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Abstract: Inhibition of the RAF-MEK1/2-ERK signaling pathway is an ideal strategy for treating
cancers with NRAS or BRAF mutations. However, the development of resistance due to incomplete
inhibition of the pathway and activation of compensatory cell proliferation pathways is a major
impediment of the targeted therapy. The anthrax lethal toxin (LT), which cleaves and inactivates
MEKs, is a modifiable biomolecule that can be delivered selectively to tumor cells and potently kills
various tumor cells. However, resistance to LT and the mechanism involved are yet to be explored.
Here, we show that LT, through inhibiting MEK1/2-ERK activation, inhibits the proliferation of
cancer cells with NRAS/BRAF mutations. Among them, the human colorectal tumor HT-29 and
murine melanoma B16-BL6 cells developed resistance to LT in 2 to 3 days of treatment. These
resistant cells activated AKT through a histone deacetylase (HDAC) 8-dependent pathway. Using an
Affymetrix microarray, followed by qPCR validation, we identified that the differential expression
of the phospholipase C-β1 (PLCB1) and squamous cell carcinoma-1 (DESC1) played an important
role in HDAC8-mediated AKT activation and resistance to MEK1/2-ERK inhibition. By using
inhibitors, small interference RNAs and/or expression vectors, we found that the inhibition of
HDAC8 suppressed PLCB1 expression and induced DESC1 expression in the resistant cells, which
led to the inhibition of AKT and re-sensitization to LT and MEK1/2 inhibition. These results suggest
that targeting PLCB1 and DESC1 is a novel strategy for inhibiting the resistance to MEK1/2 inhibition.

Keywords: lethal toxin; AKT; PLCB1; PI-PLC; DESC1; HT-29 cells; cancer; resistance

1. Introduction

Hyperactivation of the MEK1/2-ERK signaling axis due to mutations in NRAS and
BRAF drives oncogenesis in ~30% of human cancers, and targeting RAF and MEK can
be a curative therapy for these cancers [1]. However, the development of resistance often
prompts clinical relapse and therapeutic failure. Among various causes, incomplete inhibi-
tion of the MEK1/2-ERK pathway contributes to be an intrinsic and acquired resistance
to these inhibitors [2,3]. Indeed, combinatory therapies using both RAF and MEK1/2
inhibitors provide a better prognosis and are the current standard-of-care in certain can-
cers [4,5]. The anthrax lethal toxin (LT), which potently inhibits MEK1/2-ERK activation
and can be modified to selectively target cancers, is a promising biomolecule [6–8], likely
with less of a chance of resistance development. LT, which is composed of a carrier pro-
tective antigen (PA) and protease lethal factor (LF), selectively cleaves the N-termini of all
MEKs, except MEK5 [9,10], and induces cell cycle arrest and cell death [11,12]. However,
we showed that macrophages adaptively respond to LT and become resistant to LT-induced
cell cycle arrest through activating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling
cascade [13,14]. Similarly, in certain tumor cells, resistance to RAF/MEK inhibitors is
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attributed to activation of the PI3K-AKT signaling axis caused by a loss of phosphatase
and tensin homology (PTEN) or adaptive stress responses [15–17]. However, the mecha-
nisms that activate the PI3K-AKT signaling pathway in resistant cancer cells are yet to be
fully delineated. As one of the potential mechanisms, we previously showed that histone
deacetylase 8 (HDAC8), which is a member of the class I HDAC family, is involved in the
resistance to LT in macrophages [14]. HDAC8 was also shown to mediate the resistance
to RAF inhibitors in melanoma [18]. In these cells, HDAC8 deacetylates and activates the
c-JUN transcription factor, resulting in the increased expression of receptor tyrosine kinases
and ERK activation. Therefore, HDAC8 may induce a resistance to RAF-MEK inhibition
in different pathways, depending on the cell type. To further delineate the mechanisms
of HDAC8 in resistance to MEK1/2-ERK inhibition, we examined whether LT induces
resistance and, if so, then what mechanisms are involved in cancer cell types with known
mutations in the RAS-RAF-MEK signaling axis. We found that HDAC8 was required for
a resistance to LT and the MEK1/2 inhibitor U0126 in the human colorectal tumor cell
line HT-29 and murine melanoma B16-BL6 cells. HDAC8 induced AKT activation in these
resistant cells, in part, through inducing PLCB1 expression. The inhibition of HDAC8 sup-
pressed PLCB1 expression but enhanced DESC1 expression, both of which were involved
in preventing the compensatory activation of AKT and resistance to MEK1/2 inhibition.

2. Materials and Methods

Reagents—Protective antigen (PA) and lethal factor (LF) were purchased from the
List Biological Laboratories (Campbell, CA, USA). The ERK inhibitor U0126, p38 MAPK
inhibitor SB203580, AKT inhibitor, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl-
tetrazolium bromide) were obtained from APExBIO Technology (Houston, TX, USA),
Selleck Chemicals (Houston, TX, USA), Calbiochem (San Diego, CA, USA), and Sigma-
Aldrich (St. Louis, MO, USA), respectively. HDAC8 inhibitor PCI-34051, edelfosine, and
4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) were obtained Cay-
man Chemical (Ann Arbor, MI, USA). The HDAC8 and PLCB1 antibodies were obtained
from AB clonal Technology (Woburn, MA, USA). Antibodies for phospho-AKT (Ser-473),
MEK1 (N-terminal 12 amino acids), and β-actin were purchased from Cell Signaling (Dan-
vers, MA, USA), Stressgen Biotechnologies (Cat# KAP-MA010; Ann Arbor, MI, USA),
and Rockland Inc. (Gilvertsville, PA, USA), respectively. The cOmpleteTM EDTA-free
protease inhibitor cocktail and phosphatase inhibitor cocktail (phosSTOP) tablets were
obtained through Thermo Scientific (Roche; Indianapolis, IN, USA). DESC1 (vector ID;
VB170123-1118ntk, hTMPRSS1 (ORF023752)) plasmid was constructed through Cyagen
(Vector Builder; Chicago, IL, USA).

