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ABSTRACT 

 

The purpose of this study was to determine the effects of a high carbohydrate (HCHO) and low 

carbohydrate (LCHO) diet on the adjustment of pulmonary oxygen (O2) uptake ( 2pOV& ) and 

muscle deoxygenation ([HHb]) during transitions to heavy intensity exercise. Young, healthy, 

male subjects aged (24+/-3) underwent a four day LCHO diet followed immediately by a four 

day HCHO diet, with each diet preceded by a glycogen depletion protocol. This protocol was 

designed to alter pyruvate dehydrogenase (PDH) activity. Subjects completed three step 

transitions to a work rate corresponding to 35% of the difference between their lactate threshold 

and 2pOV& peak for each condition. On day three of the diets gas exchange measurements were 

collected using mass spectrometry and [HHb] measures were recorded using near-infrared 

spectroscopy (NIRS). On day four of the diets muscle biopsies were taken from the vastus 

lateralis muscle of the quadriceps muscle group at steady-state baseline exercise (20 W) and at 

15 s and 360 s during the transition to heavy exercise. These biopsies were frozen for later 

analysis of: PDH activation, ADP concentration, glycogen content, and phosphocreatine 

concentration. It was found that the dietary manipulation had a significant effect (p<0.05) on 

phase II 2pOV&  time constant (LCHO=41.9 s, HCHO=33.7 s) and no effect on the rate of 

adjustment of [HHb] (p>0.05). This study posits that PDH plays an important role in the 

adjustment of oxidative metabolism to exercise.  
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Chapter 1 

1 Review of the Literature  

1.1 What are VO2p kinetics? 

When transitioning from rest to exercise there is an immediate change in the energy 

requirements of the muscle cell. Not all of the energy required for this exercise can be met 

immediately through aerobic metabolism and thus anaerobic metabolism must support ATP 

requirements as the mitochondrial oxidative phosphorylation system adjusts. The assessment of 

the rate at which oxygen uptake ( 2OV& ) in the contracting skeletal muscle ( 2mOV& ) adapts in 

response to a change in metabolic demand describes 2OV&  kinetics. A slower adjustment of 

2mOV&  at exercise onset limits exercise tolerance as increased reliance on anaerobic metabolism 

generates a buildup of metabolites linked to fatigue (e.g.  lactate, inorganic phosphate (Pi), 

ADP). Thus, the consequences of ‘slow’ oxygen kinetics can be a debilitating problem in older 

and diseased populations as they are more susceptible to an early onset of fatigue when 

performing regular activities. 

Due to the ethical and practical complications that are involved in measuring 2mOV&

directly, pulmonary 2OV& ( 2pOV& ) is typically recorded. This measurement was proven to reflect 

the time course and steady-state adjustments of O2 utilization in the active muscle by Grassi et al. 

(23). Recent evidence from Krustrup et al. (40) shows that 2pOV&  reflects 2mOV&  in the moderate 

and heavy intensity domain. In this experiment 2mOV&  was measured by the direct Fick technique 

and 2pOV&  was measured through indirect calorimetry. The two measurements were not 

significantly different (p>0.05). 

 



 

2 

 

Characterizing the 2OV&  response 

The 2pOV&  response to a step change in exercise intensity is commonly broken down into 

three phases. Phase I is described as the cardiodynamic phase, it reflects the time it takes for the 

blood that was present in the muscle at the onset of exercise to travel to the lungs (42) and any 

increase in 2OV&  in this phase is due to increased pulmonary blood flow (2). Phase II is termed 

the “fundamental” phase. This phase begins when deoxygenated blood from the active muscle 

returns to the lungs (2). Phase II is the most studied segment of the 2OV&  response and reflects 

the rate of adjustment of muscle O2 uptake and mitochondrial oxidative phosphorylation as a 

major source of energy production. The phase II 2pOV&  kinetics are described by the time 

constant (τ) which represents the time taken to reach 63% of the steady-state increase in the 

2pOV&  response; a 2pOV&  “steady-state” is achieved in the time equivalent of 4τ. A greater τ 2pOV&  

reflects a slower adjustment, while a smaller τ 2pOV&  is reflective of a faster rate of adjustment of 

2pOV&  and 2mOV& .  

The behavior of phase III is dependent upon exercise intensity. At an exercise intensity 

performed below the lactate threshold ( Lθ̂ ) a steady state of 2pOV&  is reached. In exercise 

performed above the Lθ̂ , a 2OV&  slow component is observed both in the 2pOV&  and the 2mOV&  

responses. The Lθ̂  represents a threshold above which lactate begins to accumulate in active 

muscle and blood as a result of a mismatch between the rate of pyruvate production in glycolysis 

and its subsequent oxidation in the muscle mitochondria. 

The 2OV&  slow component entails 2OV&  rising above levels that would be predicted from 

the sub-lactate threshold 2OV&  work rate (WR) relationship. It is suggested that the slow 
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component is related to the recruitment of less efficient type II muscle fibers at higher exercise 

intensities and the fatiguing of type I muscle fibers that have already been recruited (5). Type II 

muscle fibers have a higher ATP cost of force production and a higher O2 cost of ATP turnover 

(51). Heavy intensity exercise also leads to a decrease in Gibbs free energy which reduces the 

energy release from ATP hydrolysis. 

 Exercise Intensity Domains 

Exercise intensity is characterized based on common profiles of physiological and 

metabolic responses observed through a range of WRs that are separated into domains (14). Each 

exercise intensity domain presents different physiological challenges to the body. Moderate, 

heavy, and severe are the most common terms used to describe these domains. The moderate 

intensity exercise domain represents a range of work rates that can be performed below the Lθ̂ . 

Within this domain, blood lactate concentration remains low (< 4 mmol/L) and, 2OV& is elevated 

(relative to rest) but maintains “steady-state” conditions (3). The heavy intensity domain 

represents a range of intensities between Lθ̂ and critical power (CP), while intensities between 

CP and 2OV& max are defined as severe-intensity. Exercise within the heavy-intensity domain is 

associated with an elevated blood lactate and the appearance of a 2OV&  slow component which 

delays the achievement of a plateau in the response (27). CP corresponds to an intensity above 

which a plateau in blood lactate and 2OV&  cannot be established, and there are large disturbances 

in metabolic stability within the muscle as seen by decreases in muscle glycogen, and 

phosphocreatine, and increases in ADPfree, AMPfree, IMPfree, inorganic phosphate and H
+
, 

changes which are associated with reduced exercise tolerance and fatigue.  
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These exercise intensity domains are defined within the limits imposed by Lθ̂ , CP, and 

2OV& max  which likely vary amongst individuals; however the response profiles within each 

domain are consistent amongst individuals. Therefore, exercise “intensities” are often prescribed 

relative to one of these defined intensity domains.  

1.2 What limits VO2 kinetics? 

There is a long standing debate in the literature as to what limits the rate of adjustment of 

2OV&  kinetics. The two main camps that have emerged include those who claim that kinetics are 

limited by convective and or diffusive O2 delivery (31) and those who claim that they are limited 

by a sluggishness of metabolic activation (19). The O2 delivery hypothesis claims that the 

metabolic response at the onset of exercise is adequate but O2 delivery is insufficient. The 

metabolic hypothesis claims that O2 is available in sufficient amounts and that the activity of rate 

limiting enzymes or the availability of substrate in the oxidative phosphorylation process is what 

limits the rate of adjustment of oxidative phosphorylation.  

