs and the transverse floorbeams. Rational 

methods are not currently available for computing the second-order effects in continuous 

beam-columns subjected to transverse loads between the supports, so further 
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investigation is required to determine the response of continuous beam-columns 

subjected to non-uniform first-order moments. 

1.3 SLENDER COLUMNS IN CSA S6-06 

For reinforced concrete members with slenderness ratios less than 100, CSA S6-06 (CSA, 

2006) allows slenderness effects to be computed using a moment magnifier, δ, computed 

as: 

[1.6]  

1
0.75

m

f

c

c
δ

C

C


 

   
 

 

The magnified moment, Mc, equivalent to Cf 
(e+Δ) in Figure 1.4, is computed as the 

product of the moment magnifier, δ, and the larger first-order end moment, M2. The 

factor, cm, accounts for unequal end moments and is taken as 1.0 for members with 

transverse loads applied between supports, such as traffic loads applied to the deck slabs 

of cable-stayed bridges. The 0.75 factor accounts for uncertainties in determining the 

critical buckling load (Bartlett, 1991), Cc, where Cc is the Euler Buckling Load given by: 

[1.7]  
 

2

2c

π EI
C

kL
  
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where EI is the rigidity and kL is the effective buckling length. For moment 

magnification, the rigidity of the column, EI, must represent the secant rigidity, which is 

approximated using two equations in CSA S6-06: 

[1.8]  
 d

ssgc

β

IEIE
EI






1

2.0
 

[1.9]  gc IEEI 25.0   

In these equations, Ec and Es are the elastic moduli for concrete and steel respectively, 

and Ig and Is are the moments of inertia about the centroid of the section for the gross 

concrete section and the steel reinforcement, respectively. The factor βd accounts for the 

fraction of applied load that is sustained. Equation [1.8] is more accurate than Eq. [1.9], 

although for lightly reinforced concrete members the more conservative Eq. [1.9] tends to 

produce acceptable results (MacGregor, Breen, & Pfrang, 1970). The simplicity of Eq. 

[1.9] is often preferred during preliminary stages of design. 

Provided it can be justified, CSA S6-06 allows the use of an effective length factor, k, 

less than 1 for members in braced frames. There is no guidance, however, for computing 

k for cable-stayed bridge deck slabs restrained by transverse floorbeams. 

Equations [1.6] through [1.9] were developed by MacGregor, Breen, and Pfrang (1970) 

for columns in buildings that typically are quite stocky and so have minimal second-order 

effects. For this reason, Eqs. [1.8] and [1.9] are intended to approximate the secant 



14 

 

rigidity of the section at material failure. If a member fails by instability, the maximum 

moment will be less than the cross-section capacity, Mu, and the secant rigidity at failure 

will likely be much greater than that predicted by Eqs. [1.8] or [1.9], as was shown in 

Figure 1.6 (Bartlett, 1991).  

1.4 INSTABILITY OF CABLE-STAYED BRIDGE DECKS 

Very slender columns fail due to instability before the maximum moment along the 

member reaches the cross-section capacity, i.e. when dMc/dC=∞, as shown in Figure 1.5. 

Since the CSA S6-06 rigidity equations, Eqs. [1.8] and [1.9], were derived primarily for 

material failures, their extension to the analysis of instability failures is hard to justify. 

The inaccuracy associated with their use to compute the resistance of a cable-stayed 

bridge deck with a slenderness ratio of 73 was reported by Bartlett (1991). Slender 

column resistances computed using rigidity equations similar to those in CSA S6-06 were 

compared to those obtained by computing the critical mid-height moment associated with 

the critical tangent rigidity, Eq. [1.4], and the corresponding first-order end moment using 

Eq. [1.5]. The results varied significantly between the two approaches, with the code 

provisions providing extremely conservative resistances in the compression failure region 

and unconservative capacities in the tension failure region.  

Bartlett (1991) assumed the deck was simply supported and was subjected to equal and 

opposite end moments. Rotational restraint provided by the floorbeams was neglected, so 

the effective length, kL, was equal to the floorbeam spacing, L. Given that the current 

method in CSA S6-06 was shown to be inaccurate for this simplified case, its application 
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to more complex non-uniform loading conditions can also be expected to contain 

significant error, so other methods proposed in the literature must be examined. 

1.5 RESEARCH OBJECTIVES 

The objectives of this research are as follows: 

1) Determine the accuracy of the current methods in the literature for computing the 

rigidity, EI, of slender concrete beam-columns. 

2) Develop approximate methods for computing the rotational restraint provided by 

steel or concrete transverse floorbeams and apply these methods to compute the 

effective length of cable-stayed bridge decks. 

3) Develop a rational method for computing first- and second-order moments in 

continuous, slender beam-columns subjected to transverse point loads between the 

supports. 

4) Implement the method into a computer program capable of analyzing an idealized 

cable-stayed bridge deck system. 

5) Perform a sensitivity analysis of the parameters that influence the moment 

magnification of continuous cable-stayed bridge decks. 

6) Provide recommendations to practicing designers. 

1.6 THESIS OUTLINE 

Chapter 2 contains detailed review of eight methods proposed in the literature for 

computing EI of slender concrete beam-columns bent in single curvature due to equal end 

moments. Chapter 3 presents and validates approximate methods for quantifying the 
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rotational restraint provided at the ends of the deck slab span by steel or concrete 

transverse floorbeams. Chapter 4 presents and validates a rational method for computing 

second-order effects in continuous beam-columns subjected to transverse point loads 

applied between the supports. Chapter 5 presents a sensitivity analysis to determine the 

parameters that influence the moment magnification of slender cable-stayed bridge decks. 

Chapter 6 provides a summary of the research contained in this thesis, highlights the main 

conclusions, offers advice for practicing designers, and provides recommendations for 

future work.  
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CHAPTER 2: REVIEW OF SLENDER COLUMN ANALYSES IN THE 

LITERATURE 

2.1 SIMPLIFIED EI EQUATIONS PROPOSED IN THE LITERATURE  

Several equations for the effective rigidity, EI, of slender columns have been developed 

since the moment magnifier equation, Eq. [1.6], was introduced by MacGregor et al. in 

1970. The equations in Table 2.1 include: 

 two rigidity equations provided in CSA S6-06, Eqs. [1.8] and [1.9], 

 six equations that have been proposed in the literature to replace the current 

code equations, Eqs. [2.1] to [2.6], 

 one theoretical equation for the secant rigidity at material failure first 

proposed by Anderson and Moustafa (1970), Eq. [1.3].   

All equations yield nominal rigidities and, with the exception of Eq. [2.1], should be used 

with the stability resistance factor of 0.75, which accounts for uncertainties in 

determining the buckling load, Cc, in Eq. [1.6]. 

Table 2.1: Proposed equations for the rigidity, EI. 

Eq. [#] 
Author 

(year) 

General Form of 

Equation 
Variable Rigidity Factors 

[1.8] 
CSA (2006) 

#1  

0.2

1

c g s s

d

E I E I
EI

β





  

[1.9] 
CSA (2006) 

#2 
0.25 c gEI E I   
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Table 2.1 (cont.): Proposed equations for the rigidity, EI. 

Eq. [#] 
Author 

(year) 

General Form of 

Equation 
Variable Rigidity Factors 

[2.1] 
Nathan 

(1983) 
 1

c g

d

E I
EI

α β



 

 

1.5α ηΩ   

 
2

3 0.02

7 100

f o
f o

η
C C C C

η

 

 

Sections with no compression flange:

17
Ω

kL
r

  

[2.2] 

Khuntia & 

Ghosh 

(2004)
a 

 0.80 25c g gEI αE I ρ   1 0.5
f

o

Ce
α

h C

 
   
 
 

 

[2.3] 
Olendzki 

(2008)
  d

ssgc

β

IEIEα
EI






1  
4733 'c cE f

 

 
r

kLα 004.081.0   

[2.4] 

Tikka & 

Mirza (2008) 

#1 

 
 

0.85
1

c g s

s s

d

αE I I
EI E I

β


 


 

1
0.48 3.5 0.00058

1

e kL
α

eh r
β

h

  



 
 
 

  
    

7 for 2%gβ ρ 

 

[2.5] 

Tikka & 

Mirza (2008) 

#2 
 

0.8
1

c g

s s

d

αE I
EI E I

β
 


 

1
0.47 3.5 0.00087

1

e kL
α

eh r
β

h

  



 
 
 

  
    

7 for 2%gβ ρ 

 

[2.6] 

Bonet, 

Romero & 

Miguel 

(2011) 

 1 (1 )

c g s s

φ

αE I E I
EI

φ ξ
 

 
 

  3.0
10'000,22 cc fE   

1.9 exp
25

φ

kL
ξ φ

r

 
  

 
 

 

4
e

e
η

r
  

For eη  < 0.2: 

 

 

1.95 0.035 0.25 0.2

' 225 0.11 0.1
c

e

kL
φ η

r

f

α    

  

 
 
   

For eη  ≥ 0.2: 

  

 

' 110 0.45 0.2

' 225 0.11 0.1

c

c

eα f η

f

  

  
 

[1.3] 

Anderson & 

Moustafa 

(1970)
a
 

u u

cu

M c
EI

ε
   

a 
No discussion of βd. 
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In Table 2.1, Ec and Es are the concrete and steel moduli of elasticity, respectively. The 

moments of inertia of the gross uncracked concrete section and the steel reinforcement 

are Ig and Is, respectively. The sustained load factor is βd, kL is the effective buckling 

length, and r is the radius of gyration. The eccentricity of the applied load, Cf , 
is e and Co 

 

is the factored axial resistance of the cross section for zero applied moment. The height of 

the cross section is h, ρg is the gross reinforcing ratio, and cf '  is the 28-day concrete 

compressive strength in MPa. The creep coefficient used in Eq. [2.6], φ, is recommended 

by Bonet et al. (2011) to be taken from Eurocode 2 (European Committee for 

Standardization, 2004). The ultimate neutral axis depth, cu, in Eq. [1.3] corresponds to the 

cross-sectional moment resistance, Mu, at the applied load, Cf, and the ultimate strain in 

the extreme compression fibre, εcu, is assumed to be 0.0035 in CSA S6-06. Most of the 

equations contain a variable rigidity factor, α, as defined in the rightmost column. 

Each of these equations is restricted to certain limitations that may limit its applicability 

to cable-stayed bridge deck design. The deck panels in the Alex Fraser Bridge in 

Vancouver have slenderness ratios of 73 (CBA-Buckland & Taylor Ltd, 1983), so the 

typical range of slenderness ratios, kL/r, was assumed to be from 60 to 80. Similarly, the 

typical range of gross reinforcing ratios, ρg, is assumed to be from 0.5 to 2%, since the 

deck panels in the Alex Fraser Bridge have reinforcing ratios ranging from 0.6 to 1.3%. 

The basis and limitations of the proposed equations are discussed in detail in Appendix 

A. 
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A variation on Eq. [1.3] was suggested by Shuraim and Naaman (2003) for slender 

prestressed concrete columns. As shown in Figure 2.1, they propose adopting the secant 

rigidity corresponding to the applied end eccentricity, 2 fe M C , shown as point B, 

instead of taking the rigidity at the applied load Cf , point A, as suggested by Anderson 

and Moustafa (1970).  

 
Figure 2.1: Interaction diagram showing Shuraim and Naaman’s (2003) proposal for 

calculating the secant rigidity using Eq. [1.3]. 

The computed rigidity proposed by Shuraim and Naaman (2003) is compared to the 

results from their finite element analysis in Figure 2.2. At low eccentricity ratios, e/h, the 

method greatly underestimates the rigidity, as shown by the dashed line. To avoid 

extreme conservatism at these eccentricities, they further proposed that the rigidity should 

not be taken less than the peak secant rigidity, shown by point B on Figure 2.2. The peak 

secant rigidity can be obtained by setting the derivative of the secant rigidity equation, 

Eq. [1.3], to zero. For rectangular sections, the ultimate neutral axis depth at the peak 

rigidity simplifies to: 
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[2.7]  

1

2

3
u

h
c

β
  

where β1 is the ratio of the equivalent rectangular stress block depth to the neutral axis 

depth. 

 
Figure 2.2: The rigidity using the method proposed by Shuraim and Naaman compared 

to results from their finite element analysis (from Shuraim & Naaman, 2003). 

Shuraim and Naaman (2003) assume that the ultimate neutral axis depth is known for a 

sufficient number of points defining the short column interaction diagram. The ultimate 

axial load and moment resistances, Cu and Mu, at the peak rigidity can then be computed 

by interpolating between these values for the cu value obtained from Eq. [2.7]. If the short 

column interaction curve is not available, an iterative procedure is required to determine 
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the Cu and Mu corresponding to cu from Eq. [2.7]. Once both the Mu and cu values are 

known, the peak rigidity can be computed using Eq. [1.3]. 

For applied end eccentricities less than that corresponding to the peak rigidity, they 

propose computing the rigidity by interpolating between the peak secant rigidity, point B 

on Figure 2.2, and the tangent rigidity under concentric axial load, EItan, shown by the 

dashed line, which is computed as: 

[2.8]  tan tc gEI E I  

where Etc, the concrete tangent modulus of elasticity, computed as: 

[2.9]  
'2

1c
tc

o ο

f ε
E

ε ε

 
   

 
 

where εo is the strain corresponding to the peak stress, cf ' , and the strain, ε, at failure 

under concentric axial load is computed as: 

[2.10]  
2 4

2
o o

π r π r
ε ε ε

kL kL

    
       

     

 

The derivation of Eqs. [2.9] and [2.10] are presented in Appendix A. 
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2.2 INFLUENCE OF KEY VARIABLES ON THE SIMPLIFIED EI EQUATIONS 

The equations shown in Table 2.1, except Eqs. [1.8] and [1.9], yield flexural rigidities 

that are not constant for a given cross section. There is little agreement regarding which 

variables influence the rigidity, however, as shown in Table 2.2. The symbol  indicates 

that the equation neglects the contribution of a particular variable to the effective rigidity, 

while the symbol  indicates the equation specifically addresses the instability case. A 

plus, , or minus sign, , indicates that an increase in a particular variable will increase 

or decrease the effective rigidity, respectively. As will be detailed in this section, there is 

limited consensus of which variables are important or how a particular variable impacts 

the rigidity. 

Table 2.2: Variables included in the proposed rigidity equations. 

Eq. [#] Author (year) e 
f

o

C

C
 

kL

r
 ρg or Is cf '  or Ec 

Address 

Instability 

[1.8] CSA (2006) #1      

[1.9] CSA (2006) #2      

[2.1] Nathan (1983)      

[2.2] 
Khuntia & 

Ghosh (2004)      

[2.3] Olendzki (2008)      

[2.4] 
Tikka & Mirza 

(2008) #1      

[2.5] 
Tikka & Mirza 

(2008) #2      

[2.6] 
Bonet, Romero 

& Miguel (2011) /    

[1.3] 
Anderson & 

Moustafa (1970) / /    

[1.3] & 

[2.8] 

Shuraim & 

Naaman (2003) / /    
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All of the proposed methods account for the increase in effective rigidity resulting from 

an increase in the concrete modulus of elasticity, Ec, as shown in Table 2.2.  All of the 

methods except the simplified CSA S6-06 Eq. [1.8] and Eq. [2.1] proposed by Nathan 

(1983) account for an increase in rigidity due to increased reinforcement, either ρg or Is.  

In Eqs. [2.1], [2.4] and [2.5], and [2.6], the rigidity increases as the slenderness ratio, 

kL/r, increases. Increasing the slenderness increases the likelihood of an instability failure 

(e.g. Bonet et al., 2011) and the associated rigidity is greater. Clearly the rigidity used 

must correspond to the correct mid-height moment, Mc. Hence, the rigidity, EI, increases 

as the slenderness increases, because the mid-height moment at failure decreases. 

Equation [2.3] implies, however, that the rigidity will decrease as the slenderness 

increases, perhaps because it was developed entirely on statistical analyses. 

Most of the proposed methods consider the influence of either the applied end 

eccentricity, e, or the applied axial force, Cf. Including both variables as suggested by Eq. 

[2.2] may significantly affect the results from a regression analysis, since they are 

correlated. As the normalized applied axial load, Cf / Co, increases from 0 to 1, the 

maximum applied end eccentricity ratio, e/h, decreases from infinity to zero. Eq. [2.2] 

was developed from a parametric study treating the two variables independently, but the 

coefficients assigned to these variables are potentially highly correlated: there should be 

an unlimited number of coefficients that will fit the parametric study results with similar 

accuracy. 
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Equation [2.1] implies that increasing Cf / Co will increase the rigidity, as shown in Figure 

2.3 for various slenderness ratios, kL/r. At axial loads less than 0.02Co the rigidity from 

Eq. [2.1] is a minimum value, which is defined by the slenderness ratio. Equation [2.1] 

reaches a maximum at 0.42Co 
that is also related to the slenderness ratio. For columns 

with slenderness ratios exceeding 80, this maximum rigidity value is limited to two thirds 

of the gross rigidity, EcIg. Equation [2.2], contradicts Eq. [2.1] however, because it 

implies that the effective rigidity will reduce as the normalized applied axial load is 

increased. 

 
Figure 2.3: Effective rigidity according to Eq. [2.1] for short-term loading. 

Equation [1.3] suggests a complex relationship between the normalized applied axial 

load, Cf / Co, and the effective flexural rigidity, EI, that depends on the concrete 

compressive strength, cf ' , the steel-effective-depth-to-section-height ratio, d/h, and the 

gross reinforcement ratio, ρg. Figure 2.4 a) shows the variation of the secant rigidity 

obtained using Eq. [1.3] with the normalized applied axial load for a cross section with 
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cf ' = 50MPa, ρg= 1%, and d/h from 0.75 to 0.90. Since the top steel layer in cable-stayed 

bridge decks is not tied to prevent buckling, only the lower layer has been considered 

when computing the reinforcing ratio, ρg. Increasing the d/h ratio causes a slight increase 

in effective rigidity, as shown in Figure 2.4 a). Increasing the normalized applied axial 

load causes a more significant response, increasing the effective rigidity at low axial 

loads and decreasing it at higher loads. To further examine the influence of either the 

axial load or the d/h ratio on the secant rigidity, the effects of increasing these parameters 

on the neutral axis depth and on the cross-sectional moment resistance will be considered 

separately. 

 
Figure 2.4: Influence of the normalized applied axial load, according to Eq. [1.3], on the: 

a) rigidity; b) neutral axis depth; and c) moment resistance for ρg = 1% and ' 50MPa.cf   

b) a) 

c) 



27 

 

Figure 2.4 b) demonstrates the relationship between the normalized applied axial load and 

the neutral axis depth for various d/h ratios. For axial loads below the balanced failure 

load at roughly 0.3Co, the d/h ratio does not affect the neutral axis depth. For loads above 

the balanced failure load, increasing the d/h ratio slightly increases the neutral axis depth. 

Increasing the axial load is more significant because the neutral axis depth triples as the 

load is increased from 0.1Co to 0.7Co. 

The relationship between the normalized applied axial load and the moment capacity is 

shown in Figure 2.4 c). The moment resistance, Mu, is divided by wh
2
, where w is the 

width of the member, to obtain a normalized value of the bending stress. Clearly, the 

moment resistance is strongly affected by both the d/h ratio and the normalized applied 

axial load. Increasing the d/h ratio increases the moment resistance regardless of the 

applied load. Increasing the applied load increases the moment resistance until the 

balanced failure load is reached and decreases the moment resistance once the balanced 

failure load is exceeded.  

The maximum rigidity for the indicated range of axial loads is shown on Figure 2.4 a) by 

the symbol X. The peak rigidity corresponds to the axial load where the rate of increase 

in neutral axis depth, Figure 2.4 b), is equivalent to the rate of reduction in moment 

resistance, Figure 2.4 c), and therefore must occur at an axial load exceeding the balanced 

failure load.  

Equations [2.2], [2.4], and [2.5], suggest that increasing the end eccentricity ratio, e/h, 

will decrease the effective rigidity. Equation [2.6] implies that the effect of the applied 
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eccentricity, e, depends on both the magnitude of the relative eccentricity factor, ηe, and 

the slenderness ratio, kL/r, as shown in Figure 2.5. For ηe > 0.2, increasing the applied 

eccentricity causes the effective rigidity to decrease for all slenderness ratios. For ηe < 

0.2, increasing the applied eccentricity reduces the rigidity in members with slenderness 

ratios greater than 55, and increases the rigidity in members with slenderness ratios less 

than 55. Bonet et al. (2011) explain that when ηe < 0.2 and the slenderness is high, failure 

is due to instability and so increasing the slenderness while holding the eccentricity 

constant approaches an unstable position, so the mid-height moment at failure is reduced 

and the rigidity at failure increased. At low slenderness ratios, material failure occurs, so 

as the eccentricity reduces the section becomes more compressed and the factor α reduces 

to account for the difference between the actual secant elastic modulus at the applied load 

and the nominal tangent modulus computed using Eq. [2.6]. Since α reduces with the 

eccentricity only when kL/r < 55, it can be assumed that Bonet et al. (2011) chose a 

slenderness ratio of 55 to be the limit when instability failure occurs before material 

failure is reached, though it would seem that this limit is likely a function of other 

parameters as well. 
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Figure 2.5: The variable rigidity factor, α, provided by Eq. [2.6] for short-term loading. 

Equations [2.1], [2.6], and the method proposed by Shuraim and Naaman (2003), using 

Eqs. [1.3] and [2.8], explicitly account for instability failures. In contrast, Eqs. [1.8], 

[1.9], [2.4], and [2.5], only address material failures. Equation [1.3] provides the secant 

rigidity at material failure and so does not apply to instability failures. Equation [2.2] was 

intended to provide the secant rigidity of the cross section at service and ultimate loads. 

However, Eq. [2.2] can only be applied to instability failures if the maximum moment at 

failure is known. Equation [2.3] was derived from a statistical analysis of slender column 

tests reported in the literature. This equation may implicitly address instability, if some 

columns in the sample failed by instability, but this is not discussed and no specific 

approach is given for considering instability. 

The equations in Table 2.2 range in sophistication from the basic Eqs. [1.8] and [1.9], to 

the more complicated Eqs. [2.4], [2.5], and [2.6]. However, the more complicated 

equations are not necessarily more accurate. Olendzki (2008) analysed experimental 

results reported in the literature for 180 columns that satisfied the slenderness limits of 



30 

 

CSA S6-06, and had compressive strengths less than 55MPa. The experimental capacities 

were compared to the capacities predicted using the moment magnifier equation, Eq. 

[1.6], with the effective rigidity provided by CSA S6-06, Eq. [1.8], and that suggested by 

Tikka and Mirza (2008), Eq. [2.4]. The mean value and coefficient of variation of the 

test-to-predicted ratios were 1.13 and 0.18, respectively, for Eq. [1.8] and 1.15 and 0.18, 

respectively, for Eq. [2.4]. Equation [2.4], although more complicated, was therefore 

slightly more conservative than and essentially as variable as Eq. [1.8]. Olendzki (2008) 

observes that Eq. [2.4] was derived by regression of both simulated reinforced concrete 

and composite column results. 

2.3 CASE STUDY: VARIABILITY AMONG THE EI EQUATIONS PROPOSED IN THE 

LITERATURE 

Various methods have been proposed to compute the capacity of slender columns, shown 

in Table 2.1. However, as shown in Table 2.2, there is limited consensus regarding which 

variables influence the rigidity. A simple example will be presented to demonstrate 

further the different outcomes obtained using these methods. 

A simply supported slender column 4500mm long, 215mm thick, and 1000mm wide 

(kL/r = 72.5), is subjected to equal end moments, as shown in Figure 2.6 a). The concrete 

compressive strength,
 

'cf , is 55MPa and there are two layers of reinforcement centered 

35mm from each face, containing 2000mm
2
 of reinforcing steel (fy = 400MPa), 

respectively, as shown in Figure 2.6 b). This cross section is similar to that of the deck 

panels near midspan of the Alex Fraser Bridge in Vancouver (CBA-Buckland & Taylor 

Ltd, 1983). The maximum first-order moment, M2, that the column can resist is calculated 
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for axial loads, C, of 1000kN and 5000kN, which correspond to roughly 10% and 50% of 

the short column capacity, Co = 9790kN, as shown on the cross-section interaction 

diagram in Figure 2.6 c). The end moments are calculated using the moment magnifier 

equation, Eq. [1.6], with the equivalent rigidities, EI, proposed in the literature, Eqs. 

[1.3], [1.8], [1.9], [2.1] to [2.6], and [2.8].  

 
Figure 2.6: Simply supported column: a) applied loading; b) cross section; c) cross-

section interaction diagram. 

The following assumptions are made: 

a) Resistance factors are set equal to 1.0 and only short-term loading is considered. 

b) Steel is considered to only act in tension, since it is not tied to prevent buckling 

(Clause 8.14.4.1, CSA S6-06). This reduces the gross reinforcing ratio, ρg, to 

0.93%. The moment of inertia of the reinforcement, Is, therefore considers only 

e 

C 

C 

a) b) 

215 

1000 

35 

180 

As=A’s=2000mm
2 

c) 
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the bottom layer of reinforcement and is calculated about the centroid of the gross 

concrete section. 

c) The mid-height moment is equal to the cross-section capacity, Mu, when using the 

moment magnifier equation, Eq. [1.6]. 

- Mu = 213.1 kN∙m (C = 1000kN) 

- Mu = 257.6 kN∙m (C = 5000kN) 

The results obtained using the proposed equations are compared to the results from a 

detailed computer analysis, specifically the program CSDECK described in Chapter 4. 

The analysis uses the moment-curvature relationship of the cross section to approximate 

the distribution of curvature along the member. The concrete stress-strain relationship 

proposed by Thorenfeldt et al. (1987) with the simplifications proposed by Collins and 

Mitchell (1990) is used to derive to moment-curvature relationship. The stress-strain 

relationship was derived for cf ' =55MPa and then the stress values were multiplied by 

0.9 to account for the difference between the in-place strength and cylinder strength 

(MacGregor & Bartlett, 2000). This also reduces the modulus of elasticity by a 0.9 factor, 

so the modulus of elasticity used to derive the relationship was computed using Clause 

8.4.1.7 of CSA S6-06 (CSA, 2006) and then increased by (1/0.9). The resulting stress-

strain relationship has a peak stress of '0.9 cf  and an initial tangent modulus of elasticity, 

Ec, that equals the value computed using CSA S6-06. Figure 2.7 shows the cross-section 

interaction diagrams obtained from CSDECK and from the equivalent rectangular stress 

block provided in CSA S6-06: clearly the two diagrams are similar. 
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Figure 2.7: Cross-section interaction diagrams obtained using the provisions in CSA S6-

06 and the program CSDECK. 

The various methods proposed by others are considered acceptable if the predicted 

maximum end moment, M2, is within 20% of the maximum end moment obtained from 

the CSDECK analysis, M2*. 

For the applied axial load of 1000kN, the failure is tension-initiated with the steel 

yielding before the concrete crushes. The maximum end moments capacities determined 

for the various proposed methods are shown in Table 2.3. The CSDECK analysis predicts 

an instability failure at the critical section where the maximum moment reaches 95% of 

the cross-sectional capacity, Mu 
, due to an applied end moment, M2*, of 157 kN∙m. The 

right most column in Table 2.3 shows the percent difference between the value obtained 

using each proposed method and the more accurate result from CSDECK.  
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Table 2.3: Maximum end moments obtained using the rigidity equations proposed in the 

literature for C=1000kN. 

Equations [1.8] and [1.9] from CSA S6-06 accurately predicted the capacity of the 

column, as did Eq. [2.2], proposed by Khuntia and Ghosh (2004). Equations [2.4] and 

[2.5], proposed by Tikka and Mirza (2008), and Eq. [2.6], proposed by Bonet et al. 

