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Abstract 

When compared to conventional liquid fuels, bio-oil has several undesired properties such as 

high viscosity, high acidity, high molecular weight, instability, and phase separation upon aging. 

Therefore, bio-oil needs further stabilization and upgrading before it can be used as a fuel in 

engines. Phase separation is considered as one of the major issues because it is detrimental to any 

fuel application and creates problems in storage, transportation and upgrading of bio-oils. This 

thesis investigates the phase separation of hardwood derived bio-oil under accelerated aging 

conditions. Different alcohols are used as stabilizing agents and the minimum required amount of 

alcohol for preventing phase separation for a given period of time is determined. The evolution 

in chemical composition of bio-oil during aging is studied using model compounds. Finally, this 

thesis explores the use of fractional condensation during bio-oil production to obtain a more 

stable bio-oil.  

Keywords: Bio-oil characterization, bio-oil stability, aging of bio-oil, phase separation of bio-oil, 

model compounds, fractional condensation. 
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Introduction 

Conversion of biomass into bio-oil is one of the most promising methods to replace depleting 

fossil fuel resources with renewable feedstocks. Pyrolysis is a thermochemical process that 

converts solid biomass into a liquid fuel, which is called bio-oil [1]. At room temperature, bio-oil 

is usually, initially, a single phase, dark, viscous liquid that contains more than 300 chemical 

components [1- 4].  

However, when compared to conventional liquid fuels, bio-oil has several undesired properties 

such as high viscosity, high acidity, high molecular weight, instability and phase separation upon 

aging, and its properties, such as viscosity, change with storage time and temperature [1- 4].  

Further, the high oxygen (typically 45-50 wt%) and water contents (typically 15-30 wt%) of 

pyrolysis oil result in a lower energy density than conventional fuel oils [5, 6]. Amongst all the 

above deleterious properties, instability is one of the biggest challenges because it not only 

changes bio-oil properties such as viscosity, but also induces phase separation that prevents the 

application of bio-oil as a fuel. Therefore, bio-oil needs further stabilization and upgrading 

before it can be used as a fuel in existing engines [1].  

The main objective of this thesis, therefore, is the development of practical solutions to eliminate 

or reduce bio-oil aging. A first step is to characterize aging.  In most of the past literature studies, 

the stability of pyrolysis liquids has been measured as an absolute increase in its viscosity during 

typical storage or during an accelerated aging test [2- 4]. In addition to increased viscosity, 

storage (especially at elevated temperatures) has resulted in increasing water content [7], 

increasing molecular weight [1- 4, 8] and phase separation [1]. Several studies show that the 

weight-average molecular weight of aged bio-oil correlates linearly with its viscosity [4, 9]. This 

is mainly due to the polymerization reactions between bio-oil components during storage [4, 9]. 

Further, Oasmaa et al. [10] showed that the change in viscosity is well correlated to the change in 

carbonyl content of the bio-oil. However, increases in pH or Total Acid Number (TAN) are 

barely noticeable during aging [3, 9] and hence, they are not good indicators for the 

measurement of the stability or degree of aging of bio-oil [11].  

To measure the degree of instability during aging, a method has been introduced to accelerate 

aging by increasing the storage temperature [4]. Czernik et al. [3] concluded from aging data, 
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that the aging reactions are relatively similar over the 37-90 °C temperature range [4] and 

therefore, chemical changes during accelerated aging are representative of the changes that occur 

during normal aging. For example, Czernik et al. [4] demonstrated that equivalent viscosities are 

obtained in oak pyrolysis oil after 3 months of aging at room temperature, 4 days of aging at 60 

°C or 6 hours of aging at 90 °C. In the same way, Chaala et al. [12] reported that the increase in 

molecular weight observed after heating softwood bark pyrolysis oil for 1 week at 80 °C is 

equivalent to keeping the sample for 1 year at room temperature. 

As a result of ongoing chemical reactions, polymerization processes, and initial high water 

concentrations, during aging, bio-oil spontaneously separates into two phases, i.e., a more polar 

aqueous phase, which consist mainly of water soluble compounds, and a non-polar viscous 

bottom phase, which consists of lignin extractives [2, 13-14].  The quantity of each phase 

depends on many parameters such as the type and properties of the feedstock (e.g. water 

content), the process parameters (e.g. temperature) and the storage conditions and period. From 

all the above physical properties that have been considered to characterize bio-oil stability, 

except phase separation, the desired range depends on the type of application of the fuel. 

Therefore, phase separation is considered as one of the major issues because it is detrimental to 

any fuel application and it creates problems in storage, transportation and upgrading of bio-oils. 

Therefore, the first specific objective of this thesis, addressed in Chapter 1, is to analyze the 

phase separation behaviour of fast pyrolysis bio-oil from hardwood. Its second specific objective 

is to identify solvents and additives that are effective at retarding phase separation.    

Additives, especially, low viscosity alcohols, can reduce both the initial viscosity of bio-oil and 

mitigate its increase during aging [2, 3, 15, 16]. Ethyl Acetate, acetone, methanol, ethanol and 

isopropanol are the additives that were the most commonly used in previous studies [1-4, 15]. 

Diebold and Czernik [2] showed that the effect of the solvents on viscosity reduction was greater 

than would be expected from physical dilution. The authors also found that the addition of 

methanol shortly after producing a hardwood bio-oil was significantly more effective than after 

aging at 90 ºC for 20.5 hours. This suggests that beneficial chemical reactions occur between 

bio-oil and solvent [1]. 
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Boucher et al. [16] have shown that adding methanol is useful for delaying the phase separation 

of vacuum pyrolysis softwood bark bio-oil. However, most of the recent upgrading studies use a 

high concentration of solvent, reaching more than 50 wt% of the mixture [17, 18].  

Therefore, a third specific objective of the thesis is to investigate the changes in chemical 

composition of bio-oil before and after the phase separation, and when adding additives.  This is 

also addressed in Chapter 1.  To better understand the fundamental aspects of such changes and 

develop the best mitigation strategies, the aging behaviour of individual bio-oil model 

compounds are investigated in Chapter 2.  

As it was discussed before, bio-oil is a poorly defined mixture of acids, alcohols, aldehydes, 

esters, ketones, sugars, phenols, guaiacols, syringols, furans, and multifunctional compounds. 

The literature indicates that the whole picture of fuel stability is very complex and that there is 

likely no single explanation for all the phenomena associated with bio-oil degradation. It has 

been observed that, during aging, different unsaturated and reactive components interact by 

means of polymerization, esterification, acetalization, oxidization or dimerization to form larger 

molecules and consequently cause changes in physical properties, such as viscosity [1- 4]. 

Diebold [1] identified the following reactions as the main apparent interactions during bio-oil 

aging: 

• Organic acids + alcohols → esters + water. 

• Organic acids + olefins → esters. 

• Aldehydes + water → hydrates. 

• Aldehydes + alcohols → hemiacetals + acetals + water. 

• Aldehydes → oligomers + resins. 

• Aldehydes + phenolics → resins + water. 

• Unsaturated compounds → polyolefins.  

Understanding how and why polymerization and other reactions occur is important to develop 

methods to stabilize or upgrade bio-oil. Significant efforts have been made to understand the 

polymerization and other chemical reactions between solvents (mainly low molecular mass 

alcohols) and bio-oil [17 - 20]. Due to the extreme complexity of bio-oils, the contribution of the 

main components to the polymerization reactions is not yet fully understood. Therefore, several 
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studies have used model compound mixtures on polymerization and other ongoing chemical 

reactions in bio-oil [21 - 26]. Gunawan et al. [27] and Hu et al. [21], for example, have used bio-

oil model compounds to understand the chemical reactions that are happening at elevated 

temperatures (70-170 °C), but did not investigate what is happening when bio-oil is heated or 

stored for a prolonged time. All these model compound studies have been executed to understand 

the chemical reactions that are occurring within 2 hours of heating time.  

The quality and stability indicators of bio-oil are directly related to the chemical composition of 

these oils [28]. Therefore, the quality or the stability of bio-oil can be improved by changing the 

chemical composition of the bio-oil produced. This has been achieved by upgrading biomass 

using torrefaction processes [29, 30] or other pretreatment processes [31], by controlling the 

pyrolysis conditions [32 - 36], by using only a selective part of feedstock biomass with specific 

qualities such as cellulose, hemicellulose or lignin [32 -33], by downstream fractionating of bio-

oil by methods such as molecular distillation [37] or by changing the temperature of the 

condenser [38]. Oasmaa [39] has found that the concentration method, which removes part of the 

water and light volatiles and replaces them with alcohols can improve the quality (viscosity, 

flash point and stability) of the bio-oil. However, removing water is always accompanied by the 

loss of organic vapors in the condenser and hence a reduction in bio-oil yield [34]. Demirbas 

[33] and Dong et al. [32] studied the influence of pyrolysis temperature on the compounds and 

composition of bio-oil obtained from fast pyrolysis [33].  

It is well known that the temperature of the condenser affect the bio-oil yield and composition 

[40]. In the recent years, lot of efforts has been made for the usage of a series of condensers to 

collect bio-oil with specific fuel properties [37 - 38, 41 - 42]. Westerhof et al. [38], Pollard et al. 