Cell culture—Mouse B16-BL6 melanoma, human colorectal tumor HT-29 cells, and
human melanoma MDA-435 and SK-MEL-5 cells were maintained in complete RPMI 1640
or DMEM, supplemented with 10% heated-inactivated fetal bovine serum (WISENT; Saint-
Jean-Baptiste, QC, Canada, 10-mM MEM nonessential amino acid solution, 100-U/mL
penicillin G sodium, 100-µg/mL streptomycin sulfate, and 1-mM sodium pyruvate.

Cell viability and proliferation assay—Cell viability/proliferation was measured by
the MTT analysis, as previously described [13]. Briefly, cells were seeded in 96-well plates
and cultured in the presence or absence of LT (LF and PA) and/or chemical inhibitors for
the time indicated. MTT at a final concentration of 0.5 mg/mL was added and incubated
2–4 h before stopping the experiments by replacing the cell culture media with 100 µL
of dimethyl sulfoxide to dissolve the crystals. For cells in suspension, the experiments
were ended by adding 100 µL of 0.04-N HCl in isopropanol for 30 min in a shaker at room
temperature. Optical densities of each well were analyzed using an automatic microplate
reader (Synergy H4 Hybrid Reader, BioTek; Winooski, VT, USA) at a wavelength of 570 nm.
The % of cell survival was calculated based on cell numbers in comparison with those of
nontreated cells. The % of cell proliferation was based on the cell numbers in comparison
with those of nontreated cells 24 h after seeding cells. All cell numbers were estimated
based on the standard curve generated by optical densities of known cell numbers.
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Gene expression microarray—HT-29 (3 × 106) cells were cultured with or without LT
(500 ng/mL of each PA and LF) or LT+ PCI-34051 (PCI: 5 µM) for 48 h. Total cellular RNAs
were prepared using TRIzolTM (Ambion Inc.; Carlsbad, CA, USA), and the quantity and
quality of the total RNAs were verified through an Agilent 2100 Bioanalyzer. Total RNAs
(100 ng) were then amplified and labeled to prepare complementary RNAs, 5.5 µg of which
was loaded onto the array, following the manufacturer’s guidelines (Affymetrix, Santa
Clara, CA, USA). Gene array was performed using the GeneChip™ Human Genome U133
Plus 2.0 Array kit in the London Regional Genomics Centre at Western University, London,
ON, Canada. CEL files were then imported to PartekTM Genomics SuiteTM for differential
gene expression (with 2-fold change cut-off) and gene ontology enrichment analyses.

Immunoblotting—Total cell lysate preparation and Immunoblotting were conducted
as previously described [13]. Briefly, cells were lysed in ice-cold lysis buffer (20-mM MOPS,
2-mM EGTA, 5-mM EDTA, 1-mM Na3VO4, 40-mM β-glycerophosphate, 30-mM sodium
fluoride, 20-mM sodium pyrophosphate, 0.1% SDS, and 1% Triton X-100, pH 7.2) containing
a cOmpleteTM EDTA-free protease inhibitor and phosphatase inhibitor (phosSTOP), and
the cells were incubated on ice for 10 min. Whole lysates were centrifuged at 12,500 rpm for
15 min at 4 ◦C. Proteins in supernatants were separated by SDS-polyacrylamide gels and
transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). The membranes
were blocked with 5% (w/v) skim milk for 1 h at room temperature and exposed to primary
antibodies overnight at room temperature and then washed three times with 1 × TBST
(20-mM Tris and 150-mM NaCl, pH 7.5) containing 0.05% Tween 20. The membranes were
incubated with the secondary antibody for 60 min at room temperature, and immunore-
acting bends were developed using an Enhanced Chemiluminescence detection system
(ECL; Thermo Scientific; Rockford, IL, USA) or LuminataTM Forte (Millipore, Billerica,
MA, USA).

Quantitative real-time PCR—Quantitative real-time PCR (qPCR) was carried out as pre-
viously described [13]. Briefly, the isolation of total cellular RNAs and reverse transcribing
were performed using TRIzolTM (Ambion Inc.) and Moloney murine leukemia virus (M-
MuLV) reverse transcriptase (New England Biotechnology; Ipswich, MA, USA), according
to the manufacturer’s instructions. The qPCR analyses were processed using a Rotor-Gene
RG3000 quantitative multiplex PCR instrument (Montreal Biotech Inc.; Dorval, QC, Canada)
and Power UPTM SYBR Green Master Mix (Applied Biosystems, Life Technologies; Foster
City, CA, USA). Data were normalized to the levels of the glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) housekeeping gene. Human primers used for qPCR were: for GAPDH,
5′-ACCCACTCCTCCACCTTTG-3′ (5′ primer) and 5′-CTCTTGTGCTCTTGCTGGG-3′ (3′