O2 delivery 

Many investigations have been conducted to test whether O2 is a limiting factor in 2OV&  

kinetics. Most have focussed on blood flow manipulation. Studies using a supine vs. upright 

model have shown increased τ 2pOV&  in supine but a restoration of τ 2pOV&  once negative pressure 

is applied to restore blood flow (32). Arm exercise performed above the heart also points to an 

O2 delivery limitation (33). Exercise above the heart reduces the effects of the muscle pump and 

the driving pressure for blood flow leading to increased τ 2pOV& .  
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Restriction of O2 supply via a reduction in arterial O2 content or pressure is another 

situation where limitations are observed. Ischemia, hypoxia, and beta blockade have all been 

experimental models to explore this (17, 30). These investigations all yielded slower 2OV&  

kinetics. However, some O2 delivery limiting interventions including: blood withdrawal (10), 

hemodilution (6), and lower body positive pressure (68) have failed to report increases in τ 2OV&   

despite reductions in O2 delivery. These studies indicate that if oxygen delivery is compromised 

then kinetics may suffer but do not indicate an O2 delivery limitation under conditions of upright 

exercise in young healthy individuals.  

If O2 were a limiting factor then increasing O2 delivery should speed kinetics. 

Investigations have shown mixed results. Grassi et. al. conducted two investigations in 1998 with 

pump perfused dogs in situ in which they increased O2 delivery (21) and increased O2 driving 

pressure (20). Both of these investigations showed no difference in the adjustment of 2mOV& . 

Wilkerson et. al. conducted an investigation in humans exercising while breathing a hyperoxic 

gas mixture (67). This investigation showed no effect of hyperoxia on phase II τ 2OV&  under 

moderate, heavy, and severe exercise. Macdonald et. al. studied humans exercising in the heavy 

domain and found a speeding of phase 2 τ 2pOV&  with hyperoxia (44). These investigations point 

to a potential speeding of kinetics with increased O2 delivery only in the heavy intensity domain. 

Metabolic hypothesis 

The most convincing piece of evidence for the metabolic theory is that the kinetics of 

bulk muscle blood flow are faster than those for 2OV&  (1, 23). It is hard to imagine a slower 

process being limited by a faster one. Nitric oxide (NO) also provides compelling evidence for a 

metabolic inertia and against an O2 delivery limitation (22). NO inhibits cytochrome c oxidase 
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activity, an enzyme in the electron transport chain, but increases blood flow. Blockade of NO 

synthase speeds 2OV&  kinetics (34, 35).  

Dichloroacetate (DCA) is a drug commonly used to activate pyruvate dehydrogenase 

(PDH) which is a rate limiting enzyme that controls the entry of carbohydrate derived substrate 

into the tricarboxylic acid cycle (TCAC). Howlett et. al. found that DCA use reduced the 

contribution of substrate level phosphorylation to energy production during exercise at 65% 2OV&

max (29). This group also saw a faster drop in intracellular PO2 and decreased glycogenolysis after 

10 minutes of exercise. These results would suggest faster activation of oxidative metabolism 

when PDH activation is increased. Investigations which measured DCA’s effect on 2OV&  kinetics 

have not shown a speeding of τ 2OV&  in the moderate (37), or heavy intensity domain (55). 

Priming models have been used as an alternative method to increase PDH activation (24). 

Priming involves the performance of a prior exercise bout before the bout that is being assessed. 

The issue with this model is that priming exercise increases PDH activation and increases muscle 

blood flow, this suggests that microvascular perfusion is elevated following priming exercise. 

This confounds the ability to determine whether metabolic inertia or O2 delivery is the limiting 

factor in the increase in oxidative phosphorylation. Spencer et. al. attempted to resolve this issue 

by adding hypoxia to the experiment (58). This negated increases in O2 delivery that are 

normally provided by priming exercise. These authors illustrated that in hypoxia after priming 

exercise speeding of kinetics was abolished. This seems to indicate that O2 delivery plays a role 

in the speeding of kinetics following priming exercise. It is important to note that PDH was not 

directly measured in this experiment and that a more severe hypoxia then that used by Spencer 

et. al. has been shown to reduce PDH activation at 1 minute following exercise onset (48). Taken 
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as a whole, the evidence suggests that 2OV&  kinetics can be limited by a number of factors 

dependent upon the individual and situation. 

1.3 Near-infrared Spectroscopy 

Near-infrared spectroscopy (NIRS) provides a measure of the amount of O2 bound to 

haemoglobin (Hb) and myoglobin (Mb) in the area of interrogation (i.e. beneath the NIRS 

probe). In this regard, the relative concentrations of bound (oxygenated) and unbound 

(deoxygenated) Hb and Mb can be used to monitor phenomena related to O2 delivery and O2 

extraction at the microvascular level. Specifically, deoxygenation ([HHb]) kinetics can be used 

as a proxy for microvascular PO2 (12). By comparing the adjustment profile of 2pOV&  with [HHb] 

the ratio of O2 extraction to O2 consumption may be discerned. This [HHb]-to- 2pOV&  ratio 

provides a sense of how O2 uptake at the cell is supported by O2 delivery (i.e. blood flow and 

arterial O2 content). If blood flow (and thus O2 delivery) is adequate, then [HHb] should match 

with VO2 in a normalized model. A ratio above 1.0 during a step change in metabolic demand 

implies under-perfusion to the active muscle that is being compensated for by increased 

fractional O2 extraction. This technique offers valuable insight into the relationship between O2 

delivery and utilization within the active muscle particularly during interventions designed to 

slow (or speed) the adjustment of O2 consumption in the active tissue. 

1.4 Overview of fat metabolism 

There is a large reserve of fat in the muscle in the form of intramuscular triglycerides 

(IMTG) and in adipose tissue stored as triglycerides (TG). This supply is favored as substrate for 

energy production when at rest and during moderate exercise. The preferential use of fat in these 

circumstances defends the limited supplies of carbohydrate in the body.  
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Intramuscular triglycerides and TG from adipocytes are broken down into glycerol and 

fatty acids by the enzyme hormone sensitive lipase (HSL). The fatty acids from adipocytes are 

transported attached to albumin through the blood and across protein transporters, such as fatty 

acid-translocase, into the muscle cell (9). Inside the muscle cell free fatty acids (FFA) are 

transported into the mitochondria for oxidation by CPT-1 (45). Once inside the mitochondria 

beta-oxidation converts fatty acids into acetyl-CoA which enters the citric acid cycle. Beta-

oxidation also produces NADH which feeds into the electron transport chain (ETC). 

Control sites for fat metabolism may include: FFA delivery to the muscle, FFA 

movement across the mitochondrial membrane, and HSL activity. At the onset of exercise blood 

flow increases which increases the delivery of FFA to the muscle. At heavy intensities of 

exercise blood flow is redistributed toward exercising muscle and away from adipose sites. This 

reduces the ability to transport FFA and therefore fat oxidation is reduced (54).  

CPT-1 is inhibited by malonyl-CoA (8). Malonyl-CoA appears in the first committed step 

in fatty acid synthesis. During exercise malonyl-CoA concentrations decrease and so does its 

inhibition of CPT-1(41). Recent research has also discovered a sensitivity of CPT-1 to drops in 

pH (8). As exercise intensity increases pH falls, this inhibits fatty acid transport during heavy 

intensity exercise.  