[41], Tzanetakis et al. [42] and Chen et al. [43] studied the effect of selective condensation on 

bio-oil characteristics. These authors concluded that the liquid fraction collected from 

condensing each stage has unique physical and chemical properties, and that the stage 

fractionation can be used to control the water and acid contents of the bio-oil product. Based on 

these results, Westerhof et al. [38] concluded that the fractional condensation is a promising 

cheap downstream approach to concentrate compounds and thus, to control the quality of bio-

oils, making it more suitable for further upgrading and/or direct application. In the same way, 

Guo stated that the separation of the light fraction, which has high contents of water and acids, 
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has the dual advantage of increasing the combustibility and decreasing the corrosiveness of the 

other oil fractions [44]. Tzanetakis et al. [42] found that they could use fractional condensation to 

produce a homogeneous single phase liquid bio-oil that remained a single phase after 7 months 

of storage at room temperature. Tumbalam Gooty [45] also experienced a similar result from 

fractional condensation. 

Therefore, the fourth specific objective of this thesis is to investigate the use of fractional 

condensation of pyrolysis vapors to obtain bio-oils that are more resistant to aging.  The thesis is 

formatted according to the ‘integrated article format” which includes 3 articles in Chapters 1, 2 

and 3. 

 

To summarize, this thesis focuses on the development of practical solutions to eliminate or 

reduce bio-oil aging. It proceeds through several steps: 

1) Development of a reliable and relevant method to characterize aging.  It focuses on the 

separation behaviour of fast pyrolysis bio-oil, which is a serious problem for any practical 

application of bio-oil (Chapter 1).  

2) Identification of solvents and additives that are effective at retarding phase separation 

(Chapter 1). 

3) Investigate the changes in chemical composition of bio-oil before and after the phase 

separation, and when adding additives (Chapter 1).  To better understand these changes 

and develop the best mitigation strategies, changes obtained with model compounds of 

bio-oil are also studied (Chapter 2). 

4) Determine whether fractional condensation of pyrolysis vapors can be used to obtain bio-

oils that are more resistant to aging (Chapter 3). 
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Chapter 1 

1 Quantification of phase separation of hardwood derived bio-

oil and changes of physical and chemical compositions 

before and after phase separation 

1.1 Introduction 

Pyrolysis is a thermochemical process that converts solid biomass into a liquid fuel, which is 

called bio-oil [1]. At room temperature, bio-oil is often, initially, a single phase, dark, viscous 

liquid that contains more than 300 chemical components [1- 4].  

However, as it was explained in the ‘Introduction’ (page xiv), when compared to conventional 

liquid fuels, bio-oil has several undesired properties such as high viscosity, high acidity, high 

molecular weight, instability and phase separation upon aging, which means that properties, such 

as viscosity, change with storage time and temperature [1- 4].  Further, the high oxygen and 

water contents of pyrolysis oil result in a lower energy density than conventional fuel oils [5, 6]. 

Amongst all the above deleterious properties, instability is one of the biggest challenges because 

it not only changes bio-oil properties such as viscosity, but also induces phase separation that 

prevents the application of bio-oil as a fuel. Therefore, bio-oil needs further stabilization and 

upgrading before it can be used as a fuel in existing engines [1]. According to Batts and Fathoni 

[7], the term “fuel stability” characterizes the general resistance of a fuel to change. At ambient 

conditions, it can refer to “storage stability”, that is, the ability of a fuel to remain in storage over 

an extended period of time without appreciable deterioration. However, in most of the past 

literature, the stability of pyrolysis liquids was measured as an absolute increase in its viscosity 

during typical storage or by using an accelerated aging test [2- 4]. In addition to increased 

viscosity, storage (especially at elevated temperatures) has resulted in increasing water content 

[7], increasing molecular weight [1- 4, 8] and phase separation [1].  

The literature [1- 4] indicates that the whole picture of fuel stability is very complex and that 

there is likely no single explanation for all the phenomena associated with bio-oil degradation. It 
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has been observed during aging that different unsaturated and reactive components interact by 

means of polymerization, esterification, acetalization, oxidization or dimerization to form larger 

molecules and consequently cause changes in physical properties, such as viscosity [1- 4]. To 

prevent these undesired aging reactions, physical and chemical upgrading methods have been 

investigated. They include solvent addition [8-15], emulsification with diesel fuel [16-20], 

deoxygenation using zeolite catalysts and catalytic hydrotreating. 

Hydrotreating is considered to be a very expensive and energy consuming process. It also 

reportedly causes phase separation [21] and drastically increases the viscosity of the organic 

phase [1]. Deoxygenation processes based on catalytic hydrotreatment or catalytic cracking not 

only significantly reduce the liquid yield, but are also capital intensive [5]. Only a very small 

fraction of bio-oil is soluble in typical diesel fuels [1]. However, recently, many efforts have 

been directed to producing an emulsion of bio-oil with diesel [16-20]. In most cases, there is an 

immediate phase separation between the bio-oil and diesel and, therefore, an emulsifying agent 

needs to be added at high concentration [16-20] to stabilize the emulsion, resulting in a high fuel 

cost [16]. Udomsap et al. [20] report that up to 40% of surfactant needs to be added to emulsify 

bio-oil with oil with a proportion of 40%. Even with alcohols, a very high concentration of 

alcohol is required for proper emulsification [17].  

Additives, especially, low viscosity alcohols, can reduce both the initial viscosity of bio-oil and 

its increase during aging [2, 3, 22, 23]. Literature shows that beneficial chemical reactions occur 

between bio-oil and the solvent [1]. 

Oasmaa [24] developed the concentration method, which removes part of the water and light 

volatiles and replaces them with alcohols can improve the quality (viscosity, flash point and 

stability) of bio-oil. In this case, a fraction of the carboxylic acids, aldehydes and ketones are 

removed along with water. Zuo-gang et al. [25] also improved the quality of bio-oil by removing 

acid compounds from the bio-oil by molecular distillation. 

As a result of ongoing chemical reactions, polymerization processes, and initial high water 

concentrations, during aging, bio-oil spontaneously separates into two phases, i.e., the more polar 

aqueous phase, which consist mainly of water soluble compounds, and the non polar viscous 

bottom phase, which consists of lignin extractives [2, 26-27].  Previous studies have been 
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conducted separately for upper and bottom bio-oil layers after phase separation by gravity or by 

centrifugation [27]. Some work has also been done to extract valuable chemical and fuels from 

bio-oil by effective phase separation through salt addition [26, 28]. Scholez et al. [29-30] 

induced phase separation through water extraction, adding bio-oil to cold water, to extract 

pyrolytic lignin from bio-oil. Since the water insoluble fraction is high in phenolics compounds, 

Xu et al. [31] investigated the possibility of using this fraction of rice husk bio-oil for the 

production of novolac resins. 

Boucher et al. [32] have shown that adding methanol is useful for delaying the phase separation 

of vacuum pyrolysis softwood bark bio-oil. However, most of the recent upgrading studies use a 

high concentration of solvent, reaching more than 50 % of the mixture [8- 12].  

The purpose of the current research is to study and identify the changes in chemical composition 

physical properties of bio-oil before and after the phase separation. Then, the research is 

extended to investigate the effect of low concentrations of alcohols on aging and specifically on 

phase separation. The ultimate objective is to identify the most suitable stabilizer for avoiding 

phase separation and the minimum required amount of stabilizer that needs to be added to 

prevent phase separation during aging of bio-oil for a given period of time. The effect of 

stabilizer on chemical composition is investigated.  

1.2 Materials and methods 

1.2.1 Chemicals and materials 

Fast pyrolysis bio-oil was purchased from the Biomass Technology Group (BTG), The 

Netherlands. Bio-oil is a single phase liquid at room temperature, with 21.8 wt% water content. 

butanol, ethanol, isopropanol and propanol were purchased from the Sigma Aldrich Company.  

1.2.2  Quantification of phase separation due to aging of bio-oil 

A set of pre-weighed bio-oil samples (10g) was sealed in glass tubes and kept at 80 °C in a 

constant temperature water bath for different periods of time. At hourly intervals, one sample 

was taken out of the bath, cooled down to room temperature and the weight of the aged bio-oil 

was measured to determine the weight of volatile losses during aging. In each case, the weight 
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loss of the aged bio-oil was less than 2.0 wt%. Then, the samples were centrifuged in a Marathon 

2100 centrifuge (Fisher Scientific) for 20 minutes at 5000 rpm and checked for phase separation. 

Once the first signs of phase separation appeared, the sealed sample was stored at 4 °C in a 

refrigerated cabinet for 20 hours.  After 20 hours, the top and bottom phases were separated by 

decanting and each phase was weighed. The water content of the top and bottom phases was 

measured using a Mettler Toledo volumetric Karl Fischer titrator using AquaStar 

CombiSolventKeto as the titrant. The higher heating value (HHV) of both top and bottom phases 

was measured using a bomb calorimeter (IKA C200). The same steps were followed for other 

periods of aging and a different sample was used for each time. The top and bottom phases were 

analysed in a coupled GC-MS/FID (flame ionization detector) to determine their chemical 

compositions.  