primer); for HDAC8, 5′-ATTCTCTACGTGGATTTGGATC-3′ (5′ primer) and 5′-ATGCCAT-
CCTGAATGGGCACA-3′ (3′ primer); for PLCB1, 5′-GGTGCAGTATATCAAGAGGCTAGA-
3′ (5′ primer) and 5′- TGGTCACCACTTGAGAGCTT-3′ (3′ primer); and for DESC1, 5′-
AGAGTTTGTTGGGAACCCTGG-3′ (5′ primer) and 5′-AAGCCTCTCTGCCAAACTCAG-
3′ (3′ primer). Mouse PLCB1 and DESC1 mRNA expression were analyzed using primers
GAPDH, 5′-GCATTGTGGAAGGGCTCATG-3′ (5′ primer) and 5′-TTGCTGTTGAAGTCG-
CAGGAG-3′ (3′ primer); PLCB1, 5′-GGTGCAGTATATCAAGAGGCTAGA-3′ (5′ primer)
and 5′-TGGTCACCACTTGAGAGCTT-3′ (3′ primer); and DESC1, 5′-AGAGTTTGTTGGG-
AACCCTGG-3′ (5′ primer) and 5′-AAGCCTCTCTGCCAAACTCAG-3′ (3′ primer).

Transfection of small interfering (si)RNAs and plasmids—HT-29 cells were trans-
fected with human HDAC8-targeting siRNA [(Invitrogen, Life Technologies; Carlsbad, CA,
USA) catalog No. 10620318-19, HDAC8HSS125194)] or human PLCB1-targeting siRNA
(Invitrogen, Life Technologies, Cat No. 10620318-329608F08 and 10620319-329974A06,
PLCB1VHS41619) at 64 nM for 18 h using Lipofectamine RNAiMAX (Invitrogen, Life Tech-
nologies), according to the manufacturer’s instructions. Cells were then replated to 6-well
or 96-well plates, and, after incubation for an additional 6 h, cells were treated with LT or
U0126 for the time indicated. Plasmid transfection was carried out using Lipofectamine
2000 or 3000 (Invitrogen, Life Technologies) according to the manufacturer’s instructions.
Briefly, 1.5 × 106 cells were plated on 6-well plates at 6–8 h prior to transfection and trans-
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fected with plasmids for 4 h. Cells were further incubated for 16–18 h with an additional
cell culture medium. Cells were then replated and treated with or without LT or U0126 for
the time indicated.

Statistical analysis—Data were analyzed using GraphPad Prism Version 4.0 software,
and the results were presented as the mean ± SD of two or three independent repeats.
Statistical significance was defined as p < 0.05 (*).

3. Results
3.1. Murine Melanoma B16-BL6 and Human Colorectal HT-29 Cells Develop Resistance to LT in
an HDAC8-Dependent Pathway

We first examined the cytotoxic effect of LT in four cancer cell lines with known
mutations in the signaling axis of RAS-RAF-MEK1/2: murine melanoma B16-BL6, human
colorectal cancer HT-29, and human melanoma MDA-MB-435 (MDA) [19] and SK-MEL-5
(SK-MEL) cell lines [6,20–23]. LT was able to decrease cell survival within 24 h in these
cells (Figure 1A). To further examine whether the decreased cell survival was due to cell
death or cell cycle arrest, small numbers of these cells were plated and monitored for cell
proliferation over 96 h in the presence of LT. During the 48 h of LT treatment, no apparent
changes in live cell numbers were detected (Figure 1B). In 72 h of LT treatment, the live
cell numbers of B16-BL6 and HT-29 cells started increasing, whereas those of MDA and
SK-MEL cells did not. These results suggest that B16-BL6 and HT-29 cells became resistant
to LT and started proliferating in the presence of LT. Since HDAC8 plays a key role in
the resistance to LT cytotoxicity in macrophages [14], we examined if HDAC8 was also
involved in the resistance in B16-BL6 and HT-29 cells. As in macrophages, both B16-BL6
and HT-29 cells failed to proliferate in the presence of LT when the cells were treated
together with the HDAC8-specific inhibitor PCI34051 (PCI; Figure 1B). PCI alone had no
apparent effect on the cell proliferation. To further confirm that the proliferating cells in the
presence of LT are resistant cells, rather than cells delayed in cell proliferation, these cells
were replated and rechallenged with LT and examined for cell survival. Unlike in parental
cells, these resistant cells did not show any defects in cell survival/proliferation (Figure 1C).
To further confirm the role of HDAC8, HDAC8 was knocked down by small interference
(si)RNAs in HT-29 cells. As in macrophages [14], LT induced HDAC8 expression in both
mRNA and the protein levels (Figure 1D). HDAC8-targeting siRNAs (si-HDAC8), but not
random siRNAs (si-Random), significantly decreased the mRNA (Figure 1D, left panel)
and protein (Figure 1D, right panel) levels of HDAC8 in both the parental and LT-resistant
cells. Indeed, like PCI, si-HDAC8 prevented cell proliferation in LT-exposed HT-29 cells
(Figure 1E).