(2011), underestimated the capacity by 18 to 21%. Equation [2.3],  proposed by Olendzki 

(2008), gave the least conservative result, overestimating the capacity by 20%. The 

theoretical secant rigidity equation at material failure, Eq. [1.3], gave extremely 

conservative results, as did Eq. [2.1], proposed by Nathan (1983), underestimating the 

capacity by 53 and 33%, respectively. The variation of Eq. [1.3] proposed by Shuraim 

and Naaman (2003) improved the accuracy of Eq. [1.3] considerably, providing 

acceptable results within 12% of the results from CSDECK. 

Eq. [#] Author (year) 
EI 

(*10
3
 kN∙m

2
) 

Cc 

(kN) 

M2 

(kN∙m) 

Difference 

(%) 

[1.8] CSA (2006) #1 7.30 3560 153 2% 

[1.9] CSA (2006) #2 6.50 3170 146 7% 

[2.1] Nathan (1983) 4.04 1970 105 33% 

[2.2] 
Khuntia & Ghosh 

(2004) 
6.84 3330 149 5% 

[2.3] Olendzki (2008) 17.2 8390 188 -20% 

[2.4] 
Tikka & Mirza (2008) 

#1 
4.90 2390 124 21% 

[2.5] 
Tikka & Mirza (2008) 

#2 
5.07 2470 127 19% 

[2.6] 
Bonet, Romero & 

Miguel (2011) 
5.14 2510 128 18% 

[1.3] 
Anderson & Moustafa 

(1970) 
3.12 1520 72.9 53% 

[1.3] & 

[2.8] 

Shuraim and Naaman 

(2003) 
5.78 2820 137 12% 

 CSDECK   157 0% 
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For the applied axial load of 5000kN, because the failure is compression-initiated, the 

concrete crushes in compression before the steel yields. The associated maximum end 

moments are summarized in Table 2.4. The CSDECK analysis computes the maximum 

applied end moment, M2*, to be 114 kN∙m, which causes an instability failure at the 

critical section where the maximum moment is 94% of the cross-section capacity. All the 

proposed methods produced conservative predictions. Equations [1.8] and [1.9], from 

CSA S6-06, and Eqs. [2.4] and [2.5], proposed by Tikka and Mirza (2008), suggest the 

column subjected to this axial force will buckle before any end moment is applied. 

Equation [2.3], proposed by Olendzki (2008), and Eq. [2.2], proposed by Khuntia and 

Ghosh (2004), gave the most accurate predictions, underestimating the results from 

CSDECK by only 8 and 7%, respectively. Equation [2.1] suggested by Nathan (1983), 

and Eq. [2.6], proposed by Bonet et al. (2011), underestimate the capacity by 20 and 

26%, respectively. The theoretical equation for the secant rigidity at material failure, Eq. 

[1.3], underestimates the capacity by 84%. The method using Eqs. [1.3] and [2.8], 

proposed by Shuraim and Naaman (2003), performed better than Eq. [1.3], but is still 

very conservative, underestimating the capacity by 29%.  
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Table 2.4: Maximum end moments obtained using the rigidity equations proposed in the 

literature for C=5000kN. 

2.4 SUMMARY AND CONCLUSIONS 

Eight different equations proposed in the literature for computing the rigidity of slender 

concrete beam-columns were investigated and the influence of their key variables were 

compared. A simple example involving a realistic cable-stayed bridge deck section and 

effective length was investigated to demonstrate that the methods proposed in the 

literature provide inconsistent results. The equations provided by CSA S6-06, Eqs. [1.8] 

and [1.9], gave accurate predictions of the maximum end moments in the tension-

initiated-failure region, but gave unrealistic and extremely conservative estimates in the 

compression-initiated-failure region. Equation [2.1], suggested by Nathan (1983), 

consistently yielded over-conservative results. Equation [2.2], proposed by Khuntia and 

Eq. [#] Author (year) 
EI  

(*10
3
 kN∙m

2
) 

Cc 

(kN) 

M2 

(kN∙m) 

Difference 

(%) 

[1.8] CSA (2006) #1 7.30 3560 0 100% 

[1.9] CSA (2006) #2 6.50 3170 0 100% 

[2.1] Nathan (1983) 15.8 7720 90.7 20% 

[2.2] 
Khuntia & Ghosh 

(2004) 
17.4 8460 105 7% 

[2.3] Olendzki (2008) 17.2 8390 104 8% 

[2.4] 
Tikka & Mirza (2008) 

#1 
9.89 4820 0 100% 

[2.5] 
Tikka & Mirza (2008) 

#2 
10.2 4960 0 100% 

[2.6] 
Bonet, Romero & 

Miguel (2011) 
15.2 7430 84.1 26% 

[1.3] 
Anderson & Moustafa 

(1970) 
11.1 5390 18.5 84% 

[1.3] & 

[2.8] 

Shuraim and Naaman 

(2003) 
14.9 7270 80.5 29% 

 CSDECK   114 0% 
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Ghosh (2004), gave the most accurate results with accurate predictions at both applied 

axial loads. Equation [2.3], proposed by Olendzki (2008), was unconservative at the 

lower applied load, but gave an accurate prediction at the higher applied load. Equations 

[2.4] and [2.5], suggested by Tikka and Mirza (2008), and Eq. [2.6], proposed by Bonet 

et al. (2011), gave conservative predictions at both loads, with over-conservative 

predictions at the higher applied load of 5000kN. The theoretical equation for the secant 

rigidity at material failure, Eq. [1.3], gave extremely conservative predictions at both 

loads, since the rigidity is strongly influenced by the extreme fibre compression strain, 

εcu, and the minimum rigidity, occurring at the critical section, is assumed to apply along 

the entire length of the member. The method proposed by Shuraim and Naaman (2003), 

using variations on Eq. [1.3] and Eq. [2.8], gave a good prediction at the applied load of 

1000kN, but an overly conservative prediction at the higher applied load of 5000kN. 

The only noticeable trend among the proposed methods, with the exception of Eq. [2.1] 

proposed by Nathan (1983), is the predictions became more conservative as the applied 

load increased. With the exception of Eq. [2.3] (Olendzki, 2008), the proposed methods 

were more conservative than the CSA S6-06 equations for the tension-initiated failure 

case. All of the equations proposed by others yielded less conservative estimates of the 

rigidity for the compression-initiated failure case, though Eqs. [2.4] and [2.5] (Tikka and 

Mirza, 2008) still predict that the member will buckle when subjected to the applied axial 

load alone. 

For this idealized case of equal and opposite end moments causing single curvature there 

is a great deal of variability among the methods proposed in the literature. Cable-stayed 
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bridge decks however are subjected to non-uniform local moments from traffic loads 

applied between floorbeams. These moments are negative above the supports and 

positive at midspan, so deck slabs are typically bent in triple curvature.  Therefore, a 

more detailed investigation is warranted to determine the effect of non-uniform moment 

distributions.  
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CHAPTER 3: EFFECTIVE LENGTH OF CABLE-STAYED BRIDGE DECKS 

3.1 INTRODUCTION 

Equation [1.7] is given in CSA S6-06 (CSA, 2006) for computing the critical buckling 

load, Cc. Figure 3.1 a) shows the buckled shape of a slender cable-stayed bridge deck 

spanning between steel transverse floorbeams. The effective buckling length, kL, in Eq. 

[1.7] is the spacing between the inflection points of the buckled shape, shown in Figure 

3.1 b).  

   
Figure 3.1: Deck slab instability: a) buckled shape; b) idealization with deck slab at 

floorbeam centroid. 

If the deck slab is pinned at the floorbeams, its ends will be free to rotate, the distance 

between the inflection points will equal the floorbeam spacing, L, and the effective length 

factor, k, will be 1.0. If the ends of the slab are restrained from rotation, the inflection 

points will move inwards and the effective length will reduce, approaching a minimum 

value of half the floorbeam spacing (i.e., k = 0.5) if the ends are completely fixed.  

b) 
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Dimensionless ratios of relative stiffness, Ψ, can be used to obtain the effective length 

factor from an alignment chart (e.g., MacGregor & Bartlett, 2000) if the stiffnesses of the 

end restraints can be quantified. The assumption necessary for using these alignment 

charts is that all of the compression members buckle simultaneously. This assumption is 

more realistic for cable-stayed bridge decks than for columns in buildings, since the deck 

compression force is almost constant between adjacent floorbeams near the pylons. 

Neglecting distortion and local transverse bending deformation at the web, end rotations 

of the deck slab must be accompanied by equal rotations of the floorbeams, as shown in 

Figure 3.1 a). The ends of the slab are therefore partially restrained by the rotational 

restraint, Kθ, of the floorbeams. However, to take advantage of this restraint the 

floorbeams must be designed and detailed to resist torsion. Assuming a uniform moment 

causing single curvature of the slab at the onset of buckling, the relative stiffness is: 

 [3.1]  
 

θK

LEI
Ψ

/∑2
  

where EI is the flexural rigidity of the deck slab and L is the floorbeam spacing.  

3.2 IDEALIZATION OF THE ROTATIONAL RESTRAINT OF TRANSVERSE FLOORBEAMS 

The rotational restraint, Kθ, is the torque required to cause a unit rotation of the 

floorbeam. Assuming the floorbeams rotate about their centroid is analogous to assuming 

the deck slab is connected there, as shown in Figure 3.1 b). However, the deck slab is 

actually either shear-connected to the top flange of steel floorbeams or cast 
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monolithically with the web of concrete floorbeams. The significant slab axial stiffness 

causes negligible longitudinal deflection at the midpoint of the deck due to rotation of the 

floorbeams. The partial restraint of the eccentric deck slab is idealized in Figure 3.2 as a 

counteracting force, Pe, which causes the floorbeam centroid to deflect a horizontal 

distance, Δe, as the member rotates. Assuming the rotation, θ, is small,  ,2se hyθΔ   

where y is the distance from the top of the slab to the centroid and hs is the thickness of 

the slab. The rotational restraint, Kθ, is therefore a function of the floorbeam torsional 

rigidity, GJ, its y-axis bending rigidity, EIy, and the location of its centroid, .y   

 
Figure 3.2: Horizontal deflection of floorbeam centroid. 

3.3 APPROXIMATE ANALYTICAL EQUATIONS FOR THE ROTATIONAL RESTRAINT OF 

TRANSVERSE FLOORBEAMS 

The rotational restraint, Kθ, of a linear-elastic member with fixed ends rotating about its 

centroid due to an applied point torque is: 

[3.2] 
( )

θ

T GJs
K

θ a s a
 


 

Pe 

deflected shape 

steel floorbeam 

 
  θ 

Pe 

Δe 
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where θ is the rotation at the point of application of the point torque, T, at a distance, a, 

from the support. The shear modulus is G, J is the St. Venant torsional constant, and s is 

the floorbeam length. 

If the eccentricity of the deck slab is considered, the force, Pe, shown in Figure 3.2, 

causes a restraining torque, Te, equivalent to the product of Pe and .2shy   For small 

rotations, the restraint provided by the eccentric deck slab, Ke, can be computed as (see 

Appendix B for derivation): 

[3.3] 
 

 33

23 23

asa

hysEI

θ

T
K

sye
e




  

The total rotational restraint, Kθ, is sum of the restraint provided by the torsional stiffness 

of the floorbeam, Eq. [3.2], and that provided by the eccentricity of the deck, Eq. [3.3]: 

[3.4] 
 

 

 

23

33

3 2y s

θ

EI s y hGJs
K

a s a a s a


 

 
 

Figure 3.3 shows a width of slab, w, spanning between transverse floorbeams. Using Eq. 

[3.4] to compute the rotational restraint of a floorbeam subjected to a point torque is 

analogous to assuming the width of the deck slab, w, is only 1m. This assumption yields 

small values for the relative stiffness, Ψ, from Eq. [3.1], since the entire floorbeam 

contributes to Kθ but only 1m width of deck contributes to the deck rigidity, EI. Since the 
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effective length factor reduces with Ψ, this yields very unconservative estimates of k and 

so Eq. [3.4] must be revised to suit more realistic loading conditions.  

 
Figure 3.3: Concrete deck on steel floorbeams: a) plan; b) end elevation; and c) side 

elevation. 

If a uniform torque is applied along a width greater than 1m, the eccentricity of the deck 

slab can be idealized as a uniformly distributed restraint, pe, as shown in Figure 3.3. For 

the remainder of this thesis, it will be assumed that the uniform torque is applied along a 

width of slab equal to half the length of the floorbeam (i.e. w = s/2), centered at the 

floorbeam midspan. 

Equations [3.5] and [3.6], shown in Table 3.1 (see Appendix B for derivation), yield the 

rotational restraint, kθ, at the floorbeam midspan and quarter-spans, respectively, 
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provided by a floorbeam with fixed ends to a slab subjected to uniform torque applied 

between the quarter points. They are derived assuming that the ends of the floorbeams are 

fixed against y-axis bending. This assumption is appropriate for bridges with concrete 

floorbeams, but not for bridges with steel floorbeams, which are more likely pin ended. 

The rotational restraint provided by a steel floorbeam is therefore reduced, as given by 

Eqs. [3.7] and [3.8] at the quarter-span and midspan, respectively, of the floorbeam (see 

Appendix B for derivation). The total rotational restraint, Kθ, is the product of the 

uniform restraint, kθ, and the length loaded length (i.e.  2skK θθ  ). 

Table 3.1: Rotational restraint provided by floorbeams. 

Floorbeam 

End 

Restraints 

Rotational Restraint, kθ 

Quarter-span Midspan 

Fixed against 

all translations 

& rotations 
[3.5] 

 
2

2 4

6144 216

7

y sEI y hGJ

s s


  [3.6] 

 
2

2 4

6144 232

3 13

y sEI y hGJ

s s


  

Fixed against 

all translations 

& torsional 

rotation 

[3.7] 
 

2

2 4

768 216

5

y sEI y hGJ

s s


  [3.8] 

 
2

2 4

6144 232

3 57

y sEI y hGJ

s s


  

3.4 VALIDATION USING SAP2000 

Equation [3.4] was validated by performing a linear-elastic static analysis in SAP2000 

(Computers & Structures Inc., 2011). A solid steel bar 100mm in diameter, spanning 

500mm between fixed supports was chosen so the contribution of the rotational restraint 

provided by the eccentric deck slab, Ke, would be a significant portion of the total 

restraint, Kθ. The bar was modelled as four frame elements 125mm long. To simulate the 

effect of the eccentric deck slab, the rigid link shown in Figure 3.4 a) connected the 
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centroid of the frame element to a roller support at the top of the section. Figure 3.4 b) 

demonstrates the effect of this support, forcing the centroid to deflect as the member 

rotates. 

  
Figure 3.4: Model specimen: a) cross section showing rigid link connecting the centroid 

to a roller; b) deflection of the centroid. 

Equation [3.4] was used to predict the rotation that would occur due to a point torque 

applied at both the midspan and quarter-span of the member. Neglecting shear 

deformations, the SAP2000 model predicted the identical rotations as Eq. [3.4] for a 

1kN∙m torque applied at either location. 

A similar linear-elastic static analysis was performed to validate Eqs. [3.5] and [3.6]. The 

same section, spanning 500mm between fixed supports was idealized as 100 frame 

elements, each 5mm long. A uniformly distributed torque of 4kN∙m/m was applied 

between the quarter points. Rigid links and roller supports, as shown in Figure 3.4, were 

spaced at 5mm between the quarter points to simulate the eccentricity of the deck slab.  

Ignoring shear deformations, the rotation at the quarter-span predicted using the 

SAP2000 model was 7% less than predicted using Eq. [3.5] and the rotation at midspan 
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was 1% less than predicted using Eq. [3.6]. The derivations of Eqs. [3.5] and [3.6] 

assume the eccentric deck slab provides a uniformly distributed restraint, pe, as shown in 

Figure 3.3. Figure 3.5 shows the reactions at the ends of the rigid links, which are not 

uniformly distributed, but instead are greater near the quarter points than at midspan. The 

links at quarter-spans partially restrain the rotation of the central region, so the restraint 

provided at the midspan is less. 

 

 
Figure 3.5: Reactions at link supports in SAP2000 model.  

The SAP2000 model was then modified to check Eqs. [3.7] and [3.8] by changing the 

support conditions to prevent only torsional rotations. This change causes the deflected 

shape to resemble that of a pin-ended member when bending about the y-axis, which is 

more representative of the behaviour of steel floorbeams. Ignoring shear deformations, 

the rotations at the quarter-spans predicted by the SAP2000 model were 2% larger than 

predicted by Eq. [3.7] and the associated midspan rotation was 1% lower than predicted 

by Eq. [3.8]. These small discrepancies can again be attributed to the assumed uniformly 
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distributed restraint of the deck slab, whereas the actual restraint is not uniform. The 

equations shown in Table 3.1 were therefore deemed sufficiently accurate to quantify the 

rotational restraint provided by the floorbeams. 

3.5 CASE STUDIES: THE EFFECTIVE LENGTH OF DECK SLABS WITH STEEL AND 

CONCRETE FLOORBEAMS 

The steel plate girders in the Alex Fraser Bridge in Vancouver and the concrete T-beams 

in the Talmadge Memorial Bridge in Savannah, Georgia, were chosen as typical 

examples of transverse floorbeams in cable-stayed bridges. Figure 3.6 a) shows the 

typical cross-section dimensions of the 28m long floorbeams in the Alex Fraser Bridge, 

and Figure 3.6 b) shows approximate dimensions of the 21.5m long T-shaped floorbeams 

in the Talmadge Bridge. The typical floorbeam spacing is 4.5m for the steel girders in the 

Alex Fraser Bridge and 8.61m for the concrete T-beams in the Talmadge Memorial 

Bridge. 

 
Figure 3.6: Typical floorbeam cross sections: a) steel; b) concrete (dimensions in mm). 

To determine the floorbeam cross-sectional properties, an effective width of slab, be, that 

contributes to the rotational restraint of the floorbeams must be assumed. The effective 

width equation in Clause 5.8.2.1 of CSA S6-06 (CSA, 2006) is intended to account for 
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shear lag in both composite and concrete T-beams subjected to strong-axis bending. 

Applied to the floorbeams in the Alex Fraser Bridge it indicates that the full width of slab 

is effective (i.e. be = 4.5m). Therefore, this equation provides an upper bound for 

determining the sectional properties of floorbeams. 

Since Clause 5.8.2.1 was not intended to determine the torsional constant, J, it may be 

unconservative to assume the full width of deck is effective at restraining rotation. As a 

lower bound for steel floorbeams it will be assumed that only half of the deck slab width, 

(i.e., be/2), effectively resists rotation.  

Clause 13.8.2.7 of CSA A23.3-04 (CSA, 2004) quantifies the effective slab width for 

computing the torsional constant, J, of T-beams in two-way slab systems. These 

provisions are therefore assumed to provide a lower bound for calculating the sectional 

properties of concrete floorbeams. 

Hsu (1968) subjected a member with moderate torsional reinforcement to pure torsion to 

study the effect of torsional cracking. Immediately after cracking he observed that the 

torsional stiffness, GJ, reduced to 20% of the uncracked value. Thus in deriving the lower 

bound for determining the sectional properties, the torsional constant, J, will be reduced 

to 20% of the uncracked value. 

Table 3.2 shows the resulting upper- and lower-bound cross-sectional properties of the 

floorbeams investigated. The symbols UBS and LBS represent the upper- and lower-bound 

values for steel floorbeams, respectively, and UBC and LBC are the upper- and lower-
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bound values for concrete floorbeams. To reiterate: the upper-bound values are computed 

assuming the maximum width of slab, from Cl. 5.8.2.1 of CSA S6-06 (CSA, 2006), is 

effective at resisting rotation and the concrete is uncracked in torsion. The lower-bound 

properties for steel floorbeams were computed assuming half of the available deck slab 

effectively resists rotation and the deck slab is cracked in torsion. The lower-bound 

properties for the concrete floorbeams were computed using CSA A23.3-04 (CSA, 2004) 

to determine the effective slab width and also assume the concrete is cracked in torsion. 

Table 3.2: Upper- and lower-bound cross-sectional properties of steel and concrete 

floorbeams. 

Property 
Steel (Alex Fraser) Concrete (Talmadge) 

S

C

UB

UB
 

S

C

LB

LB
 

UBS LBS UBC LBC 

be  

(m) 
4.50 2.25 6.44 2.77 1.43 1.23 

EIx 

(*10
6 

kN∙m
2
) 

18.3 15.9 15.8 12.3 0.87 0.77 

EIy 

(*10
6 

kN∙m
2
) 

51.5 6.62 174 14.3 3.38 2.16 

GJ 

(*10
4 

kN∙m
2
) 

19.0 1.93 129 19.5 6.76 10.1 

The x-axis bending rigidity, EIx, of concrete floorbeams is 13 to 23% smaller than that of 

steel floorbeams. The y-axis bending rigidity of concrete floorbeams, EIy, is 2.2 to 3.4 

times larger than that of steel floorbeams, because the deck slab is 30% thicker and the 

effective slab width is from 23 to 43% greater. However, the torsional rigidity, GJ, of the 

concrete floorbeams exceeds that of the steel floorbeams by a factor of 6.8 to 10, due to 

the different deck slab dimensions, and the inefficiency of thin steel plate girder elements 

in resisting St. Venant torsion. 
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Table 3.3 shows the upper- and lower-bound rotational restraints, as computed using Eqs. 

[3.5] and [3.6] for concrete floorbeams and Eqs. [3.7] and [3.8] for steel floorbeams. 

Table 3.3 also shows the increase in rotational restraint obtained by accounting for the 

eccentricity of the deck slab. The contribution of the rotational restraint that is due to the 

eccentric deck slab, Ke, corresponds to the second term in Eqs. [3.5] to [3.8]. The 

contribution of the eccentric deck slab is significant for the bridge with steel floorbeams, 

representing a minimum of 24% of the total rotational restraint, Kθ. The contribution is 

greater for the bridge with the concrete floorbeams, representing at least 47% of Kθ. 

Table 3.3: Rotational restraint bounds for bridges with steel and concrete floorbeams. 

  

Steel (Alex Fraser) Concrete (Talmadge) 

θK  

(*10
4 

kN∙m/rad) 
θe KK  θK  

(*10
4 

kN∙m/rad) 
θe KK  

Upper bound at 

midspan 
4.81 0.25 60.7 0.47 

Lower bound at 

midspan 
0.75 0.51 11.4 0.57 

Upper bound at 

quarter-span 
7.13 0.24 101 0.53 

Lower bound at 

quarter-span 
1.10 0.50 19.4 0.63 

The results in Table 3.3 were used in Eq. [3.1] to determine the relative stiffness ratio, Ψ, 

and a range of effective length factors, k, were obtained using an alignment chart (e.g., 

MacGregor & Bartlett, 2000). Figure 3.7 shows the approximate ranges of effective 

length factors for concrete cable-stayed bridge decks with steel or concrete transverse 

floorbeams. The vertical axis shows the effective length factor, k, of the deck slab, which 

ranges from 0.5 to 1.0. An effective length factor, k, of 0.5 corresponds to a deck slab 
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spanning between floorbeams with infinite rotational restraint (fixed), while k =1.0 

corresponds to a slab spanning between floorbeams with no rotational restraint (pinned). 

 
Figure 3.7: Effective length factors for cable-stayed bridge decks. 

The lines for steel floorbeams in Figure 3.7 are linear because they connect only two data 

points, one at the quarter-span computed using Eq. [3.7] and one at midspan computed 

using Eq. [3.8]. The lines for concrete floorbeams are not linear since they represent 

several data points from the quarter-span to midspan, computed using additional 

equations derived using the methodology outlined in Appendix B. 
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which were computed assuming the floorbeams remain uncracked in torsion. The grey 

lines correspond to the upper-bound estimates of k and were obtained assuming the 

concrete portions of the floorbeams crack in torsion. The solid black lines provide the 

lowest estimates of k by considering the concrete portions of the floorbeams uncracked in 

torsion and taking the flexural rigidity, EI, of the deck slab in Eq. [3.1] as 70% of the 

uncracked rigidity, EcIg, as suggested by CSA A23.3-04 (CSA, 2004) to account for non-

linear responses in columns. The solid grey lines provide conservative estimates of k: 

they are derived assuming the concrete portion of the floorbeams to be cracked in torsion 

while the deck slab remains uncracked in flexure. A more appropriate range of k is 

bounded by the grey and black dashed lines: the grey dashed lines are computed 

assuming that the deck slab is cracked in flexure when the floorbeams are cracked in 

torsion and the black dashed lines are computed assuming the floorbeams are uncracked 

in both flexure and torsion.  

The lowest value of k for a concrete deck slab supported by steel floorbeams is 0.90 at the 

quarter-span when the entire uncracked concrete slab is assumed effective in torsion but 

cracks in flexure. These assumptions are unconservative, so steel floorbeams seem 

incapable of reducing the effective length factor below 0.90. The more appropriate range 

of k for concrete decks on steel floorbeams ranges from a minimum of 0.92 at the quarter-

span to a maximum of 0.98 at midspan.  

The lowest k value for concrete deck slabs supported by concrete floorbeams is 0.58 at 

the quarter-span. This value corresponds to a 6.44m width of uncracked concrete deck 

resisting rotation and the slab cracks in flexure. The highest k value is 0.86 at midspan, 
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which corresponds to a 2.77m width of cracked deck effectively resisting rotation while 

the slab remains uncracked in flexure. However, the Talmadge Memorial Bridge concrete 

floorbeams are longitudinally post-tensioned and so are unlikely to crack in torsion. The 

grey lines are therefore conservative and so the rotational restraint provided by concrete 

floorbeams can reduce the slab effective length factor to less than 0.9. The more practical 

range of k, neglecting torsional cracking, ranges from 0.61 at the quarter-span to 0.75 at 

midspan. 

The flexural stiffness, ,LEI is significantly smaller for the slab on concrete floorbeams 

since the floorbeam spacing, L, is larger. The concrete floorbeams are also significantly 

shorter than the steel floorbeams, so the rotational restraint they provide is higher. The 

relative stiffness ratio, Ψ, and effective length factor, k, will therefore be smaller for the 

concrete floorbeam case, since the LEI term in Eq. [3.1] is smaller and the Kθ term is 

larger. If the concrete floorbeam spacing is reduced to 4.5m and the length is increased to 

28m, the LEI term for the concrete floorbeam case is almost twice that for the steel 

floorbeam case, so any difference in k values reflects the increased rotational restraint of 

concrete floorbeams. For these dimensions, the bounds of k range from 0.77 at the 

quarter-span to 0.95 at midspan and the more appropriate values of k, neglecting torsional 

cracking, are all less than 0.89. Thus, although the dimensional changes significantly 

increased effective length factors for the concrete case, the minimum rotational restraint 

provided by the concrete floorbeam is still three times that of the maximum rotational 

restraint of steel floorbeams, if torsional cracking is prevented.  



54 

 

The eccentricity of the deck slab increases the rotational restraint significantly, but has a 

lesser influence on the effective length factor, k. If the eccentricity of the slab is ignored 

the k values for slabs supported by steel floorbeams range from 0.92 to 0.99 instead of 

0.90 to 0.99. For slabs supported by concrete floorbeams k ranges from 0.65 to 0.93 if the 

eccentricity of the deck slab is neglected, compared to 0.58 to 0.86 when it is considered. 

Therefore, neglecting the eccentricity of the slab reduces the rotational restraint provided 

by concrete floorbeams by a factor of 1.9, but only increases the effective length factor by 

12%. The small influence is due to the relationship between k and the relative stiffness, 

Ψ, on the alignment chart. The relative stiffness can range from 0 for fixed end supports 

to infinity for a pinned supports, while the effective length factor only ranges from 0.5 to 

1.0 for these same support conditions. 

3.6 SUMMARY AND CONCLUSIONS 

Floorbeams provide both vertical and rotational restraints to slender concrete cable-

stayed bridge decks. The effectiveness of the rotational restraint provided is a function of 

the torsional rigidity of the floorbeam, GJ, its weak-axis bending rigidity, EIy, and the 

location of the floorbeam centroid, .y  Idealizing the restraint of an eccentric deck slab as 

a uniformly distributed force allows the rotational restraint of floorbeams to be quantified 

so that the effective length factor, k, can be determined. Calculations have been carried 

out for the steel floorbeams of the Alex Fraser Bridge and the concrete floorbeams of the 

Talmadge Memorial Bridge.  
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The eccentricity of the deck slab can markedly increase the rotational restraint provided 

by the floorbeams. This contribution represents at least 24% and 47% of the total 

rotational restraint provided by the steel and concrete floorbeams investigated, 

respectively. 