1.2.3  Chemical composition of top and bottom phases with aging time 

Gas chromatography – mass spectrometry 

The samples from top and bottom phases were analysed by gas chromatography-mass 

spectrometry (GC-MS) coupled with a flame ionization detector (FID). The mass spectrometer 

was used to identify the various compounds while the flame ionization detector was used to 

determine their concentrations. The GC-MS/FID is a Shimadzu GCMS-QP2010 plus, equipped 

with auto sampler/injector and a capillary column (RTX-1701) of 30m x 0.25 mm i.d. (film 

thickness: 0.25 µm, column flow: 0.75 mL/min, carrier gas: helium, maximum temperature: 

280 °C). Samples were mixed with a 1-dodecanol internal standard solution at a 1:1 ratio, diluted 

with methanol at a 1:22 ratio, and filtered using 0.2 µm pore size TEFLON filters. Then, 1 µL of 

sample was injected with a split ratio of 1:20 while the column was maintained at 45 °C for 

3 minutes before being heated to 220 °C at a rate of 5 °C/min, then the column was heated to 

280 °C at a rate of 30 °C/min, and held for 3 min. The identification of the peaks in the 

chromatogram was based on the comparison with standard spectra and/or on the retention time of 

known standards injected. Quantification of each group of compounds was done by manual 

integration of single ion chromatograms. The Appendix A shows the calculation of 3hrs of aging 

data in Figure 1.2. 

1.2.4  Prevention of phase separation of bio-oil through solvent addition 
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Butanol, ethanol, isopropanol or propanol was individually added in different concentrations to 

bio-oil samples and the sealed samples were kept at 80 °C in a water bath. Every one hour 

period, the samples were cooled down, centrifuged for 20 minutes at 5000 rpm and checked for 

phase separation. These steps were followed until the samples became phase separated. The time 

taken for phase separation to happen was recorded.  

1.2.5  Chemical composition of bio-oil during aging with Isopropanol as a solvent  

As shown below, isopropanol is the most effective of the tested solvents in preventing phase 

separation during long storage periods.  The changes in chemical composition of the bio-oil with 

aging in presence of isopropanol (at 10 and 20 wt% concentrations) were, therefore, investigated. 

Sealed samples of BTG bio-oil and 10 wt% isopropanol were kept at 80 °C in a water bath for 

17 days and samples were taken for GC-MS/FID analysis at 24 hours interval at the beginning 

and at 2-3 days intervals later on. Once phase separation had occurred, the top and bottom phases 

were separated by decanting and samples were taken for GC-MS/FID analysis. The GC-MS/FID 

analysis and peak area calculations were done according the method that is presented in section 

2.3. 

1.2.6 Quantification of phase separation by water titration  

Different percentages of water were added to different sets of bio-oil samples.  The samples were 

well mixed, sealed and allowed to settle for 5 days at room temperature (because it was observed 

that more watery samples took a longer time to settle). After settling, the top and bottom phases 

were separated by decanting and the water content of each phase was measured using the Karl 

Fischer titrator. 

1.2.7 Higher heating value 

HHV was measured with the bomb calorimeter for each aged sample and both top and bottom 

phases in case of phase separation.  

1.3 Results and discussion 

1.3.1 Is phase separation effective? 
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Figure 1.1 shows the composition of top and bottom phases 6 hours after the initiation of phase 

separation. It is observed that the top phase contains a higher percentage of water and sugars and 

a lower share of phenolics when compared to the bottom phase. However, the concentrations of 

those components in both phases are still significant and the other components are also 

distributed in both phases. Therefore, the phase separation is not an effective method to segregate 

one or more of the component groups.  

 

 

 

 

 

 

 

Figure 1.1: The composition of top and bottom phases after phase separation occurs 

(at 24 hours). (a) top phase. (b) bottom phase. 

 

1.3.2 What triggers phase separation? 

Figure 1.2 shows the evolution of chemical composition of aged bio-oil during the accelerated 

aging process before phase separation occurs. The behaviour of a sample of BTG bio-oil during 

aging shows that, at first, some reactions occur relatively rapidly: for example, the results show 

that, after only 6 hours, the esters concentration has increased by about 50 %. After this initial 

period, the concentration of all the component groups that are observed in GC-MS/FID decreases 

with time. Since GC-MS can identify only the light compounds in the oil, this gives an indication 

that some of the components from each group might be disappearing from the light fraction 

through polymerization or condensation reactions.  
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Figure 1.2: Change in chemical composition of BTG bio-oil during aging at 80 °C.  
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1.3.3 What happens after the phase separation occurs? 

Figure 1.3 shows the composition of bio-oil before phase separation and combined values of top 

and bottom phases after phase separation. Since the weight proportion of the bottom phase 

continuously increases with time, the compositions are combined based on their weight 

percentages at the each time period.  Figure 1.3 shows that phase separation does not have a 

dramatic effect on the trends observed before phase separation, with the exception of acids, 

whose concentration increases sharply upon phase separation and then remains approximately 

constant. 
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Figure 1.3: Chemical composition of bio-oil before phase separation and combined 

valued for top and bottom phases after the phase separation occurred (values are combined 

based on their weight % at respective aging time). 

 

Oasmaa et al. [33] show that the increase in water-insoluble compound is paired with the 

reduction in carbonyl compounds, such as esters, carboxylic acids, ketones and aldehydes, and 

this is correlated to the increase in molecular weight during aging. They show that the change in 

carbonyl compounds is due to reactions of aldehydes and ketones during storage, whose reaction 

products end up in the water-insoluble fraction. Similarly, Kim et al. [34] concluded that the 

decrease in concentration of most of the low molecular weight components in bio-oil during 

aging results from their chemical involvement in reactions with pyrolytic lignin. Their study also 

found that these reactions increase both the yield of pyrolytic lignin and the average molecular 

weight over the aging period [34]. 
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Figure 1.4: Water content of (a) Top and bottom phases of aged, centrifuged and settled 

bio-oil, and (b) the system (by water balance). 

 

Phase separation can be a result of the formation of water or heavy compounds as a by product or 

as a result of polymerization and condensation reactions during aging [35]. In this study, as 

shown in Figure 1.4 (b), during aging of BTG bio-oil at 80 °C, for the first three days the 

increase in the total water amount is hardly noticeable. Boucher et al. [32] have also noticed that 

there was no significant increase or decrease of total water content during accelerated aging of 

bio-oil derived from softwood bark. Similarly, Kim et al. [34] found the same result during aging 

of poplar wood bio-oil at 23 °C for a 10 weeks period. However, after phase separation, the 

water content of the top and bottom phases was significantly different at any given time (Figure 

1.4a). Even though the water content of the bottom phase slightly declined with time, this was 

due primarily to the growth with time in the amount of bottom phase through the migration of 

compounds other than water from the top phase to the bottom phase. 

1.3.4 What happens when solvents are added to bio-oil? 

Phase separation during storage can be prevented by adding the proper solvent. The impact of the 

addition of low concentrations (up to 10 wt%) of butanol, ethanol, isopropanol and propanol on 

the occurrence of phase separation is shown in Figure 1.5. Obviously the phase stability 

increases with increased proportion of additives. Isopropanol is the most effective of the four 

tested additives, since it keeps the oil in a single phase for the longest duration at 80 °C. For 
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example, 10 % addition of isopropanol prevents phase separation for 13 days at 80 °C. In the 

same way, Boucher et al. [32] showed that 15 % addition of methanol will increase the phase 

stability of bio-oil.  
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Figure 1.5: Time taken for phase separation to occur at different percentage of 

stabilizers, under accelerating aging conditions (at 80 °C).  

 

There are two possible explanations for the inhibition of phase separation observed with the 

addition of low molecular weight alcohol: the alcohol could increase the mutual solubility of the 

polar and non-polar bio-oil components or, alternately, alcohols may react with some of the bio-

oil components. The change in chemical composition of bio-oil treated with 10 wt% of 

isopropanol is shown in Figure 1.6. Prior to phase separation, the major changes are the decline 

in phenolics, ketones and aldehydes and the increase of esters. Similar results have been 

observed in many previous studies [2, 3, 33, 36]. The acid content is slightly decreased. After 13 

days of aging at 80 °C, the aqueous phase, which is rich in sugars, and the organic phase, which 

is rich in phenolics, separated. The decrease in phenolics, ketones and aldehydes might have 

changed the mutual solubility of the bio-oil components, or the formation of high molecular 

weight components through polymerization or condensation reactions might have reduced their 

mutual solubility. Diebold [1] also argues that as the bio-oil composition changes during aging, 

the mutual solubility of the components changes to make phase separation more likely. Diebold 

also argues that the increasing difference in polarity among the compounds in the aged bio-oil 

increases the tendency for phase separation [1]. For example, esterification converts highly polar 
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organic acid and alcohol molecules into esters with relatively low polarity and extremely polar 

water. The formation of acetals shifts the composition away from acetaldehyde hydrates, 

releasing the water of hydration and the water formed with the acetal. Acetals are in the 

relatively nonpolar family of ethers. 
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Figure 1.6: Change in chemical composition of BTG bio-oil with 10 % isopropanol 

during aging at 80 °C.  
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The model compound study by Hu et al. [34] shows that phenolic compounds (phenol, guaiacol 

and vanillin etc.) are reactive in an acidic environment. This is confirmed by the decrease in total 

phenolic compounds observed in this study. Qu et al. [37] concluded that the majority of 

carbohydrates and sugars in the bio-oil come from the cellulose fraction of biomass, while the 

majority of phenolics come from the lignin fraction. They also found out that the hemicellulose 

is the fraction which mainly contributes towards the acid, ketone and aldehydes contents of the 

bio-oil [37].  
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Figure 1.7: The difference of chemical composition of BTG bio-oil with 20 % 

Isopropanol and 10 % isopropanol during aging at 80 °C.  
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Figure 1.7 shows the change in composition of each component group when the isopropanol 

concentration is increased from 10 % to 20 %. The proportion of esters continues to increase and 

acids to decrease. There is no measurable impact on ketones, furans and aldehydes. It can be 

concluded from these results that the addition of polar solvents (isopropanol in this case) not 

only changes the mutual solubility of components but also changes the chemical composition 

through reactions such as the esterification of carboxylic acids.  