3.2. LT-Induced Cell Cycle Arrest and Resistance Are Manifested by MEK1/2 Inhibition

LT inactivates both the MEK1/2-ERK and MEK3/6-p38 signaling pathways by cleav-
ing MEK1-7, except MEK5 [24]. Therefore, we examined if these two signaling pathways
were involved in preventing cell proliferation in LT-treated cells. In both B16-BL6 and
HT-29 cells, the MEK1/2 inhibitor U0126, but not the p38 inhibitor SB203580, decreased cell
survival to the similar extent observed by LT (Figures 1A and 2A). In both B16-BL6 and HT-
29 cells, the U0126 treatment also transiently inhibited cell proliferation for ~48 h, and cells
started proliferating after 72 h of the treatment (Figure 2B). As in LT-resistant cells, when
U0126-resistant cells were rechallenged with U0126, no defects in cell survival/proliferation
were detected within 48 h (Figure 2C). PCI also prevented a resistance to U0126 in both HT-
29 and B16-BL6 cells. Similar to LT-resistant cells, knocking down HDAC8 also prevented
cell proliferation in U0126-exposed HT-29 cells (Figure 2D). These results suggest that the
transient inhibition of cell proliferation and development of resistance induced by LT was
mainly mediated by MEK1/2 inhibition.
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3.3. Activation of AKT Is Mediated by HDAC8 and Required for Cell Proliferation in LT- and
U0126-Resistant Cells

In the absence of ERK activation, cell cycles can be proceeded by activating the AKT
pathway [25,26]. Therefore, we examined whether LT and U0126 induced AKT activation
and whether it was mediated by HDAC8. HT-29 and B16-BL6 cells were treated with LT
or U0126 for 72 h, and the activation of AKT was examined by Western blots using an
antibody specific for phosphorylated AKT at Ser-473 [27]. We first examined whether the
MEK1/2-ERK signaling axis was inhibited in cells treated with LT for 72 h. Western blots
using antibodies raised against the N-terminus (the first 12 amino acids) of MEK1 and
phospho-specific ERK readily detected MEK1 and activated ERK in control and PCI-treated
cells but not in LT- and LT + PCI-treated HT-29 and B16-BL6 cells (Figure 3A, upper panel).
These data suggest that the MEK1/2-ERK signaling axis was inactivated in cells treated
with LT for 72 h. In these cells, AKT was highly phosphorylated, which was prevented
by PCI. Similarly, U0126-exposed cells showed a robust activation of AKT but not in PCI-
exposed cells (Figure 3A, lower panels). Consistent with PCI, knocking down HDAC8 by
siRNA also prevented LT- and U0126-induced AKT activation in HT-29 cells (Figure 3B). In
addition, the inhibition of AKT by the AKT inhibitor (AKTi) prevented cell proliferation
in U0126-resistant HT-29 and B16-BL6 cells (Figure 3C), suggesting that AKT activation
was required for a resistance to cell cycle arrest. Altogether, these results suggest that
HDAC8-mediated AKT activation is required for a resistance to LT and MEK1/2 inhibition.

Figure 1. HDAC8 inhibition prevents a resistance to LT-induced cell cycle arrest in B16-BL6 melanoma and HT-29 colorectal
cancer cells. (A) Cells were seeded in 96-well plates and treated with two different doses of LT (each PA and LF) for 24 h.
(B) B16-BL6, HT-29, MDA-MB-435, and SK-MEL-5 cells were cultured with LT (500 ng/mL of each PA and LF) in the
presence or absence of PCI-34051 (PCI: 1 µM) for the time indicated. (C) Resistance HT-29 cells were selected after treating
LT for 72 h, and the surviving cells were replated and re-exposed to LT (500 ng/mL of each PA and LF) for the time indicated.
(A–C) Cell survival and proliferation were measured by the MTT assay. (D,E) HT-29 cells were transfected with random or
HDAC8-specific siRNAs (64 nM) for 18 h. Cells were then cultured in the presence or absence of LT (500 ng/mL of each
PA and LF) for 48 h (D) or for the time indicated (E). HDAC8 mRNA and the protein levels were measured by RT-qPCR
((D), left panel) and Western blotting using anti-HDAC8 and anti-β-actin (for the loading control) ((D), right panel). Cell
proliferation was measured by the MTT assay (E). (A–E) Data are expressed as means and ± SD (n ≥ 3; *, p < 0.05 by the
Student’s t-test).
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Figure 2. MEK1/2-ERK inhibition is involved in LT-induced cell cycle arrest in B16-BL6 and HT-29 cells. (A) B16-BL6 and
HT-29 cells were seeded in 96-well plates for 18 h. Cells were then exposed to U0126 (12.5 µM) or SB203580 (12.5 µM)
for 24 h, and cell survival was measured by the MTT assay. (B) Similarly, HT-29 (top panel) and B16-BL6 (bottom panel)
cells were seeded in 96-well plates for 6 h. Cell were then treated with U0126 (12.5 µM) with or without PCI-34051 (PCI)
for the time indicated. Cell proliferation was measured by the MTT assay. (C) Resistance HT-29 cells were selected after
treating U0126 for 72 h. The surviving cells were replated and re-exposed to U0126 for the time indicated. Cell survival was
measured by the MTT assay. (D) HT-29 cells were transfected with HDAC8 siRNA or random siRNA for 18 h and then
treated with U0126 (12.5 µM) for the time indicated. Cell proliferation was measured by the MTT assay. (A–D) Data are
expressed as means and ± SD (n = 3; N.S., not significant; *, p < 0.05 by the Student’s t-test).