Hormone sensitive lipase activity responds to increases in epinephrine (EPI) and 

norepinephrine (NE) (59), insulin, dietary fat intake, and exercise intensity. At rest EPI and NE 

concentrations are low which reduces the activity of HSL. At the onset of exercise the 

concentrations of these catecholamines increase, leading to activation of HSL. Insulin inhibits fat 

metabolism by deactivating HSL (59). Insulin levels also decrease during exercise, increasing the 
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activity of HSL. After ingesting a high carbohydrate (HCHO) meal insulin levels rise, inhibiting 

HSL. Studies have shown that after a high fat diet HSL activity is increased 20-30% during 

exercise compared to a HCHO diet (62). Muscular HSL has a pH optimum of 7.0 (66). As 

exercise intensity increases pH is reduced, and muscular HSL activity falls. 

1.5 Overview of Carbohydrate metabolism 

Carbohydrates are the major substrate in exercise performed above 50-60% VO2max (54). 

Carbohydrate is stored as glycogen in the liver and muscle cells. Glycogen is broken down into 

glucose-1-phosphate units which enter glycolysis. The end product of glycolysis is pyruvate; if 

the rate of pyruvate production exceeds the rate of its oxidation it is reduced to lactate. Pyruvate 

is otherwise converted into acetyl-CoA for oxidative metabolism by PDH.  

Glucose from the blood enters the cell through GLUT4 transporters and is 

phosphorylated by hexokinase. Exercise stimulates GLUT4 movement from intracellular sites to 

the cell membrane (39). As exercise intensity increases redistribution of blood flow to exercising 

muscle increases. Greater muscle blood flow increases glucose delivery to muscle cells. 

Carbohydrate availability is crucial as glucose transport relies on facilitated diffusion. If blood 

glucose is insufficient the concentration gradient for diffusion is compromised and glucose 

transport from the blood is reduced (65). At rest, high glucose levels increase insulin levels in the 

blood which increases GLUT4 movement to the cell membrane (28). Liver glucose output 

responds to insulin and glucagon levels. As blood glucose levels decrease glucagon levels rise 

and the liver breaks down glycogen to deliver glucose to the blood. If blood glucose levels are 

high then insulin release facilitates the formation of glycogen within the liver.  
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Utilization of muscle glycogen is most rapid at exercise onset and increases with 

intensity. At exercise onset there is a rapid increase in Ca
2+

, EPI, AMP/ADP, and Pi. These 

metabolites all activate glycogen phosphorylase (GP). This is the rate limiting enzyme in 

glycogenolysis which commits glucosyl units cleaved from glycogen to glycolysis in the form of 

glucose-6-phosphate. Ca
2+

, EPI, AMP, and Pi increase with exercise intensity and stimulate 

further glycogen breakdown. At moderate intensity exercise the levels of these metabolites are 

not as high and glycogen breakdown is reduced. 

The PDH enzyme complex exists in two forms: an inactive phosphorylated form and an 

active dephosphorylated form. PDH kinase (PDK) catalyzes the phosphorylation of the E1 

enzyme on the PDH complex while PDH phosphatase (PDP) dephosphorylates it. The activities 

of PDK and PDP are determined by several allosteric regulators. Increased ratios of ATP/ADP, 

acetyl CoA/CoASH, and NADH/NAD
+ 

activate PDK and increased pyruvate inhibits it, while 

increased sarcoplasmic Ca
2+

 activates PDP (60).
 
As Ca

2+
, ADP, and pyruvate levels increase with 

exercise intensity PDH activity increases.  

1.6 Diet manipulation, PDH, and VO2 

Dietary manipulation has been shown to have a direct effect on PDH activity. High fat 

diets have been shown to increase reliance on fat during submaximal exercise (64), and increased 

activity of PDK (63). Peters et al. reported  a decrease in PDH activity while on a HFAT diet 

which was attributed to elevated PDK activity (50). A follow up study by the same group 

showed that these changes occur within 1 day of diet manipulation (49). With increased fat 

availability there is a decrease in GP activators Pi and AMP and PDH activators such as ADP 

(16). One theory for the reduction of these substances is due to a boost in redox potential from 
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NADH production in beta-oxidation (46). An investigation by St. Amand et. al. observed 

subjects undergoing dietary manipulation with no glycogen depletion and found that at rest PDH 

activity was subdued but during exercise at 65% 2OV& max intercellular pyruvate content was able 

to deactivate PDK and PDH activity was similar during exercise on a mixed and low CHO diet 

(61).  

1.7 Purpose 

The current study aimed to use dietary manipulation as a method of inducing changes in 

PDH activation and observe what effects it had on 2OV&  kinetics in the heavy intensity domain. 

Subjects consumed HCHO and LCHO diets preceded by a glycogen depletion protocol. Gas 

collections and NIRS data were recorded. It was hypothesized that: 1) phase 2 2pOV&  kinetics 

would be faster in the HCHO diet, 2) no effect of diet on the rate of O2 extraction would be seen 

in the NIRS data. 
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Chapter 2 

2- The effect of low and high carbohydrate diets on pulmonary oxygen uptake and muscle 

deoxygenation kinetics during exercise transitions into the heavy-intensity domain 

2.1 Introduction  

Whenever there is a change in the metabolic demand within contracting skeletal muscle, 

oxygen (O2) consumption ( 2mOV& ) increases in response to the new energy requirement. The 

adjustment of 2OV&  following a step-increase in work rate (and thus ATP turnover rate) is not 

instantaneous but increases towards a new, higher steady-state with a finite (“exponential-like”) 

time course. Due to the ethical and practical complications that are involved in measuring 2mOV&  

directly, pulmonary 2OV&  ( 2pOV& ) is typically recorded. This measurement was proven to reflect 

the time course and steady-state adjustments of O2 utilization in the active muscle by Grassi et. 

al. (23). The assessment of the speed with which 2OV&  changes to meet the metabolic 

requirements of the step change describes 2pOV&  kinetics. The kinetics of 2pOV&   (which reflect 

the rate of adjustment of oxidative phosphorylation in the active muscle mitochondria) are 

characterized by three distinct phases: the cardiodynamic phase (phase I) which is representative 

of a rapid increase in pulmonary circulation, the fundamental phase (phase II) which reflects the 

increase in 2mOV&  as it adjusts to exercise, and phase III which represents the steady-state O2 

requirement within the moderate-intensity (exercise below lactate threshold( Lθ̂ )) domain or the 

2pOV&  slow component in the heavy-intensity (exercise between Lθ̂  and critical power (CP)) 

domain. The slow component is defined as 2OV&  rising above levels that would be predicted from 

the sub-lactate threshold 2OV& -work rate relationship. The phase II 2pOV&  response is described 
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by the time constant (τ 2pOV& ) which represents the time it takes to reach 63% of the steady-state 

increase in the 2pOV&  response; a 2pOV&  “steady-state” is achieved in the time equivalent of 4τ. A 

greater τ 2pOV&  reflects slower adjustment of 2pOV& , while a smaller τ 2pOV&  is reflective of a faster 

rate of adjustment of 2pOV& . 