The effective length factor, k, approaches 1.0 for the case of the deck slab supported by 

steel floorbeams and is significantly less than 0.90 for the case of the slab supported by 

concrete floorbeams, typically ranging from 0.6 to 0.85. 

The eccentricity of the deck slab has a negligible influence on k for the case of the deck 

supported by steel floorbeams, and only slightly influences k for the case of the deck 

supported by concrete floorbeams. While the eccentricity of the slab doubled the 

rotational restraint of concrete floorbeams it only decreased k by a maximum of 11%. 

Therefore, neglecting the eccentricity of the deck slab provides a reasonable 

quantification of the rotational restraint of floorbeams, for the purpose of determining the 

effective length factor of cable-stayed bridge decks. 
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CHAPTER 4: SECOND-ORDER ANALYSIS OF CABLE-STAYED BRIDGE 

DECKS WITH NON-UNIFORM PRIMARY MOMENT DIAGRAMS 

4.1 IDEALIZED STRUCTURE 

Second-order analysis of a cable-stayed bridge deck slab requires a rational method for 

computing the deflection due to vertical loads and the resulting second-order bending 

moments. Realistic support conditions must be considered, including the flexural stiffness 

of the adjacent spans and the rotational restraint provided by the transverse floorbeams.  

In this chapter, the interior span of the idealized three-span deck system shown in Figure 

4.1 will be analysed for first- and second-order moments. The compression force, C, is 

constant in all spans and a single vertical point load, P, is applied at the middle of the 

interior span. The rotational restraint provided by the transverse floorbeams, Kθ, is 

represented by rotational springs at both interior supports. The exterior supports of the 

adjacent spans are assumed to be pinned. Preliminary analyses were also conducted using 

a five-span model, with the centre span loaded, and differences of the linear-elastic 

moments from those in the three-span model were negligible. 

 
Figure 4.1: Cable-stayed bridge deck: a) cross section; b) idealized.  
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The deck slab shown in Figure 4.1 b) is assumed to bend in one direction only. This is 

equivalent to treating the slab as a strip of unit width cut along the length of the bridge. 

Two-way behaviour caused by the slab deflecting between the longitudinal girders is 

neglected, so the strip analysis provides a conservative approximation of the true 

behaviour. Obviously the error in the approximation will increase as the ratio of the 

floorbeam length to floorbeam spacing, s/L, reduces. For typical values of this ratio 

greater than 2, it is assumed that strip analysis provides an acceptable approximation. 

4.2 MOMENT-CURVATURE RELATIONSHIP 

Computation of the deflected shape of a member requires the curvature distribution along 

its length. The curvature at any point along a cable-stayed bridge deck can be obtained 

from the moment-curvature relationship derived for the given applied axial force, C.  

A common method for computing moment-curvature relationships (e.g., Nathan, 1985, 

and Salonga, 2010) requires computing contours of equal curvature for the cross section, 

as shown in Figure 4.2 a), and then deriving the moment-curvature relationship for a 

given axial load by interpolation from these contours, as shown in Figure 4.2 b).  

 
Figure 4.2: a) Curvature contours; b) moment-curvature relationship for C = 3000kN. 

b) a) 
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To compute curvature contours that account for the nonlinear stress-strain behaviour of 

concrete in compression, Nathan (1985) suggests the following five-step procedure:  

1. Discretize the cross section into thin horizontal layers and compute the distance, 

y, from the centroid of each layer to the extreme compression fibre.  

2. Compute the strain at the centroid of each layer, ε(y), for given values of 

curvature, ψ, and  extreme compression fibre strain, εc, as: 

[4.1]  ( ) cy ψyε ε   

where positive strains indicate compression. 

3. Determine the stress at the centroid of each layer using a realistic stress-strain 

relationship. 

4. Compute the force and moment from each layer, assuming the stress in each layer 

is constant.  

5. Determine the corresponding applied axial load and bending moment using the 

fundamental equations of force and moment equilibrium. 

A full contour can be computed for a given value of curvature, ψ, by incrementing the 

extreme compression fibre strain, εc, from 0 to 0.0035, the ultimate value specified in 



59 

 

CSA S6-06 (CSA, 2006), and applying Steps 1 to 5 to compute the axial load and 

moment for each increment. The maximum possible curvature occurs at material failure 

when the applied axial load, C, is zero. Once multiple curvature contours are computed, 

the moment-curvature relationship can be interpolated from these contours for any 

applied axial load, C, as shown in Figure 4.2. 

To obtain the full moment-curvature relationship, this procedure must be performed 

twice, once with the extreme compression fiber at the top face, for positive moments and 

curvatures, and then again with the extreme compression fiber at the bottom face, for 

negative moments and curvatures. 

4.3 MOMENT DISTRIBUTION AT SUPPORTS 

Vertical loads applied to the deck slab will create local negative moments at each 

transverse floorbeam, due to the rotational restraint provided by the floorbeams and the 

flexural stiffness of the adjacent slabs. These negative moments can be computed 

efficiently using the Force Method of analysis (e.g., Hibbeler, 2009). All redundancies 

are removed initially to obtain a statically determinate primary structure. For example, for 

the idealized structure in Figure 4.3 a), hinges are assumed in the deck slab at each 

interior support to define the primary structure. For the applied vertical load, the bending 

moment is derived and, using the moment-curvature relationship for the given applied 

axial load, the curvature distribution along the length of the member is computed.  The 

deflected shape, including primary end rotations, θL and θR in Figure 4.3 b), are computed 

by numerically integrating the primary curvatures for discrete segments of the member 
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(e.g. Hibbeler, 2009) while satisfying the displacement boundary conditions at the 

supports.  

 
Figure 4.3: The force method of analysis, a) actual structure; b) primary structure; c) 

redundant moment at the left interior support. 
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[4.4]  LR RL RLf f θ   

where θLL, θ’LL, and θRL are the rotations at the left end of the interior span, the right end 

of the left adjacent span, and the right end of the interior span, respectively, due to the 

unit moment at the left interior support. Similarly, θRR and θ’RR are the rotations of the 

right end of the interior span and the left end of the right adjacent span, respectively, due 

to a unit moment at the right interior support. In these equations, L is the span length, EIg 

is the gross rigidity of the deck slab, and Kθ is the rotational restraint provided the 

floorbeams.  

The rotations at the ends of the interior span, θLL, θRR, and θRL, can be computed by 

numerically integrating the curvatures due to the unit moment at either support for 

discrete segments of the interior span. However, the curvature of each segment must be 

obtained by dividing average moment in the segment, due to the unit moment at the 

support, by the average rigidity, EI. Initially, this rigidity can be computed as the secant 

rigidity obtained from the moment-curvature relationship for the average primary 

moment, computed by analysing the primary structure in Figure 4.3 b). 

The factors γL and γR account primarily for geometric nonlinearities in the adjacent spans: 

since the moments in these adjacent spans are lower than those in the interior span, their 

stiffnesses will approach the uncracked stiffness so material nonlinearities will be 

negligible. However, the compression force will cause second-order moments in the 

adjacent spans that will increase their deflection, causing more rotation at the floorbeam 
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supports. Assuming a linear-elastic response, Przemieniecki (1968) gives a geometric 

stiffness matrix for a 2D beam element that accounts for geometric nonlinearities. The 

corresponding flexural stiffness, kG, at one end of a simply supported compression 

member is: 

[4.5]  

24 (2 / / 30)2

15 (4 / 2 /15)

c g c g

G

c g

E I E I L CLCL
k

L E I L CL


  


 

where the applied axial load, C, is positive in compression. Using Eq. [4.5] to account for 

the geometric nonlinearities in the adjacent spans, the modification factors can be 

computed as: 

[4.6]  
3 /

GL
L

c g

k
γ

E I L
   

and 

[4.7]  
3 /

GR
R

c g

k
γ

E I L
   

where kGL and kGR are the flexural stiffnesses of the left and right adjacent spans,  

respectively, computed using Eq. [4.5]. Once all flexibility coefficients have been 

determined, the support moments can be found by solving the following two equations 

simultaneously for the moments at the left and right supports, ML and MR: 
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[4.8]  LRRLLLL fMfMθ 0  

[4.9]  RRRRLLR fMfMθ 0  

Since the response of a concrete beam-column is typically not linear-elastic, several 

iterations are often required to solve for the actual bending moment distribution. As 

shown in Figure 4.4, the curvature distribution in the first iteration is computed from the 

primary moment distribution, so the rigidity, EI, along the member corresponds to the 

primary moment distribution rather than the actual moment distribution. The rigidity 

distributions in the subsequent iterations are computed from the updated moment 

distributions, accounting for the end moments computed using Eqs. [4.8] and [4.9]. The 

end moments and updated moment diagram should converge to the final moment 

distribution, provided the interior span is discretized using a sufficient number of 

segments. For computing the deflected shape of concrete beam-columns, Nathan (1972) 

recommends using segment lengths of one to two times the section depth, so 20-30 

segments should be sufficient for slenderness ratios less than 100. In certain cases, 

usually at very low axial loads  0.1 'c gf A , the process outlined in Figure 4.4 still may 

not converge, regardless of the number of segments used. To achieve convergence in 

these cases, an algorithm was developed as part of a MATLAB program (The Mathworks 

Inc., 2011) that is discussed in Section 4.6. The source code for this program is given in 

Appendix C, where the algorithm is explained in detail. 
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Figure 4.4: Flowchart for distributing moments in cable-stayed bridge decks. 
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For very slender members it is possible that the maximum negative moment can exceed 

the negative moment capacity before the maximum positive moment reaches the positive 

moment capacity. As the positive moment approaches the cross-section capacity, the 

secant rigidity reduces significantly. The deflection is sensitive to the secant rigidity near 

midspan, so as the rigidity reduces the deflections increase significantly, causing larger 

end rotations of the primary structure and so larger negative end moments. 

If the negative moment reaches the negative moment capacity, the member will not 

necessarily fail. Plastic moment redistribution may occur, where the support moment 

remains constant at the negative moment capacity and the remaining moment necessary 

to satisfy equilibrium must be redistributed to the midspan. This plastic behaviour 

requires the negative reinforcement to yield, so the applied compression force must be 

less than that corresponding to a balanced failure condition. If the compression force 

exceeds the balanced failure load, plastic redistribution cannot occur and the member will 

fail when the support moment reaches the negative moment capacity. 

4.4 DEFLECTED SHAPE AND SECOND-ORDER BENDING MOMENTS 

Once the distribution of first-order moments and curvatures along the interior span has 

been determined, the deflection of the deck slab can be obtained using numerical 

integration. Nathan (1972) uses a numerical integration method originally proposed by 

Newmark that approximates the rotation, θ, and deflection, Δ, along the slab using Taylor 

series expansions. If the rotation is known at any point, xo, shown in Figure 4.5, the 

rotation a distance Δx from xo is, using the first two terms of the Taylor series expansion: 
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[4.10]  ( ) ( ) ( )o o ox Δx x x Δx      

where ψ )( ox  is the curvature at xo. Similarly, the deflection, Δ, can be approximated 

using the first three terms of the corresponding Taylor series expansion: 

[4.11]  
2( ) ( ) ( ) ( ) / 2o o o oΔ x Δx Δ x x Δx x Δx      

 
Figure 4.5: Deflected shape of a small segment of a beam-column. 

The approximations provided by Eqs. [4.10] and [4.11] are equivalent to assuming 

constant curvature along the segment length, Δx. From this, Nathan (1985) proposes 

using the average curvature between xo and xo+Δx instead of ψ )( ox in Eqs. [4.10] and 

[4.11] to provide a better approximation. 
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[4.12]  *( ) ( ) ( )o o oM x M x CΔ x   

where )( oxM is the first-order moment at xo. However, the second-order effects increase 

the rotation at each interior support and therefore increase the negative support moments. 

The deflection will also increase, so an iterative process must be adopted to compute the 

final deflected shape and total moment distribution, including second-order effects.  

The flowchart shown in Figure 4.6 outlines an iterative method for computing the 

second-order moments that is readily implemented numerically. For a given primary first-

order moment diagram, the support moments are computed and the moment diagram is 

shifted using the procedure shown in Figure 4.4. The associated deflected shape is then 

computed and the resulting C-Δ moments are added to the original primary moment 

diagram to become the starting point for the next cycle of calculations. If repeated, this 

process will either converge to a stable deflected shape or the total applied moment will 

exceed the cross-section capacity at some point along the member, indicating failure. 
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Figure 4.6: Flowchart for computing the total moment distribution of cable-stayed bridge 

decks. 

4.5 MAXIMUM FIRST-ORDER PRIMARY MOMENT 

Figure 4.7 shows the maximum possible primary moments that a member can resist if no 

second-order effects are present. The magnitudes of the average negative applied 
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moments plus the average positive applied moment must be less than or equal to the 

difference between the positive and negative moment capacities of the cross section.  The 

maximum primary moment that can be resisted by slender beam-columns is the largest 

moment that can be applied without causing the maximum total moment, including first- 

and second-order effects, to exceed the cross-section capacity. 

 
Figure 4.7: Maximum possible primary moment. 

Sections that can resist a maximum positive total moment of greater than 95% of the 

cross-section capacity, Mu, will be assumed to have reached material failure. Instability 

failures will be assumed if the maximum total moment is less than 95% of the cross-

section capacity. 

4.6 OVERVIEW OF COMPUTER PROGRAM 

A computer program was written using MATLAB R2011b (The Mathworks Inc., 2011) 

to analyse the idealized structure subjected to applied axial and vertical loads as shown in 
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Figure 4.1. The program follows the procedures presented in Sections 4.2 to 4.5 for 

computing the moment-curvature relationship, negative support moments, total moment 

diagram, and maximum primary moment diagram. The MATLAB program was 

developed specifically to perform a nonlinear geometric analysis, accounting for 

nonlinear material behaviour and cracking, of the structure shown in Figure 4.1 b). Since 

the program was developed specifically for this application the run time is expected to be 

significantly less than the run time of an equivalent finite element analysis. 

As discussed in Section 4.2, methods for computing moment-curvature relationships 

using curvature contours have been presented previously by Nathan (1985) and Salonga 

(2010). Salonga (2010) also developed a program, QULT, to perform a second-order 

analysis of slender ultra-high-performance fibre-reinforced concrete columns. QULT is 

written in the MATLAB programming language and Salonga’s source code for the 

functions that compute the moment-curvature relationship was used as a model to 

develop the source code for similar functions in the program discussed in this chapter.  

Figure 4.8 illustrates the overall hierarchy of the program. The overall function, 

CSDECK, computes the maximum primary moment diagram that can be applied to a 

given cable-stayed bridge deck. Within CSDECK, the two main functions are 

MOMCURV to compute the moment curvature relationship and PDELTA to compute the 

total bending moment diagram, including second-order effects. Each main function 

contains one or more sub-functions to perform detailed calculations, as well as several 

basic functions to perform simple repetitive calculations. 
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Figure 4.8: Hierarchy of the MATLAB program developed. 

The function MOMCURV generates the moment-curvature relationship of the cross 

section for a given applied compression force. From Figure 4.8, MOMCURV does this by 

first calling the basic function CENTROID to compute the plastic centroid of the section. 

MOMCURV then calls CONTOURCURV to compute contours of equal curvature for the 

section and interpolates the moment-curvature relationship from these contours. The sub-

function CONTOURCURV uses the function INTERACTION to compute the cross-

section interaction diagram. The basic functions EQUILIBRIUM and STRESS are used in 

INTERACTION to compute the axial force and bending moment at each point on 

interaction diagram using the equations of force and moment equilibrium.  This 
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interaction diagram is then used to determine the range of curvature contours that must be 

computed and the axial force and moment at each point on the contours is again found 

using the basic functions EQUILIBRIUM and STRESS. 

Once the moment-curvature relationship has been calculated, CSDECK begins the 

second-order analysis by setting the primary first-order moment to the maximum possible 

value, discussed in Section 4.5, and computes the total bending moment diagram using 

PDELTA. PDELTA returns a matrix of zeros if any applied total moment exceeds the 

cross-section capacity, so CSDECK incrementally reduces the applied load until a stable, 

non-zero, total bending moment diagram is obtained from PDELTA. 

To compute the total moment diagram, PDELTA calls the sub-function ENDMOM to 

determine the distribution of moments in slab, following the procedure in Section 4.3. 

ENDMOM performs an iterative loop, beginning by using the basic function AVGSTIFF 

to compute the average rigidity of each segment in the center span, corresponding to the 

primary moment diagram. ENDROTN is then called to compute the primary end rotations 

using the Moment Area Theorem (e.g., Hibbeler, 2009). Using the primary end rotations, 

ENDMOM computes the end moments and the revised moment diagram and then 

performs the loop again using AVGSTIFF to compute the rigidity corresponding to the 

revised moment diagram. This rigidity is used to provide a better approximation of the 

primary end rotations using ENDROTN and after several iterations ENDMOM converges 

to a stable bending moment diagram. 
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Once the distributed moment diagram is found, PDELTA computes rigidity of each 

segment using AVGSTIFF and calls the sub-function DEFLECTION to compute the 

deflected shape. DEFLECTION uses ENDROTN to compute the rotation of the slab at 

each end and then computes the rotation, θ, and deflection, Δ, at the ends of each segment 

using Eqs. [4.10] and [4.11]. PDELTA then adds the secondary moments due to the 

deflection at the ends of each segment to the primary moment diagram and returns to 

ENDMOM to compute the new distribution of moments. The cycle is then continued until 

the deflections obtained converge to a stable solution or the maximum total applied 

moment in the slab exceeds the cross-section capacity. 

The complete source code for each function and brief explanation of the calculations 

performed by each function can be found in Appendix C. As discussed in Appendix C, 

four of the functions within CSDECK, MOMCURV, CONTOURCURV, INTERACTION 

(originally called NMBOUND), and INTERPOLATE, were developed by Salonga (2010) 

and have been implemented into CSDECK with only minor modifications.  

4.7 VALIDATION 

The program discussed in the previous chapter has been validated by comparing the 

results to both a nonlinear finite element analysis performed using ANSYS 12.0 (ANSYS 

Inc., 2009) and a computer analysis by Nathan (1987). A simplified idealization of the 

Talmadge Memorial Bridge deck slab, shown in Figure 4.9, was chosen as a typical 

example and was analysed using an iterative procedure in ANSYS 12.0 to determine the 

total bending moment diagram, including second-order effects. The Talmadge Memorial 

Bridge deck slab, shown in Figure 4.9 a), is 280mm thick and is idealized as a strip of 
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unit width (Bartlett, 1991) for the following analysis. The deck slab is assumed to have 

two layers of reinforcing steel (fy = 400MPa), each 1400mm
2
, centered at 40mm from the 

top and bottom faces. The floorbeam supports, shown in Figure 4.9 b), are typically 

spaced at 8.61m. Only the two interior supports provide rotational restraint, Kθ, assumed 

to be 2.2*10
4
 kN∙m/rad, which for a 1m wide slab is about 20% larger than the lower-

bound value at the quarter-span of this bridge, as mentioned in Chapter 3. The axial 

compression force is 2800kN  0.25 'c gf A  and a vertical load of 225kN is applied in 

the middle of the interior span. 

 
Figure 4.9: Cable-stayed bridge deck; a) cross section; b) idealized structural system 

(dimensions in mm). 

The moment-curvature relationship was computed using the method described in Section 

4.3 using the concrete stress-strain relationship used in Chapter 2 (Thorenfeldt et al., 

1987), for an assumed compressive strength, cf ' , of 40MPa. The stress-strain relationship 
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was derived for cf ' = 40MPa and the stress values were then multiplied by 0.9. The 

initial tangent modulus of elasticity, Ec, was computed using Clause 8.4.1.7 of CSA S6-

06 (CSA, 2006) and was divided by the 0.9 factor to counteract the effect of the stress 

value reduction, as explained previously in Chapter 2. The steel reinforcement was 

considered effective in tension but was treated as concrete in compression, since it is not 

tied to prevent buckling. 

A nonlinear static analysis including large displacements was performed in ANSYS 12.0 

to include the effect of geometric nonlinearities. Default convergence tolerances of 0.5% 

for force and moment imbalances were adopted. To determine the load step size the 

automatic time-stepping function was used, which applied the load in 7 sub-steps. 

To approximate the material nonlinearities, the interior span is represented by ten 

segments, as shown in Figure 4.9 b), and an iterative process was used to determine an 

equivalent modulus of elasticity, E, for each segment. For the first iteration, the moment 

at the centroid of each segment was obtained from the primary moment diagram, which is 

equivalent to the moment diagram for the vertical load applied to a simply supported 

beam 8.61m long. The rigidity, EI, was computed using Eq. [1.2] for the secant rigidity, 

EIsec, where M is moment at the centroid of each segment and ψ is obtained from the 

moment-curvature relationship. The equivalent modulus of elasticity of each segment was 

then computed by dividing the secant rigidity, EIsec, by the moment of inertia of the gross 

concrete section, Ig. 
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The moments in the adjacent spans reduce linearly from a maximum at the interior 

support to zero at the exterior support, so the rigidity of these spans was assumed equal to 

the gross uncracked rigidity, EcIg, and the modulus of elasticity was not reduced. The two 

adjacent spans were each meshed into twenty two-dimensional beam elements (BEAM3) 

and each segment of the center span was meshed into two BEAM3 elements, so that the 

nonlinear geometric response could be accurately captured. The analysis was repeated 

using twice as many beam elements in each side span, and the difference in results was 

negligible. The rotational restraint was modelled using torsional spring elements 

(COMBIN14) of zero length at the two interior support nodes. 

The moment diagram from the first analysis was used to determine the average moment 

in each segment, which was then used to find the secant rigidity, EIsec, of each segment. 

The modulus of elasticity of the two elements within each segment was then changed to 

account for the new EIsec and a new cycle of analysis was performed. The solution 

converged after eight iterations, yielding the total bending moment diagram for the 

interior span, including second-order effects, shown in Figure 4.10 a). For this example, 

instability failure did not occur. The maximum total moment determined from the 

ANSYS 12.0 analysis was 344kN∙m at midspan, just less than the cross-section capacity 

of 353kN∙m, indicating that a vertical load of 225kN is close to the maximum that can be 

resisted by this member for the applied compression load of 2800kN. Although material 

failure occurred, the second-order effects were still very significant. Figure 4.10 b) shows 

the second-order bending moments along the interior span, which have the same form as 

the final deformed shape. The maximum second-order moment of 123kN∙m occurs due to 
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a midspan deflection of 44mm and must be redistributed along the span. To compute the 

moment magnification due to second-order effects, a first-order analysis, ignoring large 

displacements, was performed in ANSYS 12.0 using the same iterative procedure to 

compute the equivalent modulus of elasticity of the segments in the interior span. The 

resulting first-order moment diagram is shown by the grey line in Figure 4.10 c). The 

second-order effects magnify the maximum first-order negative moment of -200kN∙m by 

a factor of 1.32, resulting in a maximum total negative moment of -263kN∙m, also shown 

in Figure 4.10 c). Likewise, the maximum first-order positive moment of 284kN∙m is 

magnified by 1.21, yielding a maximum total positive moment of 344kN∙m. 

  
Figure 4.10: Bending moment diagrams from ANSYS 12.0; a) total; b) second-order; 

and c) total and first-order. 

a) 

b) 

c) 
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The cross section shown in Figure 4.9 was also analyzed using the CSDECK program. 

The interior span was again represented by ten segments, the modifications factors γL and 

γR were computed using Eqs. [4.6] and [4.7], respectively, and the resulting bending 

moment diagram is shown by the grey line in Figure 4.11. The black X markers represent 

the total moment diagram, including second-order effects, obtained from the ANSYS 

12.0 analysis. Both sets of analysis results are in very good agreement, indicating that 

CSDECK provides an accurate approximation of the second-order moments in cable-

stayed bridge decks subjected to non-uniform primary moments. 

 
Figure 4.11: Total moment diagrams obtained from ANSYS 12.0 and the MATLAB 

program. 

To test the accuracy of CSDECK further, a separate comparison using an analysis method 

proposed by Nathan (1987) for computing second-order effects in prestressed concrete 

columns was carried out. Nathan’s analysis also uses the moment-curvature relationship 

of the cross section to approximate the curvature along the member and follows a process 

similar to that described in Section 4.4 for computing the deflected shape, but is limited 

to simply supported members. The program CSDECK can be used to analyze simply 
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supported deck slabs if the rotational restraint, Kθ, and the factors, γL and γR, are set equal 

to zero. This triggers the program to skip the process discussed in Section 4.3 for 

distributing moments, so the total moments and deflected shape are computed for the 

first-order moments entered for the simply supported interior span, shown in Figure 4.4. 

The cross section of the Talmadge Memorial Bridge deck, shown in Figure 4.9 a), was 

analyzed. It was idealized to be 8.61m long, pinned at both ends, and subjected to an 

applied axial load of 2800kN. Using the stress-strain relationship for concrete that was 

used previously, the maximum equal and opposite ends moments that the member could 

resist were computed using the analysis program developed by Nathan (1987), assuming 

the steel to be effective in both tension and compression. The deck slab was discretized 

into segments approximately equal to the slab thickness. Nathan’s program predicted that 

the member could resist an applied end moment of 112kN∙m. The associated failure mode 

was instability with a maximum mid-height moment, Mc, of 245kN∙m, or 65% of the 

predicted cross-section capacity, Mu, of 377kN∙m. The analysis was repeated using the 

program CSDECK, with the member discretized into 30 segments with lengths 

approximately equal to the slab thickness. The maximum end moment predicted using 

CSDECK is 109kN∙m, the predicted failure mode is also instability, and the maximum 

mid-height moment is 222kN∙m, or 59% of the predicted cross-section capacity or 

374kN∙m. Therefore, the maximum end moments predicted using CSDECK are 3% less 

than those predicted using Nathan’s program and the maximum mid-height moment 

predicted by CSDECK is 10% less. Since CSDECK accurately provides similar estimates 

of the maximum first-order end moments that the deck slab can resist and has already 



80 

 

been shown to agree closely with results from ANSYS 12.0 for a three-span deck system, 

it can be concluded that the program CSDECK provides acceptable approximations of the 

second-order moments in cable-stayed bridge decks. 

4.8 SUMMARY 

In this chapter a rational method was presented to compute first- and second-order 

moments in continuous reinforced concrete beam-columns subjected to transverse point 

loads between their supports. The method requires deriving the moment-curvature 

relationship for the given applied axial load, distributing the moments along the member 

to determine the negative moments at the supports, computing the final deformed shape 

and corresponding second-order moments, and solving iteratively for the maximum 

transverse loads that can be resisted.  

A MATLAB program (The Mathworks Inc., 2011) was developed to apply this method 

to compute the maximum transverse point load that can be resisted by an idealized three-

span cable-stayed bridge deck. The MATLAB program was used to compute the total 

moment diagram, including second-order effects, in a realistic deck slab subjected to a 

single vertical point load applied at the middle of the interior span. The same deck slab 

was analysed again using a second-order analysis in ANSYS 12.0 (ANSYS Inc., 2009) 

and the two programs yielded very similar results. The MATLAB program was modified 

to predict the capacity of a simply supported cable-stayed bridge deck subjected to equal 

end moments causing single curvature and the results were shown to agree with a similar 

second-order analysis program created by Nathan (1987) for prestressed concrete 

columns. Since the results from the MATLAB program are in close agreement with those 
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from both ANSYS 12.0 and from Nathan’s program developed specifically for analyzing 

slender concrete beam-columns, the CSDECK program is deemed acceptable for 

approximating the second-order and total moments in cable-stayed bridge decks. 
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CHAPTER 5: SENSITIVITY ANALYSIS 

5.1 INTRODUCTION AND RESEARCH OBJECTIVES 

The current provisions in CSA S6-06 to compute moment magnification in slender 

concrete beam-columns have been investigated in Chapter 2. If the deck is subjected to 

equal and opposite end moments, they predict the capacity of an idealized simply 

supported cable-stayed bridge deck accurately at low applied axial loads but are 

extremely conservative at higher applied loads. However, this finding has limited 

application because cable-stayed bridge decks are typically continuous, so traffic loads 

create negative moments over the supporting floorbeams and positive moments at 

midspan. The bending moment diagram is therefore more complex than the idealized 

uniform moment case considered in Chapter 2. The main objectives of the research 

reported in this chapter are to determine variables that significantly influence the moment 

magnification of continuous cable-stayed bridge decks subjected to traffic loads applied 

between the floorbeams and to assess each significant variable in the context of the 

underlying mechanics. 