3.4. HDAC8 is Involved in Regulating Expression of PLCB1 and DESC1 in MEK1/2
Inhibition-Resistant Cells

To examine the mechanism of HDAC8 in activating AKT, HT-29 cells were treated with
LT in the presence or absence of PCI for 48 h, and the expression of over 47,000 transcripts
were first examined using the Affymetrix microarray with GeneChip™ Human Genome
U133 Plus 2.0 Array, followed by a gene ontology enrichment analysis using the Partek™
Genomics SuiteTM. The microarray found ~1500 transcripts changed in expression more
than two-fold by the LT or LT + PCI treatments. The top gene ontology enrichment was
a cell cycle progress, followed by mitotic cell cycle process (Supplemental Table S1). A
total of 141 cell cycle progress protein-coding genes were changed in expression by LT
and/or LT + PCI (Supplemental Table S2). We expected that the genes involved in the LT
resistance phenotype were likely upregulated in LT-resistant (LT-treated) cells but sup-
pressed in re-sensitized (LT + PCI-treated) cells. Among the 141 genes, nine genes were
upregulated in LT-resistant cells. Among the nine induced genes, PLCB1 (phospholipase C
β1; also known as phosphatidylinositol-specific phospholipase C), which is involved in
AKT activation [28], was downregulated in re-sensitized cells. We also examined the tumor
suppressors that could be involved in the regulation of AKT activation and LT resistance.
A total of 24 tumor-suppressor protein-coding genes were changed more than two-fold by
LT or LT + PCI (Supplemental Table S3). We expected that the tumor suppressors involved
in AKT inhibition were likely downregulated in LT-resistant cells but upregulated in LT
re-sensitized cells. Among the 24 tumor suppressors, DESC1 (differentially expressed in
squamous cell carcinoma 1), which is involved in the inhibition of AKT [29], was upregu-
lated in LT re-sensitized cells. Therefore, we decided to further examine the roles of PLCB1
and DESC1 in AKT activation and resistance and re-sensitization to MEK1/2 inhibition.
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Figure 3. HDAC8 is required for AKT activation in LT- and U0126-resistant cells. (A) HT-29 and B16-BL6 cells were cultured
with or without LT (500 ng/mL of each PA and LF, upper panel) or U0126 (12.5 µM, lower panel) together or without
PCI-34051 (PCI: 5 µM) for 72 h. (B) HT-29 cells were transfected with random or HDAC8-targeting siRNAs for 18 h and
then treated with LT (500 ng/mL of each PA and LF) or U0126 (12.5 µM) for 72 h. (A,B) AKT and ERK phosphorylation and
MEK 1 cleavage were analyzed by Western blots. β-actin immunoblots were used for loading the controls. The Western
blots shown are representative images of three independent experiments. (C) HT-29 and B16-BL6 cells were cultured in
the presence or absence of U0126 (12.5 µM) for 48 h. Cells were further cultured with or without the AKT inhibitor (AKTi;
200 nM) for an additional 24 and 48 h. Cell proliferation was then measured by the MTT assay. Data are expressed as means
and ± SD (n ≥ 3; *, p < 0.05 by the Student’s t-test).

We confirmed that LT and U0126 greatly enhanced the PLCB1 mRNA expression,
which was significantly inhibited by PCI through quantitative (q)PCR analysis (Figure 4A,
left panel). Consistent with the mRNA levels, the Western blot analysis also showed that
U0126 alone induced PLCB1 expression, which was inhibited by PCI (Figure 4B, left panel).
Furthermore, HDAC8-targeting siRNAs also recapitulated the effects of PCI, inhibiting
and enhancing the expression of PLCB1 in U0126-exposed cells (Figure 4C, left panel).
Similarly, LT and U0126, together with PCI, greatly enhanced the DESC1 expression in
the mRNA (Figure 4A, right panel) and protein (Figure 4B, right panel) levels. Of note,
U0126 alone slightly induced DESC1 in the protein levels but not in the mRNA levels. The
discrepancy could be due to the transient upregulation and/or short half-life of DESC1
mRNAs. Additionally, HDAC8-targeting siRNAs had similar effects as PCI in inducing
DESC1 expression in U0126-treated cells (Figure 4C, right panel). Like HT-29 cells, B16-BL6
cells also induced the expression of PLCB1 in response to U0126, which was inhibited by
PCI, and the expression of DESC1 in response to U0126 + PCI in both the mRNA (Figure 4D)
and protein (Figure 4E) levels. These results suggest that HDAC8 is involved in positively
and negatively regulating the expression of PLCB1 and DESC1, respectively, in LT- and
U0126-resistant cells.
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3.5. Inhibition of PLCB1 Prevents Resistance to LT and MEK1/2 Inhibition in HT-29 Cells

To examine the role of PLCB1 in AKT activation and resistance to MEK1/2 inhi-
bition, the effects of the PLCB1 inhibitor edelfosine [30] and PLCB1-targeting siRNAs
were examined in LT- and/or U0126-resistant cells. Edelfosine at a noncytotoxic dose
of 1.25 µM (Figure 5A) significantly inhibited cell proliferation in U0126-exposed cells
(Figure 5B). Similarly, siRNA-targeting PLCB1 (si-PLCB1), which reduced the PLCB1 ex-
pression by 50% (Figure 5C), prevented cell proliferation in LT- and U0126-resistant HT-29
cells (Figure 5D,E). In line with these data, si-PLCB1 prevented AKT activation, which was
induced by LT and U0126 (Figure 5F). These results suggest that PLCB1 is required for
AKT activation and recovery from cell cycle arrest in LT- and U0126-exposed HT-29 cells.