There is a long standing debate over what limits the rate of adjustment of 2pOV&  when 

transitioning to a higher metabolic rate. Oxidative phosphorylation is described by the equation: 

NADH + H
+
 + 0.5O2 + 3ADP + 3Pi � 3ATP + NAD

+
 + H2O 

The flux through this process is determined both by O2 and NADH availability which is 

dependent on oxidative substrate availability for its production. Two main hypotheses have been 

proposed to explain the slow time course of 2pOV&  relative to the change in ATP requirement:  i) 

inadequate convective and/or diffusive O2 delivery to the terminal oxidase of the mitochondrial 

Electron Transport Chain (ETC) (14) and ii) “sluggish” activation of rate limiting enzymes and 

metabolic pathways, and delivery of oxidative substrates (which result in the production of 

NADH) to the mitochondrial Tricarboxylic Acid Cycle (TCAC) and ETC (6). 

One method of investigating theory “ii” is to observe the effect of experimental activation 

of rate limiting enzymes on the rate of adjustment of 2OV& (reflected in τ 2pOV&  parameter). In this 

regard, pyruvate dehydrogenase (PDH) is a rate-limiting enzyme complex which catalyzes the 

oxidative decarboxylation of pyruvate to Acetyl CoA, NADH, H
+
 and CO2 and thus regulates the 

entry of carbohydrate (CHO)-derived substrate into the mitochondrial TCAC and ETC. This 

complex has received much attention as a possible contributor to the sluggishness of metabolic 

activation. The PDH complex exists in two forms: an inactive phosphorylated form and an active 
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dephosphorylated form, with its activity at any instance determined by the relative 

phosphorylation state. The covalent regulation of PDH activity is determined by the relative 

activities of two regulatory enzymes, PDH kinase (PDK) and PDH phosphatase (PDP). Up 

regulation of PDK results in phosphorylation and inhibition of the PDH complex (specifically, 

phosphorylation of the E1 enzyme), while up regulation of PDP leads to dephosphorylation and 

activation of the PDH complex. The activity of PDK is increased by higher: ATP/ADP, 

NADH/NAD
+
, and Acetyl CoA/CoA ratios. It is inhibited by increased intracellular pyruvate and 

sarcoplasmic Ca
2+

 levels. Increased Ca
2+

 levels activate PDP (60). Specifically, as Ca
2+

, ADP, 

and pyruvate levels increase with exercise intensity PDH activity increases. 

Pharmacological up-regulation of PDH prior to exercise has been used to investigate the 

importance of PDH with respect to the rate of adjustment of 2OV& (29, 37, 55). Dichloroacetate 

(DCA) is a drug commonly used to experimentally activate PDH through the inhibition of PDK. 

Howlett et. al. found that DCA reduced the contribution of substrate-level phosphorylation (as 

measured by lower lactate accumulation) to energy production during exercise at 65% 2OV& peak 

(29). This group also saw a reduction in glycogenolysis and inorganic phosphate (Pi) 

accumulation after 10 minutes of exercise. These results suggested faster activation of oxidative 

metabolism when PDH activation was increased. Investigations that have measured the effect of 

DCA administration on 2OV& have not shown a decrease in τ 2pOV&  within the moderate (37), or 

heavy intensity domains (55) in vivo. These DCA studies have shown an effect of increased 

PDH activity on oxidative metabolism but that effect has not been powerful enough to argue that 

PDH activity limits τ 2pOV& .  
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Dietary manipulation has been shown to have a direct effect on PDH activity at rest. 

Peters et al. reported a decrease in PDH activity at rest while on a low carbohydrate (LCHO) diet 

which was attributed to elevated PDK activity (50). A follow-up study by the same group 

showed that PDH responds to dietary manipulation within one day of dietary manipulation (49). 

An investigation by St. Amand et. al. observed subjects undergoing a LCHO diet and found that 

at rest PDH activity was depressed but during exercise at 65% 2OV& peak, intracellular muscle 

pyruvate content inhibited PDK and PDH activity was similar during exercise on a mixed and 

LCHO diet (61). 

Few investigations have measured the effect of the combination of dietary manipulation 

and muscle glycogen depletion (GD) on τ 2pOV&  during exercise. Raper et. al. measured the 

effects of a dietary manipulation and GD protocol on 2pOV&  in the moderate domain. They found 

that τ 2pOV&  was increased in the LCHO condition (indicating slower 2pOV&  kinetics) (53). Lima-

Silva et. al. measured 2pOV&  after GD and dietary manipulation in the heavy intensity domain and 

found increased τ 2pOV&  in the LCHO condition (43). These investigations speculate that through 

the combination of dietary manipulation and GD the effects on PDH are persistent even during 

exercise. 

Dietary manipulation may also have effects on O2 delivery. Raper also measured near-

infrared-spectroscopy (NIRS) in their investigation. NIRS provides a measure of the amount of 

O2 bound to haemoglobin (Hb) in the area of interrogation. In this regard, the relative 

concentrations of bound (oxygenated) and unbound (deoxygenated) Hb can be used to monitor 

phenomena related to O2 delivery and O2 extraction at the microvascular level. Specifically, 

deoxygenation ([HHb]) kinetics can be used as a proxy for microvascular PO2 (12). By 
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comparing the adjustment profile of 2pOV&  with [HHb] the ratio of O2 extraction to O2 

consumption may be discerned. Raper found that the time constant for [HHb] (τ[HHb])  in the 

LCHO and HCHO condition was the same despite differences in τ 2pOV& . This suggests a slowing 

in microvascular blood flow in the LCHO condition that must be compensated for through 

increased O2 extraction.  

The purpose of the current investigation was to examine the effects of low and high 

carbohydrate (HCHO) diets in combination with GD on the adjustment of 2pOV&  and [HHb] in 

subjects when transitioning from light- to heavy intensity exercise. Dietary intervention and GD 

were administered in order to manipulate substrate availability and enzyme activity (PDH). The 

hypotheses being tested were that 1) subjects will display greater phase II τ 2pOV&  values in the 

LCHO condition; 2) dietary manipulation would not have an effect on the rate of microvascular 

blood flow adjustment as indicated by similar [HHb] kinetics. 

2.2 Methods 

Participants: Healthy male subjects (n, 10; age, 24 ± 3 yrs); 2OV& peak (3.94 ± 0.47 L/min), 

volunteered to participate in the study. All subjects were recreationally active, non-smokers, and 

had no known history of respiratory, cardiovascular, metabolic or musculoskeletal disease and 

were not taking medications that might have affected the physiological variables under 

investigation. Subjects were informed of the protocol, and possible risks and discomforts 

associated with the procedure, both verbally and in writing, before starting data collection.  

Subjects gave written, informed consent prior to their voluntary participation in the study. All 

procedures were approved by The University of Western Ontario Health Sciences Research 

Ethics Board. 
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Preliminary testing: Subjects reported to the laboratory for a ramp incremental exercise 

test (25w/min) to volitional fatigue on an electrically-braked cycle ergometer (H-300-R Lode; 

Lode BV) for determination of 2pOV& peak and estimated Lθ̂ . The values obtained from this test 

were used to determine a WR within the heavy-intensity domain of exercise which corresponded 

to ~ 35% of the difference between the 2pOV&  at the Lθ̂  and 2OV& peak (i.e. ∆35). The Lθ̂  was 

estimated using standard ventilatory and gas exchange indices (25). It was defined as the 2pOV&  

at which 1) pulmonary CO2 output ( 2pCOV& ) began to increase out of proportion to the increase 

in 2pOV&  and 2) there was a systematic rise in the ventilatory equivalent for 2pOV&  ( EV& / 2pOV& ) 

and end-tidal PO2 (PETO2) without a systematic rise in the ventilatory equivalent for 2pCOV&  ( EV&

/ 2pCOV& ) and PETCO2.  