 

1.3.5 What happens when water is added to bio-oil? 

It is well known that in the presence of excess water, bio-oil is separated into two phases, i.e., the 

aqueous top phase and the organic bottom phase. More of the water is accumulated into the 

aqueous phase whereas the bottom phase contains less water [26- 27]. Water extraction has been 

widely used as the first step for recovering renewable chemicals from bio-oil [38]. Figure 1.8 

shows the water content of top and bottom phases when water titration is performed as explained 

in section 1.2.6. The oil is phase separated when the total water content in the system (the 

mixture of water and bio-oil) reaches 23.2 wt%. By adding more water to the system, the top 

phase is continuously diluted while the water content of the bottom phase remains almost 

constant. 

In a previous study, Vitasari et al. [38] concluded that the addition of water to bio-oil from forest 

residues and pine will dilute the aqueous phase while keeping the water content in the organic 

phase nearly constant. This was exemplified in our results as well. However, Oasmaa and 

Czernik [5] stated that the amount of water that can be dissolved in oil before phase separation 

occurs depends on the feedstock and their paper demonstrated a similar phase diagram of water 

and bio-oil system, of which, the phase separation of birch, pine and poplar wood bio-oil takes 

place at 20, 23-25, 31 wt% of water, respectively [5].  In the present study, the hardwood derived 

BTG bio-oil is phase separated at a water content very close to that of pine wood derived bio-oil 

in their study. 
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Figure 1.8: The variation of water content in the top and bottom phases of bio-oil vs. water 

content in the system. 

 

1.3.6 Change of the higher heating value (HHV) of bio-oil with isopropanol added as a solvent  

Figure 1.9 shows the evolution of the higher heating value (HHV) of bio-oil with the addition of 

10 % or 20 % isopropanol, as well as the combined values of top and bottom phases based on 

their weight percentages during aging at 80 °C. The addition of isopropanol prevents the drop in 

bio-oil HHV that is caused by aging.  
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Figure 1.9: Change in HHV of bio-oil with 10 % and 20 % isopropanol and 

combined top and bottom phases without solvent (values are combined based on their 

weight % at respective time of aging). 

 

1.4 Conclusions 

Natural phase separation of bio-oil or artificial phase separation by water addition is not effective 

tools to segregate components into two single phases.  

During aging of bio-oil at 80 °C, phase separation of hardwood derived bio-oil occurs after about 

15 hours. GC-MS analysis shows that some of the components, such as phenolics, sugars, 

ketones, esters, acids, furans and aldehydes, are disappearing from the light fraction of the bio-oil 

during accelerated aging. These components may undergo polymerization or condensation with 

the heavier bio-oil components.  

The addition of solvents greatly retards phase separation. Isopropanol is the most suitable alcohol 

to retard phase separation. The addition of a polar solvent, such as isopropanol, not only 
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increases the mutual solubility of the components in bio-oil, but also modifies the chemical 

composition of the bio-oil through reactions such as esterification.  
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Chapter 2 

2 Understanding the chemical reactions that occur during bio-

oil aging: a model compound study 

2.1 Introduction 

Conversion of biomass into bio-oil is one of the most promising methods to replace depleting 

fossil fuel resources with renewable feedstocks. Pyrolysis is a thermochemical processes that 

converts solid biomass into a liquid fuel, which is called bio-oil [1]. However, when compared to 

conventional liquid fuels, bio-oil has several undesired properties such as high viscosity, high 

acidity, high molecular weight, phase separation and instability, which means that properties, 

such as viscosity, change with storage time and temperature [1- 4].  Further, the high oxygen 

(typically 45-50 wt%) and water contents (typically 15-30 wt%) of pyrolysis oil result in a lower 

energy density than conventional fuel oils [5, 6]. Amongst all the above deleterious properties, 

the instability is one of the biggest challenges because it not only changes bio-oil properties such 

as viscosity, but also induces phase separation that prevents the application of bio-oil as a fuel.   

Bio-oil is a poorly defined mixture of acids, alcohols, aldehydes, esters, ketones, sugars, phenols, 

guaiacols, syringols, furans, and multifunctional compounds. The literature [1- 4] indicates that 

the whole picture of fuel stability is very complex and that there is likely no single explanation 

for all the phenomena associated with bio-oil degradation. It has been observed during aging that 

different unsaturated and reactive components interact by means of polymerization, 

esterification, acetalization, oxidization or dimerization to form larger molecules and 

consequently cause changes in physical properties, such as viscosity [1- 4].  

Understanding how and why polymerization and other reactions occur is important to develop 

methods to stabilize or upgrade bio-oil. Significant efforts have been made to understand the 

polymerization and other chemical reactions between solvents (mainly low molecular mass 

alcohols) and bio-oil [7, 8, 9, 10]. However, many of these studies use large solvent 

concentrations, reaching, in some cases, over 50 % [7, 8, 9, 10, 11]. In most studies, the priority 
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was to investigate the impact of acid catalyzed esterification on other chemical compounds in the 

bio-oil [7, 12, 13], and no study addresses the aging process for prolonged periods. 

Due to the extreme complexity of bio-oils, the contribution of the main components to the 

polymerization reactions is not yet fully understood. Therefore, several studies have used model 

compound mixtures to represent bio-oil [14, 15, 16, 17, 18, 19]. Gunawan et al. [20] and Hu et 

al. [14] have used bio-oil model compounds to understand the chemical reactions that are 

happening at elevated temperatures in the range 70-170 °C, but did not investigate what is 

happening when bio-oil is heated or stored for a prolonged time. Hu et al. concluded that sugars 

play an important role in polymerization reactions [14]. The anhydrate sugar, levoglucosan, 

mainly underwent hydrolysis to glucose upon heating up. Glucose is a key compound involved 

in polymer formation in aqueous media. With the aid of acid, glucose can undergo further 

dehydration or decomposition into various small compounds that are very reactive [14, 20]. Hu 

et al. also stated that amongst other sugar derivatives, furans have the highest tendency towards 

polymerization [14]. As stated earlier, all these model compound studies have been executed to 

understand the chemical reactions that are occurring within 2 hours of heating times.  

The objective of the study is to use model compounds of bio-oil to understand the chemical 

reactions that occur when accelerated aging occurs over a long period of time. This study aims at 

developing a better understanding of the roles of the acids, ketones, furans, aldehydes and 

aromatics compounds in the polymerization/condensation of bio-oil components during aging, 

and the effects of ethanol and isopropanol on the stabilization of these compounds. A practical 

objective is to develop appropriate measures to transform reactive compounds into more stable 

ones.  

Acetic acid, hydroxyl acetone, cyclopentanone, furan, 2-propenal have been selected as 

representative of reactive compounds, and phenol and two substituted phenolic compounds, 

guaiacol and vanillin, are used to represent the phenolics found in bio-oil. The roles of each 

compound in chemical reactions are investigated during accelerated aging in a water medium. 

Ethanol and isopropanol were also added to understand how alcohols stabilize the reactive 

compounds. 
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2.2 Materials and methods 

2.2.1 Chemicals and materials 

The chemicals obtained from Sigma Aldrich are of analytical grade and used without any pre-

treatment.   

2.2.2 Experimental procedure 

Experiments were performed in 25 mL sealed glass vials in a water bath at a constant 

temperature of 80 °C. The composition of the base mixture is shown in Table 2.1. The specific 

compositions of other samples are mentioned in Table 2.2. In the case of solvent addition of 

ethanol and isopropanol, 20% of the solvent is added to the base mixture. All samples were aged 

at 80 °C for a period of 13 days. At every 12 hour interval, samples were cooled down and 

centrifuged for 20 minutes at 5000 rpm to check for phase separation and samples were taken for 

GC-MS analysis.  

Table 2.1: Model compounds and their concentrations in the base mixture. 

Compound Category Concentration (wt%) 

Acetic Acid Carboxylic acids 10 

Phenol Aromatics 25 

Guaiacol Aromatics 10 

Vanillin Aromatics 5 

Cyclopentanone Ketone 10 

Hydroxy Acetone Ketone/ Cyclopentanones 10 

Furan Furans 4 

Hydroxyl Aldehyde Aldehydes 1 

Water Water 25 
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Table 2.2: Special conditions of the runs. 