In Chapter 4, first-order moments were computed using a nonlinear-cracked analysis, 

described in Section 4.3, that accounts for material nonlinearity and cracking of the cross 

section by discretizing the member into short segments and computing the curvature of 

each segment from the moment-curvature relationship. This approximates the rigidity 

distribution along the member, but is time-consuming and so difficult to carry out in 

practice. In contrast, linear-uncracked analyses assume constant rigidity along the 

member equal to the uncracked rigidity, EcIg, and so are readily carried out in practice. 
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Therefore, the secondary objectives of this chapter are to determine the moment 

magnifiers, δ, necessary to compute the total moments, accounting for second-order 

effects, from the results of a linear-uncracked first-order analysis and to determine the 

accuracy the current provisions of CSA S6-06 to predict these δ values. 

5.2 ANALYTICAL APPROACHES 

Moment magnifiers, δ, will be computed as the ratio of the total moment to the first-order 

moment. The total moments will be computed using the program CSDECK, as described 

in Chapter 4. The first-order moments will be determined by nonlinear-cracked analysis 

or by linear-uncracked analysis.  

The difference between the two first-order analyses is demonstrated in Figure 5.1, for two 

idealized cable-stayed bridge decks with different slenderness ratios. The nonlinear-

cracked first-order moment diagram, shown by the grey line in Figure 5.1 a), and total 

moment diagram, shown by the black line, are identical to those shown previously in 

Figure 4.10 c). These lines were computed for an idealized three-span segment of the 

Talmadge Memorial Bridge deck slab, shown in Figure 4.9, subjected to an axial 

compression force, C, of 2800kN (0.25 'c gf A ) and a vertical point load, P, of 225kN. 

The linear-uncracked first-order moment diagram, shown by the grey dashed line, slightly 

underestimates the negative moments by 14kN∙m, or 7%, and overestimates the 

maximum positive moments by 14kN∙m, or 5%. The Talmadge Memorial Bridge deck 

slab has a high slenderness ratio of 107, so the second-order moments are significant, 

magnifying the maximum negative and positive nonlinear-cracked first-order moments 
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by 1.32 and 1.21, respectively. These differences between the maximum moments 

computed using the two first-order analyses are small with respect to the magnification of 

the moments caused by second-order effects. 

 
Figure 5.1: First- and second-order moment diagrams; a) L/r = 107; b) L/r = 49. 

Figure 5.1 b) compares these same three moment diagrams for the same cross section 

with a reduced floorbeam spacing of 4m, yielding a reduced L/r of 49. The compression 

force is again 2800kN and the vertical point load is increased to 550kN, to create 

midspan moments, including second-order effects that approach 95% of the cross-section 

capacity. This relatively stocky slab has small second-order moments with positive and 

negative moment magnifiers of only 1.04 and 1.06, respectively. For this member, the 

b) 

a) 
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linear-uncracked analysis underestimates the maximum negative moments and 

overestimates the maximum positive moment by 26kN∙m, or 8 and 12% of the maximum 

nonlinear-cracked positive and negative values, respectively. The positive moment 

magnifiers for the linear-uncracked first-order moments are therefore less than 1, 

implying that the second-order effects reduce the positive moments! Clearly this is not 

true, so linear-uncracked analyses may not be appropriate for computing the first-order 

moments and associated moment magnifiers of relatively stocky members. 

Other parameters that affect the moment magnification, such as the magnitude of the 

applied axial load, may also affect the accuracy of the linear-uncracked analysis and this 

will be investigated as a secondary objective of the sensitivity analysis. 

The floorbeams of the idealized cable-stayed bridge decks used to develop Figure 5.1 

were assumed to provide 2.2*10
4
kN∙m/rad of rotational restraint to the slab ends. Using 

the methods described in Chapter 3, this restraint can reduce the effective length factor, k, 

to 0.74 and 0.83 for the decks analyzed in Figure 5.1 a) and 5.1 b), respectively. To 

determine the predicted total moments using the provisions of CSA S6-06, Eq. [1.8] was 

used to compute the rigidity and Eq. [1.6] was used to magnify the first-order moments 

from the linear-uncracked analysis, neglecting the 0.75 reduction factor.  The maximum 

total positive and negative moments shown in Figure 5.1 a) are overestimated by factors 

of 7.8 and 6.4, respectively and the maximum total positive and negative moments shown 

in Figure 5.1 b) are overestimated by 37 and 9%, respectively. Since the CSA S6-06 

provisions yield unacceptably conservative results for the slender slab and conservative 

results for the relatively stocky slab, Eq. [2.3] (Olendzki 2008) was also investigated for 



86 

 

computing the rigidity, EI. Using this equation, the maximum total positive and negative 

moments shown in Figure 5.1 a) are overestimated by 67 and 37%, respectively, and the 

maximum total positive and negative moments shown in Figure 5.1 b) are overestimated 

by 14 % and underestimated by 9%, respectively. For both examples, using Eq. [2.3] to 

compute EI yielded more accurate predictions of the total moments than using Eq. [1.8]. 

However, the results obtained using Eq. [2.3] were still extremely conservative for the 

more slender slab. Therefore, both Eq. [1.8] and Eq. [2.3] are investigated to compute EI 

when determining the accuracy of the moment magnifier equation, Eq. [1.6], for 

estimating the second-order effects. 

5.3 SCOPE OF THE SENSITIVITY ANALYSIS 

A sensitivity analysis was performed to determine the parameters that have a significant 

influence on moment magnification in cable-stayed bridge decks. This section outlines 

the ranges of parameters chosen for the sensitivity analysis and defines the applied 

loading conditions. 

5.3.1 Parameters Investigated 

The moment magnifier for a column bent in symmetric single curvature due to equal and 

opposite end moments can be computed as: 
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where Cf is the factored axial load and Cc is the critical buckling load computed using Eq. 

[1.7]. Neglecting the 0.75 factor in Eq. [1.7] that is intended to account for uncertainties 

in computing Cc (Bartlett, 1991), recognizing I =Ig= r
2
Ag, and substituting Ec for E, this 

equation can be rewritten as:  
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Equation [5.1] suggests that increasing either the factored axial load, Cf, or the 

slenderness ratio, ,rL  should increase the moment magnifier significantly. Increasing 

the rotational restraint provided by the floorbeams, Kθ, can reduce the effective length 

factor, k, especially for bridges with concrete floorbeams as discussed in Chapter 3, so 

increasing Kθ should reduce the moment magnification. Increasing the concrete strength, 

' ,cf  will increase the modulus of elasticity, Ec, and so can also be expected to reduce the 

moment magnifier. For these reasons, the following parameters will be included in the 

sensitivity analysis to determine their influence on the moment magnifier, δ: the applied 

axial load ratio, ' ;c gfC A  the slenderness ratio, ;rL  the rotational restraint provided by 

the floorbeams, Kθ; and, the concrete strength, ' .cf  The applied axial stress, ,gAC  in 

Eq. [5.1] is divided by 'cf to be made dimensionless. With this change, increasing cf '

will increase Ec and will decrease 'c gfC A  and so should be more significant in 

increasing δ. 
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Most of the methods for computing the flexural rigidity, EI, discussed in Chapter 2, 

assume that the rigidity increases with either the gross reinforcing ratio, ρg, or the 

moment of inertia of the reinforcement, Is, as shown in Table 2.2. For this reason, both ρg 

and the steel-depth-to-slab-thickness ratio, d/hs, will also be investigated to determine 

their influence on δ. 

Table 5.1 outlines the ranges of each individual parameter that will be considered. The 

left column represents the primary parameter being examined in each set of simulated 

tests and the columns to the right show the ranges of the other variables investigated in 

each set. In all cases, the slab thickness, hs, is assumed to be 240mm and the slab width, 

w, is assumed to be 1000mm. The applied axial load ratio was chosen to range from 0.1 

to 0.7, because members with axial load less than 0.1 behave essentially as beams and the 

maximum compression force is limited to 0.75Co for members with tie reinforcement in 

CSA S6-06 (CSA, 2006), where Co is the factored axial resistance of the cross section 

subjected to zero moment. The use of the moment magnifier equation, Eq. [1.6], is 

limited in CSA S6-06 to members with slenderness ratios less than 100, so to assess the 

suitability of this upper-bound value, slenderness ratios up to 120 will be investigated. 

Slenderness ratios less than 60 will not be investigated, since higher values are common 

in practice (e.g. Alex Fraser Bridge, Talmadge Memorial Bridge, and James John 

Audubon Bridge). 
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Table 5.1: Ranges of variables chosen for the sensitivity analysis. 

Primary 

Parameter c g

C

f ' A
 

r

L
 cf '  

(MPa) 

Kθ 

(10
3
 

kN∙m/rad) 

ρg 

(%) sh

d
 

c gC f ' A  

0.1, 0.2, 

0.3, 0.4, 

0.5, 0.6, 

0.7 

60, 80, 

100 
40, 55 0 1.0 0.85 

rL  
0.2, 

0.4, 

0.6 

60, 70, 

80, 90, 

100, 110, 

120 

40, 55 0 1.0 0.85 

cf '  

(MPa) 

0.2, 

0.4, 

0.6 

60, 80 
40, 50, 

60, 70 
0 1.0 0.85 

Kθ 

(10
3
 kN∙m/rad) 

0.2, 

0.4, 

0.6 

60, 80, 

100 
40, 55 0, 5, 10, 50 1.0 0.85 

ρg 

(%) 

0.2, 

0.4, 

0.6 

60, 80 55 
0 

 

0.5, 1.0, 

1.5, 2.0 
0.85 

shd  

(hs = 240mm) 

0.2, 

0.4, 

0.6 

60, 80 55 0 1.0 

0.80, 

0.85, 

0.90 

The concrete strength, cf '  ranges from 40 to 70 MPa, since the average of these values, 

55MPa, was used in both the Alex Fraser Bridge and the James John Audubon Bridge 

(Schemmann et al., 2011) and is believed to be representative of current practice. The 

concrete stress-stress relationship by Thorenfeldt et al. (1987), is adopted: stress values 

are derived for the given compressive strength and then multiplied by a 0.9 factor. The 

initial tangent modulus of elasticity, Ec, is computed using Clause 8.4.1.7 of CSA S6-06 

(CSA, 2006) and is therefore divided by the 0.9 factor to counteract the effect of 

multiplying the stress values by 0.9, as explained previously in Chapter 2. 
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The rotational restraint provided by the floorbeams was chosen to be representative of the 

values determined in Chapter 3 for steel and concrete floorbeams. Zero rotational 

restraint is assumed as the lower bound for steel floorbeams and Kθ = 5x10
3
kN∙m/rad as 

the approximate upper bound, based on the calculations for the steel floorbeams of the 

Alex Fraser Bridge. The two higher Kθ values are representative of concrete floorbeams, 

with Kθ of 10x10
3
kN∙m/rad and 50x10

3
kN∙m/rad corresponding approximately to the 

realistic lower and upper bounds, respectively, for the Talmadge Memorial Bridge. 

The deck reinforcing ratio, ρg, in the Alex Fraser Bridge ranges from roughly 0.6% near 

the pylons to 1.3% near midspan (CBA – Buckland & Taylor Ltd., 1983). For the 

sensitivity analysis, the reinforcement is assumed to be distributed in two equal layers 

with identical covers from the top and bottom faces, with ρg ranging from 0.5 to 2%. 

Since the reinforcement is not tied to prevent buckling, it is only considered effective in 

tension and is assumed to act as concrete in compression. Cable-stayed bridge deck slabs 

are typically 200 to 300mm thick (Gimsing & Georgakis, 2012), so allowing for cover, 

the steel-depth-to-slab-thickness ratio, d/hs, is chosen to range between 0.8 and 0.9. 

5.3.2 Applied Loading 

In Chapter 4, a second-order analysis was performed on an idealized three-span cable-

stayed bridge deck with a single point load applied at the center of the interior span, as 

shown in Figure 4.1 b). This loading results in a maximum moment concentrated at 

midspan, but instability failures may be more likely to occur when the maximum positive 

midspan moment is distributed more uniformly along the span. To investigate this, two 
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loads cases will be examined; one case with a single vertical point load applied to the 

middle of the interior span, as shown in Figure 4.1 b), and another case with two point 

loads applied to the interior span, to achieve a region of uniform first-order positive 

moment. 

Figure 5.2 a) shows a cable-stayed bridge deck with a uniformly distributed load applied 

along the entire length, and Figure 5.2 b) shows the same bridge deck with two point 

loads applied to each span. Assuming the deck is infinitely long, a linear uncracked first-

order analysis yields maximum negative moments at the supports equivalent to ωL
2
/12 

for the uniformly distributed load, twice the maximum positive moment at midspan of 

ωL
2
/24, and points of zero moment at 0.21L from the supports, as shown in Figure 5.2 c). 

To achieve equivalent moments, the two point loads, P, must have magnitudes of 3ωL/8, 

and must be placed at the third points, as shown in Figures 5.2 b) and c). In this case, the 

points of zero moment are 0.22L from the supports.  
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Figure 5.2: Cable-stayed bridge deck loading: a) uniformly distributed; b) two point 

loads spaced at L/3; c) super-imposed moment diagrams. 

Figure 5.3 shows the simplified three-span continuous deck investigated for the two-

point-load case. The compression force, C, is constant in each span and two vertical point 

loads, P, are applied to the interior span at the third points only. Both interior supports are 

assumed to provide some rotational restraint, Kθ, and the end supports are assumed 

pinned. The same structural idealization will be used for cases with one vertical point 

load applied to the interior span, shown previously in Figure 4.1 b).  

 
Figure 5.3: Idealized cable-stayed bridge deck used to perform a sensitivity analysis. 
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5.4 CSDECK RESULTS FOR VARIOUS APPLIED AXIAL LOAD RATIOS 

Figures 5.4 a) and b) show the variation of the moment magnifier with the applied axial 

load ratio, ' ,c gfC A  for a 240mm thick deck slab with cf ' =55MPa,  ρg=1%, and Kθ=0, 

as defined in the first row of Table 5.1. In Figure 5.4 a) the first-order moments were 

computed using the nonlinear-cracked analysis, accounting for cracking and material 

nonlinearity, while the first-order moments in Figure 5.4 b) were computed using the 

linear-uncracked analysis. Cases with slenderness ratios of 60, 80, and 100 were 

investigated as indicated by the different coloured lines. The solid lines are the moment 

magnifiers for the maximum positive moment at midspan and the dashed lines are the 

moment magnifiers for the maximum negative moments at the floorbeam supports.  

 
Figure 5.4: Moment magnifier for various applied axial load ratios when cf ' = 55MPa, 

using: a) nonlinear-cracked first-order analysis; b) linear-uncracked first-order analysis. 

The X markers on the red and green dashed lines in Figure 5.4 represent instability 

failures, where the maximum total moments are less than 95% of the cross-section 

capacities. The corresponding positive moment magnifiers in both cases were greater 

than 4, exceeding the limit of the vertical axis. Given the accuracy of current methods for 

b) a) 
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computing slenderness effects, a design practitioner is likely to be leery of moment 

magnifiers exceeding 2, so for the rest of this investigation, moment magnifiers greater 

than 2 will be considered unrealistic. Members with L/r=100 will buckle due to the 

applied axial load alone when C>0.5 'c gf A , so the green lines terminate at these load 

ratios. 

Figure 5.4 a) demonstrates that the moment magnifier increases as the applied axial load 

ratio increases, as is predicted by Eq. [5.1], and the increase in positive moment 

magnifiers is monotonic at all slenderness ratios. Below the balanced failure load, shown 

by the black-dotted line at roughly 0.3 ' ,c gf A  the negative and positive moment 

magnifiers are similar in magnitude and increase by roughly the same amount. At loads 

just exceeding the balanced failure load, they diverge: the positive moment magnifiers 

continue to increase rapidly with ' ,c gC f A but the negative moment magnifiers reduce 

slightly.  

This can be explained using Figure 5.5, which shows the moment-curvature relationships 

for this cross section at two applied axial loads. The grey line is for an applied axial load 

of 0.2 ' ,c gf A which is below the balanced load of 0.3 ' ,c gf A  and the black line is for an 

applied axial load of 0.4 'c gf A . All results shown in Figure 5.4 at applied axial loads of 

either 0.2 'c gf A or 0.4 'c gf A reached material failure at midspan, so the secant rigidity at 

midspan is shown by the black-dotted lines in Figure 5.5. The loss of rigidity for each 

axial load level can be seen by comparing the secant rigidities at midspan to the 

uncracked rigidity, EcIg, shown by the black-dashed line. Since the concrete is assumed to 
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have zero tensile strength, the cross sections at both applied axial loads will crack at the 

decompression moments, Md. The section subjected to an applied axial load of 0.2 'c gf A  

will also experience yielding when the maximum moment reaches the yield moment, My. 

The combined effects of concrete cracking and steel yielding when 0.2 'c gC f A  reduce 

the midspan rigidity to only 34% of EcIg, as shown, causing large rotations at the ends of 

the interior member and so large negative moments at the interior supports. The section 

subjected to the higher applied axial load of 0.4 'c gf A  has a much higher decompression 

moment and the steel never yields, resulting in a midspan rigidity of 63% of EcIg. This is 

approximately 85% larger than that of the sections subjected to an applied axial load of 

0.2 'c gf A . To develop large negative moments there must be a significant reduction in 

rigidity near midspan of the slab. Since the rigidity at failure is much higher when the 

load is above the balanced failure load than when it is below, more moment is distributed 

to the midspan and so the maximum negative moments are less.  

 
Figure 5.5: Moment-curvature relationships for two applied axial loads. 
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The negative moment magnifiers are also influenced by the magnitude of the applied 

moment necessary to cause cracking. The decompression moments, Md, for applied axial 

loads of 0.2 'c gf A  and 0.4 'c gf A  equal 105kN.m and 205kN.m, respectively, which 

correspond to 35% and 63% of the respective cross-section capacities. As the applied 

vertical point loads are increased, the maximum negative moment magnifier remains 

essentially constant until the maximum moment at midspan reaches Md, whereupon, the 

midspan rigidity reduces and the maximum negative moment magnifiers increase. Since 

almost twice as much vertical load must be applied to reach Md when the applied axial 

load is 0.4 'c gf A than when it is 0.2 ' ,c gf A  much less additional load must be applied to 

increase the midspan moments from Md to the cross-section capacity, Mu, so the increase 

in negative moment magnifiers is significantly less. 

Comparing Figure 5.4 a) to Figure 5.4 b), it can be seen that the moment magnifiers 

computed using the linear-uncracked first-order analysis tend to follow similar trends as 

those computed using the nonlinear-cracked first-order analysis, especially at higher 

applied axial loads. Figure 5.6 shows the ratio of the moment magnifiers computed using 

a linear-uncracked analysis, δL, to those computed using the nonlinear-cracked analysis, 

δNL. The linear-uncracked analysis always underestimates the positive moment 

magnifiers, shown by the solid lines, and overestimates the negative moment magnifiers, 

shown by the dashed lines, since it overestimates the rigidity along the length of the 

interior span and so underestimates the negative first-order moments at the supports and 

overestimates the positive first-order moments at midspan. The two horizontal dashed 

lines indicate the 10% difference limits that define the range for acceptable predictions. 
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Values less than the lower limit can result in positive moment magnifiers less than 1, as 

shown in Figure 5.4 b). 

 
Figure 5.6: Ratio of moment magnifiers computed using a linear-uncracked first-order 

analysis to those using a nonlinear-cracked first-order analysis. 

Figure 5.7 b) shows the rigidity distribution due to first-order moments according to the 

nonlinear-cracked analysis, for a member with a slenderness ratio of 80 and an applied 

axial load of 0.2 'c gf A , loaded as shown in Figure 5.7 a). The actual rigidity along most 

of the slab is markedly less than the uncracked rigidity, EcIg, which affects the curvature 

distribution along the slab. Figures 5.7 c) and d) show the first-order curvature 

distributions computed using the linear-uncracked and the nonlinear-cracked analyses, 

respectively. From the Moment-Area Theorem, the rotation at each interior support is 

equal to the area under the curvature diagram between the interior support and midspan, 

shown shaded in both diagrams. Since the nonlinear-cracked analysis produces rigidities 

that are less than the uncracked value, EcIg, as demonstrated in Figure 5.7 b), the 

associated curvatures, shown in Figure 5.7 d), are larger than those obtained from the 

linear-uncracked analysis, shown in Figure 5.7 c), and so the computed rotations are also 
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larger. For this example, the linear-uncracked analysis predicts the end rotations to be 

9.50*10
-3

rad, 17% less than the nonlinear-cracked value of 11.5*10
-3

rad, which is more 

accurate. Thus the linear-uncracked analysis underestimates the negative moments and 

overestimates the positive moments, leading to an overestimation of the negative moment 

magnifiers and underestimation of the positive moment magnifiers. 

 
Figure 5.7: a) Beam elevation; b) first-order rigidity distribution; c) linear-uncracked 

first-order curvature diagram; d) nonlinear-cracked first-order curvature diagram. 

b) 

c) 

d) 

θ = -1.85*10
-3

 + 11.3*10
-3

  

   = 9.50*10
-3

rad 

P P 

θ = -3.29*10
-3

 + 14.8*10
-3

  

   = 11.5*10
-3

rad 

a) 



99 

 

Figure 5.7 was derived for an applied axial load of 0.2 'c gf A , which is less than the 

balanced axial load of 0.3 'c gf A . As demonstrated in Figure 5.6, the difference between 

the two first-order analyses is largest when the applied axial load is less than the balanced 

failure load, i.e., where the effects of cracking and yielding are most significant. As the 

applied axial load exceeds the balanced failure load, the difference between the two 

analyses reduces and the linear-uncracked analysis provides a good approximation of the 

nonlinear-cracked first-order moments. For the case shown in Figure 5.7 b), the rigidities 

associated with the first-order moments varies from 56 to 100% of EcIg. Figure 5.8 shows 

the moment-curvature relationship for the same section with an applied axial load of 

0.4 'c gf A . The largest first-order moment obtained from the nonlinear-cracked analyses 

is 261kN∙m for the member with a slenderness ratio of 60. Within this range of applied 

first-order moments, also shown in Figure 5.8, the secant rigidity ranges from the 

uncracked value, EcIg, to a minimum value, corresponding to the black-dashed line, of 

87% of EcIg. Since in this case the rigidities associated with first-order moment are much 

closer to EcIg, the linear-uncracked analysis provides a much better approximation of the 

nonlinear-cracked first-order moments than when the load is below the balanced failure 

load. When C ranges from 0.4 'c gf A to 0.5 'c gf A , the difference between the results 

from the two analyses at all slenderness ratios is less than 10%. 
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Figure 5.8: Moment curvature relationship for C = 0.4 ' .c gf A  

For applied axial loads much greater than the balanced failure load, say C> 0.5 'c gf A , the 

differences between the two analyses begin to increase again, as shown in Figure 5.6. The 

moment-curvature relationship for the cross section at an applied axial load of 0.6 'c gf A

is shown in Figure 5.9. For this applied axial load, the member cannot reach the 

decompression moment and so will remain uncracked along its entire length until failure. 

However, the secant rigidity for any applied moment is always less than EcIg, as shown. 

The concrete stress due to the applied axial load alone is 0.6 'cf and applied moments will 

increase this stress in some regions to 0.9 'cf , the maximum value permitted for the 

stress-strain relationship. These large stresses cause the secant modulus of elasticity of 

the concrete to be significantly less than that assumed in the linear-uncracked analysis. 



101 

 

 
Figure 5.9: Moment curvature relationship for C = 0.6 ' .c gf A  

The maximum first-order moment computed using the nonlinear-cracked analysis for a 

member with an applied axial load of 0.6 'c gf A and a slenderness ratio of 60 was 

155kN∙m. Within this range of applied first-order moments, shown on Figure 5.9, the 

secant rigidity varies only slightly from 91% of EcIg, in regions with zero moment, to 

84% of EcIg at the maximum moment region at midspan. Since the rigidity is always less 

than EcIg at these high loads, the difference between the two analyses is larger than when 

the applied axial load is first increased beyond 0.4 'c gf A . 

Lastly, Figure 5.6 indicates that the error between the two analyses decreases as the 

slenderness ratio increases and this trend will be examined further in the following 

section.  

The results shown in Figures 5.4 and 5.6 were computed for a concrete strength, 'cf , of 

55MPa. These analyses were also performed for 'cf  = 40MPa, as indicated in Table 5.1. 
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All of the same trends were observed, except the difference between the results obtained 

from the two analyses was slightly larger. For 'cf  = 40MPa, the difference between the 

results is less than 10% at all slenderness ratios only when the applied axial load ranges 

from 0.4 'c gf A to 0.5 ' ,c gf A  instead of 0.4 'c gf A to 0.6 'c gf A  as shown in Figure 5.6.  

All of the tests outlined in the first row of Table 5.1 were also performed for the load case 

with a single vertical point load. Figures D.1 and D.2 in Appendix D for the single-point-

load case are comparable to Figures 5.4 and 5.5, respectively, for the two-point-load case. 

The trends described herein for the two-point-load case also apply to the single-point-

load case, except the moment magnifiers for the single-point-load case are always less 

than those for the two-point-load case, since the single point load does not create a large 

region of uniform moment near midspan, as discussed in Section 5.3.2, so the second-

order effects are not as significant and the moment magnifiers are less. 

Furthermore, as described in Section D.1, the accuracy of the linear-uncracked analysis is 

also better for the single-point-load case. The difference between the two analyses is less 

than 10% at all slenderness ratios, when the applied axial load is between 0.4 'c gf A  and 

0.6 'c gf A  for concrete strengths, 'cf , of either 40 or 55MPa. 

5.5 CSDECK RESULTS FOR VARIOUS SLENDERNESS RATIOS 

Figures 5.10 a) and b) show the variation of the moment magnifier with the slenderness 

ratio, L/r, for the same cross section used in the previous section with 'cf =55MPa, 

ρg=1%, and Kθ=0, as defined in the second row of Table 5.1. The first-order moments in 
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Figure 5.10 a), were computed using the nonlinear-cracked analysis and the first-order 

moments in Figure 5.10 b) were computed using the linear-uncracked analysis. The 

coloured lines represent the three different applied axial load ratios that were 

investigated, 0.2, 0.4, and 0.6. Again, the solid lines are the moment magnifiers for the 

maximum positive moment at midspan and the dashed lines are the moment magnifiers 

for the maximum negative moments at the supports.  

 
Figure 5.10: Moment magnifier for various slenderness ratios when cf '  = 55MPa, using: 

a) nonlinear-cracked first-order moment diagram; b) linear-uncracked first-order moment 

diagram. 

The X markers in Figure 5.10, representing instability failures, only appear on the dashed 

lines for negative moments, as was the case in Figure 5.4, because the positive moment 

magnifiers in these cases again exceeded 4. Moment magnifiers of this magnitude are not 

realistic in practice. The green lines, corresponding to applied axial loads of 0.6 ' ,c gf A  

are not shown for L/r > 90 and the red lines, 0.4 ' ,c gf A  stop before L/r = 120, because at 

these slenderness ratios the members will buckle when subjected to the applied axial load 

alone. 

a) b) 
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Figure 5.10 a) demonstrates that the moment magnifier, δ, always increases as the 

slenderness ratio increases. This is consistent with Eq. [5.1]. The previous observation 

that moment magnifiers for positive and negative moments are roughly equal when the 

applied axial load is less than that corresponding to the balance point, seems to hold for 

the range of slenderness ratios examined, at least for an applied axial load of 0.2 ' .c gf A  

However, this trend is completely hidden if a linear-uncracked first-order analysis is 

adopted, as shown in Figure 5.10 b), because the difference between the two analyses has 

previously been shown to be greatest at this axial load level.  