Subjects submitted a two-day diet record (one weekday, one weekend day) which was 

used to analyze their “normal” mixed diet composition and to estimate their daily caloric intake.  

Food records were analyzed using Diet Analysis 9.0 software. This program was also used to 

design individualized LCHO and HCHO diets that were used as the dietary intervention for this 

study; diets were eucaloric relative to their “normal” mixed diet submitted in the food records. 

The LCHO diet was aimed to contain 10%, 70%, and 20% of carbohydrates, fat, and protein 

respectively. The HCHO diet was aimed to contain 80%, 10%, and 10% of carbohydrates, fat, 

and protein respectively. Similar diets have been shown in the past to affect PDH activity (38). 

Glycogen depletion and dietary intervention: A GD protocol was completed by subjects 

on their second visit to the laboratory. The protocol consisted of 60 min cycle ergometer exercise 

at an intensity equivalent to 70% 2OV& peak, which was followed immediately by 5 repeated 

cycling bouts at a WR corresponding to 110% of the peak WR achieved during the initial 
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incremental exercise test. Each cycling interval bout lasted 1 min and was separated by 4 min of 

loadless cycling. Variations of this protocol have previously lowered muscle glycogen content by 

55-90% (11). 

Following the GD protocol subjects began the LCHO diet. Each dietary phase lasted four 

days. On day three of the diet subjects performed two step-transitions to ∆35 exercise, with each 

separated by at least 1 hour of resting recovery. The ∆35 constant-load exercise test began with 

six minute baseline cycling at 20 W, followed by a step-increase to a WR corresponding to ∆35 

which lasted eight minutes. During these exercise tests pulmonary gas exchange was measured 

breath-by-breath and local muscle [HHb] was measured continuously in the vastus lateralis 

muscle of the quadriceps muscle group using NIRS. Subjects were instructed to refrain from 

strenuous exercise in the preceding 24 hours before a test. On day four of the diets subjects 

performed a ∆35 exercise bout with the collection of muscle biopsies. During the biopsy rides 

subjects had muscle biopsies taken from the vastus lateralis muscle during cycling at three time 

points: during 6 minute baseline 20W cycling, 15 s after the onset of ∆35 exercise, and 8 minutes 

after the step transition. Biopsies were frozen in liquid nitrogen for later analysis of: glycogen 

content, ADP concentration, Pcr concentration, and PDH activation. 

Following the biopsies on day four of the LCHO diet the GD protocol was repeated. 

After the second GD protocol a HCHO diet was followed and measurements were repeated in 

the same timeframes as in the LCHO condition. The order of the diets were not randomized 

because this order of LCHO followed by HCHO diet, with each preceded by a glycogen 

depletion protocol, has been shown to significantly lower and then maximize muscle glycogen 

levels (7). All food was purchased and provided to the subjects along with strict meal plans. If 
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any portion of the prescribed diet was not consumed, this portion was weighed to establish the 

exact caloric intake for each subject during each of the dietary phases. 

Measurements: Pulmonary gas-exchange measurements were similar to those previously 

described (57). Briefly, inspired and expired flow rates were measured using a low dead space 

bidirectional turbine (Alpha Technologies VMM 110) which was calibrated before each test 

using a 3L syringe. Inspired and expired gases were sampled continuously (50Hz) at the mouth 

and analyzed for concentrations of O2, CO2, and N2 by mass spectrometry (Innovision, Amis 

2000, Lindvedvej, Denmark) after calibration with precision-analyzed gas mixtures. Changes in 

fractional gas concentrations were aligned with inspired and expired gas volumes by measuring 

the time delay (TD) for a square-wave bolus of gas to travel from the turbine transducers along a 

capillary sample line to the mass spectrometer. Data were transferred to a computer, which 

aligned concentrations with volume information to build a profile of each breath. Breath-by-

breath alveolar gas exchange was calculated using the algorithms of Beaver et. al. (4).  

Heart rate (HR) was monitored continuously by three-lead electrocardiogram (ECG) 

using PowerLab (ML132/ML880; ADInstruments, Colorado Springs, CO); HR was calculated 

based upon the R-R interval and was reported on a second–by-second basis. Data were recorded 

on a separate data collection computer using LabChart v6.1. 

Local muscle [HHb] of the quadriceps vastus lateralis muscle was monitored 

continuously with a frequency-domain multi-distance NIRS system (Oxiplex TS, Model 95205, 

ISS, Champaign, IL, USA) as described elsewhere (58). The NIRS probe was placed on the belly 

of the muscle, midway between the lateral epicondyle and greater trochanter of the femur; it was 

secured in place with an elastic strap tightened to prevent movement and covered with an 



 

20 

 

optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous light and loss of 

NIR light. NIRS measurements were collected continuously for the entire duration of each trial. 

Briefly, the system was comprised of a single channel consisting of eight laser diodes operating 

at two wavelengths (λ = 690 and 828 nm, four at each wavelength) which were pulsed in a rapid 

succession (110 MHz) and a photomultiplier tube. The lightweight plastic NIRS probe 

(connected to laser diodes and photomultiplier tube by optical fibers) consisted of two parallel 

rows of light emitter fibers and one detector fiber bundle; the source-detector separations for this 

probe were 2.0, 2.5, 3.0, and 3.5 cm for both wavelengths. 

The NIRS system was calibrated at the beginning of each testing session following an 

instrument warm-up period of at least 20 minutes. Calculation of [HHb] reflected continuous 

measurements of a reduced scattering coefficient (µs’) made throughout each testing session (i.e., 

constant scattering value not assumed). Data were stored online at an output frequency of 25 Hz, 

but were reduced to 1 s bins for all subsequent analyses within the present study.  

Data Analysis: Gas exchange data were edited by removing aberrant data points that lay 

outside four standard deviations (SD) of the local mean. The data for each transition were 

linearly interpolated to 1 s intervals and time-aligned such that time zero represented the onset of 

exercise. Data from both ∆35 transitions were ensemble-averaged to yield a single, averaged 

response for each subject. This transition was further time-averaged into 5 s bins to provide a 

single time-averaged response for each subject. The phase I-phase II transition was identified as 

previously described . The on-transient response for 2pOV&  was modeled using the following 

equation: 

Y(t) =Ybsln+Amp[1-e
-(t-TD)/τ

]                                                                                            Eq.1 
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Where Y(t) represents 2pOV&  at any time; Ybsln is the average 2pOV& ss measured during the 

period immediately before the change in WR; Amp (amplitude) is the steady-state increase in 

2pOV&  above the baseline 2pOV& ( 2pOV& bsl) ; τ represents the time required to attain 63% of the 

steady-state amplitude; and TD is mathematically generated as the point at which the exponential 

model is predicted to intersect the baseline. Steady-state 2pOV& bsl was established from data 60 s 

before the change in WR. Data were modeled from the phase I-phase II transition to the onset of 

the slow component (determined in a similar fashion to the phase I-phase II transition (25)) using 

Origin data fitting software (OriginLab). The 95% confidence interval for the estimated τ was 

determined following a preliminary fit with Ybsln, Amp, and TD constrained to best fit values, 

with the τ allowed to vary. The slow component was modelled using a linear equation over the 

last 30 s of exercise. End exercise 2pOV&  was measured as the average of the last 15 s of exercise. 