 

 

 

 

 

 

 

 

 

2.2.3  Chemical composition of samples with aging time 

Gas chromatography – mass spectrometry 

Samples were analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with a 

flame ionization detector (FID). Mass spectrometry was used to identify the components and the 

flame ionization detector was used to determine their concentration. The GC-MS/FID was a 

Shimadzu GCMS-QP2010 plus, equipped with auto sampler/injector and a capillary column 

(RTX-1701) of 30m x 0.25 mm i.d. (film thickness: 0.25 µm, column flow rate: 0.75 mL/min, 

carrier gas: helium, maximum temperature: 280 °C). Samples were mixed with an internal 

standard solution of 1-dodecanol at a 1:1 ratio, diluted with methanol at a 1:22 ratio and filtered 

using 0.2 µm pore size TEFLON filters. Then, 1 µL of sample was injected with a split ratio of 

1:20 while the column was maintained at 45 °C for 3 minutes before being heated, first to 220 °C 

at a rate of 5 °C/min, then to 280 °C at a rate of 30 °C/min, where it was held for 3 min. The 

identification of the peaks in the chromatogram was based on the comparison with spectra and 

retention times of known standards. Quantification of each group of compounds was done by 

manual integration of single ion chromatograms.  

Water content 

Run No. All components in Table 1 

1 All components  in Table 1 except Acetic Acid 

2 All components  in Table 1 except Sugar 

3 All components  in Table 1 except Furan 

4 All components  in Table 1 except Ketone 

5 All components  in Table 1 except Aldehyde 

6 All components  in Table 1 with 20% Isopropanol 

7 All components  in Table 1 with 20% Ethanol 
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Since the sample size was not large enough to measure the water content at each stage, the water 

content of each phase was measured after 10 days of aging using a Karl Fischer titrator. 

2.3 Results and discussion 

2.3.1 Phase separation 

As shown in Table 2.3, phase separation occurred immediately after mixing the components with 

the samples without acids and without ketones.  This can be due to lack of mutual solubility of 

phenols (which were in solid form) and other liquid components in the absence of acids and 

ketones. Other than those, the sample without aldehydes became phase separated after 4 days of 

aging at 80 °C, and the samples of the base case and the ‘no furan’ case do not display any phase 

separation after 13 days of aging, at which time the test was stopped. 

Table 2.3: Time required for phase separation. 

Sample 

Time required for 

phase separation at 

80 °C 

Remarks 

All components > 13 days Clear good mixture at the end of 13 days of aging. 

All components except 

Acetic Acid 
0 

Phase separated immediately after mixing. Top 

phase mainly consists of water, phenol and linear 

ketone. The proportion of each phase was not 

increased with time. 

All components except 

Ketone 
0 

Phase separated at the beginning. Top phase was 

not enough for sampling. Only the bottom phase 

was analysed. The proportions of phases were not 

increased with time. 

All components except 

Furan 
> 13 days Clear good mixture at the end of 11 days of aging. 

All components except 

Aldehyde 
4 days 

Phase separated at 2.5 days. Top phase mainly 

consisted of water, phenol and linear ketone and 

acids. 
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Even though the water content was expected to increase during aging, it was reduced from its 

initial value of 25 % in the case of the mixtures that did not undergo phase separation: the base 

case and the ‘no furan’ case. Table 2.4 shows that whenever phase separation occurred, the top 

phase had a much higher water content than the bottom phase. 

 

Table 2.4: Water content of each phase after 10 days of aging at 80 °C. 

 Water content (%) 

Sample Top phase Bottom phase 

All components 16.96 

All components except 

Acetic Acid 
79.2 12.7 

All components except 

Ketone 
72.5 18.1 

All components except 

Furan 
23.3 

All components except 

Aldehyde 
70.6 18.7 

 

2.3.2 Conversion of acetic acid 

Figure 2.1 shows the concentration of acetic acid is nearly constant during aging of the base case 

mixture. From that we can derive that acetic acid is not participating in the reaction in the base 

case. On the other hand, the addition of alcohol resulted in the gradual decrease of acetic acid 

concentration, and, hence, it can be concluded that acetic acid reacts with the alcohol that is 

added or with other components at the presence of alcohol.  Ethanol converts more acetic acid 

than isopropanol does.  
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Figure 2.1: Conversion of acetic acid along the aging period of model compound with and 

without alcohol (mixture with all components) 
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The conversion products of acetic acid were identified as 1-methylethyl ester and ethyl acetate in 

the case of isopropanol and ethanol respectively. As shown in Figure 2.2, the concentration of 

both esters increased continuously with aging time. Figure 2.1 and 2.2 clearly demonstrate how 

esterification of acetic acid with alcohol takes place during bio-oil aging at elevated 

temperatures. However, despite the experiments were started with no esters in the initial 

mixtures, an initial concentration of ester is measured in the analyzed samples, as shown in 

Figure 2.2. This may be the result of an esterification reaction that might have happened during 

GC-MS runs or during the sample sitting period before the analysis was conducted.  
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Many other previous studies have identified a similar conversion of carboxylic acids into the 

respective esters at the presence of alcohol [7, 9, 14, 16]. Hu et al. [14] also stated that carboxylic 

acids are also efficient catalysts for the condensation reactions, such as the electrophilic 

substitution and aldol condensation reactions. However, Hu et al. [8] concluded that the 

molecular structure of acids in bio-oil significantly affect their acid-catalyzed conversion in 

methanol. They showed that an increase in molecular size significantly decreases the reactivity 

of acid, and acids with branched carbon chains have a lower conversion when compared to linear 

acids. Further, the study shows that aromatic acids are more difficult to esterify [8]. Therefore, a 

model compound study with different kinds of carboxylic acids would also be useful.  

 

 

 

 

 

 

 

 

 

Figure 2.2: Evolution of esters along the aging period of model compound with alcohol, (a) 

acetic acid, 1-methylethyl ester, (b) ethyl acetate (mixture with all components) 
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2.3.3 Conversion of ketones and aldehydes 

Most of the research highlights that carbonyl components are the most reactive groups and are 

particularly important in bio-oil upgrading [9, 21]. In this study, 1-hydroxy-2-propanone and 

cyclopentanone were used as two ketones and 2-propenal (or acrolein) as the aldehyde in the 

model compounds mixture.  
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Figure 2.3: Evolution of 1-hydroxy-2-Propanone along the aging period of model 

compound with and without alcohol (mixture with all components) 

x� �
����� �	�� 
� �
 � ��� �
	 1 �  !�	
"! � 2 � �	
���
��� �� ���� 1

����� �	�� �
	 ����	��� ������	�� �� ���� 1
 

x� �
����� �	�� 
� �
 � ��� �
	 1 �  !�	
"! � 2 � �	
���
��� �� ���� �

����� �	�� �
	 ����	��� ������	�� �� ���� �
 

 

Figure 2.3 shows that the concentration of 1-hydroxy-2-propanone first increases sharply and 

then decreases gradually in all the three cases. However, in the base case, the decline flattens out 

after 6 days of aging, whereas the concentration continues to decline in media containing 

alcohols. Some of the previous studies also confirm the decline of the ketones during of bio-oil 

aging [22, 23].   
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Ketones and aldehydes are known to undergo condensation reactions either as two ketones, two 

aldehydes or a combination of a ketone and an aldehyde. This process is called aldol 

condensation [24]. However, in this study, these condensation reaction products were not 

detected through GC-MS. They can either be in the heavy fraction or may have not been stable 

and converted into other products. Snell et al. have concluded that weak acid groups play a 

crucial role in the condensation reactions, particularly with the cross condensation of aldehydes 

and ketones [24]. 
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Figure 2.4: Evolution of cyclopentanone along the aging period of model compound with 

and without alcohol (mixture with all components) 
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Figure 2.4 shows that the concentration of cyclopentanone increases sharply at first and then 

increases gradually without additive; with alcohol additives, the concentration of cyclopentanone 

increases sharply at first and then decreases gradually with time.  Although Figure 2.5 suggests 

that some cyclopentanone is converted to 1,1-dimethoxycyclopentane during aging, the lack of a 
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direct correspondence between the results of Figures 2.4 and 2.5 indicates that other compounds 

must be involved. 
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Figure 2.5: Evolution of 1,1-dimethoxycyclopentane along the aging period of model 

compound with and without alcohol (mixture with all components) 
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2-propenal was not detected in any of the samples. However, acrolein dimethylacetal was 

detected in all the samples only at 24 hours of aging and not later on. Most likely, acrolein 

dimethylacetal was then decomposed into other components. Figure 2.6 shows the concentration 

of 2,2-dimethoxy-propane, which could be a decomposed product from acrolein dimethylacetal. 

Hu et al. also stated that acetalization of simple aldehydes such as formaldehyde and 

acetaldehyde took place as soon as the bio-oil was mixed with methanol at room temperature [9]. 
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They also found that small acetals are not stable at high temperature and would be decomposed 

to aldehydes and other ethers and alcohols.  
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Figure 2.6: Evolution of 2,2-dimethoxy-propane along the aging period of model compound 

with and without alcohol (mixture with all components) 
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Li et al. also noted a very similar type of reaction during aging of bio-oil. The results show that 

the light organic acids and aldehydes simultaneously convert into esters and acetals at elevated 

temperatures and longer reaction period [7].  