It is again apparent in Figure 5.10 a) that once the applied axial load exceeds the balanced 

failure load, i.e., 0.3 ' ,c gf A  the positive moment magnifiers always exceed the negative 

moment magnifiers. For a member with constant slenderness, this is due to both the 

midspan stiffness at failure and the magnitude of the decompression moment, Md, as was 

explained in the previous section. As the slenderness ratio increases, however, the 

difference between the positive and negative moments increases, since the maximum 

negative moments also reduce as the slenderness ratio increases. Figure 5.11 a) shows the 

maximum negative moments, including second-order effects, as a ratio of the cross-

section capacity, Mu, for each case investigated in Figure 5.10. For the applied axial load 

of 0.2 ' ,c gf A  the negative moment remains constant as the slenderness increases from 60 

to 70, since plastic redistribution occurs at these lengths and the negative moments equal 

the cross-section capacity, Mu. Otherwise, the negative moments always reduce as the 

slenderness ratio increases due to the increased second-order effects. Since any rotational 

restraint provided by the floorbeams, Kθ, is ignored in these analyses, the ends of the 
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interior span are restrained only by the flexural stiffness of the adjacent spans. Figure 

5.11 b) shows the γL and γR factors, computed using Eqs. [4.5], [4.6], and [4.7], used to 

reduce the flexural stiffnesses of the left and right adjacent spans, accounting for second-

order effects as discussed in Section 4.3. Clearly, increasing L/r reduces γL and γR and 

comparing Figures 5.11 a) and Figure 5.11 b), the reduction in γL and γR leads to a similar 

reduction in negative moments. 

 
Figure 5.11: Reduction due to increasing slenderness: a) ratio of total negative moments 

to the cross-section capacity; b) modification factors, γL and γR. 

Figure 5.12 shows the ratio of the moment magnifier computed using linear-uncracked 

analysis, δL, to that computed using the nonlinear-cracked analysis, δNL. The uncracked 

analysis provides a better approximation of the actual first-order moments as the 

slenderness ratio increases, as was noted in the previous section. Increasing the 

slenderness ratio increases the moment magnifier, as demonstrated by Figure 5.10, so the 

corresponding first-order moments must be reduced. If the range of first-order moments 

shown in Figure 5.8 is reduced, the rigidity along the length of the member will approach 

EcIg for the members with applied axial loads less than or equal to 0.5 ' .c gf A  For 

b) a) 
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members with very high applied axial loads of 0.6 ' ,c gf A  the range of first-order 

moments still reduces as the slenderness ratio increases, but the member remains 

uncracked until failure, as shown in Figure 5.9, so the rigidity remains almost constant 

over the entire range of moments. Since increasing the slenderness ratio has very little 

effect on the rigidity at this applied axial load, it also has very little effect on the accuracy 

of the linear-uncracked analysis. 

 
Figure 5.12: Ratio of moment magnifiers computed using a linear-uncracked first-order 

analysis and a nonlinear-cracked first-order analysis for various slenderness ratios. 

If a 10% difference is again deemed to be the limit of acceptability, the linear-uncracked 

analysis provides acceptable predictions of the nonlinear-cracked first-order moments at 

all slenderness ratios when the applied axial load is between 0.4 'c gf A and 0.6 ' ,c gf A  as 

shown in Figure 5.12. At an applied axial load of 0.2 ' ,c gf A  the linear-uncracked 

analysis only provides acceptable predictions of the first-order moments if the 

slenderness ratio exceeds 110. 
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These analyses were repeated for 'cf  = 40MPa. All of the same trends were observed, 

except the difference between the results from the two first-order analyses was slightly 

larger. For 'cf = 40MPa, it was noted previously that the difference between the moment 

magnifiers is less than 10% at all slenderness ratios only when the applied axial load 

ranges from 0.4 'c gf A  to 0.5 ' .c gf A  However, the linear-uncracked analysis is still 

acceptable at most slenderness ratios when C= 0.6 'c gf A and the difference in moment 

magnifiers exceeded 10% only when L/r=60. Three instability failures were observed 

when 'cf  = 40MPa and in one case, the positive moment magnifier was 2.8. This is the 

lowest moment magnifier that was observed with an instability failure during this 

investigation, but is still much greater than 2, the upper limit for realistic cases. 

All of the analyses shown in the second row of Table 5.1 were also performed for the 

single-vertical-point-load case. Figures D.3 and D.4 in Appendix D for the single-point-

load case are comparable to Figures 5.10 and 5.12, respectively, for the two-point-load 

case. Again, the trends described herein for the two-point-load case also apply to the 

single-point-load case except, as mentioned previously, the magnitude of the moment 

magnifiers for a given applied axial load and slenderness ratio are again less for the 

single-point-load case than those for the two-point load case. The accuracy of the linear-

uncracked analysis is also better for the single-point-load case. The difference between 

the two first-order analyses is less than 10% at all slenderness ratios, when the applied 

axial load is between 0.4 'c gf A and 0.6 'c gf A for concrete strengths, ' ,cf of 40 or 

55MPa. 
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5.6 CSDECK RESULTS FOR VARIOUS CONCRETE COMPRESSIVE STRENGTHS 

Figures 5.13 a) and b) show the variation of the moment magnifier with the concrete 

compressive strength, ' ,cf for the cross section used previously with ρg=1% and L/r = 80, 

as defined in Table 5.1. In Figure 5.13 a) the first-order moments were computed using 

the nonlinear-cracked analysis and the first-order moments in Figure 5.13 b) were 

computed using the linear-uncracked analysis. Three constant loads of 2400kN, 4800kN, 

and 7200kN, were chosen since they represent 0.2 ' ,c gf A  0.4 ' ,c gf A  and 0.6 ' ,c gf A  

respectively, for the members with 'cf =50MPa. All of the results shown in Figure 5.13 

are material failures. The solid lines again represent positive moment magnifiers 

computed at midspan and the dashed lines are the negative moment magnifiers computed 

at the supports. 

 
Figure 5.13: Moment magnifier for various concrete compressive strengths when L/r = 

80, using: a) nonlinear-cracked first-order moment diagram; b) linear-uncracked first-

order moment diagram. 

Figure 5.13 a) demonstrates that increasing the concrete strength usually reduces the 

moment magnifier, as is evident from Eq. [5.1], since increasing 'cf  also increases the 

b) a) 
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modulus of elasticity, Ec. Furthermore, increasing 'cf  while holding C constant reduces 

the applied axial load ratio, ' ,c gC f A which generally reduces the moment magnifier, as 

described in Section 5.4. An exception occurs in the negative moment magnifiers at a 

load of 4800kN, shown by the dashed-red line, where the moment magnifier increases 

slightly. As the concrete compressive strength is increased, the axial load at balanced 

failure also increases. For 'cf ≤ 60MPa, 4800kN is above the balanced failure load, while 

for greater strengths it is below it. In Section 5.4 it was observed that as the applied axial 

load just exceeds the balanced failure load, the negative moment magnifiers reduce 

slightly, since both the midspan rigidity and the decompression moment increase. At 

4800kN, the applied axial load ratio, ' ,c gC f A is decreased from 0.50, well above that at 

balanced failure, to 0.29, just below that at balanced failure, as the concrete strength 

increases from 40 to 70MPa. This reduces both the rigidity at midspan and the 

decompression moment, so more moment is distributed to the supports and the negative 

moment magnifiers increase slightly. The other values of applied axial loads remain 

either consistently above or below that at balanced failure for the range of concrete 

strengths investigated, so this increase does not occur. 

The analyses were repeated for a slenderness ratio of 60, as shown in Table 5.1, and the 

same trends were noticed, except the magnitudes of the moment magnifiers were less. 

The same ranges of parameters, shown in the third row of Table 5.1, were also 

investigated for the single-point-load case and the results for L/r = 80 are shown in Figure 

D.5 in Appendix D. All of the trends noted in this section can be observed in Figure D.5 
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and, once again, the magnitudes of the moment magnifiers are less for the single-point-

load case. 

5.7 CSDECK RESULTS FOR VARIOUS FLOORBEAM ROTATIONAL RESTRAINTS 

Figures 5.14 a), b), and c) show the moment magnifier, computed using the nonlinear-

cracked analysis, plotted against the rotational restraint provided by the floorbeams, Kθ, 

for the same cross section used previously with 'cf  = 55MPa, ρg=1%, and slenderness 

ratios of 60, 80, and 100, respectively. Applied axial load ratios of 0.2, 0.4, and 0.6 were 

investigated and the solid lines and dashed lines again represent the positive and negative 

moment magnifiers, respectively. One instability failure occurred for the case of L/r =100 

and C= 0.6 ' .c gf A This failure occurred when Kθ = 5*10
3
kN∙m/rad, but is not shown in 

Figure 5.14 c), since the both the positive and negative moment magnifiers exceeded 3 

and so are not realistic in practice. For this case, if Kθ is reduced to 0, the member will 

buckle due to the applied axial load alone and cannot resist any applied vertical load. 
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Figure 5.14: Moment magnifiers from a nonlinear-cracked first-order analysis for 

various floorbeam rotational restraints; a) L/r = 60; b) L/r = 80; c) L/r = 100. 

Increasing the rotational restraint, Kθ, generally decreases the moment magnifier, which 

is consistent with Eq. [5.1]. Increasing Kθ from 0 to 50*10
3
kN∙m/rad reduces the effective 

length factor, k, from 1 to a minimum of 0.65 if the stiffness of the deck slab is reduced to 

account for cracking, as discussed in Chapter 3. However, as shown in Figure 5.14 a), the 

effect is relatively minor when L/r=60. The dashed vertical lines represent the upper- and 

lower-bound Kθ values for the steel floorbeams in the Alex Fraser Bridge and the 

concrete T-beams of the Talmadge Memorial Bridge, computed in Chapter 3 and scaled 

down for a 1m wide slab.  The upper-bound value for the concrete floorbeams was 

a) b) 

c) 
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calculated using a realistic effective flange width, be, computed using Clause 13.8.2.7 of 

CSA A23.3-04 (CSA, 2004). As shown, increasing Kθ within the range of steel 

floorbeams only has a significant effect when the positive moment magnifiers at Kθ=0 are 

greater than 2, and so is not realistic in practice. However, increasing Kθ within the range 

expected for concrete floorbeams can reduce the positive moment magnifiers 

significantly, as shown by the green lines is Figure 5.14 b) and the red lines in Figure 

5.14 c).  

These effects are much less noticeable when the applied axial load is 0.2 'c gf A  and for 

members with slenderness ratios of 60 or 80, shown in Figures 5.14 a) and b) 

respectively, the positive moment magnifiers increase slightly as Kθ increases. At this 

load, the support moments reach the cross-section capacity before the moments at 

midspan, but since the applied axial load is below the balanced failure load, plastic 

moment redistribution is assumed to occur. Increasing Kθ increases the negative support 

moments and so causes plastic redistribution to initiate at lower applied vertical loads. 

Thus more of the second-order support moments are redistributed to midspan, increasing 

the positive moment magnifiers. This response is not shown in Figure 5.14 c), because 

plastic redistribution is very limited when the slenderness ratio is 100. Members this 

slender undergo significant deflections as the support moments approach the cross-

section capacity that lead to large second-order effects causing failure before plastic 

redistribution can occur. 
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Figure 5.15 shows the ratio of the moment magnifier computed using a linear-uncracked 

analysis, δL, to those computed using the nonlinear-cracked analysis, δNL, for the 

members with L/r = 60. The linear-uncracked analysis provides consistently better 

approximations of the first-order moments as Kθ is increased, since this increases the 

negative moments at the supports and so reduces the moments at midspan. Since the first-

order moments at midspan are reduced, the linear-uncracked analysis provides better 

approximations of the nonlinear-cracked first-order moments, as explained in Section 5.4. 

This is most noticeable for 0.2 ' ,c gf A  shown by the blue lines, since the difference 

between the two analyses is largest at Kθ=0 but reduces considerably as Kθ increases. 

 
Figure 5.15: Ratio of moment magnifiers computed using a linear-uncracked first-order 

analysis and a nonlinear-cracked first-order analysis for various rotational restraints; L/r 

= 60. 

The results shown in Figures 5.14 and 5.15 were also computed for 'cf = 40MPa and 

similar trends were observed. The ranges of parameters in the fourth row of Table 5.1 

were also investigated for the single-point-load case and the results for 'cf  = 55MPa are 

shown in Figures D.6 and D.7 in Appendix D. No plastic redistribution occurred in the 
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single-point-load case, since it creates smaller negative first-order moments, as described 

in detail in Section D.4. Another difference is that increasing Kθ has less influence on the 

accuracy of the linear-uncracked analysis for the single-point-load case, again because it 

creates smaller negative first-order moments. When Kθ = 50*10
3
kN∙m/rad, the accuracy 

of the linear-uncracked analysis is better for the two-point-load case, shown in Figure 

5.15, than for the single-point-load case, shown in Figure D.7. At all other Kθ values the 

linear-uncracked analysis is more accurate for the single-point-load case. When the 

restraint is increased to 50*10
3
kN∙m/rad, the relative stiffness ratio, Ψ, from Eq. [3.1] is 

reduced to 0.7 for the members with a slenderness ratio of 60, if the rigidity of the deck 

slab is assumed to equal the uncracked rigidity. For both load cases, the linear-uncracked 

analysis provided acceptable results when the Ψ value is less than or equal to 0.7, for all 

members that were investigated. 

5.8 CSDECK RESULTS FOR VARIOUS REINFORCING RATIOS AND STEEL DEPTHS 

Figures 5.16 a) and b) show the variation of the moment magnifier with the reinforcing 

ratio, ρg, for the 240mm deck slab considered previously with 'cf  = 55MPa and L/r = 80. 

In Figure 5.16 a), the first-order moments were computed using the nonlinear-cracked 

analysis, while the first-order moments in Figure 5.16 b) were computed using the linear-

uncracked analysis. As with the previous investigations, applied axial load ratios of 0.2, 

0.4, and 0.6 were investigated and the dashed and solid lines represent the negative and 

positive moment magnifiers, respectively. 
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Figure 5.16: Moment magnifiers for various reinforcing ratios when L/r = 80, using: a) 

nonlinear-cracked first-order moment diagram; b) linear-uncracked first-order moment 

diagram. 

Increasing ρg from 0.5 to 2% has a negligible influence on the moment magnifiers, as 

indicated by the horizontal lines in Figure 5.16. At low applied axial loads when the 

reinforcement is most effective, there is a slight tendency for the negative moment 

magnifiers to reduce as ρg increases, but this can be considered negligible. At higher 

applied axial loads, above that corresponding to a balanced failure, the reinforcement 

cannot yield and so is less effective. 

Figures 5.17 a) and b) show the variation of the moment magnifier with the steel-depth-

to-slab-thickness ratio, d/hs, for the deck slab considered previously with 'cf  = 55MPa 

and L/r = 80. In Figure 5.17 a), the first-order moments were computed using the 

nonlinear-cracked analysis and the first-order moments in Figure 5.17 b) were computed 

using the linear-uncracked analysis. Again, at low applied axial loads there is a very 

slight tendency for the negative moment magnifiers to reduce as d/hs increases, but the 

effect is negligible and disappears for applied axial loads greater than the balanced failure 

load, when the steel is less effective. 

a) b) 
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Figure 5.17: Moment magnifiers for various steel-depth-to-slab-thickness ratios when 

L/r = 80, using the following first-order analyses: a) nonlinear-cracked; b) linear-

uncracked. 

The results shown in Figures 5.16 and 5.17 were also computed for L/r = 60, as shown in 

Table 5.1, and again all of the lines were horizontal. Figures D.8 and D.9 in Appendix D 

show for the single-point-load case results similar to those shown in Figures 5.16 and 

5.17 for the two-point-load case. It can be concluded that the reinforcing ratio, ρg, and the 

steel-depth-to-slab-thickness ratio, d/hs, do not influence moment magnification in 

slender cable-stayed bridge decks. 

5.9 ACCURACY OF SIMPLIFIED DESIGN METHODS 

Table 5.2 compares the maximum total positive and negative moments computed using 

CSDECK, M*, to the approximate magnified moments, Mc, computed using the moment 

magnifier equation, Eq. [1.6], neglecting the 0.75 reduction factor in Eq. [1.7]. The 

results shown are for the cases with slenderness ratios of 60. The rigidity, EI, was 

computed using Eq. [1.8] (CSA, 2006) and Eq. [2.3] (Olendzki, 2008). The accuracy of 

these equations is investigated using the ratio of the magnified moments obtained from 

the moment magnifier equation to the more accurate values obtained from CSDECK, 

a) b) 
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Mc/M*. Values of this ratio greater than 1.0 are conservative. For applied axial loads of 

0.3 'c gf A  or less, the use of Eq. [1.8] yields magnified positive moments that are 1.5 to 

4.2 times larger than the maximum total positive moments obtained from CSDECK and 

yields magnified negative moments that are 1.0 to 3.2 times larger than those computed 

using CSDECK. For larger applied axial loads, the use of Eq. [1.8] indicates that the 

member will buckle due to the applied load alone so the associated Mc values are shown 

equal to ∞. Since the current provisions in CSA S6-06 grossly overestimate the moment 

magnification of the idealized deck system with a slenderness ratio of 60, they are clearly 

inappropriate for the design of cable-stayed bridge decks that are typically more slender 

in practice. 

Table 5.2: Comparison of magnified moments when L/r=60. 

c g

C

f A'

 

Maximum Positive Moments (kN∙m) Maximum Negative Moments (kN∙m) 

M* 
Mc 

[1.8] 

Mc 

[2.4] *M

M c  

 [1.8] 

*M

M c  

[2.4] 

M* 
Mc 

[1.8] 

Mc 

[2.3] *M

M c  

[1.8] 

*M

M c  

[2.3] 

0.1 207 320 262 1.54 1.26 -219 -213 -174 0.97 0.79 

0.2 301 658 392 2.19 1.31 -303 -439 -261 1.45 0.86 

0.3 330 1373 432 4.16 1.31 -283 -915 -288 3.23 1.02 

0.4 323 ∞ 430 ∞ 1.33 -228 ∞ -287 ∞ 1.26 

0.5 292 ∞ 417 ∞ 1.43 -185 ∞ -278 ∞ 1.50 

0.6 232 ∞ 370 ∞ 1.60 -145 ∞ -246 ∞ 1.70 

0.7 157 ∞ 285 ∞ 1.82 -101 ∞ -190 ∞ 1.89 

The use of Eq. [2.3] (Olendzki, 2008) yields more accurate results than the use of Eq. 

[1.8], with magnified positive moments ranging from 26% to 82% larger than the 

corresponding values obtained from CSDECK and magnified negative moments ranging 

from 21% smaller to 89% larger than those computed using CSDECK. However, since 
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these errors will also increase as the slenderness ratio increases, Eq. [2.3] is also 

inappropriate for computing the magnified moments in slender cable-stayed bridge decks. 

The moment magnifier equation, Eq. [1.6], was derived to compute the magnified 

moment at the mid-height of a simply supported column, subjected to equal and opposite 

end moments causing single curvature. However, continuous cable-stayed bridge decks 

subjected to traffic loads applied between the floorbeams typically develop negative 

moments at the supports and positive moments at midspan and so are actually bent in 

triple curvature. This greatly reduces the second-order effects, so the magnified moments 

in continuous beam-columns computed using Eq. [1.6] are generally extremely 

conservative, even if the rigidity, EI, is computed using an equation that can be 

unconservative for members bent in single curvature. 

5.10 SUMMARY 

A sensitivity analysis was performed on an idealized three-span cable-stayed bridge deck 

to determine parameters that significantly influence moment magnification within these 

members. To compute the moment magnifier, the total moment diagram, including first- 

and second-order moments was computed using the program CSDECK, described in the 

Chapter 4. Two approaches were adopted to compute the first-order moments: (1) a 

nonlinear-cracked analysis that accounts for the loss of stiffness due to cracking and 

material nonlinearity, following the process outlined in Section 4.3; and (2) a linear-

uncracked analysis that is readily carried out in practice. Since the linear-uncracked 
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analysis ignores the loss of stiffness due to cracking and material nonlinearity, the 

accuracy of this method was also investigated. 

The parameters chosen for investigation were the applied axial load ratio, ' ,c gC f A the 

slenderness ratio, L/r, the concrete compressive strength, 'cf , the rotational restraint 

provided by the floorbeams, Kθ, the gross reinforcing ratio, ρg, and the steel-depth-to-

slab-thickness ratio, d/hs. The ranges of the investigated parameters were chosen to be 

representative of current practice. All three spans were subjected to a constant applied 

axial load and two applied vertical load cases were considered. The case with two vertical 

point loads applied to the interior span only was presented in detail in this chapter and the 

other case, with only one vertical point load applied to the middle of the interior span, is 

presented in Appendix D. 

The accuracy of estimating the total moments using the moment magnifier equation, Eq. 

[1.6], to magnify the linear-uncracked first-order results was investigated. The rigidity, 

EI, was computed either using Eq. [1.8] (CSA, 2006) or Eq. [2.3] (Olendzki, 2008). 

5.11 CONCLUSIONS 

The sensitivity analysis has yielded the following conclusions: 

1) For the loading conditions investigated, realistic members typically exhibit 

material failure at midspan, except at very low applied axial loads where the 

cross-section capacity is first reached at the supports and additional moments are 
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redistributed to midspan. In such cases the positive midspan moment rarely 

reaches the cross-section capacity, but material failure still occurs at the supports. 

The only instability failures that were observed were accompanied by very large 

positive moment magnifiers, δ, greater than 2. Practice is not currently sufficiently 

advanced to predict these large δ values accurately, so they are not expected to be 

realistic.  

2) The applied axial load ratio, ' ,c gC f A  slenderness ratio, L/r, concrete strength, 

' ,cf  and rotational restraint provided by the floorbeams, Kθ, were all found to 

influence the moment magnifier significantly, as is evident from Eq. [5.1].  

3) Increasing the applied axial load ratio always increases the positive moment 

magnifiers. The influence of the applied axial load ratio on the negative moment 

magnifier depends on whether the applied axial load is less or greater than the 

balanced failure load. For low applied axial loads, the negative moment 

magnifiers increase as the applied axial load increases and have roughly the same 

magnitudes as the positive moment magnifiers. For higher applied axial loads, 

larger moments are required to crack the section and the rigidity at midspan is 

higher, so more moment is resisted at midspan and less at the supports, so the 

positive moment magnifiers are always larger than the negative moment 

magnifiers. 

4) Increasing the slenderness ratio always increases the moment magnifier, because 

the midspan deflection increases and so the second-order moments also increase.  
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5) Increasing the concrete compressive strength, ' ,cf reduces the moment magnifiers 

in most cases, partly because this increases the initial tangent modulus of 

elasticity of concrete, Ec.  

6) Increasing the rotational restraint, Kθ, typically reduces the moment magnifier, 

though the reduction is very slight when L/r = 60. At higher slenderness ratios, 

increasing Kθ within the range expected for steel floorbeams does not have a 

significant effect on realistic members, so Kθ for steel floorbeams can be 

neglected. However, increasing Kθ within the range of values expected for 

concrete floorbeams can reduce the moment magnifier significantly and so should 

be considered in practice. 

7) The reinforcing ratio, ρg, and the ratio of the steel-depth-to-slab-thickness, d/hs, 

have a negligible influence on the moment magnifiers, even at low applied axial 

loads when the steel is most effective. 

8) The linear-uncracked first-order analysis always underestimates the positive 

moment magnifiers and overestimates the negative moment magnifiers. The 

linear-uncracked analysis overestimates the rigidity along the length of the 

interior span and so underestimates the rotations and negative moments at the 

supports. If the applied axial load is less than the balanced failure load, the linear-

uncracked analysis will not accurately predict first-order moments, unless either 

the slenderness ratio is very large, L/r≳110, or there is significant rotational 
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restraint provided by the floorbeams, Ψ≲0.7, since the combined effects of 

concrete cracking and steel yielding cause the first-order rigidity to be 

significantly less than the uncracked rigidity. These effects are negligible at any 

slenderness ratio when the applied axial load is from 0.4 'c gf A  to 0.5 ' .c gf A  

9) For high applied axial loads, C≳0.6 ' ,c gf A  the initial uncracked secant rigidity 

obtained from the actual moment-curvature relationship is less than that assumed 

in the linear-uncracked analysis, but it still provides acceptable predictions of the 

nonlinear-cracked first-order moments, provided the slenderness ratio is not less 

than 70.  

10) The procedures provided in CSA S6-06 for computing second-order effects in 

slender concrete beam-columns are excessively conservative even for a relatively 

stocky cable-stayed bridge deck section (L/r=60), so these provisions cannot be 

used to design realistic decks that are often more slender. 

11) The moment magnifier equation, Eq. [1.6], is not acceptable for approximating 

the second-order effects in continuous cable-stayed bridge decks bent in triple 

curvature, since it was derived for simply supported members bent in single 

curvature. Even when the least conservative equation investigated in Chapter 2, 

Eq. [2.3] (Olendzki, 2008), is used to compute EI in Eq. [1.6], the results are 

conservative overestimating the moment magnification by at least 26%. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

6.1 SUMMARY 

Cable-stayed bridge girder systems often consist of a concrete deck slab supported by 

steel or concrete floorbeams that span transversely between the longitudinal steel or 

concrete girders. The deck slab is subjected to local bending moments from traffic loads, 

compression forces due to global bending of the longitudinal girder, and additional 

compression forces from the horizontal component of the stay cable tensions. The deck 

slabs must therefore be designed as slender beam-columns since their slenderness ratios 

can exceed 70 in practice (e.g. Bartlett, 1991). The current provisions in CSA S6-06 for 

second-order effects in slender beam-columns were derived for columns in buildings 

where slenderness effects can often be neglected (MacGregor, Breen, & Pfrang, 1970), so 

their suitability for extremely slender cable-stayed bridge decks warrants investigation. 

The different failure modes for slender beam-columns were presented in Chapter 1 and 

the difference between the secant and tangent rigidities was demonstrated using a typical 

moment-curvature relationship. Results presented by Bartlett (1991) were used to 

demonstrate the inaccuracy associated with using the provisions in CSA S6-06 (CSA, 

2006) for computing the resistance of slender concrete beam-columns to design cable-

stayed bridge decks. 

A detailed review of eight equations proposed in the literature for computing the rigidity, 

EI, of slender concrete columns was presented in Chapter 2. The limitations of each 

equation were discussed and the influences of the key variables in each equation were 
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compared. The accuracy associated with the eight equations was investigated through a 

case study of the deck slab in the Alex Fraser Bridge in Vancouver. Rigidities computed 

using each equation were used to determine the deck slab capacity and these results were 

compared to those from the second-order analysis discussed in Chapter 4. 

The rotational restraint provided at the deck slab supports by steel or concrete transverse 

floorbeams was examined and approximate equations were presented in Chapter 3 to 

quantify the restraint provided. The equations account for the restraint provided by the 

torsional stiffness of the floorbeams and the additional restraint provided by the vertical 

eccentricity of the rigid deck slab with respect to the floorbeam centroid. The equations 

were validated using a linear-elastic static analysis performed in SAP2000. Typical 

ranges of effective length factors, k, were then computed using the validated equations for 

deck slabs supported by steel and concrete floorbeams, using case studies of the Alex 

Fraser Bridge and the Talmadge Memorial Bridge in Savannah, Georgia.  

A rational method was presented for computing the first- and second-order moments in 

continuous beam-columns subjected to vertical loads between their supports in Chapter 4. 