The NIRS-derived [HHb] data were time-aligned and ensemble-averaged to 5 s bins to 

yield a single response for each subject. The [HHb] profile has been described to consist of a 

time delay at the onset of exercise followed by an “exponential-like” increase in the signal 

towards a new steady-state exercise value (15). The TD for the [HHb] response was estimated 

for each subject using second-by-second data and corresponded to the time after the onset of 

exercise where the [HHb] signal showed a consistent increase above the nadir value, as described 

previously (24). The [HHb] data were modeled from the end of the TD-HHb to 90 s using a 

monoexponential function of the form in Eq. 1 to determine τ[HHb]. This model was chosen 

because it offered the best consistent fits for the transition. Baseline [HHb] was determined for 

each trial as the mean value in the 60 s before a transition. Mean response time (MRT= [HHb]TD 

+ τ[HHb]) was calculated to describe the overall time course for muscle [HHb]. End-exercise 
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data was calculated as the average of the last 30 s of exercise. The steady-state value for [HHb] 

was determined as the end point for the fitting of the monoexponential function ([HHb]ss). 

The second-by-second [HHb] and 2pOV&  data were normalized for each subject (0%, 

representing the 20 W baseline value, and 100%, representing the phase II value). The 

normalized phase II 2pOV&  were then modeled using the parameter values for individual subjects. 

The normalized adjustment of muscle O2 utilization was shifted toward the start of each step 

transition by a time corresponding to the estimated phase II TD for each transition, thereby 

making the normalized 2pOV&  at the immediate onset of the transition equal to “zero”. [HHb] data 

was not modeled; it was derived from the raw second-by-second signal. An [HHb]/ 2pOV&  ratio 

was calculated with a value of 1.0 corresponding to a match between [HHb] and 2pOV& . An 

overshoot in the [HHb]/ 2pOV&  response profile was estimated by integrating the area bounded by 

the [HHb]/ 2pOV&  profile and a ratio value equal to 1.0. The start point was selected to be 20 s to 

begin the analysis. During the adjustment within the initial ~20 s, the blood flow response and O2 

delivery is adequate to sustain early increases in 2pOV&  and therefore, the [HHb]/ 2pOV&  as 

described was not used to attempt to characterize this period of the response. The end point of 

the analysis was selected to be 120 s, meant to reflect the time point at which the [HHb]/ 2pOV&  

ratio reached a steady-state of 1.0 in all subjects.  

The on-transient HR response was modeled from the onset of exercise to the end of phase 

II of 2pOV&  using Eq. 1. This strategy offered the best consistent fits for the transition. HRbsl was 

calculated from the last 30 s of 20 W exercise. End exercise HR was calculated from the last 30 s 

of the entire HR response. 
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Statistics: Statistical analyses were performed using SPSS 20. Differences between 

HCHO and LCHO diets with respect to parameter estimates of: 2OV& , HR, and [HHb] were 

analyzed using repeated measured ANOVA (diet condition as main effect). Statistical 

significance was accepted at p<0.05. All data are presented as mean ± SD. 

2.3 Results 

 Physical characteristics of the subjects and aerobic parameters measured during the ramp 

incremental exercise test are presented in Table 1. Subjects were able to complete the entire 

glycogen depletion protocol prior to the LCHO diet. None of the subjects were able to complete 

the full one hour of cycling at 70% 2OV& peak before the HCHO diet (35 minutes ± 5 minutes), all 

were able to complete the five one-minute sprint interval component of the glycogen depletion 

protocol before the HCHO diet. 

Diets had an average daily caloric intake of 2810 ± 324, 2834 ± 318, and 2791 ± 308 kcal 

for mixed, LCHO, and HCHO respectively. The relative carbohydrate, fat, and protein content of 

the diets consumed during the study were, respectively: 10% ± 2, 64% ± 3, and 27% ± 4 for the 

LCHO, and 76% ± 3, 11% ± 2, and 16% ± 2 for the HCHO. 

As expected, the WRs used in the present study represented an intensity within the heavy 

domain of exercise as evidenced by an end-exercise 2pOV&  that was greater than the 2pOV&  at Lθ̂

and a 2pOV& profile which exhibited a visually identifiable 2pOV&  slow component in 9 of 10 

subjects.   

The group mean response profile for the calculated respiratory exchange ratio (RER= 

2pCOV& / 2pOV& ) for the LCHO and HCHO conditions is presented in Figure 1.  The calculated 
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RER during steady-state baseline cycling at 20 W was significantly higher (p < 0.05) in the 

HCHO (0.97 ± 0.18) compared to the LCHO (0.8 ± 0.07) diet; RER remained elevated in 

HCHCO compared to LCHO throughout the transition to ∆35 exercise (Figure 1). This data is 

indicative of a lesser oxidation of CHO in the LCHO condition compared to the HCHO 

condition. 

The group mean response for 2pCOV&  is presented in Figure 2. 2pCOV&  was significantly 

lower (p<0.05) in the LCHO (0.79±0.16) condition compared with the HCHO (0.90±0.19) 

condition during baseline 20 W exercise. 

  The group means response profile for 2pOV&  in the LCHO and HCHO conditions is 

presented in Figure 3A, while the 2pOV&  response profile for a representative subject during the 

HCHO condition, along with the model-derived line-of-best fit and residuals (difference between 

actual data and the model-derived line-of-best fit) is presented in Figure 3B. The summary of the 

parameter estimates for the 2pOV&  kinetics response for the dietary conditions is presented in 

Table 2. Statistical analysis showed that all variables with the exception of 2pOV&  baseline, slow 

component amplitude, and TD were significantly greater in the LCHO condition (p<0.05) 

including: amplitude, phase II 2pOV& , τ 2pOV& , end-exercise 2pOV& , and 2pOV& gain ( 2pOV& gain= ∆

2pOV& /∆WR) (p<0.05). 2pOV& bsl and slow component amplitude were not statistically different 

(p>0.05). TD was significantly greater in the HCHO condition (p<0.05). Figure 4 illustrates the 

individual τ 2pOV&  for each subject in the LCHO and HCHO diet, along with the group mean 

values for each diet; the τ 2pOV&  was greater in LCHO than in HCHO in 9 of the 10 subjects.  
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 Parameter estimates for the [HHb] response kinetics for transitions to ∆35 during the 

LCHO and HCHO conditions are presented in Table 3. The group means response profile for 

[HHb] for LCHO and HCHO conditions is presented in Figure 5A, while the [HHb] response 

profile for a representative subject along with the model-derived line-of-best fit and residuals 

during the HCHO condition is presented in Figure 5B.  Baseline [HHb] was the only parameter 

which showed a significant difference between LCHO (24.55 ±SD µM) and HCHO (21.73 ±SD 

µM) diets (p<0.05). Parametes of [HHb] for amplitude, steady state, τ[HHb], TD, MRT, and end-

exercise were not statistically significant (p<0.05) between conditions.  