However, both in Figure 2.5 and 2.6, the chemical compositions of 1,1-dimethoxycyclopentane 

and 2,2-dimethoxy-propane at time 0 was not zero. This might be the result of reactions occurred 

before the samples were analyzed by the GC and/or during the analysis. If that is the case, sharp 

reduction of components might be a results of either decomposed or vaporized from the rest of 

the samples during sample preparation for GC runs and in other steps.  
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2.3.4 Conversion of Phenols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Evolution of phenolics along the aging period of model compound with 

and without alcohol; (a) phenol, (b) phenol, 2-methoxy-, (c) vanillin (mixture with 

all components). 
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Figure 2.7 shows that there is a sharp initial drop in the concentration of all three phenolics 

compounds when alcohol is not added and only of guaiacol and vanillin when either of the 

alcohols is added. The concentrations gradually increase afterwards. The concentration of 

vanillin started declining after 6 days, whereas guaiacol and phenol continued to increase in 

concentration. However, in previous researches, Kim et al. found that phenolics gradually 

decreased with prolonged storage of bio-oil, whereas the yield of pyrolitic lignin extracted from 

bio-oil increased with storage duration [22]. Oasmaa et al. also confirm the same results [23]. 

 

2.3.5 What happened to furans? 

Furan was also not detected in any of the samples and it can be possible that furan had reacted 

very fast, possibly soon after mixing with other components. Furan derivatives are not 

consistently detected in samples over time. However, some of the products derived from furan 

such as 2-hexyl furan; trans-2-(2-Pentenyl)furan; 2,5-dihydro-2,2,4-trimethyl furan were 

detected in some of the samples. Therefore, furan derivatives were either decomposed or reacted 

to form higher molecular weight components that were not detected by GC-MS. Similarly, Hu et 

al. found that furan compounds which contain carbonyl groups also go through acetalization and 

etherification reactions and found that most of these acetals are not stable at elevated 

temperatures [9].  

2.3.6 Is there an impact from operating conditions of the GC-MS towards results? 

Some of the identified resulting components such as 1,1-dimethoxycyclopentane and 2,2-

dimethoxy-propane contains methyl or methoxy groups even when an alcohol is not added to the 

samples as a stabilizer. Further, these components were appeared before any aging took place 

(Figure 2.5 and Figure 2.6).  It might be that these are an artefact introduced by the analytical 

procedure, though reactions at the high GC temperatures with the methanol that was used to 

dilute the sample in GC-MS analysis or with the 1-Dodecanol that was used as internal standard.  

Therefore, two similar sets of experiments were performed using two different conditioning 

procedures of the samples prepared for the GC-MS. One is the normal procedure using 1-
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Dodecanol as internal standard and methanol as solvent, as explained in section 2.2.3. The 

second set was run with dodecane as internal standard and acetone as solvent.  

The esterification reactions were not affected by the GC-MS conditioning procedure since there 

was no significant difference in the acid concentration between the two conditioning procedures. 

However, it was noted that other components such as 1,1-dimethoxycyclopentane and 2,2-

dimethoxy-propane were present only when the regular conditioning procedure had been used. 

Light components such as aldehydes and furans or their derivatives were not identified with 

conditioning procedure. Therefore, it can be concluded that, with the regular sample conditioning 

procedure for the GC-MS, ketones react with the methanol solvent during sample preparation or 

within the GC.  

 

2.4   Conclusions 

Even though acids and ketones are some of the more reactive and detrimental component groups 

in bio-oil, the presence of those components helps improve the mutual solubility of the mixture, 

preventing or retarding phase separation.  

Carboxylic acids are converted to esters in the presence of alcohol and these esters seem to be 

very stable at elevated temperatures for prolonged periods of time. On the other hand, most of 

the derivatives from linear ketones and aldehydes (mainly acetals) are not stable at experimental 

conditions. They either decomposed into other products or reacted to form higher molecular 

weight components that were not detected by GC-MS. The same results were observed with 

furan and furan derivatives. Furan and aldehydes were the fastest reactive compounds amongst 

these model components. There is a sharp initial drop of the concentration of all three phenolics 

compounds when alcohol is not added and only of guaiacol and vanillin when either of the 

alcohols is added. The concentrations gradually increase afterwards. The concentration of 

vanillin started declining after 6 days, whereas guaiacol and phenol continued to increase in 

concentration.  
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Chapter 3 

3 Change in physical properties and chemical composition 

during aging of dry birch bark bio-oil from fractional 

condensation  

3.1 Introduction 

Pyrolysis of biomass to the liquid biofuel called bio-oil is one of the most promising 

technologies for the conversion of biomass to biofuel. At room temperature, bio-oil is often, 

initially, a single phase, dark, viscous liquid that contains more than 300 chemical components 

[1- 4]. However, when compared to conventional liquid fuels, bio-oil has several undesired 

properties such as high viscosity, high acidity, high molecular weight, instability and phase 

separation upon aging, which means that properties, such as viscosity, change with storage time 

and temperature [1- 4].  Further, the high oxygen (typically 45-50 wt%) and water contents 

(typically 15-30 wt%) of pyrolysis oil result in a lower energy density than conventional fuel oils 

[5, 6]. Previous studies have characterized the aging of bio-oil by monitoring changes in absolute 

viscosity [2-4], water content [7], molecular weight [1- 4, 8], or carbonyl content [9]. 

The quality and stability indicators are directly related to the chemical composition of bio-oil, 

which is a poorly defined mixture of acids, alcohols, aldehydes, esters, ketones, sugars, phenols, 

guaiacols, syringols, furans, and multifunctional compounds [10]. Therefore, the quality or the 

stability of bio-oil can be improved by modifying its chemical composition. This can be achieved 

by upgrading the feedstock by torrefaction [11, 12] or pre-treating the biomass [13], by 

controlling the pyrolysis conditions [14 - 18], by using only a selective part of biomass with 

specific qualities such as cellulose, hemicellulose or lignin [14 -15], or by downstream 

fractionating of bio-oil through methods such as molecular distillation [19]. Azeez et al. found 

that the acidity of bio-oil can be reduced through careful control of pyrolysis condensation 

temperature [19]. Guo shows that molecular distillation can be used to reduce the water content 

and acidity of bio-oil; the refined bio-oil yield is then about 40 % of the total oil and its heating 

value is increased by nearly 50 % [20]. Westerhof et al. showed that the water content of 
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pyrolysis oil from fast pyrolysis of biomass can be regulated by changing the condenser 

temperature, but removing water is always accompanied by the loss of organic vapors in the 

condenser and hence a reduction in bio-oil yield [16]. Dong et al. studied the effect of pyrolysis 

temperature on the concentration of each group of components in pyrolysis bio-oil [14]; they 

found that acetic acid is mainly derived from deacetylation of the hemicellulose and the 

fragmentation of holocellulose and low temperature fast pyrolysis was more favorable to acetic 

acid. Demirbas found that acetic acid comes from all three components of biomass (cellulose, 

hemicellulose and lignin) whereas furans form by dehydration of hemicellulose units [15].  

The concentration method, i.e. the removal of light fractions from bio-oil and their replacement 

by an alcohol, increases the oil stability [21]. Fractional condensation has been used to lower the 

temperature of pyrolytic vapors in stages, to obtain bio-oil cuts of different compositions [19, 22 

- 25]. Chen et al. studied the effect of fractional condensation on bio-oil products using four 

condensers connected in series with an electrostatic precipitator (ESP) [26]. They noticed that the 

bio-oil condensed in the lower temperature condensers has a lower water content, a higher pH, a 

higher heating value, and a higher kinetic viscosity compared to the bio-oil collected from the 

higher temperature condenser. Westerhof et al. showed that a two condenser system can be used 

to remove the majority of water and light compounds, especially the carboxylic acids from the 

bio-oil [22]. Guo stated that the removal of the light fraction, which has high contents of water 

and acids, has the dual advantage of increasing the combustibility and decreasing the 

corrosiveness of the other fractions of oil [27]. Pollard et al. also showed that fractional 

condensation can be used to control the water content as well as the acid content of the bio-oil 

produced [23]. Tzanetakis et al. used fractional condensation to obtain a homogeneous single 

phase liquid bio-oil that remained a homogeneous single phase liquid after 7 months of storage at 

room temperature [24]. Tumbalam Gooty [25] stated that the bio-oil recovered in the first and 

second condensers of a three condenser fractionation have found to contain less than 1 wt% 

water and that this dry bio-oil fraction has a heating value slightly better than the ethanol. 

Therefore, the author concluded that the fractional condensation is a promising process to 

produce high quality fuels with higher HHV. However, a detailed understanding of the evolution 

of chemical components during aging for the dry bio-oils obtained with fractional condensation 

is lacking in the literature base.  
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Therefore, the purpose of the study is to analyse the changes in chemical composition of each 

group of components of different cuts and different combinations of cuts from a fractional 

condensation train with three condensers.  

3.2 Materials and methods 

Pyrolysis unit and condenser unit of bio-oil 

Birch bark particles were pyrolyzed in a 1 kg/h fluidized bed continuous fast pyrolysis plant unit 

located at the Institute of Chemical and Fuels and Alternative Resources (ICFAR), London, 

Ontario, Canada. Nitrogen was used as fluidization gas. For these experiments, the bed 

temperature was maintained at 550 °C.   A detailed description of the bubbling bed reactor can 

be found in Tumbalam Gooty’s work [25]. The schematic diagram of the condenser train is 

shown in Figure 3.1 [25].  