Figure 4. HDAC8 regulates the PLCB1 and DESC1 expression in LT- and U0126-treated HT-29 and B16-BL6 cells. (A) HT-29
cells were treated with none, LT (500 ng/mL of each PA and LF), or U0126 (12.5 µM) with or without PCI-34051 (PCI; 5 µM)
for 48 h. The expression of PLCB1 and DESC1 mRNAs was measured by qPCR. (B) HT-29 cells were treated with none
or U0126 with or without PCI for 48 h. The expression of PLCB1 and DESC1 were examined by Western blotting. The
Western blots shown are representative images of two to three independent experiments. (C) HT-29 cells were transfected
with random or HDAC8 siRNAs for 18 h. Cells were then treated with none or U0126 (12.5 µM) for 48 h, and the mRNA
expression was analyzed by qPCR. (D,E) B16-BL6 cells were treated with U0126 (12.5 µM) with or without PCI-34051
(PCI; 5 µM) for 48 h. The expression of PLCB1 and DESC1 were examined by qPCR (D) and Western blotting (E). The
Western blots shown are representative images of two to three independent experiments. Immunoblot intensities of the
phospho-AKT bands were analyzed using Image Lab 6.0 (Bio-Rad; Hercules, CA, USA), and the relative band intensities
were normalized to those of β-actin (B,E). The bar graph data are expressed as the means and ± SD (n = 2 to 3; *, p < 0.05 by
the Student’s t-test).
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3.6. DESC1 Prevents Resistance to LT and MEK1/2 Inhibition in HT-29 Cells

To examine the role of DESC1 in resistance to LT and MEK1/2 inhibition, we first
examined the effects of the broad-spectrum serine protease inhibitor AEBSF, which inhibits
cell membrane-associated proteases, including DESC1 [31]. AEBSF was able to reverse the
PCI effect on the resistance to U0126 (Figure 6A), suggesting that the increase of DESC1
expression was involved in preventing the resistance to MEK1/2 inhibition. To further
confirm its role in resistance, we ectopically expressed DESC1 and examined the resistance
to LT and U0126. As expected, the overexpression of DESC1 mimicked the effect of PCI
and inhibited the resistance to LT and U0126 in HT-29 cells (Figure 6B). Additionally, the
overexpression of DESC1 inhibited AKT activation in U0126-resistant cells (Figure 6C).
Altogether, these results suggest that the upregulation of DESC1 by PCI in U0126-resistant
cells inhibits AKT activation and re-sensitized cells to MEK1/2 inhibition.

Figure 5. PLCB1 is required for resistance to LT and MEK1/2 inhibition in HT-29 cells. (A,B) Cells were seeded in 96-well
plates and treated with various doses of edelfosine for 48 h (A) or treated with U0126 and/or edelfosine for the time
indicated (B). Cell survival and proliferation were measured by the MTT assay. (C–F) Cells were transfected with random-
or PLCB1-targeting siRNA (64 nM) for 18 h and then further cultured in the presence or absence of U0126 (12.5 µM) or LT
(500 ng/mL of each PA and LF) for 72 h (C) or for the time indicated (D,E). The PLCB1 mRNA expression was analyzed
by qPCR (C), and cell proliferation was measured by the MTT assay (D,E). Data are expressed as means and ± SD (n ≥ 3;
*, p < 0.05 by the Student’s t-test). The AKT phosphorylation at Ser473 was analyzed in cells treated with U0126 or LT for
72 h by Western blotting ((F), left panel). The Western blots shown are representative of three independent experiments.
Immunoblot intensities of the phospho-AKT bands were analyzed using Image Lab 6.0 (Bio-Rad; Hercules, CA, USA), and
the relative band intensities were normalized to those of β-actin ((F). right panel). Data are expressed as means and ± SD
(n = 3; *, p < 0.05 by the Student’s t-test).
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Figure 6. The high expression of DESC1 prevents AKT activation and resistance to LT and MEK1/2 inhibition in HT-29
cells. (A) HT-29 cells were plated in 96-well plates, as described above (Figure 5B) and cultured in the absence or presence
of AEBSF or U0126 or PCI + U0126 or PCI + AEBSF + U0126 for the time indicated. Cell proliferation was measured by
the MTT assay. Data are expressed as means and ± SD (n ≥ 3; *, p < 0.05 by the Student’s t-test). (B) HT-29 cells were
transfected with a control vector or DESC1 plasmid using lipofectamine 2000 or lipofectamine 3000 for 18 h and replated to
96-well plates, followed by a treatment of LT (500-ng/mL PA or 500-ng/mL LF) or U0126 (12.5 µM) for the time indicated.
Cell proliferation was measured by the MTT assay. (C) Similarly, HT-29 cells were transfected with the control vector or
DESC1 plasmid. Cells were then cultured with or without U0126 (12.5 µM) for 72 h. AKT phosphorylation was analyzed
by immunoblotting using the phospho-AKTser473 antibody (top blot in the left panel), and DESC1 overexpression was
confirmed by Western blotting using DESC1 antibody (middle blot in the left panel). The immunoblot against β-actin was
used for the loading control (bottom blot in the left panel). The results are representative blots from three independent
experiments. The immunoreactivities against phospho-AKT were analyzed using Image Lab 6.0 (Bio-Rad; Hercules, CA,
USA), and the relative immunoreactivity to phospho-AKT (Ser 473) was normalized to those of β-actin. Data are expressed
as means and ± SD (n = 3; *, p < 0.05 by the Student’s t-test).
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4. Discussion