The [HHb]/ 2pOV&  ratio for the LCHO and HCHO diets are presented in Figure 6A and B 

respectively. The [HHb]/ 2pOV&  ratio displayed a greater overshoot in the LCHO (1.27) condition 

compared to the HCHO (1.09) condition (p<0.05). All subjects displayed an overshoot across 

both conditions. 

The parameter estimates for HR kinetics during the transition to heavy-intensity exercise 

are presented in Table 4. Parameters of baseline, τHR, and end-exercise were not statistically 

significant (p>0.05). Amplitude of the HR response was greater (p<0.05) in the LCHO 

(63.4±10.4) condition then that HCHO (57.9±12.1) condition. Group mean HR data is presented 

in Figure 7a while data for a representative subject along with the model-derived line-of-best fit 

and residuals during the HCHO condition is presented in Figure 7b. 
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Table 1. Physical characteristics and response to ramp incremental test 

Age  

(yr) 

Body 

mass  

(kg) 

Height 

(cm) 
2pOV& peak 

(L/min) 

2pOV& peak 

(ml/kg/min) 

2pOV&  at 

Lθ̂   

(L/min)   

Estimated

2pOV&  at 

∆ 35  

(L/min) 

WR at ∆ 

35 (W) 

24 ± 3 81 ± 12 177 ± 5 3.9 ± 0.5 33.1 ± 21.9 2.2 ± 0.3 2.8 ± 0.4 204 ± 31 

Values are expressed as mean ± SD. 2pOV& peak, peak oxygen uptake; Lθ̂ , estimated lactate 

threshold; ∆ 35, 35%delta; WR, work rate. 
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Table 2. Summary of parameter estimates for VO2p on-transients to heavy-intensity exercise 

during the low carbohydrate (LCHO) and high carbohydrate (HCHO) diets. 

 LCHO diet HCHO diet 

2pOV&  Baseline (L/min) 1.0 ± 0.1 0.9 ± 0.2 

2pOV&  Amplitude (L/min) 1.9 ± 0.4 1.7 ± 0.4* 

End-exercise 2pOV&  (L/min) 3.2 ± 0.5 3 ± 0.5* 

Phase II 2pOV&  (L/min) 2.8 ± 0.4 2.6 ± 0.4* 

Phase II τVO2p (s) 41.9 ± 11.5 33.9 ± 7.3* 

2pOV&  TD (s) 1.6 ± 7.8 9 ± 7.2* 

Phase II VO2p  gain 

(ml/min/W) 

10.1 ± 1.1 9.4 ± 1.3* 

2pOV&  Ampsc (L) 0.3 ± 0.1 0.3 ± 0.1 

95% CI (s) 5.5 ± 2.1 3.9 ± 1.5 

Values are expressed as means ± SD. τVO2p, time constant for phase II VO2p; TD, time delay; 

VO2p gain, ∆VO2p/∆WR; Ampsc, slow component amplitude; CI, confidence interval for phase II 

τ 2pOV& . 

*Significant difference (P<0.05) between the LCHO and HCHO diets. 
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Table 3. Parameter estimates for NIRS-derived deoxygenation concentration [HHb] changes 

during the transition to heavy-intensity exercise in the LCHO and HCHO diets 

 LCHO HCHO 

[HHb] baseline (µM) 24.6 ± 6.4 21.7 ± 5.5* 

[HHb] amplitude (µM) 12.5 ± 6.7 9.9 ± 3.6 

[HHb] steady state (µM) 37 ± 12.7 31.6 ± 8.6 

τ[HHB]  (s) 12.9 ± 3.4 10.6 ± 1.9 

CTD [HHb] (s) 5.8 ± 2.6 5.7 ± 1.8 

MRT (s) 18.7 ± 3.4 16.3 ± 2.1 

95% CI (s) 2.3 ± 0.8 2.5 ± 1.5 

End exercise (µM) 39.1 ± 12.8 34.2 ± 9.1 

Values are expressed as means ± SD.τ[HHb], time constant for the adjustment of [HHb]; CTD 

[HHb], calculated time delay for [HHb]; MRT, mean response time; CI, confidence interval for 

τ[HHb]. 

*Significant difference (P<0.05) between LCHO and HCHO diets 
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Table 4. Parameter estimates for heart rate (HR) kinetics during the transition to heavy-intensity 

exercise in the LCHO and HCHO diets. 

 LCHO HCHO 

Baseline HR (beats/min) 89 ± 12.2 91.8 ± 7.9 

HR Amplitude (beats/min) 63.4 ± 10.4 57.9 ± 12.1* 

τHR (s) 42.3 ± 23.5 39.9 ± 14.6 

End exercise HR (beats/min) 166.3 ± 13.9 160.1 ± 12.3 

95% CI (s) 7.3 ± 8.6 7.45 ± 7.5 

 

Values are expressed as means ± SD. τHR, time constant for HR adjustment; CI, confidence 

interval for τHR. 

*Significant difference (P<0.05) between the LCHO and HCHO diets 
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Figure 1. Group mean respiratory exchange ratio (RER=VCO2/VO2) response during baseline 

and heavy-intensity exercise; open circles, LCHO diet; closed circles, HCHO diet. Dashed line 

represents the onset of step-change in WR. 
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Figure 2. Second-by-second group mean VCO2 response during the transition to heavy-intensity 

exercise; open circles, LCHO diet; closed circles, HCHO diet. Dashed line represents the onset 

of the step-change in WR. 
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Figure 3a. Second-by-second group mean VO2 response during the transition to heavy-intensity 

exercise; open circles, LCHO diet; closed circles, HCHO diet. Dashed line represents the onset 

of the step-change in WR.  
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Figure 3b. Second-by-second VO2p response for a representative subject during the transition to 

heavy-intensity exercise in the HCHO condition. Red lines represent the modelled line of best fit. 

Black lines represent residuals. Dashed line represents the onset of the step-change in WR. 
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Figure 4. Individual and group mean VO2 time constants (τVO2) for the LCHO and HCHO diets. 

Dotted lines connect individual data. Solid line connects group mean data. 
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Figure 5a. The group mean [HHb] response during the transition to heavy-intensity exercise; 

open circles, LCHO diet; closed circles, HCHO diet. Dashed line represents onset of the step-

change in WR. 
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Figure 5b. The [HHb] response during the transition to heavy-intensity exercise in a 

representative subject during the HCHO condition. Red line represents the modelled line of best 

fit. Black line represents the residuals. Dashed line represents the onset of the step-change in 

WR. 
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Figure 6a. Group mean profiles for the relative adjustment of [HHb]/ 2pOV&  in the initial 120 s of 

heavy intensity exercise transitions, shown in the LCHO condition. 
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Figure 6b. Group mean profiles for the relative adjustment of [HHb]/ 2pOV&  in the initial 120 s of 

heavy intensity exercise transitions, shown in the HCHO condition. 
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Figure 7a. Group mean beat-by-beat mean heart rate (HR) response during the transition to 

heavy-intensity exercise; open circles, LCHO diet; closed circles, HCHO diet. Dashed line 

represents the onset of the step-change in WR. 
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Figure 7b. Beat-by-beat heart rate (HR) response during the transition to heavy-intensity exercise 

in a representative subject in the HCHO condition. Red line represents the modelled line of best 

fit. Black line represent the residuals. Dashed line represents the onset of the step-change in WR. 
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2.4 Discussion 

 This study examined 2pOV&  and muscle [HHb] kinetics during transitions to heavy-

intensity exercise during LCHO and HCHO dietary interventions combined with a GD protocol 

in an attempt to manipulate muscle substrate availability and the level of PDH activation. The 

major findings of this study were as follows: 1)  the kinetics of  2pOV&  during the transition to 

heavy-intensity exercise were slower during the LCHO condition (greater τ 2pOV&  ) compared to 

the HCHO condition, suggesting that the activation of muscle oxidative phosporylation was 

slowed on the LCHO diet; 2) despite slower 2pOV&  kinetics in the LCHO condition, the 

adjustment of [HHb] was not different between diets, suggesting that the adjustment of muscle 

microvascular blood flow was attenuated in the LCHO condition compared to the HCHO 

condition. 