 

Figure 3.1: The schematic diagram of the fluidized bed reactor and the condenser train 

[25] 

The vapor from the pyrolysis plant was collected in three condensers in series.  Condenser 1 was 

maintained at 80 °C, whereas the temperature of condenser 2 was varied from 50 to 70 °C and 
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condenser 3 was in an ice bath. Condenser 2 incorporates an electrostatic precipitator (ESP) to 

recover the persistent bio-oil mist. 

Accelerated aging of bio-oil fractions and combinations 

Different fractions of bio-oil from birch bark, and their combinations, were dissolved and mixed 

in 25 wt% isopropanol and aged for different aging periods in a constant temperature water bath 

at 80 ºC. The samples were stored in sealed 30 mL glass vials in the vertical position and their 

weights were measured before and after aging. The aged bio-oil samples were analysed by GC-

MS/FID, and their heating value (HHV), water content and pH were measured. 

Gas chromatography – mass spectrometry 

The samples of each fractions and combinations were analysed by gas chromatography-mass 

spectrometry (GC-MS) coupled with a flame ionization detector (FID). Mass spectrometry was 

used to identify the components and the flame ionization detector was used to determine their 

concentration. The GC-MS/FID was a Shimadzu GCMS-QP2010 plus, equipped with auto 

sampler/injector and a capillary column (RTX-1701) of 30m x 0.25 mm i.d. (film thickness: 0.25 

µm, column flow rate: 0.75 mL/min, carrier gas: helium, maximum temperature: 280 °C). 

Samples were mixed with internal standard solution 1-dodecanol at 1:1 ratio and diluted with 

methanol at 1:22 ratio and filtered using 0.2 µm pore size TEFLON filters. Then, 1 µL of sample 

was injected with a split ratio of 1:20 while the column was maintained at 45 °C for 3 minutes 

before being heated to 220 °C at a rate of 5 °C/min, then the column was heated to 280 °C at a 

rate of 30 °C/min, and held for 3 min. The identification of the peaks in the chromatogram was 

based on the comparison with standard spectra and/or on the retention time of known standards. 

Quantification of each group of compounds was performed by manual integration of single ion 

chromatograms.  

Water content, higher heating value (HHV) and pH 

The water content of each phase is measured using the Mettler Toledo volumetric Karl Fischer 

titrator using AquaStar CombiSolventKeto as the titrant. The HHV for top and bottom phases 

and each aged sample was measured with the bomb calorimeter (IKA C200). The pH value for 

each fraction was also measured.  
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3.3 Results and discussion 

3.3.1 Properties of different fractions of bio-oil derived from birch bark 

Given its high water content, the bio-oil fraction that is collected in condenser 3 is called the 

‘aqueous cut’ and the fraction that is collected in condenser 2 is called the ‘second condenser 

cut’ while the fraction that is collected in condenser 1 is called the ‘solid cut’, since it is typically 

a solid material at room temperature which cannot be dissolved in alcohol. Therefore, it is 

recommended that the solid cut should be recycled in the pyrolysis process. The ‘second 

condenser cut’ is a viscous oil at room temperature. Therefore, in order to make a liquid fuel and 

to reduce the viscosity, it is dissolved in isopropanol.  As illustrated in Chapter 1, isopropanol 

has been identified as the best alcohol amongst those tested that can be used to avoid the phase 

separation of bio-oil during aging. For example, the viscosity of oil mixed with 20 % isopropanol 

was 182 cP at 50 °C, whereas the viscosity was 110 cP when the oil was mixed with 25 % 

isopropanol at the same temperature. Each fraction and combinations were mixed with 25 wt% 

isopropanol in each step of analysis.  

As shown in Figure 3.2, the aqueous cut contains more than 60 wt% of water, and has a very 

high acidity and a very low HHV. On the other hand, the solid cut, the “solid material” recovered 

from the first condenser, has less than 2% of water, and a very high HHV for a bio-oil. However, 

as it was stated earlier, it cannot be dissolved in alcohol and cannot make a liquid fuel. The most 

interesting fraction was the ‘second condenser cut’, which represents more than 50% of the 

whole bio-oil. Compared to the whole bio-oil, the ‘second condenser cut’ has a very low water 

content (about 5%) and acidity, and a high HHV.  
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Figure 3.2: Water content, pH and HHV of different fractions of bio-oil derived from birch 

bark (with the condenser 2 maintained at 70 °C). 

3.3.2 Effect of the temperature of the second condenser 

As mentioned earlier, the temperatures of condenser 1 and 3 were kept constant and the 

temperature of the condenser 2 was varied between 50 and 70 °C. Figure 3.3 shows the values of 

water content, pH and HHV for different temperatures of condenser 2. The results show that 

reducing the temperature of the condenser 2 from 70 to 50 °C would increase the water content 

and slightly lower the HHV. Consequently, condenser 2 was maintained at a temperature of 70 

°C for the rest of this study. 
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Figure 3.3: The properties of second condenser cut of bio-oil at different condensation 

temperatures. 

3.3.3 GC-MS analysis for aqueous and second condenser fractions 

The whole bio-oil from birch bark was phase separated at room temperature, and hence, GC-MS 

analysis could not be performed for the whole bio-oil. The initial phase separation of the whole 

bio-oil is likely due to the high content of extractives in birch bark. Oasmaa et al. reported a 

similar kind of initial phase separation with bio-oil from forestry residues with a high bark 

content [29]. This phase separation has found to be enhanced by increased temperature and 

longer storage time [8].  
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Figure 3.4: The GS-MS spectra for 

Figure 3.4b shows that the aqueous fraction mainly consists of 

components that were not present 

Oasmaa et al. stated that removal of light organic components such as aldehydes and ketones 

would enhance the stability of bio

organic components are concentrated in the aqueous fraction of the bio

second condenser cut should be stable

3.3.4  Aging of different fractions of birch bark bio

3.3.4.1  Second condenser 

Figure 3.5 shows the evolution of chemical compounds of 

dissolved in 25 wt% isopropanol

of oil with 20% isopropanol was 182 cP at 50 °C and 

isopropanol at the same temperature. 
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(a) Second condenser cut 

(b) Aqueous fraction 

MS spectra for second condenser cut and aqueous 

aqueous fraction mainly consists of water and light volatile organic 

that were not present in the second condenser cut (Figure 3.4a). In a previous study, 

that removal of light organic components such as aldehydes and ketones 

nce the stability of bio-oil [30]. Figure 3.4 shows that in the present

organic components are concentrated in the aqueous fraction of the bio-oil, which 

should be stable.  

Aging of different fractions of birch bark bio-oil 

ondenser cut 

shows the evolution of chemical compounds of the second condenser 

dissolved in 25 wt% isopropanol to make a liquid fuel and to reduce its viscosity

of oil with 20% isopropanol was 182 cP at 50 °C and viscosity was 110 cP with 25

isopropanol at the same temperature. The concentration of all the reactive components such as 

 

 

queous cut. 

light volatile organic 
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that removal of light organic components such as aldehydes and ketones 

shows that in the present study, the light 

which means that the 

ondenser cut which was 

to make a liquid fuel and to reduce its viscosity. The viscosity 

viscosity was 110 cP with 25 % 

reactive components such as 
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acids, ketones, furans and aldehydes increased over the aging period. This might be due to the 

reaction of the heavy fractions of the bio-oil of the second condenser cut with isopropanol over 

the time, which would be very attractive. 
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Figure 3.5: Change in chemical composition of second condenser cut over the aging period. 
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The sugars and other carbohydrates originate mainly from the cellulose part of the original 

biomass, while phenols come from the lignin fraction and other reactive compounds such as 

acids, ketones and aldehydes result mainly from the pyrolysis of the hemicellulose fraction [31]. 

This explains the relatively low sugar concentration of the bio-oil, since the original birch bark 

has a relatively low cellulose content. 

 

 



48 

 

3.3.4.2 Mixture of second condenser cut and aqueous cut 

When the aqueous cut is added to the second condenser cut, the acid concentration decreased 

with time and the esters concentration increased. Since the aqueous fraction is rich in carboxylic 

acids, these acids reacted with isopropanol and produced esters during aging. 
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Figure 3.6: Change in chemical composition of the mixture of second condenser cut and 

aqueous cut (condenser 3) over the aging period. 
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3.3.4.3 Mixture of second condenser cut and solid cut 

When the solid cut is added to the second condenser cut, as shown in Figure 3.7, the 

concentrations of acid, ketones, aldehydes and furan peaked after about 3 days of aging at 80 °C 

and decreased for longer aging times.  This is in sharp contrast with the aging of the second 

condenser cut, in which these concentrations increased steadily with the aging time (Figure 3.5).  
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The concentration of esters increased at a lower rate compared to that in the second condenser 

cut. 
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Figure 3.7: Change in chemical composition of combination of second condenser cut and 

solid cut (condenser 1) over the aging period. 
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3.3.5 Change in higher heating value of second condenser cut 

The change in HHV during the aging period is shown in Figure 3.8. Unlike during aging of 

normal bio-oil, the HHV of the second condenser cutdid not decreased during aging but, instead, 

increased slightly. Due to the initial phase separation, it has been impossible to measure the 

HHV of the whole bio-oil. 
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Figure 3.8: Change in higher heating value of second condenser cut over the aging period. 