The resistance of tumor cells to RAF/MEK inhibition is a transient and acquired
adaptive response of the surviving cells due, in part, to the incomplete inactivation of
ERK [2,3]. LT is a potential biological agent that effectively inhibits both MEK1/2-ERK
and MEK3/6-p38 MAPK and, thus, is expected to render more pronounced effects on the
cell cycle arrest and cell death [6]. The four cancer cell lines examined, harboring BRAF
or NRAS mutations [6,20–23], were susceptible to LT (Figure 1A). Among the susceptible
cells, MDA and SK-MEL human melanoma cells failed to develop a resistance to LT and,
eventually, were all killed by LT (Figure 1B). Since MDA and SK-MEL cells develop a
resistance to U0126 (data not shown) and BRAF inhibitors [6,18], but not LT (Figure 1B),
it is possible that robust MEK1/2-ERK inhibition and/or the inhibition of both MEK1/2-
ERK and MEK3/6-p38 signaling axes by LT prevented the development of resistance in
these cells. Indeed, the incomplete inhibition of MEK1/2-ERK can lead to resistance due
to residual or compensatory ERK activation [2,3,21]. These observations provided the
theoretic grounds for combinatory therapies using both RAF and MEK inhibitors with
positive outcomes. Unlike MDA and SK-MEL cells, murine melanoma B16-BL6 and human
colorectal HT-29 cells still escaped from LT-induced MEK1/2-ERK inhibition (Figure 1B).
In these cells, the MEK1/2 inhibitor U0126, but not the p38 inhibitor SB203580, mimicked
LT cytotoxicity and the resistance profiles, suggesting that the inhibition of MEK1/2-ERK
signaling is the main culprit of LT-induced cytotoxicity and activation of an alternative cell
proliferation pathway(s).

Among the various cell survival pathways, the PI3K-AKT signaling axis can in-
duce cell proliferation in the absence of MEK1/2-ERK signaling. In previous studies,
MEK1/2-ERK inhibition also induces activation of the PI3K-AKT signaling axis and leads
to resistance [25,32]. We also showed that human macrophages develop a resistance to
LT-induced cell cycle arrest through activating the PI3K-AKT signal pathway [26]. The
role of PI3K/AKT signaling in cancer cell proliferation and drug resistance has been well-
documented [33]. Similarly, there are various potential mechanisms that AKT protects
the cells from cell cycle arrest. We and others showed that inhibition of the glycogen
synthase kinase 3β (GSK3b) by AKT (mediated by the S9 phosphorylation of GSK3b) is
a key downstream event that protects the cells from cell cycle arrest [26], enhances cell
proliferation [34], and promotes the resistance to various stresses [35]. However, GSK3b
is a multifaceted enzyme targeting numerous protein substrates involved in both tumor
cell growth and suppression [36]. Therefore, the involvement of GSK3b in the resistance to
MEK1/2 inhibition warrants further studies.

Although, to date, the mechanism by which MEK1/2-ERK inhibition adaptively in-
duces the PI3K-AKT signaling axis is not fully delineated, epigenetic reprogramming medi-
ated by HDAC8 was shown to be involved in the resistance to MEK-ERK inhibitors [14,18].
In previous studies, we showed that HDAC8 suppresses the expression of the phosphatase-
tensin homolog (PTEN; a negative regulator of PI3K) that enhances PI3K-AKT signaling
in LT-resistant macrophages [14]. However, unlike in macrophages [14], LT and U0126
had no significant effects on PTEN expression in these cells (data not shown). In human
melanoma, HDAC8 was also shown to induce a resistance to BRAF inhibition through
targeting c-JUN [18]. In the study, HDAC8 directly deacetylates c-JUN at lysine 273, which
enhances the transcriptional activation of receptor tyrosine kinases, such as EGFR, that
induce a subsequent basal activation of ERK and AKT. Here, we found that the resistance to
LT and U0126 also required HDAC8 in HT-29 and B16-BL6 cells (Figures 1–3). Furthermore,
we found that PLCB1 and DESC1 played key roles in the HDAC8-meidated resistance to
MEK1/2 inhibition.

PLCB1 cleaves phosphatidylinositol 4,5-biphosphate and produces inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). These second messengers activate PKCs
and intracellular Ca2+ release in the cytoplasm [37]. PLCB1 also localizes in the nucleus,
where it regulates transcription by releasing the second messengers and directly interacting
with various nuclear proteins [38]. In various cells, the overexpression or activation of
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PLCB1 renders cell proliferation [39,40] and resistance to oxidative stresses [28,41] through
activating PKC, ERK, and AKT and enhancing the expression of cyclin D3 and E. Here, we
showed that PLCB1 was required for the resistance to LT and U0126 through, at least in part,
by activating AKT in HT-29 cells (Figure 5). Further studies are required to unravel how
PLCB1 leads to AKT activation and whether it depends on PKCs and/or Ca2+ release in
the cytoplasm or nucleus. In addition, PLCB1 is activated by G-protein-coupled receptors
(GPCRs), whose expression is one of the top-ranked protein classes associated with the
resistance to MEK inhibitors in melanoma [42]. Therefore, it is possible that signaling from
GPCRs could confer survival benefits for cells expressing high levels of PLCB1. The high
expression of PLCB1 was also shown to be related to the development and poor prognosis
of various cancers, including hepatocarcinoma [43–45], colorectal cancers [46,47], non-small
cell lung carcinoma [45], breast cancer [48], and acute myeloid leukemia [49], suggesting
its oncogenic role in different cancers.