The method was implemented into a MATLAB program to analyze a simplified three-

span cable-stayed bridge deck subjected to axial compression in all three spans and 

vertical loads at the interior span only. The program was then used to compute the 

second-order effects in a simplified deck system resembling that of the Talmadge 

Memorial Bridge and was validated using both a nonlinear-static analysis performed in 

ANSYS 12.0 and a nonlinear analysis program developed by Nathan (1987). 
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A sensitivity analysis was presented in Chapter 5 that determines the influence of the 

following parameters on the moment magnification of slender cable-stayed bridge decks: 

the applied axial load ratio, ' ,c gC f A  the slenderness ratio, L/r, the concrete strength, 

'cf , the rotational restraint provided by the floorbeams, Kθ, the reinforcing ratio, ρg, and 

the ratio of the reinforcement depth to slab thickness, d/hs. Two loading conditions were 

investigated and the moment magnifiers were computed using two different methods to 

compute the first-order moments. Nonlinear-cracked analysis accounted for the variation 

in rigidity along the length of the slab, but was deemed to be difficult to carry out in 

practice. Linear-uncracked analysis is more readily carried out in practice, but idealizes 

the rigidity along the length of the member as constant and equal to the uncracked 

rigidity. Since the linear-uncracked analysis does not account for the variation in rigidity, 

its accuracy was also investigated. Furthermore, the accuracy of the moment magnifier 

equation, Eq. [1.6], for estimating the maximum total positive and negative moments by 

magnifying the linear-uncracked first-order moments was investigated, using both Eq. 

[1.8] (CSA, 2006) and Eq. [2.3] (Olendzki, 2008) to compute EI. 

6.2 CONCLUSIONS 

The main conclusions of this investigation are as follows: 

1) The equations provided by CSA S6-06 for computing the rigidity, EI, of slender 

concrete members provide acceptable results at a low applied axial load and 

extremely conservative results at a higher applied axial load for a slender simply 

supported cable-stayed bridge deck subjected to equal and opposite end moments. 
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These equations are excessively conservative at all applied axial loads for 

continuous members subjected to transverse loads between their supports. 

2) The various equations proposed in the literature to compute EI generally yield 

conservative estimates that are less accurate than the equations in CSA S6-06 at 

low axial loads. All yield more accurate, but still conservative estimates at higher 

axial loads, from 7 to 100% less than the capacity obtained from a detailed 

second-order analysis for a simply supported cable-stayed bridge deck subjected 

to equal and opposite end moments. The equation proposed by Olendzki (2008) 

was the only equation to provide unconservative results, underestimating the 

capacity by 20% at the lower applied load, but yielded an accurate prediction at 

the higher applied load, within 8% of the results from the detailed analysis. The 

method proposed by Khuntia and Ghosh (2004) provided the most consistent 

results with accurate predictions at both low and high applied axial loads, 

underestimating the capacity by 5 and 7%, respectively. 

3) The moment magnifier equation, Eq. [1.6], yields very conservative estimates of 

the second-order effects in continuous beam-columns subjected to transverse 

loads between their supports. Using Eq. [2.3] (Olendzki, 2008) to compute EI in 

Eq. [1.6] can overestimate the capacity of simply supported members subjected to 

equal end moments causing single curvature by up to 20%, but greatly 

underestimates the capacity of continuous members bent in triple curvature. 
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4) The rotational restraint provided by the vertical eccentricity between the deck slab 

and the floorbeam centroid can significantly increase the total rotational restraint 

provided. It has a negligible influence, however, on the effective length factor, k, 

for steel floorbeams and reduced k by at most 11% for concrete floorbeams. 

5) The effective length factor, k, for cable-stayed bridge deck slabs supported by 

steel floorbeams approaches 1. However, the rotational restraint provided by 

concrete floorbeams can reduce k below 0.9, typically from 0.6 to 0.85 for 

realistic cases. The difference in restraint provided by steel and concrete 

floorbeams is due to thin steel elements being ineffective at resisting St. Venant 

Torsion. 

6) Realistic cable-stayed bridge deck slabs subjected to either a single point load 

applied between the supports or two point loads applied at the third points reach 

material failure at midspan, provided the cross-section capacity is not first reached 

at the supports. Instability failures are only anticipated when the maximum 

positive moment at midspan is magnified by a factor of more than two. Given the 

accuracy of current practice, a designer is likely to be leery of moment magnifiers 

of this magnitude and so they are not expected to be realistic in practice. 

7) The applied axial load ratio, ' ,c gC f A  slenderness ratio, L/r, concrete strength, 

'cf , and rotational restraint provided by the floorbeams, Kθ, influence the 

moment magnification of cable-stayed bridge decks significantly. The 
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reinforcement ratio, ρg, and the ratio of the reinforcement depth to slab thickness, 

d/hs, have a negligible influence, even at low applied axial loads when the steel is 

most effective. 

8) Increasing the applied axial load ratio always increases the positive moment 

magnifiers. The influence of the applied axial load ratio on the negative moment 

magnifiers is different at applied axial loads below and above the balanced failure 

load. At low applied axial loads, the negative moment magnifiers increase as the 

applied axial load increases and are roughly the same in magnitude as the positive 

moment magnifiers. At higher applied axial loads the positive moment magnifiers 

are larger than the negative moment magnifiers, since larger moments are 

required to crack the section and the reinforcement cannot yield so the midspan 

rigidity is much larger than at lower applied axial loads.  

9) Increasing the slenderness ratio increases the moment magnifier, since the 

deflection midspan between the floorbeams increases and so the second-order 

moments also increase. The difference between the positive and negative moment 

magnifiers at applied axial loads above the balanced failure load increases further 

as the slenderness ratio increases, since the negative support moments are 

reduced. 

10) Increasing the concrete compressive strength, ' ,cf  reduces the moment 

magnifiers in most cases, since it increases the initial tangent modulus of 
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elasticity, Ec, and also reduces the applied axial load ratio, ' ,c gC f A which was 

shown to reduce the moment magnifier, except near balance point. 

11) Increasing the rotational restraint, Kθ, typically reduces the moment magnifier, 

though the reduction is very minor when L/r = 60. At higher slenderness ratios, 

increasing Kθ within the range expected for steel floorbeams does not have a 

significant effect on realistic members. However, increasing Kθ from 0 to the 

largest value considered for concrete floorbeams reduces the moment magnifier 

significantly: in some cases it can reduce the positive moment magnifier from 

greater than 2.5 to a value near 1.5.   

12) A linear-uncracked first-order analysis always underestimates the positive 

moment magnifiers and overestimates the negative moment magnifiers, since it 

overestimates the rigidity along the length of the interior span and so 

underestimates the rotations and negative moments at the supports. 

6.3 RECOMMENDATIONS FOR DESIGN OFFICE PRACTICE 

The following recommendations can be made for design office practice: 

1) The procedures provided in CSA S6-06 for computing second-order effects in 

slender concrete beam-columns are excessively conservative and so cannot be 

used to design economical cable-stayed bridge decks. 
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2) The moment magnifier equation, Eq. [1.6], is not acceptable for approximating 

the second-order effects in continuous cable-stayed bridge decks bent in triple 

curvature, since it was derived for simply supported members bent in single 

curvature.  

3) The rotational restraint provided by the vertical eccentricity between the deck slab 

and the floorbeam centroid can be neglected when computing the rotational 

restraint of steel or concrete floorbeams.  

4) Increasing the rotational restraint, Kθ, within the range typical of steel floorbeams 

has a negligible effect on both the moment magnifier and the effective length 

factor for realistic cases, so Kθ for steel floorbeams can be neglected.  

5) Increasing Kθ within the range of values expected for concrete floorbeams can 

reduce both the moment magnifier and the effective length significantly, so 

neglecting the restraint in practice may result in an uneconomical solution. 

6) Linear-uncracked analysis should provide acceptable predictions of the nonlinear-

cracked first-order moments at any slenderness ratio when the applied axial load 

is from 0.4 'c gf A  to 0.5 ' .c gf A  

7) At high applied axial loads, C≳0.6 ' ,c gf A  the linear-uncracked analysis provides 

acceptable predictions of the nonlinear-cracked first-order moments, provided the 

slenderness ratio is not less than 70.  
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8) If the applied axial load is less than the balanced failure load, the linear-uncracked 

analysis will not accurately predict first-order moments, unless either the 

slenderness ratio is very large, L/r≳110, or there is significant rotational restraint 

provided by the floorbeams, Ψ≲0.7. 

6.4 RECOMMENDATIONS FOR FUTURE WORK 

The recommendations for future work are as follows: 

1) Review past designs to determine the ranges of cross-section dimensions, material 

properties, and loading conditions that are typical in practice and compare these 

ranges to those used in Chapter 5. 

2) Explore the effects of more realistic loading conditions, consisting of a CL-625W 

truck driven across the deck slab and compare the results to the results from the 

two load cases investigated in Chapter 5. 

3) Determine the influence of tension stiffening on the moment magnification of 

cable-stayed bridge decks subjected to low applied axial loads, where the effects 

of cracking are most significant. 

4) Investigate time-dependent effects to determine their influence on the response of 

slender cable-stayed bridge decks. These effects, such as creep, can be expected to 

reduce the rigidity of the deck slab and so increase the second-order effects. In the 

case of composite girder systems with steel edge girders, creep will also cause 
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some of the axial load in the deck slab to be shed to the steel girders, which will 

also affect the moment magnification. 
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BASIS OF RIGIDITY EQUATIONS PROPOSED BY OTHERS APPENDIX A: 

Equation [2.1] was proposed by Nathan (1983) to improve the accuracy of the moment 

magnifier equation, Eq. [1.6], for prestressed concrete columns. Nathan (1983) observed 

prestressed concrete columns are often governed by instability throughout most of their 

practical slenderness range, since they typically have lower reinforcing ratios, higher 

slenderness ratios, and higher axial loads at balanced failure than typical reinforced 

concrete columns. However, cable-stayed bridge deck panels are also very slender and 

have low reinforcing ratios, which can cause relatively high axial loads at balanced 

failure. Prestressed wall panels typically carry relatively low axial loads and are usually 

statically determinate, however, whereas cable-stayed deck panels can be subjected to 

large axial loads and are typically indeterminate. 

Equation [2.1] was developed by back-calculation from the results obtained from a 

rational computer analysis. It is intended to apply to prestressed columns when the 

concrete stress due to prestressing is less than 4 MPa, the initial prestressing is greater 

than 50% of the ultimate strand stress, and the slenderness ratio, kL/r, is less than 150. It 

is not intended to represent the secant rigidity or the tangent rigidity, but instead to 

provide an artificial rigidity that simulates instability failures as equivalent material 

failures, as suggested by the interaction diagram shown in Figure A.1. The true load path, 

from the origin to the actual mid-height moment, Mc,A, is simulated using a fictitious load 

path, from the origin to the simulated mid-height moment, Mc,S. The end moment at 

instability, M2, can then be approximated by over-estimating the second-order effects, 

 2 1M  ,  using the simulated mid-height moment, Mc,S,  equal to the cross-section 
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capacity, and the proposed rigidity equations. The equations therefore intentionally 

underestimate the true secant rigidity when instability occurs. 

 
Figure A.1: The real load path of a stability failure and the simulated load path assumed 

by Nathan (after Nathan, 1983). 

However, Nathan (1985) observed that Eq. [2.1] does not produce acceptable results if 

either the member resistance factor, ϕm, taken to be 0.75 in CSA S6-06, or the sustained 

load factor, βd, is included. Equation [2.1] is therefore recommended if the short-term 

nominal response is desired (i.e. βd = 0, ϕm = 1.0), and Nathan (1985) proposed Eq. [A.1] 

and [A.2] for the factors, η and Ω, to replace those in the right column of Table 2.1 when 

the long-term factored response is required. For 0 ≤  βd  ≤ 0.5 and ϕm = 0.75: 

[A.1]  
1.6

2.5
f

o

η
C

C

   
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where 6 ≤  η  ≤ 70. For sections without compression flanges with the same range of βd 

and value of ϕm: 

[A.2]  
27

 - 0.05 Ω
kL

r



 

and α = ηΩ should not be taken less than 3.2. The PCI Committee on Prestressed 

Concrete Columns (1988) adopted Eq. [2.1] for calculating EI, with η and Ω defined by 

Eqs. [A.1] and [A.2], and proposed that α should not be taken less than 3.
 

Khuntia and Ghosh (2004) proposed Eq. [2.2] as the flexural rigidity for analyzing sway 

frames and non-sway frames, and specifically for analyzing frames with slender columns. 

Equation [2.2] provides the secant rigidity of typical cross sections and was developed to 

reduce the ambiguities between the two frame analysis methods in ACI 318-02 (ACI, 

2002), which are very similar to those in CSA S6-06. Equation [2.2] was validated using 

test results reported in the literature and the predictions were compared extensively to 

those obtained from Eq. [1.8] and from a form of Eq. [1.9] that appeared in previous 

editions of CSA S6. Based on the experimental results investigated, Eq. [2.2] predicts the 

slender column capacity much more accurately. The tests used to validate Eq. [2.2] for 

analyzing columns in non-sway frames bent in single curvature had slenderness ratios 

from 31 to 61, which are less than the typical range of slenderness ratios in cable-stayed 

bridge deck panels and much less than the slenderness limit of 100 in CSA S6-06.  
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Equation [2.2] is based on the assumptions that when subjected to typical factored loads 

that are less than the factored resistances, the maximum compression strain in the 

concrete does not exceed 0.0015 and the tension steel is unlikely to yield. However, the 

effective flexural rigidity required in the moment magnifier equation, Eq. [1.6], must 

represent the secant rigidity immediately prior to failure (MacGregor & Bartlett, 2000), 

which is defined by CSA S6-06 to occur at an extreme fibre compression strain, εcu, of 

0.0035.  

Figure A.2 shows the moment resistance, Mu, as a function of the extreme fibre 

compression strain for a 400mm square column with cf ' =30MPa and g=2%. The symbol 

X marks the yield moment of the section. The maximum applied load of 0.5Co exceeds 

the load at balanced failure, so yielding does not occur and the maximum moment 

resistance corresponds to an extreme fibre strain of approximately 0.0025. For the lower 

applied axial loads of 0.125Co and 0.25Co, the yield moments occur at extreme fibre 

strains of 0.00175 and 0.0025, respectively. In both cases the yield moment exceeds 97% 

of the maximum moment resistance, so the moment resistance remains essentially 

constant as the extreme fibre strain increases to 0.0035. Thus for this cross section, the 

secant rigidity should be computed for a maximum extreme fibre strain of 0.0025: for 

higher strains, the moment remains essentially constant but the curvature increases by at 

least 40% so the secant rigidity reduces by at least 30%. Adopting the Khuntia and Ghosh 

proposal that the extreme fibre strain does not exceed 0.0015 seems inappropriate, 

however, because this corresponds to only 86%, 68%, and 64% of the maximum moment 

resistance for loads of 0.125Co, 0.25Co, and 0.5Co, respectively. However, Eq. [2.2] was 
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intended to apply to both serviceability and ultimate limit states, and much lower extreme 

fibre strains can be expected under service loads.
 

 
Figure A.2: The moment resistance vs. extreme fibre compressive strain relationship for 

a 400mm square column, cf '
 
= 30MPa and g 

= 2%. 

Equation [2.3], suggested by Olendzki (2008), was derived from a statistical analysis of 

275 slender reinforced concrete column tests reported in the literature and is intended to 

provide an equivalent column flexural rigidity that is more accurate than Eqs. [1.8] and 

[1.9]. It is unclear whether Eq. [2.3] is intended to represent the secant or tangent rigidity, 

and the failure modes of the reported tests are not discussed. Equation [2.3] can therefore 

be assumed to provide an equivalent flexural rigidity that minimizes the statistical error 

of the test-to-predicted ratios. All of the tested columns had slenderness ratios, kL/r, less 

than 100 and so are slender columns as per CSA S6-06. Equation [2.3] is therefore 

restricted to same slenderness ratio limit of 100 that currently applies to Eqs. [1.8] and 

[1.9] in CSA S6-06. 



141 

 

Tikka and Mirza (2008) proposed Eqs. [2.4] and [2.5] to compute the effective flexural 

rigidity for slender reinforced concrete and composite columns, where the end 

eccentricity ratio, e/h, is not taken less than 0.1. Equations [2.4] and [2.5] were developed 

by regression analysis of the theoretical flexural rigidity at simulated material failure of 

over 27,000 reinforced concrete and composite columns. The cross-section capacity, Mu, 

was taken as the maximum from the moment-curvature relationship. The theoretical 

rigidity was then determined using the secant formula, assuming the mid-height moment 

reached Mu. Equations [2.4] and [2.5] are intended to apply when the slenderness ratio, 

kL/r, is less than 104, the concrete compressive strength, cf ' , is less than 55MPa, and the 

gross reinforcing ratio,
 
g, 

is greater than 1%.  Given that the precast deck panels in both 

the Alex Fraser Bridge in Vancouver and the John James Audubon Bridge in Louisiana 

are made with 55MPa concrete (Schemmann et al., 2011), it is perhaps inappropriate to 

consider Eqs. [2.4] and [2.5] for designing deck panels since the current-state-of-practice 

has already exceeded these limitations. 

Bonet et al. (2011) proposed Eq. [2.6] as part of a study focused primarily the flexural 

rigidity of members subjected to biaxial bending. Equation [2.6] was proposed for 

uniaxial bending and was developed by regression analysis of numerically simulated 

results, performed using general finite element analysis software and verified using 613 

test results reported in the literature for columns subjected to both uniaxial and biaxial 

bending. The range of parameters investigated included: gross reinforcing ratios, g, 

greater than 1%; concrete compressive strengths, cf ' , from 30 to 100MPa; and 

slenderness ratios, kL/r, up to 100. However, Eq. [2.6] was developed to be included in 
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both the ACI-318 (ACI, 2008) and Eurocode 2 (European Committee for Standardization, 

2004) and contains the creep coefficient, φ, from Eurocode 2 which differs from the βd 

factor in CSA S6-06. Equation [2.6] is intended to apply to both material and instability 

failures, yet is also meant to be used in the moment magnifier equation, Eq. [1.6], with 

the mid-height moment equal to the cross-section capacity, Mu. Equation [2.6] is 

therefore intended to approximate the secant rigidity at material failure and, similar to 

Nathan’s (1983) approach, to underestimate to secant rigidity for instability failures. The 

simulated second-order effects are therefore overestimated for instability failures, so they 

can be analyzed as equivalent material failures, similar to Eq. [2.1], as was shown in 

Figure A.1. 

Equation [1.3] for the secant rigidity at material failure is based entirely on mechanics 

and is therefore applicable to all columns with linear strain distributions that reach 

material failure. It will always provide conservative results because the rigidity is 

calculated at the critical mid-height section where it is the least. Furthermore, as shown in 

Figure A.2, the maximum moment corresponds approximately to an extreme fibre strain, 

εcu, of 0.0025, so assuming a value of 0.0035 and the associated neutral axis depth, cu, 

will significantly underestimate the true secant rigidity. 

A variation on Eq. [1.3] suggested by Shuraim and Naaman (2003) for slender 

prestressed concrete columns is described in Chapter 2. As mentioned, they propose 

adopting the secant rigidity at the applied end eccentricity, instead of at the applied load, 

Cf, as shown in Figure 2.1. This assumption seems counterintuitive since this rigidity 
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value corresponds neither to the applied load at the critical section nor the eccentricity at 

the critical section. While Shuraim (1990) states that “if EI is calculated at the same axial 

load, the results will be very conservative,” there is no rational explanation for this 

procedure other than it provides good agreement with the rigidity obtained from finite 

element analysis.  

The computed rigidity proposed by Shuraim and Naaman (2003) was compared to the 

results from their finite element analysis in Figure 2.2.  As previously mentioned in 

Chapter 2, the method greatly underestimates the rigidity at low eccentricity ratios, e/h, as 

demonstrated by the dashed line. Shuraim and Naaman attribute this to the failure being 

governed by instability at high axial loads, causing an increase in the effective rigidity at 

failure. However, this contradicts previous research by Nathan (1983) who noticed that 

prestressed columns are often governed by instability at any applied load when the 

slenderness ratio exceeds 50. As the applied axial load approaches the axial resistance for 

zero applied moment, Co, the rigidity calculated at the applied eccentricity approaches the 

rigidity calculated at the applied axial load. Therefore, the method becomes more 

conservative as the applied load increases, approaching that of Anderson and Moustafa 

(1970) which gives very conservative results. 

To avoid extreme conservatism at low eccentricities, Shuraim and Naaman (2003) further 

proposed that the rigidity should not be taken less than the peak secant rigidity, shown by 

point B on Figure 2.2. Equation [2.7] in Chapter 2 is proposed for computing the neutral 

axis depth at the peak secant rigidity and the ultimate moment resistance, Mu, 

corresponding to this neutral axis depth can be obtained by interpolation, provided the 
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neutral axis depth is known for a sufficient number of points defining the short column 

interaction diagram.  

To further improve the accuracy of the proposed method for eccentricities less than the 

peak value, Shuraim and Naaman (2003) suggest that the rigidity be computed by 

interpolating between the peak secant rigidity, point B on Figure 2.2, and the tangent 

rigidity under concentric axial load, shown by the dashed line at the top of the figure. The 

critical tangent rigidity under concentric axial load can be obtained by equating the 

critical buckling load to an unknown uniform stress across the column area (Shuraim & 

Naaman, 2003): 

[A.3]  
2

2

tc g

c g sc

π E I
C A E ε

kL
   

The critical buckling load is defined by the concrete tangent modulus, Etc, while the 

concrete secant modulus, Esc, defines the uniform stress across the gross concrete area, 

Ag, corresponding to the strain, ε. For simplicity, Shuraim and Naaman propose using a 

simple parabolic stress-strain relationship for concrete in compression: 

[A.4]  
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where fc is the stress corresponding to the strain, ε, and εo is the strain corresponding to 

the peak stress, cf ' . The tangent modulus, Etc, can be obtained by differentiating Eq. 

[A.4] with respect to the strain, ε, yielding: 

[2.9]  
2 '

1c
tc

o ο

f ε
E

ε ε

 
   
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The secant modulus, Esc, can be obtained by dividing the stress by the strain. For the 

stress-strain relationship given by Eq. [A.4]: 

[A.6]  
'
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o ο

f ε
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Substituting Eq. [A.5] and [A.6] in Eq. [A.3] and solving for the strain yields Eq. [2.10] 

for the ultimate strain under concentric axial load: 

[2.10]  
2 4

2
o o

π r π r
ε ε ε

kL kL

    
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Substituting Eq. [2.10] back into Eq. [A.5] yields the concrete tangent modulus, and the 

tangent rigidity under concentric axial load follows as: 

[2.8]  tan tc gEI E I  



146 

 

Figure 2.2 demonstrates that the method proposed by Shuraim and Naaman (2003) 

closely approximates the rigidity obtained using finite element analysis, if the secant 

rigidity, Eq. [1.3], corresponding to the applied end eccentricity is used at high 

eccentricities, and the rigidity is obtained by interpolating between the peak secant 

rigidity and the critical tangent, Eq. [2.8], at low eccentricities. The rigidity obtained 

using the proposed method is shown by the solid line with a kink at point B, which 

closely follows the smooth solid line representing the results from their finite element 

analysis.  
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DERIVATION OF APPROXIMATE EQUATIONS FOR APPENDIX B: 

COMPUTING THE ROTATIONAL RESTRAINT PROVIDED BY 

FLOORBEAMS 

 EQUATION [3.4] B.1

From Chapter 3, the rotational restraint, Kθ, of an elastic member with fixed ends rotating 

about its centroid due to an applied point torque is: 

[3.2]  
( )

T GJs
K

a s a



 


 

where θ is the rotation at the point of application of the point torque, T, at a distance, a, 

from the support. The shear modulus is G, J is the St. Venant torsional constant, and s is 

the length of the floorbeam. If the deck slab is assumed to prevent deflection at the mid-

height of the slab, the restraint provided by the deck slab, Pe, will create a restraining 

torque, Te: 

[B.1]   2see hyPT   

where y is the distance from the top of the deck slab to the floorbeam centroid and hs is 

the thickness of the deck slab. If the rotation, θ, is small, the centroid deflection, Δe, 

caused by the restraint, Pe, is computed as: 

[B.2]   2se hyθΔ    
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Using the beam deflection equation for a fixed beam with an applied point load a 

distance, a, from the support, the deflection is also computed as: 

[B.3]  
 
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33

3 sEI

asaP
Δ

y

e
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where E is the modulus of elasticity and Iy is the y-axis moment of inertia of the 

floorbeam. Setting Eq. [B.2] equal to Eq. [B.3] and rearranging for the rotation, θ:  

[B.4]  
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Rearranging Eq. [B.1] for the restraint, Pe, and substituting it into Eq. [B.4]: 

[B.5]  
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Rearranging Eq. [B.5] yields the rotational restraint, Ke, provided by the vertical 

eccentricity of the rigid deck slab from the floorbeam centroid: 

[3.3]  
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The total applied torque is equilibrated by the sum of the internal torque, T, and the 

restraining torque, Te. The total rotational restraint, Kθ, is therefore the sum of the 

restraint provided by the torsional stiffness of the floorbeams, Eq. [3.2], and that provided 

by the vertical eccentricity deck, Eq. [3.3]: 

[3.4]  
 
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 EQUATIONS [3.5] AND [3.6] B.2

Equations [3.5] and [3.6] provide the rotational restraint at the quarter-spans and 

midspan, respectively, of a floorbeam with fixed ends and a uniform torque applied 

between the quarter points. The rotational restraint provided by the torsional stiffness of a 

floorbeam subjected to a uniform torque applied between the quarter points can be 

computed at a distance, a, from the support: 

[B.6]  
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where 0.25s ≤ a ≤ 0.75s. If the restraint, pe, provided by the deck slab is assumed 

uniform, the deflection at a can be computed using the beam deflection equation for a 

fixed beam with a uniformly distributed load between the quarter points: 

[B.7]  
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for 0.25s ≤ a ≤ 0.75s. Substituting Eq. [B.7] into Eq. [B.2] and rearranging: 

[B.8]   
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The uniform restraint, pe, causes a uniform restraining torque, te: 

[B.9]   2see hypt   

Arranging Eq. [B.9] for the restraint, pe, and substituting it into Eq. [B.8]: 
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Rearranging Eq. [B.10a], the rotational restraint, ke, provided by the eccentricity of the 

deck slab is: 

[B.10b] 
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The total rotational restraint, kθ, is therefore the sum of the restraint provided by the 

torsional stiffness of the floorbeams, Eq. [B.6], and that provided by the eccentric deck, 

Eq. [B.10b]: 
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[B.11]  
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where 0.25s ≤ a ≤ 0.75s. Solving Eq. [B.11] for a = s/4, the rotational restraint at the 

quarter-spans of a floorbeam is: 
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Similarly, solving Eq. [B.11] for a = s/2, the rotational restraint at the midspan of a 

floorbeam is: 

[3.6]  
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 EQUATIONS [3.7] AND [3.8] B.3

Equations [3.5] and [3.6] were derived assuming the floorbeams are fixed against y-axis 

deflection, but steel floorbeams are likely to behave as pinned. The beam deflection 

equation, Eq. [B.7], used in Section B.2 needs to be revised for a beam with pinned ends 

and then the process outlined in Section B.2 can be used to develop equations for the 

rotational restraint, kθ, at the quarter-spans and midspan of steel floorbeams. 

Using the moment-area theorem, the deflection at the quarter-span of a fixed beam with a 

uniformly distributed load between the quarter points can be computed as: 
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Following the process outline in Section B.2, the rotational restraint at the quarter-span of 

a steel floorbeam is: 
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Using the moment-area theorem again, the deflection at midspan of a fixed beam with a 

uniformly distributed load between the quarter points is: 
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Following the process outlined in Section B.2, the rotational restraint at the midspan of a 

steel floorbeam is: 
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SOURCE CODE FOR CSDECK APPENDIX C: 

The overall function, CSDECK, contains all raw input data and controls the entire 

analysis. CSDECK contains three input functions, SECTION, STEEL, and UNITM, to 

organize the input data into a format easily manipulated by MATLAB. Once the input 

data has been arranged, CSDECK begins the analysis by sequentially calling the main 

functions, MOMCURV and PDELTA, which in turn call the sub-functions and basic 

functions as outlined in Section 4.6. This Appendix contains the source code for 

CSDECK and all of the functions within it, including a brief description of the input 

parameters and any calculations performed. 