3.4 Conclusions 

Whole bio-oil of birch bark, as produced, is not a single phase liquid at room temperature. 

Instead, due to the high content of extractives, it separates into two phases. Fractional 

condensation is an effective method to separate water, acids and other low molecular weight 

reactive components from the rest of the bio-oil.  

The bio-oil vapors were separated into 3 cuts: a hard solid in the first condenser, a viscous oily 

cut (“second condenser cut”) in the second condenser/electrostatic precipitator, and a water-rich 

acidic liquid in condenser 3. 

Adding isopropanol to the second condenser cut made it very stable.  A concentration of about 

25 wt% of isopropanol was required to reduce the viscosity so that it could be used as a liquid 

fuel. The viscosity of oil with 20 % isopropanol was 182 cP at 50 °C and viscosity was 110 cP 

with 25 % isopropanol at the same temperature. 

In the second condenser cut mixed with isopropanol, the concentration of reactive compounds 

such as acids, ketones, furans and aldehydes, detectable by GC-MS, increases with aging. The 

heating value of this liquid also increases with aging.  
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Performing fractional condensation and mixing the oil fractions with isopropanol yields a very 

stable liquid fuel.  
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Chapter 4 

4 Conclusions and recommendations 

4.1 Conclusions 

It was observed that, as it is, phase separation of bio-oil is not an effective tool to segregate one 

or more component into a single phase. Under accelerated aging conditions at 80 °C, hardwood 

derived bio-oil (BTG oil) was phase separated after 15 hours of aging. During prolonged aging, 

the proportion of the viscous bottom phase will continue to gradually increase. GC-MS analysis 

shows that, during accelerated aging, some phenolic, sugar, ketone, ester, acid, furan and 

aldehyde components are disappearing from the fraction of the bio-oil that is light enough for 

GC detection. These components might undergo polymerization or condensation reactions with 

the heavy pyrolytic fraction of bio-oil.  

The addition of solvents greatly retards phase separation. Amongst the various alcohols that were 

studied (isopropanol, ethanol, propanol and butanol), isopropanol is most effective at retarding 

phase separation. The addition of a polar solvent such as isopropanol not only increases the 

mutual solubility of the bio-oil components, but also changes the chemical composition through 

reactions such as esterification.  

The model compounds study shows that carboxylic acids are converted to esters in the presence 

of alcohol and these esters seem to be very stable at elevated temperatures for prolonged periods 

of time. On the other hand, most of the derivatives from linear ketones and aldehydes (mainly 

acetals) are not stable at experimental conditions. They either decompose into other products or 

react to form higher molecular weight components that are undetectable by GC-MS. The same 

results were observed with furan and furan derivatives. Furan and aldehydes react and disappear 

very quickly. On the other hand, phenolic compounds such phenol, vanillin and guaiacol are 

stable.  

Whole bio-oil from the fast pyrolysis of birch bark is phase separated at room temperature, 

probably because of the high extractives content of the bark. Fractional condensation is an 

effective method to separate water, acids and other low molecular weight reactive components 

from bio-oil. In the oil rich second condenser cut, the concentration of reactive compounds such 
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as acids, ketones, furans and aldehydes that is detected by GC-MS, increases with aging. At the 

presence of aqueous fraction or the solid fraction, the increase in reactive component groups are 

not very significant compared to the fraction from condenser 2. The HHV value of second 

condenser cut does not decrease with aging time. However, since the addition of 25 % 

isopropanol was required to make it a liquid fuel and to reduce its viscosity, the stability might 

come from the removal of light volatile components in fractionation, from the addition of alcohol 

or the combination of the two.  

 

4.2    Recommendations 
 

• Since the study of phase separation in Chapter 1 is performed under accelerated aging 

conditions, the main results should be verified under aging at room temperature.  

• The aging and phase behaviour of bio-oil of different feedstocks at different percentages of 

alcohols would be of use.  

• The results in Chapter 2 shows that most of the furans, aldehydes and their derivatives are 

not detected with GC-MS even just after mixing. Therefore, it can be concluded that these 

high volatile chemicals have reacted or decomposed into other components. The question is 

whether these reactions occurred during aging or in the high temperature oven of the GC-

MS. The high temperature of the GC-MS oven might also be affecting other reactions that 

were attributed to aging. Some of the most important results obtained with the GC-MS 

should, therefore be checked with HPLC where the column temperature is much lower. 

• It would also be useful to run the model compound study with different combinations of 

model compounds; such as no acid case, no furan case, no aldehyde case etc. That way, it 

would be easy to identify which component is making the mixture more stable or unstable.  

 

 

 

 



 

Appendix A: Example of manual integration of GC-MS/FID data for the points of time = 3hrs of aging in Figure 1.2. 

Component 

group 
Chemical component 

At time = 1 hrs At time = 3 hrs   

Peak 

area 

Sum of 

peaks 

Sum of 

peaks/peak 

of internal 

standard 

(x1) 

Peak 

area 

Sum of 

peaks 

Sum of 

peaks/peak 

of internal 

standard 

(x3) 

x3/ x1 

Internal 

Standard 1-Dodecanol 98009     92831       

        

Acids Acetic acid 52670 

54032 0.55129712 

52035 

53538 0.57672308 1.0461 

2-Naphthalenecarboxylic acid, 4,4'-methylenebis[3-

methoxy- 1362 1502 

        

Ketones 2-Propanone, 1-hydroxy-, oxime 10483 

121797 1.2427103 

  

111831 1.20466456 0.9694 

2-Propanone, 1-hydroxy- 59250 57668 

2-Cyclopenten-1-one, 3-methyl- 5291 6345 

2-Cyclopenten-1-one, 2,3-dimethyl- 1775 1762 

1,2-Cyclopentanedione, 3-methyl- 24758 24531 

3',5'-Dihydroxyacetophenone 1995 1858 

Ethanone, 1-(4-hydroxy-3-methoxyphenyl)- 7922 8050 

2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- 4773 4911 

Ethanone, 1-(4-hydroxy-3-methoxyphenyl)- 1102 1135 

2-Butanone, 4-(4-hydroxy-3-methoxyphenyl)- 1739 1501 

2-Cyclohexen-1-one, 3-(3-hydroxybutyl)-2,4,4-

trimethyl- 2707 4066 

        

Sugars 2,3-Anhydro-d-galactosan 3174 

138052 1.4085618 

4006 

138311 1.4899102 1.0578 

2,3-Anhydro-d-mannosan 4079 3074 

1,4:3,6-Dianhydro-.alpha.-d-glucopyranose 3476 3404 
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.beta.-D-Glucopyranoside, methyl 3,6-anhydro- 2873 2825 

1,6-Anhydro-.beta.-D-glucopyranose (levoglucosan) 

12445

0 
12500

1 

        

Phenolics Phenol 5423 

177122 1.8071889 

5766 

179885 1.9377498 1.0722 

Phenol, 2-methoxy- 26823 27180 

Phenol, 2,6-dimethyl- 2783 4102 

Phenol, 2-methyl- 9691 13272 

Phenol, 2-methoxy-4-methyl- 45531 47050 

Phenol, 2,5-dimethyl- 7014 6875 

Phenol, 4-ethyl-2-methoxy- 9327 9538 

2-Methoxy-4-vinylphenol 7719 6422 

Phenol, 2-methoxy-3-(2-propenyl)- 16454 16506 

Phenol, 2,6-dimethoxy- 5199 5304 

Phenol, 2-methoxy-4-(1-propenyl)- 7395 7100 

Phenol, 2-methoxy-4-(1-propenyl)- 15175 13131 

Vanillin 9033 8958 

Phenol, 2-methoxy-4-propyl- 3902 2850 

Phenol, 2,6-dimethoxy-4-(2-propenyl)- 2028 2022 

4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol 3622 3803 

        

Esters Propanoic acid, 2-oxo-, ethyl ester   

24998 0.25506329 

9249 

31815 0.3427205 1.3437 

Cyclopropanecarboxylic acid, 2-methoxy-, methyl 
ester, trans- 1119 1071 

4-Penten-1-yl acetate 3740 3271 

Butanoic acid, 3-bromo-, ethyl ester 3985 4266 

Hexanoic acid, 3-hydroxy-5-methyl-, methyl ester 4733 5462 

Methoxyacetic acid, 4-tridecyl ester 5752 5985 

n-Capric acid isopropyl ester 1594 2508 

Allyl nonanoate 4073   
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Furans Furan, tetrahydro-2,5-dimethoxy- 12758 

45969 0.4690346 

14120 

49239 0.5304168 1.1309 

Furan, 2-(2-ethoxy-1-methoxyethyl)- 13510 14084 

Furan, tetrahydro-2,5-dimethoxy- 6154 6370 

2(5H)-Furanone 6840 7378 

2-Furanol, tetrahydro-2,3-dimethyl-, trans- 2547 3104 

2,5-Methano-2H-thiopyrano[3,2-b]furan, 

hexahydro- 4158 4182 

        

Aldehydes Benzaldehyde, 4-hydroxy-3,5-dimethoxy- 1310 

21183 0.21613335 

1142 

21084 0.22712020 1.0508 

4-Hydroxy-2-methoxycinnamaldehyde 15669 15845 

3,5-Dimethoxy-4-hydroxycinnamaldehyde 4204 4096 
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