DESC1 is a member of the type II transmembrane serine protease (also known as
transmembrane protease, serine 11E; TMPRSS11E) and downregulated in squamous cell
carcinoma of the head and neck [50] and esophageal squamous cell carcinoma [51]. DESC1
was demonstrated to be a tumor suppressor that cleaves EGFR and inhibits AKT activation
that sensitizes cell death in esophageal squamous cells carcinoma [29,52]. Here, we also
found that the ectopic overexpression of DESC1 inhibited AKT activation (Figure 6C)
and prevented the development of a resistance to LT and U0126 (Figure 6B). In contrast,
the serine protease inhibitor AEBSF prevented the effect of PCI in U0126-treated cells
(Figure 6A). These results suggest that HDAC8 inhibition also, at least in part, re-sensitized
HT-29 cells to MEK1/2-ERK inhibition through inducing DESC1 expression.

It is intriguing that HDAC8 renders a resistance by differently regulating the gene
expression. Silencing the DESC1 expression by HDAC8 is anticipated, since HDAC8
deacetylates N-terminal tails of core histones and interacts with the corepressors [53,54].
Therefore, the inhibition of HDAC8 could lead to DESC1 transcription through targeting
its cis-regulatory elements (promoter and enhancers). In addition, the DESC1 expression
was shown to be regulated by the long non-coding RNA tumor-suppressor candidate
7 (TUSC7) that inactivates DESC1-targeting miR-224 [52], yet suggests an indirect reg-
ulation of DESC1 expression through noncoding RNAs. Further studies are needed to
delineate the involvement of the cis-regulatory elements and/or TUSC7/miR-224 in regu-
lating the DESC1 expression by HDAC8. Unlike DESCI, HDAC8 inhibition suppressed
PLCB1 expression (Figure 4). It is possible that HDAC8 induces PLCB1 through deacety-
lating/activating c-JUN, as in the BRAF inhibitor-resistant melanoma [18]. However, the
involvement of c-JUN in PLCB1 expression has yet to be established. PLCB1 expression is
also controlled by miRs, such as miR-3184 in hepatocellular carcinoma [44] and miR-423-5p
in glioblastoma cells [55]. Since HDAC8 can suppress the expression of certain miRs [56],
PLCB1 could be induced by HDAC8 through the negative regulation of miRs. Delineating
the downstream mechanisms of HDAC8 will reveal more specific targets in controlling
resistance and warrants further studies.

In summary, MEK1/2 inhibitors or the biological agent LT, which can provide more
potent and tumor-specific delivery, inhibit tumor cell growth by inhibiting the perpetually
activated MEK1/2-ERK cell proliferation pathway (Figure 7, solid box). However, the
inhibition of MEK1/2-ERK can lead to AKT activation through HDAC8 (Figure 7, dotted
box). We found that HDAC8 induced the PLCB1 expression and subsequent AKT activation
in low basal DESC1 expression/activity. The inhibition of HDAC8 prevented PLCB1
expression and, at the same time, increased DESC1 expression, both of which were involved
in re-sensitizing cells to MEK1/2 inhibition. Therefore, targeting PLCB1 and DESC1 could
be potential strategies for inhibiting the resistance to MEK1/2 inhibition in certain cancers
with NRAS or BRAF mutations.
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Figure 7. Schematic presentation of the signaling pathways for tumor cell growth and the resistance mechanism proposed.
Mutations in NRAS and BRAF lead to tumor cell growth through activating the MEK1/2-ERK pathway. LT and U0126
inhibit MEK1/2 and prevent tumor cell growth (solid box). However, the inhibition of MEK1/2 by LT or U0126 can lead
to an HDAC8-dependent cell proliferation pathway that activates AKT through enhancing the PLCB1 expression in a
low-DESC1 background (dotted box). The inhibition of HDAC8 can lead to the suppression of PLCB1 expression and
induction of DESC1 expression, both of which cooperatively inhibit AKT activation and a resistance to MEK1/2 inhibition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10051101/s1: Tables S1–S3: HT-29 cells were cultured with or without LT (500 ng/mL of
each PA & LF) together with or without PCI-34051 (PCI: 5 µM) for 48 h. Total cellular RNAs were
isolated using TRIzolTM (Ambion by Life Technologies; Carlsbad, CA, USA) and microarray was per-
formed once using the GeneChip™ Human Genome U133 Plus 2.0 Array kit in the London Regional
Genomics Centre (Robarts Research Institute in Western University, London, ON, Canada). Table
S1: Gene ontology enrichment analysis was performed, and the top 10 gene ontology enrichment
processes are provided, Table S2: Gene ontology enrichment analysis was performed, and the list of
cell cycle progress-related genes changed more than 2-fold by LT or LT+PCI is provided. Highlighted
genes are upregulated genes, Table S3: Gene ontology enrichment analysis was performed, and the
list of tumor suppressor genes changed more than 2-fold by LT or LT+PCI is provided. Highlighted
are genes upregulated by LT or LT+PCI.
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