As mentioned in Chapter 4, the program QULT by Salonga (2010) was used as a model 

to develop to source code for computing the moment-curvature relationship. Four of the 

functions within CSDECK, MOMCURV, CONTOURCURV, INTERACTION (originally 

NMBOUND), and INTERPOLATE, were developed by Salonga (2010) and have been 

adopted into CSDECK with only minor modifications. 

 INPUT FUNCTIONS C.1

Input functions are functions that organize the parameters input directly into CSDECK 

into a format that is easily manipulated by MATLAB. For example, the function 

SECTION takes the dimensions of the deck slab and the number of layers used to 

discretize the slab as inputs and outputs a single matrix containing the area and distance 

from the top fibre to the center of each layer. 
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C.1.1 SECTION 

function [conc_layers]=SECTION(hs, w, n) 
%%  1. Input Parameters: 
%       hs: slab thickness (mm) 
%       w: slab width (mm) 
%       n: number of layers to discretize the cross section 

  
%%  2. Create an nx2 matrix containing the concrete layer properties.  
%       Each row represents one layer:  
%       1st column - area (mm^2) 
%       2nd column - distance from the top fibre to the centroid (mm) 
conc_layers = zeros(n,2); 
for ii = 1:n 
    conc_layers(ii,1) = hs/n*w; % layer area 
    conc_layers(ii,2) = (ii-0.5)*hs/n; % distance to center of layer 
end 
end 

C.1.2 STEEL 

function [steel_prop] = STEEL(conc_prop,fy,Es,steel_comp) 
%%  1. Input Parameters: 
%       conc_prop: matrix containing the stress-strain relationship  
%                  for concrete in compression (MPa) 
%       fy: yield stress of steel (MPa) 
%       Es: modulus of elasticity of steel (MPa) 
%       steel_comp: 1 to consider the steel in compression 
%                   0 to treat steel in compression as concrete 

  
%%  2. Create matrix containing stress-strain relationship for steel.                     
%       Each row represents one stress/strain point:  
%       1st column - strain 
%       2nd column - stress (MPa)       
%       Notes: A bilinear relationship is used in tension, and either  
%       the same bilinear relationship (steel_comp=1) or the concrete  
%       relationship(steel_comp=0) is used in compression. 
if steel_comp == 1 
    steel_prop = [-1,-fy;-fy/Es,-fy;fy/Es,fy;1,fy]; 
else if steel_comp ==0 
        steel_prop = zeros(size(conc_prop,1)+2,2); 
    for i=1:size(conc_prop,1)  
        steel_prop(i,1) = conc_prop(i,1); 
        steel_prop(i,2) = conc_prop(i,2); 
    end 
    steel_prop(size(conc_prop,1)+1,1) = fy/Es; 
    steel_prop(size(conc_prop,1)+1,2) = fy; 
    steel_prop(size(conc_prop,1)+2,1) = 1; 
    steel_prop(size(conc_prop,1)+2,2) = fy; 
    else 
        disp('Must Input 1 or 0 for steel in compression'); 
    end 
end 
end 
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C.1.3 UNITM 

function BMD_unit = UNITM(location,moment,n_elem,L) 
%%  1. Input Parameters: 
%       location: row vector containing points along interior span (mm) 
%       moment: row vector containing the primary moment at each  
%               location along the interior span (N.mm) 
%       n_elem: number of segments of constant curvature along the  
%               interior span 
%       L: length of the three spans (mm) 

  
%%  2. Create a matrix containing the unit primary moment diagram. 
%       Each row represents one node along the interior span:  
%       1st column: location of the nodes (mm) 
%       2nd column: moment at each node for the unit moment diagram 
%                   (N.mm) 
location = roundn(location,-6); 
if location(1,1)~=0 % check inputs 
    disp('First location must be x=0'); 
elseif location(size(location,1),1)~= roundn(L,-6); % check inputs 
    disp('Last location must be x=L'); 
else 
    M_input_max = max(abs(moment)); 
    elem_length = L/n_elem; 
    BMD_unit = zeros(n_elem+1,2); 
    for i = 0:n_elem 
        BMD_unit(i+1,1) = roundn(i*elem_length,-6); 
        BMD_unit(i+1,2) = INTERPOLATE(location, moment, 

BMD_unit(i+1,1))/M_input_max; 
    end     
end 
end 

 BASIC  FUNCTIONS C.2

Basic functions perform simple calculations that must be repeated several times. Some of 

these functions, such as INTERACTION and CENTROID, are called only twice in an 

analysis, while others, such as INTERPOLATE, STRESS, and EQUILIBRIUM, are called 

thousands of times per analysis. 

C.2.1 INTERPOLATE (modified from Salonga, 2010) 

function [y] = INTERPOLATE(xvector,yvector,x) 
%%  1. Input Parameters: 
%       xvector: column vector containing x values in ascending order 
%       yvector: column vector containing y values 
%       x: value of x used to interpolate for the desired y 
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%%  2. Find the two x values that bound x.  
%       Check that x is within the range of xvector: 
%       If not, set y = 0. 
maxima = max(xvector); 
minima = min(xvector); 
if x > maxima(1,1) 
    y = 0; 
elseif x < minima(1,1) 
        y = 0;  
elseif x == xvector(find(xvector(:,1)==x,1,'first'),1) 
            y = yvector(find(xvector(:,1)==x,1,'first')); 
else 
    previous_index = find(xvector(:,1)>x,1,'first')-1; 
    next_index = find(xvector(:,1)>x,1,'first'); 
    x1 = xvector(previous_index,1); 
    x2 = xvector(next_index,1); 
%%  3. Find the corresponding two y values that must bound y.              
    y1 = yvector(previous_index,1); 
    y2 = yvector(next_index,1); 

  
%%  4. Linearly interpolate between the two y values to estimate the y 
%   value corresponding to x. 
    slope = (y2-y1)/(x2-x1); 
    intercept = y2 - (slope*x2); 
    y = (x*slope) + intercept; 
end 
end 

C.2.2 STRESS 

function [stress] = STRESS(strain,mat_prop) 
%%  1. Input Parameters:  
%       strain: value of strain 
%       mat_prop: matrix containing the stress-strain relationship 
%       (MPa) 

    
%%  2. Call INTERPOLATE to find the stress value corresponding to the  
%   input strain 
if strain > mat_prop(size(mat_prop,1),1) 
        stress = 0; 
else 
    stress = INTERPOLATE(mat_prop(:,1),mat_prop(:,2),strain); 
end 
end 

C.2.3 CENTROID 

function plas_cent = CENTROID(conc_lay,steel_lay,conc_prop,steel_prop) 
%%  1. Input Parameters: 
%       conc_lay: matrix containing the area and location of each  
%                 concrete layer (mm^2,mm) 
%       steel_lay: matrix containing the area and centroid of each  
%                  steel layer (mm^2,mm) 
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%       conc_prop: matrix containing the stress-strain relationship  
%                  for concrete in compression (MPa) 
%       steel_prop: matrix containing the stress-strain relationship   
%                   for steel (MPa) 

  
%%  2. Find the strain corresponding to the peak concrete stress 
peakstress = min(conc_prop(:,2)); 
strain = INTERPOLATE(conc_prop(:,2),conc_prop(:,1),peakstress); 

  
%%  3. Compute forces and moments (from top fibre) from each steel and  
%   concrete layer, assuming the peak strain is applied uniformly along  
%   the section. 
steel_force = zeros(size(steel_lay,1),2); 
for i = 1:size(steel_lay,1) 
    steel_force(i,1) = (STRESS(strain,steel_prop)-

STRESS(strain,conc_prop))*steel_lay(i,1); 
    steel_force(i,2) = steel_force(i,1)*steel_lay(i,2); 
end 
conc_force = zeros(size(conc_lay,1),2); 
for ii = 1:size(conc_lay,1) 
    conc_force(ii,1) = STRESS(strain,conc_prop)*conc_lay(ii,1); 
    conc_force(ii,2) = conc_force(ii,1)*conc_lay(ii,2);  
end 

  
%%  4. Compute the distance from the plastic centroid to the top fibre 
totalforce = sum(steel_force(:,1))+sum(conc_force(:,1)); 
totalmoment = sum(steel_force(:,2))+sum(conc_force(:,2)); 
plas_cent = totalmoment/totalforce; 
end 

C.2.4 EQUILIBRIUM 

function [load_moment] = 

EQUILIBRIUM(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,curv,top_s

train) 
%%  1. Input Parameters: 
%       conc_lay: matrix containing the area and centroid of each  
%                 concrete layer (mm^2,mm) 
%       steel_lay: matrix containing the area and centroid of each  
%                  steel layer (mm^2,mm) 
%       conc_prop: matrix containing the stress-strain relationship of 
%                  concrete in compression (MPa) 
%       steel_prop: matrix containing the stress-strain relationship of 
%                  steel (MPa) 
%       plas_cent: distance from the plastic centroid to the top fibre  
%                  (mm) 
%       curv: value of curvature (rad/mm) 
%       top_strain: extreme compression fibre strain 

  
%%  2. Compute the neutral axis depth. 
c = -top_strain/curv; 

  
%%  3. Find the forces and moments (from plastic centroid) for each  
%   steel and concrete layer 
steel_force = zeros(size(steel_lay,1),2); 
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for i = 1:size(steel_lay,1) 
    strain = top_strain*(1-steel_lay(i,2)/c); 
    if strain < 0 % if steel is in compression 
    steel_force(i,1) = (STRESS(strain,steel_prop)-

STRESS(strain,conc_prop))*steel_lay(i,1); 
    steel_force(i,2) = steel_force(i,1)*(steel_lay(i,2)-plas_cent); 
    else % if steel is in tension 
    steel_force(i,1) = (STRESS(strain,steel_prop))*steel_lay(i,1); 
    steel_force(i,2) = steel_force(i,1)*(steel_lay(i,2)-plas_cent); 
    end 
end 
conc_force = zeros(size(conc_lay,1),2); 
for ii = 1:size(conc_lay,1) 
    strain = top_strain*(1-conc_lay(ii,2)/c); 
    conc_force(ii,1) = STRESS(strain,conc_prop)*conc_lay(ii,1); 
    conc_force(ii,2) = conc_force(ii,1)*(conc_lay(ii,2)-plas_cent); 
end 

  
%%  4. Compute the axial load and bending moment using fundamentals of 
%   equilibrium. 
%       load_moment = [load, moment] 
load_moment = [-(sum(steel_force(:,1))+sum(conc_force(:,1))), 

(sum(steel_force(:,2))+sum(conc_force(:,2)))];    
end 

C.2.5 AVGSTIFF 

function avg_EI = AVGSTIFF(Mcurv,BMD) 
%%  1. Input Parameters: 
%       Mcurv: matrix containing the moment-curvature relationship of  
%              the cross section(N.mm, rad/mm) 
%       BMD: matrix containing the bending moment diagram (mm,N.mm) 
avg_M = zeros(size(BMD,1)-1,1); 
avg_phi = avg_M; 
avg_EI = avg_M; 

  
%%  2. Compute the gross rigidities of the cross section. 
count = 1; 
while Mcurv(count,1)<0 
    count = count+1; 
end 
EI_gross_pos = Mcurv(count,1) / Mcurv(count,2); 
EI_gross_neg = Mcurv(count-1,1) / Mcurv(count-1,2); 

  
%%  3. Compute the average secant rigidity of each segment in the  
%   interior span. 
%       If the moment, either positive or negative, exceeds the  
%       cross-section capacity, set the rigidity equal to the rigidity  
%       at the cross-section capacity. 
for i = 1:size(BMD,1)-1 
    if (BMD(i,2)+BMD(i+1,2))/2 >= Mcurv(size(Mcurv,1),1) 
        avg_EI(i,1) = (Mcurv(size(Mcurv,1),1)/Mcurv(size(Mcurv,1),2));   
    elseif (BMD(i,2)+BMD(i+1,2))/2 <= Mcurv(1,1) 
        avg_EI(i,1) = (Mcurv(1,1)/Mcurv(1,2)); 
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    elseif (BMD(i,2)+BMD(i+1,2))/2 < Mcurv(count,1) &&  

(BMD(i,2)+BMD(i+1,2))/2 >=0 
        avg_EI(i,1) = EI_gross_pos; 
    elseif (BMD(i,2)+BMD(i+1,2))/2 > Mcurv(count-1,1) &&  

(BMD(i,2)+BMD(i+1,2))/2 < 0 
        avg_EI(i,1) = EI_gross_neg; 
    else 
        Moment = (BMD(i,2)+BMD(i+1,2))/2;  
        avg_phi(i,1) = INTERPOLATE(Mcurv(:,1),Mcurv(:,2),Moment); 
        avg_EI(i,1) = Moment/avg_phi(i,1);   
    end    
end 
end 

C.2.6 INTERACTION (modified from Salonga, 2010) 

function int_diag = 

INTERACTION(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent) 
%%  1. Input Parameters: 
%       conc_lay: matrix containing the area and centroid of each  
%                 concrete layer (mm^2,mm) 
%       steel_lay: matrix containing the area and centroid of each  
%                  steel layer (mm^2,mm) 
%       conc_prop: matrix containing the stress-strain relationship of 
%                  concrete in compression (MPa) 
%       steel_prop: matrix containing the stress-strain relationship of 
%                  steel (MPa) 
%       plas_cent: distance from the plastic centroid to the top fibre  
%                  (mm)  

  
%% 2. Find the ultimate extreme fibre compression strain 
ult_strain = conc_prop(1,1); %largest input strain value 

  
%% 3. Compute the approximate ultimate interaction diagram 
%       Find the load and moment corresponding to curvatures defined  
%       by equating the top strain to the ultimate strain and the  
%       neutral axis depth to the depth centroid for each concrete  
%       layer. 
int_diag = zeros(size(conc_lay,1),3); 
for i = 1:size(conc_lay,1) % for each concrete layer: 
    this_curv = -ult_strain/conc_lay(i,2); 
    load_moment = 

EQUILIBRIUM(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,this_curv,

ult_strain); 
    int_diag(i,1) = this_curv; % ultimate curvature 
    int_diag(i,2) = load_moment(1,1); % ultimate axial load 
    int_diag(i,3) = load_moment(1,2); % ultimate bending moment 
end 
end 

C.2.7  ENDROTN 

function end_rotns = ENDROTN(avg_EI,BMD) 
%% 1.  Input Parameters: 
%       avg_EI: column vector containing the average rigidity of each 
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%               segment (N.mm^2) 
%       BMD: matrix containing the bending moment diagram (mm,N.mm) 

  
%% 2.  Compute the average curvature of each segment 
L = BMD(size(BMD,1),1); 
elem_length = L / (size(BMD,1)-1); 
avg_phi = zeros(size(avg_EI,1),2); 
for i = 1:size(avg_EI,1) 
    avg_phi(i,1) = (i-0.5)*elem_length; 
    avg_phi(i,2) = ((BMD(i,2)+BMD(i+1,2))/2)/avg_EI(i,1); 
end 

  
%% 3. Compute the end rotations using the Moment Area Theorem  
%   (e.g. Hibbeler, 2009) 
%       The deflection at the near support with respect to a tangent 
%       at the far support is equal to the area under the curvature 
%       diagram multiplied by the distance from the near support to   
%       the centroid of the area under the curvature diagram. The 
%       curvature along each segment is assumed to be constant.  
area_moment_LR = zeros(size(avg_EI,1),1); 
area_moment_RL = zeros(size(avg_EI,1),1); 
for ii = 1 : size(avg_EI,1) 
    area_moment_LR(ii,1) = -avg_phi(ii,1)*avg_phi(ii,2)*elem_length; 
    area_moment_RL(ii,1) = (L-avg_phi(ii,1))*avg_phi(ii,2)*elem_length; 
end 
delta_LR = sum(area_moment_LR); 
delta_RL = sum(area_moment_RL); 
%       Assuming small rotations, the rotation at the near support is  
%       equal to the deflection at the far support with respect to a  
%       tangent at the near support, divided by the span length.  
left_rotn = delta_RL / L; 
right_rotn = delta_LR / L; 
end_rotns = [left_rotn, right_rotn]; 
end 

 SUB-FUNCTIONS C.3

Sub-functions perform most of the detailed calculations that are carried out within the 

overall program, CSDECK. The function CONTOURCURV gets called only twice in a 

given analysis, while the functions ENDMOM and DEFLECTION can be called hundreds 

of times during an analysis. 

C.3.1 CONTOURCURV (modified from Salonga, 2010) 

function [contour] = 

CONTOURCURV(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,N) 
%%  1. Input Parameters: 
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%       conc_lay: matrix containing the area and centroid of each  
%                 concrete layer (mm^2,mm) 
%       steel_lay: matrix containing the area and centroid of each  
%                  steel layer (mm^2,mm) 
%       conc_prop: matrix containing the stress-strain relationship of 
%                  concrete in compression (MPa) 
%       steel_prop: matrix containing the stress-strain relationship of 
%                  steel (MPa) 
%       plas_cent: distance from the plastic centroid to the top fibre  
%                  (mm)  
%       N: axial load (N) 

  
%% 2. Compute an approximate interaction diagram 
NMcurv = INTERACTION(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent); 

  
%% 3. Estimate the maximum curvature for the given axial load  
%       If the axial load exceed the maximum from the approx.  
%       interaction diagram, set the max. curvature equal to the  
%       curvature at the max. load. Otherwise, estimate the curvature 
%       for the given axial load from the approx. interaction diagram. 
N_max = max(NMcurv(:,2)); 
if N > N_max 
    phi_max = INTERPOLATE(NMcurv(:,2),NMcurv(:,1),N_max); 
else 
    phi_max = INTERPOLATE(NMcurv(:,2),NMcurv(:,1),N); 
end 

  
%% 4. Determine the curvature contours to compute 
n = 30;   % number of contours 
%       Estimate the maximum curvature at the balanced failure load: 
M_bal = max(NMcurv(:,3)); 
phi_bal = INTERPOLATE(NMcurv(:,3),NMcurv(:,1),M_bal); 
curv = zeros(n,1); 
%       If the maximum curvature exceeds that at the balanced failure  
%       load, ensure that at least 2/3 of the contours are below the 
%       curvature at the balanced failure load. 
if phi_max > 2*phi_bal  
    interval1 = (phi_bal)/round(2/3*n); 
    interval2 = (phi_max - phi_bal)/round(1/3*n);    
    for i=1:round(2/3*n); 
        curv(i,1) = i*interval1; 
    end 
    for i=1+round(2/3*n):n 
        curv(i,1) = phi_bal + ((i-round(2/3*n))*interval2); 
    end 
else     
    interval3 = phi_max/n; 
    for i=1:n 
        curv(i,1) = i*interval3; 
    end 
end 

  
%% 5. Compute the axial load and moment for several points per contour 
%       Each point on a contour is defined by a different extreme 
%       compression fibre strain, ranging from 0 to the ultimate value. 
m = 70; % Number of points per contour 
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neg_strain = conc_prop(1,1); % ultimate compression fibre strain 
increment = neg_strain/m; % strain increment 
contour = zeros(m,3,size(curv,1)); 
for k=1:size(curv,1) 
    for i=1:m 
        thisQM = 

EQUILIBRIUM(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,curv(k,1),

increment*i); 
        contour(i,3,k) = curv(k,1); 
%       Set negative axial loads or bending moments equal to zero         
        if thisQM(1,1) <= 0 
            contour(i,1,k) = 0; 
            contour(i,2,k) = 0;  
        elseif thisQM(1,2)<0 
            contour(i,1,k) = 0; 
            contour(i,2,k) = 0; 
        else 
        contour(i,1,k) = thisQM(1,1); 
        contour(i,2,k) = thisQM(1,2);     
        end 
    end 
end 
end 

C.3.2  ENDMOM 

This function computes the end moments developed due to loads applied to the interior 

span, using the Force Method of analysis (e.g. Hibbeler, 2009) as discussed in Chapter 4. 

As mentioned, the solution does not always converge if the process discussed in Chapter 

4 is followed, so an algorithm was written to improve convergence. As shown in Figure 

4.4, the primary moment diagram for the simply supported primary structure is used 

initially and is shifted to satisfy the boundary conditions at the interior supports. 

However, shifting the moment diagram changes the rigidity along the length of the 

member, so an iterative procedure must be adopted to find the correct rigidity distribution 

and updated moment diagram that yield compatible rotations at the interior supports. This 

process can be shortened by recognizing that any two subsequent iterations must bound 

the correct solution. For example, Line A in Figure C.1 represents the primary bending 

moment diagram used in the first iteration and the updated moment diagram that is 
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produced is shown by Line B. Line A has zero end moments, so the midspan moment is 

larger than the actual midspan moment and the midspan rigidity is less than the actual 

midspan rigidity. Since the midspan rigidity in Line A is underestimated, the resulting 

magnitude of the end moments in Line B is overestimated and the midspan moment 

underestimated. Therefore, Lines A and B must bound the correct solution. Since positive 

moments are shown on the tension face, Line A becomes the upper bound and Line B the 

lower bound. If Line B is used to compute the rigidity distribution for the subsequent 

iteration, the midspan rigidity will be overestimated and so the resulting updated moment 

diagram will underestimate the magnitude of the end moments and overestimate the 

midspan moments.  However, if the average of the upper and lower bounds, Line C, is 

used to compute the rigidity in the following iteration a more accurate estimate of the 

actual moments will be obtained, as shown by Line D. Now, Lines C and D must bound 

the correct solution and so they should be compared to the previous upper and lower 

bounds, Lines A and B respectively, to determine the updated bounds. The average of the 

previous bounds, Line C, will always be one of the updated bounds, since the midspan 

moment is less than the previous upper-bound value and higher than the previous lower-

bound value. Since the midspan moment in Line C is larger than in Line D, Line C 

becomes the revised upper bound. Since the midspan moment in Line D is larger than in 

Line B, Line D is the new lower bound. If the midspan moment in Line B was larger than 

in Line D, Line B would remain the lower bound. The average of the new bounds, Lines 

C and D, is then used to determine the rigidity for the following iteration and both the 

average and the resulting moment diagram are compared to Lines C and D to determine 

the new bounds. If this process is continued the solution converges consistently. 
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Figure C.1: Iterations of distributing moments in the interior span. 

function RBMD = ENDMOM(Mcurv,PBMD,elas_prop) 
%% 1. Input Parameters 
%       Mcurv: matrix containing the moment-curvature relationship of  
%              the cross section (N.mm, rad/mm) 
%       PBMD: bending moment diagram for the primary, simply 
%             supported, interior span (mm, N.mm) 
%       elas_prop: column vector containing stiffness properties 
%             [3*gamma_L*E*I/L; 3*gamma_R*E*I/L; K_theta; plas_hinge]; 
L = PBMD(size(PBMD,1),1); 
elem_length = L / (size(PBMD,1)-1); 
RBMD = PBMD; 
redundant_left= UNITM([0;L],[1;0],(size(PBMD,1)-1),L); 
redundant_right= UNITM([0;L],[0;1],(size(PBMD,1)-1),L); 
error = PBMD(:,2); 

  
%% 1. Determine the initial upper- and lower-bound moment diagrams 
UBOUND = PBMD; 
LBOUND = PBMD; 
LBOUND(:,2) = PBMD(:,2) - max(PBMD(:,2)); 

  
%% 2. Iterate for the actual moment distribution 
while max(abs(error))/max(RBMD(:,2))>0.0001 %set for tolerance 
    avg_stiff = AVGSTIFF(Mcurv, RBMD); 
%       Compute the rotations at the ends of the interior primary span 
%       due to unit moments applied at either support: 
    redundant_end_rotns_left = ENDROTN(avg_stiff,redundant_left); 
    redundant_end_rotns_right = ENDROTN(avg_stiff,redundant_right); 
%       Compute the flexibility coefficients: 
    alpha_LL = 

redundant_end_rotns_left(1)+1/(elas_prop(1,1)+elas_prop(3,1)); 
    alpha_LR = redundant_end_rotns_right(1); 
    alpha_RL = -redundant_end_rotns_left(2); 
    alpha_RR = -

redundant_end_rotns_right(2)+1/(elas_prop(2,1)+elas_prop(3,1)); 
%       Compute the primary end rotations: 
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    primary_end_rotns = ENDROTN(avg_stiff,PBMD);  
%       Compute the end moments, unless the member is simply supported:     
    if elas_prop(1:3,1)==0 
        left_support_mom = 0; 
        right_support_mom = 0; 
    else 
        left_support_mom = (primary_end_rotns(1)*(alpha_RR/alpha_LR)-(-

primary_end_rotns(2)))/(alpha_RL - alpha_LL*alpha_RR/alpha_LR); 
        right_support_mom = (-primary_end_rotns(1)-

left_support_mom*alpha_LL)/alpha_LR; 
    end 
    RBMD_prev = RBMD;  
%       Revise the BMD for the computed end moments: 
    for i = 1:size(RBMD,1) 
        RBMD(i,2) = round(PBMD(i,2) + left_support_mom + 

(right_support_mom - left_support_mom)*(i-1)*elem_length / L); 
    end 
%       Compute the difference between this BMD and the previous BMD:   
    error = RBMD(:,2) - RBMD_prev(:,2); 
%       Compare the previous BMD, computed by averaging the previous  
%       bounds, and the  updated BMD to the previous upper and lower  
%       bounds.     
    if max(RBMD_prev(:,2)) > max(RBMD(:,2)) 
            UBOUND(:,2) = RBMD_prev(:,2); 
        if max(RBMD(:,2)) > max(LBOUND(:,2)) 
            LBOUND(:,2) = RBMD(:,2); 
        end 
    else 
            LBOUND(:,2) = RBMD_prev(:,2); 
        if max(RBMD(:,2)) < max(UBOUND(:,2)) 
            UBOUND(:,2) = RBMD(:,2); 
        end 
    end 

     
%       Final convergence check: 
    if abs((max(UBOUND(:,2))-

max(LBOUND(:,2)))/(max(LBOUND(:,2))))<0.0000001 && 

max(abs(error))/max(RBMD(:,2))>0.001 
        disp('Convergence problems, watch results. Check for upwards 

deflections.'); 
        if max(RBMD(:,2)) > max(RBMD_prev(:,2)) 
            UBOUND(:,2) = RBMD(:,2); 
        else 
            LBOUND(:,2) = RBMD(:,2); 
        end 
    end 

     
%       Average the new upper and lower bounds to obtain the moment  
%       diagram, used to determine the rigidity in the following 
%       iteration: 
    RBMD(:,2) = (LBOUND(:,2) + UBOUND(:,2))/2;     
end 

  
%% 3. Check the results 
%       Check for plastic redistribution: 
if left_support_mom < Mcurv(1,1); 
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    if elas_prop(4,1)== 1 
       left_support_mom = Mcurv(1,1); 
    else 
       RBMD(:,2) = zeros(size(RBMD,1),1);  
    end 
end 
if right_support_mom < Mcurv(1,1); 
    if elas_prop(4,1)== 1 
       right_support_mom = Mcurv(1,1); 
    else 
       RBMD(:,2) = zeros(size(RBMD,1),1);  
    end 
end 
%       Recalculate the updated moment diagram if plastic 
%       redistribution did occur. 
if max(RBMD(:,2))==0 
else 
for i = 1:size(RBMD,1) 
RBMD(i,2) = round(PBMD(i,2) + left_support_mom + (right_support_mom - 

left_support_mom)*(RBMD(i,1)/L)); 
end 
end 
%       If the revised moment exceeds the cross-section capacity, the  
%       deck failed. 
if max(RBMD(:,2)) > Mcurv(size(Mcurv,1),1) 
    RBMD(:,2) = zeros(size(RBMD,1),1); 
end 
end 

C.3.3  DEFLECTION 

function [delta] = DEFLECTION(avg_EI,RBMD) 
%% 1. Input Parameters 
%       avg_EI: column vector containing the average rigidity of each 
%               segment (N.mm^2) 
%       RBMD: matrix containing the updated moment diagram, accounting 
%             for any ends moments (mm, N.mm) 

  
%% 2. Compute the average curvature in each segment 
avg_phi = zeros(size(avg_EI,1),2); 
for i = 1:size(avg_EI,1) 
    avg_phi(i,1) = (RBMD(i,1)+RBMD(i+1,1))/2; 
    avg_phi(i,2) = ((RBMD(i,2)+RBMD(i+1,2))/2)/avg_EI(i,1); 
end 

  
%% 3. Compute the end rotations 
end_rotns = ENDROTN(avg_EI,RBMD); 

  
%% 4. Compute the rotation and displacement at each interior span node 
L = RBMD(size(RBMD,1),1); 
elem_length = L / (size(RBMD,1)-1); 
node_rotns = zeros(size(RBMD, 1),1); 
delta = zeros(size(RBMD,1),1); 
node_rotns(1,1) = end_rotns(1); 
for ii = 2:size(RBMD,1) 
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    node_rotns(ii,1) = node_rotns(ii-1,1) - avg_phi(ii-1,2)*elem_length; 
    delta(ii,1) = roundn(delta(ii-1,1) + node_rotns(ii-1,1)*elem_length 

- avg_phi(ii-1,2)*(elem_length^2)/2, -3);    
%       round values to avoid non-zero deflections at the far end. 
end 

  
%% 5. Check results: 
if abs((node_rotns(size(node_rotns,1),1) - end_rotns(2))/end_rotns(2)) > 

0.01 
    disp('Rotation at the right support is not equal the previously 

computed value'); 
end 
if abs(delta(size(delta,1),1)/max(delta(:,1))) > 0.0001 
    disp('Deflection at the right support is not equal zero'); 
end 

 MAIN FUNCTIONS C.4

The main functions organize the analysis and control when the sub-functions are called to 

perform detailed calculations. The function CSDECK is the overall function that runs the 

entire analysis. All of the input data is entered directly into the function CSDECK, which 

calls MOMCURV to compute the moment-curvature relationship of the cross section and 

PDELTA to compute the total moments, including second-order effects, along the interior 

span. 