It appears that the dietary manipulation and GD protocol that was administered was 

effective in influencing substrate availability and utilization. Although muscle glycogen data was 

not available at the time of writing, previous studies using a similar GD and dietary intervention 

observed a 55-90% decrease in glycogen levels following GD (11). In addition, the resting RER 

data are significantly (p<0.05) different between conditions. This suggests differences in 

substrate utilization. The combined GD and dietary manipulation protocol was effective in 

altering 2pOV&  kinetics as demonstrated by the greater τ 2pOV&  in LCHO diet compared to the 

HCHO diet. This is in agreement with Lima-Silva et. al.. They measured 2pOV&  in subjects 

exercising at ∆75 until exhaustion after consuming a LCHO diet for 48 hours and completing a 

GD protocol (43). They observed a much greater τ 2pOV&  in the LCHO condition compared to the 
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HCHO condition (33 vs. 48 s). Raper et. al. also observed increased τ 2pOV&  after dietary 

manipulation and GD in the LCHO condition during moderate exercise (40s vs. 32 s) (53).  

Slowed 2pOV&  kinetics reflect a slower adjustment of oxidative metabolism at the onset of 

exercise. This slowed adjustment could be caused by limitations in O2 delivery or the inadequate 

provision of substrate for the ETC through the activity of rate-limiting metabolic enzymes. As 

PDH controls the entry of carbohydrate derived substrate into the TCAC and eventually the ETC 

it plays a large role in the initiation of oxidative metabolism. Fat metabolism is not activated as 

quickly as CHO metabolism at the onset of exercise. The ability to quickly utilize CHO-derived 

substrate allows for a faster adjustment to the step-transition in WR.  

It is reasonable to assume that the intervention in the present study altered PDH activity. 

Peters et. al. investigated the effect of dietary manipulation on PDK activity and found that PDK 

was elevated during a high fat diet (50). St. Amand et. al. and Constantin-Teodosiu et. al. also 

reported reduced PDH activity at rest following a LCHO diet (13, 61). The LCHO diets in these 

and the present study potentially cause increased rates of beta-oxidation which increased the 

levels of NADH within the cell (62). LCHO diets also lead to reduced intracellular pyruvate. 

These changes lead to a greater activation of PDK and therefore reduced PDH activity (49, 50, 

64). Dietary manipulation in the absence of GD has not been shown in the past to alter PDH 

activity during exercise. In St. Amand et. al. and Constantin-Teodosiu et. al. PDH activity in 

subjects during the LCHO condition was shown to match that of mixed diet subjects at exercise 

(13, 61). During exercise pyruvate levels in the cell increase which leads to the deactivation of 

PDK and the activation of PDH. In our investigation this may not have occurred in the LCHO 

condition as GD could have led to reduced intracellular pyruvate levels and PDH activity during 
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exercise. In the HCHO condition pyruvate levels were potentially restored after depletion which 

could have led to elevated PDH activity. 

Muscle biopsy samples were not analyzed at the time of writing. It is expected that 

biopsy data will confirm a number of ideas speculated upon in this paper. The LCHO condition 

will presumably show: lower muscle glycogen content, greater phosphocreatine breakdown, a 

higher Pi content, a lower lactate level, a greater estimated ADP, and reduced PDH activation 

throughout exercise. A lower rate of PDH activation at 15 s is also expected to be shown in the 

LCHO condition. These results would mirror the changes seen by Putman et. al. during a similar 

investigation (52). These changes are reflective of a slower rate of muscle oxidative 

phosphorylation, consistent with a slower rate of activation of PDH as well as a reduced rate of 

O2 delivery. 

The NIRS-derived [HHb] data provides insight into what effects the dietary manipulation 

had on O2 delivery. In the present study, despite a significant difference in cellular O2 demand 

(evidenced by differences in τ 2pOV& ) there was no significant difference in τ[HHb] between 

conditions suggesting that the local microvascular blood flow response was attenuated in the 

LCHO condition. This also was evident in the higher [HHb]/VO2 ratio in the LCHO diet. This 

indicates a slower adjustment of microvascular blood flow and a greater reliance on O2 

extraction from the microvasculature in the LCHO condition. Studies have shown that 

consumption of a HFAT meal leads to impaired endothelial dependent vasodilation (EDV) 

through a number of mechanisms including: eNOS inhibition, insulin resistance, and increased 

oxidative stress (18, 36, 56). These findings agree with the present data, however exercise has 

been reported to counteract the effects of a HFAT meal through anti-oxidant production and 

increased shear stress (47). Padilla et. al. measured EDV after a high fat meal at rest and during 
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exercise (47). They found that after a high fat meal and exercise EDV was greater than after a 

mixed meal without exercise. This investigation studied humans exercising for 45 minutes one 

hour prior to the measurement of EDV. Our investigation did not display an exercise effect on 

restoring blood flow following the ingestion of high fat meals. There are a few reasons for the 

apparent discrepancy in our results. 1) The timing of their measurement was different as their 

investigation was concerned with the effect on EDV one hour following exercise (it has been 

shown that endothelial function increases maximally one hour after exercise (26)). The present 

investigation was interested in measuring the effects of a HFAT diet on blood flow during the 

initial minute of exercise. 2) The longer duration of the exercise in Padilla’s investigation would 

also lead to more prolonged sheer stress and anti-oxidant production. 3) Lastly, our fat feeding 

was prolonged instead of a single meal (47).  

2.5 Conclusion 

A 4-day dietary manipulation and GD protocol was effective in influencing substrate 

utilization and τ 2pOV&  during heavy intensity exercise. During the LCHO condition τ 2pOV&  was 

significantly higher (p<0.05). It is suggested that two factors contributed to the slower 

adjustment of 2pOV&  to exercise in the LCHO condition: 1) a reduced activation of PDH, 2) a 

slower adjustment of microvascular blood flow. This study provides evidence of PDH’s 

important role in determining the speed of adjustment of 2pOV&  to exercise. It is also suggests a 

potential contribution of reduced O2 delivery to an increase in τ 2pOV&  during exercise on a 

LCHO diet.  
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2.6 Future directions and limitations 

The direct measure of conduit artery blood flow and administration of Doppler ultrasound 

for the assessment of endothelial dependent vasodilation would assist in making more conclusive 

statements on the effect of the current protocol on blood flow adjustments. Near-infrared 

spectroscopy is a useful tool but does not provide the certainty of the measures above. 

 Therefore, future research would further the present study if it gathered information on 

blood flow through conduit artery measurements or the use of Doppler ultrasonography.  
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