C.4.1 MOMCURV (modified from Salonga, 2010) 

function [Mcurv] = 

MOMCURV(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,N) 
%%  1. Input Parameters: 
%       conc_lay: matrix containing the area and centroid of each  
%                 concrete layer (mm^2,mm) 
%       steel_lay: matrix containing the area and centroid of each  
%                  steel layer (mm^2,mm) 
%       conc_prop: matrix containing the stress-strain relationship of 
%                  concrete in compression (MPa) 
%       steel_prop: matrix containing the stress-strain relationship of 
%                  steel (MPa) 
%       plas_cent: distance from the plastic centroid to the top fibre 
%                  (mm) 
%       N: axial load (N) 

  
%% 2. Compute contours of equal curvature for positive moments 
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contour_pos = 

CONTOURCURV(conc_lay,steel_lay,conc_prop,steel_prop,plas_cent,N); 

  
%% 3. Compute contours of equal curvature for negative moments 
slab_thick = max(conc_lay(:,2))+0.5*(conc_lay(2,2)-conc_lay(1,2)); 
neg_plas_cent = slab_thick - plas_cent; 
neg_conc_lay = zeros(size(conc_lay,1),2); 
for i = 1:size(conc_lay,1) 
    neg_conc_lay(i,1) = conc_lay(size(conc_lay,1)+1-i,1); 
    neg_conc_lay(i,2) = slab_thick - conc_lay(size(conc_lay,1)+1-i,2); 
end 
neg_steel_lay = zeros(size(steel_lay,1),2); 
for ii = 1:size(steel_lay,1) 
    neg_steel_lay(ii,1) = steel_lay(size(steel_lay,1)+1-ii,1); 
    neg_steel_lay(ii,2) = slab_thick - steel_lay(size(steel_lay,1)+1-

ii,2); 
end 
contour_neg = 

CONTOURCURV(neg_conc_lay,neg_steel_lay,conc_prop,steel_prop,neg_plas_cen

t,N); 

  
%% 3. Interpolate to determine the bending moment corresponding to the 
%  applied axial load for each positive curvature contour 
M_curv_pos = zeros(size(contour_pos,3),2); 
%       Remove any of the values in the curvature contours that are 
%       zero: 
for k=1:size(contour_pos,3) 
    contour_pos_index = find(contour_pos(:,1,k)); 
    contour_pos_cut = zeros(size(contour_pos_index)); 
    for iii = 1:size(contour_pos_index) 
        contour_pos_cut(iii,1) = 

contour_pos(contour_pos_index(iii,1),1,k); 
        contour_pos_cut(iii,2) = 

contour_pos(contour_pos_index(iii,1),2,k); 
    end 
%       Interpolate to find the moment for each contour: 
    M_curv_pos(k,2) = contour_pos(1,3,k);     
    if size(contour_pos_cut,1)>1 
        M_curv_pos(k,1) = 

INTERPOLATE(contour_pos_cut(:,1),contour_pos_cut(:,2),N);    
    elseif contour_pos_cut(1,1) == N 
        M_curv_pos(k,1) = contour_pos_cut(1,2); 
    else 
        M_curv_pos(k,1) = 0; 
    end     
end 

  
%% 4. Interpolate to determine the bending moment corresponding to the 
%  applied axial load for each negative curvature contour 
M_curv_neg = zeros(size(contour_neg,3),2); 
%       Remove zeros: 
for k=1:size(contour_neg,3) 
    contour_neg_index = find(contour_neg(:,1,k)); 
    contour_neg_cut = zeros(size(contour_neg_index)); 
    for iii = 1:size(contour_neg_index) 
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        contour_neg_cut(iii,1) = 

contour_neg(contour_neg_index(iii,1),1,k); 
        contour_neg_cut(iii,2) = 

contour_neg(contour_neg_index(iii,1),2,k); 
    end 
%       Interpolate for the moment: 
    M_curv_neg(k,2) = -contour_neg(1,3,k); 
    if size(contour_pos_cut,1)>1 
        M_curv_neg(k,1) = -

INTERPOLATE(contour_neg_cut(:,1),contour_neg_cut(:,2),N);    
    elseif contour_neg_cut(1,1) == N 
        M_curv_neg(k,1) = -contour_neg_cut(1,2); 
    else 
        M_curv_neg(k,1) = 0; 
    end 
end 

  
%% 5. Stop the moment-curvature relationships at the maximum moments 
M_peak_pos = max(M_curv_pos(:,1)); 
%       Estimate the curvature at the maximum positive moment 
curv_peak_pos = INTERPOLATE(M_curv_pos(:,1),M_curv_pos(:,2),M_peak_pos); 
%       Remove any curvature values larger than that at the maximum 
%       positive moment: 
count = 1; 
while M_curv_pos(count,2)<curv_peak_pos 
count = count+1; 
end 
M_curv_cut_pos = zeros(count,2); 
for i = 1:count 
    M_curv_cut_pos(i,1) = M_curv_pos(i,1); 
    M_curv_cut_pos(i,2) = M_curv_pos(i,2); 
end 
%       Estimate the curvature at the maximum negative moment 
M_peak_neg = min(M_curv_neg(:,1)); 
curv_peak_neg = INTERPOLATE(M_curv_neg(:,1),M_curv_neg(:,2),M_peak_neg); 
%       Remove any curvature values smaller than that at the maximum 
%       negative moment: 
count = 1; 
while M_curv_neg(count,2)>curv_peak_neg 
count = count+1; 
end 
M_curv_cut_neg = zeros(count,2); 
for i = 1:count 
    M_curv_cut_neg(i,1) = M_curv_neg(i,1); 
    M_curv_cut_neg(i,2) = M_curv_neg(i,2); 
end 

  
%% 6. Combine the two moment-curvature diagrams 
Mcurv = zeros(( size(M_curv_cut_neg,1)+size(M_curv_cut_pos,1)),2 ); 
for i=1:size(M_curv_cut_neg,1) 
    Mcurv(i,1) = M_curv_cut_neg(size(M_curv_cut_neg,1)+1-i,1); 
    Mcurv(i,2) = M_curv_cut_neg(size(M_curv_cut_neg,1)+1-i,2); 
end 
for i=1:size(M_curv_cut_pos,1) 
    Mcurv(i+size(M_curv_cut_neg,1),1) = M_curv_cut_pos(i,1); 
    Mcurv(i+size(M_curv_cut_neg,1),2) = M_curv_cut_pos(i,2); 
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end 
end 

C.4.2 PDELTA 

function total_BMD_step = PDELTA(Mcurv, elas_prop,PBMD,N) 
%% 1. Input Parameters 
%       Mcurv: matrix containing the moment-curvature relationship of  
%              the cross section (N.mm, rad/mm)   
%       PBMD: bending moment diagram for the primary, simply 
%             supported, interior span (mm, N.mm) 
%       elas_prop: column vector containing stiffness properties 
%             [3*gamma_L*E*I/L; 3*gamma_R*E*I/L; K_theta; plas_hinge]; 
%       N: axial load (N) 

  
%% 2. Deflection Iterations: 
PBMD_step = PBMD; 
total_BMD_step = PBMD; 
delta1 = zeros(size(PBMD,1),1); 
delta_inc = 1;   %  set to begin while loop  
while max(abs(delta_inc)) > 0.01 % set for tolerance (units of length) 
%       Distribute the moments along the interior span:     
    RBMD = ENDMOM(Mcurv,PBMD_step,elas_prop); 
    format longg 
%       Check to ensure the deck has not failed:     
    if max(abs(RBMD(:,2))) == 0 
    delta_inc = zeros(size(RBMD,1),1); 
    else 
%       Compute the deflection due to the distributed moment diagram: 
    avg_stiff_rev = AVGSTIFF(Mcurv, RBMD); 
    delta0 = delta1; 
    delta1 = DEFLECTION(avg_stiff_rev, RBMD);  
    delta_inc = delta1(:,1)-delta0(:,1); 
    end   
%       Define the new primary moment as the old PBMD plus the second- 
%       order moment 
    PBMD_step(:,2) = PBMD(:,2) + N*delta1(:,1); 
%       Check if the new primary moment is less than the maximum: 
    if max(abs(PBMD_step(:,2))) > (Mcurv(size(Mcurv,1),1)-Mcurv(1,1)) 
        total_BMD_step(:,2) = zeros(size(PBMD,1),1); 
        delta_inc = zeros(size(PBMD,1),1); % stop the while loop 
    else 
%       Define the total moment as the old RBMD plus the incremental  
%       second-order moment. All of the moment values will be zero if  
%       the member failed.       
    total_BMD_step(:,2) = RBMD(:,2)+ N*(delta_inc); 
    end 
end 
end 

C.4.3 CSDECK 

function [sec_ord_BMD] = CSDECK(slenderness_ratio, 

axial_load_ratio)%axial_load_ratio 
%% 1. Enter Input Parameters: 
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%       All inputs are entered directly into this function.  
%       USE UNITS OF: N, mm, MPa. 
hs = 240; % deck slab thickness 
w = 1000; % deck slab width 
rho = 0.01; % gross reinforcement ratio 
n_slice = 50; % number of slices used to discretize the cross- 
%               section for computing the moment-curvature  
%               relationship 

    
%       Enter the stress-strain relationship of concrete. 
%       The first strain and stress values must be 0,and the last  
%       strain value should be the ultimate strain. 
fc=40; 
strain =[0  0.0001  0.0003  0.0005  0.0007  0.0009  0.0011  0.0013  

0.0015  0.0017  0.001898    0.0019  0.0021  0.0023  0.0025  0.0027  

0.0029  0.0031  0.0033  0.0035]; 
stress =[0.00   2.78    8.32    13.79   19.06   23.94   28.20   31.65   

34.12   35.55   36.00   35.99   34.19   31.48   28.29   24.98   21.82   

18.93   16.37   14.15]; 

  
%       Enter the area and centroid of the steel layers: 
%       Each row should be one layer [Area1, depth from top face1;...] 
steel_layers = [rho*hs*w/2  35; rho*hs*w/2  205]; 
fy = 400; % yield stress 
Es = 200000; % modulus of elasticity of the reinforcement 
steel_comp = 0; % enter 1 to consider steel in compression,  
%                 enter 0 to ignore it. 

  
L = slenderness_ratio*hs/sqrt(12); % floorbeam spacing 
E = 3300*sqrt(fc)+6900; % concrete modulus of elasticity 
K_theta = 0; % rotational restraint provided by the floorbeams 
n_elem = 50; % number of segments used to discretize the interior span 
N = axial_load_ratio*hs*w*fc; % applied axial load    

  
%       Enter the shape of the first-order moment diagram for the  
%       given loading applied to the simply supported primary 
%       structure as a series of points, starting from a location of 0, 
%       until a location of L. The magnitude of the moments does not 
%       matter, provided the diagram has the correct shape. Both 
%       [location] and [moment] must be column vectors. 
location = [0; L/3; 2*L/3; L]; 
moment = [0; 1; 1; 0]; 
first_ord_type = 1; % enter 1 to perform a nonlinear-cracked analysis  
%                     enter 0 to perform a linear-uncracked analysis 

     
%% 2. Generate the Moment-Curvature Relationship 
%       Organize the input data:     
conc_prop = zeros(length(strain),2); 
for i = 1:1:length(strain) 
    conc_prop(i,1) = -strain(1,length(strain)+1-i); 
    conc_prop(i,2) = -stress(1,length(stress)+1-i); 
end 
conc_layers = SECTION(hs,w,n_slice); 
steel_prop = STEEL(conc_prop,fy,Es,steel_comp); 
%       Compute the plastic centroid  
plas_cent = CENTROID(conc_layers,steel_layers,conc_prop,steel_prop); 
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format shortg 
%       Call MOMCURV.m to derive the moment-curvature relationship  
Mcurv = 

MOMCURV(conc_layers,steel_layers,conc_prop,steel_prop,plas_cent,N); 

     
%% 3. Compute the maximum primary moment that can be applied     
%       Determine if the load is above or below the balanced failure 
%       load, to determine if plastic redistribution can occur. 
d = max(steel_layers(:,2)); 
c = 0.0035/(0.002+0.0035)*d; 
alpha_1 = max(0.85-0.0015*fc,0.67); 
beta_1 = max(0.97-0.0025*fc,0.67); 
T = fy * steel_layers(2,1); 
Cc = alpha_1*fc*beta_1*c*w; 
if steel_comp ==0 
    Cs = 0; 
elseif steel_comp==1 
    Cs = steel_layers(1,1)* (min((c-steel_layers(1,2))/c*0.0035*Es ,fy)-

alpha_1*fc); 
end 
N_bal = Cc + Cs - T; 
if N>N_bal 
    plas_hinge = 0; 
else 
    plas_hinge = 1; 
end 
%       Compute the gamma factors for the adjacent spans: 
I = w*(hs)^3/12; 
gamma_L = (4*E*I/L - 2*N*L/15 - (2*E*I/L + N*L/30)^2 / (4*E*I/L - 

2*N*L/15)) /(3*E*I/L); 
gamma_R = (4*E*I/L - 2*N*L/15 - (2*E*I/L + N*L/30)^2 / (4*E*I/L - 

2*N*L/15)) /(3*E*I/L); 
if gamma_L < 0 
    gamma_L = 0; 
end 
if gamma_R < 0 
    gamma_R = 0; 
end 
%       [elas_prop] is 4x1 matrix containing the elastic properties 
%       used to distribute the moments in the interior span 
elas_prop = [3*gamma_L*E*I/L; 3*gamma_R*E*I/L; K_theta; plas_hinge]; 
%       Compute a unit bending moment diagram     
BMD_unit = UNITM(location,moment,n_elem,L); 
%       Compute the maximum possible primary moment diagram     
MaxPBMD(:,1) = BMD_unit(:,1); 
MaxPBMD(:,2) = BMD_unit(:,2)*(Mcurv(size(Mcurv,1),1)-Mcurv(1,1)); 
%       Starting with the maximum possible primary moment, call 
%       PDELTA.m to determine the total moment diagram, including 
%       second-order effects, and then begin incrementally reducing 
%       the primary moments until PDELTA.m returns a non-zero 
%       solution. 
sec_ord_BMD = PDELTA(Mcurv, elas_prop,MaxPBMD,N); 
count = 1; 
while max(sec_ord_BMD(:,2))==0 && count < 200 
    MaxPBMD(:,2) = BMD_unit(:,2)*(Mcurv(size(Mcurv,1),1)-

Mcurv(1,1))*(200-count)/200; 
    sec_ord_BMD = PDELTA(Mcurv, elas_prop,MaxPBMD,N); 
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    count = count+1; 
end 
format shortg 
%       Display warnings if plastic redistribution occurred: 
if abs(sec_ord_BMD(1,2)/Mcurv(1,1)) < 1.001 && 

abs(sec_ord_BMD(1,2)/Mcurv(1,1)) > 0.999 
disp('Left support formed plastic hinge'); 
end 
if abs(sec_ord_BMD(size(sec_ord_BMD,1),2)/Mcurv(1,1)) < 1.001 && 

abs(sec_ord_BMD(size(sec_ord_BMD,1),2)/Mcurv(1,1)) > 0.999 
disp('Right support formed plastic hinge'); 
end 

  
%% 3. Perform a first-order analysis to determine the distribution of 
%  the maximum primary moments 
if first_ord_type == 1 % performs a nonlinear-cracked analysis 
    Mcurv_first = Mcurv; 
elseif first_ord_type == 0 % performs a linear-uncracked analysis 
    Mcurv_first = [Mcurv(1,2)*E*I, Mcurv(1,2); 

Mcurv(size(Mcurv,1),2)*E*I, Mcurv(size(Mcurv,1),2)]; 
else 
    disp('fir_ord_tpye must be 1 or 0'); 
end 
elas_prop_1 = [3*E*I/L; 3*E*I/L; K_theta; plas_hinge]; 
first_ord_BMD = ENDMOM(Mcurv_first,MaxPBMD,elas_prop_1); 

  
%% 4. Output: 
str1 = ['The max. positive moment is ', 

num2str(round(max(sec_ord_BMD(:,2)))), ', or ', 

num2str(round(max(sec_ord_BMD(:,2))/Mcurv(size(Mcurv,1),1)*100)),' 

percent of the cross-section capacity.']; 
str2 = ['The max. negative moment is ', 

num2str(round(min(sec_ord_BMD(:,2)))), ', or ', 

num2str(round(min(sec_ord_BMD(:,2))/Mcurv(1,1)*100)),' percent of the 

cross-section capacity.']; 
str3 = ['The max. positive first-order moment of ', 

num2str(round(max(first_ord_BMD(:,2)))),' is magnified by a factor of ', 

num2str(roundn(max(sec_ord_BMD(:,2))/max(first_ord_BMD(:,2)),-2)),'.']; 
str4 = ['The max. negative first-order moment of ', 

num2str(round(min(first_ord_BMD(:,2)))),' is magnified by a factor of ', 

num2str(roundn(min(sec_ord_BMD(:,2))/min(first_ord_BMD(:,2)),-2)),'.']; 
disp(str1); 
disp(str2); 
disp(str3); 
disp(str4); 
end 
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SENSITIVITY ANALYSIS RESULTS FOR SINGLE-POINT-APPENDIX D: 

LOAD CASE 

This appendix contains selected results from the sensitivity analysis for the load case with 

a single vertical point load applied to the midspan of the interior span. All of the results 

shown in Chapter 5, for the case with two vertical point loads, are shown in this section 

for the single-point-load case. 

 CSDECK RESULTS FOR VARIOUS APPLIED AXIAL LOAD RATIOS D.1

Figure D.1 shows the moment magnifier plotted against the applied axial load ratio and is 

comparable to Figure 5.4 for the two-point-load case. Essentially all of the same trends 

that are discussed in Section 5.4 for the two-load-point-case are also apparent in Figure 

D.1 a), except magnitude of the moment magnifiers at any given applied axial load and 

slenderness ratio are less. The two point loads create a region of uniform moment in 

middle of the interior span, as discussed in Section 5.3.2. This region creates large 

curvatures at midspan and therefore, large deflections and second-order effects. The 

single point load does not create this uniform moment region, so the second-order effects 

are not as significant and the moment magnifiers are less. 
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Figure D.1: Moment magnifier for various applied axial load ratios when f’c = 55MPa, 

using the following first-order analyses: a) nonlinear-cracked; b) linear-uncracked. 

Figure D.2 shows the ratio of the moment magnifier computed using a linear-uncracked 

analysis, δL, to those computed using the nonlinear-cracked analysis, δNL, for the single-

point-load case and is comparable to Figure 5.6 for the two-point-load case. The linear-

uncracked analysis provides a more accurate prediction of the first-order moments for the 

single-point-load case than for the two-point-load case, but all other trends described in 

Section 5.4 for the two-point-load case apply to the single-point-load case as well. As 

explained in Section 5.4, the error in the linear-uncracked analysis is due to the analysis 

overestimating the midspan rigidity and so underestimating the midspan curvature, as 

shown in Figure 5.7. Since the single point load does not create a large region of uniform 

curvature near midspan, the error in linear-uncracked analysis is not as significant.  

a) b) 
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Figure D.2: Ratio of moment magnifiers computed for various applied axial loads using 

a linear-uncracked first-order analysis to those using a nonlinear-cracked first-order 

analysis. 

As noted in Section 5.4 for the two-point-load case, the difference between the results 

obtained from the two first-order analyses is larger when cf '  equals 40MPa and this is 

also true for the single-point-load case. However, the difference between the results when 

cf '  equals 40MPa is still less than 10% at all slenderness ratios when the applied axial 

load is from 0.4 'c gf A to 0.6 ' ,c gf A  rather than from only 0.4 'c gf A to 0.5 'c gf A  for the 

two-point-load case. 

 CSDECK RESULTS FOR VARIOUS SLENDERNESS RATIOS D.2

Figure D.3 shows the moment magnifier plotted against the slenderness ratio and is 

comparable to Figure 5.10 for the two-point-load case. All of the trends discussed in 

Section 5.5 for the two-point-load case are also apparent in Figure D.3, except the 

magnitudes of the moment magnifiers at any given applied axial load and slenderness 

ratio are less, as explained in the previous section. 
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Figure D.3: Moment magnifier for various slenderness ratios when cf '  = 55MPa, using 

the following first-order analyses: a) nonlinear-cracked; b) linear-uncracked. 

Figure D.4 shows the ratio of the moment magnifier computed using a linear-uncracked 

analysis, δL, to those computed using the nonlinear-cracked analysis, δNL, for the single-

point-load case and is comparable to Figure 5.12 for the two-point-load case. Again, the 

linear-uncracked analysis provides a better prediction of the nonlinear-cracked moments 

for the single-point-load case than for the two-point-load case and again the difference 

between the two analyses reduces as L/r increases, as noted in Section 5.5. 

 
Figure D.4: Ratio of moment magnifiers computed using a linear-uncracked first-order 

analysis and a nonlinear-cracked first-order analysis for various slenderness ratios. 
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It was noticed in Section 5.5 for the two-point-load case, that the difference between the 

results obtained from the two first-order analyses is larger when cf '  equals 40MPa and 

this is also apparent for the single-point-load case. For this case, the difference when cf '  

is 40MPa is always less than 10% when the applied axial load is from 0.4 'c gf A to 

0.6 ' ,c gf A  but is always greater than 10% when C = 0.2 ' .c gf A  

 CSDECK RESULTS FOR VARIOUS CONCRETE COMPRESSIVE STRENGTHS D.3

Figure D.5 shows the moment magnifier plotted against the concrete strength, ' ,cf  for 

the single-point-load case and is comparable to Figure 5.13 for the two-point-load case. 

As discussed in Section 5.6 for the two-point-load case, increasing cf '  decreases the 

moment magnifiers, since it increases both the modulus of elasticity, Ec, and for a given 

applied axial load, C, it reduces the applied axial load ratio, ' ,c gC f A which typically 

reduces the moment magnifier, as discussed in Section 5.4. Again, the moment 

magnifiers are generally smaller for the single-point-load case than the two-point-load 

case, as explained in Section D.1. 



179 

 

 
Figure D.5: Moment magnifier for various concrete compressive strengths when L/r = 

80, using: a) nonlinear-cracked first-order analysis; b) linear-uncracked first-order 

analysis. 

 CSDECK RESULTS FOR VARIOUS FLOORBEAM ROTATIONAL RESTRAINTS D.4

Figure D.5 shows the moment magnifier, computed using the nonlinear-cracked analysis, 

plotted against the rotational restraint provided by the floorbeams, Kθ, for the single-

point-load case and is comparable to Figure 5.14 for the two-point-load case. As 

discussed in Section 5.7 for the two-point-load case, increasing Kθ also reduces the 

moment magnifier for this case, except there is no exception at the applied axial load of 

0.2 ' .c gf A  The support moments never reach the cross-section capacity in the single-

point-load case, so plastic redistribution does not occur. To develop large negative 

moments there must be a reduction in rigidity near midspan causing a significant increase 

in the area under the curvature diagram, as explained in Section 5.4 and shown in Figure 

5.7. The single point load creates a reduction in rigidity that is concentrated at midspan, 

affecting a smaller area on the curvature diagram than the double point loads, so the 

negative moments are always less. 

a) b) 
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Again, increasing Kθ within the range expected for steel floorbeams only has a significant 

effect on the moment magnifier, δ, if δ is greater than 2 for Kθ = 0. In these cases 

increasing Kθ to the upper bound for the steel floorbeams of the Alex Fraser Bridge 

reduces δ just below 2, but a much more effective reduction can be achieved if Kθ is 

increased further to values more representative of concrete floorbeams. 

 
Figure D.6: Moment magnifiers from a nonlinear-cracked first-order analysis for various 

floorbeam rotational restraints; a) L/r = 60; b) L/r = 80; c) L/r = 100. 

Figure D.7 shows the ratio of the moment magnifier computed using the linear-uncracked 

analysis to those computed using the nonlinear-cracked analysis, for the members with 

a) b) 

c) 
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L/r = 60 subjected to a single vertical point load. Again it is apparent that the accuracy of 

the linear-uncracked first-order analysis improves slightly as Kθ is increased, although the 

increase in Figure D.7 is not as significant as in Figure 5.15 for the two-point-load case. 

The large negative moments in the two-point-load case reduce the first-order moments at 

midspan, improving the accuracy of the linear-uncracked analysis, as explained in 

Section 5.7. The smaller negative moments in the single-point-load case have less of an 

effect on the first-order moments, so Kθ has less influence on the accuracy of the linear-

uncracked analysis. This also explains why the accuracy of the linear-uncracked analysis 

when is better for the two-point-load case than for the single-point-load case when Kθ = 

50*10
3
 kN∙m/rad. For all the other ranges of variables that were examined the accuracy 

was best for the single-point-load case, but the effect of the large negative moments, 

caused by the double point loads and large Kθ value, improves the prediction provided by 

the linear-uncracked analysis. 

 
Figure D.7: Ratio of moment magnifiers computed using a linear-uncracked first-order 

analysis and a nonlinear-cracked first-order analysis for various rotational restraints; L/r 

= 60. 
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 CSDECK RESULTS FOR VARIOUS REINFORCEMENT RATIOS AND STEEL DEPTHS D.5

Figures D.8 and D.9 show the moment magnifier plotted against the reinforcement ratio, 

ρg, and steel-depth-to-slab-thickness ratio, d/hs, respectively, for the deck slab with cf ' = 

55MPa and L/r = 80 subjected to a single vertical point load and are comparable to 

Figures 5.16 and 5.17, respectively, for the two-point-load case. Both figures reinforce 

the conclusions made in Chapter 5, that the parameters, ρg and d/hs, have a negligible 

influence on the moment magnification of slender cable-stayed bridge decks. 

 
Figure D.8: Moment magnifiers for various reinforcing ratios, using the following first-

order analyses: a) nonlinear-cracked b) linear-uncracked. 

 
Figure D.9: Moment magnifiers for various steel-depth-to-slab-thickness ratios, using the 

following first-order analyses: a) nonlinear-cracked; b) linear-uncracked.  

a) b) 

a) b) 
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